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This paper provides details of the combustion and inlet submodels used in the Michigan-
Air Force Scramjet In Vehicle (MASIV) model. The model solves conservation equations
in 1-D, using several modeling techniques to retain some of the fidelity of higher-order
simulations. Inlet wave interactions, fuel mixing and finite-rate chemistry are considered.
The order of the problem is reduced by physics-based, experimentally-verified algebraic
scaling laws, which retains the required physics but reduces the computation time of the
problem to seconds, instead of the several days required by computational fluid dynamics
(CFD). Scaling coefficients and assumptions are given. The model is used to compute the
performance of an experimental configuration for which real data are available.

I. Introduction

Since CFD codes take a long time to reach solutions for reacting ducts, a tool that can solve these
configurations in short time to acceptable accuracy is highly desirable for control and design applications.
The MASIV code [1, 2] seeks to solve for the heat release distribution in ramjet and scramjet combustors,
which is used to compute the thrust of hypersonic vehicle engines. Since finite-rate chemistry is highly
dependent on the temperature and pressure in the combustor, MASIV also uses an inlet wave interaction
technique to predict the effects of the wave interactions that occur in the vehicle inlet.

There are two components to the current generation of MASIV: an inlet code which computes wave
interactions for arbitrarily shaped bodies and a combustor code which computes supersonic combustion in
arbitrarily shaped ducts with jet fuel injection. The inlet model solves a series of exact Riemann3 problems
between any two adjacent regions. This gives the classical inviscid solution to any two-wave interaction
problem. The model considers shock-shock, shock-expansion and expansion-expansion interactions, modeling
expansions as a series of discrete waves.

The combustor code solves a set of differential and algebraic equations in space,4 marching axially through
the combustion duct. Since combustion in most engines is mixing-limited rather than reaction rate-limited,
jet mixing is computed using the scaling law of Hasselbrink and Mungal,5 which is based on flow field
similarity. The model considers finite-rate chemistry via the Stationary Laminar Flamelet Model (SLFM),6

which considers each point in the flame and maps it to the solution of a corresponding counter-flow flamelet.
Because this is a Probability Distribution Function approach, it includes the effects of different strain fields,
species diffusion, and momentum diffusion as the duct velocity and fuel jet velocity change.

In this study, we compare results from experiments done at the University of Michigan to results gener-
ated by the MASIV code. MASIV is intended to solve duct combustion problems in short time relative to
computational fluid dynamics. Although it can solve for the flow through arbitrary ducts, this effort concen-
trates on combustion modeling for hypersonic vehicle engine (i.e., ramjet and scramject engines). Therefore,
we compare the model to experiments done on the dual-mode combustor at the University of Michigan, and
the station numbering is that of the generic hypersonic vehicle shown in Figure 1.
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Stations:
∞© - Free stream conditions
1a©

} After each inlet vertex1b©
.
.
.

2a© - After diffuser
3a© - After isolator
4a©

} After each significant change in the combustion duct (injectors, area changes)4b©
.
.
.

5a© - After combustor (beginning of nozzle)
6a© - After external nozzle (end of engine)

8 1a 1b
1c

1d 2a 3a 4a 4b 5a 6a

Figure 1. An example geometry. The station numbers are extensible by adding successive letters to each
station for a more complex geometry.

II. Inlet model

We consider a scramjet inlet design that is approximately two-dimensional. A satisfactory control-
oriented model must require a relatively small amount of computational time and still yield a relatively
accurate solution for the inlet flow. Instead of solving directly for the flow conditions at each point in the
flow (as is done in CFD), the proposed method solves for the positions of the relevant waves, which separate
regions in which the flow properties are considered to be uniform. The inlet-modeling method solves for the
locations of the shock waves and expansions using established two-dimensional supersonic theory. To make
this possible in a digital computing environment, expansion fans are approximated as a number of discrete
isentropic waves. In many ways this is a generalized and automated version of the method of characteristics.

A. Description of the Proposed Algorithm

The input to the program consists of two parts. The first input is the geometry of the inlet, which consists
of two polygons: one for the main body of the vehicle and one for the cowl. The second part of the input
is the flight conditions, i.e. M∞, α, and altitude. The program begins its analysis slightly upstream of the
leading edge and marches toward the downstream x-coordinate, x2a. As the program proceeds downstream,
it tracks the positions of all the straight lines in the flow, which includes waves, the surfaces of the input
geometry, and the boundaries of the flow domain. Within the program each of these straight lines is tracked
as a path that consists of a point and a propagation angle.

As the model is computing the flow solution, there is a current x-coordinate. Call this value xcur. This
creates a vertical line x = xcur for which all of the flow upstream has been computed, and all of the flow
downstream remains to be solved. There will be several paths that intersect this vertical line at vertical
coordinates of z1, z2, . . ., each path having a corresponding propagation angle of σ1, σ2, . . .. Then two paths
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with coordinates zj and zj+1 have a downstream intersection point of

xnext,j = xcur +
zj+1 − zj

tanσj+1 − tanσj
(1)

provided that σj < σj+1. Then the x-coordinate of the next interaction point, xnext, is the minimum of all
the xnext,j and all of the vertices of the input polygons that are downstream of xcur.

Once an interaction point is found, the nature of the interaction is determined, and the local flow problem
is solved. If one of the paths is a surface boundary, the program determines the downstream conditions using
either a shock or expansion that turns the flow parallel to the surface. If all of the interacting paths are
waves, the solution is determined by a Riemann problem, which is described in Section II.C. Before moving
to the next interaction point, the list of waves and their propagation angles at the current x-coordinate
are updated so that the coordinates of the next interaction point can be determined. This inlet model will
provide a flow solution in less than ten seconds for all of the flight conditions considered in this report.

B. Discretized Prandtl-Meyer Expansions

The Prandtl-Meyer theory for expansions is used to predict the solution for a supersonic flow turned away
from itself. In addition to determining the conditions downstream, Prandtl-Meyer theory predicts the con-
ditions along the characteristics within the expansion fan. The geometry of this situation is illustrated in
Fig. 2.

MA

ΣA Ψ

MB

ΘB

ΣB

a) Geometry and definitions b) Example

Figure 2. Illustration of Prandtl-Meyer expansion wave. The geometry and nomenclature of the problem are
shown 2a) while 2b) shows an example solution from the proposed inlet model in which the expansion fan is
modeled as five discrete waves. Darker shades of blue represent higher pressures.

Assuming θB < θA, the conditions downstream of a two-dimensional expansion can be found using
the characteristic equation νB + θB = νA + θA where ν is the Prandtl-Meyer angle. The angle of the first
characteristic is σA = θA +µA, and the last characteristic has an angle of σB = θB +µB where µ = sin−1 1/M
is the Mach angle. However, this does not resolve the flow between the first and last characteristics. To find
the Mach number along a characteristic whose angle with the freestream velocity is ψ, the characteristic
equation is

ψ = νA + θA + µ(ψ)− ν(ψ) (2)

For a calorically perfect gas, this equation has an explicit solution;

M =

√
1 +

γ + 1
γ − 1

tan2

(√
γ − 1
γ + 1

(
νA + θA − ψ +

π

2

))
(3)

The resolution within the expansion wave, given in equation (3) provides a method to discretize the
wave. By selecting a set of angles for evaluation ψ1, . . . , ψnex between σB and σA, the expansion can be split
into a set of regions within which the gas properties are constant. The regions are separated by discrete
waves, which have angles of σ1, . . . , σnex . Once the evaluation angles, ψ1, . . . , ψnex , have been selected, the
intermediate Mach numbers, M1, . . . ,Mnex , are calculated using equation (3). Finally, we select wave angles
that conserve mass flux through the expansion wave.
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C. Two-dimensional Riemann Problem

A two-dimensional Riemann problem describes the situation in steady two-dimensional compressible flow
in which two uniform regions are in contact with each other, e.g. at the trailing edge of an airfoil or the
intersection of two oblique shocks. At the point of interaction, there are two inconsistent flow conditions.
To rectify this situation, the gas in both regions must pass through a wave, as shown in Figure 3.

A

B

C

D

ΘB

ΘA

ΘD

ΣA

ΒA

ΣD

ΣC

ΜD

ΜC

Figure 3. Geometry for the interaction between two waves with a Riemann problem whose solution has a
shock and an expansion. In the general Riemann problem, both waves could be either a shock or an expansion.

The physical solution must have the property that the intermediate regions B and C must have equal
pressures and flow in the same direction. Thus pB = pC and θB = θC. A simple solution method is to define
a single pressure-deflection function

pB = p(A, θB − θA) (4)

which takes as input all information about state A and a deflection angle θB − θA, and returns a post-wave
pressure as output. If θB < θA, the Prandtl-Meyer expansion relations are used, while if θB > θA, the oblique
shock relations are used. Using the same pressure-deflection for the lower angle and applying the constraints
gives

p(A, θB − θA) = p(D, θD − θB) (5)

which is satisfied only by the correct value of θB.

D. Downstream Averaging Model

At the downstream boundary of the reference inlet geometry, it is useful to define the spatially averaged
gas properties, which can be input into a one-dimensional isolator or combustor model. With the proposed
inlet model, gas properties are not uniform at the downstream boundary of the inlet because of the possible
presence of waves separating regions of different gas properties. The proposed method to determine spatially-
averaged properties is to require that the total fluxes of mass, momentum, and stagnation enthalpy are
constant through the x = x2a plane. This method is chosen so that the averaging does not violate conservation
of mass or energy and introduces no drag. The geometry of this scheme is shown in Figure 4.

The mass flux out of the averaging plane is

Φρ = ρ2u2H2, (6)

and the mass flux into the averaging plane is

Φρ =
n2∑
i=1

ρ1kiu1kiH1ki cos θ1ki (7)
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where H1ki is the height of region 1ki at its downstream edge. We use the same process to determine the
momentum flux out of the inlet, Φu = ρ2u

2
2H2, and the stagnation enthalpy flux, Φh = ρ2u2H2h0,2.

Once the fluxes into the averaging plane have been calculated, the state variables for the flow out of the
inlet can be determined. The isolator velocity is u2 = Φu/Φρ, the stagnation enthalpy is h0,2 = Φh/Φρ, and
the density is ρ2 = Φρ/(u2H2). The pressure and temperature at station 2 are determined using an equation
of state.

2
1 k21 k1

1 ki

Figure 4. This figure shows the averaging plane at the downstream end of the inlet. The thin black lines
represent waves from a sample inlet solution. Region 1k1 is the lowest region that has a boundary along the
averaging plane; region 1k2 is the region above that; etc. In this example there are n2 = 6 regions that contact
the averaging plane.

E. Comparison to CFD

We consider an example scramjet inlet geometry to validate the proposed inlet model. The geometry has
exactly four shocks and no spillage for a flight Mach number of M∞ = 8.0 and angle of attack of α = 0
assuming sharp-nosed leading edges and an inviscid, calorically perfect (constant cp) flow. The first three
shocks are generated by external ramps, and they turn the flow away from the center of the vehicle. The
fourth shock turns the flow back to horizontal, and it intersects the shoulder in the upper surface of the inlet.
Therefore there are no additional shocks downstream of this fourth shock. Under these flight conditions, the
compression ratio of the inlet is p2/p∞ = 30.61, and the pressure recovery factor is p0,2/p0,∞ = 0.6841.

When this inlet is operated at off-design Mach numbers or angles of attack, additional waves are formed.
To compare the results of the proposed inlet model to a high-fidelity two-dimensional CFD solution, we
selected a flight condition of M∞ = 10.0 and α = 0. The results of the two computations are shown in
Figure 5. The two predicted flow solutions look very similar, and to quantify this similarity, Figure 6 shows
the pressure along the downstream boundary (x = x2a). The two results have the same trend, and the
spatially averaged pressure, p2, is accurate to within 2.0%. The other spatially averaged thermodynamic
variables, ρ2, T2, and u2, are even more accurate. As a result of this comparison, we expect that the proposed
inlet model can be expected to predict the thermodynamic properties to within 10% for a wide range of flight
conditions.

III. Combustion Modeling

The MASIV code marches the flow conservation equations from the beginning of the combustor (station
3a) to the end of the internal nozzle (station 5a). All flow states are allowed to vary in the downstream axial
direction, defined −x̂. We allow derivatives with respect to the axial coordinate only. Some quantities, such
as jet spreading and mixing, vary in the transverse directions, but they may only vary algebraically, such
that their evolutions do not depend on the information propogating downstream.

A. Duct Solution

We begin with the conservation equations, along with the equation of state.
We take the derivatives of these equations with respect to x to obtain a set of ODEs, which are presented

in Table 2. These equations form the basis of the model, since their simultaneous solution provides all the
information needed to calculate the evolutions of the state variables (p, ρ, T ) and the heat release through
the duct.
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a) Proposed model solution

b) CFD Solution

Figure 5. Comparison between solution from proposed inlet model and high-fidelity CFD solution. Darker
shades of blue represent regions of higher pressure; white represents freestream pressure and black represents
p/p∞ = 90.

Proposed inlet model

CFD
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Figure 6. The normalized pressure along the z-axis of the inlet outflow plane is shown for both the proposed
inlet model and the two-dimensional CFD result.
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Table 1. Conservation equations used in MASIV.

Equation Name Equation

Equation of State p = ρ RW T

Cons. of Mass ∂
∂t

∫∫∫
V
ρdV +

∫∫
S
ρ~u · ~ndS = 0

Conservation of Species ∂
∂t

∫∫∫
V
YiρdV +

∫∫
S
Yiρ~u · ~ndS = ω̇

Cons. of Momentum d
dt

∫∫∫
V
ρ~udV = −

∫∫
S
(ρ~u)~u · ~ndS +

∫∫∫
V
ρ~fdV +

∫∫
S

¯̄σ~ndS

Cons. of Energy d
dt

∫∫∫
V
ρ(e+ ~u·~u

2 )dV +
∫∫

S
ρ(e+ ~u·~u

2 )~u · ~ndS +
∫∫

S
p~u · ndS =

∫∫∫
V
ρ~f · ~udV + Q̇+ Ẇ

Since the specific heat capacity, cp of each species varies with T , which varies through the duct, using cp
to calculate enthalpy offers no advantage, so we avoid formulating the problem in this way. The JANAF and
GRIMech tables are readily available (CHEMKIN7 is one convenient source), so we simply use the enthalpy
(h) curve fits, and circumvent a messy formulation for cp. If the specific heat is desired, it can be computed
a posteriori.

Similarly, the sound speed (a) for a reacting flow is not defined a =
√
γRT , but instead must be defined as

a = (∂p
∂ρ )s=const.. We avoid this difficulty by formulation the problem in terms of velocity rather than Mach

number. This is what Heiser and Pratt8 call enthalpy-kinetic energy (H-K) space. It is more convenient
than the typical temperature-Mach number (T -M) space, giving a simpler set of equations. If desired, a and
M can be computed post-solution as well as cp.

Table 2. Differential equations used in MASIV.

ODE Name Equation

Equation of State 1
p

dp
dx = 1

T
dT
dx + 1

ρ
dρ
dx −

1
W

dW
dx

Cons. of Mass 1
ρ

dρ
dx = 1

ṁ
dṁ
dx −

1
u

du
dx −

1
A

dA
dx

Cons. of Species dYi

dx = ω̇
ρu + 1

ṁ
dṁi

dx − Yi

ṁ
dṁ
dx

Cons. of Momentum 1
u

du
dx = − 1

ρu2
dp
dx −

Cf

2A
dSw

dx − (1−ε)
ṁ

dṁ
dx

Cons. of Energy
1
h0

dT
dx

∑
i cp,iYi = − u

h0

du
dx −

1
ṁ

dṁ
dx + 1

h0ṁ
ρuCf (haw−hw)

2Pr2/3
dSw

dx · · ·

+ 1
h0ṁ

ρu3Cf

2
dSw

dx − 1
h0

∑
i hi

dYi

dx + 1
h0ṁ

∑
i hi

dṁi

dx

Clearly, there are several other quantities indicated in Table 2 which are required to solve the system,
but which are not part of the solution. These are presented in Table 3.

B. Chemistry

We compute the reaction rate ( ˜̇ωi) for each species using the SLFM before solving the set of ODEs.9 The
SLFM uses a counter-flow flamelet solution with an assumed PDF model for each flow parameter: mean
mixture fraction (f̃), mean mixture fraction variance (f̃ ′) and mean scalar dissipation rate (χ̃). This means
that for any given point in the flow, ˜̇ωi can be determined as a function of f̃ , f̃ ′ and χ̃. The SLFM equation
follows.

−χst
∂ψ

∂f
=

ṁ
ρ

(8)

Here, ψ and ṁ represent the vectors
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Table 3. Additional equations used in MASIV.

Source Variable Equation

From Solution

p =
∫

dp
dxdx

ρ =
∫

dρ
dxdx

Yi =
∫

dYi

dx dx

u =
∫

du
dxdx

T =
∫

dT
dx dx

A = A(x)
dA
dx = dA

dx (x)

Given
dṁi

dx = dṁi

dx (x)

ω̇ = ω̇(x)

Wi = const .†

Cf = const .

ṁ = ρuA
dW
dx = −W 2

∑
i

(
1

Wi

dYi

dx

)
dSw

dx =
√

16A+
(

dA
dx

)2

Computed

dṁ
dx =

∑
i

dṁi

dx

hi = hi(T )†

h =
∑

i hi

h0 = h+ u2

2

hw = h(Tw)

haw = h+
√

Pru2

2

†from CHEMKIN

ψ =


Y1

...
Yn

h

 ṁ =


ρω̇1

...
ρω̇n

−q̇R

 (9)

This results in a flamelet lookup table of reaction rates for each species, ṁ(f, χst). The solution of the
flamelet equations has been discussed sufficiently in the literature (see [6]), so discussion will be omitted
here.

Once a flamelet solution has been found, we require mean values of each variable in order to use the
mixing model discussed in Section C. This is accomplished using a probability density function approach
which assumes a certain PDF and variance for each quantity, then integrates the product over the parameter
space.

For example, to compute the mean of the reaction source terms, which we desire as reaction rate input
into the duct solution code, the following equation applies.

˜̇m(f̃ , f̃ ′′2, χ̄st) =
∫ ∞

0

∫ 1

0

ṁ(f, χst)P̃ (f)P (χst)df dχst (10)

where P̃ (f) is the beta PDF, β(f, f̃ , f̃ ′′2) and P (χst) is a log-normal PDF. Finally, a mapping from χ̃ to χ̄st
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is required, which can be accomplished using another PDF

χ̃ = χ̄st

∫ 1

0

F (f)β(f, f̃ , f̃ ′′2)df (11)

These functions are tabulated for a given chemistry to improve solution speed. In principle, it is possible
to pre-tabulate chemistry for any given configuration. In application, it is best to use a limited number of
chemistry files in order to reduce the amount of memory and disk space required.

C. Assumed Mixing Model

The jet centerline penetration and spreading can be computed for each point using the scaling relationship
measured in [10]. This relationship is valid for momentum ratio ru � 1. Experimental results set the values
of the constants in Table 4, which allow MASIV to generate a predicted three-dimensional distribution of
fuel based on injection and crossflow parameters.

First, the momentum ratio is defined as

ru =
[
ρinj

ρ

(uinj

u

)2
]1/2

(12)

which appears in the scaling relationship

yCL

dinj
= c1

(
xCL

dinj

)c2

r2/3
u (13)

to trace the centerline path of the fuel jet.
The normalized concentration of injected fuel is given by another scaling relationship:

CCL

Cinj
= c3

(
ρinj

ρ

)1/3 (uinj

u

)−1/3
(
xCL

dinj

)−2/3

(14)

The mean mixture fraction is assumed to be 1 in the injected gas stream (pure fuel) and 0 in the cross
flow (pure oxidizer):

m =
Winj

W
(15)

f̃CL =
CCLm

1 + (m− 1)CCL
(16)

f̃(s, n) = f̃CL exp
(
−n2

2b

)
(17)

The mixture fraction at a given point is determined by the centerline mixture fraction corresponding to
that point, and by the jet spreading distance, which is a function of distance from the injector along jet
centerline.

n2 = (x− xCL)2 + (y − yCL)2 + z2 (18)

b

dinj
= c4r

2/3
u

(
xCL

dinj

)1/3

(19)

Thus, by computing the shortest perpendicular distance from a given point to the jet centerline, the
mixture fraction can be computed. The constants c1-c5 are experimentally determined. Their values in
MASIV are given in Table 4.

The mean mixture fraction variance is computed by another scaling argument. Measurements indicate
that mixture fraction variance is essentially a function of rate of change of mean mixture fraction, so that

f̃ ′ = c5
∂f

∂r
(20)

f̃ ′ = c5
r

b
f (21)
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Table 4. Experimental constants for jet mixing model.

Constant Experimental Range MASIV value
c1 1.2 to 2.610 2.1
c2 0.28 to 0.3410 1

3

c3 0.85-0.9511 0.9
c4 0.355 0.35
c5 0.14 0.14

Finally, we determine the local scalar dissipation rate, χ̃ using the formula:

χ = 2D|∇f |2 (22)

χ̃ = 2DT |∇f̃ |2 (23)

where D is the scalar diffusion coefficient and DT is the turbulent scalar diffusion coefficient. We can estimate
DT using12

u0d

νT
≈ 65 (24)

ScT =
νT

DT
(25)

≈ 0.55 (26)

D. Solution Procedure

To solve for combustion in the duct, we first define a geometry (A, dA
dx ) and a fuel injection profile (dṁ

dx ) as
functions of axial distance, x. For a given fuel injection location, we know the mass flow rate of fuel that
enters the duct. Based on the fuel mass flow rate, the jet scaling law gives us a 3-dimensional flow field in
which

f̃ = f̃(x, y, z) (27)

f̃ ′ = f̃ ′(x, y, z) (28)
χ̃ = χ̃(x, y, z) (29)˜̇ωi = ˜̇ωi(f̃ , f̃ ′, χ̃) (30)˜̇ωi = ˜̇ωi(x, y, z) (31)

We then integrate ω̇(x, y, z) to determine the 1-dimensional rate of reaction of each species:

˜̇ωi(x) =
∫∫ ˜̇ωi(x, y, z)dydz (32)

With ω̇(x) we now have enough information to solve the equations in Table 2. A stiff solver is required,
due to the rapid reaction rates. We used MATLAB’s ode23tb.

IV. Comparison to Experiment

Experiments were performed in the supersonic combustion facility at the University of Michigan. This
facility supplies 21mole fraction vitiated air with stagnation temperatures (T0) up 1500 K. The test section
is made of stainless steel and is shown in Figure 1. A two-dimensional Mach 2.2 nozzle exits into a constant
area isolator with a cross section of 25.4 mm by 38.1 mm. The constant-area isolator is followed by a wall
cavity flameholder and a nozzle section with a 4 degree divergence angle. Room temperature gaseous fuel
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was injected sonically through a single 2.49 mm diameter port located on the test section centerline 44.5 mm
upstream of the cavity leading edge. Pilot fuel was also injected through three ports in the cavity trailing
edge. Additional details on the facility and test section can be found in Reference [13].

Wall static pressure ports were located throughout the combustor and isolator with a spacing of 25.4
mm to 38.1 mm. During each run, pressure data was recorded at eight locations at 40 Hz. For two runs,
the monitoring locations were changed between runs to obtain the average pressure at 30 locations the test
section.

Estimates of the heat release distribution in the combustor where acquired using images of the OH*
luminosity.14 Chemiluminescence is often used as a marker of the heat release in flames,15–17 and OH* is
individually proportional to the heat release rate in many cases.18 The luminosity from OH* was imaged
using a Andor Istar intensified camera with a 310±10 nm bandpass interference filter. Previous measurements
made in this combustor with a mixture of ethylene and hydrogen fuel showed little difference between the
OH* and CH* signals.14 Thus the contribution of OH* from the hot products appears to minor compared
to the contribution of OH* in the reaction zone.

358mm
constant area isolator combustor

x
y

44.5mm 50.8mm 349mm

H=25.4mm

spark plug
main fuel
injection

cavity fuel
injection

4o

static pressure ports

Mach 2.2
Nozzle

12.7mm

windows

Figure 7. University of Michigan dual-mode combustor.

A. Experimental Run Details

Table 5. Run conditions for the experiment.

T0 p0 T p fuel composition oxidizer composition φ

YO2 = 0.249
1300K 339300Pa 1216K 260900Pa YH2 = 1 YN2 = 0.629 0.27

YH2O = 0.123

B. MASIV Run Details

The duct used to represent the combustion experiment in MASIV is shown in Figure 8. The current results
simulate the combustor section of the duct, stations 4a to 4b. Note that these results are produced without
any tuning of the system for this specific case. The constants used are presented in Table 6.

Table 6. Constant parameters used in the simulation.

Parameter Value
Pr 0.71
Tw 1100K
Cf 0.003

While it would be possible to obtain better agreement with the experiment by tailoring the input to the
simulation to match the experimental results, this effort aims to represent ducts using generic constants, such
that results will be extensible. We sacrifice accuracy for particular cases in an attempt to develop scaling
laws useful for a wider range of configurations. Figure 9 compares the MASIV result to the experimental
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A5a = 1.898·10-3 m2

φ = 0.27

A2a = 9.677·10-3 m2

u2a = 447 m/s

2a 4a 4b
5a

ρ2a = 0.6971 kg/m3

p2a = 261 000 Pa
T2a = 1 220 K

m2a = 0.3042 kg/s·

358 mm 349 mm

802 mm

internal nozzlecombustorpost isolatorisolator

Ainj = 1.964·10-5 m2

uinj = 1 182 m/s
ρinj = 0.4402 kg/m3

pinj = 439 200 Pa
Tinj = 240 K

minj = 2.554·10-3 kg/s·

constant area section

4°

diverging section

3a 25.4 mm

fuel injector

Figure 8. Simplified duct geometry for simulation.

result. The evolutions of the other thermodynamic quantities, for which there are no experimental data, are
presented in Figure 10.

Although the computational result shows strong similarity to the experiment in its curvature, there are
clearly several differences. First, the computed curve drops more sharply around the fuel injection point,
which could be due to the simplicity of the mixing model, which assumes that the mass of each species is
uniformly distributed within each cross section. That is, injected mass is assumed to mix rapidly into the
main flow.

No experimental data were available for the temperature of the duct walls or wall friction, which has a
strong effect on the result. Cold walls can remove a great deal of enthalpy from the flow, as can friction work.
Experience suggests that the walls of the experiment will be slightly cooler than the vitiated air stagnation
temperature, since they will not have enough time to reach equilibrium with the flow. Friction is estimated
using Van Driest’s relation.19

Confinement has an effect on the centerline penetration and spreading of the jet, which is not included
in the scaling relations of Hasselbrink and Mungal. Experimental results suggest that the walls may prevent
the jet from penetrating as far as it would otherwise, but the effect on the heat release distribution is unclear.
The cavity also has an effect on the area of the flow, but this effect is not modeled here.

V. Conclusions

The MASIV code computes duct solutions for arbitrary duct configurations for use in control design and
evaluation. The solutions require about 30 seconds for a typical run and they include a modern

Results from the inlet solver are compared to correspond CFD results. The inlet model results give good
agreement, and less smearing than the CFD solution for inviscid cases.

Results from the combustion duct solver are compared to the pressure results of an experimental setup
which is applicable to hypersonic vehicle engine analysis, the dual-mode (ram/scramjet) combustor at the
University of Michigan. Simulation results show good similarity to experiment, with no “tuning” of the
parameters used in the code. Instead, the constants were selected from previous experimental studies.
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