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A STUDY O F  HETEROGENEOUS DETONATIONS? 

by 
E. K Dabma**, K W. Ragland+, J. k Nicholls" 

Department of Aerospace Engineering 
The University of Michigan 

Ann Arbor, Michigan 

ABSTRACT 

A study of heterogeneous detonations, which is motivated by the curtent 

belief that liquid rocket motor instability can result in a detonation o r  "diet- 

Onation like" phenomenon, is made. First, the computer results of the jump 

conditions across Chapman-Jouguet detonation waves in dilute diethylcyclo- 

hexane (DECH)-gaseous oxygen a r e  presented. The theoretical propagation 

velocities, Mach numbers, pressure ratios, density ratios and temperature 

ratios at equivalence ratio range of .  1 - 3 are included. Second, three dif- 

ferent types of experiments are described: a) detonations in a polydisperse 

spray, b) detonations in which the fuel is in the form of a thin film on the 

wal l s  of the tube, and c) detonations in monodisperse sprays. DECH is used 

in all experiments because of its purity and low volatility, and the detonation 

is started by a transmitted shock. In type (a), for a' spray with an estimated 

mean droplet diameter of 200 p,  and for a stoichiometric mixture, propalga- 

tion velocities of 5300-5700 ft/sec and pressure ratios of - 30, which ar@ 
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much below the theoretical values, a r e  observed. In type (b), steep fronted 

waves which a r e  obviously maintained by the combustion process are also 

observed Velocities of 3160 and 3750 ft/sec and corresponding pressure 

ratios of 10.3 and 17. 0 are measured. For type (c), with a drop diameter 

of 940 pand an equivalence ratio o f .  5, velocities over 5000 ft/sec are mea- 

sured. Schlieren photographs indicate a complicated structure behind the 

front, although the front is surprisingly planar. 
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= velocity of sound 

= specific heat of liquid 

= specific heat of gaseous phase at  constant pressure 

= specific enthalpy 

= Mach number 

= Mach number based on the velocity of. sound of oxygen 

= molecular weight 

= stoichiometric fuel-oxidizer mole ratio 

= pressure 

= heat release/unit mass of mixture 

= universal gas  constant 

= temperature 

= drop shedding velocity 

= terminal drop velocity 

= velocity 
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NOMENCLATURE (coni. ) 
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E = liquid volume fraction 

?I = fuel-oxidizer mass ratio 

P = density 

@ = equivalence ratio 

Subscripts 

f = gaseons fuel 

g = gaseous oxidizer 

G = "all gaseous" case 

S = spray 

1 = upstream of wave 

2 = downstream of wave 

= ratio of specific heats 

= ratio of specific heat of fuel to that of the oxidizer 

INTRODUCTION 

In recent years, large liquid propellant rocket motors have been beset 

with the serious problem of combustion instability. These instabilities have 

been experienced in all of the three possible modes; radial, longitudinal, 

and tangential. 

chamber pressure excursions of many hundreds of pounds per square inch 

being experienced Considerably smaller pressure fluctuations than this are 

sufficient to cause mission failure in some cases. 

The latter mode is usually the most serious of the three with 
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For the most part, the c,ombustion instability problem has been treated 

as an acoustic problem. In recent years more attention has been given to  

the possibility of non-linear phenomena, i. e., shock waves coupled to the 

combustion process. The question then arises as to whether detonation or  

"detonation-like" waves play a role in rocket motor combustion instability. 

A significant experimental result on a relatively large (18 in. I. D. ) liquid 

motor is provided by Clayton and Rogero"). Utilizing a number of high 

frequency response pressure transducers located in the wall at  varying axial 

positions, they determine that a strong, steep wave rotates around the motor 

at  a very stable constant velocity. The pressure ratio across the wave tends 

to increase near the injector plate and to decrease in the direction of the noz- 

zles. 

wave. 

Their conclusion is that this must be a detonation or  detonation-like 

On the premise that an understandlng of the existence, properties and 

mechanism of heterogeneous detonations may shed light on the instability 

problem, the experimental work described herein is undertaken. 

of experiments wi l l  be described-shock induced detonations in polydisperse 

sprays, shock induced combustion of a liquid fuel film, and detonation in 

monodisperse sprays. 

be found in Ref. 2. 

Three types 

More detailed information on the f i r s t  two cases may 

The problem of heterogeneous detonation has received relatively little 

attention to date. Williams'" ", in an analytical treatment of the problem, 

concludes that two phase detonations would be impossible because of the ex- 

tended reaction zone arising from the leisurely droplet evaporation processes. 
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However, he tempers his conclusions with two observations; first, that drops 

below about 10 microns would produce essentially a gas phase detonation, 

and second, that drop shattering might circumvent the slow evaporation pro- 

cesses and thus support detonation. Webber") and Cramer") conducted 

some preliminary experiments by using a combustion driven shock tube to 

pass a shock wave through a diethylcyclohexane (DECH) spray in an oxygen 

atmosphere. These experiments resulted in a steep fronted high velocity 

wave which Cramer termed "detonation-like". An analytical treatment of 

the amplification of pressure waves in a two phase combustion system is 

advanced by Busch, Laderman, and Oppenheim (7 ) . 
Before discussing the experiments, the idealized one-dimensional jump 

properties of liquid DECH-gaseous oxygen will be obtained. 

equations for spray detonations are formulated by Williams'" who also ob- 

tains the jump relations for the one-dimensional case in which the molecular 

weight and the ratio of specific heats a r e  the same across the wave. Our 

aim here is to relax these conditions and to obtain an analytical expression 

for the comparison between the spray detonation properties and those of its 

"all gaseous" counterpart. 

The general 

JUMP RELATIONS FOR ONE-DIMENSIONAL SPRAY DETONATIONS 

Consider two systems, one of which consists of a spray of liquid fuel in 

a gaseous oxidizer and the other a uniform mixture of the same fuel in a 

gaseous form and the same gaseous oxidizer. 

11, of fuel to oxidizer be the Same in both systems. 

Further, let the mass ratio 

The thermodynamic 
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(8) properties of the spray system can be obtained from the work of Rudinger 

These properties are compared to the all gaseous system in  Table L It 

can be seen from this table that a dilute spray, i e., E << 1, can effectively 

be treated as an ideal gas. The condition that E << 1 is well satisfied in 

our case since E 

. 

for the richest mixture that wi l l  be considered. 

The jump relations for C-J gaseous detonations, wherein the gases be- 

fore and after the wave are considered as two distinct ideal gases with their 

appropriate y ' s  and molecular weights, are known (9) and rewritten below: 

-= P2 1 + - Y1 l l 2  - z) 
P1 Y 2 +  1 

For Q/C T >> 1, which emplies M12 >> 1, the above equations can be 

greatly simplified. If the following assumptions are  also made: 

Q - Q ; i e., the heat releasebit  mass for the spray case is the 

same as its gaseous counterpart. In actual systems they should 

differ approximately by the ratio of the heat of vaporization to the 

P l  1 

1. G -  S 
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heating value of the fuel which is usually less than I%, 

6 = 6 

C when it is in the gaseous phase, 

y2 and m2 in both cases are the same, a reasonable assumption 

since the initial constituents a re  the same, 

2. i e., the specific heat of the liquid fuel is the same as its S G '  

P 

3. 

the ratios of the spray detonation parameters to  those of its all gaseous 

counterpart can be 5hhown to be: 

n 
L 

(Yfl - 1) + @ Yfl (Ygl - 1) 
-- 
M1s2 - (l + +a) (Yfl - 1) + (ygl - 1) 
MIG 

S = I + + a  

(5) 

It should be mentioned that despite the somewhat more generalized case 

used here, the predictions of Eqs. (5,6,7) are similar to those of Williams 

analysis. 

The C-J detonation properties of DECH (hypothetically assumed to exist 

in the gaseous phase) with oxygen initially at P = 1 atm and T = 298.15'K are 

obtained from a computer program of Zeieznik and Gordon(")*. The heat of 

* 
The authors are grateful to Drs. Zeleznik and Gordon for making the com- 

puter program available to them. 
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formation for DECH and its  C used are  - 73(Kcal/mole) and . 44(cal/gm°K) 

respectively, evaluated from Refs. (11,12). The results are plotted in Fig. 1 

wherein the properties of spray counterpart, calculated according to Eqs. 

5 ,6 ,7  are also shown. It can he seen that like most hydrocarbons, DECH 

exhibits peak pressure ratio and detonation Mach number at richer than 

stoichiometric mixtures. 

P 

EXPERIMENTAL STUDIES 

a. Detonations in Polydisperse Sprays 

Experiments to  initiate detonations in polydisperse sprays of fuel in 

gaseous oxygen were carried out in a vertical shock tube arrangement 

similar to  that used by Webber") and Cramer") but with some important 

differences. The driver and the driven sections are 2 in. I.D. stainless steel 

tubes of 1/ 4 in. wall thickness with the driver mounted above the driven 

section. The length of the driven section is 8 ft  whereas that of the driver is 

4 ft.  The four injectors (spaced 1 1 / 2  ft apart) followed closely the design 

of Cramer; the liquid fuel was forced downward through a 0.022 in. diameter 

hole by a piston which was actuated by nitrogen at 150 psi. The first injector 

was located 1.5 f t  away from the diaphragm thus allowing a buffer zone be- 

tween the driver gas  and the spray. DECH (Cl,,Hzo) was chosen as fuel 

because of its low vapor pressure (less than 2 mm Hg at room temperature), 

because it is a pure compound with properties comparable to FP-1, and 

because it affords a direct comparison of our experiments with those of 

Cramer. The shock tube was fired 275 millisec after actuation of the in- 

jectors at which time all the liquid had been ejected and the spray cone 
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extended at least three feet f rom each injector. While a large portion of the 

spray is contained in a 2 in. diameter, photographs of the unconfined spray 

indicated that the walls of the combus tion tube would also be heavily wetted. 

Cramer estimated that the mean drop diameter of the spray was 200 0.  

The instrumentation consisted of pressure transducers to measure the 

velocity and pressure of the waves in the combustion tube, and ionization 

probes to sense the detonation wave in the driver. Two Kistler 603 and two 

Kistler 601A pressure transducers were flush-mounted in the combustion 

tube. The output f rom the transducers was amplified by Kistler 566 electro- 

static charge amplifiers and then displayed on a Tektronix 555 dual beam 

oscilloscope. Before using the pressure transducers their  response to  a 

hydrogen-oxygen detonation wave in a 1/ 2 x 3/ 8 in. tube was checked and 

found to agree with the manufacturer's static calibration. Their rise time 

was 1-3 Msec. Despite their oscillatory response, it was decided not to  

damp the signal electronically or mechanically in order to  preserve the 

short rise time of the pickups. Ionization probes in the driver were used 

to  check the performance of the driver and t o  trigger the sweep on the 

oscilloscope for the pressure recordings. 

The driver of the shock tube was operated in the detonation mode with 

hydrogen and oxygen. For a one atmosphere 2H + 0 detonation into one 

atmosphere of N2, theory(13) predicts a transmitted shock at Mach number 

of 4.5. This shock is expected to decay rapidly and in fact measurements 

indicate that the shock Mach nudber at 1 .5  ft from the diaphragm is about 

4.1. The theoretical velocity of the interface between driver and test  section 

2 2  
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gases is 3400 it/ sec, so that a uniform flow behind the shock exists for 

120 microseconds at a distance of 1.5 ft where the fuel is first available. 

The one-dimensional shock relations for a Mach 4 . 1  shock predict a tem- 

perature of 2189'R and a pressure of 293 psia. 

When nitrogen is used in the test section the initial shock Mach number 

is reduced rather rapidly as it progresses down the test section. When 

DECH spray (2.3 me ) is added to N2 in the test section further redudion 

in the Mach number of the wave as it progresses down the tube, indicative 

of the retarding effect of the drops, is observed. On the other hand when 

3.3 me (- 1.2 stoichiometric) of the fuel are sprayed into the test section 

containing O2 the shock transmitted by the driver rapidly accelerates to a 

velocity of 5300 to  5700 ft /sec which is much lower than the theoretical 

velocity of 7850 ft /sec shown in Fig. 1. The pressure jump across the wave 

was also increased to approximately 30 to 1. The results from several 

runs, are plotted in Fig. 2 which includes the results for N also. (The 2 

Mach number plotted in this figure is based on the velocity of sound of oxygen. ) 

Now, if the average experimental velocity of propagation is used together with 

the appropriate spray sound velocity one finds from Eq. 2 that the pressure 

ratio should be about 23 for y2 = 1.13 which is obtained from the computer 

calculations. On the other hand the measured pressure ratio corresponds 

closely to a Mach 5 shock in oxygen. One possible explanation for the dif- 

ference is that the shock front is followed by a reaction zone of considerable 

extent and the detonation follows essentially the ZND model. 

Since the detonation velocity is considerably lower than the expected 
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gaseous detonation velocity for a stoichiometric mixture it is possible that 

only a fraction of the fuel is entering into the initial reaction. Experiments 

in which a larger quantity of fuel was used (up to  an  equivalence ratio of 7) 

showed no significant change in the results. In this respect our results ap- 

pear io  be different from those of Cran~er '~ ) .  While he finds that an equiva- 

lence ratio of 3 or more is necessary to induce detonation, consistent 

initiation was possible in our experiments at nearly stoichiometric mixtures. 

One explanation could be the technique of initiation as afforded by the two 

types of driver sections. 

In our experiments initiation was also possible when the 0 -H mixture 2 2  

in the driver was  at 1/2 atmosphere which resulted in a Mach 3.7 shock at 

the location of the first  spray injector. Little change in the strength of the 

developed wave was observed. 

b. Shock Induced Combustion of a Liquid Fuel Film 

As indicated, wal l  wetting was  unavoidable when the injectors were used. 

In some experiments it was observed that the fuel clinging to the walls in the 

absence of any spray was sufficient to support a steep fronted wave. For 

this reason it was decided to investigate the case where fuel existed solely 

in the form of a liquid film on the walls (no spray) and the case where there 

was a spray with no wall wetting. 

For the former case, the driven section was replaced by a 1.64 in. 

square tube terminated by a 1 it long section for  optical observation. After 

filling the test section with oxygen, a thin layer of DECH was applied to  the 
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walls up to within 1 .5  ft of the diaphragm by means of a felt swab. In some 

of the tests only one wall was  coated-the solid wall containing the pressure 

transducers; in other tests the two opposite solid walls were coated. For 

the case when DECH was swabbed on two walls the measured velocity was 

3750 f t /  sec and the pressure ratio was 17 t o  1. When DECH was swabbed 

on one wall only the measured velocity was 3160 ft/sec and the pressure 

ratio was 10.5 to  1. In both cases the strength of the propagated wave is 

lower than the initial strength (MI = 4.1) of the transmitted shock. However, 

at the end of the test section the propagated wave is much stronger t h a n  the 

transmitted shock into nitrogen at a corresponding location, which indicates 

that chemical reaction is driving the shock front. 

graphs of these tests show that the reaction originates at the wall and spreads 

inward from the wal l  until about 250 psec after passage of the initial front 

at which time the entire width of the channel is filled with luminosity. Spark 

schlieren photographs of the case where DECH is applied to two walls  with 

oxygen in the test section a r e  shown in Fig. 3. In one run the shock front 

is slightly convex, in another slightly concave. The dense reaction zone ex- 

tending from the wal l  starts closely behind the shock. The turbulence in 

the  center of the channel directly behind the shock front may be due to  the 

complexity of the shock front rather than chemical reaction. Spark schlieren 

photographs of the case where DECH is applied to  one wall are shown in 

Fig. 4. Here the reaction zone trails the leading shock front by 2/3 of a 

channel width or 30 psec. Note the dark zone along the wall which is in- 

terpreted to be the primary combustion zone. 

Framing camera photo- 

13 

To our knowledge this type of phenomena was  first  reported by Loison (19 

in 1952 and additional experiments have been recently conducted by Gordeev 

et al. (I5) In Loison's experiment a steady state detonation of a thin film of 

lubricating oil propagating at 3600 ft/sec was observed in a 300 ft long tube. 

Combustion of the film was initiated by a pulse of hot gas of acoustic strength. 

In the experiments of Gordeev ignition of a thin film of libricating oil or 

grease on the walls of a 5 ft long tube was accomplished by a methane- 

oxygen detonation, an exploding wire, or a charge of lead azide. 

these ignition sources Gordeev reports that an accelerating combustion 

develops and turns into a detonation with velocities as high as 5100 ft/sec. 

For all of 

c. Detonations in Monodisperse Sprays 

Because of the apparent ease with which film combustion can occur, a 

study of sprays which avoid wall wetting is in order. Also, to  study the ef- 

fect of drop size, monodisperse sprays would be ideal. A technique which 

makes use of a number of vibrating capillary liquid jets (2' 16) can be easily 

used to produce monodisperse sprays with drop size above a level dictated 

by the physical properties of the capillary jets and the aerodynamics of the 

drops formed therefrom. Figure 5 shows the variation of the initial mini- 

mum possible velocity of liquid jets (and hence the velocity of the drops 

formed) with size. On the same figure the terminal velocity of the drops in 

oxygen are shown. It can be seen that for DECH the cross  over point is 380 & 

For sizes greater than this, the drops will be accelerating and for lower 

sizes they will be decelerating. Since the distance between the centers of 

the drops is about 2.5 drop-diameters initially, it becomes apparent that 
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collision and coalescence of the drops can take place when the drops are 

decelerating. In practice, it is found that 750 @drops-as can be produced 

by .016 in. diameter needles-or larger are necessary to avoid coalescence. 

Figure 6 shows nine streams of 750 udrops in a 3 x 3 array at the shedding 

location and at 2 ft below the drop generator. Although all streams are not 

in the same plane, the drops appear in good focus because collimated light 

was  used. Their uniformity as well as the accelerating effect a r e  apparent. 

Experiments in the square tube mentioned in the previous section are 

conducted with monodisperse sprays of 940udrops. The eonfiguration is 

shown schematically in Fig. 7. Because of the drop generator it was nec- 

essary to Mroduce the transmitted shock at an angle from a driver section 

with an  area much smaller than that of the detonation tube proper. Since 

the velocity of the drops increases as they fall down the tube variable mixture 

ratio is expected along the tube. The variation is from @ = 2 near the 

generator to a constant @ = . 5  at distances beyond 4.5 ft from generator. 

Velocities and pressure ratios measured at the lower portion of the tube for 

over 30 runs averaged 4550 ft/ see and 25 respectively. The spread was 

3940-5090 ft/ sec for the velocity and 16-32 for the pressure ratio. Again, 

the average velocity is 30%1ower than the theoretical and the pressure ratio 

can be explained by a ZND model for the detonation. The experimental 

velocities can perhaps be explained by the fact that immediately behind the 

shock the mixture is leaner than that in the quiscent case because of the 

inertia of the fuel drops. Schlieren photographs typified by those in Fig. 8 

show in some cases shocks around individual drops behind the leading shock. 
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Other shock patterns are also apparent, but in most cases the front appears 

surprisingly planar. Figure 9 shows a combined shadow and direct light 

photograph. It reveals that combustion starts approximately .6" (- 11 wet) 

behind the front. It is interesting to  note that this time delay corresponds 

very closely to drop break-up t imes based on extrzpolation of the data of 

Wolfe and Anderson("l! On this basis, it appears that the mechanism of 

heterogeneous detonation is controlled by the mechanical break-up of the 

drops. Further experiments, are being conducted to  gain a complete under- 

standing of the phenomenon. 

It is apparent that steady-state high pressure-high velocity waves sup- 

ported by combustion do exist in liquid sprays and that their gasdynamic 

properties can be roughly predicted by appropriate one-dimensional jump 

relations. The relative ease with which combus tion and subsequent detona- 

tion of monodisperse sprays with 940gdrops occur indicates that high 

pressure-high velocity waves may be possible over a wide range of drop 

sizes. Limited data indicate that in such sprays break-up of the drops is 

the controlling mechanism. High pressure-high velocity waves are also 

found to be supported by combus tion of a thin liquid film on the walls of a 

tube. Further studies are necessary for the understanding of heterogeneous 

detonations in sprays and liquid films. 

16 



~ 

1. 

2. 

3" 

4. 

5. 

6. 

I. 

8. 

9. 

REFERENCES 

Clayton, R. M. and Rogero, S., "Experimental Measurements on a 
Rotating Detonation-Like Wave Observed During Liquid Rocket Resonant 
Combustion," paper presented at the 7th Liquid Propulsion Symp. in 
Denver, Col., October 1965. 

Nicholls, J. A. , Dabora, E. K , and Ragland, K W., "A Study of Two 
Phase Detonation as it Relates to Rocket Motor Combustion Instability," 
NASA CR 272, August 1965. 

Williams, F. A. , "Detonations in Dilute Sprays, '' Progress in Astro- 
nautics and Rocketry, Academic Press ,  New York, Vob 6, 1962, 
pp. 99-114. 

Williams, F. A. , "Progress in Spray-Combustion Analysis, '' Eighth 
International Symposium on Combustion, The Williams and Wilkins 
Company, Baltimore, 1962, pp. 50- 69. 

Webber, W. F., "Spray Combustion in the Presence of a Travelling 
Wave, Eighth International Symposium on Combustion, The Williams 
and Wilkins Company, Baltimore, 1962, pp. 1129-1140. 

Cramer,  F. B., "The Onset of Detonation in a Droplet Combustion 
Field, '' Ninth International Symposium on Combustion, Academic Press, 
New York, 1963, pp. 482-487. 

Busch, C. W., Laderman, A. J., and Oppenheim, A. K , "Parametric 
Study of the Generation of Pressure Waves by Particle-Fueled Combus- 
tion, '' AIAA Second Annual Meeting and Technical Demonstration, 
San Francisco, paper 65-357, July 1965. 

Rudinger, G., "Some Effects of Finite Particle Volume on the Dynamics 
of Gas-Particle Mixtures,'' AIAA Journal, Vol. 3, No. 7, 1965, 
pp. 1217-1222. 

Adamson, T. C., Jr.,  Unpublished notes. 

10. Zeleznik, F. J. and Gordon, S., "A General IBM 1 0 4  and IO90 Computer 
Program for  Computation of Chemical Equilibrium Compositions, Rocket 
Performance, and Chapman-Jouguet Detonations, '' NASA TN D 1454, 
October 1962. See also NASA TN D 1737, October 1963 and ARS Journal, 
Vol. 32, No. 4, p p ~  607-15. 

11. Ailonym. , Diethylcyclohexane, Technical Data Sheet, 'I  Monsanto Chemical 
Company, January 12,  1959. 

REFERENCES (cont. ) 

12. Anonym., Evaluation of Hydrocarbons for High Temperature Je t  Fuels, 
Part IL Fuel Evaluation and Property Correlation, Volume 11. Hydro- 
carbon Properties, WADC TR 59-327. 

13. Morrison, R. B., A Shock Tube Investigation of Detonative Combustion, 
Report UMM 91, The University of Michigan, January 1952. 

14. Loison, R., "The Propagation of Deflagration in a Tube Covered with 
an Oil Film," Comptes Rendus, Vol. 234, No. 5, Paris, 1952. 

15. Gordeev, V. E. , Komov, V. F. , and Troshin, Ja. K , "Concerning 
Detonation Combustion in Heterogeneous Systems, '' Proceedings of 
the Academy of Science, USSR, Vol. 160, No, 4, (Physical Chemistry), 
1965. See also, Komov, V. F. and Troshin, Ya. K , "The Structure and 
Detonation Mechanism of Heterogeneous Systems, '' Proceedings of the 
Academy of Science, USSR, Vol. 162, No. 1, (Physical Chemistry), 
1965. 

16. Dabora, E. K , "Production of Monodisperse Sprays, '' to be published. 

17. Wolfe, H. and Anderson, W., "Aerodynamic Break-up of Liquid Drops, '' 
American Physical Society Paper SP70, April 1965. 



I 0 AverageTime Data I IP2/P, - 30 - - 5 , o t  o Pressure Data H 
r, I Atm O2 + 2.3ml. C,,H,, Spray 

I 
z 

LL 
0 

0 1.5 3.0 4.5 6.0 I 

DISTANCE FROM DIAPHRAGM (FEET) 

FIGURE 2. VARIATION OF MACH NUMBER ALONG TUBE. 

4.0 

3.0 

2.0 
I I I I 1 
0 1.5 3.0 4.5 6.0 I 

DISTANCE FROM DIAPHRAGM (FEET) 

FIGURE 2. VARIATION OF MACH NUMBER ALONG TUBE 

EQUIVALENCE RATIO, 0 

FIGURE I .  PROPERTIES OF DECH-O2 DETONATIONS. 



FIGURE 3. SPARK SCHLIEREN PHOTOGRAPHS1 
OF A SHOCK REINFORCED BY THE COM - 

BUSTION OF DECH PLACED ON TWO 
WALLS OF THE TUBE. 

URE 4. SPARK SCHLIEREN PHOTOGRAPHS 
OF A SHOCK REINFORCED BY THE COM - 

BUSTION OF DECH PLACED ON ONE 
WALL OF THE TUBE. 
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FIGURE 5. TERMINAL AND MINIMUM VELOCI- 
TIES OF DROPS IN 02 ATMOSPHERE FOR 

WATER, DECH AND KEROSENE. 
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FIGURE 6. 750p MONODISPERSE SPRAY OF DECH, 
VIBRATION FREQUENCY 46Ocps; (0) AT GENE- 

RATOR HEAD, (b) 2 FT. BELOW GENERATOR. 
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FIGURE 7. SCHEMATIC OF THE COMBUS - 
TION TUBE FOR MONODISPERSE SPRAY. 
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FIGURE 8. TYPICAL SCHLIEREN PHOTO - 
GRAPHS IN MONODISPERSE SPRAY 

DETONATtONS. 

FIGURE 9. COMBINED SHADOW AND DI - 
RECT LIGHT PHOTOGRAPH OF DETO - 

NATION IN MONODISPERSE SPRAY. 


