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ABSTRACT

This work is a theoretical investigation of certain general
problems which occur in using the zone theory of the electron energy bands
to determine the phase boundaries of those alloys agreeing with the Hume-
Rothery electron concentration rules. There are four main objectives of
the work.

The first objective pertains to the possible existence of an en-
ergy gap at an electron concentration corresponding to the volume of the
zone, often called the Brillouin zone, of an alloy structure. It is shown
that sn energy gap cannot exist for some zones because of what is here
called a shape degeneracy. Shape degeneracies exist in those zones which
cannot be constructed from an integral number of mappings of the unit cell
of the reciprocal lattice of the alloy structure. A "mapping" of the unit
cell is the division of the unit cell into sections, if necessary, and the
translation of each section by a reciprocal lattice vector. Shape degener-
acies exist, for example, in the zones of the y-brass and B-menganese struc-
tures.

The second objective is to obtain qualitative information about
the energy surfaces in large zones by the correct use of the nearly-free-
electron approximation. The main result here is that the electron energy
surfaces in some large zones, for example, the y-brass zone, are not qual-
itatively similar to the simple surfaces in the first zone of the conduc-
tion electrons of the noble metals.

Because of the existence of shape degeneracies and the neces-
sarily complicated nature of the energy surfaces in certain large zones,
the volume of these zones cannot, as has been assumed up to now, be used
to predict precisely the location of energy gaps or low dips in the density
of states.

The third objective is to solve accurately two simple numerical
problems. The two- and three-dimensional problems are constructed from two
one-dimensional Schrddinger equations with potentials of one and two cosine
terms, respectively., The two-dimensional energy contours illustrate some
of the complexities of the electron energies which occur in large zones.
Accurate density-of-states functions N(E) for the three-dimensional prob-
lems illustrate the type of structure which can occur in these functions
and also show the effect on these functions of Brillouin zone planes,
corresponding to weak cosine terms, which cut inside the large zone.

viii



The fourth objective is to gain a better gqualitative interpre-
tation of the Hume-Rothery rules. The usual approximation is made that
the change in the thermodynamic free energy with electron concentration n
is due only to the change in the total conduction electron energy U(n).
It is shown that for typical phase boundary probleus Ui(n) for phase one,
instead of increasing relative to Us(n) as the zone is filled beyond the
peak in N;(E), continues to decrease relative to Us(n) until that energy
is reached at which the total numbers of electrons are equal in the two
phases. This shows that the positions of the phase boundaries cannot be
accurately predicted theoretically from the electron concentration corre-
sponding to the peak in the density of states.

Other results of this investigation suggest that N(E) and U(n)
are determined primarily by the geometrical shape of the zone and hence
should be about the same for different alloys with the same structure.
It follows from this that the same phases of the different alloy systems
should occur at the same electron concentrations.
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OBJECTIVE

A theoretical study of Brillouin zones, with special
regard to the question of the appearance of energy geps, is under-
taken. It has a bearing on the Jones—-Hume-~Rothery theory of the
physical properties of binary substitutional alloys.



CHAPTER I

INTRODUCTION

This investigation belongs to what is usually called Brillouin
zone theory or the zone theory of energy bands. More specifically, it is
an attempt to understand certain general problems which arise in using this
theory to determine the positions of the phase boundaries of certain alloys
of copper, silver, and gold, or more generally of those alloys agreeing
with the Hume-Rothery electron concentration rules. The results are of in-
terest for other problems in alloy theory which depend primarily on the
energy of the conduction electrons; but only the phase boundary problem will
be explicitly considered.

In order to see the origin of the problems treated here, a brief
sketch of the history of zone theory will be given. In the years from 1928
to 1933 the nearly-free-electron approximation for calculating the energies
of the conduction electrons in perfect crystals was developed (references
are given in Seitz's book)ol In this work zone theory was developed as the
natural way in which to display the electron energies as calculated by the
nearly-free-electron approximation. By 1934 the inadequacy of this method
for the exact calculation of electron energies had been established. How-
ever, in that same year Jones® used the nearly-free-electron approximation
and zone theory to make a qualitative interpretation of the Hume-Rothery
rules, the large diamagnetism, and the Hall coefficient of the ¥ phase of
brass. In 1936 this work was extended in the book by Mott and Jones” and
in 1957 made semi-quantitative in a partially ewpirical calculation by

JoneSLF of the QB phase boundaries of brass. This work by Jones is cited

1



in the current literature5 as the basis for the theoretical interpretation
of the empirically determined Hume-Rothery rules.

The main results of the nearly-free-electron approximation are
discussed later in this work as they are needed. Here, it is sufficient
to note two results: (1) except for edge effects, at each Brillouin zone
boundary plane the energy changes discontinuously by an amount equal to
twice the corresponding Fourier coefficient of the crystal potential and
(2) this Fourier coefficient is approximately proportional to the geomet-
rical structure factor of x-ray work and hence to the square root of the
intensity of the x-rays reflected from the corresponding crystal lattice
planes. These results‘are applied to the phase boundary problem in the
following way. The lattice planes with the strongest x-ray lines are de-
termined at the time of the identification of the structure of the alloy
phase. The Brillouin zone boundary planes, corresponding to the lattice
planes with strongest x-ray lines, mark out a zone in reciprocal or wave-
vector space. According to the nearly-free-electron approximation, there
should be a large increase in the energy across the faces of this zone and,
hence, an energy gap in the density of states (the number of electron energy
levels per unit energy range per unit volume of crystal) at that number of
energy levels contained within the zone. Jones's work shows the importance
of this energy gap in the interpretation of the physical properties men-
tioned above.

A careful examination of this line of reasoning reveals several
unsatisfactory features, besides the lack of quantitative accuracy. In the
remainder of this chapter the main problems are discussed which will be
treated by more general methods in this investigation.

In the discussion given above the physical significance of the



zones was derived from a result of the nearly-free-electron approximation.
One of the main purposes of this study is to investigate zone theory (that
is, the theory of the electron energies in zones larger than the first or
reduced zone) by general methods instead of by the nearly-free-electron
approximation. As a starting point for this work, a chapter is included
reviewing the physical reason for zones and giving definitions of Brillouin
and other types of zones. The primary question 1s whether an energy gap can
exist for a zone of prescribed geometrical shape. The factors which can pro-
hibit an energy gap from existing are discussed and in particular a necessary
condition on the geometrical shape of the zone is derived for the existence
of an energy gap. Several zones of practical importance are examined with
respect to this condition.

As for using the nearly-free-electron approximation, the point of
view taken in this study is that, if applied correctly, it is a simple, use-
ful tool for investigating the qualitative features of the electron energies.
It may also be useful as an interpolation scheme for semi-quantitative work,
provided the energies at points of the zone of high symmetry are otherwise
accurately known; but this has not been definitely established. A second
purpose of this study is to investigate two problems occurring in the qual-
itative application of the nearly-free-electron approximation to large zones.
The first problem is that the existence of zones for which an energy gap can
never exist contradicts the prediction by the nearly-free-electron approxi-
mation of a gap. The reason why this method does not actually predict a gap
in such cases is shown by examples. The second problem concerns applications
of the nearly-free-electron approximation to large zones in which all Brillouin
zone boundary planes are neglected except those forming the faces of the zone.

Tt will be shown that in some cases this does not, as heretofore supposed,



give the correct qualitative shape of the energy surfaces.

The final main topic investigated is the general shape of the
function giving the total energy of the conduction electrons per unit vol=-
ume of crystal as a function of the number of electrons per unit volume.
By establishing the general continuity properties of this function and its
derivatives, it is believed that a better understanding of the theoretical
interpretation of the Hume-Rothery rules is obtained.

The theoretical results of this study are illustrated by simple
two~ and three-dimensicnal examples. Problems pertaining to the nature of
the energy surfaces are constructed from two one-dimensional numerical
problems. The first of these problems is based on a Schrodinger equation
with a cosine potential (Mathieu's equation) and the second on an equation
with a potential of two cosine terms (a special case of Hill's equation).
For the three-dimensional problems accurate density-of-states functions are
computed to illustrate the complexities which can occur in the shapes of ,
these functions. Total electron energy functions are also given. A study
of the shapes of these functions is of interest for the phase boundary

problem.



CHAPTER II

DEFINITIONS AND PROPERTIES OF ZONES

The need for a modern and complete survey of the fundamentals of
zone theory has recently been fulfilled by the appearance of an article en-
titled "Methods of the One-Electron Theory of Solids" by Reitz.6 The first
part of this article contains a discussion of* the general problem of cal=~
culating the energy of electrons in solids and a development of the impor-
tant concepts and results of zone theory. References to the literature in
this field are also given. This article serves as an adequate introduction
to the present chapter, except where otherwise indicated. Consequently, in
this chapter only enough of the general theory will be given to establish

the basic concepts and terminclogy used throughout the rest of this work.

2,1, PHYSICAL REASON FOR ZONES

In order to calculate the energies of the electrons in a metal, a
large number of approximetions have to be made. It is outside the purpose
of this study to discuss the validity of these approximations, but it is
generally assumed that a qualitative understanding of the behavior of the
electronic properties of metals can be obtained by studying the following
idealized model. The structure of the metal is approximated by a perfect
infinite crystal with basic translation vectors @1, 8g, 8s. The crystal
can be considered as constructed of unit cells located at the points of
the space lattice specified by the direct lattice vectors

Kn = ni31 + nods + naas . (2.1)

Each electron is assumed to move in a potential V(?) which has the symmetry

of the space group of the metal. The possible energy levels of the electron
>



are approximated by the eigenvalues of the one-electron Schrddinger equa-
tion
(-82/2m)My (F) + V(T (F) = Ey(F) . (2.2)
Bloch has shown that & consequence of the translational symmetry
of the potential is that electron wave functions can always be found which
transform under a lattice translation as
¥(7 + Ap) = expleni(lyny + kens + kens) W(T) , (2.3)
where ki, ko, ka are constants which must be real for a stationary state
of an infinite lattice, This result can be put in a more convenient form

by introducing the concept of the reciprocal space lattice with basic

translation vectors by, bz, bz defined implicitly by &y ° T)'j = B35. The
reciprocal lattice vectors will be denoted by
gn = nfctl + ng%g + 1’13%3 o (20)-1-)
If the wave vector of the electron is defined as
- Py - -l
k = kiby + keobs + kabs , (2.5)
then the translational transformation properties can be written
- — - - -
V(r + An) = exp(2rik - An)w(r) . (2.6)
It follows from this that ¥ can be put in the functional form
¥(F) = exp(enik o ¥) u(?) , (2.7)
where
W@ + By) = ul®) . (2.8)

—
The wave vector k is not unique, because the same function can be written

¥(F) = expleni(k +By) » T1u'(¥) , (2.9)
where
u'(F) = exp(-exiB, + F) u(¥) (2.10)

is again a function with the periodicity of the direct lattice, This means

-
that if k is used as a set of three quantum numbers, then all physically



different states can be described by the set of 'E vectors whose
end points fill any fundamental region of reciprocal space. A region will
be called a fundamental region if it has the following properties.
1) For every interior point % in the region the point k + ﬁn lies
outside of the region for all reciprocal lattice vectors ﬁno
2) For every boundary pointvﬁ of the region there is at least one

other boundary point E’, called a conjugate point, such that

k* ='ﬁ +‘§n for some reciprocal lattice vector--ﬁ}lo

Two procedures have proved useful in choosing the fundamental region
or regions to be used. The first is called the reduced zone scheme. In this
scheme only one fundamental region, called the reduced zone, is used. Conse-
quently, there will be an infinite number of different wave functions with
the same ﬁ vector. These must be distinguished by en additional quantum
number n. Thus, a wave function and its corresponding energy eigenvalue
are denoted by

b)) = exp(onik o ¥) ugp(F)  and  Ba(R) ,  (2.11)
respectively. Functions and energies with the same n are said to belong
to the same band., The energy is a multivalued function of X in the reduced
zone. It can be proven( that the different branches of this function are
continuous throughout the zone. Consequently, in the reduced zone scheme
restrictions on labeling the bands can be added so that the energies of a
given band are a continuous function of E throughout the reduced zone and
are equal at conjugate boundary points of the reduced zone.
In practice the most convenient fundamental region is the symmet-

rical region constructed in the following way. The planes which perpendic-

ularly bisect all the reciprocal lattice vectors drawn from the origin are

constructed. The region which can be reached from the origin without crossing



any plane satisfies the requirements for a fundamental region and is also

a possible unit cell of the reciprocal lattice. This region is also called
the first Brillouin zone. Pictures of the first Brillouin zone of the sim-
ple cubic, face-centered cubic, and body-centered cubic lattices are given
in Appendix A,

The second procedure for choosing the fundamental regions is
called the extended zone scheme. 1In this scheme all reciprocal space 1is
divided into separate fundamental regions. Each different wave function
Wﬂg of the reduced zone scheme is now assigned to a separate Vector'E' =
&+ ﬁm in the extended zone scheme. The set of wave functions and energiles
belonging to the'§ vectors of the same fundamental region are said to be=-
long to the same band. Thus, a wave function and its corresponding energy
are usually denoted by

VR(T) = exp(2nik » 2) wp(?) and E (&), (2.12)
respectively; and the different bands are denoted only implicitly by the num=-
ber of the region in which the end of the'E vector lies. The energy is now
a single~valued function of k throughout all reciprocal space.

A fundamental region may be composed of one or more sections. A
section is the region which can be reached from any one point of the funda-
mental region without crossing any boundary of the fundamental region. A
restriction can be added that the wave functions are to be assigned to the
sections in such a way that the energy is a continuous function of'§ with-
in each section. In any special case it may be desirable to require addi-
tional continuity properties. However, for purposes of general analysis
only the above property will be required. It follows from the fact that
all fundamental regions are equivalent that each fundamentai region in the

extended zone scheme can be divided into parts so that each part, which is



not necessarily a section, can be brought by one and only one reciprocal
lattice translation to the inside of the reduced zone; and these parts
then just fill the reduced zone without any overlapping of the parts. In
the extended zone scheme it is not required that the different parts of an
energy band join continuously when brought within the reduced zone.

The fundamental regions in the extended zone scheme can be chosen
in an infinite variety of ways. One of the most useful schemes is that
defined by Brillouin. This is described in Section 2.2. A few of the
other possible zone schemes are discussed in Section 2.3. The words "zone"
and "Brillouin zone" are also used in the literature to denote regions in
reciprocal space which are not fundamental regions. This use is discussed

in Section 2.4,

2.2, BRILLOUIN ZONES

The only extended zone scheme that has been useful in practice is
the one worked out by Brillouin. The zones are constructed by an extention
of the method used to form the reduced zone. The perpendicularly bisecting
planes are constructed for all the reciprocal lattice vectors drawn from
the origin. These planes divide reciprocal space into small sections. Each
section is assigned a number equal to one plus the number of planes passing
between the section and the origin. All sections with number N form the nth
Brillouin zone. Although it is not simple to do, it can be shown8 that each
Brillouin zone is a fundamental region and that all of each section can be
moved to within the first Brillouin zone by one and only one reciprocal
lattice translation.

Appendix A contains photographs of wmodels showing the outside
surfaces of the first four Brillouin zones of the simple cubic, body-centered

cubic, and face-centered cubic lattices. In addition drawings are given of
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the outside surfaces of the first eight Brillouin zones for the body-centered
and face-centered cubic lattices. It is believed that the drawings of zones
five through eight have not been given before in the literature.

The term "Brillouin zone" is often used in the literature to refer
to any region of reciprocal space of interest for a particular problem. It
has also been used to denote an energy band in the reduced zone scheme. In
this paper the term "Brilllouin zone" will always refer to a zone as defined

by Brillouin.

2.5. OTHER EXTENDED ZONE SCHEMES

The geometrically simplest extended zone scheme is obtained by the
periodic repetition of the central reduced zone to fill all reciprocal space.
.Bach energy band of the reduced zone scheme can be assigned to a different
zone in the extended zone scheme. This zone scheme will be useful in cer-
tain theoretical derivations given later in this study.

1

Seitz™ has shown that another extended zone scheme arises in the

following way. OSuppose the crystal potential can be written as the sum

V(r) = Vo(¥) + Vp(?)j where the symmetry of V(T), including translational,
is a subgroup of the symmetry of Vo(T) and Vp(?) is a small perturbation

on Vo(¥). When V(¥) = 0, considered as the limit of V(¥) decreased to zero,
the electrons are free; and there are degeneracies in the energy on and only
on the Brillouin zone boundaries of the lattice of V(?)a Consider what
happens to the electron energies as VO(P) is adiabatically increased from
zero to its final value while Vp(?) is still zero. As Vo(¥) is increased,
three things may happen to the degeneracies: (1) degeneracies which ex-
isted on certain zone boundaries are removed, (2) degeneracies which ex-

isted on certain zone boundaries remain on those boundaries, and (3) de-

generacies which existed on certain zone boundaries now exist on certain
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curved surfaces (curved lines in two dimensions). The 0ld zone boundaries
of cases (1) and (2) and the new curved surfaces of case (3) divide recip-
rocal space into sections. The sections can be grouped into zones, each of
which is a fundamental region. This last result follows from the symmetri-
cal form of Brillouin zones and the periodicity of the energy. If part of
the surface at the point g between the NOD and N + 15% Brillouin zone bulges
into the N + 15t zone, then the surface at the conjugate point‘E'must bulge
an equal amount into the NCE zone. Thus, the new zones are also fundamental
regions. In this way an extended zone scheme is constructed which forms a
logical starting point for considering the perturbed problem. These zones

may appropriately be named "Seitz zones.," A two-dimensional example of a

Seitz zone scheme is given in Section 5.1.

2.4. JONES ZONES
In Chapter I a procedure was briefly described for constructing a
zone for which an energy gep exists or almost exists. Following Reitz, this

zone will be called a "Jones zone."

Unlike Brillouin zones, the Jones zone
for a given lattice is not uniquely defined, because its form depends on the
crystal potential. The usual method of constructing Jones zones will now
be given in more detail than in the preceding chapter. According to the
nearly~free-electron approximation the energy difference on crossing a plane
forming & Brillouin zone boundary is EV(gh), where V(ﬁh) is the Fourier
coefficient of the crystal potential corresponding to the plane ﬁho On
making the approximation that the crystal potential is the sum of identi-
cal atomic-like potentials located at the positions of each atom, then it
follows that V(ﬁh) = V' (By) S(ﬁn), where V‘(ﬁn) is the Fourier coefficient

of a potential formed by atoms located only at the origins of the unit cells

and S(Bn) is the geometrical structure factor of the unit cell. It turns
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out that V'(ﬁh) is usually a slowly varying function of'ﬁn, so that large
fluctuations in V(By) and in particular the vanishing of V(ﬁh) are due to
corresponding changes in the geometrical structure factor S(ﬁn)g If the
nearly-free-electron approximation has sufficient validity to wmaintain a
correlation between large Fourier coefficients of the potential and large
energy differences across the corresponding planes in an extended zone
scheme, then it follows that the boundaries of the Jones zone should be
planes with large geometrical structure factors. In practice the volume
of the Jones zone formed by the planes with the largest geometrical struce
ture factors has usually been approximately just sufficient to contain the
conduction electrons. The Jones zones considered in this study will be con-
structed by the above procedure.

Tt follows from the above method of construction that the Jones
zone contains all of one or more Brillouin zones and sometimes contains only
parts of one or more additional Brillouin zones. A Jones zone which cone
tains parts of Brillouin zones may or may not contain an integral number of
fundamental regions.

The term "Jones zone" ordinarily means the central zone containing
the origin of reciprocal space. However, a Jones zone scheme can be defined.
The outer zones are constructed and numbered in the same way as the Brillouin
zones, except that only those planes are used which have large geometrical struc-
ture factors. The Jones zones are not uniquely defined in that there is an ar-
bitrariness in the choice of which planes are to be used in their construc-
tion.

The assignment of the energy bands to the Jones zones is not al-
ways unique but is guided by the general rule that the energies within a

zone are to be less than the energies in the next higher zone insofar as
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possible. The general properties of the electron energies in Jones zones
are discussed in the following chapter. It is shown there that for various
reasons a discontinuity in the energy may not exist at every point of a
Jones zone boundary constructed according to the above procedure. Thus,
the traditional method of constructing Jones zones does not always lead to
zones having an energy gap. In such cases it might be desirable to choose

the boundaries of the Jones zone by a new procedure.



CHAPTER III

GENERAL PROPERTIES OF ELECTRON ENERGIES IN JONES ZONES

The importance of the Jones zone is due to the energy gap which is
supposed to exist for it. Although a superficial application of the nearly-
free-electron approximation predicts that an energy gap should exist for
every Jones zone if the potential is "strong" enough, Jones? has shown by
a careful application of the nearly-free-electron approximation that an
energy gap cannot exist for a possible Jones zone of the hexagonal close-
packed structure. That is, there must always be a degeneracy between the
first and second Jones zones. This result was later confirmed by Herringlo
by using group-theoretical methods. This work suggests the need for a gen-
eral investigation as to when degeneracies between the true electron energies
in different Jones zones must occur. The first part of this chapter presents
some results of such an investigation.

The chapter concludes with a discussion as to when it is correct
in principle to simplify the nearly-free-electron approximation for calcula-
ting the electron energies in Jones zones by neglecting the plane waves and

zone boundary planes corresponding to the zero Fourier coefficients of the

crystal potential.,

3.1, DIRECTIUNAL, SYMMETRY, AND ACCIDENTAL DEGENERACTIES

In the reduced zone scheme it is known that the energy bands often
touch or overlap., In such cases the energy degeneracies are of three types.
For completeness these will be described briefly. A directional degeneracy

is said to occur whenever the energy in one band at one wave vector is equal

14
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to the energy in another band at anotrer wave vector (except for certain
special cases which obviously belong %o the following types). The end
points of the wave vectors of either »and for which directional degenera-
cies occur usually fill a three-dimensional region of the reduced zone. A
symmetry degeneracy is sald to occur whenever the energies in two bands
must be equal at the same wave vector because of the symmetry or reality
of the crystal potential., An accidental degeneracy is said to occur when-
ever the energies in two bands are equal at the same wave vector but are
not required to be equal by the symmetry or reality of the potential.
Symmetry and accidental degeneracies have been shown by Bouckaert,

I

Smoluchowski, and Wigner' and by Herringll to occur only at certain points,
lines, and planes of the reduced zone. Reference should be made to the
original articles cited for more detailed information about these degenera-
cies.

In an extended zone scheme these same degeneracies must still ex-
ist at points which differ from the corresponding points of the reduced
zone scheme by reciprocal lattice vectors. Whether or not such degeneracies
will occur between the energies in different Jones zones usually can only
be determinedvby an actual calculation of the electron energies. Occasionally,
as in the hexagonal close-packed structure mentioned above, it is possible
to predict that symmetry degeneracies must occur. The important point is
that, since directional, symmetry, and accidental degeneracies are known to

occur frequently among the higher bands in the reduced zone, these degenera-

cies cannot be assumed to be absent in Jones zones.

3,2, SHAPE DEGENERACIES
The three types of degeneracies discussed in the preceding section

could exist for all Jones zones. For certain Jones zones there is in addition



an effeet which is so similar to a degeneracy that it will be convenient

to classify it as a fourth type of degeneracy. As this effect does not

seem to have been generally treated before, it will be discussed in de-

tail. This effect is due only to the shape of the Jones zone and not to

any particular form of the energy bands, and it exists only in those Jones
zones in which an integral number of fundamental regionscannot be constructed.

For such Joneg zones only a certain number of fundamental regions
can be constructed within the zone, and then in order to fill the zone one
or more additional fundamental regions must be constructed which are com=-
posed of sections lying wholly inside or wholly outside the Jones zone. (A
section now means the region which can be reached from a given point of the
fundamental region without crossing either a boundary of the fundamental
region or a Jones zone boundary.) ILet the continuous energy bands of the
reduced zone scheme be cut, if necessary, and replotted with one to each
fundamental region. It follows that the energies in each region must be
equal in a limiting sense at all conjugate boundary points. The equality
of the energies of the same region which exists at conjugate boundary points
lying on opposite sides of the Jones zone boundary will be called a shape
degeneracy, although it is not a true degeneracy in the strict sense of the
word. Of course, in special cases symmetry and accidental degeneracies be=-
tween different bands might also exist at such conjugate points.

It should be noted that shape degeneracies must always exist if
the volume of the Jones zone is not an integral multiple of the volume of
the reduced zone. Also, shape degeneracies must always exist if there is
a part of the Jones zone boundary which is not connected to any cther part
of the zone boundary by any reciprocal lattice vector. This is because in

such cases there must be sections of the same fundamental region both in-
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side and outside the Jones zone. In the following examples it will be seen
that the parts of the zone boundary faces which are not connected to other
parts by reciprocal lattice vectors cause the faces to be asymmetric with
respect to the center of the plane forming the face. This criterion of
asymmetry has been in practice a simple and reliable guide for predicting
shape degeneracies in all Jones zones investigated in this study. However,
the criterion of asymmetry may not be rigorously valid because it would
seem to be possible to have a Jones zone, constructed by the procedure of
Section 2.4, which has asymmetric faces all parts of which are connected
to other parts of the zone boundary by reciprocal lattice vectors.

Shape degeneracies exist on surfaces (lines in two dimensions),
but the positions of the surfaces are not unique because of the arbitrariness
in the choice of the fundamental regions. However, as will be seen from the
examples below, the fundamental regions can always be chosen so that the
energy will be continuocus across those parts of the Jdones zone boundary
which are not connected to any other part of the boundary by any reciprocal
lattice vector. Additional shape degeneracies may exist either on or off
the Jones zone boundary. A property of particular importance is that shape
degeneracies will almost always te accompanied by directional degeneracies
between points inside and outside the -Jones zone.

The following simple examples illustrate the nature of the shape
degeneracies to be expected in the Jones zones of actual metals. All examples
are for the two-dimensional square reciprocal lattice.

The (20) Jones Zone.,-—The Jones zone formed by the (20) family

of planes will be used extensively in Chapter V. No shape degeneracies
exist for this zone because it is filled by exactly four fundamental regiomns,

for example as shown in Fig. 5.1. In addition to all of the first three
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Brillouin zones, the (20) Jones zone contains

(02) parts of the fourth, fifth, and sixth Brillouin
]
4 3 4 zones (see Fig. 5.1), showing that the existence
, 5 of only parts of Brillouin zones inside the Jones
2 I 2 |o
zone does not necessarily imply a shape degeneracy.
4" 3 4" The (30)(31) Jones Zone.—A considerable
amount of shape degeneracy exists in the (30)(31)
Fig. 3.1. The (20) Jones zone. To see this, construct an extended

Jones zone.

zone scheme by the periodic repetition of the re-

duced zone, as in Fig. 3.2,

In this scheme the energy is continuous across

those parts of the zone boundaries formed by the (31) planes, so that there

(03)
7' /3 6
7 3 6
4 | 2 3
8 5 9
g 9'

Fig. 3.2. The (30)(31) Jones
zone.

are shape degeneracies in fundamental re-
gions 6, 7, 8, and 9. Since on the zone
boundaries no finite part of the (31)
planes is connected to any other by re-
ciprocal lattice vectors, the shape de=-
generacies cannot be essentially removed
ag they were by the proper choice of the
regions for the (20) Jones zone. The shape

degeneracies in, say, regions 6 and 7 can

e removed, but this can be done only by

introducing additional shape degeneracies

in other regions. The volume of the (30)(31) Jones zone is eight times

that of the reduced zone, showing that a shape degeneracy can exist even

if the volume of the Jones zone is an integral multiple of the volume of

the reduced zone. That is, it is sometimes impossible to construct an in-

tegral number of fundamental regions within a Jones zone whose volume is an
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integral multiple of the volume of the reduced zone.

The (50)(43) Jones Zone.—As a last example consider the (50)(43)

Jones zone. The volume of this zone is twenty and five twenty-first times
the volume of the reduced zone, so there are necessarily shape degeneracies.
A possible extended zone scheme using all or parts of only twenty-one fun-

damental regions inside the Jones zone is shown in Fig. 3.3. In this scheme

(05)
16" 5" /
25 24
23 16 Il 15 NG 22
Io' 19 25
2l 18'

25 24’
i7" 14"
17 S 4 3 14

12 6 | 2 o |8
I8 7 8 9 21
18" 21"
22 3"
14’ 7'
i5' [}
24 19 13 20 25
22’ 23
19" 20"

Fig. %.%. The (50)(43) Jones zone.

parts of some of the squares have been interchanged, so that, for example,
section 14' lies inside the Jones zone in the original twenty-fourth square.
The part of the Jones zone boundary between sections 14 and 14" is not
connected by any reciprocal lattice vector to any other part of the zone
boundary, and thus the continuity of the energy across this part of the

boundary cannot be essentially removed. There are additional shape de-
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generacies between conjugate points on the boundaries of sections 14' and
14", but the shape of these boundaries can be changed within wide limits.
A similar situation exists in regions 15 through 21. The general nature
of the shape degeneracies in the (50)(43) zone should be typical of that
to be found in large three-dimensional zones, such as the y-brass zone.
Appendix C contains an investigation of some important three-
dimensional Jones zones to determine whether or not shape degeneracies
must exist for them. It is shown that shape degeneracies do exist in some

cases, for example in the y-brass zone.

3.5. POSSIBLE CMISSION OF CERTAIN PLANES FORMING ZONE BOUNDARIES

When the central Jones zone is larger than the first Brillouin
zone, certain Fourier coefficients of the crystal potential are much larger
than the others. Let us see to what extent this property can be used, first,
to simplify an approximate calculation of the electron energies in which
certain small coefficients are set equal to zero and, second, to simplify
the extended zone scheme by omitting certain of the planes used in forming
the zone boundaries.

Consider those reciprocal lattice vectors whose corresponding co-
efficients are large. The sums and differences of all integral multiples
of these vectors constitute a set B' of vectors which themselves form a
reciprocal lattice. Note that the Fourier coefficients of some of the vec-
tors of the set'ﬁ' may be small or zero. If the setuﬁ' is smaller than the
original set B of all reciprocal lattice vectors, then another set E", con-
taining no vectors of set %‘,can be found such that

set B = set B' + set B" . (3.1)

The Fourier coefficients can be divided into corresponding sets such that
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set V(B) = set V(B') + set V(B") . (3.2)
All the coefficients in the set V(ﬁ") are small; and therefore the crystal

potential can be divided into two terms such that

-

V(F) = Vo(@) + Vp(F) , (3.3)
where Vp(?) is a small perturbation on VO(?). A straightforward calculation
shows that the volume of the reduced zone of the lattice of set B' must be
an integral multiple of the volume of the reduced zone of the original re-
ciprocal lattice. Physically, this means that the true crystal can be
considered as a small perturbation of another crystal which has a smaller
direct lattice unit cell and hence a larger reciprocal lattice unit cell.

The importance of the above division is the following. Consider
the approximate, unperturbed problem in which the coefficients of the set
V(g“) are set equal to zero. In the matrix formulation of quantum mechanics
in which the true eigenfunctions are expanded in terms of the complete
orthogonal set of plane waves exp[2wi(k - Bp) - ) s the matrix elements
are

<K -BplVi®)|E =By > = V(B - By) . (3.4)
There can be no nonzero matrix elements between plane waves specified by
vectors belonging to different sets B' and ﬁ", because a vectorlﬁ& - ﬁh
must necessarily belong to the set B, This means that the infinite secular
determinant can be split into two parts as shown schematically in Fig. 3.4,
The det ﬁv is the secular determinant for the problem obtained by considering
only the plane waves and zone boundary planes corresponding to the vectors
of setngf. A solution of this determinant is also a true solution of the
original secular determinant. Thus, for the approximate, unperturbed problem
it is correct to neglect all plane waves and zone boundary planes corresponding

o the vectors of set B". The solutions of the det B" give the extra solu-
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tions of the original secular determinant which

SET B' | SET B" , R

. are required by the fact that the periodicity of
o =
t; DetB' @) the original reciprocal lattice is smaller than
7

the periodicity of the lattice formed by the vec-
(= = 3
- Q) Det B" tors of set B'.
(]
w Y

In practice the set B' is often iden-

tical with the original set ﬁ. In such cases no
Fig. 3.4. Form of
secular determinant. plane waves and zone boundary planes can be neg-
lected. To see this, choose a new set E"', which is smaller than the set
-
B but contains all vectors whose corresponding coefficients are large. Let
Y YRR =2iv : 2iv Bare
set B = set B + set.B~'. Then there must exist many vectors Bp and,Bn
- -\
such that the coefficients corresponding to the vectors Biv - Bﬂ" are
large. This means that there are large matrix elements connecting states
= . =iv , =
of set B''' with states of set B" ', and hence the solutions of the det B'''
are not 1in general true solutions of the original secular determinant.
The following examples illustrate typical cases when plane waves
and zone boundary planes can and cannot be neglected. Both examples are

for the two-dimensional square reciprocal lattice.

The (20) Jones Zone.—Suppose that the only large Fourier coef-

ficients of the potential are those corresponding to the (20) family of
planes. The set §' consists of all lattice vectors whose components are
even integers times the basic translation vectors, and the new reciprocal
lattice is again a square lattice but with twice the lattice spacing. In
the vicinity of the (20) Jones zone only the plane waves and zone boundary
planes for the (20) and (22) families of vectors have to be considered for

the unperturbed problem and those for the (10), (11), and (21) families can
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be neglected. The complications which arise in computing and plotting the
energy in the (20) Jones zone when the (10), (11), and (21) families are
not neglected are discussed in Chapter V for a particular numerical example.

The (30)(22) Jones Zone.—When the only large Fourier coefficients

of the potential are those corresponding to the (30) and (22) families of
planes, the set B' will include the vector (30) + (22) + (23) = (10). Simi-
larly, all vectors of the (10) family are included in the setiﬁ‘, so that the
set-ﬁ' 1s ldentical with the original set ﬁo Hence there are no plane waves
and zone boundary planes which can in general be omitted in calculating the
energy. The boundary of the (30)(22) Jones zone coincides with the outer
boundary of the seventh Brillouin zone (see Fig. 5,1), showing that it may
be impossible to neglect plane waves and zone boundary planes even if the
Jones zone contains an integral number of fundamental regions.

Appendix C contains an analysis of some important large Jones
zones to see if their interior zone boundary planes and the corresponding
plane waves can be neglected in computing the approximate electron energies.
It turns out that iIn most cases, for example that of y brass, it is not
correct even in an approximate calculation to consider only the large
Fourier coefficients and their corresponding plane waves and zone boundary

planes,



CHAPTER IV

ONE-DIMENSIONAL PROBLEMS WITH COSINE POTENTIALS

Much of the remainder of this work is devoted to the study of
certain two- and three-dimensional numerical problems. These examples
illustrate important concepts in zone theory such as those discussed in
the preceding chapter as well as others to be introduced later. As these
concepts have to do only with the electron energies and not with the elec-
tron wave functions, 1t is sufficient to consider highly simplified prob-
lems which do not have accurate crystal potentials and electron wave func-
tions but which do have the essential features of the energies of the con-
duction electrons in actual metals. One of the simplest such problems and
one which is closely related to the study of Jones zones is obtained when
the Fourier series of the crystal potential contains only a few nonzero
exponential terms which can be combined into cosines. In order to get a
numerically simple problem the potential must be such that a separation of
variables can be made in the Schrodinger equation. This chapter is con-
cerned with finding both analytical and numerical solutions of the result-

ing one-dimensional Schrodinger equation.

L.1. ONE-DIMENSIONAL EQUATION AND DIMENSIONLESS VARIABLES
On separation of variables the considerations above lead to the
study of the following one-dimensional Schrddinger equation
(-n2/2m)(d2/ax'2)y + 2V'(100)cos(2nx' /a)y + 2V' (200)cos (bux' /a )y
= B, (4.1)
in which a is the lattice constant and the primes distinguish certain

el
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symbols with dimensions from the dimensionless symbols introduced below.

It is convenient to measure energies relative to the energy

E,' = b®/ema® (4.2)

of a free electron with wave vector at the center of a zone face of the

(20) or (200) Jones zones. Thus, introduce dimensionless quantities
E = E'/ES', Vi = V'(100)/Ey', and Vo = Vi(200)/Eq" . (L4.3)

The energy Eo' is about ten electron volts for typical metals so that
the dimensionless energies given hereafter should be multiplied by ten
to get representative energies in electron volts. The dimensionless
length

X = nx“/a (b k)

varies from zero to pi within the unit cell. In terms of these dimen-

sionless variables the Schrddinger equation (4.1) becomes

2, =2 .
(&5/ax" )y + L(B - 2V, cos 2x - 2Vp cos 4x)y = O (4.5)
The Bloch solution of this eguation has the form
¥(x) = exp(2ikx) u(x), where u(x + =) = u(x) . (4.6)

The boundaries of the Brillouin zones oceur at k = £ 1/2, 1, £ 3/2,«-«;
and the (dimensionless) energies of a free electron (V3 = Vo = 0) with

wave vector at these boundaries are E = 1/h, 1, 9/b,

L.2. ANALYTICAL SOLUTIONS
The Schrddinger equation (4.5) is a special case of Hill's equa-

tion, since there are only two cosine terms. Incelg has obtained solutions
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of the general Hill equation by extending a method due to Whittakerl5 for
Mathieu's equation. The solutions are in the form of power series expan-
sions in Vy and Vo. Fach expansion converges rapidly enough to be useful
only in a restricted region of reciprocal space in an extended zone scheme,
so that three expansions have to be used to cover the first, second, and
inner parts of-the third Brillouin zones. In the first of these expansions,
called the k-expansion, E and u(x) are expanded in powers of V; and Vo with
coefficients which are functions of k¥ = 2k. This expansion diverges for
values of k on the zone boundaries and converges well only for values of k
far from the zone boundaries. In the other two expansions, E, k, and u(x)
are expanded in powers of V; and Vo with coefficients which are functions
of a parameter o. FEach of these expansions converges well only in the vi-
cinity of one zone boundary. In one of these, called the o l/h-expansion,
the leading term in the series for E is the energy l/h of a free electron
at the boundary of the first Brillouin zone; and this expansion converges
well only for values of k near the first zone boundary. Similarly, in the
other, called the ol-expansion, the series for E begins with 1; and this
expansion converges well only near the second zone boundary.

Ince obtained the most important terms in the three expansions
when Vi 1s greater than V,. However, for problems in connection with Jones
zones Vi is less than Voj and hence it was necessary to extend Ince's re-
sults to include high-degree terms in Vs. The details of the method for
doing this and the results obtained are reported in Appendix B. Since gen-
eral formulas for the coefficients in the various expansions are not known,
a recurrence relation method was used in which the coefficients of a term

of a gilven degree could be calculated as soon as all the coefficients of
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terms of lower degree had been derived. In this way all terms through
the fifth degree in Vli ng (1 + ] < 5) were calculated in the series for
E and k. To do this, certain terms through the fourth degree in the se-
ries for u(x) had to be calculated, although the wave functions are not
otherwise needed. As a check on the accuracy of the work, all calcula-
tions were done twice. In addition to obtaining new results, a few errors
were discovered in Ince's work.

When either Vi = O or Vo = O, the Schrtdinger equation (4.5) re-
duces to Mathieu's equation and the solutions discussed above reduce to

known solutions of Mathieu's equation.

4.3. NUMERICAL PROBLEMS
The illustrative examples of the following chapters are based on

two numerical problems. In one of these, the unperturbed problem,

Vi, = 0.00 and Vo = 0.30 3 (4.7)
and in the other, the perturbed problem,
Vv, = (1/10) Vs = 0.03 and Vs = 0.30 . (4.8)

The value of Vs was chosen to give a small amount of directional degen-
eracy in the (20) Jones zones, and the ratio of Vy to Vy in the perturbed
problem was chosen as typical of the ratio of weak to strong Fourier co-
efficients in actual metals.

The expansions discussed in the preceding section and derived
in Appendix B were used to calculate E as a function of k for the perturbed
and unperturbed problems. Unfortunately, it was not possible to make an
estimate of the error made in using only a finite number of terms of the

infinite series. However, the way the E-versus-k curves for expansions
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valid in different regions closely approached each other or crossed with
almost equal tangents strongly indicates that the error in the energy in
these joining regions is less than about X 0.002, which is sufficiently
accurate for the following examples. The calculated energies of the un-
perturbed problem at the origin and on the zone boundaries were compared
with the true solutiong of Mathieu's equation which are ta‘bulatedlh at
only these positions. This indicates that the error in the energy at
these points is less than * 0.0000Z.

Figure 4.1 shows part of the second energy band plotted in the
reduced zone scheme for the perturbed problem. Curves computed by all
three expansions are shown, although that by the gl-expansion is not used
in this region. A composite E-versus=-k curve was constructed in this re-
gion by using the ¢ 1/h-expansion to the right of, say, k = 0.4k and the
k=-expansion to the left of this point with a slight adjustment of these
curves near k = 0.44 to make them join smoothly. A similar procedure was
used at other points where different expansions had to be joined.

The final composite energy curve for the perturbed problem is

L

shown as the solid curve in Fig. 4.2. The dashed curve in this figure is
the energy of a free electron. The energy gap between the second and third
energy bands iz 0.6002 with center at 0.9890. The predictions of the
nearly-free-electron approximation of a gap of 2Ve = 0.60 with center at
1.00 ars close to the corrsct values. The gap between the flrst and sec=-
ond energy bands is 0.0k2% with center at 0.1908, whereas the nearly-free-
electron approximation predicts a gap of 2V = 0.06 with center at 0.25.
The reason for the failure of the nearly=-free-electron approximation in

this case is, of course, the strong perturbation by the coefficient Vs.
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For purposes of comparison it is convenient to consider the un-
perturbed problem as a limiting case of the perturbed problem obtained by
letting Vy approach zero. This is somewhat artificial since the true first
Brillouin zone for the unperturbed problem is the sum of the first and sec-
ond Brillouin zones of the perturbed problem. The composite energy curve
for the unperturbed problem is shown in Fig. 4.3. The energy gap is 0.5991
with center at 0.9887. This curve differs appreciably from that for the

perturbed problem only in the vieinity of the first zone boundary.
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CHAPTER V

THE (20) JONES ZONE WITH COSINE POTENTIALS

Interesting two-dimensional problems can be obtained from the re-
sults of the preceding chapter by combining two one-dimensional probleums
in the x and y directions. The electron energies can be represented either
as an energy surface plotted over the kay plane or as contour lines of
constant energy plotted in the kxky plane. The Brillouin zone scheme of
the square reciprocal lattice is shown in Fig. 5.1.

The electron energies of the unperturbed problem
[(v(0) = v(01) = V; = 0 and V(20) = V(02) = Vo = 0.30],

plotted in different ways in the extended zone scheme, illustrate the re-
sults of Section %.3 on omitting certain planes forming zone boundaries

and also form the basis for deriving the Seitz zone scheme, as discussed in
Section 2.3. The unperturbed problem can also be used to infer information
about the (20)(21) Jones zone. An analysis of the same zone by the nearly-
free-electron approximation shows how shape degeneracies are predicted by
this approximation method.

The perturbed problem (V4 = 0,03 and Vo = 0.30) is of some inter=-
est in showing the effect on the energy contours of weak Fourier coefficients
of the potential corresponding to zone boundary planes which cut inside a
Jones zone., Further insight into this effect is obtained by comparing the
density of states for the unperturbed and perturbed problems. This work
also forms the starting point for the corresponding three-dimensional prob-

lems treated in Chapter VI.

25



(03)
(/
7 3)
j 7 /6| ° X 5 & 6 \7 y 9
° AN
5 5\ 6
8 ® 3 3 > 8\
7 o &
5/ 4 > 4 \SP_W®
6 (1) 6
2 S
5 3 3 |¥5
6 (4 4\/6
7 X5 2 | g2 5% 73
N
6 8\ e
4 4
5 3 3./ 5
6 6
5\ 4 2 4 /5
7 7
8 6 3 3 6 8
5 5
4 4
9 N6l s 5 s l6/7 9
8 6 6 8
7

Fig. 5.1. Brillouin zones, square reciprocal lattice.

5.1. ENERGY CONTOURS

As shown in Section 3.3, the energy contours for the unperturbed
problem can be correctly plotted in the (20) Jones zone without consider-
ing the (10), (11), and (21) families of planes. The resulting set of en-
ergy contours, which is also the most natural one for this simple problem,

is shown in Fig. 5.2. The coefficient Vo was chosen to give a small amount
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Fig. 5.2. Energy contours for the unperturbed problem.

of directional degeneracy. There is no symmetry or shape degeneracy for
the (20) zone, but there is accidental degeneracy along certain lines.
This cannot be seen directly from the single gquadrant shown in the figure.
However, by using symmetry it can be verified that accidental degeneracy

exists, for example, between points on part of a vertical oval in zone 6



36

near the point (11) (see Fig. 5.3) and points on part of a vertical oval
in zones 4 and 5 near point (T0), Corresponding points on these two ovals

differ by a reciprocal lattice vector.
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Fig. 5.%, Seitz zones for the unperturbed problem.




37

As Vo decreases to zero, the part of the vertical oval near the
point (11) becomes larger and straightens out until it coincides with the
segment of the (21) zone boundary lying inside the (20) Jones zone. In
a similar way it can be verified that the accidental degeneracies existing
on the other curved lines in Fig. 5.3 correspond to accidental degeneracies
which existed on segments of the (21) family of zone boundaries for the
free-electron case. Accidental degeneracies still exist on the (10) and
(11) families of zone boundaries, but the degeneracy has been removed on
the (20) family of zone boundaries. Thus, in accordance with the discus-
sion of Section 2.3, the Seitz zone scheme of Fig. 5.3 is the appropriate
one to use in treating the perturbed problem, because the Tirst-order ef-
fect of a small but general perturbation will be to remove the remaining
degeneracies which exist on these zone boundaries (except where symmetry
degeneracies must exist).

Slaterl5 has remarked that the effect of a superlattice is to
introduce new Brillouin zone boundary planeé with weak Fourier coefficients
of the potential. These planes cut inside the previous zones and may cause
a splitting of the original energy bands. Katzl6 has pointed out that di-
rectional degeneracies will prevent these gaps from occurring unless the
new zone boundaries almost coincide with a constant energy surface. It
should be noted that the new zone boundaries under consideration are those
of the Seitz zone scheme and not in all cases the new Brillouin zone bound-
ary planes.

The energy as plotted in Fig. 5.2 is discontinuous in the reduced
zone scheme in the sense that when the different sections of the same Bril-
louin zone are translated back within the reduced zone, the energy contours

in the different sections will not Jjoin continuously. In order to get a
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set of contours which will join continuously in the reduced zone, the
energy contours of Fig. 5.2 must be replotted in a much more complicated
way in the extended Brillouin zone scheme. One way this can be done 1s in-

dicated in the upper-left part of Fig. 5.4. TFor example, in the upper of
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Fig. 5.4. Alternative method of plotting the energy for the

unperturbed problem,
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the two sections of the fifth zone lying inside the (20) Jones zone, energy
contours must be plotted which are plotted in Fig. 5.2 in that part of a
section of the fourth zone which is a reciprocal lattice vector distance
away. Similarly, in the other sections or parts of sections energy con-
tours must be plotted which in Fig. 5.2 are plotted in the zones indicated
by the primed numbers. The resulting energy at important points of the zones
is indicated in the lower-right part of Fig. 5.4. The energy contours are
now continuous within each section and continuous between neighboring sec-
tions of the same Brillouin zone when brought back within the reduced zone,
but the pattern of energy contours in the extended zone scheme is much wore
complicated than that of Fig. 5.2.

If the coefficient Vo had beenbchosen somewhat larger, then the
energy everywhere inside the (20) Jones zone, plotted as in Fig. 5.2, would
have been less than the energy at every point outside the zone. Alterna-
tively, when plotted as in Fig, 5.4, the energy at every point of the first
four Brillouin zones would have been less than the energy at every point
of the fifth and higher Briliouin zones. The contour pattern of Fig. 5. b
is the one given by the neariy-free-electron approximation when all Brillouin
zone boundaries and their corresponding plane waves are used. This can be
seen by studying the contours as Vo is increased from zero. Thus, even for
the nearly-free-electron approximation the .Jones zone 1s not necessarily
the same as the zone containiug the contours of energy less than that of
the energy gap.

Another possible difference between the Jones zone and the zone
associated with the energy gap is illustrated by introducing a strong per-
turbation due to the (21) family of Fourier coefficients. If V(20) is

sufficiently greater than V(21), the energy everywhere inside the (20)
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zone, plotted as in Fig. 5.2, will still be less than the energy everywhere
outside the zone. The importance of this is the following. According to
the usual procedure for choosing Jones zones, the Jones zone for this per-
turbed problem is the (20)(21) zone. The volume of this zone is three and
two-thirds times that of the reduced zone, so a shape degeneracy must exist
for this zone. This problem is a simple example of a case in which an
energy gap cannot exist for a Jones zone, but the Fourier coefficients
corresponding to the Jones zone boundary planes cause an energy gap to
occur at a volume different from the volume of the Jones zone=—for this
problem the gap occurs at four times the volume of the reduced zone. These
examples strongly suggest that in many actual metals, such as 7 brass, an
energy gap may occur or almost occur such that the electron states with
energies below the gap fill a volume close to but not exactly equal to the
volume of the Jcnes zone. This point is discussed further in Appendix C
for the Jones zones of several important alloy structures. Up to now no
simple Jones zone with a shape degeneracy has been found for which the
volume occupied by the states below the energy gap is less than the volume
of the Jones zone, but this may be possible in larger and more complicated
zones or it may be necessary to use second- or higher-order perturbation
theory to analyze the zones,

To return to the numerical problems of Chapter IV, the energy con=
tours within the (20) Jones zone for the two-dimensional perturbed problem
(Vi = 0.03% and Vo = 0.30) are shown in Fig. 5.5. There are no unusual fea=
tures about the pattern, but it is included here because it will be used in

Section 5.3 in connection with a study of the density of states.
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Fig. 5.5. Energy contours for the perturbed problem.

5.2. NEARLY-FREE-ELECTRON APPROXIMATION

The central result of the nearly-free-electron approximation is
that, except for edge effects, the energy changes across every zone face
by an amount equal to twice the corresponding Fourier coefficient of the
crystal potential. From this result the erroneous conclusion has been
drawn in the past that an energy gap could exist for every Jones zone pro-
vided the potential was strong enough. That the nearly-free-electron ap-
proximation does not actually predict this conclusion for Jones zones with
shape degeneracies can be seen by studying the (20)(21) Jones zone discussed
in the preceding section.

The electron energies, correct to first order, at points of inter-
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section of two or more zone planes are the following:
Points: (* 1, 0) (0, * 1)

1+ V(20) X 2v(11)

b=
i

=
]

1 - V(20) (double)

Points: (* 1, *1/2) (+1/2, +1)

s
i

(5/4) + v(20) £ [V(21) + V(10)]

=
It

(5/4) - v(20) X [v(e1) - V(10)]
Points: (*5/6, *5/6) (X 1/6, X 1/6) (X 1/6, £ 1/6)
(25/18) + (1/2)[V(11) NV(11)2 + 8v(21)=2]

=
Il

=
1]

(25/18) - V(11)
Points: (%1, * 3/h) (£3/4, +1) (£ 5/k, 0) (0, * 5/4)
(25/16) + (1/2) [V(20) £NV(20)2 + 8v(21)2]

cal
1l

=
1

(25/16) ~ V(20).
The energies are equal at points on the (21) plane equidistant from the
center (1, 1/2) of the plane, for example, at points (5/6, 5/6) and
(7/6, 1/6) and at points (3/4, 1) and (5/k, 0). This is a special case
of a general property of the nearly-free-electron approximation. The
points on the (21) plane between (1, 1/2) and (5/6, 5/6) form part of the
boundary of the (20) (21) Jones zone, so that the nearly-free-electron ap-
proximation does predict an equality of the energy at points inside and
outside the (20) (21) Jones zone. This is the shape degeneracy discussed
earlier,

In the (20) (21) Jones zone the plane waves corresponding to the
(10) and (11) families of planes cannot be neglected, according to general
theory, in applying the nearly-free-electron approximation. As an example
of the error caused by such an omission, consider the energies at the point

(1, 1/2). 1If the plane wave corresponding to the (0l) plane is neglected,
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the resulting energies to first order are E = 5/k and E = (5/4) +

NV(20)2 + V(21)2, which are incorrect both in the number of energy levels

and in the dependence on the large coefficients.

5.3. DENSITY OF STATES

There are no essential differences in the complexities of the
two-dimensional energy contours and the three-dimensional energy surfaces.
On the other hand, as pointed out by van Hove,17 there are rather striking
differences between the density-of-states functions for the two- and three-
dimensional problems. For this reason it is not very instructive to analyze
the density of states for the energy contours given sbove. However, these
functions will be needed in Chapter VI in order to compute the density of
states for certain three-dimensional problems.

The contribution to the total density of states was determined
only for those contours of Figs. 5.2 and 5.5 lying inside the (20) Jones
zone. The procedure was to plot these and certain additional contours on
a scale approximately five times larger, and then to measure the area be-
tween successive contours with a planimeter. If

A(E) = area inside both the {2C) Jones zone and the contour
of energy E, (5.1)

then the average density of states for the energy interval from E to E' is

. A{E") - A(E)
Vave ) - E( 0 (5.2)

A smooth curve was then drawn through these average values to get the final
dimensionless density of states N(E). If primes are again used to denote

certain quantities with dimensions, then

k = ak' (5.3)
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and . R
dk Eo' Vg' [dk!

N(E) = = = 35 = Eo' V' N'(E'), (5.4)

where Va' is the volume of the unit cell of the direct lattice andb/&ﬁ ex-
tends between the energy surface E and the surface E + dE. The dimension-
less density of states N(E) is the number of energy levels (two electrons

per level) per unit cell per unit (dimensionless) energy range.

This graphical method is not sufficiently accurate to determine
the density of states in the immediate vicinity of its singular points, but
the nature of the function at these points is determined by the results of
van Hove which, for a two-dimensional problem, state that (l) at a minimum
(m) in the energy the density of states increases discontinuously, (2) at a
saddle point (S) in the energy there is a logarithmic infinity in the density
of states, and (3) at a maximum (M) in the energy the density of states de-
creases discontinuocusly.

Table 5.1 gives a typical location, the type of each critical
point, and the energy for all the critical points inside the (20) Jones
zone of the energy as plotted in Figs. 5.2 and 5.5. The density-of=-states
functions for both the unperturbed and the perturbed problems are shown in

Fig. 5.6,
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TABLE 5.1
CRITICAL POINTS OF THE ENERGY

UNPERTURBED PROBLEM

Location Type Energy
0 0 m - .0892 m = Minimum Point
170 S + 6446 S = Saddle Point
1”17 M 1. 3784 M = Maximum Point

PERTURBED PROBLEM

Location Type Erergy Location Type Energy
0O 0 n - 091k 1/2% 1 /2% m L2ko
1/27 0 S + 1240 1~ 0 S 6432
1/2% 0 m 1663 - 1/e" M . 8586
1/2= 1/2" M 339k 1= 1/2f S .9009

1/2% 1/2- S . 3817 1717 M 1.3778
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CHAPTER VI

THE (200) JONES ZONE WITH COSINE POTENTIALS

Three-dimensional problems are easily constructed by combining
one-dimensional problems in the z direction with the two-dimensional prob-
lems of the preceding chapter. The main interest in these three-dimensional
problems lies in the density-of-states functions and the effect on these
functions of weak Fourier coefficients of the potential corresponding to
zone planes which cut inside the Jones zone.

The separability of the problems made it practical to compute more
accurate density-of-states functions than those usually given in the litera-
ture. The structure of the functions given here is of pedagogic value in
illustrating the types of peaks and valleys which are likely to occur in
density-of-states curves. The density of states for the unperturbed prob-
lem gives, by comparisor, an indication of the accuracy of an approximate
method of calculating the density of states due to Jones and is also the
basis for deriving other functions of more direct interest, such as the
total energy of all the electrons. These derived functions are discussed

in the following chapter.

6.1. ENERGY SURFACES
The energy surfaces for the three-dimensional problems are de-
scribed by the equation
Bo(ky,ky) + E1(k,) = E, (6.1)
in which El(kz) is a one-dimensional energy function of Chapter IV and

Eg(kx,k = constant describes the two-dimensional energy contours of

;)
w7
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Chapter V. The intersection of every plane parallel to the kxky plane
with the energy surfaces gives a set of energy contours of the same shape
as those of Chapter V.

Figure 6.1 gives the critical energies of the unperturbed problem

within the (200) Jones zone and also shows the shape of that energy

M2.0676
C

S
13338

Fig. 6.1. Critical energies and a critical energy surface

for the unperturbed problem. See Section 6.2 for definitions

of minimum (m), saddle (S:S2), and maximum (M) critical points.
surface which just touches the zone faces. Although this surface is approx-
imately spherical over wmuch of its area, the conical points cause its volume
to be significantly less than the volume of the sphere enclosed by the (200)
zone, Numerical values are given in the next chapter. The lowest energy
outside the (200) zone is 1.1991 at point P. The considerable amount of
directional degeneracy which exists for this problem is due to the large

deviation of the shape of the cube from the shape of the enclosed energy

surfaces.
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The critical energies of the perturbed problem are shown in Fig.
6.2 at typical locations of the critical points of the energy surfaces. The
nature of these critical points and their effect on the density of states is

discussed in the next section.

UL
6091
) K
R| |
o3y ) B
- v
24371 0783 1206 11977
Q Q2 PI R
00 059 05 10 1.0 Ky

Fig. 6.2. Critical energies for the perturbed problem.

6.2. DENSITY OF STATES

The density of states was determined in the following way for
the energy surfaces indicated in Figs. 6.1 and 6.2. The average density

of states for the energy interval from E to E' is

Nayg = V(Eéz :\E,(E) (6.2)

In this formula
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V(E) = volume inside both the (200) Jones zone and the
surface of energy E (6.3)
k, ,max
= JA(kZ;E)de , (6.4)
k, ,min
where
A(kz3E) = A(Ee) and Esx = E - Ei(lky) . (6.5)

The integral (6.4) was evaluated graphically by plotting A(ky;E) as a func-
tion of k, for different values of E and measuring the area between succes-
sive curves with a planimeter.

The nature of the density of states near the critical energies is
given by the results of van Hoveo17 For the problems considered here the
energy surface in the immediate vicinity of one of its critical points,
taken as origin, is of the form

E = Bc * Cyky~ * Cyky® £ Cpkg” (6.6)
in which Cy, Cy, and Cy are positive constants. Near each critical energy
the density of states has the form indicated in Table 6.1, in which the B's
are positive constants and the functions O(E - Ee) are of order E - E. for
E— Ee.

TABIE 6.1

FORM OF THE DENSITY OF STATES NEAR THE CRITICAIL ENERGIES

Type of Number of Plus Energy Form of
Critical Energy Signs, BEq. 6.6 Range Density of States
Minimum (m) Three E < E¢ Ne + O(E = Eg)

E>FE. Ne + BNE - Ex + O(E - Ee)

Saddle (Ss) Two E<E: Ne -BWNEc - E + O(E - Eg)
E 2 Ee Ne + O(F - EC)
Saddle (Sy) One E < Ee Ne + O(E -~ E¢)
E > Eo Ne - BNE = Ec + O(E - Eg)
Maximum (M) None e Ne + BNEe = E + O(E - Ee)

ELE
EZEC Nc+O(E-Ec)
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The density of states for the unperturbed problem is shown in Fig.

6.3. The density of states due to the parts of the energy surfaces of free
18

electrons lying inside the (200) zone, computed from formulas of Stoner, is

% —

n

n ]

I_

<

= —

N

L

o ——

>_

t —

n

2 ]

L

a

0 C

00 0.5 1.0 1.5 2.0 25 3.0

ENERGY -E

Fig. 6.3. Density of states for the unperturbed problem
and for free electrons in the (200) zone.

also shown. The dashed curve is this density of states for free electrons
translated so as to coincide with that for the unperturbed problem at the
bottom of the band. That the part of the curve from P to L for the unper-
turbed problem is to a close approximation an extension of the corresponding
part of the translated curve for free electrons follows from a result due

to Jones given in the next section. Because of this property a good sketch
of the density of states can be made if one knows the type and value of the
critical energies occurring in the zone and the density of states for the

zone for free electrons. This procedure becomes less accurate the farther
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the energy surfaces deviate from spheres.

Figure 6.4 shows the structure of the density of states for the
perturbed problem. There are several points of interest concerning the
fine structure of this curve. The first is the obvious fact that the dif-
ference between the density of states for the perturbed and unperturbed
problems is too small to cause an observable effect. This should be a
typical result for weak coefficients corresponding to interior zone planes,
unless either the Seitz zone boundary corresponding to the perturbing plane
almost coincides with a constant energy surface or else the ratio of wéak
to strong coefficients is appreciably greater than the one-tenth used here.
The second point is that the coefficients B in Table 6.1 are proportional
to 1.VCXCyCZ and hence to the square root of the product of the three prin=-
cipal effective masses of the electron with wave vector at the critical
point of the energy surface. Thus, a large change in the density of states
will occur only at those critical energies for which the product of the
principal effective masses at the critical points is large. The coefficient
B is also proportional to the numcer of times (w) the corresponding crit-
ical point occurs in the zone, proper allowance being made for the amount
of solid angle in the zone at each critical point. These results are easily
verified for the perturbed problem, because the principal effective masses
are the (dimensionless) effective masses of the one-dimensional probleme
roughly 1 at k = 0, C.05 at k = 1/2, and 0.15 at k = 1. Table 6.2 gives a

typical location and the type of each critical energy of the perturbed prob-

lem and also the factor w/\/EJ;{CyCZo There is an obvious correlation between
this factor and the size of the corresponding singularity in the density of
states in Fig. 6.4, More precisely, the radius of curvature at the singu-

larity on the side of the vertical tangent is proportional to WZ/CXCYCZD
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ENERGY-E (UPPER CURVE)
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Fig. 6.4, Density of states for the perturbed problem,
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The third point of interest is the occurrence of a critical energy of type

S1 followed by a critical energy of type Ss. This produces a U=-shaped dip

in the density of states, as at KjKo, which could be quite deep under certain
conditions. Such a dip would strongly influence properties which depend on
the electrons with energies at the dip but, if narrow, would have little

effect on properties which depend on the total energy of all the electrons.

TARLE 6.2

EFFECTIVE MASSES AT CRITICAL POINTS OF
THE ENERGY, PERTURBED ' PROBLEM

w = Number of Times Critical Point Occurs
l/CXCyCZ = Product of the Three Effective Masses
Critical  Typical R I Critical Typical | v
Point Location ~ype VCXCVCZ Point Location Type VCXCyCZ
0 0O 0 0 m 1.G75 Ky 1~1/2= 0 Sy 0,584
- Ko 1-1/2% 0 So . 560
Q1 /27 0 0 @ 8o 2Tk
Qo /et ¢ 0w .68k Hy 171 /e-1/2" M - 065
Ho 1-1/2%1/e- 85 .12k
Ry 1/271/2 0 8y .158 Ha 171/2f1/2t s .059
Ro 1/2%1/27 o & 305
Rs 1/et1/2t 0 15 Ly - 1m0 5 . 540
Ty 1/271/271/2" M L 012 J 1= 1°1/2 M .119
- + / =a [ ci # ks = a4 = 3 [a
To L/2+1,2+1/a Sy .03k Jo 1= 171/2 51 .11k
T 1/271/271 /27 s 032
Ty 1/2%1/271/2Y  n LOL0 C, 1= 1" 1= M LOTh
Py 1" 0O 0 So 1.319
Po 1t o ¢ m 1.135

6.3. JONES'S APPROXIMATION TO THE DENSITY OF STATES

In a calculation of the Gf phase boundaries of brass, Jones™ made
an approximate analytical calculation of the density of states. Some indi-
cation of the accuracy of this approximate method is provided by applying

this method to the unperturbed problem and comparing the results with the
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correct results given in the preceding section.

The first step in Jones's method is to use the nearly-free-elec-
tron approximation to represent the energy surfaces near the center of a
zone boundary plane. These approximate surfaces have cylindrical symmetry
about the normal to the plane. The density of states is given by the sur-
face integral over a constant energy surface of l/Vgrad E. To evaluate
this integral the zone is divided into pyramids with vertices at the center
and the zone boundaries as bases. The pyramids are approximated by right
circular cones of the same solid angle. If the zone boundary consists of
f similar faces, the original surface integral is approximated by f times
the surface integral over that part of the surface within a cone. Because
of the cylindrical symmetry, this integral can be evaluated explicitly.
Jones's results in dimensionless variables for a zone bounded by f planes

of the family _B\n are

N(E) = friky = ky) , (6.72a)
in which
] b -1 2
E = k.%+ Tf(fl:j% k2 + (ko = kpy)
- Vhko2(ke - ky)2 + |V(E,)]2 (6.70)
ke = |§nl/2 3 E. = kcg - lv(—B‘n)‘ 3 (6070)
E o= ke + (ke = ky)® - Vik Bk, - k)" + |V(By)|Z for B < Ee , (6.7d)
and
ky = k. for E>E. . (6.7e)

For the unperturbed problem these equations yield the curve de-
noted "Jones Approximetion" in Fig. 6.5. This is to be smoothly connected

with the curve for free electrons near the bottom of the band. More accu-
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Fig. 6.5. Density of states by Jones's approximation
for the unperturbed problem.

rate results are obtained by translating these curves so that they pass
through the critical energies at the origin and at the center of the zone
face, as calculated, say, by second-order perturbation theory. This pro-
cedure gives the dashed curve in Fig. 6.5, which lies about three percent
below the exact solution. For spherical energy surfaces the procedure of
integrating over cones instead of pyramids introduces no error. ©Since the
energy surfaces of the unperturbed problem are very nearly spherical in the
boundary region between the cone and the pyramid, the approximation of pyr-
amids by cones should cause very little error for this problem.  Thus, even
though the energy discontinuity is large for this problem, the use of the
nearly-free-electron approximation causes only a three-percent error in the

density of states.
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The equations (6.7) have the approximate explicit solution
N(E) = 2B - tx(WE - k)

£(f - 2)n v(Bn)| ®
8 fkeAE - (£ - 2)keE

for E>E. . (6.8)

The first term is the total density of states for free electrons. The first
and second terms,give the density of states of free electrons due to the
parts of the energy surfaces within the (§n) zone. The third term shows
that for this approximate solution the density-of-states curve between the
peak P and the point L differs from the extension of the corresponding part
of the curve for free electrons only by terms of second and higher order in
V(ﬁn). This is the theoretical justification for the approximate method of

sketching the density of states given in the preceding section.



CHAPTER VII

TOTAIL ELECTRON ENERGY AND THE HUME-ROTHERY RULES

The Hume-Rothery rules state that each type of intermediate phase
of certain alloys occurs near a definite ratio of the number of electrons
to the number of atoms or, better, at a definite number of electrons per
unit cell. The usual interpretation of these rules is based on the approx-
imation that at zero degrees absolute the change in the free energy of the
phases with composition is due only to the change in the total energy of
the electrons with composition. Zone theory is used to predict for a give
en phase the number of electrons with energies less than that at which
the main peak in the density of states occurs. The assumption has been
made in the past that if the number of electrons is increased beyond this
value, then the total energy of the electrons will increase rapidly and a
transition to another phase with lower energy will be probable.

In this chapter the total energy of the electrons is investigated.

[4))]

First, certain simpie but general continuity properties are established
which show what changes in the density of states are necessary to cause a
sharp increase in the total energy of the electrons. Next, accurate total
energy functions are derived for the three-dimensional problems of the pre-
ceding chapter. A study of these results leads to a better qualitative
understanding of the nature and difficulties of the phase boundary prob-
lem.

For simplicity the study will be made for a substance at zero
degrees absolute. In theoretical work quantities such as the density of
states and total energy will be taken per unit volume of crystal but in

58
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the numerical examples such quantities will be referred to a volume V,

the volume of the unit cell of the perturbed problem.

7.1. CONTINUITY PROPERTIES OF THE TOTAL ENERGY OF THE ELECTRONS

Insight into the possible occurrence of an abrupt change in slope
of the total electron energy function is obtained from a study of the con-
tinuity properties of this and related functions. Let C(i) denote the
class of functions with a piece-wise continuous i + lSt derivative (the
discontinuity in the 1 + lSt derivative may be infinite).

Consider first the energy range from the lowest energy Ep of a
band up to the first energy gap, if there is one, otherwise to infinity.
In this interval the density of states N(E) in three dimensions is greater
than zero and of class C(O). It is assumed that only the types of criti-
cal points of Table 6.1 occur in the emnergy surfaces. It is further as-
sumed that at least one singularity in the density of states occurs in
the energy interval, otherwise all functions and their derivatives are
continuous. If N(E) is the number of levels per unit energy range per
unit volume, then the number of electrons n(E) per unit volume with ener-
gies less than E is

™
A

(@) = 2| N@E)E ,  of class ) (7.1)
thus
. 1 dn
NE) = 3 F (7.2)

In this energy interval the inverse function

E = E(a) is of class C(l) . (7.3)
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The total energy U(E) per unit volume of the electrons with energies less

than E, considered as a function of E, is

U(E) = %/E(E” - E,) N(E') dE* ,  of class c(l)o (7.4)

Epy

L1

The derivative of U with respect to n is

! dB 7.5)
S -FF - (1) (
dn = dE dn E(n) - Ey , of class C .

The total energy of the electrons, considered as a function of the number
of electrons, is 1
Ia

U(n) = | [E(n') - Bylan® ,  of class 0(2) . (7.6)

@]

At an energy gap the continuity properties are different. The
number of electrons n(E) is constant across the gap. Hence, the inverse
function E(n) has a finite discontinuity, and the total energy of the elec-
trons U(n) is continuous but has a finite discontinuity in its first deriv-
ative at the energy gap. According to relation (7.5), the change in the
slope of the total energy function U{n) is the width of the energy gap.

These continuity properties indicate that a sharp change in the
slope of the total energy function Ul{n) will occur only where there is an
apprecilable energy gap or where the density of states is very small over an
appreciable range of energies. The {n) curve is "straightest” for values
of n near that corresponding to the highest peak in the density of states.
These conclusions are illustrated by the numerical examples of the follow=-

ing section.

7.2, TOTAL ELECTRON ENERGY FOR THE (200) JONES ZONE
The total number n(E) and total energy U(E) per unit cell of the

electrons for the perturbed and unperturbed problems of the preceding chapter
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are shown in Fig. 7.1l. The difference between the true curves for the two
problems is less than the accuracy of the graph. These functions have dis-
continuous second derivatives at P and L (see Fig. 6.1 for the location of

these points), but this is not detectable in the figure. The number of

R I L
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-
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5 w and
— Perturbed
% [ Problems ]
Z 0 I O I N
-02 00 04 08 .2 |6 20 2.2

ENERGY -E

Fig. 7.1l. Total electron energy and number of electrons

per unit cell as a function of energy.
electrons per unit cell contained within the enclosed sphere of the (200)
zone is 2(kx/3) = 8.378. For the unperturbed problem this number of elec-
trons is contained within the surface of energy E = 00748, as indicated by
the point S in the figures. The number of electrons contained within the

surface which just touches the zone boundary planes at point P in Fig. 6.1

is 6.110. It is to be noted that, although the critical energy surface is

approximately spherical over most of its area, its volume is only about three-

fourths that of the enclosed sphere.
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Figure 7.2 gives the total energy U(n) per unit cell of the elec=-
trons as a function of the number of electrons per unit cell. The upper
curve is for those free electrons with wave vector within the (200) zone,
and the lower curve within the accuracy of the figure is for both the un-
perturbed and perturbed problems. In agreement with the results of the
preceding section there is no point on the curves at which one might pre-

dict a physical change would occur.
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— C
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NUMBER OF ELECTRONS-n

Fig. 7.2. Total electron energy per unit cell as a function
of the number of electrons per unit cell.

Further insight into the total energy U(n) for the unperturbed
problem is obtained by comparing it with the total energy UF(n) of free
electrons in all zones with the same effective mass as the electrons of the
unperturbed problem at the center of the zone. The difference U(n) - Up(n)

is shown in Fig. 7.3. This shows that, instead of increasing at point P,
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the total energy of the electrons for the unperturbed problem continues to

decrease, relative to the energy of free electrons, almost to the point L.

% I T I R

0 4 8 12 16
NUMBER OF ELECTRONS-n

Fig. 7.3. Difference between the total energy U for the

unperturbed problem and the energy Up of free electrons

with the same effective mass at the center of the zone.
This is a general result for any phase whose density of states Ni(E) lies
above the density of states No(E) of a second phase, as is typical in
alloys, because Ul(n) - Uz(n) is negative in the region, beginning at Ey,
where N; > No and

(d/dn) (U1 - U2) = Ei(n) - Ez(n) (7.7)

is also negative. The total energy of the first phase continues to decrease,
relative to that of the second phase, until the zones are filled to that

energy at which the number of electrons in both phases are equal. Both

phase boundaries can only occur beyond this number of electrons.

7.3. REMARKS ON THE INTERPRETATION OF THE HUME-ROTHERY RULES
In the approximation that at absolute zero temperature the free
energy per unit volume, except for a constant, is Jjust the total energy of

the conduction electrons U(n), the standard conditions for the equilibrium
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of two phases become

@_] _ gt_f_] (7.88)
dn dp, dn Jn,
and
du, au
U1(ny) = n1 dn#]n = Usz(ng) - no aa%}n . (7.8b)
1 )

The total energy of the electrons for the two phases will be measured rela-
tive to the lowest energy By occurring in either of the conduction bands.
With this convention and relation (7.5) the equilibrium conditions can be
written as
BEy(ni) = Ez(nz) (7.92a)
and
Up(ny) = n1[Bi(ny) = Byl = Uzlnz) - nz[Fa(nz) = Byl o (7.90)
Graphicaliy, these conditions are equivalent to the familiar
"double tangent” rule on a free energy versus composition diagram. A
second graphical interpretation, which is easier to relate to the density-
of-states curve, is obtained by comnining equations (7.9) [integrate (7.6)

by parts] to get FE ‘ '
J [2-(E') - no(E")] 3B = O . (7.10)

En
This has the graphical interpretation that at equilibrium the zones of the
two phases are filled to that energy E¥ at which the areas under the n(E)
curves for the two phases are equal. The electron concentrations at the
phase boundaries are ny(E*) and np(E*). This interpretation is illustrated
in Figs. 7.4a and T.4b for two arbitrary but typical phase boundary prob-
lems. Because n(E) is, except for a factor of 2, the integral of N(E), the

two n(E) curves cross at that energy at which the areas under the corre=-

sponding density-of=states curves are equal. This is indicated in each of



65

N N, N, N N, Np
|
]
|
| L
| ' L
| | L
| _ I .
E E
A | | A ]
n | Ned n o
| | | |
| I n | |
| | Ne |
l I | Ny
| |
|
| |
| |
| |
I [»
e¥ ¢ e¥¢e

(a) (v)

Fig. 7.4 a,b. Typical graphical determinations of the
phase boundaries according to equilibrium condition (7.10).

the N(E) figures by the equality of the shaded areas. The condition of
equilibrium is indicated by the equality of the shaded areas in each of
the n(E) figures.

If the density of states is zero or low over an appreciable range
of energy, the number of electrons n(E) will be constant or slowly increasing

over this energy range, making a transition to another phase probable at an
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approximately predictable electron concentration. This situation is illus-
trated in Fig. 7.4a. The determination of the Y€ phase boundary of brass
should be similar to that shown in this figure because the poor electrical
conductivity and the large diamagnetism of 7 brass indicate that the density
of states of the y phase at its 7/7+e phase boundary is relatively low.

This dip in the density of states is related to the existence of the Jones
zone of the y phase; but, as discussed in Appendix C, the precise reason

for the dip is not known.

The fact that the electrical conductivity of most alloy structures
is not low indicates that the density of states is relatively high at the
phase boundaries. This type of problem is illustrated in Fig. 7.4b, in
which it is evident that the phase boundaries are determined by a close
competition between two almost equal functions and cannot be closely re-
lated to any singularity in the density-of-states function. This inter-
pretation was already implicit in the work of Jones on the Of phase bound=-
aries of brass; but its generality can be seen more clearly from the results
and figures of this chapter. It is worth noting that when the density of
states is not low at the phase boundaries, the boundaries are likely to
occur "somewhat" beyond the peak in the density of states and that the
volume of the sphere enclosed by the Jones zone should also be "somewhat"
beyond the peak in the density of states. However, the close correlation,
which sometimes exists in practice, between the volume of the enclosed
sphere and the position of the phase boundaries appears to be fortuitous.

Further discussion of the interpretation of the Hume-Rothery rules

is given at the end of the following chapter.



CHAPTER VIII

SUMMARY OF RESULTS

This investigation has touched on several different topics, and
many related results were given in different sections in connection with
detailed studies of i1llustrative examples. For the convenience of the
reader the significant results are collected here. Reference must be made
to the preceding work for the definitions of the technical words.

The first set of results pertains to the existence of an energy
gap for a Jones zone of given geometrical shape. The energy4gap is the
basis of the theoretical importance of Jones zones for the phase boundary
and other problems. It is pointed out that the directional, symmetry, and
accldental degeneracies which are known to occur between energy bands in
the reduced zone scheme must also occur in an extended zone scheme. If
these degeneracies occur between energies inside and outside a Jones zone,
then an energy gap cannot exist for the zone. Whether or not such degener-
acies actually occur for a given Jones zone usually depends on the particular
crystal potential and can only be determined by an actual calculatioﬁ of
the electron energies,

Another factor which can prohibit an energy gap from occurring is
what 1s here named a shape degeneracy. The existence of shape degeneracies
depends only on the geometrical shape of the zone. ©Shape degeneracies
exist in those Jones zones in which an integral number of fundamental re-
gions cannot be constructed. It follows that shape degeneracies will exist
if the volume of the Jones zone is not an integral multiple of the volume

of the reduced zone, but shape degeneracies can exist even if the volume
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of the Jones zone is an integral multiple of that of the reduced zone.
Shape degeneracies will exist if there is a part of the Jones zone bound-
ary which is not connected to any other part of the zone boundary by any
reciprocal lattice vector. In all examples studied of Jones zones which
are symmetric with respect to inversion in the origin, such an "unconnected"
part of a zone boundary face makes the face asymmetric with respect to in-
version in the center of the plane forming the face. However, this crite-
rion of asymmetry for a shape degeneracy has not been proven to be rigor-
ously valid. The existence of only parts of Brillouin zones inside the
Jones zone does not necessarily imply a shape degeneracy. Examples indi-
cate that in the large alloy Jones zones shape degeneracies may exist in
many energy bands. Since shape degeneracies will usually be accompanied
by directional degeneracies, it is possible in such cases for the density
of states to be relatively high at that number of electron states corre=~
sponding to the volume of the Jones zone.

The second set of results relates to the true nature of the en-
ergy surfaces in large Jones zones and to the use of the nearly-free-elec-
tron approximation to get qualitative information about these surfaces.
For problems in which many of the Fourier coefficients of the crystal po-
tential are zero the possibility of simplifying the nearly-free-electron
approximation depends on the set'ﬁﬂ of reciprocal lattice vectors con-
structed from those vectors which correspond to the large Fourier coeffi-
cients. If the set E' is smaller than the set‘§ of all reciprocal lattice
vectors, only the plane waves and zone boundaries corresponding to the set
ﬁ* need to be used in an approximate calculation of the energy. If the set
ﬁﬂ is equal to the set g: no plane waves and zone boundaries can be neg-

lected. The erroneous omission of plane waves in a calculation of the energy
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at a particular point of the zone can give both the wrong number of energy
levels and the wrong dependence on the strong coefficients. It may be im-
possible to neglect any plane waves and zone boundaries even if the Jones
zone contains an integral number of fundamental regions and hence no shape
degeneracy.

For Jones zones which are not the reduced zone of any reciprocal
lattice it is not clear at which volume an energy gap is likely to occur.

An example for a zone larger than the reduced zone indicates that even for
energy surfaces plotted as obtained most naturally by the nearly-free-elec-
tron approximation, the Jones zone is not necessarily the same as the zone
containing the surfaces of lowest energy. Also, an example shows that the
Fourier coefficients corresponding to the Jones zone boundary planes for a
zone with a shape degeneracy can cause a gap to occur at a volume greater
than that of the Jones zone. It is not known whether these Fourier coeffi-
cients can cause a gap at a volume less than that of the Jones zone. These
examples suggest for Jones zones which are not the reduced zone of any lat-
tice that the energy surfaces may be much more complicated than the familiar
surfaces of the reduced zone and that an energy gap may occur or almost oc-
cur at a volume close to but not exactly equal to that of the Jones zone.
For any zone energy gaps can only occur at integral multiples of the volume
of the true reduced zone.

A third set of results is derived from two three-dimensicnal nu-
merical problems. For the unperturbed problem the only nonzero Fourier coeffi-
cients of the potential are those corresponding to the boundary planes of the
Jones zone., For the perturbed problem there are in addition weak coeffi=-
cients corresponding to Brillouin zone boundary planes which cut inside the

Jones zone, Accurate density-of=-states curves for these problems illustrate
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the results of van Hove on the nature of the singularities in the density-
of-states functions. For problems in which the energy surfaces do not de-
viate too much from spheres it is indicated how a qualitative, occasionally
even semi-quantitative, sketch of the density-of-states curve can be made
from (1) the density-of-states curve of the zone for free electrons, (2)
the type and value of the critical energies occurring in the zone, and (3)
the principal effective masses of the electrons with wave vectors at the
critical points of the energy surfaces. The theoretical basis of thils pro-
cedure follows from results of Jones and van Hove. The density of states
for the perturbed problem indicates that the effect of interior planes on
the density of states should be negligible unless either an entire Seitz
zone boundary corresponding to the interior zone planes lies close to a
constant energy surface or the ratio of weak to strong coefficients is
greater than about one-tenth. Because the density-of-states curve has
vertical tangents at its singularities, it is possible for the interior
planes to produce a U-shaped dip in the density of states which, if deep,
could cause an observable effect on properties which depend on the elec-
trons with energies at the dip.

Jones's approximate analytical method for calculating the density
of states, which he used in computing the of phase boundaries of brass, gives
results about three percent low for the unperturbed problem, provided the
critical energiles and the energy gap are accurately known by some other
method. This indicates that even though the energy discontinuity is large
for this problem, the nearly-free-electron approximation still represents
the energy surfaces satisfactorily.

The final set of results is concerned with obtaining a better

physical interpretation of the Hume-Rothery electron concentration rules
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for the positions of the phase boundaries in a certain class of alloys.

The functions of interest besides the density of states are the number n(E)
of conduction electrons per unit volume of crystal with energies less than
or equal to E, the inverse function E(n) of this, and the total electron
energy U(n) per unit volume. The energy of the electrons is measured rel-
ative to the minimum energy E, occurring in the conduction electron bands
being considered. Temperature effects are eliminated by considering the
problem at absolute zero.

The derivative (dU/dn) = E(n) - Ep indicates that a sharp increase
in the total electron energy and hence in the thermodynamic free energy
function can occur only where there is an appreciable energy gap or where
the density of states is very small over an appreciable energy range. The
U(n) curve is "straightest" for n near that corresponding to the highest
peak in the density of states. It is assumed that in the typical phase
boundary problem the density of states Nj of the first phase is greater
than the density of states Nz of the second phase until some point beyond
the peak in N;. For such problems the total electron energy of the first
phase, instead of increasing relative to Uz as the zone is filled beyond
the peak in the density of states N;, continues to decrease relative to Uz
until that energy is reached at which the total number of electrons are
equal in the two phases. Both phase boundaries must occur at still greater
electron concentrations. As the volume of the sphere enclosed by the Jones
zone should also be greater than the volume corresponding to the peak in
the density of states, it is not surprising to find sometimes a correlation
between the volume of the enclosed sphere and the positions of the phase
boundaries; but any quantitative agreement appears to be fortuitous.

In an energy interval which includes a critical energy of the



72

type considered by van Hove and which does not include an energy gap in the
density of states, the total electron energy function has a continuous sec-
ond derivative., The smoothness of this function makes it difficult to use
in discussing the phase boundary problem. It is shown that at absolute zero
and in the approximation that the change in the free energy with composition
is due to the change in the total electron energy the equilibrium conditions

can be put in the form
E
f [n1(E') - na(B')] aB' = O, (8.1)
Ty

which has the advantages that the function n(E) has more structure than
U(n) has and is more closely related to the density of states than is U(n).
The discussion of the phase boundary problem in terms of this condition is
given in Section 7.3,

Additional results are given in the following appendices.

The results of this investigation suggest some modifications in
the usual interpretation of the Hume-Rothery rules. First, it appears both
theoretically and in practice that the positions of the phase boundaries
are not related to the positions of the singularities in the density of
states except when poor electrical conductivity indicates the phase bound=-
ary occurs at an energy gap or low dip in the density of states. Second,
for the type of problem considered here the density of states and hence
the total electron energy is determined primarily by the geometrical shape
of the zone. It follows from this that the same phases of the different
alloy systems should occur at the same electron concentrations. Moreover,
it should be possible to calculate the nominal positions of all phase bound-
aries which are determined primarily by the total electron energy by a rel=-

atively simple calculation. The work of Jones on the O phase boundaries
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is the first step in this program.

Further work is necessary in order to Jjustify the above interpre-
tation. It must be shown either that the positions of the phase boundaries
are insensitive to the size of the energy discontinuity at the zone face or
else that the energy discontinuity is approximately constant for the dif-
ferent alloy systems. The effect of small differences in the minimum en-
ergies of the conduction bands and in the sizes of the energy discontinuities

for two neighboring phases should also be investigated.



APPENDIX A

SOME BRILLOUIN ZONES OF THE CUBIC LATTICES

This appendix presents some drawings and photographs of the first
few Brillouin zones of the face- and body=-centered cubic reciprocal lat-
tices.

The shape of the outer surface of each succeeding Brillouin zone
is usually more complicated than that of the preceding zone. However, oc=-
casionally the shape of a Brillouin zone will be simpler than the shape of
one or more preceding zones. For example, the outer surface of the seventh
Brillouin zone of the two-dimensional square lattice (see Fig. 5.1) is much
simpler than that of the third, fourth, fifth, and sixth zones. Another
example is the fourth Brillouin zone of the simple cubic lattice, whose
outer surface is simpler than that of the third zone.

One of the early purposes of this study was to see if similar
simplifications occurred in the Brillouin zones of the face=- and body-
centered cubic reciprocal lattices. Drawings of the first four Brillouin
zones of these lattices have been given by Nicholas19 (the firét one or
two zones were given in the early literature). Brillouin zones five through
eight have been worked out here. The work was facilitated by computing an
auxiliary table giving for each pair of planes forming zone boundaries the
vector to the midpoint of the line of intersection and a vector parallel
to this line. From this information the line segments forming the edges
of the zone surfaces can be easily constructed.

For purposes of comparison, drawings of the outer surfaces of the

first four Brillouin zones as well as of gzones five through eight of the

face- and body-centered cubic reciprocal lattices are shown in Figs. A.l

T4
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through A.10. These figures show only that part of the surface lying in
the first octant. A line of intersection of a zone face with the kxky,
kykz, or k;k, coordinate plane which is not also a zone boundary edge is
shown as a dotted line. "Hidden" zone boundary edges are shown as dashed
lines. The numbers within parentheses denote the planes forming the zone
faces (as always, a plane is denoted by the components of the lattice vec-
tor which is perpendicularly bisected by the plane). The coordinates of
the zone corners are denoted by numbers not in parentheses.

Table A,1 gives the number of faces, edges, and corners of the
outer surface of the first eight Brillouin zones of the face- and body-
centered cubic reciprocal lattices. For the face-centered cubic reciprocal
lattice, corresponding to the body-centered cubic direct lattice, a simpli=-
fication in the outer surface occurs for the third and seventh zones. For
the body~-centered cubic reciprocal lattice, corresponding to the face-
centered cubic direct lattice, a simplification in the outer surface occurs
for the fifth zone., However, these simplifications are relatively slight,
and the resulting surfaces are still rather complex.

For pedagogic purposes it is useful to have solid models whose
surfaces are outer surfaces of Briliouin zones. Several such models have
been carved from wood by Mr. Conrade C. Hinds. DBDecause of a general inter-
est shown in these models, photographs of them are shown in Figs. A.1l

through A.13%.
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TABLE A.1l

DATA ON CERTAIN BRILLOUIN ZONES

FACE-CENYERED CUEIC RECIPROCAL LATTICE

Zone 1 ) 3 s 5 6 7 8
Number of 12 18 30 72 216 2L 156 288
Faces

Number of ol 72 48 120 336 38k 26k 456
Edges

Number of 14 26 20 50 122 146 110 170
Corners

BODY-CENTERED CUBIC RECIPROCAL LATTICE
>

Zone 1 2 L 5 6 7 8
Number of 1h 72 96 204 104 576 624 912
Faces

Number of 36 132 180 336 208 9%6 152 1656
Edges

86 134 126 362 530 46

[o)Y
P

Number of 2L
Corners




T

First Zone

Second Zone

FPig. A.l. Brillouin zones, face-centered cubic reciprocal lattice.
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Fifth Zone

Sixth Zone

Fig. A.3. Brillouin zones, face-centered cubic reciprocal lattice.
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Fig. A4, Brillouin zones, face-centered cubic reciprocal lattice.
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Fig. A.6. Brillouin zones, body-centered cubic reciprocal lattice.
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Fifth Zone

Fig. A.7. Brillouin zone, body-centered cubic reciprocal lattice.
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APPENDIX B

WHITTAKER-INCE SOLUTION OF HILL'S EQUATICN

The general form of the Whittaker-Ince solution of Hill's equa-
tion was discussed in Chapter IV. The motivation for seeking a solution
of this form is given in the original articles,lg’l5 In this appendix
certain additional terms are derived in the power-series solutions of a

special case of Hill's equation, namely, equation (4.5) which is repeated

here:
(@2/ax2)y + 4 (B - 2Vy cos 2x - 2Vs cos 4x)y = 0O . (B.1)

Before doing this it was decided to check the pertinent terms in Ince's
solution of the general Hill equation. Four errors in Ince's results are
indicated in Section B.k4.

The essential feature of the Whittaker-Ince method is to expand
E and ¢ as power series in VliVZJo On putting these series into Hill's
equation and equating to zero the coefficient of each power of VliVZJ,
and infinite set of differential equations is obtained for the unknown
coefficients in the series for ¥. These equations are simple to solve
in principles but the equations for the high-degree terms are very
long and hence troublesome to handle in practice. This difficulty can
be avoided by a recurrence-relation method which breaks up essentially
the same calculation into a number of small steps. In addition, this
method is more systematic +to apply. Consequently, all the derivations
reported in this appendix were done by the recurrence-relation method

instead of the differential-equation method of Whittaker and Ince. It
89
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should be emphasized, however, that the solutions obtained by the two
methods are identical.
The first step in the Whittaker-Ince solution is to set
¥(x) = exp(fhx) ul(x) , (B.2)

in which u(x) is to have period either n or 2x. This form is convenient
for analytical work and is easily related to the Bloch form, expression
(4.6). The differential equation for u(x) is

(32/ax®)u + bn(d/ax)u + & (E + h2 - 2Vy cos 2x - 2Vo cos hx)u = 0. (B.3)
In the Whittaker-Ince method this equation is solved by making different
expansions of u, E, and sometimes h. Three such expansions are derived

in the following sections.

B.1. THE «k-EXPANSION

The series solution obtained by the following method is useful
only for wave vectors which are not near the Brillouin zone boundaries.
Set

co
u(x) = 5;1 Usn(r) e201x with Up = 1 . (B.4)

N==00
The exponential functions are more suiltable for use with the recurrence-
relation method than are the trigonometric functions obtained by Ince.
On putting this series into the differential equation (B.3) and equating
to zero the coefficient of each exponential, one obtains an infinite set
of coupled algebraic equations for the unknown coefficients Uzn. In these
equations put

E +h2 = Ei. (k) ViV, (B.5a)



h = ik/2 , (B.5b)
and for n £ 0
[o0]
L]
1ij ; .
Uon = }i uzd (k) VliVZJ 3 (B.5c)
i,3=0

and equate to zero the coefficient of each power of VllVZJu This gilves
ij
the following set of recurrence relations (in these Usp is defined to be

zero if either i or j is negative):

i=- i-1] -1
Eij(n) = Uii = nglJ +Us Y 4 UiJ , (B.6a)
1j -1
Uzt (x) = l+n }: jil i-p J q =
p=0 g=0
(B.6b)
i1-1J ij=-1
~Ug I UéJ - 811 djo
ij i-1j3
W) = }z §i Bip j-g Uao - U7
p=0 q=0
(B.6c)
1-1J 1j=-1
U™ - gt - %io Bj1|
and forn > 3 ) )
i
iJ 1 ) ij
Uéﬂ(m) = Bmr 2; §i Ej_p j=-q zn - Uon- i
p=0 q=0
Y .y L (B.64d)
19-
=Uzn 8 - Uan 3 - Uzn. J +4
Also, for n 21
i ij
U-2n(k) = Uzn (-k) . (B.6e)

These expressions relate Eij and Uéﬂ to coefficients of lower degree. It

also follows that Egy = Ven = 0, so that by successive application of these



92

relations all coefficients can be determined. The coefficients determined
in this study are given in Table B.l. 1In each section of the table all
the nonzero coefficients are given for the range of i + J indicated.

Since u(x) has periodicity =, the appropriate relation between
k and the wave vector k is k = 2k. Therefore, the energy and wave vector

are related by
E = k2 + Z EiJ(K) Vl1V2J (B°7a)

and

For k 1/2 this becomes

E = Gevla - %»vgg £ Vs + Lyt - 20y BB

7 4 136 = 27 . 3
12 Vo '-"_59-—" Vo + BdJ1 2 +a”>

2 1. : - 0
+ (} - 81, ® - 5 Va® 4+ 15 Vi TUn + -5““V1 - TT VLV

111 18,472 1
N EIE"V24 . m_gxlm vy 5o 4 %%g Vo FVs2 ¢ °o> k2

F oo o (B.7c)

B.2. THE o 1/4-EXPANSION
The following solution is useful only near the first Brillouin

zone boundary in the extended zone scheme. Set

D]

u(x) = sin (x=0) + }: [%2n+1(0) sin [ (2n+l) x = o]

-

N=1

+ Copqi(o) cos [(2n+l) x - 0]] s (B.8)

in which o i1s a parameter that may be complex. The form of the functions
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TABLE B.l

NONZERO COEFFICIENTS IN THE EXPANSIONS (B.5)

i+j<a
iJ
20 | -2/(1-k2)
02 | -2/(k-k2)
21 | 12/(1-k2)(L-k2)
s s 40 (7+5n2)/(1 k2)2 (4-kZ)
1d 22 | -80/(1-k3) (4-k2)(9-k2)
o | 2(28+562)/ (h-k2)3(16-k2)
41 -52(17+7R )/ (1-62)3 (4-kZ) (9-k7)
23 | T12(12-76%)/(1-kZ) (4-k%)%(16 k)
10 | -1/(1+k)
11| (54+k)/2(1-k%)(2+k)
13 .30 | (T+hk+k2) /2(1 nz)(l+n)2(2+n)
Uz 12 | -b(8+k)/3(1-k3) (h-kZ) (3+k)
pal (252 175K+°4n +28k3+12x%4+k5) /3(1-k2)3 (k- 2)( +n)
13 | (3476+2560k+2hTrZ+1hk3+36% /u8(1 ~kZ) (L-k2) (246 )2 (3-k ) (b+k )
ol | -1/2(2+k)
20 | 1/2(1+k)(2+k)
i 1 21 -4/5(1_m2)(2+n)(5+n)
4 03 (28+8K-+K )/16/( h -.2) (24, )% (h+x )
4O | =(10+5k+k=) /3(1-kZ) (1+k )2 (2+k ) (3+k )
ot (th+lOlbm+5hlw¢428n3+3m4)/h8(l-wz)(h-m2)(2+n)2(5+m)(h+n)
' 11| (5+3k)/6(1+k) (2+k ) (B+k)
Ug™9 30 -1/6 1+k ) ( +x)( k)
12 | -(9+k)/8(1-k7) (2+k ) (b+4k )
yaid 02| 1/8(2+k) (k+k)
8 21 | =(7+3k)/12(1+k ) (24K ) (B+k ) (h+k )
1J
Uzn

None
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used in this series gives the simplest recurrence relations and also af-
fords a direct comparison with the results of Ince. However, if the wave
functions themselves were of interest, it might be better to expand in
terms of the functions sin(2n+l)x and cos(2n+l)x or exp[t (2n+l)ix]. Put
the series (B.8) into the differential equation (B.3) and equate to zero
the coefficient of each gine and cosine term. This gives an infinite set

of coupled algebraic equations for Sontl and Con4l. In these equations

put
o0
2 .
E-1/4+h = 2; Eij(U) Vitvad (B.%a)
i,J=0
[04]
h = }: by 5(0) ViV, (B.9b)
i,3=
G
- ‘ii j i i
Sansl = Zj Bzng1 (0) Viv2d (B.9c)
i,J=0
and
8]
~1d i, J
Copgl = Sj “2g+1 (o) Vi'v2d s (B.9d)
L
1,J=0

and equate to zero the coefficient of each power of V11V2Ja This gives
iJ ij
the following recurrence relations (in these S2%+l and ng+l are defined

to be zero if either i or J is negative):

131 13-1 . i-1J
Eij(g) = = COS8 20 Séa - sin 20 CBJ + Sg J
ij-=1
+85°7" - cos 20 81y 8jo s (B.10a)
hij(d) = cos 20 C%JEL - sin 20 S%Jml + CémlJ

dj-1 .
+ C5J - sin 20 843 8jo , (B.10b)
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1J 1 pg pq
B2 (o) = 3 }: EE i-p j-q 93 = SBip joq Us ]
p=0 q=0
- 85"lJ - SlJ L 8i1 Bjo + cos 20 Bip Bj1| (B.10c)
i J
1j 1 pq pd
ca'(0) = 3 EZ }; [?i-p j-q ©8" * Ship jog B3 ]
p=0 q=0
i-15  ij-1 ‘ 108)
- C5 - C7 + sin 20 Blo 6Jl 3 (B. 0
13 _ 1 jofe! isgel
85°(0) = g EZ §i Bip jq 95 - Dhip joq C5
p=0 g=0
1-1] i=-1j 1j-1
-85 -8, Y- 8" -804 | (B.10e)

\ 1
1] 1 , pq g
Cs"(0) = 3 }Z jil [Ei—p j-q 57 * SMip 5 B8 J
p=0 q=0

i=-1] i-1] ij=-1
B L , (B.10f)
and for n 2 3
i J
iJ 1 iﬁ ba
Seml (0) = T E: [E jop j-q S2n+l (2n+l) hy D j-q Czn+%}
p=0 (=
ij-1  _i-1j  _i-1j  _ij-1
- Sgn.3 = Sgn-1 = Szn+’ - Sz2n+5| o (B.10g)
and
i ,
iJ : . e bq
Con+l (0) = né;n 2; §i [%i-p j-q Con+l + (2n+l) hi-p j-q 52n+i]

p=0 g=0

ij-1 i-1 1J~-1
= CZ% 3 = Czn i - Czn+ - Can+5 . (Both)
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A1l coefficients can be determined from these relations. In Table B.2 all
nonzero coefficients are given for the range of i + J indicated.
Since u(x) has periodicity 2m, the appropriate relation between

h and k is 2h = i(2k-1). Thus the energy and wave vector are related by

E = 1/b + (k-1/2)% + }: Ei3(0) VoY (B.11a)
i,3=0
and
[od]
k - 1/2 = %= 2; hij(o) Vllv?_j . (B.11Db)
i,J=0

In order to be able to make a comparison with the results of Ince, the fol-

lowing additional expansions must be made:

0

n® = 7 g13(0) Valvad (B.12a)
i,3=0
in which
i i
giglo) = Z }l_ Di.p j-q Ppg > (B.12b)
p=0 g=0
and
(&)
K“ .
— /‘ i’ ‘1‘: lnll J o e
E L+ /. Eij(c) Vi Vad (B.12¢)
1,3=0
in which
.!B —-— o s o o i
Eij(c) = B35 - 813 (B.124)

The coefficients gjj and E%j are also given in Table B.Z2.
Fnergies in the first and second zones near k = 1/2 are obtained
by setting o equal to either i® or 16 - ﬂ/E and letting © increase from

zero (in these cases, © is real, h is imaginary, and k 1is real).



TABLE B.2
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NONZERO COEFFICIENTS IN THE EXPANSIONS (B.9) AND (B.12)

i+3%4d
Example: Euq = - (353/432) + (191/108) cos ko - (7/16) cos 8¢
a |iJ cos 20 cos 60 ij 1 cos kg cos 8o
10 -1 20 -1/2
11 1 02 -2/3
30 1/h 21 -1/12 -1/k
12 1/9 Lo 7/12 -5/8
Eyy | 5 | 31| -65/72 5/8 22 29/27 -41/108
13| -5/9 ol 22/1%5
50 | -37/72 7/16 L] -353/u32 191/108  -7/16
32 | 145/648  -1361/1296 |23 | -1115/1080  335/216
1 | =26/225
10 -1 20 -1 1/2
11 1 02 -2/3
30 1/k 21 11/12 -5/
12 1/9 L0 L/3 ~11/8
Eis| 5 |51 -83/12 7/8 20 -11/54 97/108
150 -5/9 ol 22/135 .
50 -8/9 13/16 411 -1943/h32 164 /27 -17/16
32| 733/648  -25%7/1296 |23 17/216 95/216
1 -26/225
31 1/h -1/ 20 1/2 -1/2
50 3/8 ~3/8 21 -1 1
32 | -h9/5h h9/5h kO ~3/4 3/4
gij.| 2 20 23/18 -23/18
41 265/72 -155/36 5/8
2% -10/9 10/9
0L 1/2 10 =1/2
20 1/ 11 1/3 -1/2
g |, 3] -/ 1/2 30 7/12 -5/8
3 03 -7/48 12 -1/9 1/2
4o | -37/72 7/16 31| ~1595/86k4 599/216  -1/2
22 | 97/1hk -9/8 13 143/1080 1/1kh
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TABLE B.2
(Continued)
ij cos 20 cos b0 ij 1 cos bo cos 8o
11 -1/18 01 -1/6
. 30| -1/18 20 1/12
sz? 12| -1/48 21 -5/216 7/108
31| h75/2592 -85/648 | 03 37/2160
13 | 257/10800 Lo | -155/86k 41/216
22 -89/14k0  -1/9%6
. 02| -1/2k 11 1/18
g7d 21 | -1/48 30 -1/1h)
12 ~7/180 1/18
1 12 1/225 02 1/120
° 21 -1/1hh
iJ
San+l|
h> 5 None
ij sin 20 sin 60 ij sin Lo sin 8o
10 -1 21 -1/4
11 1 L0 -3/8
30 3/k o0 71/108
12 ~7/9 41 113/54 -7/16
hij 31| -211/72 5/8 2% | -161/216
13 1/3
50 | -137/72 9/16
32 166/27 ~2641,/1296
|1k -26 /2025
oL 1/2 11 -1/2
20 3/4 30 -3/8
1 21| -119/72 1/ 12 1/2
3 03 -7/48 31 59/27 -1/2
40 -137/72 9/16 13 1/1hh
22 331/216 -9/8
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TABLE B.2
(Concluded )
a 1] sin 20 sin 60 1J sin Lo sin 8o
11 1/18 21 11/108
30 -7/%6 10 11/108
15|, |12 -19/1hk 22 -49/86k
Cs 31 251 /864 -77/648
13 36149/32L00
oid 02 -1/2k4 12 1/18
i > a1 -43/h%2
c%j 3 12 -1/225
iy
C2fjl+l
2 None
n2 A

B.3. THE ol-EXPANSION
This solution is useful only near the second Brillouln zone bound-
ary in the extended zone scheme. In a manner analogous to the o l/h-expan-

sion, set

18

u(x) = Cy + sin (%x-0) + [5on{o) sin (2ux-0)

+ Can(o) cos (2nx-0)] , (B.1%)
in which o is a parameter. If this is inserted in the differential equa-
tion (B.3) and the coefficient of each sine and cosine term equated to zero,

an infinite set of coupled algebraic equations for Cy, Szn, and Con is ob-

tained. In these equations put

E - 1+ h? (o) Vytvad (B.1ha)

il
>~
lea]
[N
C
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h = E; hij(d) V11V2J , (B.14Db)
i,j:O
Al
Co = }; cs? (o) A s (B.1lke)
i,J=0
(24
1j i3
Szn = }z San (o) Vo V2! (B.14d)
i,J=0
and
[o¢]
i3 ..
Con = }j Cgﬂ (o) Vitvad (B.1lke)
i,J=0

and equate to zero the coefficient of each power of vlivzj.' This gives the

following recurrence relations (in these CéJ, Sé%, and Céﬂ are defined to be

zero if either i or j is negative):

Eis(c) = -2sino cl-1d 4 glt 4 gt L ocos 20 81605, » (B.158)
his(o) = %,[% cos o 571 4+ ci™H 4 29t L sin 208y 6j;] , (B.15b)
1
ng(c) = -zz §j Ei.p j-q ng - gin o SiJnl + Ccos o CiJ“l
p=0 g=0
- sin 0 845 B350 (B.15¢)
i3
+ 3 1 . ij-1
Sz9(0) = 3 Ez E: [ﬁiup 3=q sP% - hhiop j-q'CEé] +2sino CéJ
p=0 q=0
i=1] ij-1
- 857 - 887 - 84y B0 (B.154)



i
i
i3 1 jolo] Pq 1j-1
cx(0) = 3 j{:vii Eh’p joq Ca + bh _ b j-q 84:] - 2 cos o Cg
p=0 q=0
i-1] ij-1
-5 - cg? ) (B.1%)
i 1 pq ) pq i-1J
S¢"(0) = g EZ §E i-p j-q Se - Ohi-p j-q Ce | - Ss
p=0 g= O
i-1J ij-1
-5 - T - vy By1| (B.15¢)
1J 1 pq i-13
o) = 3 Ei §i [ i-p j-q o +Ohi-p juq 56.] - Ca
p=0 g=0
i-1J ij-1
2ottt ol , (B.15g)
and for n 2 4
i
. 1 jole} ba
szd (o) = 50T }Z }z EHFP'J -q Sen - @0 hip j-q Czn]
p=0 q=0
Lig=1 -1 i-1] ij-1
= San-b4 = Szn-2 - Sgn+2 - Szn+k| (B.15h)
and
i ]
1 ,
M@ - 3| ) ) [P gea B+ e niyp g oB]
| p=0 g=0

ij-1 i-1] 1=1] iJ- .
- Czp-l = Cap-2 - Con4? - Czn+h . (B.151)

These relations are sufficient To determine all coefficients. Table B.3
contains all nonzero coefficients for the range of 1 + J indicated.
Since u(x) has periodicity =, the appropriate relation between

h and k is h = i(k-1). Thus the energy and wave vector are related by

o0

E = 1+ (k-1)% + }j Ej3(e) Vi V27 (B.16a)
i,J=0
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TABLE B.3

NONZERO COEFFICIENTS IN THE EXPANSIONS (B.1k), (B.17), and (B.12)

i+=24d
Example: Eoy = - (13/12) + (16/9) cos 20 - (1/2) cos Lo
ij 1 cos 2¢ cos bo cos 60 cos 8o
01 -1
20 2/3 -1
02 -1/8
21 -13/12 16/9 -1/2
03 1/64
Ej3j 4o | -271/216 16/9 -1/2
22 56/135 -167/192 17/27 -1/4
ol 7/768 -5/512
b1 593/135 -11807/1728 85/27 -3/h
2% | 4397/17280 -497/4050 -55%/1152  40/81 -1/8
05 -37/18132 7/4096
o1 -1
20 2/3 -1
02 -1/} 1/8
21 -l /3 16/9 -1/k
03 1/6k
Es ho | -1k9/108 16/9 -3/8
o2 86/135 -191/192 11/27 -1/8
Ol 1/48 -11/512
41| 653/135 -122%9/1728 73/27 -1/2
23 | 6767/17280 -347/4050 -87/128 %7/81 -1/16
05 -1/288 13/4096
1 02 1/8 -1/8
21 1/h4 -1/k
4o 1/8 -1/8
-~ 22 -2/9 1/8 2/9 -1/8
td Ol -3/256 3/256
b1 =L /9 /b 4/9 -1/L
23 -19/576 -1/27 115/576 1/27 -1/16
05 5/2048 -3 /2048




103

TABLE B.3
(Continued)
ij 1 cos 20 cos Lo cos 60 cos 8¢
10 -1/3
11 -7/2k 4/9
gtd 30 -19/216 1/9
4 12 53/135 -203/576 -5/ 54
31| 65%/1080 43 /86k =T/54
13| 581/6912 257/32400  -278%/1382L  10/81
01 -1/8
20 1/2k
02 1/6k
gl 21 1/45 -13/288
° 03 7/768 -5/512
40 2/1%5 -11/576
22 | -1109/34560 17/900 271/1382k
oh ~37/18432 7/4096
. 11 11/360
559 30 -1/360
12 11/576 -157/4800
i 02 1/192
&y 21 | -13/L4320
0% ~1/115
1]
Szn
None
n=6 o
a iJ sin o sin 30 sin 50 sin To
10 -1
11 5/6 -1/2
ol L 30 7/6 -1/2
° 12 17/36 -1/k
31 -815/216 91/36 -3/
13 ~31499/17280 -61/1152 53/216 -1/8
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TABLE B.3
(Concluded)
a i sin 20 sin bo sin 60 sin 8o
ol -1/2
20 -1/2
21 L /9 -1/h
03 3/128
b 5 | 40| h/9 -1/k
1 22 289/1152 2/27 -1/8
ok -3/102k
L1 -6839/10%68 L7 /5k -%/8
23 -4099 /10800 913/6912 10/81 -1/16
05 -137/3686k4 9/8192
i1 5/9
. i 30 ~/9
o o1 13/192 -2/27
13l -79/2592 -1/27
13 ~19661 /13200 157/4608 1 /%2k
02 3/6h
21 -11/288
iJ ) 03 -3/512
v T wo -25/576
20 ~131/2700 521 /1382k
e Lok -137/18432 9/4096
caY 5 012 -2087 /45200
032 5 1 03 -7/2304
:
C21L’Jl i
2 J None
n>6 l
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and

k-1 = %- }j hy 5(0) v lved (B.16b)

As in the ¢ 1/hk-expansion, in order to be able to make a comparison with
the results of Ince, the additional expansions (B.12) must be made, except

(B.12c) must be replaced by

.

J

E = 1+ E: £53(0) V1 Va (B.17)

i,J=0
The coefficients gij and E%J are also given in Table B.3.
Energies in the second and third zones near k = 1 are obtained

by setting o equal to either i6 or i@_ﬁ/E and letting © increase from zero.

B.4., COMPARISON WITH THE RESULTS OF INCE

As the work reported in this appendix both overlaps and extends
the results obtained by Ince, it may be helpful to indicate explicitly both
some of the differences in notation and the new results given here. To go
over to the notation of Ince, set

Vo= E = 6,/4 Vy = =01 /h k = -ic

X =2 h

[

L/2 Vo = -0/h

The remaining changes are easily obtained by comparison.

The k-expansion.-—The following coefficients are not given by

Ince (the exponential functions used here must be suitably combined to

give the trigonometric functions used by Ince):

Eyg: 21, 22, Oh, 41, 23 Jed: 11, %0, 102
UsY: 11, 30, 12, 31, 13 Ugd: 21

uid:. 21, 03, bo, 22
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where the pairs of numbers refer to the values of ij. The remaining coef-
ficients agree with the corresponding ones of Ince.

The ¢ l/h-expansion,-—The following coefficients are not given

by Ince:
Ejj: 22, 13, Ob, 50, b1, 32, 25, 1k
hij: 22, 13, 50, L1, 32, 23, 1k
sid, ol s, cld. =1, 22, 13
The remaining coefficients agree with those of Ince except for the coeffi=-

\ ! 21
cients Ezy; and S3™ .

The ¢l-expansion.—The following coefficients are not given by

Ince:
Eij, hijr 03, 22, Ok, 41, 25, 05 sgd, old: 10
cdd, sid, i 12, 31, 13 sid, o, 03
sdd, 2 21, 03, ho, 22, ob cid: o3

The remaining coefficients agree with those of Ince, except for the coef-

. y o2
ficients Egz and 8S:g-



APPENDIX C

ANALYSIS OF SEVERAL JONES ZONES

In this appendix the results given in the preceding chapters are
applied to the Jones zones of the hexagonal close-packed, the y-brass, and
the B-manganese structures. The Hume=Rothery electron concentration rules
are known to apply to many alloys with these structures. It will be shown
that shape degeneracies exist for these zones and hence that the signifi=-
cance of these zones for the interpretation of the Hume~Rothery rules is
less certain than previously supposed.

No shape degeneracy or omission of interior Brillouin zone bound-
ary planes is possible for a Jones zone which is also the first Brillouin
zone, as, for example, for the Jones zone of the B-brass phase, which has
the body-centered cubic lattice. The B-brass phases (nominal electron/atom
ratio of 1.5) occur when the zone is about three~quarters full. It is inter-
esting to note that the calculations of Jones indicate that the electron/atom
ratio corresponding tc the peak in the density-of-states curve is about 1.0.
The electron/atom ratio for a full zone is 2.0. Consequently, for the B-
brass phase the electron/atom ratios corresponding to the peak in the density
of states and to the total volume of the zone provide no information at all
as to the positions of the phase boundaries, hecause all intermediate phases

occur between electron/atom ratios of 1.0 and 2.0,

C.1l. THE HEXAGONAL CLOSE-PACKED STRUCTIRE
The parts in the first octant of the Jones zone and of the second
Brillouin zone for the hexagonal close-packed structure are shown in Figs. C.l

and C.2, respectively. The first Brillouin zone is the hexagonal prism ABA'B', etc.
107



108

Fig. C.1l. The Jones zone of Fig., C.2. The second Brillouin
the hexagonal close-packed zone of the hexagonal close-
structure. packed structure.

The symmetry degeneracies which exist between the first two energy
bands are discussed in the papers by Jones and Herring cited in the introduc-
tion to Chapter III. On translating the second Brillouin zone back within
the first zone it is found that the part of the zone face BCC'B' joins the
face similar but diametrically opposite to the part BDD'B'. Professor H.
Jones pointed out to the author before the present study was begun that the
joining of these two faces of the second zone means the energy at each point
of the face BCC!B' of the Jones zone is equal to the energy at some point
outside the Jones zone. This simple example of what has here been called
a shape degeneracy suggested the general investigation given in Section 3.2.

Some of the lattice vectors associated with the faces of the Jones
zone of Fig. C.1 are %l, ;%1,‘%2, and'Bl + D3, Therefore, the set B of
lattice vectors constructed from those of the Jones zone contains the vec-
tors %1,‘%2, and‘gg and hence all lattice vectors. It follows from the
results of Section 3.% that no plane waves and Brillouin zone boundary planes

can be neglected in computing and plotting the electron energies.
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Intermediate, hexagonal close~packed phases of different alloys
occur over a wide range of electron/atom ratios, roughly from 1.5 to 1.8.
The volume of the Jones zone of Fig. C.l depends on the c/a raﬁio. The
corresponding electron/atom ratio is near 1.75 and is necessarily less
than 2.0. However, because of degeneracies, the lowest electron/atom ratio
at which an energy gap could possibly exist is 2.0, These facts indicate
that it is not possible to understand the positions of the hexagonal close-

packed phase by considering only the Jones zone of the phase.

C.2. THE y-BRASS STRUCTURE

Part of the Jones zone of the y-brass structure is shown in Fig.
C.3. Some y~brass structures are based on the body-centered cubic space
lattice. Other y-brass structures are
based on a simple cubic lattice; but in
the approximation, made in calculating the
electron energies, in which the two types
of atoms are considered to be identical,
these structures should also be considered

as based on the body-centered cubic lattice.

Ky c The reduced zone of the face-centered cubic
lattice, the reciprocal lattice of the body-~
Fig. C.3. The Jones zone of centered cubic, will contain four electrons
the y-brass structure.
per unit cell of crystal. Therefore, an
energy gap is to be expected only at electron concentrations such as 84, 88,
92, etc. The Jones zone will contain 90 electrons per unit cell of crystal.

That shape degeneracies exist for the Jones zone follows both from

the fact that the volume of the zone is not an integral multiple of the
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volume of the reduced zone and also from the fact that parts, such as ABCD

in Fig. C.3, of the (411) family of faces are not connected by any reciprocal
lattice vectors to any other parts of the zone boundary. A more detailed
geometrical investigation shows that shape degeneracies must exist in at
least four different energy bands.

The set-g' of lattice vectors constructed from those of the Jones
zone contains the vector 2(411) + 2(330) + (I4I) = (101) and, similarly, the
other basis vectors of the face-centered cubic reciprocal lattice. Thus,
since the set-ﬁﬂ contains all the vectors of the reciprocal lattice, no
plane waves and Brillouin zone boundary planes can be neglected in calcu-
lating and plotting the electron energies.

This investigation is not sufficient to determine the true reason
for the empirically indicated dip in the density of states of the ¥ phase.
The density of states may be essentially that of the (330) Jones zone,
pérturbed in an as yet unknown way by the (411) family of Fourier coeffi-
cients of the potential. A true energy gap can exist for the (33%0) zone
at an electron concentration of 108. Presumably, the minimum in the actual
density-of=-states curve occurs at a smaller electron concentration when
overlap starts to take place into the next higher zone. An opposite alter-
native is that there may be only a weak correlation between the true energy
surfaces and those predicted by the nearly-free-electron approximation and
that an energy gap almost occurs at, presumably, 88 electrons per unit cell

for some reason which is not evident from zone theory.

C.3., THE B=-MANGANESE STRUCTURE
The B-manganese structure is based on the simple cubilc lattice.

The Jones zone of the PB-manganese structure is shown in Fig. 72 of the book
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5 The zone is constructed from the (221) and (310)

by Mott and Jones.
families of planes,and its volume, according to Mott and Jones, is 971/60 =
16,18 times that of the reduced zone. This shows that shape degeneracies
exist for the zone. The existence of shape degeneracies also follows from
the fact that there is a part of every zone boundary face which 1s not con-
nected to any other part of the zone boundary by ary reciprocal lattice
vector,

The set B of reciprocal lattice vectors formed from the vectors
of the Jones zone contains all vectors of the simple cubic reciprocal lattice;
so no simplification is posseivle in calculating and plotting the electren
energies. The construction of the density=-of-states function for this struc-
ture is further complicated vy the fact that neither the zone formed by the
(221) family of vectors nor the zone formed by the (310) family is a possible
reduced zone of a new reciprocal lattice., At this stage zone theory gilves

essentially no informaticn ahout the density of states for the Pe-manganese

structure.
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