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Abstract

This paper presents the complete analysis of
the problem of minimum-fuel aercassisted transfer
between coplanar elliptical orbits in the case where
the orientation of the final orbit is free for selec-
tion in the optimization process, The comparison
between the optimal pure propulsive transfer and
the idealized aeroassisted transfer, by several
passages through the atmosphere, is made. In the
case where aeroassisted transfer provides fuel
saving, a practical scheme for its realization by
one passage is proposed. The maneuver consists
of three phases: A deorbit phase for non zero
entry angle, followed by an atmospheric fly-through
with-variable drag control and completed by a post
atmospheric phase. An explicit guidance formula
for drag control is derived and it is shown that the
required exit speed for ascent to the final orbit can
be obtained with a very high degree of accuracy.

1. Introduction

The problem of minimum-fuel aeroassisted
transfer between orbits has received considerable
attention in recent years., The case of transfer
between coplanar circular orbits has been analyz-
ed1-3, In this paper, we shall consider the case
where the two terminal orbits are elliptical, More
specifically, it is proposed to transfer, with a
minimum fuel consumption, a vehicle from an
initial elliptical orbit O, to a coplanar final ellipti-
cal orbit O,. The two Keplerian orbits are about
a spherical planet with center of attraction located
at the point F (Fig. 1). The orbits are defined by
the apocenter distances A;, and the pericenter
distances P; . We shall assume that the orienta-
tion of the line of apsides is free for selection in
the optimization process. This means that the
argument of the pericenter of the final orbit is not
of importance in the intended mission,

For a high-thrust propulsion system, it is
assumed that the time interval for powered flight
is short as compared to the orbital period. Hence,
we can consider the velocity changes, upon the
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application of the thrust, as being instantaneous,
PA%BOLA

PARABOLA

Fig, 1. Transfers between coaxial orbits.

2. Idealized Optimal Transfers

We first consider the various optimal pure
propulsive transfers and select the best for com-
parison with the most advantageous aeroassisted
transfer in an idealized scheme. This is intended
to display explicitly the circumstances under which
aeroassisted transfer is a fuel saving mode. In
the following sections, we shall provide an analy-
sis of its practical realization.

Tor a pure propulsive transfer, since the
orientation of the final orbit is free, in the optimal
condition the terminal orbits are coaxial with peri-
centers on the same side of the attracting center

F4 6. For a finite-time transfer, the optimal
mode is the Hohmann transfer connecting the high-
er apocenter to the pericenter of the other orbit.
We shall consider the case where the apocenter of
the initial orbit is higher, that is Al > A2 and

conveniently define the dimensionless lengths and
characteristic velocities

:

p/ R
(1)
where p is the gravitational constant of the planet
and R is the radius of its surrounding atmosphere.
The characteristic velocity of the Hohmann trans-
fer, normalized with respect to the circular speed

at distance R, V_= YegR = Vu/R , is



N AV ﬁs ¢ 26,
YH TV \/aa+ﬁ o (@ +B,
/ Zoz
\/s (a B TV, (e +;3

If o, - oo, the initial approaching orbit is para-
bolic and the first impulse, applied at infinity or in
practice at a large distance, is negligible. This
leads to conceiving a parabolic transfer, even in

the case where arl is finite. The first accelerative

impulse is applied at the pericenter of the first
orbit to propel the vehicle into a parabola. At in-
finity, upon the application of an infinitesimal
impulse, the vehicle returns by another parabola
with the same pericenter as for the final orbit.
Another decelerative impulse is applied at this
center to complete the transfer. All the impulses
are tangential and the total cost for this parabolic
mode is

_/> Ve alw +\//B—

2
“2

Bz(az+ﬁz)

(3)

Upon direct comparison of the characteristic veloc-
ities, one can select the optimal pure propulsive
mode.

For aeroassisted transfer, a decelerative
impulse is applied tangentially at the apocenter of
initial orbit to lower the pericenter to the top of the
atmosphere. Its magnitude is

VT %__2___ ”
- al(al-l-ﬁl) - al(oz1+1)

Near the top of the atmosphere, in the vicinity of
the pericenter, atmospheric drag will work to re-

duce the apocenter to the distance A_ where an

2
accelerative impulse is applied to propel the vehi-
cle into the final orbit. Its magnitude is

%P, [ 2
B arz(oz2+(32) - 012(012+1)

The total cost for this aeroassisted-elliptic mode is

AVAE = Avl + sz (6)
and it has to be compared with the best pure propul-
sive mode for optimality. Another way to bring

the pericenter to the top of the atmosphere for the
atmospheric decay process is to first send the ve-
hicle into a parabolic orbit by a tangential and ac-
celerative impulse applied at the pericenter of the
initial orbit, Its magnitude is
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Then, at a large distance, we can return the vehi-
cle for a grazing trajectory with a negligible im-
pulse. The subsequent process of orbit decay and
injection into the final orbit is as before and this
time we have for this aerocassisted-parabolic mode

AVAP = Avl + sz (8)
By comparing the Eqs. (4) and (7), we deduce that
for the two aeroassisted modes, the parabolic mode
is more economical if
4(a1+ 1)
Pz —— 9
o
1
The aeroassisted transfer discussed in this

section is based on an idealized scheme. It will
require several passages through the atmosphere
for Al to decrease to AZ' Furthermore, based on

the theory of orbit contraction, it is assumed that
during the decay process, the pericenter is nearly
stationary If this mode is optimal, the charact-
eristic velocity computed is the idealized absolute
minimum.

In the following sections we shall study the
implementation of the aeroassisted transfer. We
shall impose the constraint that the reduction of the
apocenter occurs in a single passage. This re-
quires a non-zero entry angle y and exit angle Ve

The resulting total cost will be slightly higher.

The aeroassisted transfer consists of three
phases:

The first phase is the deorbit phase. A pro-
pulsive maneuver is effected such that the vehicle
enters the atmosphere, at distance R, at a certain
prescribed angle Vg - This angle, which is very
small, is selected © such that within the drag cap-
ability of the vehicle, the necessary speed deple-
tion can be accomplished in one passage.

The second phase is the atmospheric fly-
through phase. We shall assume that the ballistic
coefficient of the vehicle can be modulated between
its maximum and minimum values. By a proper
modulation of this coefficient, it is proposed to
bring the vehicle to the best atmospheric exit con-
dition for the vehicle to climb to the final apocenter
for orbit insertion.

The third and final phase is the post atmo-
spheric maneuver to put the vehicle into the final
orbit,

It will be shown in a synthesis study that all
the three phases are coupled. This means that the
initial entry angle is selected based on the final
orbit configuration and the drag capability of the
vehicle during atmospheric passage, DBut, in terms
of the fuel consumption, since the entry and exit

angles are small, it is possible to analyze




separately the optimal maneuver for each phase.

It will be shown that the resulting characteristic

velocity for the combined maneuver is very close
to the idealized minimum.

3. Entry at Prescribed Angle

In the deorbit phase, it is proposed to find the
optimal descending trajectory which intersects the
atmosphere, at distance R at a non-zero prescribed
angle Y, - This can be achieved by applying a
single, tangential and decelerative impulse at the
apocenter of the initial orbit. From the geometry
of the deorbit as shown in Fig. 2, the characteris-
tic velocity for this one-impulse mode is

2B / 2{a. -
Av. = 1 - ] 1 cosy
I o (a1+ﬁl) Val(alz-cos Ye) e

1
(10)

The cost for deorbit increases as the entry angle

increases.

PARABOLA

Fig. 2. Deorbit for prescribed entry angle,
Another alternative is to use parabolic orbits
for deorbiting. In this case, an accelerative im-
pulse is applied tangentially at the pericenter to
send the vehicle into a parabola. Then at infinity,
we can return the vehicle along another parabola
for entry at any prescribed angle with an infinites-
imal impulse. The cost for this transfer is given
in Eq. (7). By comparing this equation with Eq.
(10) we have the explicit condition for the parabolic
mode to be better than the one-impulse mode.
4(0{1 - 1)(0112- cosz\{e) cos2 Yo
B > (11)

12 2
~-cos Y )
e
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The simple criterion (11) is used to rule out either
the one-impulse mode or the parabolic mode. But
for non-zero entry angle, there exists the possi-
bility of the two~impulse mode as the optimal
process. In this case, the first and accelerative
impulse is applied tangentially at the pericenter of
the initial orbit to bring the apocenter to the dis-
tance A = R x. The characteristic velocity for
this maneuver is

\/ 2x 20(1
A = e - —
1T Ve e ) B ey tP ) (e

At the new apocenter, a second tangential and de-
celerative impulse is applied to return the vehicle

for intersection at the prescribed angle., Its mag-
nitude is
Z(x- 1)
\[ it l3 ) . cos vy
Ye (13)

The total characteristic velocity for this two-im-
pulse deorbit is

Av_ . = Av +sz (14)

II 1

For

and entry angle Yoo

given elements (ozl, 6] 1) of the initial orbit
this is a function of the out

going distance x. By minimizing the function with
respect to x, we are led to the necessary condition

2 2
(x -cos \{e)

g 1(X-l)

2 2
> = 2x3-3x +cos vy (15)
(x+[31) cos Ye €

Upon solving for x and using its value in Eqgs, (12)-
(14), we have the minimum characteristic velocity
for the two-impulse mode.

We observe that, the one-impulse mode, when
it becomes optimal, can be viewed as the limiting
case of the two-impulse mode when x = @y - Hence,
using this limit in Eq. (15), we have the condition
for the two-impulse mode to be more economical
than the one-impulse mode.

B (e, -1)(a,%-cos®y )°
171 1 e 2
3 2_20(1 (al- 1)
(a/1+[31) cos Y
- (a/l - coszye) (16)

In summary, the optimal mode depends on the

parameters o 1’ 61 and Y, - For a practical

application, we first check condition (16). If the
one impulse mode is better, then condition (11) can
be used to decide the optimal mode, If the two-
impulse mode is better, and if condition (11) is not
satisfied, then the optimal mode is obviously the
two-impulse mode.

As an example, we consider the case where
the initial orbit is circular with radius T and
summarize the results in Fig. 3.
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Fig. 3. Regions of optimality for deorbit from
circular orbit with prescribed entry angle.

4. Explicit Guidance for Drag Modulation

We consider in this section the atmospheric
phase in the aeroassisted maneuver. To begin this
phase, the vehicle enters the atmosphere, at dis-
tance R with a speed Ve and entry angle Yo The

atmospheric maneuver consists of using lift or
drag modulation to bring the vehicle to exit at

Yf = 0 and with a resulting exit speed Vf such that

the apocenter of the ascending trajectory coincides
with the apocenter of the final orbit (Fig. 4). In
this way, the final impulse is minimized.

Climb
to apogee

Descent

Fig. 4. Aeroassisted transfer.

We shall consider the case where it is possible
to modulate the ballistic drag coefficient between a
lower and an upper limit, Using standard notation,
we have the equations for ballistic flight inside a
non-rotating planetary atmosphere,

dr = V sinvy
dt >
\%
av PSCp, )
at 77 Tam T ESRY (o

= (T~ -g)cosy (17)

Since the flight path angle stays small, ( a few
degrees),we can neglect the small gravity compon-
ent g sin y as compared to the acceleration due to

the drag. Furthermore, we use the approximations
2 2
. vV \
siny =y, cosy~ 1, glr) = g(R), — =~ — (18

These approximations induce an error of the same
order as the error committed by neglecting the
Coriolis force. It should be mentioned that the
assumptions used are not necessary for the present
analysis but they have the advantage of displaying
explicitly the various effects of drag coefficient,

entry speed and entry angle on the ballistic fly-

through trajectoryS.

We shall use the density p as the altitude vari-
able and assume that this density is locally expo-
nential, that is

dp _ dr

s T T H (19)
where the scale height H can be adjusted for concor
dance with the standard atmosphere at the altitude
range of the flight. Then, with the simplification
(18) and by using the dimensionless variables

R ﬁ top (e oo 2
y—pe,CD-- Hy,x—log(T),e— it
20
and the parameters =0
p SC \/PE
R i 2
A%
e

we have the equations of motion in dimensionless
form

d _ 2
dx € (22)
ds _ (6e"-1)
dx €y
and
40 Ve o*/2
= 0 ey (23)

We notice that the last equation denoting the varia-
tion of the time is decoupled. The constant § rep-
resents the effect of the entry speed with & = 1 for
circular entry and & = 0.5 for parabolic entry.
The parameter € is the drag control parameter,
subject to the constraint

€ . < € < € (24)

min — — ~max

In this way, the design of drag control is more
flexible since it is not restricted to the variation of
the drag coefficient CD alone. We simply assume

that the dimensionless drag parameter €, as
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defined in Eq. (21) can be configured to vary be-
tween two limits, The speed variable x is such
that, at the initial time, x = 0 and it is monotoni-
cally increasing, that is larger x for lower current
speed. The altitude y is such that initially y = 1
and it increases as the altitude decreases. At exit,
we have Vo=V, = 1 . In the definition of the flight

path angle variable &, the ratio R/ H can be taken
as 900 for the Earth's atmosphere.

From the definition (20) of the dimensionless
variables, we have at the initial time
R/H Ye =c >0
(25)

It is proposed to use the drag control €, sub-
ject to the constraint (24), to bring the vehicle to

exit at
x=x,, y,= 1, & = - VR/H vy (26)
f f f f
such that
1. The apocenter distance of the ascending
orbit is A2 .

2, The speed at this center is maximized.

The first condition is expressed as the con-
straint

2o (

2-coszyf) Hloy - 1) (27)

£ 72
where in terms of the speed variable x, we have

-x
v2 o= LT (28)

The second condition leads to the maximization of
the performance index 2
2(a -1)cos v
2 2
ST N S kil Ry

a f @ 2
2 a,la, -cos \{f)

2

J = v
(o

Si
ince (1/2

maximizing the final exit speed satisfying the con-
dition (27). From this condition, we see that the
best exit speed is obtained when \{f = 0, if this can

= AZ/R is prescribed, this amounts to

be achieved.
is

The resulting maximized exit speed

2o
v, = 2 (30)

f 012+1

For a drag modulation, grazing exit for a climb to
apocenter is not possibleg, and the optimal strat-
egy consists of bang-bang control to achieve con-
dition (27) with the smallest exit anglel. This
control strategy is difficult to realize in practice
since the switching time E)S has to be very accu-
rate, to within a fraction of one second to avoid
crashing.

As an alternative, we propose the following
drag control, First, a nominal trajectory is se-
lected, with entry conditiony and v , such that
during the atmospheric phase with a high drag co-

efficient € = ¢ 1 for descent until y = 0, and a low
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drag coefficient € = ¢

for ascent until exit, we
have a shallow exit angle and the trajectory over-
shoots the target apocenter. On the other hand,

Vo and v, are selected such that a trajectory with a

undershoots

1

The nominal drag coefficients

constant high drag coefficient € = €

the target apocenter.
€. and € are selected to be consistent with the

1 2
physical constraint € These

>€E,>€E_ >€ . .
ax— - miln

1 2

conditions ensure that in the actual trajectory, by
using a modulated drag coefficient, € = variable,
during the ascending phase we can achieve the re-
quired apocenter distance while obtaining a small
exit angle.

Since it is difficult to control both AP and ve to
satisfy Eq. (27) identically, our proposed explicit
guidance scheme aims at controlling vi. The
reason for this is that, based on Eq. (27) for a
sensitivity analysis, we have for small exit angle

Aa/z vf Av Ay

2
= [(a -(—
@ (az-vfz) 2 v Vg

The variation in the apocenter is more sensitive to
the exit speed perturbation than to the exit angle
perturbation.

To develop a variable drag control law, we
consider a nominal skip trajectory as shown in

Fig, 5. This trajectory, flown with € = ¢ 1 until

the bottom of the flight path, Yy = 0, and € =€,

until exit, provides an exit speed vfO and a flight

path angle vy °. As mentioned above, this trajec-
tory is designed to overshoot the terminal apo-

center A2 . To have a correct distance « we

2 s
can use a higher variable drag coefficient € during
the ascent for an exit at \f and Vg satisfying the
constraint (27).

Nominal
trajector

Controlied
trajectory

e [ Y =0

Fig. 5. Nominal trajectory and
controlled trajectory.

We then select a value Ve < on and compute the

desired speed A from Eq. (27). The objective is

to obtain a formula for a variable € such that at

exit we have a resulting speed V. =v,, withan

— f £’
exit angle A7 relatively close to the correct value

T In terms of the variables x and &, we use



the definition (20). Based on the first of the equa-
tions (22), during the ascent, from any current
position, we can predict the exit speed, in the case
where € is held constant for the remainder of the
trajectory, by integrating the equation until y_=1.
An analytic solution is possible if we use an ‘aver-
age value @ for the flight path angle variable.
We have

P (x . -x)

a f

(32)

-1 -
y €

For the average value @a , we can use the mean

value between the current value & and the estimated

exit value (Ibf . This leads us to use the control law

(o+ éf) (Xf-x)

3
2y- 1) (33)

where Xe

estimated exit flight path angle variable.

is the desired final speed and <I>f is the
This
control law is explicit since € is continuously re-
computed based on the current state, rather than
on the deviation of the current state from a nomi-
nal current state, It remains to evaluate the esti-
mated exit angle ®.. By combining the two equa-
tions (22), we have

Ay
y

dd P
(6e°-1)

(34)

By keeping (6 e -1) constant, we neglect the ef-
fect of the variation of the speed. This is a good
assumption since most of the speed depletion oc-
curs during the descending phase at high drag co-
efficient. By integrating Eq. (34) from the lowest

point, Y =Yy, ¢ =0, to exity = 1, X=X, we
have the estimated value for <I>f
2 X
(Df = 2(1-%6e )1ogyb+k (35)

In this equation, we have introduced an additive
correctional term k to compensate for the error
incurred in neglecting the effect of the variation of
the speed. This value k is computed based on the
nominal trajectory by using in Eq. (35) ¢>f = @fo,

o
X = Xpo.
is that, for the family of skip trajectories under
consideration, the flight path angle behavior is
relatively uniform: the flight path angle is always
small (a few degrees at most); and it is monotoni-
cally increasing during the guided portion of the

flight which starts at y = Yy = 0. Consequently,

The key to the efficacy of this approach

the flight path angle is of minor importance in
comparison with the speed. The connection of the
guidance law with the nominal trajectory, since it
is embodied in the constant k which only affects
the flight path angle, is minimal and does little to
disrupt the explicit nature of the guidance law,

This explicit drag modulated control law has
been tested numerically for several values of the
entry speed ranging from parabolic entry, & = 0.5,
to near circular entry, & = 0.9, with excellent
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results. The characteristic values for the ballis-
tic drag coefficient selected are

€ = 0.0030
max

€ 1 = 0.0025

€ = 0.0005 (36)
2

€ . = 0.0002
min

We can of course use the values € | and ¢

at
1
€
max

and € . respectively in constructing the
min

nominal trajectory. The main effect of the ratio

€ /€ is in the widening of the family of
max min

trajectories which can be accurately controlled.

The numerical results are summarized in Tables
1 and 2.

In Table 1, we have the case of parabolic entry,

6 = 0.5, Ve = vV 2, Ye = -3.820. The drag se-
quence € 17 € with switching at the bottom of the
trajectory leads to xfo = 0.394717, v° = 2.8307°.

= 63.7253 with the correctional
term k = 0. 05284865,
quired exit speed while

We also have vy,

IE. the table, xf is the re-
*f
exit speed with the variable drag control law (33).
We can see in the table that the speed control is
excellent, not only near the nominal trajectory,
but for a large range from high speed exit to low
speed exit. The value \7 is the one computed from

Eq. (35).
q. (35) ; >

from Eq. (27). Hence, using this table, we consid-
er the problem as of controlling the vehicle for exit

at X yf for an ascent to a, - The actual results

are x, Yf and a, -

In Table 2, we have the case of & = 0.577,
Ve T 1.316473, Yo -3.36°. This is essentially

is the actual resulting

Using x_ and Ve We have computed «

the entry speed for a direct return from a geo-
synchronous orbit. The relevant data from the

nominal trajectory, € 1€, fo = 0.307536,

on = 2.4787°, y, = 45.4944 and k = 0.04101062.

are x

Other cases of lower entry speed were tested
with excellent results and it can be concluded that
this explicit variable drag controls accurately the
exit speed.

The variations of the drag coefficient € during
the controlled ascent are shown in Fig. 6 for the
case of a return from a geosynchronous orbit.
Typically, because we control the skip trajectory
for an exit speed lower than the nominal exit speed,

that is for xe > Xfo , the modulated flight for ascent

starts at Yy, with an initial drag coefficient € > €50
For high speed exit, € decreases continuously
until exit, Ve = 1. For low speed exit, € in-~-
creases to provide more speed depletion. It
should be mentioned that, by using variable drag
coefficient during ascent, the sensitivity problem
encountered in bang-bang control is removed.

Here, the switching time is no longer a critical




Table 1. Accuracy analysis for adaptive drag modulation mode

Case of parabolic entry, 6 =0.5

% xg Vf/VE yf(deg.) Yf(deg.) Ayédeg.) o, o, Aaz
0.400 0.400000 1. 000000 2.809575 2.798629 -0.010946 2.037951 2.037915 -0.000036
0.425 0.425000 1. 000000 2.705810 2.703902 -0.001908 1.892964 1.892958 -0. 000006
0.450 0.450000 1. 000000 2.595113 2.604145 0.009032 1. 764316 1.764349 0.000033
0.475 0.475000 1, 000000 2,476482 2.498979 0.022497 1.649427 1.649512 0.000085
0.500 0.500000 1. 000000 2. 348635 2. 388049 0.039414 1.546233 1.546392 0.000159
0.525 0.525000 1. 000000 2.209885 2.271085 0.061200 1.453065 1.453329 0.000264
0.550 ¢0.550000 1. 000000 2.057932 2.148060 0.090128 1.368557 1.368978 0.000421
0.575 0.575000 1.000000 1. 889486 2.019531 0.130045 1.291583 1.292253 0. 000670
0.600 0,600000 1. 000000 1. 699530 1.887452 0.187922 1.221206 1.222305 0.001099
0.625 0,624998 0.999999 1.479658 1,757248 0.,277590 1. 156650 1.158582 0.001932
0.650 0,649357 0.999679 1.213539 1. 644051 0.430512 1.097286 1.102504 0.005218

Table 2. Accuracy analysis for adaptive drag modulation mode
Case of direct return from geosynchronous orbit, 6§ = 0,577
X X Vf/ Vf Yf(deg.) yf(deg.) Ayf(deg.) @, a, Aaz

0.325 0,325000 1.000000 2.399299 2.398029 -0.001270 1,678884 1.678880 -0.000004

0.350 0.350000 1.000000 2.,279466 2,290667 0.011201 1.572704 1.572746 0.000042

0.375 0.375000 1.000000 2,149113 2.176852 0.027739 1.476966 1.477077 0.000111

0.400 0.400000 1,000000 2.006688 2.056302 0.049614 1.390230 1,390445 0.,000215

0.425 0.425000 1,000000 1.849303 1,928839 0.079536 1.311310 1,.311688 0.000378

0.450 0.450000 1.000000 1.672627 1.795253 0.122626 1.239221 1.239876 0. 000655

0.475 0.475000 1.000000 1.469588 1.658553 0.188965 1.173144 1.174321 0.001177

0.500 0.499955 0.999978 1.227008 1.528180 0.301172 1.112400 1,114747 0.002347

0.525 0.519449 0.997228 0.913699 1.444393 0.530694 1.056492 1.,062457 0.005965

parameter in the process. By using the control
law (33), even in the case where it is not started
exactly at the lowest point, it is self-corrective by
using the current state to adjust the drag and, as a
consequence, leads to the desired exit speed.

0020

0013

0010

L0005 — ‘2

Fig. 6. Variations of the drag coefficient €
for various exit speeds in the case of a return
from a geosynchronous orbit,
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5. Optimal Post Atmospheric Maneuver

We have seen in the previous section that at
exit we have Ve 7f

tance EZ . If 7172 = arz ,
tangentially at this apocenter distance, is neces-
sary for optimal orbit insertion. We consider the

general case where EZ # «, and optimize this

leading to an apocenter dis-

a final impulse, applied

2
post atmospheric phase.

The case where we overshoot the target apo-
center, EZ > a,, The final orbit is
achieved by a Hohmann transfer with an accelera-

tive impulse at @ to raise the pericenter to the

is simple.

level BZ and a decelerative impulse at this center

to adjust -(;2 to the correct distance o

P
In the case where we undershoot the target

apocenter, EZ < a, , the first impulse Av, is ap-

plied at the lowest point which is the exit point, to

bring 71'2 to a, . At this correct apocenter, a

tangential and accelerative impulse Av_ is applied
for orbit insertion. The velocity diagram at exit
is shown in Fig. 7 with the Y-axis along the po-
sition vector.



Fig. 7.

Velocity diagram at exit.

In this system we have the components
X = M
Ve cos v,

s Y= v, sin P (37)

of the exit velocity v resulting from drag modula-
ted fly through and the components

X = v

¢ (38)

COS Y. szfsin\{f

of the correct velocity :;f required for attaining the
final apocenter distance @, Expressed in terms

of X and Y, we write the constraining relation (27)

(022-1)X2+a/22Y2-20z (¢,-1) = O

22 (39)

be the speed at the apocenter in the final
1 and AVZ
required in post atmospheric maneuver is

- X

\/(X.>_<)2+(Y_§)‘2 tv, - —
2 a/z

L
et v2

orbit. The sum of the two impulses Av

J = (40)

Taking account of the constraint (39) we introduce
the L.agrange multiplier A and minimize the aug-
mented function

I =

T4 }\[(ozzz-l) X% 4 o 2%2. 20, (o, - D] (41)

2
The necessary conditions for a stationary value of
Iare

Bl oL

= 0 = 0

- 2
o0X ! oY (42)

Upon eliminating X between these equations and
simplifying the result, we obtain

Y.¥ = kl(iz'x_y?y) (43)
where
o (e +1)
2'%
ko= 5 (44)

Define the components of the first impulse which
is non tangential

AX = X -

(45)

<ol

AY = Y <

From the linear equation (43), we deduce the

140

optimal thrust angle

k, Y
AY
tany = —— = —1—:‘— (46)
1+k, X
1
which can be immediately evaluated for given o_ ,
A and Yy
Let _
Y
1+k, X
1
and write Eq. (43) as
Y = k2 (1+k1 X) {48)

Upon substituting into Eq. (39) and solving for the
positive root, we obtain the solution

kl[Z(a/Z-l) Vi+k 22 azkz ]

1 2 2 2
X =
(azz-l) + a/ZZ klzkzz
(49)
2 2, 2
v - (az-l) k2[1+012 Vl+k1 kZ]
- 2 2 2 2
(az -1)-i-ozZ kl kz

With this solution the minimum characteristic
velocity in post atmospheric flight is

2(12 — (1+k1 §)2
Av1+AvZ:v2+ P Y+~—2— (50)
2 kl

Hence, just as for the thrust angle, the minimum

cost can be evaluated immediately in terms of @y

\L; and Vf without having to go through intermedi-
ary steps. An elegant geometric solution based on

hodograph theory has been given by Marchal?,

6. Problem Synthesis

From the previous analysis, it is clear that
for aeroassisted transfer, the three phases involv-
ed are coupled in terms of the total fuel consump-
tion. The final apocenter distance and the drag
capability dictate the selection of the entry elements
Ye and vy which in turn influence the character-
istic velocity for the deorbit phase. In this section,
we shall prove the assertion that, as compared to
the idealized case, which is not realistic in prac-
tice, the penalty in the fuel consumption using the
present operating mode is small since the optimal
condition has been realized in each phase.

We first compute the additional fuel consump-
tion, in terms of the characteristic velocity,
& (Av), for a non zero entry angle Y, » as compared

to the idealized grazing entry case.

If parabolic deorbit is optimal, then Yo has no

influence and trivially 6§ (Av) = 0, For a finite-




time deorbit, then wheny = 0, the optimal mode

is always by one impulse. For Yo # 0, thereis a
possibility of a two-impulse optimal mode, but
even if it is the case, since Yo is small, the saving

in the fuel consumption is small. Therefore, we
compare the one impulse mode which can be opti-
mal or non optimal for non zero y , with the

optimal one impulse for the idealized case where
ye = 0. By comparing Eqgs. (4) and (10) and lin-

earizing for small Yoo We have the additional

characteristic velocity

2 N 2
“1 Ye /2 2
= K(a,) v (51)
2(a12- 1) al(a1+l) 1" ‘e

The factor K(e,) is a function of the apocenter

6 (Aav) =

distance of the initial orbit.
al =~ 1.

It is large only for
But, this is not the case since aero-
assisted transfer is only relevant for high initial
orbit, Hence, this additional characteristic veloc-
ity is small since it is of the order of Yoo

The additional fuel consumption for post
atmospheric maneuver is due to non-zero exit
angle. As has been mentioned above, this cannot
be avoided due to the fact that for one-passage drag
control, supercircular speed exit at zero exit angle
is not possible. We first evaluate & (Av) for the
undershoot case. For the idealized case, we have
a single impulse applied at the correct apocenter
with magnitude

v N A
I 2 aZ(oz2+ 1)

Av. = (52)

On the other hand, the minimum total character-
istic velocity in post atmospheric flight for the
undershoot case has been given in Eq. (50), Taking
the difference, we have

2({a.+1)
/5% 1\/ 2-2 - -
5 (Av) = o) -—kl klvf+2k1vfcosyf+1

(53)

where k1 is defined in Eq. (44) and ;f and_\{— are

f
the actual exit speed and flight path angle resulting

from the controlled atmospheric flight.

We recall that, in atmospheric flight, we
select a small value y, and control the drag to

have an exit speed satisfying Eq. (27). To the
order of yfz , we have
2 Zaz(az- 1) 2&2 2
v, = = 1- (54)
f ( 2 OSZ ) a2+ 1 ( 2 1)
a, -¢ g a, -

We have shown that we can accurately control this

speed. Hence in Eq. (53), we can take vf = Ve

and compute

141

2 2
Kk
Ve

1 + 2k

T, i}
1vfcosyf 1 ,

2 Y
(« +1)_A.
2 a'z-l

Since in the undershoot case ;f < T in the last

« -2
T %Y

equation, by taking Qf =Yg, we have a conserva-
tive estimate of & (Av).
into Eq. (53), we have

2 2

“2 V¢ 2 2
= K(e,) v, (55)
el Vale + D) 2! Yg

2

Then, upon substituting

5 (Av) =

This has the same functional form as Eq. (51).
Although here we have the case of small value of
az , but when a, =
For example, for an Earth orbit, taking the entry
altitude at 120 km and for a very low final apo-

center at 380 km, we have R = 6498 km, A2 =

6758 km, and @, = 1. 04 and the function K has the

value K(a.) = 6.4347 and is still acceptable for low
exit angle,

1, 2 is generally very small.

For the overshoot case, we first compute

the miss distance Aaz =a, -a, > 0, From Eq.
(31), with accurate control in the speed, Av, =0,
and with the aid of Eq. (54) for vf2 , we have
Ao
2 2
o T (@-D Yo (56)
2 2

This simple formula provides results in excellent
agreement with the data in Tables 1 and 2,

For the overshoot case, post atmospheric
maneuver is the usual Hohmann transfer using two
impulses. Let ‘—fa be the speed of the vehicle at

The char-

acteristic velocity for the Hohmann transfer is

the overshoot apocenter distance _a-z .

2a
Av _Z
B, (o, +h,)
2a
2
SV rusmararen (57)
B la, t8,)
Linearizing with respect to Aaz , we have
Aarz _
Avp = v, [t- 2o, - v, (58)
where
2p
2
v, = AT (59)
2 az(az+ BZ)

is the speed at the apocenter on the final orbit.
By comparing Eq. (58) with the idealized cost (52},
we have the additional fuel consumption



/ 2 _ VZAQZ
5{Aav) = W -V, s T (60)

2

Using Eq. (29) to evaluate v , with o =@, and

2 a 2 2
vf from Eq. (54), we have

2
_‘; . > [1 a/z YZ (a2+1) A
a Voa,(e +1) } 2 £ 2a “2
2°72 2(012 -1) 2 61)

Then, upon substituting into Eq. (60) and using
Eq. (56) for Aaz/ a we have the final expres-
sion

2 YfAVf/z[/— [ P2 }
6(Av):K(a2)\{f+ (:2—_—1)- _a; az+1 < +F32

“

2 ]

(62)
Since K(az) is the same as in Eq. (55), and the
product Yy Ayf is very small, the penalty in the

characteristic velocity for the overshoot case is
the same as for the undershoot case.

To conclude this paper one final remark is in
order. By inspection of Tables 1 and 2 one can
observe that the control in the exit flight path angle
is poorer for very low values of ay . This is of no

real consequence since in practice one would not
choose the particular nominal reference trajectory

to control low values of aye For example, recall

that for Table 2 (entry from geosynchronous orbit)
the nominal trajectory had an entry flight path
angle Y, = -3.36°, leading to an exit at yfo =

2.4787° for a speed of vfo = 1.128838 and giving a
2° = 1.760183,

According to the formulation of the guidance algo-
rithm this nominal trajectory is used to control the
orbits with o slightly below this value. For low
altitude final orbits, the nominal trajectory select-
ed in practice would have a steeper entry angle
than e -3.36° which then would yield a lower
nominal apocenter distance. The control algorithm
would then provide excellent accuracy in the exit
flight angle as well as the exit speed. For values

of @, higher than those shown in Table 2, one

would select a nominal trajectory with a more
shallow entry flight path angle so as to give a
higher nominal apocenter distance.

nominal apocenter distance of «
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