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Amodular particle–continuum numerical method is used to simulate steady-state hypersonic flow over a hollow-

cylinder-flare geometry. The resulting flowfield involves a mixture of rarefied nonequilibrium flow and high-density

continuum flow. The hybrid particle–continuummethod loosely couples direct simulationMonte Carlo andNavier–

Stokes methods, which operate in different regions, use different mesh densities, and are updated using different-

sized time steps. Hybrid numerical results are compared with full particle and full continuum simulations as well as

with experimental data. The hybrid particle–continuum simulations are demonstrated to reproduce experimental

and full particle simulation results for surface and flowfield properties including velocity slip, temperature jump,

thermal nonequilibrium, heating rates, and pressure distributions with high accuracy. The hybrid method, which

uses particle simulation next to the surface, is also shown to predict accurate heating rates even when a highly

dissipative numerical scheme is used for the continuum solver. For this particular flow, a hybrid simulation is

obtained with modest computational savings over full particle simulation.

Nomenclature

Brcutoff = cutoff value of the continuum-breakdown parameter
CP = coefficient of pressure, �p � p1�=�0:5�1U2

1�
d = diameter of the molecule, m
Kn = Knudsen number, �=lc
KnGL = gradient-length Knudsen number
k = Boltzmann constant, 1:38 � 10�23, J/K
lc = gradient length, Q=jrQj
M = Mach number
m = mass of molecule, kg
noverlap = number of overlap cells where both particle and

continuum methods are used
p = pressure, N=m2

Q = macroscopic property
q = heat transfer per unit area, W=cm2

R = cylinder or flare radius, m
St = coefficient of heat transfer (Stanton number),

q=�0:5�1U3
1�

T = continuum combined translational–rotational
temperature, K

Trot = rotational temperature , K
Ttra = translational temperature, K
Tvib = vibrational temperature, K
Twall = wall temperature, K
U = bulk X velocity of gas, m=s

V = bulk Y velocity of gas, m=s
jVj = velocity magnitude,

������������������
U2 � V2
p

, m/s
X, Y = Cartesian coordinates, m
xsep = X coordinate of flow separation on cylinder surface, m
�tss = minimum simulation time before sampling can begin
� = mean free path, m
� = viscosity, �Ns�=m2

� = density, kg=m3

�c = mean free time, s
! = power-law temperature dependence of �

Subscripts

ref = reference value of the parameter
1 = freestream value of the parameter

I. Introduction

H YPERSONIC flow over a hollow-cylinder-flare geometry
generates interactions between shock waves and boundary

layers, resulting in a complex and highly nonlinear flowfield. Such
hypersonic interaction flows occur in the inlets of supersonic and
hypersonic propulsion devices and in the vicinity of control surfaces
on hypersonic vehicles. In such flows, shock–shock interactions
often produce reflected shock waves that impinge on the boundary
layer next to the vehicle surface. The interaction between a strong
shockwave and a boundary layermay then cause the flow to separate
and form a region of high-pressure recirculating gas next to the
surface. High-speed flow hitting such a recirculating region
significantly alters shock structures and interaction regions, which in
turn influence the extent of flow separation. Peak aerothermal loads
are observed at the location of shock impingement on the vehicle
surface, and therefore accurate prediction of this phenomenon is
important in the design of a hypersonic vehicle. In addition, the
heating and frictional loads measured within a recirculating flow
region are significantly different from when the flow is purely
attached. Such differences may reduce the effectiveness of a control
surface, and thus accurate prediction of these phenomena is
important during the design of hypersonic vehicles. For most
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blunt-body flows, the strong bow shock wave does not interact with
the vehicle surface. However, various blunt-body deceleration
techniques that use supersonic parachutes or ballutes involve highly
complex flowfields in which many regions of shock–shock and
shock–boundary-layer interactions are present [1,2].

For hypersonic interaction flows at high altitudes, the local mean
free path between gas–particle collisions may approach the
characteristic lengths associated with the high-gradient regions.
Under such conditions, a continuum description of the gas may no
longer be accurate and a particle or kinetic description of the gas may
be required. The direct simulation Monte Carlo (DSMC) particle
method [3] is currently the most popular method for high-speed
nonequilibrium flows. DSMC directly simulates a gas flow by
tracking a representative number of simulated molecules through a
computational mesh, which collide with each other as well as with
the vehicle surface. A limitation of the DSMC method is that it
becomes computationally expensive in the continuum regime due to
correspondingly small molecular spatial and temporal scales, which
must be resolved to the order of the mean free path � and the mean
free time �c, respectively. However, under such continuum
conditions, the Navier–Stokes (NS) equations accurately model the
flow and can be solved efficiently. For this reason, various
researchers have proposed hybrid numerical methods that adaptively
reposition particle and continuum computational domains within a
single hybrid simulation and couple particle and continuum regions
by transferring information across the interface [4–10]. A more
detailed overview of the various methods and comparison with the
hybrid numerical algorithm used in this paper can be found in [11]. In
this study, the modular particle–continuum (MPC) algorithm [11] is
used to simulate a steady-state hypersonic interactionflow.TheMPC
method was initially developed and tested for 1-D normal shock
waves [12] as well as for hypersonic flow over a 2-D-cylinder
geometry [13]. The MPC algorithm loosely couples DSMC and NS
regions, which have different mesh densities and are updated using
different time steps. Such an approach enables both spatial- and
temporal-scale decoupling while lending itself to a modular
implementation [14], which uses existing state-of-the-art DSMC and
NS codes (unmodified) within the hybrid code. For flow over a 2-D
cylinder, the MPC method has been shown to reproduce the
flowfields, surface properties, and local velocity distributions
predicted by full DSMC simulations 1.4 to 3.3 times faster while
requiring less memory [13,14].

In this paper, theMPCmethod is used to simulate hypersonic flow
over a hollow-cylinder-flare geometry. This axisymmetric, highly
nonlinear flow provides a significant challenge for the MPC
algorithm, comparedwith the previousMPC research and other cited
hybrid research. High-quality experimental data are available for this
flowproblem and have been used extensively to validate bothDSMC
and NS simulations in the literature. A detailed description of the
problem and a comparison of experimental results with full NS and
full DSMC simulations are presented in Sec. II. A brief overview of
theMPC numerical cycle is presented by showing the progression of
a hybrid simulation in Sec. III. The accuracy of the final MPC
solution with respect to flowfield features, velocity slip, temperature
jump, thermal nonequilibrium, and surface properties is investigated
in Sec. IV. The computational efficiency gained over full DSMC
simulation is also discussed in Sec. IV, and conclusions are presented
in Sec. V.

II. Full Navier–Stokes and DSMC Simulation

Particle regions are simulated using MONACO [15], a general
cell-based implementation of the DSMC method [3]. The variable-
hard-sphere collision model is employed, which results in the
following macroscopic viscosity model [3]:

�� �ref

�
T

Tref

�
!

; �ref �
15

�����������������
�mkTref
p

2�d2ref�5 � 2!��7 � 2!� (1)

All numerical results presented in this paper are for diatomic nitrogen
with a reference diameter of dref � 4:17 � 10�10 m at a reference

temperature Tref � 273 K. The power-law exponent! is set equal to
0.75, m is the mass of an N2 molecule, and k is the Boltzmann
constant. MONACO employs the variable rotational-energy-
exchange probability model of Boyd [16], where the reference
temperature for rotational energy exchange is specified as 91.5K and
the maximum rotational collision number is 18.1. Energy transfer to
vibrational modes is not considered.

Continuum regions are simulated using the LeMANS code [17].
For the results of this paper, it is assumed that rotational and
translational energy modes can be described by a single temperature
T in continuum regions. The vibrational energy mode is not
considered. The resulting governing equations are thewell-known 2-
D laminar compressible NS equations. The viscosity in the NS solver
is modeled using Eq. (1) to exactly match the viscosity model used in
DSMC. LeMANS solves this set of equations using a finite volume
formulation. Unless otherwise noted, the inviscid fluxes between the
mesh volumes are discretized using a modified form of the Steger–
Warming flux vector-splitting [18,19], which is less dissipative than
the original form. The modified form is thus adequate to calculate
boundary layers, and the scheme switches back to the original form
of Steger–Warming near shock waves, where added numerical
dissipation is needed for stability. The viscous terms are calculated
using the values of properties at the cell centers and at the nodes. The
time integration is performed using a point-implicit method. Finally,
for continuum-NS simulation, no-slip conditions are applied to both
velocity and temperature on all surfaces. Specific details of the
continuum numerical method are contained in [17].

The hollow-cylinder-flare geometry is detailed at the top of Fig. 1.
The viscous interaction at the sharp leading edge generates a
boundary layer and weak shock wave, which then interact with a
stronger shock generated by the flow reattachment downstream of
the flare junction. This shock–shock interaction, which occurs near
the surface of the flare after the junction, in turn affects the size of the
recirculating region. This strongly coupled and highly nonlinearflow
provides a challenging case for the validation of both NS and DSMC
methods. The flow conditions investigated are those of run 11
performed in the Large EnergyNational Shock (LENS) facility at the
Calspan—University of Buffalo Research Center (CUBRC). The
experimental results were made public after a blind code-validation
exercise at the 2001AIAAAerospace SciencesMeeting inReno,NV
[20,21]. During the conference, invited numerical solutions using
both NS and DSMCmethods were presented by various researchers,
including Candler et al. [22], Gnoffo [23], Moss [24], Kato and
Tannehill [25], Boyd andWang [26], andRoy et al. [27]. For the run-
11 conditions, Navier–Stokes simulations [22] predicted a larger
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recirculation region than measured experimentally. The same
simulations also highlighted the sensitivity of the solution to grid
resolution, numerical flux function, and limiters used in the NS code.
Further investigation by Candler et al. [28] determined that the
freestream conditions had a significant amount of thermal
nonequilibrium due to frozen vibrational relaxation during the rapid
nozzle expansion in the LENS facility. As a result, new revised
freestream conditions were defined for this case. The current study
uses the following revised flow conditions for CUBRC run 11 with a
hollow-cylinder flare: M1 � 12:4, U1 � 2484:1 m=s,
�1 � 5:566 � 10�4 kg=m3, T1 � 95:6 K, T1vib � 2486:7 K (not
used), and Twall � 297:2 K.

It should be noted that the vibrational energy mode is assumed to
be frozen throughout the flow, and the vibrational temperature is
therefore not used in any NS, DSMC, or hybrid simulations
presented in this paper. The LeMANS code, as already described, is
used to solve the NS equations for the hollow-cylinder-flare
geometry detailed in Fig. 1, with the preceding flow conditions.
Solutions are obtained on three mesh densities of 550 � 125,
1100 � 250, and 2200 � 500 cells, corresponding tomesh 1,mesh 2,
and mesh 3, respectively. Results for the coefficient of pressure
[CP � �p � p1�=�0:5�1u21�] are displayed in Fig. 2a to verify grid
independence and compare the NS solution with experimental
results. As seen in Fig. 2a, the solutions on mesh 2 and mesh 3 are
virtually identical and theNS equations predict a recirculation region
significantly larger than measured experimentally. As a result, the
flare shock forms further upstream, which causes the strong
interaction region, and thus the peak surface pressure, to occur
further downstream than observed experimentally. It will be shown
later that the NS equations (using no-slip boundary conditions) also
significantly overpredict surface heating and shear stress at the sharp
leading edge of the hollow cylinder. The surface pressure distribution
predicted by LeMANS in Fig. 2a is in excellent agreement with
simulations performed by Candler et al. [28] with respect to the
precise location of flow separation, the peak surface pressure, and the
overprediction of surface pressure along the flare.

In the blind code-validation exercise, the DSMC method well
predicted leading-edge surface properties and the size of the
separation region [21]. The largest discrepancy with experimental
results was found downstream of the flare junction, where� becomes
small. This can be seen at the bottom of Fig. 1, in which the hard-
sphere value of � is seen to decrease by an order of magnitude after
the flare junction. For this reason, fine resolution (cell size and time
step) is required for the flare region in a DSMC simulation.
Subsequent DSMC simulations [29] have improved the resolution

and produced excellent results, comparedwith the experimental data.
The MONACO code, as already described, is used to calculate the
flowfield and surface properties for the preceding run-11 flow
conditions using both mesh 2 and mesh 3. The least resolved region
in mesh 2 and mesh 3 is at the surface along the flare, where cell
dimensions are 4� and 2�, respectively, in the direction normal to the
wall. If necessary, cells are further subdivided into collision subcells,
which are less than 1� in dimension to satisfy the resolution
requirements for the DSMC method. The mesh-3 simulation uses
approximately 4 times as many simulated particles as the mesh-2
simulation and both contain at least 15 particles per cell. The flow is
axisymmetric, where cell volumes in DSMC become larger as
distance from the axis increases and therefore containmore particles.
However, because the entire computational domain is located away
from the axis of symmetry, the effect is minimal and no cell
weighting is used for DSMC simulation of the hollow-cylinder flare.
Constant DSMC time steps of 5 � 10�9 s are used, which are verified
to be less than 0:6 � �c everywhere. In addition to cell size and time-
step restrictions, aDSMCsimulationmust be allowed to reach steady
state before sampling of the solution begins. To demonstrate this,
Fig. 2b shows the MONACO solution on mesh 2 sampled at various
times. A close-up view of the separation region clearly demonstrates
that the size of the separation region increases significantly between
the sampling periods of 0.5–0.75 ms and 1.5–1.75 ms and remains
relatively constant thereafter. The precise location of flow separation
is best determined as the location on the surfacewhere the shear stress
becomes negative. Although profiles of shear stress are not shown
here (andwere not measured experimentally), the point of separation
xsep predicted by MONACO for each sampling interval is listed in
Table 1. By noting the percentage change in xsep per millisecond, it is
evident that the size of the separation region has effectively reached
steady state after 1.5 ms. DSMC simulations of the same case
performed by Moss and Bird [29] draw the same conclusion and
predict a level of agreement with experimental data similar to the
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Fig. 2 Grid convergence studies for the hollow-cylinder-flare geometry.

Table 1 DSMC prediction for the location of flow separation

and approach to steady state

Sampling interval, ms xsep, m % change, 1/ms

0.5–0.75 ms 0.09316 ——

1.5–1.75 ms 0.08936 4.0%
2.0–2.25 ms 0.08856 1.8%
3.0–3.25 ms 0.08806 0.6%
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MONACO results in Fig. 2b. Compared with the NS results in
Fig. 2a, DSMC is seen to better predict the extent of flow separation
for the run-11 conditions. Finally, comparison of the solutions
obtained on mesh 2 and mesh 3 (for the same sampling interval)
demonstrates that mesh 2 provides adequate resolution for a DSMC
simulation. Although the mesh-3 solution predicts a slightly higher
surface pressure inside the separated region, the location of flow
separation and the remainder of the profile agree very well with the
mesh-2 solution. It is interesting to note that for the run-11
conditions, the mesh density required to obtain a grid-independent
NS solution (mesh 2) is the same as that required by a corresponding
DSMC simulation.

The importance of adequate resolution for collision cells is
portrayed in Fig. 3. Here, the mesh-2 MONACO simulation is
repeated without using collision subcells. Because collision cells
next to theflare surface are nowup to 4� in the direction normal to the
surface, substantial numerical diffusion is introduced into the
boundary layer, causing an overprediction of 30% in the peak heating
rate. It should be noted that previous MPC results, presented in [30],
did not use this subcell feature within the hybrid code and thus
overpredicted the heat transfer by a similar margin. For the results
presented in this paper, the MPC method uses the identical subcell
algorithm used by MONACO for full DSMC simulations.

III. Modular Particle–Continuum Numerical Method

A. Problem Setup

The MPC numerical method used in this paper is completely
detailed in [11] and is now briefly outlined. TheMPCmethod begins
with a NS solution obtained on a mesh designed to solve the NS
equations. An estimate of local continuum breakdown is provided by
the gradient-length Knudsen number [31]:

KnGL �max

�
�

Q
jrQj

�
(2)

where � is calculated consistent with the variable-hard-sphere model
and the maximum is taken over the flow quantities Q of interest:
density �, temperature T, and velocity magnitude jVj. Cells in which
KnGL > Brcutoff are labeled as DSMC cells and the remainder are
labeled as NS cells, thus defining an interface between the two
regions. Previous studies have recommended [31] and validated [11–
13] a cutoff value of Brcutoff � 0:05. A slightly more conservative
value ofBrcutoff � 0:03 is used for theMPC simulations presented in
this paper. To create an overlap region in which both methods are
used, the DSMC regions are then extended further into
the continuum region by a number (noverlap) of cells. For the

hollow-cylinder-flare simulation, a value of noverlap � 4 is used.
Extended DSMC regions are further surrounded by one additional
DSMC boundary cell, and NS regions are surrounded by one
additional NS boundary cell. Now that all regions and boundaries
have been initialized, the mesh inside DSMC regions is refined to the
local value of �. This procedure is described in [14], which also uses
flow gradient information from the NS solution to set more stringent
refinement in the direction of flow gradients and to relax the
refinement in other directions. The initial particle region (including
the overlap) for the hollow-cylinder flare is shown at the top of Fig. 4,
and a portion of the mesh is depicted at the bottom of Fig. 4. Initially,
particles are generated in all DSMC cells (using a Chapman–Enskog
velocity distribution [32]) such that they are consistent with the NS
solution. Before each DSMC simulation time step, all particles
withinDSMCboundary cells arefirst deleted and then regenerated to
maintain the desired boundary conditions, consistent with the
corresponding NS solution. As the DSMC regions iterate and
particles collide with each other and with surfaces, the DSMC
solution proceeds away from the initial continuum-NS solution
toward the correct nonequilibrium solution. As this progression and
relaxation occurs, DSMC and NS regions are loosely coupled and
interface locations are periodically updated throughout the
simulation. Before the NS portions of the hybrid numerical cycle,
the macroscopic state variables are set in each NS boundary cell
using a subrelaxation average [33] of themolecular properties in each
corresponding DSMC cell. As an example, the final steady-state
interface locations for the hollow-cylinder-flare simulation are
shown at the top of Fig. 4. Finally, because the creation of particle
and continuum regions as well as the mesh refinement are automatic
in an MPC simulation, the user time required to set up an MPC
simulation involves creating theNSmesh and is therefore identical to
the setup time required for a full NS simulation of the problem.

B. Numerical Cycle and Progression of the Hybrid Solution

The loosely coupled numerical cycle employed in the MPC
method [11] can be summarized as follows:

1) UsingKnGL, set up the initial DSMC and NS domains based on
an initial NS solution and refine DSMC regions to �. Generate
particles throughout the entire DSMC domain.

2) Allow DSMC regions to progress and relax with the current
boundary conditions, while adaptively repositioning the interfaces
(using the overlap region) without using the NS solver at all.

3) After the DSMC solution and interfaces stop changing, use the
current DSMC solution to set the NS boundary conditions.
Significantly converge theNS region. If the newNS solution changes
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Fig. 3 Effect of collision subcells on the predicted heating-rate profile.
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the state in anyDSMCboundary cell, then return to 2. Else, if the new
NS solution does not change the state in any DSMC boundary cell,
then continue to 4.

4) Because the NS region is converged and the DSMC solution is
no longer changing, the interfaces will no longer change and steady
state has been reached. Lock the interfaces, remove the overlap
regions, and cycle both the DSMC and NS methods (coupling
occasionally) until the DSMC scatter and NS residual fall below
threshold values.

The hybrid numerical cycle used byWu et al. [10] is similar to the
preceding MPC cycle and adds further evidence that a loosely
coupled approach is well suited for high-speed steady-state flows.
One difference is that whereas Wu et al. use a cumulative (sampled)
average inside time-varying DSMC regions, theMPCmethod uses a
subrelaxation average [33] to track macroscopic variations with low
scatter in DSMC regions. Tracking variations in DSMC regions with
the subrelaxation average provides very useful information to the
MPC cycle regarding when to transfer information and allows the
interfaces to adapt while DSMC regions are progressing toward
steady state [12]. A second important difference lies in step 2 of the
MPC cycle: allowing the interfaces to stop moving before any
information is transferred. This ensures that interfaces are indeed
located in near-continuum flow as specified by the continuum-
breakdown parameter KnGL before any information is transferred
into the continuum region. This has been shown to be especially
important in the vicinity of strong shock waves [11].

Figure 5 shows MPC solutions at various stages during step 2 of
the precedingMPCcycle for the hollow-cylinder-flare case. In Fig. 5,
the translational temperature profile along cut C2 (shown previously
in Fig. 4) is plotted at four intervals: t0, t1, t2, and t3. Because the
initial boundary-layer development (at the leading edge) is enclosed
entirely by a DSMC region (see the top of Fig. 4), both temperature
jump and velocity slip at the surface are captured. As a result, the
weak leading-edge shock predicted by DSMC lies closer to the
surface than predicted by the NS equations employing no-slip
conditions. As DSMC regions are allowed to iterate (from time t0
through t3), the solution progresses significantly toward the final
correct solution predicted by a full MONACO (DSMC) simulation,
including velocity slip, temperature jump, and thermal non-
equilibrium. As this progression occurs, the interface locations are
updated, which (as seen in Fig. 4) actually follow the shock
movement toward the lower position predicted by full DSMC. The
movement of the hybrid interfaces is entirely facilitated by the
overlap region, which allows for local differences between DSMC
and NS solutions to develop and be detected by the continuum-
breakdown parameter [11]. A close-up look at the shock region in

Fig. 5 shows three overlapping regions: DSMC inside the shock
(lines d1–d2), NS in the continuum region between the shock and
boundary layer (lines ns1–ns2), and DSMC in the boundary layer
(below line d3). The MPC solution is initialized to the NS solution
(the profile at time t0) and after 2000 DSMC time steps has
progressed to the profile labeled as t1, which has not clearly
progressed in the proper direction at this point. However, in step 2 of
theMPC cycle, as long as the DSMC regions and interfaces continue
to change, no information is transferred to the NS regions, and
DSMC iterations continue. After 4000 more DSMC time steps, the
solution reaches the profile labeled as time t2. At this point, variations
inside the DSMC regions have ceased and repeated implementation
of step 2 no longer results in movement of the interfaces. The MPC
cycle has reached step 3 and information is now transferred to the NS
regions. It is important to notice the role of the overlap region
between lines d3 and ns2. Although the t2 profile still uses the
(incorrect) initial NS solution for conditions at line d3, within this
overlap region, the MPC solution recovers and by line ns2 is very
close to the final DSMC result. Thus, during step 3 of theMPC cycle,
when information is transferred back to the NS regions, the new NS
boundary condition is taken on linens2. After convergence of theNS
regions, the profile labeled t3 is obtained, which shows significant
progression toward the correct DSMC profile. At this point, step 3 is
complete and the cycle returns to step 2with new (andmore accurate)
DSMC boundary conditions supplied from the NS regions at lines
d1, d2, and d3.

IV. MPC Simulation Results

Previous research focusing on 1-D normal shock waves [12] and
hypersonic flow over a 2-D cylinder [11,13] demonstrated the
accuracy of the MPC method for computing flowfield data, velocity
distributions, and surface properties. The hypersonic interactionflow
studied in this paper provides a significant challenge for the MPC
algorithm, compared with the previousMPC research. The results of
both the previous and current section demonstrate further essential
capabilities of theMPCmethod. Such capabilities include the ability
to adapt interfaces to moving flow features, information transfer that
significantly alters the solution in hybrid NS regions, and the ability
to handle axisymmetric flows.

The current implementation of the MPC method is restricted to
serial (single CPU) processes. Because of computational time and
memory restrictions, the initial NS solution used is that obtained on
mesh 1. Particle regions are further refined to the local value of �,
which results in amesh density slightly higher than that of mesh 2 for
regions in which the DSMCmethod is used. A portion of this hybrid
mesh is shown in Fig. 4.As seen in Fig. 2a, theNS solution onmesh 1
is very close to the grid-converged result on mesh 2, except that the
separation region is slightly smaller. The size of the separation region
onmesh 1 is still sufficiently larger than that predicted byDSMC and
thus still provides a challenge for the MPC method. Beginning the
MPC simulation using the NS solution on mesh 1 also allows testing
of the mesh refinement procedures for the hollow-cylinder-flare
problem.

A. Flowfield Results

To provide detailed comparisons between full NS, DSMC, and
MPC simulations, flow properties are extracted along various cuts
normal to the cylinder-flare surface. The results along cuts C1, C2,
C4, and C5 (from Fig. 4) are shown in Figs. 6a–6d, respectively.
Near the leading edge, the breakdown parameter sets up a DSMC
region that completely envelops the initial boundary-layer growth
and leading-edge shock. As seen in Fig. 6a, the shock–boundary-
layer height predicted at locationC1 by full DSMC is lower than that
predicted by the initial NS solution. In addition, DSMC is seen to
predict significant velocity slip, temperature jump, and thermal
nonequilibrium at this location. The MPC method is seen to very
accurately reproduce full DSMC results near the leading edge and, at
the same time, has lowered the interface location from its initial
position of approximately Y � 0:0364 m to a final position of
Y � 0:0355 m. At location C2, the shock and boundary layer

TTRA [K]

Y
[m

]

200 400 600 800 1000

0.034

0.036

0.038

0.04

0.042

0.044

0.046

MPC t0
MPC t1
MPC t2
MPC t3
MONACO

MPC t
MPC t
MPC t
MPC t
MONACO

DSMC

DSMC

Navier-Stokes

d1

d2

d3

ns1

ns2

Close-up of interface locations at time t2

Fig. 5 Progression and relaxation of DSMC regions within the MPC

cycle.

2090 SCHWARTZENTRUBER, SCALABRIN, AND BOYD



become more distinct, and Fig. 6b shows that the MPC method now
solves the NS equations in a continuum region between the shock
and boundary layer. Again, theMPCmethod captures the new shock
location, aswell as the thermal nonequilibrium and temperature jump
predicted by full DSMC, very accurately. TheMPC profile in Fig. 6b
also demonstrates that the changing DSMC regions have
successfully set new NS boundary conditions that significantly shift
the continuum solution between the shock and boundary layer. The
progression of theMPC solution at cutC2was detailed previously in
Sec. III. It is important to note that the flow is in thermal equilibrium
in the continuum region between the shock and boundary layer and is
adequately modeled by the NS equations. This adds further
credibility to the use of the gradient-length Knudsen number [31] to
detect continuum breakdown. Figure 6c depicts the temperature
profiles at locationC4, which lies after boundary-layer reattachment,
just downstream of the shock–shock-interaction region. Here,
DSMC predicts the translational temperature increase (due to the
strong shock) to occur further upstream (or higher) than predicted by
theNS equations. In addition, DSMC shows a high degree of thermal
nonequilibrium inside the shock region. Both of the these effects are

captured by the MPC method. However, it should also be noted that
other than inside the shock, full DSMC and full NS solutions agree
quite well at this location, especially close to the surface. This
indicates that at this point on the flare, the flow may lie in the
continuum regime. Finally, Fig. 6d depicts the temperature profiles
well downstream of the shock–shock interaction, where a strong
shock is distinctly separated from the boundary layer. Here, theMPC
method solves the NS equations in the large continuum region
between the shock and boundary layer. As seen in Fig. 6d, the flow is
in thermal equilibrium in this region and the NS equations accurately
model a large portion of the flowfield.

Location C3 cuts through the recirculating flow region, which is
evident in Fig. 7, in which the x velocityU is negative. Here, DSMC
is seen to predict a smaller recirculation region than the initial NS
solution. Similar to a full DSMC simulation, anMPC simulation also
requires significant time for the recirculating flow to transition from
the initial NS solution and reach a steady state. However, because the
MPC interface envelops the entire recirculation region, the interface
locations do not move at all during this lengthy time. This causes a
problem for the MPC cycle outlined in the previous section, because
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little or no interface movement signifies steady state, at which point
the MPC cycle wants to lock the interfaces and begin sampling. To
allow the MPC cycle to handle slow recirculating flows, a user-
defined parameter �tss is introduced that specifies the minimum
number of iterations (or minimum physical time) before sampling
begins. This parameter is analogous to the user-defined parameter
found in most DSMC implementations that specifies when sampling
is to begin. The MPC solution along cut C3 is plotted for various
values of�tss, and Fig. 7 shows that a time of 0.3 ms is sufficient for
the MPC simulation to reach steady state. This is significantly less
than the time required for a full DSMC simulation to reach steady
state (see Fig. 2b) and is entirely attributed to the fact that an MPC
simulation begins with particles initialized to match the full NS
solution.

B. Surface Properties

The coefficient of pressure CP predicted by full DSMC, NS, and
MPC simulations is plotted in Fig. 8a. The size of the recirculation
region is successfully reduced by the MPC method and agrees well

with that predicted by full DSMC. The coefficient of heat transfer,
also referred to as the Stanton number [St � q=�0:5�1u31�, where q
represents the amount of energy transferred to the surface per unit
time per unit area], is plotted in Fig. 8b for each simulation method.
Here, the MPC method is seen to improve the prediction of heat
transfer inside the recirculation region, compared with the NS
prediction. Because the extent of flow recirculation is reduced into
better agreement with experimental data, the location of peak heating
predicted by the MPCmethod is also shifted upstream into excellent
agreement with full DSMC and into better agreement with
experimental measurement when compared with the NS solution.
Furthermore, the heating rate near the leading edge of the hollow
cylinder is shown in Fig. 9. Here, the NS equations predict an infinite
heating rate due to the no-slip boundary condition, whereas a full
DSMC simulation predicts a finite heating rate because DSMC
naturally allows for velocity slip. As seen in Fig. 9, the leading edge
is a region of high heating and the MPC method is able to reproduce
the finite heating rate predicted by full DSMC simulation. This is
expected, because theMPCmethod is shown in Fig. 6a to accurately
capture velocity slip, temperature jump, and thermal nonequilibrium
near the leading edge.

An interesting result is obtained when the original Steger–
Warming flux vector-splitting approach [18,19] is used exclusively
within LeMANS and thereforewithin theMPCmethod in continuum
regions. Figure 10 demonstrates that the numerical dissipation
inherent in the original Steger–Warming flux function results in a
significant (27%) overprediction in the peak heating rate resulting
from a full NS (LeMANS) simulation. Because the MPC method
uses the DSMC method along the entire cylinder-flare surface, the
excess numerical dissipation is contained within low-gradient
continuum regions. As seen in Fig. 10, MPC simulation using the
highly dissipative original Steger–Warming flux function still
reproduces the heating rates predicted by full DSMC simulation and
measured experimentally.

C. Computational Efficiency

As mentioned earlier, each MPC simulation begins with a NS
solution on a mesh designed for the NS equations. Mesh refinement
within DSMC regions during anMPC simulation is automatic. Thus,
the setup time required for an MPC simulation is identical to that
required for a full NS solution. For these reasons, the setup time
required for DSMC, NS, andMPC simulations is not included in the
timing comparisons. In addition, the full DSMC simulations
described in this paper are run in parallel on a cluster of CPUs,
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2092 SCHWARTZENTRUBER, SCALABRIN, AND BOYD



whereas all NS and MPC simulations were performed in serial on a
single CPU. Thus, the parallel efficiency of theDSMCcode becomes
a second factor that is included approximately into the timing
comparisons that follow.

The time required for a full DSMC simulation is taken as the time
required to reach steady state plus the time required to sample the
solution. The time required by an MPC simulation consists of the
time to obtain the initial NS solution, plus the time required to reach
step 4 in Sec. III.B (MPC steady state), plus the time required to
sample and converge DSMC and NS regions (step 4). To remain
consistent, eachMPC solution is sampled for the same physical time
and number of time steps as the corresponding full DSMC solution.
The performance parameters of most interest are listed in Table 2 for
each case and are now briefly described. The most practical

parameters include the ratio of MPC to full DSMC simulation times
(the speedup factor) and the ratio of memory (RAM) requirements.
The largest contributing factor to the speedup is the fact that the time
required by a DSMC simulation scales directly with the number of
particles used in the simulation. Therefore, if all hybrid NS
operations (initial NS solution and NS updates) within the MPC
cycle take a negligible time when compared with that spent
simulating hybrid DSMC regions, then the speedup factor achieved
by the MPC method will scale directly with the number of particles
eliminated (replaced with a continuum description) by the MPC
simulation. This ratio of particles used by the MPC method to that
used by DSMC is also included in Table 2. To show the relative cost
of hybrid NS operations, the ratio of time required for initial NS
simulation compared with the full DSMC simulation and the ratio of
the time step used in NS regions compared with that used in DSMC
regions are included in Table 2. Finally, the time required for initial
NS simulation plus the time required for theMPC simulation to reach
steady state is often less than that required by a full DSMCsimulation
to reach steady state. Because bothmethods are sampled for the same
time, an MPC simulation often requires fewer total iterations, which
also contributes to the speedup factor. In other words, not only does
an MPC simulation require fewer particles, but due to the efficiency
of the initial NS solution, it may also reach steady state faster than full
DSMC. The ratio of iterations required for theMPCmethod to reach
steady state (after obtaining the initial NS solution) to that required
by full DSMC simulation is also included in Table 2 for each case.

MPC simulation of the hollow-cylinder flare is seen to use 53% of
the particles and 80% of the memory required by a full DSMC
simulation. In addition, despite reaching steady state much faster
than full DSMC, the MPC method still requires 71% of the time
needed to obtain a full DSMC solution (a speedup factor of 1.4). This
signifies that the time required for the initial NS solution and NS
operations within the MPC cycle are not negligible when compared
with the time spent simulating DSMC regions. This is not surprising
because, as mentioned in Sec. II, NS simulation of the hollow-
cylinder-flare problem (run-11 conditions) requires a mesh
resolution similar to that of DSMC and the size of particle and
continuum regions are roughly equal. It should be noted that a hybrid
simulation of a much larger continuum flow over an entire vehicle in
which a shock-interaction region is embeddedwould result in amuch
larger speedup factor for the MPC method, compared with full
DSMC simulation. Finally, larger speedup factors would result from
MPC simulation of hypersonic blunt-body flows that involve
extreme variations in � between compressed forebody and rarefied
wake regions. Such DSMC simulations become computationally
demanding, especially for three-dimensional flows.

V. Conclusions

1) In comparison with previous MPC research, application of the
method to the hollow-cylinder-flare problem demonstrates new
essential capabilities that include the ability of MPC interfaces to
track moving flow features and the ability of the MPC cycle to
significantly alter NS boundary conditions that then shift the solution
in NS regions of the simulation. An important result is that these
capabilities are demonstrated for a loosely coupled approach that is
able to maintain spatial- and temporal-scale decoupling throughout
the simulation of a highly nonlinearflowfield.Additional capabilities
involve variation in mesh density between continuum and particle
regions and the ability to handle axisymmetric flows.

2) For flow over the hollow-cylinder-flare geometry, an MPC
simulation initialized with a NS solution is able to transition away
from the no-slip NS solution and reproduce the velocity slip,
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Table 2 Computational efficiency of the MPC method

Hollow-cyl. flare Speedup Memory Particles Initial NS Time step Steady state Sampling

DSMC 100% 100% 100% N/A 1 100% 100%
MPC 71% (1:4�) 80% 53% (1:9�) 4% 28 20% 100%
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temperature jump, thermal nonequilibrium, and surface properties
predicted by full DSMC near the leading edge and along the cylinder
surface. MPC simulation also successfully reduces the oversized
separation region predicted by the NS equations to the size predicted
by DSMC, which agrees more closely with experimental results.

3) Because the MPC method uses kinetic (DSMC) simulation in
high-gradient regions, the use of a highly dissipative numerical flux
function within the continuum solver does not affect the accuracy of
predicted surface properties. This conclusion lends credibility to the
concept of algorithm refinement, where a more physically based
(kinetic) method is used to simulate nonequilibrium regions instead
of attempting to locally enhance the continuum solution method.

4) The MPC method is able to produce highly accurate results
approximately 1.4 times faster than full DSMC simulation while
using 80% of the memory for the conditions under consideration.
The fine resolution required to solve theNS equations for the hollow-
cylinder-flare problem combined with the relative size of the
nonequilibrium flow region limit the speedup factor achieved by the
MPC method. If this hypersonic interaction flow were embedded as
part of a much larger continuum flow about an entire vehicle, the
MPC method would have the potential to offer significant
computational savings over full DSMC simulation.
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