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Abstract  

This paper presents  the complete analysis of 
the problem of minimum-fuel aeroassis ted t ransfer  
between coplanar elliptical orbi ts  in the case  where 
the orientation of the final orbi t  i s  f r e e  for  selec- 
tion in the optimization process.  The comparison 
between the optimal pure  propulsive t ransfer  and 
the idealized aeroassis ted t ransfer ,  by severa l  
passages through the a tmosphere ,  i s  made. In the 
c a s e  where aeroassis ted t ransfer  provides fuel 
saving, a pract ical  scheme for  i ts  realization by 
one passage i s  proposed. The maneuver consists 
of three phases: A deorbit  phase for  non zero 
entry angle, followed by a n  a tmospheric  fly-through 
withdvariable drag control and completed by a post 
atmospheric phase. An explicit guidance formula 
for  drag control i s  derived and i t  i s  shown that the 
required exit speed for ascent  to the final orbit  can 
be obtained with a very high degree of accuracy. 

1. Introduction 

The problem of minimum-fuel aeroassis ted 
t ransfer  between orbi ts  has received considerable 
attention in recent  years .  The case  of t ransfer  
between coplanar c i rcular  orbi ts  has  been analyz- 
ed In this paper,  we shall  consider the case  
where the two terminal  orbi ts  a r e  elliptical. More 
specifically, i t  i s  proposed to t ransfer ,  with a 
minimum fuel consumption, a vehicle f rom an  
init ial  elliptical orbi t  0 to a coplanar final ellipti- 

1 
c a l  orbi t  02. The two Keplerian orbi ts  a r e  about 
a spher ical  planet with center  of attraction located 
a t  the point F (Fig. 1). The orbi ts  a r e  defined by 
the apocenter distances Ai ,  and the per icenter  

distances Pi . We shall  a ssume that the orienta- 
tion of the line of apsides i s  f r e e  for  selection in 
the optimization process.  This means that the 
argument of the per icenter  of the final orbi t  i s  not 
of importance in the intended mission. 

F o r  a high-thrust propulsion system,  i t  i s  
assumed that the t ime interval  for  powered flight 
i s  shor t  a s  compared to the orbi ta l  period. Hence, 
we can consider the velocity changes, upon the 
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application of the thrust,  a s  being instantaneous. 

\r PARABOLA 
Fig. 1. Trans fe rs  between coaxial orbits. 

2. Idealized Optimal Trans fe rs  

We f i r s t  consider the various optimal pure 
propulsive t rans fe rs  and select  the best for com- 
parison with the mos t  advantageous aeroassis ted 
t ransfer  in an  idealized scheme. This i s  intended 
to display explicitly the c i rcumstances  under which 
aeroassis ted t rans fe r  i s  a fuel saving mode. In 
the following sections,  we shall  provide an analy- 
s i s  of i t s  pract ical  realization. 

F o r  a pure propulsive t ransfer ,  since the 
orientation of the final orbit  i s  f ree ,  in the optimal 
condition the terminal  orbi ts  a r e  coaxial with peri- 
centers  on the same side of the attracting center 
F4- 6 . F o r  a finite-time t ransfer ,  the optimal 
mode i s  the Hohmann t ransfer  connecting the high- 
e r  apocenter to the pericenter of the other orbit. 
We shall  consider the case  where the apocenter of 
the initial orbit  i s  higher,  that i s  A 1 -  > A 2 and 

conveniently define the dimensionless lengths and 
character is t ic  velocities 

A i Pi 
AV 

i 
( Y . =  F '  p . =  - , A v . = -  

1 R S v = ~  

(1 
where p i s  the gravitational constant of the planet 
and R is  the radius of i ts  surrounding atmosphere.  
The character is t ic  velocity of the Hohmann trans- 
fe r ,  normalized with respect  to the c i rcular  speed 
a t  distance R ,  V = l/g~ = , i s  
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If cu , -. oo, the init ial  approaching o rb i t  i s  para- 
bolic and the f i r s t  impulse ,  applied a t  infinity o r  in  
pract ice  a t  a l a r g e  distance,  i s  negligible. This 
leads to conceiving a parabolic t r ans fe r ,  even in 
the c a s e  where  cu i s  finite. The f i r s t  accelera t ive  

1 
impulse  i s  applied a t  the per icenter  of the f i r s t  
o rb i t  to propel the vehicle into a parabola. At in- 
finity, upon the application of an  infinitesimal 
impulse,  the vehicle r e t u r n s  by another parabola 
with the s a m e  pe r i cen te r  a s  for  the final orbit. 
Another decelera t ive  impulse  i s  applied a t  this 
center  to complete the t ransfer .  All the impulses  
a r e  tangential and the total cos t  fo r  this parabolic 

Upon d i rec t  comparison of the cha rac te r i s t i c  veloc- 
i t ies ,  one can se lect  the optimal pure  propulsive 
mode. 

F o r  ae roass i s t ed  t r ans fe r ,  a decelera t ive  
impulse i s  applied tangentially a t  the apocenter of 
initial o rb i t  to lower the per icenter  to the top of the 
atmosphere.  I t s  magnitude i s  

Near  the top of the a tmosphere ,  in the vicinity of 
the per icenter ,  a tmospher ic  drag will work to r e -  
duce the apocenter to the dis tance A2 where  an 

- 

accelera t ive  impulse  i s  applied to propel the vehi- 
cle into the final  orbit .  I t s  magnitude i s  

The total cos t  fo r  this aeroass is ted-el l ip t ic  mode i s  

and i t  has  to be compared with the bes t  pure  propul- 
sive mode for  optimality. Another way to bring 
the per icenter  to the top of the a tmosphere  for  the 
a tmospher ic  decay p rocess  is to f i r s t  send the ve- 
hicle into a parabolic o rb i t  by a tangential and ac- 
ce lera t ive  impulse applied a t  the per icenter  of the 
initial orbit .  I ts  magnitude i s  

Then, a t  a l a r g e  distance,  we can re tu rn  the vehi- 
c le  for  a grazing t r a j ec to ry  with a negligible im- 
pulse. The subsequent p rocess  of o rb i t  decay and 
injection into the final  o rb i t  i s  a s  before and this 
t ime we have for  this aeroass is ted-parabol ic  mode 

By comparing the Eqs. (4) and (7),  we deduce that 
fo r  the two ae roass i s t ed  modes ,  the parabolic mode 
i s  m o r e  economical if 

4(cu1+1) 

PI 1 (9)  
a 1 

The ae roass i s t ed  t r ans fe r  d iscussed in this 
section i s  based on an  idealized scheme. It will 
r equ i re  s e v e r a l  passages  through the a tmosphere  
f o r  A to d e c r e a s e  to A F u r t h e r m o r e ,  based on 

1 2' 
the theory of o rb i t  contraction,  i t  i s  a s sumed  that 
during the decay p rocess ,  the per icenter  i s  near ly  
s ta t ionary 7. If this mode i s  optimal,  the charact -  
e r i s t i c  velocity computed i s  the idealized absolute 
minimum. 

In the following sections we shal l  study the 
implementation of the ae roass i s t ed  t ransfer .  We 
shal l  impose the const ra int  that the reduction of the 
apocenter occurs  in a single passage. This  re-  
qu i res  a non-zero en t ry  angle y and exit angle y 

f' 
The result ing total  cos t  will be slightly higher. 

The ae roass i s t ed  t r ans fe r  consis ts  of three  
phases:  

The f i r s t  phase i s  the deorbit  phase. A pro- 
pulsive maneuver  i s  effected such that the vehicle 
en te r s  the a tmosphere ,  a t  distance R ,  a t  a cer ta in  
p resc r ibed  angle y . This  angle,  which is ve ry  
smal l ,  i s  se l ec tede  such that within the d rag  cap- 
ability of the vehicle,  the necessa ry  speed deple - 
tion can be accomplished in one passage. 

The second phase i s  the a tmospher ic  fly- 
through phase. We shal l  a s s u m e  that the ball ist ic 
coefficient of the vehicle can be modulated between 
i t s  maximum and min imum values.  By a p roper  
modulation of this coefficient, i t  i s  proposed to 
bring the vehicle to the bes t  a tmospher ic  exit con- 
dition fo r  the vehicle to c l imb to the final  apocenter 
fo r  o rb i t  insert ion.  

The third and final  phase i s  the post  atmo- 
spher ic  maneuver  to put the vehicle into the final 
orbit. 

It will be shown in a synthesis study that a l l  
the three  phases  a r e  coupled. This means  that the 
init ial  ent ry  angle is selected based on the final 
orbi t  configuration and the drag capability of the 
vehicle during a tmospher ic  passage.  But, in t e r m s  
of the fuel consumption, s ince  the entry  and exit 

angles a r e  smal l ,  i t  i s  possible to analyze 



separate ly  the optimal maneuver  fo r  each phase. 
It will be shown that the result ing cha rac te r i s t i c  
velocity for  the combined maneuver  i s  ve ry  c lose  
to the idealized minimum. 

3 .  Entry  a t  P resc r ibed  Angle 

In the deorbit  phase,  i t  i s  proposed to find the 
optimal descending t r a j ec to ry  which in te r sec t s  the 
a tmosphere ,  a t  d is tance R a t  a non-zero p resc r ibed  
angle y . This can be achieved by applying a 

e 
single,  tangential and decelera t ive  impulse a t  the 
apocenter of the init ial  orbit .  F r o m  the geometry  
of the deorbit  a s  shown in Fig. 2 ,  the cha rac te r i s -  
tic velocity for  this one-impulse mode i s  

The cost  for  deorbit  inc reases  a s  the entry  angle 
increases .  

\ PARABOLA 

Fig.  2. Deorbit  for p resc r ibed  entry  angle. 

Another a l ternat ive  i s  to u s e  parabolic orbi ts  
fo r  deorbiting. In this case ,  an  accelera t ive  im- 
pulse i s  applied tangentially a t  the per icenter  to 
send the vehicle into a parabola. Then a t  infinity, 
we can re tu rn  the vehicle along another parabola 
fo r  ent ry  a t  any p resc r ibed  angle with an  infinites- 
ima l  impulse. The cos t  for  this t r ans fe r  i s  given 
in Eq. (7 ) .  By comparing this equation with Eq. 
(10) we have the explicit condition fo r  the parabolic 
mode to be bet ter  than the one-impulse mode. 

The s imple  c r i t e r ion  (11) i s  used to ru le  out e i ther  
the one- impulse mode o r  the parabolic mode. But 
for  non-zero en t ry  angle,  there  exis ts  the possi-  
bility of the two-impulse mode a s  the optimal 
process .  In this c a s e ,  the f i r s t  and accelera t ive  
impulse  i s  applied tangentially a t  the per icenter  of 
the init ial  orbi t  to bring the apocenter to the dis-  
tance A = R x . The charac te r i s t i c  velocity fo r  
this maneuver i s  

At the new apocenter ,  a second tangential and de- 
ce lera t ive  impulse  i s  applied to r e t u r n  the vehicle 
f o r  in tersect ion a t  the p resc r ibed  angle. I t s  mag- 
nitude i s  

The total  cha rac te r i s t i c  velocity f o r  this two-im- 
pulse deorbit  i s  

F o r  given e lements  ((Y P of the init ial  orbi t  

and en t ry  angle y this i s  a function of the out 
e '  

going distance x. By minimizing the function with 
r e spec t  to x, we a r e  led to the necessa ry  condition 

Upon solving fo r  x and using i t s  value in Eqs. (12)- 
(14), we have the minimum charac te r i s t i c  velocity 
f o r  the two-impulse mode. 

We observe that, the one-impulse mode, when 
i t  becomes optimal, can be  viewed a s  the limiting 
c a s e  of the two-impulse mode when x = a ,  . Hence, 

using this l imi t  in  Eq. (15),  we have the condition 
fo r  the two-impulse mode to be m o r e  economical 
than the one-impulse mode. 

In summary ,  the opt imal  mode depends on the 
p a r a m e t e r s  a p and y . F o r  a pract ica l  

1' 1 e 
application, we f i r s t  check condition (16). If the 
one impulse  mode i s  bet ter ,  then condition (11) can 
be used to decide the opt imal  mode. If the two- 
impulse  mode i s  bet ter ,  and if condition (11) i s  not 
satisfied,  then the opt imal  mode i s  obviously the 
two- impuls e mode. 

As an example,  we consider the c a s e  where  
the init ial  orbi t  i s  c i r cu la r  with radius  r and 
summar ize  the r e su l t s  in Fig. 3. 1 
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Fig. 3. Regions of optimality f o r  deorbit  f r o m  
c i rcu la r  orbi t  with p resc r ibed  entry  angle. 

4. Explicit Guidance for  Drag Modulation 

We consider  in this section the a tmospher ic  
phase in the ae roass i s t ed  maneuver.  To begin this 
phase,  the vehicle e n t e r s  the a tmosphere ,  a t  dis- 
tance R with a speed V and entry  angle y . The 

e 
a tmospher ic  maneuver  consis ts  of using lift o r  
d rag  modulation to bring the vehicle to exit  a t  
y = 0 and with a result ing exit speed V such that 

f f 

Since the flight path angle s tays  smal l ,  ( a few 
degrees ) ,we  can neglect  the smal l  gravity compon- 
ent g s in  y a s  compared to the accelera t ion due to 
the drag.  F u r t h e r m o r e ,  we u s e  the approximations 

v2 v 2 
sin y = y,  cos  y = 1, g ( r )  = g(R),  - = - 

R (18) 

These  approximations induce an  e r r o r  of the s a m e  
o r d e r  a s  the e r r o r  committed by neglecting the 
Coriolis  force .  It should be mentioned that the 
assumptions  u s e d  a r e  not necessa ry  fo r  the present  
analys is  but they have the advantage of displaying 
explicitly the various effects of drag coefficient, 
ent ry  speed and entry  angle on the ball ist ic fly- 

through trajectory8. 

We shal l  u s e  the density p a s  the altitude var i -  
able and a s s u m e  that this density i s  locally expo- 
nential, that i s  

where  the sca le  height H can be adjusted fo r  concor- 
dance with the s tandard a tmosphere  a t  the altitude 
range of the flight. Then, with the simplification 
(18) and by using the dimensionless  var iables  

the apocenter of the ascending t ra jectory  coincides 
with the apocenter of the final o rb i t  (Fig. 4). In 
this way, the final impulse  i s  minimized. 

and the p a r a m e t e r s  - 

Fig. 4. Aeroass is ted  t ransfer .  

We shal l  consider  the c a s e  where i t  i s  possible 
to modulate the ball ist ic d rag  coefficient between a 
lower and an  upper  limit. Using s tandard notation, 
we have the equations fo r  ball ist ic flight inside a 
non-rotating planetary a tmosphere .  

d r - = V s in  y 
a t  7 

dV - - @ c D v L  - -  - - g sin y 
dt 2m 

we have the equations of motion i n  dimensionless 
f o r m  

* =  
dx E 

X 
d @  (6 e - 1) - - - 
dx E Y 

and 
d e - - - 16 ex" 

We notice that the l a s t  equation denoting the var ia-  
tion of the t ime i s  decoupled. The constant 6 rep- 
r e sen t s  the effect of the en t ry  speed with 6 = 1 for  
c i r cu la r  ent ry  and 6 = 0. 5 f o r  parabolic entry. 
The p a r a m e t e r  E i s  the drag control  pa ramete r ,  
subject  to the const ra int  

In this way, the design of d rag  control  i s  m o r e  
flexible s ince  i t  i s  not r e s t r i c t ed  to the var ia t ion of 
the drag coefficient CD alone. We simply a s s u m e  

that the dimensionless  d rag  p a r a m e t e r  E ,  a s  



defined in Eq. (2 1)  can be configured to v a r y  be- 
tween two limits.  The speed var iable  x i s  such 
that, a t  the init ial  t ime,  x = 0 and i t  i s  monotoni- 
cally increas ing,  that i s , l a rge r  x for  lower c u r r e n t  
speed. The altitude y i s  such that initially y = 1 
and i t  i nc reases  a s  the alt i tude decreases .  At exit ,  
we have y - - ye = 1 . In the definition of the flight 

path angle var iable  a, the ra t io  R /  H can be taken 
a s  900 fo r  the E a r t h ' s  a tmosphere .  

F r o m  the definition (20) of the dimensionless 
var iables ,  we have a t  the init ial  t ime 

It i s  proposed to u s e  the drag control  E , sub- 
ject  to the const ra int  (241, to bring the vehicle to 
exit a t  

X = X f ,  y f =  1 ,  a = - 6 yf (26) 

such that 
1. The apocenter distance of the ascending 

orbi t  i s  A 
2 '  

2. The speed a t  this center  i s  maximized. 

The f i r s t  condition i s  expressed  a s  the con- 
s t r a in t  

2 2 
Vf ( Y 2 2  - cos y f )  = 2 ff ( a  

2 2 -  (27) 

where  in t e r m s  of the speed var iable  x, we have 

The second condition leads  to the maximization of 
the performance index 

2 
2 2 2 2 f 

2(ff -1)cos  y 
J = v = v  t - -  2 = 

a f c u  2 2 (29) 
2 ff2(a2 - cos yf)  

drag coefficient E = for  a scen t  unti l  exit ,  we 

have a shallow exit  angle and the t ra jectory  over- 
shoots the target  apocenter.  On the o the r  hand, 
ye and v a r e  selected such that a t r a j ec to ry  with a 

constant high d rag  coefficient E = E undershoots 
1 

the target  apocenter.  The nominal d rag  coefficients 
E and E a r e  se lected to be consistent with the 

1 2 
physical  const ra int  E > E 

m a x l E 1  ' €2 - min  . These 

conditions ensure  that in  the actual  t ra jectory ,  by 
using a modulated d rag  coefficient, E = var iable ,  
during the ascending phase we can achieve the re -  
quired apocenter distance while obtaining a smal l  
exit angle. 

Since i t  i s  difficult to control  both y and v to 
f f 

satisfy Eq. (27) identically, our  proposed explicit 
guidance scheme a i m s  a t  controlling vf . The 
reason  for  this i s  that, based on Eq. (27) for a 
sensit ivity analys is ,  we have fo r  s m a l l  exit angle 

The variation in the apocenter i s  m o r e  sensit ive to 
the exit speed perturbation than to the exit angle 
perturbation. 

To develop a var iable  d rag  control  law, we 
consider  a nominal skip  t ra jectory  a s  shown in 
Fig. 5. This t ra jectory ,  flown with E = E , until  

I 

the bottom of the flight path, y = 0, and E = E  
b 2 

unti l  exit, provides an  exit speed v O and a flight 
f 

path angle y As mentioned above, this t ra jec-  
f ' 

tory i s  designed to overshoot the terminal  apo- 
center  A To have a c o r r e c t  distance a2 , we 

2 '  
can u s e  a higher var iable  d rag  coefficient E during 
the ascen t  fo r  an  exit a t  v and y satisfying the 
const ra int  (27). 

f f 

Since cu = A /R i s  p resc r ibed ,  this amounts to 
2 2 

maximizing the final  exit  speed satisfying the con- 
dition (27). F r o m  this condition, we s e e  that the 
bes t  exit speed i s  obtained when y = 0, if this can 

f 
be achieved. The result ing maximized exit speed 

F o r  a drag modulation, grazing exit fo r  a climb to 
apocenter i s  not possible8,  and the opt imal  s t r a t -  

egy consis ts  of bang-bang control  to achieve con- 
dition (27) with the smal l e s t  exit angle1. This 
control  s t ra tegy i s  difficult to r ea l i ze  in  pract ice  
since the switching t ime 8 has  to be very  accu- 

r a t e ,  to within a f ract ion of one second to avoid 
crashing. 

As an  a l ternat ive ,  we propose  the following 
drag control. F i r s t ,  a nominal t r a j ec to ry  i s  se-  
lected,  with entry  condition y and v such that 

e '  
during the a tmospher ic  phase with a high d rag  co- 
efficient E = E fo r  descent  unti l  y = 0, and a low 

Fig. 5. Nominal t ra jectory  and 
controlled trajectory.  

We then se lect  a value y < yfO and compute the 

des i red  speed v f r o m  Eq. (27). The objective i s  
f 

to obtain a formula  for  a var iable  E such that a t  
= v f ,  with an  exit we have a result ing speed 7 - 

exit angle y relatively c lose  to the c o r r e c t  value 
f 

yf . In t e r m s  of the var iables  x and @ , we u s e  



the definition (20). Based on the f i r s t  of the equa- 
tions (22),  during the ascen t ,  f r o m  any c u r r e n t  

resul ts .  The charac te r i s t i c  values fo r  the ballis- 
t ic drag coefficient selected a r e  

position, we can predic t  the exit  speed, in the c a s e  
where  E i s  held constant fo r  the remainder  of the 
t ra jectory ,  by integrating the equation until y = 1 . 

f 
An analytic solution i s  possible if we u s e  an  ave r -  
age value Q, for  the flight path angle variable. 

a 
We have 

- X) 

y - 1  = - 
E 

(32) 

F o r  the average value , we can u s e  the mean  
- 

value between the c u r r e n t  value Q and the es t imated 
exit value Q This leads  u s  to u s e  the control  law 

f '  

where x i s  the des i red  final  speed and Q i s  the 
f f 

est imated exit flight path angle variable. This 
control  law i s  explicit s ince  E i s  continuously re -  
computed based on the cu r ren t  s ta te ,  r a the r  than 
on the deviation of the cu r ren t  s t a t e  f r o m  a nomi- 
nal  cu r ren t  state.  It r emains  to evaluate the es t i -  
mated exit angle a f .  By combining the two equa- 
tions (22), we have 

* =  Q d Q ,  
Y X 

(34) 
(6 e - 1)  

X 
By keeping (6 e - 1) constant, we neglect  the ef- 
fect  of the variation of the speed. This i s  a good 
assumption since m o s t  of the speed depletion oc- 
c u r s  during the descending phase a t  high d rag  co- 
efficient. By integrating Eq .  (34) f r o m  the lowest 

point, y = yb , Q, = 0 , to exit y = 1, x = x we 
f '  

have the es t imated value fo r  
f 

In this equation, we have introduced a n  additive 
correct ional  t e r m  k to compensate f o r  the e r r o r  
incurred in neglecting the effect of the variation of 
the speed. This value k i s  computed based on the 
nominal t ra jectory  by using in E q .  (35) Q = 

O 

f f '  
x = x O The key to the efficacy of this approach 

f f '  
i s  that, fo r  the family  of skip  t r a j ec to r i e s  under  
consideration,  the flight path angle behavior i s  
relatively uniform: the flight path angle i s  always 
smal l  (a few degrees  a t  mos t ) ;  and i t  i s  monotoni- 
cally increas ing during the guided portion of the 
flight which s t a r t s  a t  y = y = 0 . Consequently, 

b 
the flight path angle i s  of minor  importance in 
comparison with the speed. The connection of the 
guidance law with the nominal t ra jectory ,  s ince  i t  
i s  embodied in  the constant k which only affects 
the flight path angle,  i s  minimal  and does l i t t le to 
disrupt the explicit nature  of the guidance law. 

This explicit d rag  modulated control  law has  
been tested numerical ly  for  s e v e r a l  values of the 
entry speed ranging f r o m  parabolic ent ry ,  6 = 0. 5 ,  
to near  c i r cu la r  entry,  6 = 0.9, with excellent 

= 0.0030 
m a x  

E 
1 

= 0.0025 

2 
= 0.0005 

= 0.0002 
min  

We can of course  u s e  the values E and E a t  
1 2 

and E respect ively  in constructing the 
'max m i n  
nominal trajectory.  The main effect of the ra t io  
E i s  in  the widening of the family of 

max' 'min 
t r a j ec to r i e s  which can be accurate ly  controlled. 
The numerical  r e su l t s  a r e  summar ized  in Tables 
1 and 2. 

In Table 1, we have the c a s e  of parabolic entry,  

6 = 0. 5, ve = fi ye = - 3 . 8 ~ ~ .  The d rag  se-  

quence E + e 2  with switching a t  the bottom of the 

t r a j ec to ry  leads  to xcO = 0. 394717, yrO = 2. 8 3 0 7 ~ .  
L L 

We also  have y = 63.7253 with the correct ional  
b 

t e r m  k = 0.05284865. In the table, x i s  the re-  - f 
qui red exit speed while x i s  the actual  result ing 

f 
exit speed with the var iable  drag control  law (33). 
We can see  in  the table that the speed control  i s  
excellent,  not only nea r  the nominal t ra jectory ,  
but fo r  a l a rge  range f r o m  high speed exit to low 
speed exit. The value y, i s  the one computed f r o m  

Eq. (35). Using xc and y,, we have computed cu, 
I L. 

f r o m  Eq. (27). Hence, using this table, we consid- 
e r  the problem a s  of controlling the vehicle for exit 
a t  xf,  y for  a n  ascen t  to cu 

f 2  - The actual  r e su l t s  
- - 

a r e  x 
f' 

yf  and 'Z 
2 .  

In Table 2 ,  we have the c a s e  of 6 = 0. 577, 
v = 1. 316473, y = -3. 36O. This i s  essentially 

the en t ry  speed fo r  a d i rec t  r e tu rn  f r o m  a geo- 
synchronous orbit. The relevant data f r o m  the 
nominal t ra jectory ,  E -, E , a r e  x 0  = 0. 307536, 

f 
y: = 2.4787', yb = 45.4944 and k = 0.04101062. 

Other c a s e s  of lower entry  speed were  tested 
with excellent r e su l t s  and i t  can be concluded that 
this explicit var iable  d rag  controls accurate ly  the 
exit speed. 

The variations of the d rag  coefficient E during 
the controlled ascent  a r e  shown in Fig. 6 f o r  the 
c a s e  of a r e tu rn  f r o m  a geosynchronous orbit. 
Typically, because  we control  the skip t ra jectory  
fo r  an  exit  speed lower than the nominal exit speed, 
that i s  fo r  x > x O , the modulated flight for  ascent  

f f 
s t a r t s  a t  yb with a n  init ial  drag coefficient E > E 

2' 
F o r  high speed exit ,  E dec reases  continuously 
unti l  exit, yf = 1 .  F o r  low speed exit ,  E i n -  

c r e a s e s  to provide m o r e  speed depletion. It 
should be mentioned that, by using var iable  drag 
coefficient during ascent ,  the sensit ivity problem 
encountered in bang-bang control  i s  removed. 

Here ,  the switching t ime i s  no longer a c r i t i ca l  



Table 1. Accuracy analysis fo r  adaptive drag modulation mode 
Case of parabolic entry,  6 = 0. 5 

Table 2. Accuracy analysis for adaptive drag modulation mode 
Case of d i rect  re turn f rom geosynchronous orbit ,  6 = 0. 577 

parameter  in the process .  By using the control 
law ( 3 3 ) ,  even in the case  where i t  i s  not s tar ted 
exactly a t  the lowest point, i t  i s  self-corrective by 
using the cur ren t  s ta te  to adjust the drag and, a s  a 
consequence, leads to the desired exit speed. 

Fig. 6. Variations of the drag coefficient 6 
for  various exit speeds in the case  of a re turn 

f r o m  a geosynchronous orbit. 

5. Optimal Post  Atmospheric Maneuver 

We have_seen in the previous section that a t  
exit we have v - yf leading to an apocenter dis- 

f ' 
tance CY 

2 '  
If cu = (Y a final impulse, applied 

2 2 '  
tangentially a t  this apocenter distance, i s  neces- 
s a r y  for optimal orbit  insertion. We consider the 
general  case  where # cu2 and optimize this 

post atmospheric phase. 

The case  where we overshoot the target apo- - 
center ,  cu > a 2 ,  i s  simple. 

2 
The final orbit i s  

achieved by a Hohmann t ransfer  with an accelera- 
tive impulse at; to r a i s e  the per icenter  to the 

2 
level p2  a-nd a decelerative impulse a t  this center 

to adjust cu to the cor rec t  distance cu 
2 2 '  

In the case  where we undershoot the target - 
apocenter,  (12 < cu2 , the f i r s t  impulse Avl i s  ap- 

plied a t  the lowest point which i s  the exit point, to 
bring r2 to cu2 . At this cor rec t  apocenter,  a 

tangential and accelerative impulse Av i s  applied 
2 

fo r  orbit  insertion. The velocity diagram a t  exit 
i s  shown in Fig. 7 with the Y-axis along the po- 
sition vector. 



Fig. 7. Velocity d iagram a t  exit. 

In this sys tem we have the components 
- - - - - - 
X = v c o s y  

f 
Y = vf s in  y 

f ' f 
( 3 7 )  

- 
of the exit velocity v result ing f r o m  drag modula- 
ted fly through and the components 

X = v c o s y  
f f '  f f 

Y = v s in  y (38) 

+ 
of the c o r r e c t  velocity v required fo r  attaining the 

f 
final apocenter d is tance a Expressed  in t e r m s  

2' 
of X and Y ,  we wri te  the constraining relation (27) 

Let v2 be the speed a t  the apocenter in the final 

orbit. The sum of the two impulses  Avl and Av2 

required in post a tmospher ic  maneuver i s  

Taking account of the const ra int  (39) we introduce 
the Lagrange multiplier  X and minimize  the aug- 
mented function 

2 
I = J + X [(or '-1) x t o 'y2- LoZ (a2 - I ) ]  (41) 

2 2 

The necessa ry  conditions fo r  a s ta t ionary value of 
I a r e  

Upon eliminating X between these  equations and 
simplifying the resul t ,  we obtain 

- - 
Y - Y  = k ( Y X - X Y )  

1 
where 

1 

Define the components of the f i r s t  impulse which 
i s  non tangential 

- 
AX = x - x  

- 
AY = Y - Y  

F r o m  the l inear  equation ( 4 3 ) ,  we deduce the 

optimal thrus t  angle - 
AY 

k Y 
tan + = - = 1 

l t k  1 X 

which can be immediately evaluated fo r  given cr - 
v and y f  . 2 '  

f 
Le t  - 

Y 
(47) 

k2 = l + k l  z 
and wri te  Eq. (43) a s  

Y = k ( l t k  X) 
2 1 (48) 

Upon substituting into Eq. (39) and solving fo r  the 
positive root ,  we obtain the solution 

With this solution the minimum charac te r i s t i c  
velocity in post  a tmospher ic  flight i s  

Hence, just  a s  fo r  the thrus t  angle,  the minimum 
cost  can be evaluated immediately in t e r m s  of cu 
- - 2 '  
v and y without having to go through intermedi- 

f f 
a r y  steps. An elegant geometr ic  solution based on 
hodograph theory has  been given by ~ a r c h a l ~ .  

6. P rob lem Synthesis 

F r o m  the previous analysis,  i t  i s  c l e a r  that 
fo r  ae roass i s t ed  t r ans fe r ,  the th ree  phases involv- 
ed a r e  coupled in t e r m s  of the total fuel  consump- 
tion. The final apocenter d is tance and the drag 
capability dictate the selection of the en t ry  elements 
ye and v which in turn  influence the cha rac te r -  

i s t ic  velocity for  the deorbit  phase. In this section, 
we shal l  prove the as se r t ion  that, a s  compared to 
the idealized case ,  which i s  not r ea l i s t i c  in prac- 
t ice,  the penalty in  the fuel  consumption using the 
present  operating mode i s  smal l  s ince  the optimal 
condition has  been real ized in  each phase. 

We f i r s t  compute the additional fuel  consump- 
tion, in  t e r m s  of the cha rac te r i s t i c  velocity, 
6 (Av), fo r  a non ze ro  entry  angle y a s  compared 

e '  
to the idealized grazing en t ry  case.  

If parabolic deorbi t  i s  optimal,  then y e has  no 

influence and tr ivially 6 (Av) = 0. F o r  a finite- 



t ime deorbit ,  then when y = 0, the optimal mode 
e 

i s  always by one impulse.  F o r  ye # 0 , t he re  i s  a 

possibility of a two-impulse optimal mode, but 
even if i t  i s  the case ,  s ince  y i s  smal l ,  the saving 

in the fuel  consumption i s  small .  Therefore ,  we 
compare  the one impulse  mode which can be  opti- 
m a l  o r  non optimal for  non ze ro  y with the 

e '  
optimal one impulse fo r  the idealized c a s e  where  

ye = 0. By comparing Eqs. (4) and (10) and lin- 

ear iz ing for  s m a l l  y we have the additional 
e '  

cha rac te r i s t i c  velocity 

The factor  K(LY ) i s  a function of the apocenter 
1 

distance of the init ial  orbit .  It i s  l a r g e  only fo r  
cu = 1 .  
1 

But, this i s  not the c a s e  s ince  aero-  

a s s i s t ed  t r ans fe r  i s  only re levant  fo r  high init ial  
orbit. Hence, this additional cha rac te r i s t i c  veloc- 

2 ity i s  smal l  s ince  i t  i s  of the o r d e r  of y . 
The additional fuel  consumption for  post  

a tmospher ic  maneuver  i s  due to non-zero exit 
angle. As h a s  been mentioned above, this cannot 
be avoided due to the fact  that fo r  one-passage drag 
control ,  superc i rcu la r  speed exit a t  z e r o  exit  angle 
i s  not possible. We f i r s t  evaluate 6 (Av) fo r  the 
undershoot case.  F o r  the idealized c a s e ,  we have 
a single impulse  applied a t  the c o r r e c t  apocenter 
with magnitude 

On the o the r  hand, the minimum total cha rac te r -  
i s t ic  velocity in post a tmospher ic  flight fo r  the 
undershoot c a s e  has  been given in Eq. (50). Taking 
the difference,  we have 

- - 
where  k i s  defined in  Eq. (44) and v and y a r e  

1 f f 
the actual  exit speed and flight path angle result ing 
f r o m  the controlled a tmospher ic  flight. 

We reca l l  that, in  a tmospher ic  flight, we 
se lect  a s m a l l  value y and control  the d rag  to 

f have an  exit speed satisfying Eq. (27). To the 
o r d e r  of y , we have 

f 
2cu (cu - 1) 

2 2 
v = 

yf 
f 2 2 a t l  2 

( f f2  - cos  yf)  2 (a2 - 1) 

We have shown that we can accurate ly  c o ~ t r o l  this 
speed. Hence in Eq. (53),  we can take v = v 

f f 
and compute 

k:v: t 2k v c o s y  t 1 = 
1 f f - 

L - 
Since in  the undershoot c a s e  y < yf , in the l a s t  

- 
equation, by taking y - - yf , we have a conserva- 

tive e s t ima te  of 6 (Av). Then, upon substituting 
into Eq. (53), we have 

This h a s  the s a m e  functional f o r m  a s  Eq. (51). 
Although h e r e  we have the c a s e  of smal l  value of 
cu but when cu = 1 , yf i s  generally very  small .  

2 '  2 
F o r  example,  fo r  a n  E a r t h  orbi t ,  taking the entry 
alt i tude a t  120 km and for  a v e r y  low final apo- 
center  a t  380 km,  we have R = 6498 km, A = 

2 
6758 km, and cu2 = 1.04 and the function K h a s  the 

value K(a ) = 6.4347 and i s  s t i l l  acceptable for  low 
2 

exit angle. 

F o r  the overshoot c_ase, we f i r s t  compute 
the m i s s  d is tance Acu = a2  - a 2  > 0. F r o m  Eq. 

(31), with accura te  control  in the speed, Av = 0 
f ' 

and with the aid of Eq. (54) for  v , we have 
f 

Aff 
2 2 - - -  

ff - (a2 - 1) yf Ayf (56) 
2 

This s imple  formula  provides r e su l t s  in excellent 
ag reement  with the data in Tables 1 and 2. 

F o r  the overshoot case ,  post  a tmospher ic  
maneuver  i s  the usua l  Hohmann t r ans fe r  using two 
impulses .  L e t  Ta be the speed of the vehicle a t  

the overshoot apocenter distance z2 . The char-  
- 

ac te r i s t i c  velocity for  the Hohmann t r ans fe r  i s  

Linearizing with r e spec t  to Au2 , we have 

where  

i s  the speed a t  the apocenter on the final orbit. 
By comparing Eq. (58) with the idealized cost  (52), 
we have the additional fuel consumption 



v A a  
b (Av) = - v  - 2 2 

2a (60) 
2 

- - 
Using Eq. (29) to evaluate v with a = a2 and 

a '  
v f r o m  Eq. (54),  we have 

f 

Then, upon substi tuting into Eq. (60) and using 
Eq. (56) f o r  Acu / cu we have the f inal  expres-  
sion 

2 2 '  

(62) 

Since K(cu ) i s  the s a m e  a s  in Eq. (55),  and the 
2 

product y Ayf i s  v e r y  sma l l ,  the penalty in  the 
f - - 

charac te r i s t i c  velocity fo r  the overshoot  c a s e  i s  
the s a m e  a s  f o r  the undershoot  case .  

To conclude this paper one final  r e m a r k  i s  in 
order .  By inspection of Tables  I and 2 one can 
obse rve  that the control  in the exit  flight path angle 
is poore r  fo r  v e r y  low values  of a,  . This  is of no 

L. 

r e a l  consequence s ince  in p rac t i ce  one would not 
choose the par t icular  nominal r e fe rence  t r a j ec to ry  
to control  low values of a,. F o r  example,  r eca l l  

L. 

that fo r  Table 2 (ent ry  f r o m  geosynchronous orbi t )  
the nominal t r a j ec to ry  had a n  ent ry  flight path 
angle y -  = -3. 36O, leading to a n  exit  a t  yfO = 

0" 1 

2.4787 fo r  a speed of vzO = 1.128838 and giving a 
L 

nominal apocenter  d is tance  of a,' = 1.760183. 
L 

According to the formulation of the guidance algo- 
r i thm this nominal t r a j ec to ry  i s  u sed  to control  the 
orbi ts  with cu sl ightly below this value. F o r  low 

2 
alt i tude final  o rb i t s ,  the nominal t r a j ec to ry  select-  
ed in pract ice  would have a s t e e p e r  en t ry  angle 
than y = -3. 36O which then would yield a lower 

nominal apocenter  distance.  The control  algorithm 
would then provide excellent  accuracy  in the exit  
flight angle a s  well  a s  the exi t  speed. F o r  values 
of cu2 higher than those shown in Table  2, one 

would se l ec t  a nominal t r a j ec to ry  with a m o r e  
shallow entry  flight path angle s o  a s  to give a 
higher nominal apocenter  distance.  
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