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During the hypersonics activities of the 1960s, thin shock-layer theory was developed

as a �rst-order correction to Newtonian theory, in the hope of gaining insight into eÆcient

lift at very high speeds. The wings are limited to conical geometry, but can have arbitrary

transverse camber. Good predictions were made of the forces generated by delta and caret

wings, but no optimization studies were carried out. This paper collects together some

old results, including some that were not widely published, establishes a parameter that

measures hypersonic lifting eÆciency, and presents a wing design that achieves a very high

value of that parameter.

I. Introduction

This paper is concerned with eÆcient ight at hypersonic speeds. Only the inviscid forces on the lower
surface of the wing are considered, and those are obtained approximately using Thin Shock-Layer Theory
(TSLT), which is a �rst-order correction to Newtonian Theory. Newtonian Theory itself idealises the ow
by collisionless molecules bouncing o� the surface to arrive at the simple expression 2 sin2 � for the surface
pressure coeÆcient, where � is the deection angle of the local surface. Within this theory, the lifting surface
that gives the best ratio of lift to drag is a at plate. This remains true for any theory that assumes a purely
local relationship between pressure and deection. Prior to the coming of Computational Fluid Dynamics,
local pressure-deection laws were used with some success to predict the aerodynamics of simple shapes at
hypersonic speeds.12 This probably contributed to a widespread belief that at surfaces are indeed optimal
under hypersonic conditions.

A con�guration that does produce lift by interference was proposed by Eggers and Syvertson,2 who
considered a simple con�guration consisting of half a cone placed below a thin delta wing. At zero incidence,
the full cone would produce a conical shock wave. If the wing is sized so that it would just span that shock,
then the half-cone will produce the same ow. The wing would produce no lift by itself, but picks up some
interference lift from the cone body. Unfortunately, this attractive concept is not eÆcient. It turned out that
when the Eggers-Syvertson con�guration was tested in a windtunnel over a range of incidences, it achieved
a signi�cantly better (L=D)max when placed upside down, with the at surface underneath! Although this
restored some faith in the `at-is-best' idea, such a conclusion is a little naive, because the Eggers-Syvertson
con�guration is merely a simple application of the interference principle, and not necessarily a good one.

In this paper we will reexamine the issue, but we will not attempt a full computational treatment of
the three-dimensional problem. Rather, we approach the task by limiting consideration to conical wings,
formed from straight generating rays that all pass through a common apex, and using the simpli�cations
of Thin Shock-Layer Theory, as formulated by Messiter.6 In this theory, which is valid for ows at high
Mach number and also high incidence, the high incidence reduces the post-shock Mach number to a value
such that the ow in the cross-plane is transonic. Therefore the pressure along a given ray depends on
shape of the surface within a certain domain of dependence. Therefore we can investigate whether lifting
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eÆciency can be inuenced by so-called conical camber. This question has been examined in a di�erent limit
(Hypersonic Small Disturbance Theory, which relates to high Mach number and low angle of attack) in11

and in a preliminary numerical fashion for the Euler equations in.5

Because much of the material on TSLT is rather old, we begin by reviewing it, sometimes from a more
up-to-date perspective. The material in Section IIA is standard to all of the references. The �rst part iof
SectionIIB was given in work of the author7 that had very limited circulation, and the integral equation
relating shock and body shape appears in,10 derived di�erently. The divergence form of TSLT is new,
and leads to two nice integral theorems. These were given in,7, 8 although with di�erent proofs. All the
subsequent material, which deals with devising an appropriate measure of lifting eÆciency in this ight
regime, and devising wings that enhance it, is new.

II. Presentation of Thin Shock-layer Theory

Thin Shock-Layer Theory is applicable to ows with large values of the hypersonic similarity parameter
M1 sin�, where � measures a typical ow deection angle, so that the density behind the shock is large,
and the distance from the shock to the surface is small. Examples of the theory are to be found in the classic
text by Hayes and Probstein,4 applied to ows having two-dimensional, axisymmetric, or conical symmetry.
It is this last application that is considered here. It allows the study of delta wings having `conical camber';
such wings are composed of straight generators passing through their apex, but their surfaces may not be
planar.

The theory was developed during the 1960s and 1970s, largely prior to developments in Computational
Fluid Dynamics. The published literature3, 4, 6, 9, 10, 13 consists of some general results, together with some
special solutions that can be obtained analytically. TSLT achieves some drastic and elegant simpli�cations
of the governing equations, but at the cost of admitting certain anomalies. Perhaps the most serious of these
is that a correct distinction is not made between those regions of the ow that are `conically hyperbolic' and
`conically elliptic'. In TSLT the entire ow is conically hyperbolic.13 Nevertheless, TSLT makes qualitatively
correct predictions of shock detachment, and the ows are in generally good agreement with more exact
calculations and with experiment.7, 9, 10, 13

A. Similarity Variables, Governing Equations and Characteristics
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Figure 1. (left) The ow past a two-dimensional wedge, and, superposed on that, a perturbation representing
the ow over a conically cambered delta wing. (right) The ow over the wing displayed in scaled conical
coordinates.

We summarise here the derivation given in.6 Consider a wing with conical symmetry, that is to say
generated by straight lines passing through a �xed point, and whose surface lies close to the plane z = 0.
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This plane makes an angle � relative to a uniform ow whose Mach number is M1. The assumption of
Thin Shock-Layer Theory is that the wing produces a ow that is a small perturbation of the known ow
that results from a shockwave lying in that plane. A perturbation parameter is de�ned as the inverse of the
density ratio across that shockwave.

� =
 � 1

 + 1
+

2

( + 1)M2
1
sin2 �

(1)

Conical coordinates are de�ned as

y =
y�

x�� tan�
; z =

z�

x��
1

2 tan�

and the ow variables are expanded as

u�

U1
= cos�+ � sin2 �u+O(�2)

v�

U1
= � sin�v +O(�2)

w�

U1
= �

1

2 sin�w +O(�2)
p� � p1
�1U2

1

= sin2 �+ � sin2 �p+O(�2)
�1
��

= �+ �2(1 + p)�  � 1

2
�(2u+ w2) +O(�3) (2)

Here, all of the physical quantities are denoted by stars, and the scaled dimensionless quantities, to leading
order, by unadorned symbols. The choice of �

1

2 as the spanwise scaling variable is somewhat arbitrary, but is
chosen so that the Mach angle within the shock layer will be of order unity. This means that the equations
are properly scaled to study conically transonic behavior, and the possibility of interference lift.

The ow is studied in any crossow plane (x� = const) and is governed by the following dimensionless
equations.

@yv + @zw = 0 (3)

(v � y)@yv + (w � z)@zv + @yp = 0 (4)

(v � y)@yw + (w � z)@zw = 0 (5)

One of the main simpli�cations in TSLT is the decoupling of the equations. Here, the �rst and third equations
are enough to solve for v and w, after which the second equation gives p. Additional uncoupled equations
give u and �, should they be needed. The governing equations can be put into the quasilinear form

Auy +Buz = 0

with u = (p; v; w)T and

A =

2
64

0 1 0

1 v � y 0

0 0 v � y

3
75 ; B =

2
64

0 0 1

0 w � z 0

0 0 w � z

3
75

The characteristic directions dz=dy = � are found from det(B � �A) = 0, which gives � = 0 (the vertical
direction, twice) and � = (w � z)=(v � y) (the conical streamlines)

3 of 12

American Institute of Aeronautics and Astronautics



The third of the equations given is already in characteristic form, stating that the spanwise velocity w is
constant along the `conical streamlines' dy=dz = (v � y)=(w � z)a. We get a second characteristic equation
by using the �rst equation to substitute for @zw in the third equation;

(v � y)@yw � (w � z)@yv = 0 (6)

which hold along the vertical characteristic. However, the system of equations is degenerate, and does not
have a complete set of eigenvectors corresponding to the vertical characteristic. This anomaly results from a
distortion of the geometry. In the full conical Euler equations, the characteristics are the conical streamlines
(faithfully reproduced in the simpli�cation) and a pair of conical Mach lines, which de�ne the domains of
inuence of an event located along a conical ray. Such lines should exist only where the ow is conically
supersonic. In the simpli�cation, these Mach lines coincide along the vertical direction, and exist whether
the ow is conically subsonic or supersonic. Although there is no third characteristic equation, the second
of the above equations matches the derivative of w along one characteristic with the derivative of p along
another, so that characteristic coordinates are still useful.

Since the body y = yb(z) is a conical streamline, the boundary condition on the body is

(w � z)
dyb
dz

= v � y (7)

and the boundary conditions on the shock surface y = ys(z) can be found as

ps = �(y0s)2 � 1 + 2ys � 2zy0s; (8)

vs = �(y0s)2 � 1 + ys � zy0s; (9)

ws = �y0s: (10)

Remark 1 Given any solution to the TSLT equations, the following transformation of that solution will

also be a solution.

z ! z; y ! y + Æy; w ! w; v ! v + Æy; p! p+ 2Æy (11)

This transformation represents a change of incidence amounting to � tan� Æy.

B. Streamline Geometry
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Figure 2. Cross-sectional view of ow. The shock layer is bounded by the shockwave and the body. Two
neighboring conical streamlines are shown.

Let �(z) be the (small) vertical spacing between any pair of conical streamlines, and S = (v�y)=(w�z) =
��1 be the slope of a streamline. If D�=Dz denotes the derivative of � along the streamline, it is easy to

aThe conical streamlines are conical surfaces (composed of straight generators passing through the apex) that are everywhere
tangential to the local ow vector
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show that

1

�

D�

Dz
=

@S

@y
(12)

=
(w � z)(@yv � 1)� (v � y)

@yw(w � z)2
(13)

=
�1

(w � z)
(14)

Since w is constant along a streamline, this equation can be integrated to yield

� = C(w � z): (15)

The spacing vanishes when the two streamlines merge, on the body. Its magnitude elsewhere is determined
by its value at the shock. From Fig 2 we see that two streamlines originating at the shock with locations
z; z + dz will have an initial vertical separation

�s = dz(�y0s + Ss) (16)

= dz

�
�y0s +

vs � ys
ws � zs

�
(17)

= dz

�
�y0s +

�(y0s)2 � 1� zsy
0

s

�y0s � zs

�
(18)

=
�dz
w � zs

(19)

It follows that the area of the (z; y) plane occupied by the streamtube in question is therefore equal to that
of a triangle whose vertical base is dz=(zs �w(zs)) and whose horizontal `height' is zs �w(zs). This area is
simply dz=2. Integrating this result gives

Theorem 1 First Integral Theorem

Z 


�


(ys � yb)dz = 
: (20)

Therefore, in these dimensionless variables, the average thickness of the shock layer is 1

2
. In these same

variables, for comparison, the thickness of the shock layer on a plane wedge is unity. This factor of 2.0

reects the di�erence between conical and slab symmetry.

The streamline geometry also leads to an integral equation connecting the shapes of the shock y = ys(z)
and the body y = yb(z). Consider a general point P within the ow, parameterized by its spanwise coordinate
z, and the spanwise location where the associated streamline crosses the shock zs. The two quantities z; zs
parameterize the point unambiguously, We will calculate the vertical coordinate y(z; zs) of the point by
subtracting from ys(z) the height of each streamtube that originates in the interval z � � � zs. This is,
from (15),(19).

�(�) = � (w(�) � z)d�

(w(�) � �)2
: (21)

so that

y = ys(z) +

Z zs

z

(w(�) � z)d�

(w(�) � �)2
(22)
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If P lies on the body, there are two possibilities. If it lies on the outer part of the body, swept by the
streamline that originates at the leading edge, then the upper limit of the integral is the span 
. If P lies
on the inner part of the body, where the boundary condition is w = z, the upper limit must be chosen as
the root of the equation w(zs) = z. Thus, if zs(w) is the function inverse to w(zs), we can write

yb(z) = ys(z) +

Z min zs(z);


z

(w(�) � z)d�

(w(�) � �)2
(23)

This formula was derived by Messiter6 using more purely algebraic arguments. It allows a few special
solutions to be found inversely,3 by specifying shock shapes such that the integral evaluates to something
simple. Messiter found some numerical solutions, as did Squire.9, 10 A more eÆcient numerical procedure is
outlined below, based more directly on the geometry. Among the special solutions we note a mathematically
trivial, but practically signi�cant, example.

This is de�ned by the shock shape ys = 1, for which the ow �eld is simply

v(z; y) � 0; w(z; y) = 0; p(z; y) � 1 (24)

There is no perturbation at all to the basic ow over the wedge, and the conical streamlines are y=z =const.
If we choose to regard the pair of streamlines y=z = �1=
 as comprising the surface of the body, we have
the so-called `caret wing', sometimes taken as the protype of a hypersonic lifting body.

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

y=|z|/Ω
y=

|z|
/Ω

z

shock y =1

y

z=z=− ΩΩ

st
re

am
lin

e

Figure 3. A V-shaped wing, extending over the region between the shock and the body, supports precisely
the same ow as the basic wedge. This is called a caret wing.

The formula (23) can be di�erentiated twice to provide information on the shock curvature. Di�erenti-
ating once

dyb
dz

=
dys
dz

�
Z zu

z

d�

(z � w(�))2
+

1

z � ws(z)
� z � w(zu)

(zu � w(zu))2
dzu
dz

(25)
�
�
�
�
�
�

where zu = min zs(z);
. The last term can struck be out, because one of its factors always vanishes.
Di�erentiating again,

d2yb
dz2

=
d2ys
dz2

� 1� w0(z)

(z � ws(z))2
+

1

(z � ws(z))2
� dzu=dz

(zu � w(zu))2
(26)

Recognizing that w0(z) = �d2ys=dz2, this can be rewritten as

d2yb
dz2

=
d2ys
dz2

�
1� 1

(z � ws(z))2

�
� dzu=dz

(zu � w(zu))2
(27)
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In this expression, the second term arises from the way in which streamlines carrying di�erent values
of of w terminate at di�erent locations on the surface. Away from the surface, there is no such e�ect, and
all streamlines at any given spanwise station have the same curvature, given by the �rst term only. This
curvature can be related to the vertical pressure gradient by writing

D2y

Dz2
= @zS + S@yS: (28)

Expanding this and using the governing equations gives

D2y

Dz2
= � @yp

(w � z)2
(29)

Hence

@yp =
d2ys
dz2

�
(z � w)2)

(z � ws)2
� (z � w)2

�
(30)

There are two cases worth noting. If we consider a point on the inner portion of the body, where w = z,
then py = 0. If we consider a point just behind the shock, then

@yp =
d2ys
dz2

[1� (ws � z)2] (31)

The relationship between the signs of the shock curvature and the pressure gradient therefore depends on
whether thr ow is conically subsonic or supersonic.

C. A marching procedure for attached shocks

Begin at the leading edge, where the body slope is known to be, say S. As above, we have

S =
�(y0s)2 � 1� zy0s

�y0s � z

Treating this as a quadratic equation for y0s yields

y0s =
1

2

h
(S � z)�

p
(S + z)2 � 4

i
(32)

The positive root corresponds to a shockwave which is `weak' in the crossow plane, and the negative root
to the `strong' alternative. It will usually be correct to begin by choosing the weak root.7, 13 Then a short
section of the shockwave can be drawn in, and also the streamtube behind it. Taking the upper edge of this
streamtube as a new `displacement surface', the process can be repeated.

At some point it will be necessary to switch to choosing the strong root. This can be seen by considering
the situation close to the centerline of a symmertic wing, when z becomes small but S is large, and symmetry
requires that y0s tends to zero. Only the negative (strong) root delivers this solution. By picking the value
of z at which the switch is made, we can enforce the boundary condition that y0s(0) = 0.

It is interesting to note that at each stage of the construction there will be two values of the spanwise
velocity, w1;2 corresponding to the two roots, and that (w1 � z)(w2 � z) = 1, so the two roots give spanwise
velocities for which w�z is, in one case greater than unity, and in the other case less. Therefore the switching
point is a conical sonic point. Within thin shock-layer theory, this gives a vestige of the distinction between
conically subsonic and supersonic ow.

To treat an asymmetric wing, one would march independently from each tip inward. There would be a
sonic switching point on each branch, to be determined jointly by the two conditions that the continuations
of the two branches must, at the point where they cross, have the same ordinate and slope.
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The marching procedure can be extended to second order by using the relationship between the curvature
of the shock wave and the curvature of the streamline just behind it. However, it is diÆcult to implement
either version for general wing shapes. As we approach the centerline, both families of characteristics
become vertical, so that any marching procedure becomes very slow. Additionally, the shock shape is
usually discontinuous at the `sonic point', and this discontinuity is propagated inward along the streamline
from that point. Finally, the location of the sonic point is tricky to determine. At the time when TSLT was
originally developed, these issues would have strongly deterred the production of general numerical solutions.
Today, the programming is feasible, and far faster than attempting the full governing equations.

D. Divergence form

The thin-shock layer equations can be put into divergence form

Fy +Gz = s; (33)

where

F =

0
B@

v

v(v � y) + p

w(v � y)

1
CA ; G =

0
B@

w

v(w � z)

w(w � z)

1
CA ; s =

0
B@

0

�2v
�2w

1
CA

By integating these around an arbitrary domain D we obtainI
@D

(wdy � vdz) = 0 (34)

I
@D

w[(w � z)dy � (v � y)dz] = �2
Z Z

D

w dydz (35)

I
@D

v[(w � z)dy � (v � y)dz]� pdz = �2
Z Z

D

v dydz (36)

These integrals are valid for D chosen within the shock layer, but not extending across the shock. The �rst
integral can be made nicely analogous to the others;I

@D

[(w � z)dy � (v � y)dz] =

I
(ydz � zdy) = �2

Z Z
D

dydz (37)

Let us take D to be the region between the shock and the body. Consider the contribution made to the
contour integrals by the body. Since the body surface is always either a streamline (w� z)dy� (v�y)dz = 0
or a conical stagnation region w � z = v � y = 0, the integrand vanishes everywhere and the contribution is
zero. Now consider the contribution made by the shock. Just behind the shock, we �nd from the boundary
conditions (8,9,10) that

(w � z)dy � (v � y)dz = dz:

We therefore have the three results, remembering that the anticlockwise integral goes from right to left along
the shock,

Z 
R


L

dz = 2

Z Z
D

dydz; (38)

Z 
R


L

ws(z)dz = 2

Z Z
D

w(y; z) dydz; (39)

Z 
R


L

(vs(z)� ps(z) + pb(z)) dz = 2

Z Z
D

v(y; z) dydz: (40)
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The �rst of these results leads to an alternative proof of Theorem 1. The second does not seem to lead
anywhere. The third gives an important formula for the total normal force developed. We have

2

Z Z
D

v dydz = 2

Z Z
D

�
y + (w � z)

Dy

Dz

�
dydz

= 2

Z Z
D

�
3y + (w � z)

Dy

Dz
� 2y

�
dydz

= 3

Z
(y2s � y2b ) dz + 2

Z Z
D

�
(w � z)

Dy

Dz
� 2y

�
dydz (41)

where Dy
Dz is the slope of the conical streamline characteristic. (And more generally we will use D=Dz

to denote a derivative along the streamline characteristic) To evaluate the second term I2, consider the
contribution made to it by the region between two adjacent streamlines, between which the sidewash w is a
constant w = ws. At a spanwise location z the depth of the streamtube is

dy = � (ws � z)dzs
(ws � zs)2

and so

dI2 = � dzs
(ws � zs)2

Z z=zs

z=ws

�
Dy

Dz
(ws � z)2 � 2y(ws � z)

�
dz

= � dzs
(ws � zs)2

Z z=zs

z=ws

�
D

Dz
fy(ws � z)2g

�
dz

= � dzs
(ws � zs)2

ys(ws � zs)
2

= �ysdzs (42)

Now go back to (40), insert the boundary conditions (8), (9), and collect the later results. We obtain

Z 
R


L

(�ys + zy0s) dzs +

Z 
R


L

pb(z) dz = 3

Z 
R


L

(y2s � y2b ) dz � 2

Z 
R


L

ys dzs: (43)

and so

Z 
R


L

pb(z) dz = 3

Z 
R


L

(y2s � y2b ) dz �
Z 
R


L

(ys + zy0s) dzs: (44)

Since the last integrand is an exact derivative, we obtain �nally

Theorem 2 Second Integral Theorem The integrated normal force across the wing is given by

Z 
R


L

pb(z) dz = 3

Z 
R


L

(y2s � y2b ) dz � [zys]

R

L

(45)

Note that this theorem is readily veri�ed for the special case of a caret wing in its design condition, for

which yb = jzj=
; ys = 1; p(y; z) � 1

The practical importance of this result is that the force acting on the wing can be found simply from
the geometry of the shock and the body, without needing to make a detailed prediction of the pressure
distribution.
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III. A Measure of Lifting EÆciency

Our objective below will be to design lifting bodies that employ conical camber to increase their eÆciency,
but �rst a measure of lifting eÆciency under the conditions of TSLT needs to be de�ned and this seems not
to have been done previously.

Consider the limiting case of TSLT as �! 0 or, equivalently, apply Newtonian theory to a at wing. In
either case the lift and drag coeÆcients are

CL = K sin2 � cos� CD = K sin3 � (46)

For TSLT we employ K = 2 but sometimes the formulas are used in practice with other values of K. As
will be seen, the actual value is unimportant for our purposes. We can eliminate � from the equations to
obtain the formula for the lift-drag polar (Figure 4)

n

0

0.25

0.5

0.75

1

CL

0.25 0.5 0.75 1 1.25 1.5 1.75 2

CD

Figure 4. The lift-drag polar for at wings in the Newtonian limit. The vector n normal to this polar is the
direction that measures progress.

C2
L + C2

D = K2=3C
4=3
D (47)

A perturbation that moves the force vector from one point on the polar to another has no advantage
compared with simply changing incidence. A gain in lifting eÆciency comes from a perturbation that moves
the force vector normal to the polar. The direction of this normal is easily computed to be

n = (sin2 �� 2=3; sin� cos�) (48)

A �gure of merit for perturbations is therefore their component in this direction,

ÆM =
(3 sin2 �� 2)ÆCD + 3 sin� cos�ÆCLp

1 + 3 cos2 �
: (49)

It is easier to work with the perturbations to the normal force (in the y-direction) and the axial force (in the
x-direction). After a little algebra one obtains

ÆM =
sin� ÆCN + 2 cos� ÆCXp

1 + 3 cos2 �
: (50)

In terms of the TSLT variables it can be shown that

ÆCN =
� sin2 �




Z 


�


p dz (51)

ÆCX =
� sin3 �


cos�

Z 


�


(yb � zy0b) dz (52)
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Notice that, to �rst order in �, the change of axial force is produced only by the change of frontal projected
area. The change in pressure distribution is a second-order e�ect. These results can be combined to yield

ÆM =
� sin3 �p
1 + 3 cos2 �

E (53)

where

E =
1




Z 


�


(pb � 2yb + 2zy0b) dz (54)

It is easy to show that E is unchanged if the solution is translated in the y-direction. The problem of
designing an optimum lifting wing with conical TSLT is therefore that of maximizing E. It may be observed
that by using Theorems 1 and 2, E can be expressed in completely geometric terms as

E = 2yT +
1




Z 


�


(3y2s � 3y2b � 4yb) dz (55)

For any caret wing, the value of E is exactly 2.0. For at delta wings of very high aspect ratio (e�ectively
unswept wedges) the value is also 2.0, but decreases as aspect ratio decreases, falling to about 1.8 when the
shock detaches, and dropping rapidly afterward.

IV. EÆcient Wings

Within TSLT we can pose two problems. The direct problem consists of proposing a wing shape and
�nding the shape of the associated shock. The inverse problem consists of proposing a shock shape and
�nding the shape of the associated wing. To �nd optimal solutions, that maximize E, it should not matter
which we attempt. However, rather than attempt an optimisation procedure, an intuitively guided trial-
and-error process was employed. This seemed to work best in conjunction with solving the direct problem.
The integral formula for E, (55) was extremely useful. It avoided any computation of the detailed pressure
distribution (which is where the anomalies of TSLT show up very annoyingly) and made it unnecessary to
pursue the solution right to the centerline, since a simple extrapolation gave suÆcient accuracy. Occasionally,
the shock shape produced by a direct calculation was fed back into an inverse calculation as a check on the
accuracy. The best wing to emerge is shown in Figure IV.

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

1.2

1.4

z

y

Figure 5. An eÆcient wing design; E ' 2:4

This has a value of E of about 2.4. In other words its performance exceeds that of a caret wing by a
greater margin than the caret exceeds a at delta. It combines three of the features that are commonly
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regarded as bene�cial for hypersonic lifting eÆciency. It has a sharp leading edge with a attached shockwave
(ow containment) although this was of couse designed into the method. The leading edge is drooped, as on
a caret wing, which avoids using the shock to impart sideways momentum (momentum principle) and there
is also a central body that provides interference lift, as well as useful volume.

It is di�erent from the optimum wings found by Trianta�llou et al.11 A careful reading of that paper
reveals that the spanwise camber dyb=dz was contrained to be of one sign in each half of the wing. Therefore
the reex shapes found here were implicitly excluded from the search. The shapes found by Kinsey5 from
conical Euler solutions shared some features with those found here, but her code was unable to deal with
embedded shockwaves, which would probably be produced by the wing in Fig IV in a more exact computation.
Indeed, embedded shocks might be disadvantageous in practice also, producing local hot spots.

It is of course a major defect of the present study that it ignores viscous e�ects. It also ignores the
possible importance of longitudinal camber. Adding volume near the apex of a delta wing creates additional
interference lift in a swept-back region including the leading edge. Additionally, it creates resolves some of
the trim problems associated with over-idealized con�gurations. But generally it is harder in hypersonics
than in any other aerodynamic regime to bridge the gap between academic concepts and realistic design.
Some of the reasons for this are reviewed by Bushnell.1
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