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ABSTRACT

The hypersonic aeroelastic and aerothermoelastic
problem of a double-wedge airfoil typical cross-section
is studied using three different unsteady aerody-
namic loads: (1) third-order piston theory, (2) Euler
aerodynamics, and (3) Navier-Stokes aerodynamics.
Computational aeroelastic response results are used
to obtain frequency and damping characteristics, and
compared with those from piston theory solutions for
a variety of flight conditions. Aeroelastic behavior is
studied for 5 < M < 15 at altitudes of 40,000 and
70,000 feet. A parametric study of offsets, wedge
angles, and static angle of attack is conducted. All the
solutions are fairly close below the flutter boundary,
and differences between the various models increase
when the flutter boundary is approached. For this
geometry, differences between viscous and inviscid
aeroelastic behavior are not substantial. Results
illustrate that aerodynamic heating reduces aeroelas-
tic stability. In addition, the hypersonic aeroelastic
problem of a 3-D low aspect ratio wing, representative
of a fin or control surface present on hypersonic
vehicles, is studied using 1st and 3rd order piston
theory and Euler aerodynamics. Finally, application
of this approach to a generic vehicle resembling a
reusable launch vehicle is discussed. The results
presented serve as a partial validation of the CFL3D
code for the hypersonic flight regime.

NOMENCLATURE

a Nondimensional offset between the
elastic axis and the midchord

a∞ Speed of sound
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b Semi-chord
c Reference length, chord length of

double-wedge airfoil
CD, CL, CMy Coefficients of drag, lift and moment

about the y-axis
CpPT , CpNS Piston theory pressure coefficient, and

CFD Navier-Stokes pressure coefficient
respectively

f(x) Function describing airfoil surface
f1(), fi() Functions relating Mach number and

temperature
h Airfoil vertical displacement at Elastic

Axis
Iα Mass moment of inertia about the

Elastic Axis
Kα,Kh Spring constants in pitch and plunge

respectively; Kα = Iαω2
α,Kh = mω2

h

L Lift per unit span
L1, L2, L3 First, second and third-order piston

theory lift components
M free stream Mach number
M,K Generalized mass and stiffness

matrices of the structure
M1,M2,M3 First, second and third-order piston

theory moment components
m Mass per unit span
MEA Moment per unit span about the

Elastic Axis
Mf Flutter Mach number
nm Number of modes used
p Pressure
p∞ Free-stream pressure
Q Generalized force vector for the

structure
Qi Generalized force corresponding to

mode i
q∞ Dynamic pressure
qi Modal amplitude of mode i
rα Nondimensional radius of gyration
S Surface area of the structure
Sα Static mass moment of wing section
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about elastic axis
T Temperature of airfoil, uniformly

distributed
TE Kinetic energy of the structure
t Time
th Airfoil half thickness
UE Potential energy of the structure
V Free stream velocity
vn Normal velocity of airfoil surfaces
w Displacement of the surface of the

structure
xα Nondimensional offset between the

elastic axis and the cross-sectional
center of gravity

x, y, z Spatial Coordinates
Z(x, y, t) Position of structural surface
Zeff (x) Effective shape of double-wedge airfoil
α Airfoil pitch displacement about the

Elastic Axis
αs Static angle of attack of the airfoil
γ Ratio of specific heats
µm Mass ratio
ρ Air density
ωα, ωh Natural frequencies of uncoupled pitch

and plunge motions
ω1, ω2 Natural frequencies of double-wedge

airfoil
Φ Modal matrix
φi mode shape for mode i

τ Thickness ratio; τ =
th
b

ζ Damping ratio
(̇), (̈) First and second derivatives with

respect to time
()L, ()U Of the lower and upper surface,

respectively

INTRODUCTION AND
PROBLEM STATEMENT

Hypersonic aeroelasticity and aerothermoelasticity
was a vibrant and active area of research in the
late 1950’s and during the 1960’s as evident from
Refs. [1–4]. This research has been instrumental in
providing the basis for the aerothermoelastic design
of the space shuttle. For a considerable time period
there was only limited interest in this area until the
advent of the National AeroSpace Plane (NASP).

In recent years, renewed activity in hypersonic flight
research has been stimulated by the need for a low
cost, single-stage-to-orbit (SSTO) or two-stage-to-
orbit (TSTO) reusable launch vehicle (RLV) and the
long term design goal of incorporating air breathing
propulsion devices in this class of vehicles. The
X-33, an example of the former vehicle type, was a
1/2 scale, fully functional technology demonstrator
for the full scale VentureStar. Another ongoing

hypersonic vehicle research program is the NASA
Hyper-X experimental vehicle effort. Other activities
are focused on the design of unmanned hypersonic
vehicles that meet the needs of the US Air Force. The
present study is aimed at enhancing the fundamental
understanding of the aeroelastic behavior of vehicles
that belong to this category and operate in a typical
hypersonic flight envelope.

Vehicles in this category are based on a lifting
body design. However, stringent minimum-weight
requirements imply a degree of fuselage flexibility.
Aerodynamic surfaces, needed for control, are also
flexible. Furthermore, to meet the requirement of a
flight profile that spans the Mach number range from 0
to 15, the vehicle must withstand severe aerodynamic
heating. These factors combine to produce unusual
aeroelastic problems that have received only limited
attention in the past. Furthermore, it is important to
emphasize that testing of aeroelastically scaled wind
tunnel models, a conventional practice in subsonic
and supersonic flow, is not feasible in the hypersonic
regime. Thus, the role of aeroelastic simulations is
more important for this flight regime than in any
other flight regime.

Previous studies in this area can be separated into
several groups. The first group consists of studies fo-
cusing on panel flutter, which is a localized aeroelastic
problem representing a small portion of the skin on the
surface of the hypersonic vehicle. Hypersonic panel
flutter has been studied by a number of researchers,
focusing on important effects such as aerodynamic
heating [5], composite [6, 7] and nonlinear structural
models [8], and initial panel curvature [9]. It was noted
in Ref. 9 that piston theory may not be appropriate
for the hypersonic regime and that hypersonic studies
might have to use unsteady aerodynamic loads based
on the solution of the Navier-Stokes equations. A
comprehensive review of this research can be found in
a recent survey paper [10].

The second group of studies in this area was moti-
vated by a previous hypersonic vehicle, namely the
NASP [11–17]. However, some of these studies dealt
with the transonic regime, because it was perceived
to be quite important. Spain et al. [12] carried out a
flutter analysis of all-movable NASP-like wings with
slab and double-wedge airfoils. They found that using
effective shapes for the airfoils obtained by adding
the boundary layer displacement thickness to the
airfoil thickness improved the overall agreement with
experiments. Aerothermoelastic analyses of NASP-
like vehicles found that aerodynamic heating altered
the aeroelastic stability of the vehicle through the
degradation of material properties and introduction
of thermal stresses [15–17].
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The third group of studies is restricted to recent papers
that deal with the newer hypersonic configurations
such as the X-33 or the X-34. Reference 18 considered
the X-34 launch vehicle in free flight at M=8.0.
The aeroelastic instability of a generic hypersonic
vehicle, resembling the X-33, was considered in Ref.
19. It was found that at high hypersonic speeds and
high altitudes, the hypersonic vehicle is stable, when
piston theory is used to represent the aerodynamic
loads. Sensitivity of the flutter boundaries to vehicle
flexibility and trim state were also considered [19].
In another reference [20], CFD-based flutter analysis
was used for the aeroelastic analysis of the X-43
configuration, using system identification based order
reduction of the aerodynamic degrees of freedom.
Both the structure and the fluid were discretized
using the finite element approach. It was shown that
piston theory and ARMA Euler calculations predicted
somewhat similar results.

From the studies on various hypersonic vehi-
cles [11, 20–22], one can identify operating envelopes
for each vehicle. A graphical representation of these
operating conditions is shown in Fig. 1.

In a recent study [23], the authors of this paper de-
scribed an aeroelastic analysis capability for generic
hypersonic vehicles in the Mach number range 0.5 <
M < 15, using computational aeroelasticity. The
computational tool consisted of a combination of the
CFL3D code and a finite element model of a generic hy-
personic vehicle utilizing NASTRAN. During the vali-
dation process of the analysis [23], the authors studied
the aeroelastic behavior of a two dimensional double-
wedge airfoil, operating in the Mach number range of
2.0 < M < 15.0 at 100,000 feet. The current paper
exploits the finding of Ref. 23 which identified the
double-wedge airfoil as a remarkably appropriate ex-
ample for exploring the various computational aspects
of hypersonic aeroelasticity. This paper is aimed at ex-
ploring fundamental aspects of hypersonic aeroelastic-
ity using computational tools. The specific objectives
of the paper are:

1. Generate aeroelastic stability boundaries of a typ-
ical cross-section, based on the double-wedge air-
foil, in hypersonic flow using piston theory, for
comparison with more refined computations.

2. Study the time-step requirements for the reliable
computation of the unsteady airloads for this par-
ticular problem when using the Euler and Navier-
Stokes options of CFL3D.

3. Compare the aeroelastic behavior predicted using
piston theory aerodynamics with refined solutions
for the same problem, using CFL3D, which cal-
culates the unsteady aerodynamic loads based on
complete Euler and Navier-Stokes solutions.

4. Compare the exact solutions for aeroelastic behav-
ior using the Navier-Stokes-based unsteady air-
loads, with approximate solutions based on an air-
foil shape modified by the presence of a boundary
layer.

5. Conduct a parametric study that illustrates the
effect of the offset between the elastic axis and
the aerodynamic center, the wedge angle of the
airfoil, and static angle of attack.

6. Incorporate aerodynamic heating in an approxi-
mate manner in order to calculate aerothermoe-
lastic responses.

7. Extend the analysis to a generic hypersonic vehi-
cle that has features resembling a reusable launch
vehicle.

Finally, it is important to note that these objectives
not only enhance our fundamental understanding of
hypersonic aeroelasticity, but also make a valuable
contribution towards the validation of the CFL3D
code for hypersonic flight conditions.

METHOD OF SOLUTION

The computational aeroelastic solutions in the present
study are obtained using the CFL3D code [24]. The
CFL3D code is used to perform both steady and un-
steady flow calculations, and to also obtain the aeroe-
lastic transients. The aeroelastic solution utilizes the
free vibration modes of the structure.

Euler/Navier-Stokes Solver in CFL3D

The aeroelastic analysis of the double-wedge airfoil is
carried out using the CFL3D code. The code uses
an implicit, finite-volume algorithm based on upwind-
biased spatial differencing to solve the time-dependent
Euler and Reynolds-averaged Navier-Stokes equations.
Multigrid and mesh-sequencing are available for con-
vergence acceleration. The algorithm, which is based
on a cell-centered scheme, uses upwind-differencing
based on either flux-vector splitting or flux-difference
splitting, and can sharply capture shock waves. For ap-
plications utilizing the thin-layer Navier-Stokes equa-
tions, different turbulence models are available. For
time-accurate problems using a deforming mesh, an
additional term accounting for the change in cell-
volume is included in the time-discretization of the
governing equations. Since CFL3D is an implicit code
using approximate factorization, linearization and fac-
torization errors are introduced at every time-step.
Hence, intermediate calculations referred to as “subit-
erations” are used to reduce these errors. Increasing
these subiterations improves the accuracy of the sim-
ulation, albeit at increased computational cost.
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Aeroelastic Option in CFL3D

The aeroelastic approach underlying the CFL3D code
is similar to that described in Refs. 25, 26. The equa-
tions are derived by assuming that the general motion
w(x, y, t) of the structure is described by a finite modal
series given by Eqn. (1) below. The functions φi(x, y)
represent the free vibration modes of the vehicle which
are calculated using a finite element approach.

Z(x, y, t) =
nm∑

i=1

qi(t)φi(x, y) (1)

The aeroelastic equations of motion are obtained from
Lagrange’s equations,

d

dt

(
∂TE

∂q̇i

)
− ∂TE

∂qi
+

∂UE

∂qi
= Qi, i = 1, 2, ... (2)

which yield

Mq̈ + Kq = Q(q, q̇, q̈), qT = [q1 q2 ...] (3)

where the elements of the generalized force vector are
given by,

Qi =
ρV 2

2
c2

∫

S

φi
∆p dS

ρV 2/2 c2
(4)

The aeroelastic equations are written in terms of
a linear state-space equation (using a state vector
of the form [... q̇i−1 qi q̇i qi+1 ...]T ) such that a
modified state-transition-matrix integrator can be
used to march the coupled fluid-structural system
forward in time. The fluid forces are coupled with the
structural equations of motion through the generalized
aerodynamic forces. Thus, a time-history of the modal
displacements, modal velocities and generalized forces
is obtained.

The aeroelastic capabilities of CFL3D, based on this
modal response approach for obtaining the flutter
boundary, have been partially validated for the tran-
sonic regime for the first AGARD standard aeroelastic
configuration for dynamic response, Wing 445.6. The
results of flutter calculations using Euler aerodynam-
ics are given in Ref. 27 and those using Navier-Stokes
aerodynamics are given in Ref.28. However, these cal-
culations were limited to the transonic regime.

General Overview of the Solution Process

The solution of the computational aeroelasticity prob-
lem used in the present study is shown in Fig. 2. First,
the vehicle geometry is created using CAD software,
and from this geometry a mesh generator is used to
create a structured mesh for the flow domain around
the body. In parallel, an unstructured mesh is created
for the finite element model of the structure using the
same nodes on the vehicle surface that were used to
generate the fluid mesh. Subsequently, the fluid mesh

is used to compute the flow around the rigid body us-
ing a CFD solver, which consists of the CFL3D code
developed by NASA Langley Research Center. The
structural mesh is used to obtain the free vibration
modes of the structure by finite element analysis using
MSC NASTRAN. Nodes on the surface of the geome-
try in both the structured and unstructured meshes are
matched up by their physical coordinates. This corre-
lation is used to obtain the modal displacements at
each of the surface nodes in the structured fluid mesh
from the unstructured structural mesh. Using the flow
solution as an initial condition, and the modal informa-
tion, an aeroelastic steady state is obtained. For a ge-
ometry with vertical symmetry at zero angle of attack,
such as the double-wedge airfoil, the aeroelastic steady
state is the same as the undeflected state. Next, the
structure is perturbed in one or more of its modes by
an initial modal velocity condition, and the transient
response of the structure is obtained. To determine
the flutter conditions at a given altitude, aeroelastic
transients are computed at several Mach numbers and
the corresponding dynamic pressures. The frequency
and damping characteristics of the transient response
for a given flight condition and vehicle configuration
can be determined from the moving block approach,
which analyzes the Fourier transform of a discretely
sampled transient signal [29]. This approach applied
to the same altitude and vehicle configuration for a
range of Mach numbers results in a series of damping
values for the system. The flutter Mach number can be
estimated from this series by interpolating the damp-
ing data points to identify zero damping.

Computational Model for the Double-Wedge Airfoil

Few studies [30, 31] have been carried out that
validate CFL3D for the hypersonic regime. These
studies compared the pressure distributions and static
stability derivatives of cones and ogive-cylinder bodies
obtained using CFL3D with results obtained using
a unified hypersonic/supersonic panel method in the
range 3 < M < 6.

Validation of the CFL3D code for flutter analysis in
the hypersonic regime has never been undertaken.
Therefore, reliable results for a simple configuration
for which aeroelastic stability and response results
could be generated independently, are important.
A typical cross-section based on the double-wedge
airfoil, shown in Figs. 3 and 4, meets this need.
Generating results for this configuration using Euler
and Navier-Stokes unsteady aerodynamic loads, and
comparing them with results obtained using an
independently developed aeroelastic code based on
piston theory, provides a reliable means for validating
CFL3D in the hypersonic regime.

The Euler and Navier-Stokes computations are carried
out using a 225×65 C-grid with 225 points around the
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wing and its wake (145 points wrapped around the
airfoil itself), and 65 points extending radially out-
ward from the airfoil surface. The computational do-
main extends one chord-length upstream and six chord
lengths downstream, and one chord length to the up-
per and lower boundaries. For the Navier-Stokes sim-
ulations, the Spalart-Allmaras turbulence model was
used, along with an adiabatic wall temperature con-
dition. The double-wedge airfoil and a portion of the
surrounding computational grid are shown in Fig. 3.

Aeroelastic Model for a Double-Wedge Airfoil

Using Higher Order Piston Theory

Piston theory is an inviscid unsteady aerodynamic the-
ory, that has been used extensively in supersonic and
hypersonic aeroelasticity. It provides a point-function
relationship between the local pressure on the surface
of the vehicle and the component of fluid velocity nor-
mal to the moving surface [32,33]. The derivation uti-
lizes the isentropic ”simple wave” expression for the
pressure on the surface of a moving piston,

p(x, t)
p∞

=
(

1 +
γ − 1

2
vn

a∞

) 2γ
(γ−1)

(5)

where

vn =
∂Z(x, t)

∂t
+ V

∂Z(x, t)
∂x

(6)

The expression for piston theory is based on
a binomial expansion of Eq. (5), where the order of
the expansion is determined by the ratio of

vn

a∞
. Ref-

erence 33 suggested a third-order expansion, since it
produced the smallest error of the various orders of
expansion used when compared to the limiting values
of pressure, namely the ”simple wave” and ”shock ex-
pansion” solutions. The third-order expansion of Eq.
(5) yields

p(x, t)− p∞ = p∞

[
γ

vn

a∞
+

γ(γ + 1)
4

(
vn

a∞

)2

+
γ(γ + 1)

12

(
vn

a∞

)3
]

(7)

An aeroelastic analysis for a typical cross-
section for a double-wedge airfoil was developed using
Eq. (7) for the unsteady pressure loading. The equa-
tions of motion for a typical cross-section, with pitch
and plunge degrees of freedom shown in Fig. 4, were
obtained from Lagrange’s equations.

mḧ + Sαα̈ + Khh = −L(t)

Sαḧ + Iαα̈ + Kαα = MEA(t)
(8)

Assuming small displacements and using Fig. 4 yields

Z(x, t) = −{h(t) + (x− ba)α(t)}+ f(x) (9)

and

vnU = −{ḣ + (x− ba)α̇}+ V

{
−α +

∂f(x)
∂x

}

vnL = {ḣ + (x− ba)α̇} − V

{
−α +

∂f(x)
∂x

}

(10)
where

∂fU (x)
∂x

= τ : −b < x < 0

∂fU (x)
∂x

= −τ : 0 < x < b

∂fL(x)
∂x

= −τ : −b < x < 0

∂fL(x)
∂x

= τ : 0 < x < b

(11)

From Eqs. (7), (10), and (11) the unsteady pressure
distribution was determined. The unsteady lift and
moment due to this pressure distribution were deter-
mined from

L(t) =
∫ b

−b
(pL(x, t)− pU (x, t)) dx

MEA(t) = − ∫ b

−b
(x− ba) (pL(x, t)− pU (x, t)) dx

(12)
The unsteady lift can be written as

L(t) = L1(t) + L2(t) + L3(t) (13)

where,

L1(t) = 4p∞γMb
{

ḣ
V − ba α̇

V + α
}

L2(t) = −p∞γ(γ + 1)M2b2τ
(

α̇
V

)

L3(t) = 1
3p∞γ(γ + 1)M3b

{(
ḣ
V − ba α̇

V + α
)

((
ḣ
V − ba α̇

V + α
)2

+ 3τ2 +
(
b α̇

V

)2
)}

(14)
Note that L1(t), L2(t), and L3(t) represent the first,
second, and third-order piston theory lift components,
respectively. The unsteady moment is represented in
a similar manner

MEA(t) = M1(t) + M2(t) + M3(t) (15)

where

M1(t)=4p∞γMb2
{

a ḣ
V − (

b
3 + b a2

)
α̇
V + aα

}

M2(t)=p∞γ(γ + 1)M2b2τ
{

ḣ
V − 2ba α̇

V + α
}

M3(t)=− 1
3p∞γ(γ + 1)M3b2

{
1
5

(
b α̇

V

)3

−a
(

ḣ
V − ba α̇

V + α
) ((

ḣ
V − ba α̇

V + α
)2

+ 3τ2

)

+b α̇
V

((
ḣ
V − ba α̇

V + α
)2

+ τ2

−ba α̇
V

(
ḣ
V − ba α̇

V + α
))}

(16)
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It is interesting to note that the second-order lift and
moment are linear in terms of the displacement vari-
ables due to vertical symmetry of the double-wedge
airfoil.

For compatibility with CFL3D, it is important
to represent Eq. (8) in terms generalized coordinates
and forces. This is accomplished by the normal mode
transformation given by

{
h(t)
α(t)

}
= [Φ]

{
q1(t)
q2(t)

}
(17)

Applying the normal mode transformation on the
equations of motion, Eq. 8, yields

{
q̈1(t)
q̈2(t)

}
= [Φ]T

{ −L(t)
MEA(t)

}

−
[

ω2
1 0
0 ω2

2

] {
q1(t)
q2(t)

}

(18)
for mass normalized modes. The modal degrees of
freedom are coupled through the generalized aero-
dynamic loads. Equation (18) was solved using the
subroutine ODE45 in MATLAB c©.

Calculation of Effective Shape of the Double-Wedge

Airfoil

The thick boundary layer in hypersonic flow displaces
the outer inviscid flow, causing a given body shape
to appear much thicker [34]. This influences both the
surface pressure distribution and the vehicle aeroe-
lastic stability. This effect can be incorporated in an
approximate manner by using a static boundary layer
displacement thickness in conjunction with piston
theory. A similar approach was considered in Ref.
12, where a flat-plate boundary layer thickness was
used. In the present study, the accuracy in calculating
the displacement thickness is improved by using the
steady pressure distribution obtained from the CFD
based Navier-Stokes solution. This displacement
thickness is used to determine the modified airfoil
shape. The steady component of the piston theory
pressure can be obtained from Eq.(7) when all time
dependent terms are neglected. For zero angle of
attack, this is given by:

CpPT (x) =
p∞
q∞

{
γM

dZeff

dx
+

γ(γ + 1)
4

M2

(
dZeff

dx

)2

+
γ(γ + 1)

12
M3

(
dZeff

dx

)3
}

(19)

Equating the steady CFD Navier-Stokes coefficient of
pressure with Eq.(19) yields a third order polynomial

for
dZeff

dx
,

CpPT (x)− CpNS(x) = 0 (20)

Solving this equation at each surface grid point
results in two complex roots, and one real root which
represents the slope of the effective airfoil shape
at that grid point. The complete effective shape,

Zeff (x), can then be obtained from this slope,
dZeff

dx
,

by integrating along the length of the airfoil, and
assuming zero displacement thickness at the leading
edge, i.e. Zeff (−b) = 0.

RESULTS AND DISCUSSION

The results presented in this section provide a partial
validation of CFL3D for the hypersonic regime, and
also contribute to the fundamental understanding
of hypersonic aeroelasticity. By comparing results
for Euler, Navier-Stokes and piston theory, one can
identify the importance of viscosity, and the effective-
ness of piston theory in approximating the aeroelastic
behavior of a double-wedge airfoil in inviscid flow.
A 3-D configuration, which resembles the low aspect
ratio wing of the Lockheed F-104 Starfighter, is used
to compare 1st and 3rd order piston theory with Euler
aerodynamics.

The first part of this study utilizes two different
configurations, one of which was selected based on
engineering judgment, and a second motivated by
the desire to deal with a specific configuration that
has flown at high speeds. The second configuration
resembles a Lockheed F-104 Starfighter wing cross-
section at 75% of span, and is assumed to be made
of 2024-T3 Aluminum alloy. These are referred to
as Configuration I and Configuration II, respectively.
Additional parameters for both configurations of the
double-wedge airfoil are given in Table 2. Using
two different configurations extends the parameter
range covered by the results, and this gives a more
comprehensive view of aeroelastic behavior in the
hypersonic regime.

Before presenting the results, it is important to men-
tion that a careful numerical study was carried out
to determine the appropriate step sizes required when
using the Euler and Navier-Stokes solvers in CFL3D.
This included a consideration of the required trade-off
between accuracy and the demands on computational
resources. The results from this numerical study were
presented in Ref. [35].

Aeroelastic Behavior of the Double-Wedge Airfoil

Figure 5 depicts the flutter boundaries of Configura-
tion I at various altitudes, as a function of the offset
a, for the operating envelope of a typical hypersonic
vehicle, at 0◦ angle of attack, based on third-order pis-
ton theory. The mass ratios for the various altitudes,
calculated using the standard atmosphere, are given
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in Table 1. For the Mach number range of 5< M <15,
the height selected for the flutter calculations of
this configuration was 70,000 feet. At this altitude,
the flutter boundaries are at Mf=9.21 for a = 0.1
and at Mf=14.96 for a = −0.2. Sample computa-
tional points from this study were Mach numbers
7, 10 and 15 at 70,000 feet, with Reynolds numbers
of 3.336×106, 4.766×106 and 7.149×106, respectively.

The results for the aeroelastic behavior of Config-
uration I with a = 0.1 using different aerodynamic
models is shown in Fig. 6. The linear nature of
the second-order piston theory model allowed an
eigenanalysis for comparison with frequency and
damping characteristics from second-order piston the-
ory aeroelastic transients. From this figure, the flutter
Mach number predicted by second-order piston theory
was Mf = 9.79. In general, results from the time
history analysis agreed with the eigenanalysis. The
sharp coalesce shown in Fig. 6 is due to an inability of
the moving block approach to distinguish between the
damping and frequency characteristics of the transient
motion as the flutter Mach number is approached
and the two modes begin to interact. The flutter
Mach number obtained with Euler aerodynamics is
Mf = 6.75, and when Navier-Stokes aerodynamics is
used, flutter is found to be at Mf = 6.59.

For Configuration I with a = −0.2, Fig. 7 indicates
that differences in system response from the three
aerodynamic models are minor at Mach numbers
well below the flutter boundaries. However, these
differences increase with Mach number. An eigen-
analysis using second-order piston theory indicates
flutter at Mf = 15.16, while an analysis of third-order
piston theory aeroelastic transients indicates flutter
at Mf = 14.96. It is apparent that, for this config-
uration, third-order piston theory is slightly more
conservative than second-order piston theory. With
Euler aerodynamics, the flutter boundary drops to
Mf = 11.76, and using Navier-Stokes aerodynamics
results in a further reduction to Mf = 11.15. These
differences emphasize the importance of aerodynamic
nonlinearities and viscosity with increasing Mach
numbers.

The effect of the wedge angle (or thickness) of the
airfoil is depicted in Fig. 8, at 70,000 feet. Increasing
the wedge angle to 4◦, for Configuration I with
a = −0.2, reduces the flutter Mach numbers predicted
by all three models. Third-order piston theory yields
Mf = 12.56, using Euler aerodynamics reduces the
flutter boundary to Mf = 10.54 and Navier-Stokes
aerodynamics results in a further reduction of the
flutter boundary to Mf = 9.59.

All the cases considered were at 0◦ static angle of
attack. Hypersonic vehicles in trimmed flight will

operate at an angle of attack. The effect of static angle
of attack on the aeroelastic behavior of Configuration
I with a = −0.2 is considered next. Figure 9 shows
the aeroelastic behavior of the double-wedge airfoil
using third-order piston theory, for static angles of
attack given by αs = 0◦, 1◦ and 2◦. Increasing the
static angle of attack reduces the flutter boundary
proportionally by a small value. Similar behavior
is obtained when using Euler aerodynamics, shown
in Fig. 10, and also when using Navier-Stokes
aerodynamics, as shown in Fig. 11. These results
indicate that having a small static angle of attack
does not significantly affect the flutter behavior
of the double-wedge airfoil. For the sake of com-
pleteness, these results are also summarized in Table 3.

The effective shape modification due to the presence
of the boundary layer at Mach 7.0, 10.0 and 15.0
for Configuration I, are shown in Fig. 12. The
effective geometries are calculated from steady CFD
Navier-Stokes pressure data, as described previously.
Figure 13 presents a comparison of the aeroelastic
stability boundaries at 70,000 feet using the modified
shape, as well as Euler and Navier-Stokes based
unsteady loads. When the effective shape is used in
conjunction with piston theory aerodynamics, flutter
is predicted at Mf = 13.31 which is significantly
higher than the value of Mf = 11.15 predicted by
Navier-Stokes aerodynamics. The limited number of
results presented for the approximate approach based
on using piston theory with a modified airfoil shape
is insufficient to determine whether this is a reliable
approximation.

Figure 14 shows the flutter boundaries of Configura-
tion II at 40,000 feet and 70,000 feet, in comparison
with the flutter boundaries of Configuration I at the
same altitudes, calculated using third-order piston
theory. The flutter boundaries, at corresponding
altitudes, of Configuration II are significantly higher
than for Configuration I, due to a stiffer wing struc-
ture. For the Mach number range of 5< M <15,
the height selected for flutter calculations of Con-
figuration II was 40,000 feet. Some computational
points selected for this altitude were Mach numbers
7, 10 and 15, which correspond to Reynolds’ numbers
of 1.378×107, 1.969×107 and 2.954×107, respectively.

The aeroelastic behavior of Configuration II with
a=0.1, obtained using different aerodynamic models,
is shown in Fig. 15. Use of piston theory yields
flutter at Mf=12.01, while the Euler loads reduce
the boundary to Mf=9.39, and the Navier-Stokes
based loads result in a relatively minor reduction to
Mf=8.97. Modifying the offset to a=-0.2 changes the
flutter boundary to Mf=16.67, 13.76 and 13.30 when
using piston theory, Euler and Navier-Stokes models,
respectively, as shown in Fig. 16.
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Aerothermoelastic Behavior of the Double-Wedge

Airfoil

Configuration II represents a configuration where
the effects of aerodynamic heating ignored. A real-
istic model for the hypersonic regime must include
aerodynamic heating effects. Aerodynamic heating
significantly alters the flow properties [36], degrades
the material properties and also introduces ther-
mal stresses [37–39]. Aerodynamic heating of the
surrounding airflow leads to significantly different
thermodynamic and transport properties, high heat-
transfer rates, variable γ, possible ionization, and
nonadiabatic effects from radiation [36, 37]. Thermal
stresses arise from rapidly changing conditions of
heat input where time lags are involved, or also from
equilibrium conditions of non-uniform temperature
distribution [38, 39]. Commonly, the heated structure
has lowered stiffness due to material degradation and
thermal stresses, which manifests itself as a lowering
of the natural frequencies [38–40].

An accurate treatment of aerothermoelasticity may
require the coupling of the unsteady heat transfer
problem with the aeroelastic problem based on the
Navier-Stokes solution of the unsteady airloads.
Instead of dealing with this complicated problem, the
results presented here are intended to explore the
basic aspect of temperature change so as to gain an
approximate measure for the importance of this effect.
These approximate calculations are carried out by
considering the effect of elevated temperatures on the
structural stiffness and associated frequencies.

As a first approximation of the effects of aerodynamic
heating, the changes in model stiffness associated
with degradation of the modulus of elasticity are
considered. When a metal is heated above room tem-
perature, its modulus begins to decrease gradually,
and the process accelerates as higher temperatures
are reached. Experimental measurements indicate
that the modulus of elasticity decreases more rapidly
for static measurements when compared to dynamic
measurements [39]. Reference 41 indicates that
this difference is due to several internal-friction
mechanisms, among which anelastic effects appear
to be predominant. Data on the dynamic modulus
of elasticity for various alloys, including 2024-T3
Aluminum alloy used in the present study, at different
temperatures are also provided.

The simple model considered assumes the existence of
an efficient thermal protection system designed to pro-
vide a linear increase in temperature from 200oF at
M=3.5 to 350oF at M=10.0. Beyond M=10.0, the
thermal protection system loses its efficiency and the
temperature increases such that it is proportional to

the adiabatic wall temperature, reaching a tempera-
ture of 1000oF at M=20.0. This variation is given by,

T = f1(M)
= 200 + 23.08(M − 3.5) 2 ≤ M ≤ 10
= 318.12 + 4.19(M − 7.25)2 10 < M ≤ 20

(21)

and is shown in Fig. 17(a). The corresponding
variation of the dynamic modulus of elasticity with
Mach number is shown in Fig.17(b).

Using this temperature distribution, piston theory
was used to calculate the flutter boundary for Con-
figuration II for a variety of offsets, and this was
compared with flutter boundaries obtained by heating
the wing uniformly to temperatures of 200oF, 500oF,
and 800oF, as shown in Fig.18. It is apparent that
heating the wing to a constant temperature results in
an almost uniform reduction in aeroelastic stability for
all variations in a. However, varying temperature with
Mach number results in a nonuniform reduction in
aeroelastic stability, where the reduction is dependent
on a. As the elastic axis is moved from a = −0.4 to
a = 0.4, the reduction in aeroelastic stability due to
aerodynamic heating decreases. When the elastic axis
is moved aft, the Mach numbers required to initiate
flutter decrease. This implies the wing is heated to a
lower temperature, and therefore experiences a smaller
reduction in stiffness. In all cases, the flutter Mach
number decreases with increasing temperature. The
aeroelastic behavior of the heated wing with a=0.1 is
shown in Fig. 19, while the behavior obtained using
a=-0.2 is shown in Fig. 20. Both figures show that
there is a decrease in Mf when compared to the wing
in the absence of aerodynamic heating. Figure 21
shows the flutter boundaries calculated using the dif-
ferent aerodynamic methods for the unheated and the
heated wings. These results imply that similar trends
in the flutter boundary are evident, irrespective of the
method used to calculate the unsteady aerodynamic
loads.

The calculations on aerothermoelastic behavior that
were carried out in this section were limited to the
effect of temperature on the elastic modulus of the
material from which the wing is constructed. A more
interesting problem is one where one would account
also for the thermal stresses. However, this can be
best done on a 3-D configuration such as a cantilevered
wing or control surface. For such a configuration the
restrained warping at the root of the wing will induce
thermal stresses which in turn will affect the torsional
stiffness of the wing and modify its frequencies. This
change in mode shapes could have a more profound
influence on the flutter boundaries than the change
in modulus due to temperature. This problem is
currently being studied for a 3-D low aspect ratio
wing considered in the next section.
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Aeroelastic Behavior of a 3-D Low Aspect-Ratio Wing

A model for a low aspect ratio wing was created
to study the aeroelastic behavior of control surfaces
typical of reusable launch vehicles. The model,
shown in Figs. 22 and 23, resembles the low aspect
ratio wing of the Lockheed F-104 Starfighter. The
natural frequencies and modes shown in Fig. 24 were
determined by matching the fundamental bending and
torsional frequencies and total mass of the model to
the F-104 wing. Flutter of the low aspect ratio wing
was calculated using 1st and 3rd order piston theory
aerodynamics and Euler aerodynamics in the hyper-
sonic regime. Furthermore, the aeroelastic behavior
of the low aspect ratio wing was studied through the
transonic regime using Euler aerodynamics.

The Euler computations for the low aspect ratio
wing are carried out using a 65x193x41 C-grid with
193 points around the wing and its wake (97 points
wrapped around the wing), 65 points extending
spanwise from the root (25 points on the wing),
and 41 points extending radially outward from the
surface. The computational domain extends one
root chord-length upstream, two root chord-lengths
downstream, two semi-span lengths in the spanwise
direction, and one-half root chord-length to the upper
and lower boundaries. The low aspect ratio wing and
a portion of the surrounding computational grid are
shown in Fig. 23.

The sensitivity of the aeroelastic behavior of
the low aspect ratio wing to the number of modes is
illustrated in Table 4. It is evident that increasing the
number of modes from 5 to 8 has little effect on the
aeroelastic behavior when piston theory aerodynamics
is used, while 2 modes does not adequately represent
the system. Analysis of the aeroelastic behavior of
the low aspect ratio wing in the hypersonic regime
reveals several interesting results. Figure 25 shows
the results for the low aspect ratio wing using 1st and
3rd order piston theory (Mf = 23.8, and Mf = 13.5
respectively). In both cases there is a coalescence
of the 1st and 2nd natural frequencies of the wing
with increasing Mach number, during which the 1st
mode begins to approach critical damping. However,
despite the similar trends in damping and frequency,
the critical Mach number is over predicted nearly 80%
with 1st order compared to 3rd order piston theory
aerodynamics. This discrepancy is likely due to the
neglect of thickness in 1st order piston theory. Figure
26 shows the aeroelastic behavior of the wing when
using Euler aerodynamics(Mf = 16.2). Comparisons
of these results with the aeroelastic behavior using
3rd order piston theory aerodynamics illustrates
several similarities. The frequency and damping
characteristics below flutter are nearly identical.
Furthermore, as the Mach number is increased, there

is a coalescence of the 1st and 2nd modal frequencies
with increasing Mach number, while the 3rd, 4th
and 5th modal frequencies are independent of Mach
number. Also, the damping of the 1st mode decreases
with increasing Mach number, while the 3rd, 4th,
and 5th modal damping values are independent of
Mach number. It is interesting to note that the
difference in flutter boundaries between Euler and
piston theory for the 3-D wing is 17%, while the
difference between these two calculations for the
2-D configurations is 20-25%. However, it should
be noted that using Euler aerodynamics results in a
higher flutter Mach number than 3rd order piston
theory for the wing while 2-D results showed Euler
predicted more conservative results than piston theory.

Figure 27 illustrates the aeroelastic behavior of the low
aspect ratio wing in the transonic regime at sea level.
It is apparent that the wing is stable through the tran-
sonic regime. It is interesting however, that while the
modal frequencies of the system remain relatively un-
changed, there is an initial increase in stability at Mach
0.9 compared to Mach 0.5, then a decrease as the Mach
number is increased to 1.2. In particular, modes 2-5
have less damping through the transonic regime than
at Mach 0.5, and all modes begin to approach critical
damping as the Mach number is increased through the
transonic regime to Mach 1.2. However, an additional
increase to Mach 1.5 results in no decrease in stability.

Aeroelastic Behavior of a Generic Reusable Launch

Vehicle

The model employed is based on a generic vehicle
that resembles a potential reusable launch vehicle.
The model represents the fuselage of the vehicle
and canted fins, shown in Fig. 28. The dimensions
of the generic vehicle are 76.2 ft. length, 45.54 ft.
width, and 6 ft. thickness. The canted fins have
a span of 18 ft. with a taper ratio of 0.25. They
have double-wedge cross-sections with the maximum
thickness at midchord, equal to 3.33% of the chord.
The empty mass of the vehicle is considered to be
70,000 lbs. From these specifications, the unrestrained
modes were obtained (shown in Fig. 29). In the
final version of the paper, aeroelastic calculations
will be carried out using Euler and Navier-Stokes
based unsteady aerodynamic loads to determine
the influence of viscosity on the aeroelastic stability
boundaries. Results for the generic hypersonic vehicle
will constitute an important contribution to the
state of the art, since there are no results available
for hypersonic vehicle aeroelasticity using complete
solutions of the unsteady Navier-Stokes equations.

CONCLUSIONS

Based on the numerical results presented in this paper,
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the following conclusions can be stated.

1. The time steps to be used in computational aeroe-
lasticity studies are strongly dependent on the
unsteady aerodynamic model used. Using a vis-
cous flow based on the Navier-Stokes equations
requires time-step sizes at least an order of magni-
tude smaller than those used for an Euler solution,
when using the same number of subiterations.

2. At subcritical Mach numbers, aeroelastic behav-
ior predicted using the various models is fairly
close. The frequency and damping characteristics
are comparable. These differences increase sub-
stantially at, and beyond, the stability boundary.

3. Critical flutter Mach number can be overpredicted
by as much as 80% when using first order piston
theory. This large difference is due to the neglect
of the thickness effects in this theory.

4. Stability boundaries of the 2-D configurations pre-
dicted by Euler solutions are approximately 20-
25% lower than those predicted by piston the-
ory. The Navier-Stokes solutions are approxi-
mately 5% further below Euler.

5. Stability boundaries of the 3-D low aspect ratio
wing predicted by Euler solutions are approxi-
mately 15% higher than those predicted by piston
theory.

6. The various aeroelastic models predict similar
trends due to changes in parameters such as: off-
set between the elastic axis and midchord, wedge
angle and static angle of attack for the double-
wedge airfoil.

7. Airfoil shapes modified by the presence of a static
boundary layer predicts flutter at a Mach number
20% higher than that obtained using the Navier-
Stokes equations. However, the general validity of
this approach is questionable.

8. Material property degradation due to aerody-
namic heating can reduce the aeroelastic stability
of the double-wedge airfoil significantly. For the
assumed temperature variation, reductions in the
range of 5%-15% were observed.

9. The results presented can be considered to provide
a partial validation of the aeroelastic capabilities
of the CFL3D code for the hypersonic flow regime.
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Altitude (ft) µm, Config. I µm, Config. II
0 13.47 24.50

5,000 15.63 28.43
40,000 141.81 257.91
70,000 232.68 423.32
100,000 942.60 -

Table 1: Mass Ratio at various altitudes.

Parameter Config. I Config. II
c (m) 2.00 2.35
τ (%) 2.5 3.36

Wedge angle (◦) 2.86 3.85
m (kg/m) 51.8 94.2

rα 0.5 0.484
ωh (Hz) 7.96 13.4
ωα (Hz) 19.9 37.6

ωh

ωα
0.4 0.356

xα 0.2 0.2

Table 2: Comparison of parameters describing

Configurations I and II.

Aero. αs = 0◦ αs = 1◦ αs = 2◦

3rd PT 14.96 14.85 14.61
Euler 11.76 11.72 11.60

Navier-Stokes 11.15 11.08 11.01

Table 3: Effect of static angle of attack on flutter Mach

number for different aerodynamic models, Configuration

I, a=-0.2.
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No. of Modes Mf

2 15.6
5 13.4
8 13.3

Table 4: Flutter results for the low aspect ratio wing

using an increasing number of modes, and 3rd order

piston theory aerodynamics, at 40,000ft.
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Figure 19. Comparison of aerothermoelastic results for

Configuration II, at an altitude of 40,000 feet, heated,

a=0.1.
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Figure 20. Comparison of aerothermoelastic results for

Configuration II, at an altitude of 40,000 feet, heated,

a=-0.2.
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third-order piston theory, Euler aerodynamics and
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(a) Planform of the low aspect ratio wing.

(b) Cross-sectional dimensions of low aspect ratio wing.

Figure 22. A planform view of the low aspect ratio wing

and a view of its cross-section.

Figure 23. A coarsened view of the low aspect ratio wing

and its computational grid.

(a) Mode 1, 13.41 Hz. First bending.

(b) Mode 2, 37.51 Hz. First torsional.

(c) Mode 3, 49.18 Hz. Second bending.

Figure 24. First 5 free vibration modes of the low aspect

ratio wing.
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(d) Mode 4, 77.14 Hz. Second torsional.

(e) Mode 5, 79.48 Hz.

Figure 24 (cont.). First 5 free vibration modes of the low

aspect ratio wing.
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Figure 25. Comparison of aeroelastic behavior of the low

aspect ratio wing using 1st and 3rd order piston theory

aerodynamics. 40,000ft.
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Figure 26. Aeroelastic behavior of the low aspect ratio

wing using Euler aerodynamics. 40,000ft.
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Figure 27. Transonic aeroelastic behavior of the low

aspect ratio wing using Euler aerodynamics. Sea level.
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Figure 28. X-33 and generic reusable launch vehicle.

(a) Mode 1, 5.27 Hz. Symmetric fin bending mode.

(b) Mode 2, 5.38 Hz. Asymmetric fin bending mode.

(c) Mode 3, 11.12 Hz. First fuselage bending mode.

(d) Mode 4, 14.59 Hz. First fuselage torsional mode.

(e) Mode 5, 21.95 Hz. Second fuselage bending mode.

Figure 29. First 5 free vibration modes of the generic

reusable launch vehicle.
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