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Thermal Buckling of Metal Foam Sandwich Panels
for Convective Thermal Protection Systems

Joseph F. Rakow* and Anthony M. Waas'
University of Michigan, Ann Arbor, Michigan 48109

Sandwich panels with metal foam cores are studied with application to actively cooled thermal protection systems.
To evaluate these panels under thermal loading, a novel experimental technique and load frame, which provide
a prominent improvement in the simultaneous preservation of thermal and mechanical boundary conditions
during thermomechanical structural testing, are introduced and validated. With this technique, the response of
metal foam sandwich panels (MFSPs) to thermally induced in-plane equibiaxial loading is investigated, and the
elastoplastic pre- and postbuckling response of MFSPs is measured and analyzed. The in-plane response of the
panels is quantified with strain-gauge measurements, and the out-of-plane response across the surface of the panel
is captured via shadow moire interferometry. These measurements provide direct visualization and quantification
of the initial buckled mode shapes, as well as the evolution of the elastoplastic postbuckled mode shapes from initial
buckling into the postbuckling regime. This experimental investigation is the first of its kind, complementing the
largely theoretical and numerical body of information on the thermomechanical response of sandwich panels.

Nomenclature

= Fourier coefficients of trial function for w

= extensional stiffness of sandwich panel

= edge length of sandwich panel parallel to
coordinate x

= coefficients of characteristic equations

= Fourier coefficients of trial function for y,

= edge length of sandwich panel parallel to

coordinate y

Fourier coefficients of trial function for y,,

Cp = specific heat at constant pressure

Do, Dy, = transverse shear stiffness

D;j; = bending stiffness of sandwich panel

D* = flexural stiffness parameter

E Young’s modulus of the face sheets

E; Young’s modulus of the foam

E, = Young’s modulus of the parent (solid) material
of the foam

G = shear modulus

Gy shear modulus of the face sheets

h = thickness of the sandwich core

i index

kyy shear buckling factor

M, = stiffness-geometry parameter

M., M, bending moment intensity

M., = twisting moment intensity

M MT, M XTy = thermal moments

m = index

N, N, = normal stress resultant

Nyy = shear stress resultant

N!,N[,N[ = thermal forces
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thermal force

index

axial load

critical axial load

stiffness-geometry parameter

pitch of ronchi ruling, lines per mm

heat flux rate

temperature

critical temperature

time-averaged temperature

time

thickness of face sheets

displacement parallel to coordinate x

displacement parallel to coordinate y

displacement parallel to coordinate z

initial displacement parallel to coordinate z

coordinates of reference frame

isotropic coefficient of thermal expansion

orthotropic coefficients of thermal expansion
* thermal diffusivity

B = angle of light source with respect to normal

axis of specimen

angle of digital camera with respect to normal

axis of specimen

transverse shear strains

two-index delta function

four-index delta function

bending strain

eddy coefficient

strain

numerical factor in buckling equation

determined by boundary conditions

Lame constant

Poisson ratio

potential energy

density

relative density of foam

stress
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I. Introduction

HERMAL protection during high-speed flight is arguably the
most pressing issue in the advancement of hypersonic vehi-
cles. Since the early 1950s, with the development of the X-2 and
X-15 vehicles, designed to capitalize on the supersonic accomplish-
ment of the X-1, until 2003, when the Space Shuttle Columbia
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disintegrated during hypersonic reentry, the technology to propel
vehicles has been more mature and more successful than the technol-
ogy to protect vehicles from the resulting aerodynamic heat loads.
This limitation has manifested and dominated a variety of aspects
of hypersonic vehicle operation, from flight planning, to vehicle
maintenance, to flight performance envelopes. For example, with
regard to flight planning, the ceramic thermal protection system
(TPS) on the space shuttle cannot fly in wet weather because of its
hygroscopic surface. With regard to vehicle maintenance, the space
shuttle TPS, as a whole, dominates the maintenance requirements
of the vehicle, demanding 32,000 (Ref. 1) work hours of inspection
and repair required by the vehicle between flights. With regard to
performance envelopes, on its record-setting flight above Mach 6,
components of the X-15 were virtually destroyed when shock—shock
interactions pierced holes in the inconel airframe, a heat sink TPS.
Clearly, the current state of the art in TPS technology cannot effi-
ciently manage the demanding requirements of hypersonic vehicle
operation.

One concept for advanced structural TPSs is an actively cooled
TPS, in which load-bearing structural members are integrated with
coolant passages.? Unlike the dual-component ablative TPS onboard
the manned capsules of the Mercury, Gemini, and Apollo aircraft,
and unlike the dual-component insulated system used on the space
shuttle, the ideal structural TPS is a single-component multifunc-
tional structure that bears both mechanical and thermal loads.

To this point, however, true integration and multifunctionality
have not been achieved. An example of a first-generation actively
cooled structural panel is shown in Fig. 1 (Ref. 3). This panel is a
standard, honeycomb-cored sandwich panel that has been modified
with a series of coolant tubes on the inside of the external face sheet.
The problems associated with this type of construction are readily
apparent:

1) The coolant tubes interrupt the path for shear load transfer
between the face sheets and the honeycomb core.

2) Machining of the honeycomb and the layup of the panel
to accommodate these tubes create significant manufacturing
difficulties.

3) The discreet nature of the coolant passages causes severe ther-
mal stress gradients throughout the panel.

4) Blockage in discretized coolant passages leads to local hot
spots of reduced strength in the load-bearing structure.

For success, such problems must be overcome in next-generation
actively cooled TPS concepts.
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Fig. 1 First-generation actively cooled sandwich panel.?

A. Improvements Offered by Metal Foam for TPSs

Metal foam sandwich panels (MFSPs) provide a truly multi-
functional structure that is well suited for the management of both
thermal and mechanical loads in actively cooled TPSs. An actively
cooled MFSP is a sandwich panel with an open-cell metal foam core
integrally bonded, that is, brazed, to metal face sheets. Whereas the
panel bears airframe flight loads, aerodynamic heat on the panel’s
outer surface is conducted through the outer face sheet and, with the
assistance of the conductive foam, into coolant passing through the
core of the panel (Fig. 2).

Metal foam is the key to the multifunctional panel, bearing me-
chanical shear loads while conductively distributing heat from the
outer surface of the panel into and throughout the cross-sectional
flow of the coolant within the panel. Metal foam, in its open-cell
form, has a substructure similar to foam found in seat cushions and
packing materials, but the substructure is made of metallic alloy,
such as aluminum, titanium, inconel, or copper. Figure 3 shows an
open-cell metal foam in detail. In previous studies, the present au-
thors have demonstrated and characterized the response of metal
foams under shear loading through experimentation,* numerical
simulation,’ and a micromechanics-based analysis.®

Metal foam is central to the improvements offered by MFSPs
over previous actively cooled panel concepts:

1) The foam and face sheets provide a monolithic, single-material
structure with no inherent intrastructural mismatch of coefficients
of thermal expansion.

2) Through-the-thickness shear response and heat transfer can be
controlled through the foam density.

3) The metal foam core provides a network of nondiscreet coolant
passages, eliminating the severity of local coolant blockage.

4) With high internal surface area per unit volume
[~1800 (m?/m?)], metal foam facilitates extremely high structure—
coolant interaction per unit volume.

5) In addition to conducting heat, the foam core improves the
heat transfer capability of the system by creating turbulence in the
coolant, even at low Reynolds numbers. The departure from laminar
flow introduces a nonzero eddy coefficient €y into the boundary-
layer equations for steady, incompressible flow with constant prop-
erties, which increases the rate of heat flux Q to the coolant,

aT
0= —pcp(a*+ey)¥ (1)

where a* is the thermal diffusivity of the coolant and 97 /3z is the
time-averaged thermal gradient field perpendicular to the flow.’

Normal Loads

Coolant Flow
Bending Moments

Shear Loads

Fig. 2 Schematic of actively cooled MFSP.
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Fig. 3 Open-cell metal foam.

B. Thermomechanical Response of MFSPs

The response of MFSPs to in-plane thermomechanical loading is
a driving design parameter for the integration of MFSPs into flight-
ready hardware. Previous investigations into sandwich panels and
other shear deformable panels under thermal loading are almost ex-
clusively numerical and theoretical in nature®~'%; very few efforts
have analyzed the thermomechanical response of sandwich panels
experimentally. Likewise, no data exist, in the authors’ knowledge,
for the thermomechanical response of MFSPs. The present work ex-
amines the response of MFSPs under quasistatic thermally induced
equibiaxial compression loads, leading to buckling and elastoplastic
postbuckling.

Section II of this paper describes the experimental procedure
used in the present work to quantify the thermomechanical re-
sponse of MFSPs under in-plane loading. Special attention is
given to the experimental technique developed by the present au-
thors to constrain and load panel-type structures without corrupt-
ing the thermal and mechanical boundary conditions in thermo-
mechanical experiments. In common thermomechanical experi-
mental methods, the thermal boundary conditions are corrupted
by the presence of the mechanical boundary conditions, acting
as a heat sink.'* This new method represents a departure from
such complications. The validity of the technique is established
by measuring the onset of thermal buckling in thin monolithic
aluminum plates and comparing the results to classical thin-plate
theory. The validated experimental technique is then utilized to sub-
ject MFSPs to thermally induced in-plane loading and to measure
the response of the panels.

Section III presents the first experimental results on the thermal
response and buckling of MFSPs. The in-plane response and the
onset of out-of-plane deflections are indicated through strain-gauge
measurements on the panel surfaces. The measurements provide
the pre- and postbuckling response of MFSPs and identify the crit-

ical temperature for the onset of thermal buckling in the panel. The
out-of-plane postbuckling response, as well as the onset of thermal
buckling, are captured by images of moire fringe patterns that quan-
tify the evolution of the elastoplastic buckled mode shapes across
the entire surface of the panel. The critical temperatures measured
by each technique are compared to a theoretical prediction based on
a Rayleigh—Ritz minimization of the potential energy of a shear de-
formable plate. The experimental and theoretical results are shown
to be in very good agreement.

II. Experimental Procedure

A. Experimental Load Frame

Figure 4 shows the load frame designed by the present authors to
induce in-plane thermal loading of MFSPs. The central concept of
the frame is to develop in-plane loads in the specimen by mismatched
coefficients of thermal expansion (CTE). An MFSP, with a specific
CTE, is clamped in a frame made of a material with a CTE that is not
equal to the CTE of the MFSP material, such as an aluminum MFSP
in a steel frame, as is used in the present study. The frame-specimen
assembly is heated uniformly. Through-the-thickness thermal gra-
dients can also be applied and are currently in use by the present
authors. Once heated, in-plane loads are created within the speci-
men because of the mismatched CTEs of the frame and specimen.
With well-defined (measured) temperature-dependent CTEs and ac-
curate measurements of the temperature throughout the assembly,
the in-plane loading is well defined and given by

NT — f E(Z7 T)[aframe(zy T) - apanel(L T)]AT(Z) dZ (2)

1—v(z, T)

in which N7 is the in-plane load per unit edge length and E = Epype
and v = Vpypel.
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MFSP Low-CTE Clamping Frame

Fig. 4 Load frame used to clamp boundary of MFSP and induce in-
plane thermal stresses.

In typical thermomechanical structural experiments, it is neces-
sary to impart a specific temperature field or heat flux throughout
the specimen. Mechanical loads must also be introduced, and this
typically involves contact between a load frame and the boundary of
the specimen. Once contact is introduced, however, the load frame
becomes a heat sink and the prescribed temperature or heat flux
field in the specimen is compromised. Likewise, the severity of the
thermal loading can often degrade the quality of the mechanical
boundary conditions.

This challenging and occasionally prohibitive conflict is explored
in Ref. 14, in which the author of Ref. 14 cites the work of Ref. 15
as a classic example of the conflict of thermomechanical boundary
conditions. The thermomechanical load frame of Ref. 15 is shown
in Fig. 5. In the experiment, the boundary conditions were to be
clamped and one side of the panel was to be heated by radiant
lamps to produce a temperature gradient through the thickness of
the panel. To minimize the conductive heat sink of the clamps, the
authors provided clamping along the boundary through a series of
bolts. However, the bolts were not sufficient to properly realize the
intended clamped boundary conditions. The insufficient clamping
bolts were subsequently reinforced by stiff angle beams. The stiff
angle beams, however, shaded the boundary of the panel, producing
nonuniform heating of the panel. To equilibrate the in-plane tem-
perature distribution, heat lamps were placed along the edges of the
panel. However, these lamps degraded the desired thermal gradient
through the thickness of the panel. The thermomechanical boundary
conditions were in direct, and possibly unavoidable, conflict with
each other.

The load frame designed for the present investigation offers a
reprieve from this classic conflict of thermomechanical boundary
conditions. The primary reason for this improvement is that the
boundary-condition hardware is subjected to the same temperature
history as the specimen. This condition eliminates thermal gradi-
ents between the specimen and load frame and allows the temper-
ature field of the specimen to remain uncorrupted. The mechani-
cal boundary conditions and the applied load, Eq. (2), remain well
defined throughout the experiment through measurement of the
temperature-dependent material properties (CTE and elastic mod-
uli) of both the specimen and the frame throughout the entire tem-
perature range of the experiment. The method has been used for
both uniform and through-the-thickness static temperature fields,
but remains unproven for in-plane thermal gradients and transient
thermal loading.
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Fig. 5 Thermal structural load frame that demonstrates the conflicts
typical of experimental thermomechanical boundary conditions.

C beam stiffener

Details of the frame are shown in Fig. 6. The frame has two iden-
tical pieces that are bolted together to provide a clamped boundary
condition along the border of the MFSP. This leaves a central square
test section measuring 216 x 216 mm (8.5 x 8.5 in.). The transverse
edges of the face sheets are in direct contact with the frame. Consis-
tent contact along the entire perimeter of the panel-frame interface is
ensured with a small bead of metallic putty in the panel—frame inter-
face. The frame has been designed such that the foam core remains
accessible for both the passage of coolant and for measurements
within the core. Such necessities can be accommodated, because
Young’s modulus of the foam core is sufficiently small to justify the
assumption that the contribution of the core to the in-plane load-
bearing capability of the panel is negligible. The uniaxial stiffness
of the foam E ; scales as!®

E; = (0.14.0)E, p} 3)

in which the factor (0.1-4.0) represents a range of proportionality
from 0.1 to 4.0, E; is the modulus of the solid parent material, and
py is the relative density of the foam. Relative density of foams
is defined as the density of the foam divided by the density of the
parent material from which it is foamed, expressed as a percentage.
By substitution of Eq. (3) into Eq. (2), the assumption that only the
face sheets carry in-plane loads is shown to be valid for the low-
density foams of interest in most sandwich structure applications.

B. Method Validation

To verify the accuracy of this technique, a thin square 5052-H32
aluminum plate was placed in the 1018 steel frame and subjected to
a quasi-statically increasing (1°C/min) uniform temperature field.
The plate thickness is 3.175 mm (0.125 in.) with a 216 x 216 mm
(8.5 x 8.5 in.) test section. Verification of the method was obtained
by comparing the measured thermal buckling load with that pre-
dicted by classical thin plate theory,

ATy = (4% /DL /[(@trame — Fpane) (1 + W1} (E/a@)* (D)

in which AT, is the temperature at bifurcation and ¢ /a is the ratio
of plate thickness to edge length.

Figure 7 shows the strain vs temperature for one of the plate
specimens measured by back-to-back strain-gauge pairs and the
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Fig. 6 Details of steel load frame.
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Fig. 7 Response of thin plate to thermal loading that demonstrates
validity of the experimental technique.

Table 1 Critical temperatures of thin
monolithic 5052-H32 aluminum plates

Plate AT, °C Difference, %
Theory 62 e

1 63 1.6

2 59 4.8

comparison of the measured bifurcation point with that predicted by
Eq. (4). The precise bifurcation point was determined with a South-
well plot!” and strain decomposition, as are used and explained in
the following section for MFSPs. The data indicate agreement be-
tween theory and experiment to within 5%, which verifies that this
experimental technique induces in-plane loading and bifurcation in
the fashion predicted by Eq. (4). A second monolithic aluminum
plate was tested to establish repeatability in the verification of this
technique. The experimentally measured critical buckling tempera-
tures of the two plates are listed in Table 1, along with the theoretical
prediction from Eq. (4).

C. MFSP Specimens and Instrumentation

The aluminum foam sandwich panels analyzed in the present
work are shown in Fig. 8. The panels measure 254 x 254 mm
(10 x 10 in.). The core has a thickness of 6.35 mm (0.25 in.). The
foam is made from 6101-T6 aluminum and has eight pores per
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Fig. 8 MFSPs used to obtain results of present work.

mm Strain Gages
® Thermocouples MFSP Clamping Frame

Fig. 9 Location of strain gauges and thermocouples on instrumented panel-frame setup; instrument locations are symmetric about the x—y plane.
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centimeter (20 pores per inch) and a relative density of p; =8%.
The core is brazed to 6061-T6 aluminum face sheets, which have
a thickness of 1 mm (0.04 in.). The panels were manufactured by
ERG Materials and Aerospace Corp. (Oakland, California). Four
identical specimens were subjected to uniform thermal loading and
unloading in the steel frame.

An instrumented panel-frame setup is shown in Fig. 9. Each of
the specimens was instrumented with five distributed type-K Nextel-
insulated thermocouples (XC-20-K-72, Omega Engineering) with
electronic ice point reference junctions. The locations of the five
thermocouples varied among the tests and were chosen from the
locations shown in Fig. 9. The purpose of the range of locations was
to ensure that the panel-frame assembly experienced no thermal
gradients, neither in the plane of the panel nor through the thickness
of the assembly. Each combination of thermocouple locations con-
firmed a uniform temperature field throughout the entire assembly
over the duration of the experiment, as can be seen by the thermal
loading curve in Fig. 10.

Two of the specimens were instrumented with high-temperature,
fully encapsulated Karma-based alloy strain gauges (WK-062AP-
13-350, Vishay Micromeasurements), arranged in back-to-back
pairs located in the center of each face sheet of the panel, paral-
lel and perpendicular to the boundary of the test section. Multiple
coaxial strain gauges were used for redundancy in the measurement
system.

The other two specimens were instrumented for shadow moire
interferometry,'® measuring the out-of-plane displacement field as
the panel buckled and deformed into the postbuckling regime. In
the shadow moire method, as shown in Fig. 11, a specimen is put
in contact with a ronchi ruling, which is a glass substrate marked
with parallel black lines evenly spaced at a pitch p. A white light
source shines through the ruling onto the specimen at a nonzero
angle B with respect to the normal axis of the specimen. The light
reflects off of the surface of the specimen, passes back through the
ruling, and produces an interference pattern that is captured by a
digital camera also oriented at a nonzero angle y. The interference
pattern is a contour representation of out-of-plane displacements.
Each fringe represents a differential displacement magnitude Aw
such that

Aw = p/(cosp + cosy) (5)

In the present experiments, the light source and camera are oriented
at angles of § =8.5 deg and y =9.7 deg, respectively, from the
normal axis of the panel. With a pitch of 12 lines/mm (300 lines/in.)
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Fig. 10 Five simultaneous thermocouple readings that demonstrate
uniformity of applied temperature in experiments.

Clamping
Frame

Specimen

White Light Source

Digital Camera

Fig. 11 Setup for measuring buckling modes with shadow moire in-
terferometry.

on the glass substrate, the increment of out-of-plane deflection rep-
resented by each fringe is Aw =0.264 mm (0.0104 in.).

With an average temperature defined by the thermocouple mea-
surements, the local bending and membrane strains measured by the
strain gauges and the full out-of-plane displacement field measured
by the moire fringe patterns provide a temperature-based history
of the thermally induced prebuckling, buckling, and postbuckling
response of MFSPs.

D. Thermal Loading

The panel-frame assembly was subjected to uniform thermal
loading in an oven. The temperature—time history is a simple load—
unload quasi-static cycle with a temperature rise rate of 1°C/min,
a peak temperature of 300°C, and an uncontrolled free convec-
tion cool-down to room temperature. The maximum temperature
of the oven dictated the peak temperature of the experimental load-
ing cycle. This loading cycle is shown in Fig. 10, which shows the
temperature measurement of five thermocouples distributed across
both sides of the panel-frame assembly. Thermal gradients are
shown to be minimal or nonexistent throughout the duration of the
experiment.

III. Results and Discussion

A. In-Plane Response

The response of MFSPs to uniform thermal loading and unload-
ing is shown in Fig. 12. As the temperature rises, equibiaxial ten-
sile strains develop equivalently on each side of the panel. From
points A to B in Fig. 12, the panel is in the prebuckled state. The
tensile aggregate strain state is accompanied by a compressive ag-
gregate stress state. This is possible because a nonzero temperature
change, AT #0, is introduced into the thermoelastic constitutive
relations,

Oij = )Ltsijfkk + 2G6ij — (3)\. + ZG)(S,]C(AT (6)

The tensile aggregate strains have a positive thermal strain com-
ponent and a negative mechanical strain component, due to the con-
stricting frame, that result in compressive stresses in the panel. The
magnitudes and signs of the thermal and mechanical strain com-
ponents during the load—unload thermal cycle will be discussed in
further detail at the end of this section.

At point B, the panel buckles and the strain states on opposite
sides of the panel diverge and continue diverging until the peak
temperature at point C. The strain response at and around the point
of buckling is shown in Fig. 13. The panel buckles symmetrically
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in both the x and y directions, and the shape can be represented by

w(x,y) = sin (7;—x> sin (?) Z Z An

m=1n=1

X sin <m_7'rx> sin (m> @)
a a

in which w(x, y) is the magnitude of out-of-plane deflection.
Equation (7) is the series of mode shapes used in the Rayleigh—Ritz
analysis that will be formulated in a later subsection of this paper.
This analysis considers a plate with clamped boundary conditions,
as satisfied by Eq. (7).

Beyond buckling, between points B and C, it is clear from Fig. 12
that the aggregate strain on the front side of the panel becomes
increasingly compressive relative to the aggregate strain on the back
side of the panel. This behavior continues until the peak temperature
at point C. From points C to D, the temperature decreases through
free convection, releasing all elastic thermal and mechanical strain
components. Once unloaded, the accumulated plastic strain in the
panel is shown at point D. A detailed analysis of the thermoelastic—
plastic strain components is given later in this section.

A critical design criterion for in-plane loads in TPSs, such as
actively cooled MFSPs, is the buckling point. Although a buckling
point is identifiable in Fig. 13, a more accurate numerical value may
be obtained by transforming the strain—temperature measurements
into two different forms. The first is a decomposition of the strain
into bending and membrane modes as is shown in Fig. 14. From
Fig. 14, it is clear that the panel is in a state of pure membrane
deformation until a distinct onset of nonzero bending strain, which
indicates buckling within the panel.

The second useful transformation of data is a temperature-based
Southwell plot for plate buckling (see Ref. 17). A typical South-
well plot, for the mechanical buckling of columns, is obtained by
considering

w = Py(w/P) — wy (®)

and plotting w/P vs w. Here, w is the lateral deflection of the
midpoint of the column, wy is the amplitude of initial curvature in
the imperfect column, and P is the end load. The inverse slope of
the Southwell plot is the buckling load of the column. The analog
to this procedure for thermal buckling in panels is represented by

€, = (ATy/AT )€y — Wo xx 9

and the inverse slope of a plot of €,/ AT vs €, yields the buckling
temperature AT, of the panel. This, is shown in Fig. 15.

Both the strain decomposition technique and the Southwell
method are used to identify the buckling point of the two panels
instrumented with strain gauges. The buckling temperatures AT,
of the four MFSP specimens are shown in Table 2 with a comparison
to a theoretical prediction. The results show repeatability and close
correlation to theory. In Sec. III.B, the results from experiments
with MFSPs instrumented for moire interferometry are explained in
detail. In Sec. III.C, the theoretical development is discussed.

The temperature history of the thermal and mechanical elastic
and plastic strain components, throughout the duration of the loading
cycle, are shown in Fig. 16. The aggregate strain state is decomposed

Table 2 Critical temperatures of aluminum foam sandwich panels

Panel ATy, °C Difference, % Measurement method
Theory 167 E—
1 188 12.6 Strain gauges
2 175 4.8 Strain gauges
3 170 1.8 Moire interferometry
4 176 5.4 Moire interferometry
500
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—=—— X-Membrane
——=oc—— X-Bending
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-200
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Fig. 14 Strain history of the MFSP decomposed into bending and
membrane strain.
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Fig. 16 Thermal and mechanical strain throughout the loading cycle.

into its thermal and mechanical (elastic and plastic) components.
This decomposition is possible because o(T") and AT (¢) are known
for the MFSPs.

Throughout the duration of the experiment, points A-D, the ther-
mal strain is positive in the panel, as is dictated when AT >0 in a
material for which «(7") > 0. The magnitude of thermal strain dom-
inates the aggregate strain state throughout the loading cycle and
most of the unloading cycle of the experiment. From point A to
point B to point C, the mechanical strain state follows qualitatively
similar behavior as the aggregate strain analysis described in detail
earlier and in Figs. 12 and 13. The mechanical strains are similar
on both sides of the panel until buckling, at which point the strains
diverge until the peak temperature is reached at point C.

From point C to point D, Fig. 16 illustrates elastoplastic behavior
that could not be revealed by the aggregate strain analysis. Thermal
unloading initially produces a decrease in mechanical strain (elastic
strain) of approximately 22% of the peak mechanical strain on each
side of the panel. After this initial relaxation, the mechanical strain
reaches a plastic strain plateau for the remainder of the thermal un-
loading. Although elastic mechanical strain is released, the bending
strain, the difference between the mechanical strains on each side
of the panel, remains constant for the entire unloading cycle. This

is readily apparent in Fig. 16. The release of elastic strain, then,
is exclusively membrane strain, attributed to the loss of in-plane
loading from the constricting frame. The curvature that was present
in the panel at the peak temperature (point C) is wholly present
when the panel is completely unloaded (point D). This behavior
will be visualized with shadow moire interferometry in the next
section.

B. Out-of-Plane Response

An analysis by shadow moire interferometry is used to identify
the critical temperatures, the buckling mode shapes, and the post-
buckling response of the MFSPs. In situ images of the MFSPs under
thermal loading were captured throughout the response experiment.
Figure 17 shows the moire fringe patterns captured at each of the
lettered response points in Fig. 12. At point A, there is a slight fringe
pattern that indicates the level of imperfection in the measurement
system: initial panel curvature, misalignment of the ronchi ruling,
or curvature in the ruling. This image serves as a reference state for
the analysis. The image at point A remains unchanged until point
B because there is no appreciable relative out-of-plane deformation
in the prebuckling regime.

At point B, the first sign of thermomechanical out-of-plane cur-
vature appears as a black spot at the center of the panel, which is
indicated by the white arrow in Fig. 17. This occurs at the same tem-
perature at which the strain-gauge measurements begin to diverge
in Figs. 12 and 13. The appearance of the black spot in the center of
the panel indicates the first critical temperature of the MFSPs. From
point B to point C, the fringe pattern evolves as the panel continues
to deflect out of the plane of loading with a new fringe appearing
and growing from the center of the panel each time the center of the
panel deflects Aw = 0.264 mm (0.0104 in.).

At point C, the panel is fully loaded (7' =300°C) and a clear
set of fringes provide a precise measurement of the out-of-plane
deflection over the entire surface of the panel. After point C, the
panel is unloaded and all elastic deformation is released.

At point D, when the panel is fully unloaded, the fringe pat-
tern has not changed appreciably from point C. This indicates that
only a small amount of the out-of-plane deflection is elastic for
the geometry and thermal loading used in the present investiga-
tion. The images between points C and D confirm the findings of
the elastoplastic strain analysis of the preceding section. Thermal
unloading of these MFSPs released membrane strain, whereas the
bending strain proved to be plastic.

It would be informative to obtain measurements of MFSPs fur-
ther into the postbuckling regime than those presented in Fig. 17.
However, the peak temperature of the oven used in the present ex-
periments prohibits the investigation of the postbuckling response
of MFSPs at higher temperatures. For related experiments involv-
ing higher temperatures, the reader is referred to Ref. 19. To further
investigate the postbuckling response of MFSPs without requiring
higher test temperatures, an imperfection was introduced into a fifth
MFSP specimen to induce relatively large out-of-plane deflections
early in the thermal loading history and to allow imaging of the post-
buckling mode shapes across a larger portion of the postbuckling
regime.

To introduce the imperfection into the MFSP, the clamping bolts
on the frame were overtightened such that the edges of the entire
perimeter of the panel were forced to curve toward each other, into
the core, creating an initial curvature in each face of the panel.
The imperfect panel was then subjected to the same thermal load-
ing that the perfect panels experienced, and images were captured
of the moire fringe patterns. Figure 18 shows the postbuckling mode
shapes of the MFSP as the temperature rises above the critical tem-
perature of the imperfect panel.

The images of the fringe patterns are quantified into data that
highlight the thermal postbuckling behavior of MFSPs. Figure 19
shows the magnitude of out-of-plane deflection of the center point
of the panel vs normalized temperature, AT /AT... The onset of
buckling is followed by a rapid increase in out-of-plane deflection.
This initial buckling behavior relaxes into a steady postbuckling
response.
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Unloaded

Fig. 17 Digital images of moire fringes that show full-field buckling modes on the surface of an MFSP; each fringe represents Aw =0.264 mm
(0.0104 in.).

+17.6°C

Fig. 18 Digital images of moire fringes that show full-field buckling modes on the surface of the initially curved MFSP; each fringe represents
Aw=0.264 mm (0.0104 in.).
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The evolution of the mode shapes throughout postbuckling is
further illustrated by considering the deflection of a line on the sur-
face of the panel as the temperature increases beyond bifurcation.
Figure 20 shows the out-of-plane deflection at postbuckling temper-
atures of a line lying along the x axis of the specimen, as quantified
through the moire fringe patterns. Because of symmetry, the re-
sponse of the material along the x axis is equivalent to that of material
along the y axis. It is clear from Fig. 20 that the center portion, that
is, the middle 40 mm, of the panel remains relatively flat throughout
the postbuckling response, whereas deformation accumulates in the
lobes of the curvature in the form of an increasing slope.

This finding adds further insight to the strain analysis discussed
in the preceding section. The strain gauges, as shown in Fig. 9, are
located at x =0 mm in Fig. 20. The bending strain measured by
the gauges at the center of the panel, shown in Fig. 14, is then a
representation of curvature at x = 0. At the onset of buckling, the
maximum bending strain is shown to be at x = 0. As the mode shapes
evolve, however, Fig. 20 shows that the maximum bending strain

and stress is no longer in the center of the panel. This can be seen in
Fig. 18 as well. The density of the contours shifts from the center of
the MFSP during initial buckling toward the boundary of the panel
in the postbuckling regime.

C. Comparison with Theory

The energy formulation for the thermal loading of a sandwich
panel, as developed in Refs. 8 and 9, is presented and adapted to the
problem at hand. The formulation considers a rectangular sandwich
panel under thermal loading due to a static uniform temperature
change. The sandwich panel is considered to be a shear-deformable
plate, such that there is no account of the cross-sectional kinematics
of a sandwich panel, specifically. The rotation of a cross-sectional
normal is represented by a single variable, akin to a Reissner—
Mindlin formulation. The geometry and material properties of the
panel core determine the constitutive properties of the plate under
shear loading, whereas the geometry and material properties of the
face sheets determine the constitutive properties of the plate under
in-plane loads and bending moments. By the use of standard nota-
tion for laminated plate theory,?® the constitutive relations for the
sandwich panel are taken to be
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The boundary conditions are such that in-plane displacements
vanish along the boundary of the panel, and, in the case considered
in the present work, all edges are clamped. Accordingly, the out-
of-plane deflection w(x, y) and the rotation of the cross-sectional
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normals Y, and y,, must vanish along the boundary of the panel.
Appropriate shape functions are
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The potential energy of the heated panel is minimized with respect
to each of the degrees of freedom, such that
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The solution of Eq. (19) leads to a thermal buckling criterion of the

form

SO B 4 b | A =0 21)
— AT

in which M,,,,; is the bending stiffness parameter, P, is the exten-
sional stiffness parameter, and §,,,, is a delta function dependent on
the mechanical boundary conditions of the system. The buckling cri-
terion can be evaluated with temperature-dependent material prop-
erties in an iterative process. For further details of the derivation,
the reader is referred to Refs. 8 and 9.

This formulation provides a prediction of the critical tempera-
ture of the MFSPs studied in the present work. When evaluated for
a square panel with clamped boundary conditions, the theoretical
prediction is shown in Table 2 to be very similar to the experimen-
tally measured values for the onset of buckling.

The theory, in its original form, cannot be used to model the pre-
or postbuckling response measured in the present investigation for
two reasons. First, the theory assumes rigid in-plane boundary con-
ditions and, therefore, a null strain state in the prebuckling regime.
To model the prebuckling behavior measured in the experiments, the
analysis would require elastic in-plane boundary conditions. Sec-
ond, the theory is a linear strain theory and, therefore, cannot predict
a postbuckling response. A nonlinear extension of this theory and
the inclusion of elastic in-plane boundary conditions are required to
apply this theory to the prebuckling and postbuckling response of
the panel.

IV. Conclusions

The response of MFSPs to thermally induced equibiaxial in-plane
loading has been investigated experimentally. The results are in-
tended to provide experimental data that complement the relatively
extensive theoretical and numerical investigations on the subject
matter. Measurements have been made of the elastoplastic in-plane
and out-of-plane response of MFSPs in the pre- and postbuckling
regimes. The first critical buckling temperature has been measured
and compared favorably to existing theory. The onset and evolution
of the buckled mode shapes have been measured through shadow
moire interferometry. The images, coupled with strain-gauge mea-
surements, provide a useful illustration of the in-plane and out-
of-plane response of MFSPs to thermal loading up to and beyond
critical design parameters. The experimental results have been ob-
tained with a novel technique, designed to circumvent the prob-
lems commonly encountered with experimental thermomechanical
boundary conditions. Validation of the thermal loading technique
was achieved by comparing the experimental results for a solid thin
aluminum plate and the theoretical results from classical thin-plate
buckling theory. An understanding of the thermal buckling behavior
of MFSPs is critical to the development of these panels for actively
cooled TPSs. The experiments presented in the present paper pro-
vide a foundation for experiments on actively cooled inconel foam
sandwich panels investigated by the present authors (see Ref. 19).
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