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A CRUDE-SEARCH DAVINDON-TYPE TECHNIOUE WITH
APPLICATION TO SHUTTLE OPTIMIZATION *

William F. Powers
Member, AIAA
Department of Aerospace Engineering
The University of Michigan
Ann Arbor

Abstract

A parameter optimization scheme devised by
Fletcher which does not require an elaborate one-
dimensional search has been modified to make it
an effective scheme for trajectory optimization.
The method involves an updating matrix, Hoop
which is defined by either the classical Davidon
formula or a well-defined formula which satisfies
Hy41 Ax7 = Agy and is the basis of a new variable
metric method due to Broyden., A rule involving
a scalar product determines which formula should
be used to avoid the tendency of the H-matrix to
become singular or unbounded, The method is
applied, along with the Daviden and Broyden
methods, to various shuttle ascent optimization
problems.

1. Introduction

In the past decade, a large amount of research
has been devoted to the development of parameter
optimization schemes which blend the advantages
of both the gradient and Newton methods, while
minimizing their disadvantages, That is,attermpts
have been made to develop methods which require
only first-order information and are stable, i.e.,
guarantee a decrease in the cost at each iteration
{gradient method properties), and which have rapid
convergence in a suitably small neighborhood of
the solution (a Newton method property). Most of
the schemes involve modifications or extensions
of the pioneering efforts reported in Ref, ! (the
conjugate gradient {CG) method) and Refs. 2, 3
{the Davidon-Fletcher-Powell (DFP} method or
variable metric method).

Some of the notable extensions of the CG and
DFP methods are contained in Refs., 4-10. Refs.
1-5 require a one-dimensional {(1-D) search sub-
program to determine the length of the correction
vector. Experience has shown that the develop-
ment of an effective 1-D search in these alporithms
is a very critical and costly part of the schemae.
Because the one-dimensional curves may vary
qualitatively from problem to problem (and iterate

*This reséarch was supported by the National
Science Foundation under Grant GK-30115. The
work was initiated at the NASA Manned Spacecraft
Center, Mission Planning and Analysis Division.
The author wishes to thank Ivan L. Johnson, NASA
Manned Spacecraft Center, and James L, Kamm,

TRW-Systems (Houston), for many valuable dis-
cussions concerning the Davidon-Flctcher-Powell
method and their computer program, PEACE,

to iterate), the 1-D search subprogram requires
considerable programming effort if it is to be
applicable to a large class of problems.

In the last few years, iterative schemes have
been developed which replace the elaborate 1-D
search with a crude, easy-to-program 1-D
search. 6-10 0Of course, to give upte 1-D search,
some desirable property must be forsaken. In
Refs, 7-10 guaranteed convergence in at mostn
iterations (n = number of parameters} for a qua-
dratic function is lost; however, quadratic con-
vergence is obtained in at most n+1 steps in Refs.
7, 8, 10, and in at most n +2 steps in Ref. 9.
Furthermore, the method of Ref. 9 will converge
any homogeneous function in at most n + 2 iter-
ations.

In Table 1l a concise summary of the main
methods which do not require an elaborate 1-D
search is presented. The methods of Refs. 7, 8,
10, and this paper resemble the DFP method in
that if

flxy,...x,) {1.1)
is to be minimized, then the iteration scheme is
defined by the update formula

xl6F Y o elk) g, (), (1.2)

where x(K} = current value of the vector x, x“’cﬂ)g
new value of x, o = a scalar parameter (the 1-D
search parameter), Hy = an n x n matrix which is
updated on each iterate, (k) = fx(x(k)) = the gra-
dient of f evaluated at x(k%. A particular scheme

is defined by the wawy that it updates H; and «.

As noted in Table 1, the method of this paper
does not possess the finite convergence property
for quadratic functions. At first glance this
appears to make the scheme noncompetitive with
the other methods, THowever, it is preciscly this
property which is sacrificed to eliminate the need
for the 1-D search. The reasons for this decision
will be discussed in a later section,

An aerospace optimization problem of current
interest is the space shattle trajectory optimiza-
tion problem. Although this is a natural function
space problem {i,e.., the problem is described by
differential equations with controls which are

unknown functions off time to be determined),
because of the many shuttle configurations it is



probably best to represent the problem as a pa- of the scheme is given in Fig. 1. The notation
rameter optimization problem until a final design &0 )y =541 - { )5 is employed below.

is decided upon., In this way, the vehicle may be
changed without greatly affecting the optimization
prograra, and in addition, important design pa-
rameters may be included in the optimization
without modifying the iteration procedure. With

a function space method, adjoint or Euler-Lagrange
equations, which are strongly problem dependent,
must be determined, This process is tedious and
time consuming when aerodynamic forces are
present, and when the problem is highly constrained,
as is the shuttle trajectory optimization problem.

In Refs, 11-13, shuttle ascent trajectories are
optimized by representing the steering angle rate
a8 a sequence of straight line segments, and then
applying the DFP parameter optimization tech-
nique. The technique performed better than most
established parameter and function space methods
on a particularly difficult shuttle test problem
described in Ref. 14.

The initial goal of this research was to deter-
mine the relative performance capabilities of the
DFP method described in Refs, 11-13 and one of
the techniques which does not require a 1-Dsearch,
In addition to this comparison, a relatively new
method due to Broyden15 which requires a 1-D
search was also considered since it is related to
the technique of this paper. To insure a fair com-
parison, the basic computer program used in Refs.
11-13 was used with all techniques. The results
of the comparisons are discussed in Section 4.

2, The Parameter Optimization Algorithm

As noted in the Introduction, the fact that
Fletcher' s Method® does not converge a quadratic
function in a finite number of steps might cause
one to assume that the method is not competitive
with the other methods of Table 1, However, if
one surveys the major parameter optimization
research papers, one finds that there exist nu-
merous opinions as to what is the most important
element in the class of algorithms of Refs, 1-10
for general nonlinear functions. For example:
the method should be stable on every iterate; a
precise 1-D search is critical; the directions
should be conjugate; the method should converge
a quadratic function in a finite number of iterates;
resetting is necessary for convergence. In any
case, for general nonlinear functions, only nu-
merical simulations have caused such statements
and not mathematical proofs.

The purpose of this paper is not to compare
the methods of Table 1, but instead to present a
modification of the algorithm of Ref. 8 and to
compare its performance on difficult nonlinear
problems with two techniques that require 1-D
searches, especially the DFP method. First the
algorithm will be stated, and then the underlying

(1) Specify x,, «,, H,, p. Calculate
fo = fx,], g, = glx,]; set T =0.
{(H, is an arbitrary symmetric,
positive definite matrix and
&,>0.)

(2

—

Calculate f(J+'1)1 = flx; -ap Hjggl,
where ayj is the current estimate

of a3, and check f(J+1 1< {1 H
yes, goto (3)if ay =1lor goto

a crude step-size increase package
if ap # 1; if no, go to a crude step-
size decrease package. (The par-
ticular packages used for the
algorithm of this paper are listed
in Appendix A.) The resultant
step-size is denoted by ay.

(3) T =0, goto(5). IfJ >0, check
&fJ/(gJTAxJ) > k. Hyes, goto
(4); if no, decrease . until the
inequality is satisfied and then ge
to (4).

(4

—

Check 10% gJTAxJ- = gJTl AX7 1.
If yes, go to (5); if no, increase
e7 until the inequality is satisfied
and then go to (5). (The particular
@y increase package for this paper
is described in Appendix A.)

(5) Calculate xy;1 = x5 - aJHJgJ and
£311. Check AgyT &%y >0, If
ves, go to {6). If no, increase ay.

T

(6) Check Agy™ Axj 2z &gyt Hiagy. X

yes, go to (8); if no, go to (7).
(7) Calculate:

axyaxyT  HyagyagyTHg
Hra =05 o Tag. " Ag THoa
o8 €1 Hjo8; 2. 1)

Go to (9).

(8) Calculate:
' axjag TH; Hyag 67T

H =H. -
TLUTT T axpTagy  axglagg
(2.2)
(1 AgJTHJAgJ uxJL\XJT
+ {1+ ;
(_\xJTAgJ AxJ—f&.gJ
Go to (9).

(9) I ay < 1, set @y ey otherwise, set
o741 =1, Bet J =7+ 1 and go to {2).
From the algorithm above one can see that

theory will be discussed in Section 3, A flowchart ay =1 is the desired value of the stepsize, and in
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the terminal iterations of the scheme ay —~ 1 if the
scheme is behavmg like Newton's method as de-

sired. FletcherB bases most of his discussion on
the @y = 1 case and devotes little attention to the
ay # 1 case. In the trajectory optimization prob-

lems of this paper, the a7y # 1 case occurs more
often than not because of the difficulty of the prob-
lem and the use of finite difference formulas for
the gradient calculations. Thus, more details
about the o7 # 1 case have been included in this
section and Appendix A than in Ref. 8.

3. Theoretical Basis

The algorithm of Section 2 is basically a
scheme for choosing between two formulas for the
H-, ,-matrix while preserving a reasonable step-
size, Either Eq. (2.1)or (2.2} is used to define
Hyii. Equation {2.1) is the classical DFP formula,
a ranhk-two formula. Equation (2.2)is also a rank-
two formula which has been studied in its own right

in Refs. 15 and 16, The fact that Eq. (2,2} is rank-
two may be seen by rewriting it as
ax, T axy T
axjagy bgyory | AX&Yy
Hypy =0 -m— = ) Hy (-~ )+
AxyrAgs AxTrAgy Ax 3 bdET
(3.1

In Ref, 15, Broyden shows that both Eqs. (2.1)
and (2. 2) are members of his one-parameter class
of formulas introduced in Ref. 5, and that both
satisfy the ""quasi-Newton property', Hy ; &x; =
Agy. Equation (2,1) results by choosing his p;-
parameter to be zero while Eq. (2.2} results if
By = ll(AgJ Axy). Broyden noted that in nureri-
cal experiments comparing the use of Eqs, (2. 1)
and (2.2) separately and with a 1-D search that
the algorithms had similar characteristics in the
early stages but guite different characteristics in
the terminal stages. Tlns behavior is explained by
the fact that g = 1/(AgJ Axy) may be near zero
in the early stages of the algovithm because the
gradlents may be relatively large(where |Ags &xJI

igj?l Axy - gJTAtJ[ = Ig AxJ[ in a quasi-
Newton scheme which employs a 1-D search).
Since Eq. (2,2)and a 1-D search for the DFP pro-
gram were required in the simulations, it was an
easy task to also obtain simulations of Broyden's
new method, i.e, Bq. (2.2} witha 1-D search.
These results are presented in Section 4, also,

Before considering Fletcher! s justification for
the basic algorithm, mention should be made of the
occurrence of Egs. (2.1) and (2.2) in Ref. 16.
Since numerous updating formulas for the H-matrix
have been proposed in the past decade, Gireenstadt 17
considered the problem of choosing the "best" up-
date formulas subject to appropriate constraints
{e.g., symmetry and finite-convergence for a
quadratic with a 1-D search). After investigating
a number of performance indices, Greenstadt
found that the following optimization problem gave
tractable results:

T
Tr (WAH yWAH ;)

Minimize: F(AH (3.2}

3=

Subject to: AHJ—T = AI—I‘I (symmetry) (3. 3)

&HJAgJ = Axy - HJ—AgJ, (quasi-Newton() 3.4)
where Tr( ) & trace of ( ) and W is an arbitrary
matrix to be specified. The expression obtained
for AH; by solving the above minimization prob;
lem involves the arbitra.ry matrix W, Goldfarb
found that w=1 = & results in Eq. (2. 2} and

1
Wl =Hp,, - {As] AxJ}(H shggaeTHp /
(aggTHyAgy)” '~ results in Eq. ‘r 1}, the DFP
formula, He also showed that z-(AHg|; -

AHJ[ Jz = 0, where z B arbitrary n-vector,
AHJII = Hy:) - Hyin Eq. (2.2), and AHg|, =

H; ;1 -H in Eq. (2.1). This means that Eq,
(2.2) is less likely to tend toward singularity
while Eq. (2.1) is less likely to tend toward un-
boundedness. Fletcher® obtained a similar result
by a different argument, and this forms the basis
of his algorithm,

Let us now consider Fletcher's method. 8
Denote the formula of Eq. {2.1) by H, and the
formula of Eq. (2.2) by H;. Let ¢ be a scalar
parameter and define the linear combination

Hy= (1-9) Hy + 41, (3.5)

It is shown in Ref. 8 that if 4<[0,1], then H
possesses the following property: If f(x) is¢a
quadratic function with Gﬁz[fxix-] ositive definite,
then the eigenvalues of G H 2 (arranged in
order) tend monotonically to one for any sequence
of vectors Ax. {(l.e., H¢ tends to the inverse
Hessian G-l in a certain sense.} Note that the
property does not require a 1-D search. In addition
to this property, it is shown that if ¢ ¢ [0,1], then
-1 may diverge from G.

Since Eq. {3.5) represents an infinity of formu-
lag, if it is to be useful there must exist a rule for
selecting which valize of ¢ [0,1] to use on a given
iterate, Tletcher piresents such a scheme by
noting that a typical pitfall in the classical Davidon
method is the tenderncy of the updating matrix H to
become either singwlar or unbounded. He shows
that if ¢ > ¢', then the eigenvalues (A\y...,\,) of
}I¢, s {arranged in ascending order) are such
thath?q&)‘»‘ PR =1, .,n), which implies
Hj = Hy |¢ o 18 Mess smgular" that H, = Hy |¢ Y
and H, is "less unbounded" that H;. Thus, a simple
test for nearness to singularity would indicate
whether to use H, or Hj, which are the extreme
elements of the ¢lass H¢ , pef0,1].

Fletcher shows that
s = &= ogTax/agTox - agTHAZ)
defines the "rank one!" formula
Hyy =Hy#{Axy - H Ag ) (Axg - HJ.AgJ)T /

(3.6)
agyT(Axg - HyAgg)



The interesting thing about this formula is that

if AgTAx > 0, then fé [0,1], and the formula does
not restrict the eigenvalues of H in any way. Thus,
one can use the rank one formula to indicate which
value of e {0,1} should be used by simply checking
the sign of Aglax - AgTHAg; that is, if AgTAx> 0
is enforced, then AgTAx - agTaag » 0 implies

¢ >1 (which means Hy should be used) and AgTAx-
agTHAg < 0 implies ¢ < 0 (which means H, should
be used).  If agTax - agTHAg = 0, then Hy is
used to avoid singularity. Note that this test is
step {6) of Section Z.

The only other steps in the algorithm of
Section 2 which need to be discussed are steps (3}
and (4), Step (3)is a check to determine if the
stepsize is so large that an unreasonably small

decrease in the function is attained. That is,
fri9 =17 + gylaxy + O(A2 3.7}
J11 =17+ gy Axy +O(A%) (3.
implies
afpfiggTax;) =1+ 0(a). (3.8)

o< AfJ/gJT Axy << 1, then the decrease in cost
is unreasonably small with respect to the steep-
ness of the gradient,

Step (4) is a "filter" for the test

AgJTAxJ:»O. (3.9)
It was noted in 2 number of simulations before the
insertion of step {4) that condition (3.9} was vio-
lated, It is well known that if f is bounded from
below, then there exists a larger value of ajy
which will cause the inequality to be satisfied, and
in Fletcher's paper a scheme for increasing ay is
presented, However, this scheme might result in
numerous costly gradient evaluations. {In the
problems of the next section, a single gradient is
approximately as costly as fourteen to eighteen
function evaluations.) Since gradient calculations
are so costly, an approximate test had to be de-
vised to avoid the calculation of more than one
gradient per iteration, and step (4) is the result.

It was noted that whenever the AgJTAxJ> 0
test was violated, the value of fg TA:{J! was ap-
preciably smaller than the value fg;r’_rl Axy_y Htwo
to three orders of magnitude smaller). That is,
on successive iterates on which &gTAx > 0, the
value of gTAx was changing by zero to one-to-a-
half orders of magnitude, whereas it changed by
at lgast two to three orders of magnitude when the
test wag violated,

Note that to cause IgJTAxJI to increase toward
leyi .'_\xJ_l‘ , one need only increase the value of
the search parameter, which is the same remedy
for the Agy~Axjy > 0 violation, Thus, the following
test was employed before the cormnputation of

glx g )

100gyTaxy = g; 7§ ax; . (3.10)
i.e., if gJTAx is at least 100 times greater than
g5.1 Axy_1, then the stepsize is increased and a
decrease in gJTAxJ is guaranteed, {(Note that
gTAx < 0 is guaranteed on each iterate because of
step {3}.) For ali the shuttle computations this
test always detected the AgJTAxJ > 0 vielation
without computation of g(xJ_H) for an unacceptable
X141 - value,

The test (3. 10) has not been proved mathemati-
cally and it seems feasible that there exist cases
when the test is satisfied by &gJT/_\xJ < Oand/orthe
tolerance value of 100 is unsuitable for other
physical situations. However, Ag;~Axjy must be
computed in each iteration for the H-formulas, and
thus, the AgJTAJ— > 0 inequality can always be
checked and guaranteed. In any case, no more
computation is required than in the original
Fletcher's method since g;* Axy must be com-
puted for other formulas in the method.

4. Space Shuttle Trajectory Optimization

A number of Space Shuttle trajectory optimi-
zation problems were simulated in the develop-
ment of the algorithm, including three ascent
problems and a reentry problem. A comparison
of numerous algorithms for the stage-and-half
configuration ascent problem are presented here
along with partial results for a pressure-fed
booster configuration ascent problem.

The stage-znd-half optimization problem in-
volved eighteem parameters (azimuth adjustment
parameter, payload, pitch angle at the time when
engines dropped, and fifteen pitch rates), where
payload is to bse maximized. The optimization is
from ten secomnds after liftoff to orbital insertion
(50 x 100 with znclination gpecified). The resulis
for this optimization problem are presented in
Tables 2 and 3.

In Table 2 & comparison of DFP and the Modi-
fied Fletcher’ & method is shown for the case of a
reasonably good guess for the initial parameter
vector. The relatively small value of gTHg on the
fifty-second iterate of the DFP method indicates
that the problemn is reasonably converged on that
iterate, Considlering the fifty-second iterate of
the DFP method as the converged solution, four
digit accuracy is obtained by DFP on the twenty-
sixth iterate and by the Meodified Fletcher's
Method on the thirty-first iterate (with respect to
payload and bowndary condition satisfaction). Since
DFP requires more function evalnations and since
a single gradiemt calculation corresponds roughly
to eighteen function evaluations, the computing
times to reach the twenty-sixth iterate in DFP
and the thirty-first iterate in Modified Fletcher
are approximately the same, As shown in Table 2,
ten more iteratws are obtained for the Modified
Fletcher' s method in the same amount of computer
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time. However, DFP gets a lower value for the
cost in the same amount of computer time, thus
exhibiting better terminal convergence.

In Table 3 a comparison of six algorithms is
shown for a poor guess of the initial parameter
vector. In the first column the gradient method
{with 2 1-D search) is included to show the diffi-
culty of obtaining good terminal convergence in
this problem. The next two methods, DFP and
Broyden, were the best performers with Broyden
slightly better than DFP, Note that DFP and
Broyden give identical costs (to four digits) in the
early iterates and then Broyden begins to get
slightly lower costs; this is the same character-
istic Broyden”” noticed. The last three columns
show three methods which use only a crude search:
Modified Fletcher, DFP with a crude search, and
Broyden with a crude search. All three methods
gave comparable results with Modified Fletcher
obtaining the lowest cost in ten minutes computer
time. All three H-formulas satisfy the main
property of Fletcher's paper (i.e., ¢¢[0,1]),
and for this particular problem probably give
similar results because the H-matrix remains
well-behaved. Although these three methods are
nat better than DEP or Broyden (with searches) on
this problem, they are appreciably better than the
gradient method and yet do not require extensive
programming,

Table 4 shows an incomplete study of results
obtained for the pressure-fed booster shuttle
ascent problem. In this problem an element of
the main diagonal of the H-matrix in the DFP
method became appreciably smaller than the other
elements of the main diagonal in the early iterates.
This caused the 1.D search considerable trouble
is obtaining a minimum, as noted by the large
number of function evaluations {especially on the
3rd, 4th, and 5th iterates). In this particular
problemn the Modified Fletcher's methed performed
better than the DFP method in that it required a
considerably less number of function evaluations
and obtained a lower cost value in the same num-
ber of iterates. Note how the Modified Fletcher
method uses both of the formulas on this problem
{i.e., Eq. {2.1)is used 6 times, Eq. (2.2)is
used 5 tirnes).

During the course of the study a number of
observations were made with respect to the per-
formance of the algorithms and reports of their
performance in the literature. These are sum-
marized below,

{1} The performance of the DFP method is
strongly dependent upon the 1-D search used, In
the early part of the study, the Modified Fleiche:
method required approximately the same amount
of computer time as DFP to obtain the same cost
on a number of different problems. Then a move
sophisticated search was used in the DFP algo-
rithm., The DFP method then became a much
better performer. This explaing how, in the

literature, numerous algorithms are reported to
outperformy DFP, when with an efficient search
DFPF is clearly the better performer. (In Ref, 8,
Fletcher' s method is reported to outperform DFP
on a number of standard functions. However,
when the two were compared with the NASA-MSC
PEACE DFP program, DFP easily outperformed
Fletcher' s method. )

(2) In a number of papers in the literature, little
emphasis is given to the expense of computing
gradients as opposed to function evaluations. For
example, the IBM Scientific Subroutinel8 version
of DFP calculates a gradient each time it evaluates
the function. This calculation is not serious on
low-dimension, test type problems, but it is ex-
tremely important when realistic problems are
attacked (especially problems which require nu-
merical integration for the function and gradient
evaluations).

(3) In the early stages of the study, the effect of
resetting to 2 gradient step every so many iterates
was investigated. ‘On the problems considered
herein it was not found to be helpful; in fact, it
was found to be detrimental in the terminal stages
of convergence because the H-matrix had te be
rebuilt, Most of the example problems in the
literature which get improved convergence with
reset are of relatively low-dimension. (One
theoretical advantage of reset is if it is included
in any stable H-matrix type algorithm, then
convergernice can e proved for the same class of
functions for which convergence can be proved for
the gradient method. )

5. Conclusions

A parameter optimization method devised by
Fletcher has been modified to make it an effective
scheme for trajectory optimization, The resul-
tant scheme has the following desirable features:

(1) An elaborate I1-D search is not required, and
thus, the scheme is easy to program;

{2} Davidon-type formulas are utilized;

{3) Because of a filter for the AgJTAXJ- > 0 test,
no more than one gradient per iteration has becen
required in simulations to date. (Other schemes
which da not invelve 2 1-D search sometimes
suffer from requiring more than one gradient
computation on 2 number of iterations. )

The experience gained with this algorithm has
suggested the following theoretical studies:

{1} Study the mathematical requirements of erude
searches. ' It was found that one could easily
define apparently convergent crude search algo-
rithms which in fact caused convergence to false
minima. As the popularity of algorithms without
1-D searches gaing, a firm mathematical fourxdation




for the compatibility of crude searching with
respect to convergence (and rates of convergence)
should be developed.

(2) Test for Ag3TAxy > 0 not requiring glxy, 1}
This problem was discussed in Section 3, where
an empirical test not requiring g{xy, 1) was devel-
oped. It would be desirable to have 2 mathemat-
ically sound test for this; of course, the current
test may be mathematically sound but a proof of
its validity has not been developed.

In addition to the study of the Modified
Fletcher' s method, a new method due to Broydéml5
was simulated, but not extensively. It performed
slightly better than DEFP and thus merits further
analysis.

Finally, with respect to the relative merits of
DFP and the Modified Fletcher' s method, if an
efficient 1-D search is available it appears that
DFP (or possibly the new Broyden formula) gives
the best results, especially in the terminal stages
of convergence. However if either an efficient
1.D search is not available or the H-matrix appears
ill-conditioned in the DFP method or single-
precision computations are desired, then the
Modified Fletcher method appears to be an attrac-
tive alternative.

APPENDIX A

Crude Searches

STEPSIZE INCREASE: Given xy and @1 where

aj] is an estimate of ;. Define
flxg;] = f[xJ- - e B3l (A1)
t=1 2,...)
Evaluate flxq ] (k =1, 2,...) with
@ Jik+l) = Seqn.(k=12...,K) (A2)

where K is the least integer where a function in-
crease occurs, i.e.,

f[xn] > f{xJZ] > L. > f[xJ(K—l)] <f[xJK] {A3)

Define

aJ(K-FL) =2.5 G‘JTK_I}, (A4)

anc? then define oy to be either @I(K-1) OF oK)
whichever gives the least function evaluation,

STEPSIZE DECREASE: Given x7and ap where
ey is an estimate of ;. Evaluate f[x.ﬂjl (k =
1, 2,...) by Eq. (Al) with

@yey = eq 2.k =1, 2,0, K) (A5

where X is the least integer where a function in-
crease occurs {i.e., Bg. (A3}). Define ay to be

*J(K.1)-

choices in the problems of this paper,

(NOTE:
factors 5 and 2 were found to be

In Egs, (A2) and {A5) above, the
convenient
However,

any values greater than one may be used.)

Finally, the factors 5 and 2 were also used in

the increase and decrease portions of Steps 3 and
4, Section 2.

1.

10,

1.
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AL T

; - :
; yvhouperty '
: No. of Conjugacy
: \ Steps for Stability for Reset Method for Choosing
‘ \ Quadratic [Guaranteed! Quadratic Philosophy Step-Length
i N Conver- (f <f.) Function
: gence J+17°7 .
. siothod ) (piTApJuo’lij)
. N SR S e - O AR
‘§ Choose ay 80 that
i
- i T
| Ref. 7 n+1 NO NO* Two Wf;:t‘:ef‘“ed flog) - f(xy g )ze oy s T H gy
>0 is satisfied (O<e<l given)
Crude search for function
wef. 8 and _ decrease; never go to
method of % YES NO* None proposed 1-D search. T Some-
this paper times to 1-D search. Tt
Well defined; Well-defined; select from
ref. 9 n+2 YES NO based on too-small 2 values; if no function
step or linear decrease goto 1-D
dependence probloms }  search. . _ |
N a Golden section
Ref. 10 n 1 YES YES one propose bracketing procedure
+ves if a 1-D search is employed. Method of this paper. TiMethod of Ref. 8.
Table 1. Summary of Parameter Optimization Methods Without a 1-1 Search.
—— e e —
fteration Pavidon-Fletche r-Powell Modified Fletcher
N armb No. of df No. of
i Cost Fuaction Search da | = -gTHg Cost Funétion Search
! ey EvAliztions | Parameters §UF @20 e ... fEviluations | Parameters
0 13201 x 10 1 ===, | -79x 10t [ 13201 x 10! 1
1 . 10640 x 10 12 646 x 107 | - 90x 10] | . 10913 x 10 5% 125 % 107
2 .10322 % 10° 4 . 701 xIO_ - 68 x 10" . 10595 x 10! 4% 312 x IO-3
3 .98038 4 161 x 10 - 37 % t0] | 10480 x 10' 5% 156 x 1077
4 . 21987 6 . 440 _ ~. 28 x 10 57441 red . 195
5 . 14202 o 6 795 x 10 -. 2l x 10° . 25564 2% . 195
10 .84552x 10 ;6 124 x 10 -.28x 107% | 85738 x 10_ | 4T 488 % 107
20 84198 x 107 . 4 876 x 10 - 61x 1077 | . 84427 x 10] | 2% 763x 1070
10 ,84187 x 10° 3 326 36 10701 sd2lzx LT 2 LA7T x 107
‘f° . 84182 % 10 5 .I‘)le(}: - 48x 10 | . 84206 x 107 2t 298 x 107
5 . 84181 x 10 3 .280 x 10 -.79x 1o . 84204 x 10~ 2% .59 x 107
4“2 R B . 84202 x 10 4% 142 x 1077
{43 minutes Univac 1108; central differences}

: "“.'! DFP farmula (Eq.- 2.1

Table 2.

B 1R e e

Tised Broyden formula (Eq. 2.2}

Stage -And-Half Configuration; Good Initial x,.



Gradient Method DFP Broyden Modified Fletcher DFP Broyden
Iteration| {with search) [{with search) (crude search) | (crude search)
Number No. of No. of iNo. of No. of No. of No, of

Fn. Fn. n Fn, Fn, Fn
Cost Eval| Cost Eval] Cost Eval] Cost Eval,] Cost Eval] Cost Eval,
0 1611 1 1611 1 1611 1 1611 1 1611 1 16l 1
1 271.1 7 271.1 7 271,11 7 1397.7 . 10% |397.7 10 397.7 . 10
2 54,65 5 13,75 4 13.75 4 34.64 51 | 34.64 4 63,07 5
3 13.04 5 2.792 4 2.792 4 32.24 7% 32,27 K 30.72 6
4 10.83 4 1,311 4 1,311 4 30.95 3% 28, 31 3 16.58 4
5 8,667 4 .8897] 4 . 8897 4 8.795% 31 7.948 3 7.395 3
6 7.736 4 . 2636 5 L2636 B 6.003 3t 5.571 3 4. 426 3
7 6.922 | 4 L1621 4 L1621 4 5.968 3¢ 4. 809 3 3.422 3
8 6.438 4 15631 4 L1563 4 3.123 3% - 3.429 3 3,241 3
9 6.123 4 .1554! 4 . 1554 4 2.631 3t 2. 850 3 2.388 4
10 6.038] 4 L14615 4 L1461 | 4 2.420 { 3t 2,749 3 2.123 5
1z 5.143| 17 . 11837 4 L1183 4 2. 205 3% 1,815 4 L4776 3
14 :i 3.574 ¢ 17 L1046 4 . 1045 4 .8923] 4t 1.528 5 L4309 4
16 2.891 1% .0972) 4 . 0967 4 . 5323 3% .4339) 5 .3682) 4
18 2.834 1 17 .0923| 5 L0921 5 L3663 3% . 37411 3 . 3238 3
20 . 2.790" 6 .0888| 4 .0886 ] 4 .3252} 3¢ .3619) 3 .3104| 3
22 . 2.718: 4 .0875] 5 .0873 1 8 .3092{ 31 .3485| 4
30, 2.4571 4 .08553| 6 . 08551 5
50 . 1.739; 25 08516 &6 | . 08508 6 (10 min., Univac 1108; forward differences)
60 1.7271 4 .08490] 5 .08485i 4
{Approx. 40 min., Univac 1108; forwarddifferenées}
|

¥ Used DFP formula {(Eq. 2.1) TUseq Broyden formula (Eq. 2.2).

Table 3. Stage-And-Half Configuration; Poor Initial Xye

-

. Davidon-Fletcher-Powell Modified Fletcher
Iteration Numberof daf Number of |
Number Function Search e l = —gTI-Ig Function Search
Cost Evaluations{ Parameter | = 'a =0 __g‘ost E\f&luatmns Parame_ter'_
0 1.058 1 -.8 1.058 1 -
1 1.058 4 .25 x 107° -2 1.058 Pogw L1z x 107?
2 1.057 5 .95 % 107" -.3x 10" 1.057 Po7* .18 x 107°
3 1.056 26 35x 107, | -.9x 10! 1.057 {31 .78x 107"
4 1.056 37 .68 x 10 - 1x102l 1.056 h* .48 x 10'6
5 1.053 30 : J10 x 10! - 1x107, 1.056 11 .95 x 107,
6 1.050 5 ' .53 . —ax 107 1.033 e .24 % 107
7 1.024 9 .93 x 10 -~ 4x 107, 1.029 3% Azx 107
8 1.001 6 .34x10: -.3% 10 9816 31 d2x 107,
9 .9883 5 .68 x 10 -.3x 10 .9751 3t 2w 107,
10 L9615 7 .21 x 16? -.3x 10 L9607 31 .lzx 107
11 .9592 7 J16 x 10! -.2x 1o .9554 3t .12 x 1078
15 . 9547 5 .44 x 10 .1x10 ---
20 .9378 5 .94 x 10’ -6 x 10 ;
34 .9360 22 .10 x 108 ~.2x 107 {7 min., Univac 1108; central
| differences)
{22.5 min., Univac 1108; central differences)

*¥Used DFP formula (Eq. {2,1). e Imme 1Used Broyden formala (Eq. 2. 2).

Table 4. Ascent Problem with H-Matrix Tending to Singularity in DFP Mcthod,

1y Se
MCOz o, “1972
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