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Abstract
Compressive failure by splitting is studied herein via
an analytical model. The use of a shear lag model to
determine the stress state at the crack tip and the
modeling of the region away from the crack tip by
the 3D elasticity equations leads to a simple analyt-
ical expression is used to determine the compliance
changes for both unsteady crack growth as well as
steady state crack growth under compressive load-
ing. Certain modifications to the assumptions used
in the classical shear lag model have been made to
increase the accuracy of the predictions for the rate
of change of compliance with respect to crack length,
^. The present approach leads to closed form ex-
pressions for the compressive strength of unidirec-
tional fiber reinforced composites.

1 Introduction
Previous experimental work [1, 2] has shown split-
ting to be the dominant mode of failure in
glass/vinyl ester unidirectional composites . Opti-
cal photomicrographs show a clean fracture between
the fiber and matrix indicating that splitting failure
is akin to interfacial fiber/matrix fracture. Lee and
Waas [1] have developed expressions for the com-
pressive strength of polymer matrix composites us-
ing linear elastic fracture mechanics and the assump-
tion of steady state crack propagation. The stress
analysis included only the areas in the cracked and
uncracked regions and excluded a small region of
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size e around the crack tip. In this region the stress
state is a function of the crack tip field. When the
crack is propagating under steady state conditions,
this region translates with the crack tip. Thus, the
rate of change of compliance with crack length is
unaffected. The expression for the rate of change of
compliance ̂  is also independent of the crack length
or the initial fiber length. For short cracks, where
the crack propagation is unsteady, Lee and Waas [1]
used the finite element method to extract the de-
pendency of ~ on crack length. In the present work
a modified shear lag model has been used to study
the stress state at the crack tip. The local shear
lag based stress field has been superposed on the
far field stress state of the composite obtained from
the 3D elasticity equations, to obtain expressions for
compliance and compliance change as a function of
crack length. The use of this method helps in devel-
oping an integrated expression for the compressive
strength in terms of the fracture toughness of the
material, which can be used for both short cracks as
well as long cracks.

2 Stress Analysis

Consider a representative volume element (RVE) of
the composite containing a single fiber of length 2L
with a crack of length 21 embedded in it as shown
in Figure 1. The single fiber is divided into four
regions for the purpose of getting the expression for
compliance and the rate of change of compliance. By
symmetry, only one side of the fiber (0 < z < L),
containing the crack region (0 < z < I) is modeled.
Assume that a region e extends from the crack tip in
the positive Z axis direction as well as in the negative
Z axis direction. The region extending beyond e is
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modeled as in the case of the steady state splitting
model as shown in Lee and Waasfl].

2.1 Shear Lag Analysis
The main assumptions in the traditional shear lag
model of Cox [3], are that the matrix carries only
shear and any axial straining in the matrix is only
for the purpose of load introduction. The fiber can
only undergo axial contraction or extension and the
fiber axial stress is zero at the fiber ends. The clas-
sical shear lag method based on the above assump-
tions leads to a reasonably accurate calculation of
the compliance of a cracked fiber/matrix system.
But the rate of change of compliance with crack
length,^ turns out to be inaccurate. This in turn
leads to the inaccurate calculation of strain energy
release rate. Nairn [4] has indicated the limitations
of using classical shear lag methods for strain energy
release rate calculations. Time dependent effects in
the matrix are captured in a non-linear viscoelas-
tic shear lag model by Thuruthimatttam, Waas and
Wineman [5]. For the present work, we assume that
the fiber ends do carry some load and that the shear
lag method is valid over the small region extending
from l—etol+c. These modifications are introduced
into the shear lag model by ensuring that the fiber
axial stress at z = / + e matches with the fiber axial
stress of the uncracked region calculated using the
3D equations of elasticity. Also, at z = / — e the fiber
axial stress is equated with the steady state splitting
model stress in the crack region, which is similar to
what is obtained via a simple rule of mixtures based
stress prediction.

Taking a small segment dz of the composite
containing the single fiber as shown in Figure 2, we
can get the radial variation of shear stress in the ma-
trix ,f by equating the shear forces on neighboring
annuli with radii r\ and r^ of length dz. Then,

From the above equation we get the relation
between TI and f2 as ^—^-. Thus at any radius r,
we can relate the shear stress f(r) to the interface
shear stress f^.

To obtain the relation between shear strain
and shear stress, consider the displacement ur(z) of
the matrix with respect to the unstressed position.
Then,

du

Integrating the above equation between r—r^ and
r—R, we obtain

,~ j , \ ,~ ~ Ndu = -——ln(—) - (UR - uro)

where UR is the matrix displacement at a distance
R from the fiber and uro is the matrix displacement
at interface r = TQ. The value of R is based on
the assumption that the matrix strain is uniform,
remote from the fiber-matrix interface. Thus the
appropriate value of R is dictated by the proximity
of fibers which in turn depends on the fiber packing
and fiber volume fraction V/. Assuming a hexagonal
packing of fibers and also taking note of the fact that
the ratio R/TQ appears as a logarthmic term and
is relatively insensitive to the details of geometry,
we can write the following expression relating fiber
volume fraction V/ and the ratio R/rQ.

From Figure 2b, by equating the forces act-
ing along the axial direction of the fiber we get the
relation between the axial stress in the fiber and the
interfacial shear stress.

dfrf _ -2fj(
dz rn

Combining the above expression with the expression
for interfacial shear stress f^ in terms of the displace-
ments we get

da/
~dz~

-2Em (uR-uro)

differentiating Equation(l), we get

(1 + vm)
dll ro

rlln(l/Vfy dz

^(af-er%

dz

(2)

where the following substitutions have been
made

r=ro = ef = Ef
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du

n2 =

Equation(2) is a second order ordinary differ-
ential equation, whose solution is

» f ( z ) =

+Dcosh( (3)

2.2 Splitting
Method

Model - Shear Lag

In this section we present the details of the appli-
cation of the shear lag model to the splitting model
analysis of Lee and Waas [1]. For this purpose, the
RVE can be divided into two regions - the crack re-
gion and the uncracked region.

2.2.1 Crack Region

In this region it is reasonable to assume that the
fiber axial stress is equal to that of the axial stress
obtained from the splitting model with increasing
distance from the crack tip. Also in the crack region
according to the shear lag model there is no shear
stress hence the fiber axial stress is constant. Thus,

IC7(1)
dz

_ rj

= A
A

Integrating the expression for fiber axial strain we
get u / ( i ) — -g-z where the constant of integration
has been taken to be zero since it represents a rigid
body translation. The expressions for the stress and
displacement field from the splitting model for the
crack region are as given in Lee and Waas [1].

from which we can obtain
P

U/2D =

2.2.2 Uncracked Region

In the uncracked region, we can take the expression
of normal fiber stress as given by Equation(S). How-
ever in the present analysis this expression is valid

in the region I < z <l + e . For z > I -h e, the normal
stress expression corresponding to the 3D equations
of elasticity, is taken from the splitting model. Thus,
at z = I -f e, we equate the fiber normal stress 0/(2)
obtained from the shear lag analysis with that of
the fiber normal stress obtained from the splitting
model. Also, at the interface between the crack and
uncracked region continuity of fiber normal stress
and axial displacements is enforced. The expres-
sion for normal fiber strain can be obtained from
Equation(3) and is as follows.

.rjz.
( —— )

D ,riz .
( —— )

On integrating the above, we get

B TQ . fTIZ .
-£ ——— COSh( —— )

f rj r0

Similarly an expression for the displacement field in
the region beyond z — I + e can be obtained from
the 3D splitting model analysis and is as follows

P*LZ + C2
7rr0

The expression for the stress cr3rf is as follows

/3P
——2

The following boundary conditions can be
written for the present boundary value problem.
Crack Region

at z — / — c

=» A =

and hence

(l-e)

Further, at z — I

From the condition for continuity of displacement
across the crack interface the constant C2 is evalu-
ated which is then used to get the displacement field
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be,

nrlS

- —[cosh(—)• 'n ro
ro r • u / "nz \

U /- cosh(— )
r0

. r?/
(4)

At z — I, the continuity of normal stresses
provides

——L — Ef€m -h ^sinh(—) -f Dcosh(—) (5)

Uncracked Region

at z — I + e
— af3D, which translates to

ro

r0

- vm)} (6)

To ensure compatibility, we equate the displace-
ments w/(2) an(i U/3D- This provides,

r0

(7)

Equation(T) enables to obtain the constant C3 in
terms of the remaining constants B and D. The
constants B and D can be evaluated from the two
Equations(5) and (6). Knowing B and D, C3 and
C2 can be determined. Expressions for these con-
stants and expression for /?, a and 6 are given in the
appendix.

The total axial displacement can be written in terms
of the integrals of the fiber axial strains as follows.

A = 2 / e f ( i ) d z
Jo

CrackRegion(l)

UncrackedRegion(2)

-f 2
/•0+e)
/

Jl

On substituting the expressions for the axial strains
in the above integrals results in,

A -
i p

—cosh(^)]dz

(8)

We can observe from the above equations for
total displacement A that as e -* 0 (meaning the
region e around the crack tip vanishes), the second
integral vanishes and also the third reduces to the
same expression as given in Lee and Waas [1] giving
us the displacement expression obtained with steady
state crack propagation assumption.

3 Strain Energy Release Rate
The total potential energy II of the RVE under con-
sideration, when applied with a compressive load, P
is U — W, where U is the strain energy stored in the
RVE and W is the work done. The expression for
strain energy release rate is

dn
° = dA

where A — 47rr0£ is the crack surface area and r0 is
the fiber radius. The overall compliance of the RVE,
c is defined as;

A
° = P

where A is the axial compressive displacement of
the composite and P is the external compressive
load. The expression for A is substituted from
Equation(S). For either case of load control or dis-
placement control, the strain energy release rate can
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be written as

s~t _ P2 dc
o dl

The fracture toughness 7/ is half of the value of G
at the time of initiation of crack propagation.

G = 27/

The compressive stress ac can be related to the frac-
ture toughness of the material 7/ by the following
the expression

ac - (9)

4 Solution
The expression for A in the form of the integral given
in Equation(8) is evaluated to get the displacement.

A = 2(
pl

+

B
r0

D

r0

+ (10)

From Equation(lO), we get the relation for compli-
ance c by dividing the above equation by the load
term P.

A
P

= 2

j
+ -

+

+

B

(11)

Equation(ll), is an expression for compliance of the
system in terms of the crack length, /, and crack tip
influence zone c. The rate of change of compliance,

ll is obtained by differentiating Equation(ll) with
respect to the crack length, /.

dc 2

,dB

- cosh(^))
ro

(12)

It can be seen in the above equation that the first
term corresponds to the steady state behavior and
the second term, which contains the crack length and
the crack tip influence zone e, is due to the shear lag
model. The constants B and D in the above expres-
sion are functions of crack length / and are given in
the appendix. For determining the rate of change
of compliance with crack length, the previously de-
scribed expressions were coded in MAPLE (symbolic
math package) and evaluated for a glass/epoxy com-
posite system as given in Lee and Waas [1], For the
ease of calculation the total length of fiber L, crack
length / and the crack tip influence zone c were all
expressed as a factor of the fiber radius r0. Plots of
compliance and rate of change of compliance were
obtained as a function of the crack length factor nl.
The following material properties of the glass fiber
and epoxy matrix were used in the analysis.
Glass Fiber

r0 = 0.012mm
Ef = 72000MPa
i/f = 0.22

Vinyl-ester Resin

I'm. —

3585MPa
0.36

5 Discussion and Conclusions
As the equation for the ^ indicates, compliance
change is no longer independent of the crack length
/ or the crack tip influence zone parameter e. How-
ever, the value of e is initially unknown since the
crack tip zone advances with the crack and also the
region of influence does not remain constant. Thus
the first step in evaluating the compliance changes
would be to determine the value of e. It has to be
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kept in mind that the value of c cannot exceed the
crack length I and at the same time c should be
smaller than L -/. As shown in figure 3, the com-
pliance of the fiber/matrix system is plotted as a
function of the crack length paramater for differ-
ent values of c. For a particular e we can see that
the compliance vs crack length plots are straight
lines. If we mark the lower tip of the straight lines
with black dots as shown in figure 3, we can ob-
serve that the slope of a imaginary line joining these
points is initially varying and then becomes a con-
stant after some crack length paramater nl indi-
cating the steady state crack growth region. Sim-
ilarly, for the compliance change ^, the curve of ̂
vs e as a function of n becomes nearly flat beyond
e > 1.5r0 as seen in figure 4. The value of rate of
change of compliance obtained with the present in-
tegrated approach using shear lag model is found
to be 3.59715 X KT5 (N/mm)'! which is 0.001%
less than the value obtained from the steady state
analysis, 3.597186 X 10~5 (N/mm)~l given in Lee
and Waas [1]. This value of ^ was obtained for a
e of 0.024mm and crack length, / of 0.096mm. The
total length of fiber considered was about 40r0. As
seen in figure 4, for this crack length and e, the ^
value has reached its asymptotic value. Thus the
present analysis incorporating the shear lag model
to account for the crack tip stress state provides a
simple analytical approach to study both unsteady
crack growth of short cracks and steady state crack
behavior as crack length increases.
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7 Appendix

S =
,JL_

'Vf

D =

B =

1 =

[?-*]-re
7I2?-*]

T =

sinh(^)
TO

cosh(^)
TO

= sinh(-

7
= cosh(-

/Q __ __ J_ _

\Ef - num)( — - 1)]]
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a ) A single fiber with a crack embedded in matrix

Z : =

Matrix

Shear Lag Model
2D Splitting Model 3D Splitting Model

Ulllncracked Region - (2)

Z= I + 8

b) Crack and Uncracked regions

Figure 1: RVE showing the various regions of anal-
ysis

z + dz

Classical shear lag model

Figure 2: Free body diagram of a small segment of
fiber and attached matrix
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Figure 3: Curves of compliance as a function of crack
length for different values of e and L — 20r0
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Figure 4: Curves of rate of change of compliance
with crack length ^ as a function of crack length
with varying c and L = 20ra
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