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Abstract  

A parameter  optimization scheme devised by 
Fle tcher  which does not require  an  elaborate  one- 
dimensional s ea rch  has  been modified to make  i t  
an effective scheme for  t ra jec tory  optimization. 
The method involves an  updating ma t r ix ,  Hjtl, 
which i s  defined by e i ther  the classical  Davidon 
formula o r  a well-defined foimula which sat isf ies  
H J + ~  AXJ I AgJ and is the basis  of a new variable 
me t r i c  method due to Broyden. 
a s ca l a r  product determines which formula should 
be used to  avoid the tendency of the H-matr ix  to 
become singular or unbounded. 
applied, along with the Davidon and Broyden 
methods, to  various shuttle ascent  optimization 
problems. 

A rule  involving 

The method is 

1. Introduction 

In the pas t  decade, a l a rge  amount of r e sea rch  
has  been devoted to the development of parameter  
optimization schemes which blend the advantages 
of both the gradient and Newton methods, while .- minimizing their  disadvantages. That i s ,  attcmpts 
have been made to dcvelop methods which require  
only f i r s t -order  information and a r e  stable, i . e . ,  
guarantee a decrease  in the cost a t  each i terat ion 
(gradient method proper t ies ) ,  and which have rapid 
convergence in a suitably small neighborhood of 
the solution ( a  Newton method property) .  Most of 
the schemes  involve modifications o r  extensions 
of the pioneering e f for t s  reported in  Ref. 1 ( the  
conjugate gradient (CG) method) and Refs. 2 ,  3 
(the Davidon-Fletcher-Powell ( D F P )  method o r  
var iable  me t r i c  method). 

Some of the notable extensions of the CG and 
D F P  methods a r e  contained in R e f s .  4-10. Refs. 
1-5 require  a one-dimensional (1-D) sea rch  sub-  
program to  determine the length of the corrcct ion 
vector .  Experience has  shown that the develop- 
ment  of an  effective 1 -D sea rch  in these algorithms 
i s  a very  cr i t ical  and costly par t  of the scheme. 
Because the-one-dimensional curves  may vary  
qualitatively f rom problcm to problem (and i te ra te  
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w TRW-Systems (Houston), f o r  many valuable d is -  

to i t e ra te ) ,  the 1-P s e a r c h  subprogram requi res  
considerable programming effort if i t  is to  be  
applicable to a l a r g e  c lass  of problems.  

In the l a s t  few y e a r s ,  i terat ive schemes  have 
been developed which replace the elaborate  1-D 
sea rch  with a crude,  easy- to-program 1-D 
search.  6-10 Of course ,  to give upfne I - D  sea rch ,  
some desirable  property mus t  be forsaken.  
Refs. 7-10 guaranteed convergence in  a t  mos t  n 
iterations (n = number  of pa rame te r s )  for  a qua-  
dra t ic  function is lost; however, quadrat ic  con- 
vergence i s  obtained i n  at mos t  n t 1 steps in Refs .  
7, 8, 10, and in  a t  m o s t  n t2 s teps  in Ref. 9.  
Fu r the rmore ,  the method of Ref. 9 will converge 
any homogeneous function in  a t  mos t  n t 2 i t e r -  
ations. 

In 

In Table 1 a concise  summary  of the main  
methods which do not  require  an elaborate  1-D 
sea rch  is presented. The methods of Refs. 7 ,  8. 
10, and this paper  r e semble  the D F P  method in 
that if  

f (XI ,  ... ‘h) (1.1) 

is to be  minimized. then the i terat ion scheme i s  
defined by the update formula 

where 
new value of x ,  @ k  E a sca l a r  pa rame te r  ( the 1-D 
sea rch  parameter) .  $Ik an n x n ma t r ix  which i s  
updated on each i t e r a t e ,  ( k )  = f ( x ( ~ ) )  E the g ra -  
dient o f f  evaluated a t  ~ ( ~ 5 .  A p z r t i c u l a r  scheme 
is defined by the w a y  that i t  updates Hk and n k .  

3 cur ren t  value of the vector  x ,  x ( ~ ” ) z  

As noted in Tabke 1 ,  the method of this  paper  
does not possess  t h e  finite convergence property 
for  quadrat ic  functimns. At f i r s t  glance th i s  
appea r s  to make  the. scheme noncompetitivc with 
the o ther  methods. However, i t  is precisely this  
property which i s  sacr i f iced  to  e l iminate  the need 
fo r  thc 1-D search.  The reasons fo r  this  decision 
will be discussed in a l a t e r  section. 

An aerospace o r n h i z a t i o n  problem of cu r ren t  
in te res t  i s  the s p a c e  shuttle t ra jec tory  optimiza- 
tion problem. Although this is a na tura l  function 
space problem (i. e .  ., the problem is descri,bed by 
diffcrential equations with controls which a r e  
unknown functions off t ime to he  determined) ,  
because of the m a n y  shuttle configurations i t  i s  
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probably best  to represent  the problem a s  a pa- 
r a m e t e r  optimization problem until a final design 
is decided upon. In this way, the vehicle may be 
changed without greatly affecting the optimization 
program,  and in addition, important design pa- 
r a m e t e r s  may  be included in the optimization 
without modifying the iteration procedure. 
a function space method, adjoint o r  Eulcr-Lagrange 
equations, which a r e  strongly problem dependent, 
mus t  be determined. This process is tedious and 
t ime consuming when aerodynamic forces a r e  
present ,  and when the problem i s  highly omstrained. 
a s  i s  the shuttle trajectory optimization problem. 

With 

In Refs. 11-13, shuttle ascent t ra jec tor ies  a r e  
optimized by representing the s teer ing  angle ra te  
as a sequence of straight line segments,  and then 
applying the DFP  parameter  optimization tech- 
nique. The technique performed be t te r  than mos t  
established parameter  and function space methods 
on a particularly difficult shuttle test  problem 
described in Ref. 14. 

The initial goal of this r e sea rch  was to de te r -  
mine the relative performance capabilities of the 
DFPmethod  described in Refs. 11-13 and one of 
the techniques which does not requi re  a I - D s e a r c h  
In addition to this comparison, a relatively new 
method due to Broydenl'  which requi res  a 1-D 
sea rch  was a l so  considered since i t  is related to 
the technique of this paper. To insure  a fa i r  com- 
parison, the basic computer program used i n  Refs. 
11-13 was used with all techniques. 
of the comparisons a r e  discussed in Section 4. 

The results 

2 .  The Pa rame te r  Optimization Algorithm 

As noted in the Introduction, the fact that 
F le tcher '  9 Method' does not converge a quadratic 
function in a finite number of steps might cause 
one to a s sume  that the method i s  not competitive 
with the other methods of Table 1 .  However, if 
one surveys the ma jo r  paramoter  optimization 
r e sea rch  papers,  one finds that there exist nu- 
merous  opinions a s  to what i s  the most important 
element in tho c lass  of algorithms of Refs. 1-10 
fo r  general  nonlinear functions. F a r  example: 
the method should be stablo on every  i terate:  a 
prec ise  1-D sea rch  is cri t ical;  the directions 
should be conjugate: the method should converge 
a quadratic function in a finite number of i t e ra tes ;  
resett ing is necessary  fo r  convergence. In any 
case ,  for general  nonlinear functions, only nu- 
mer i ca l  simulations have caused such statements 
and not.mathematica1 proofs. 

The purpose of this paper i s  not to compare 
the methods of Table 1, but instead to present a 
modification of thc algorithm of Ref. 8 and to 
compare  its performancc on difficnlt nonlinear 
proljlems with two techniques that require 1 -D 
sea rches ,  especially the DFP method. F i r s t  the 
algorithm will be stated, and then the underlying 

v theory will be discussed in Section 3. A flowchart 

of the scheme is given in Fig. I .  The notation 
A( ) J  5 ( )Jtl - ( )J is employed below. 

(1) Specify xo, eo, Ho, p. Calculate 
fo z f[xo], go z g[xo] ; se t  J = 0. 
(Ho is an  a r b i t r a r y  symmetr ic ,  
positive definite ma t r ix  and 
e o >  0.) 

( 2 )  Calculate f(J+'1)1 3 f[XJ - H J ~ J ] ,  
where aJ1 is the cur ren t  es t imate  
of a J ,  and check f(J+l < fJ. If 
yes.  go to (3 )  if an = 1 o r  go to 
a crude s tep-s ize  increase  package 
if an + 1; if no, go to a crude s tep-  
s ize  decrease  package. (The  p a r -  
t i cu la r  packages used for  the 
algorithm of this paper a r e  l isted 
in Appendix A. ) The resultant 
step-size is denoted by aJ. 

( 3 )  If J = 0, go to ( 5 ) .  If J > 0. check 
AfJ/(gJTAxJ) 2 p. If yes ,  go to 
(4); if no, dec rease  eJ until the 
inequality is satisfied and then go 
to (4). 

(4 )  Check 10' gJT&xJ I: gJ- l  T AxJ-l .  

If yes ,  go to (5);  if no, increase  
e~ untilthe inequality is satisfied 
and then go to ( 5 ) .  (The particular 
aJ increase  package fo r  this paper 
is descr ibed  in Appendix A. ) 

( 5 )  Calculate X J + ~  = xJ - aJHJgJ and 

gJf1. Check hgJT  h X j >  0. If 
yes, go to (6).  If no, increase  a J ,  

(6)  Check AgJT AxJ 2 AgJ T HJAgJ.  If 

yes. go to ( 8 ) ;  if no,'go to ( 7 ) .  

(7 )  Calculate: 

Go to ( 9 ) .  

( 8 )  Calculate: 

T T 

' (' ' bxJTAgJ AxJTAgJ 

& j  Hj&J UXJAXJ 
) (-- ) 

Go to (9). 

( 9 )  If aJ < 1. se t  aJ+l = a J ;  otherwise,  s e t  

F r o m  the algorithm above one can see that 
aJ = 1 is the des i red  value of the s teps ize ,  and in 

C J , ~  = 1 .  Set J = J t 1 and go to ( 2 ) .  

2 



the te rmina l  i terations of the scheme uJ - 1 if the 
scheme is behaving l ike Newton's method a s  de-  
s i red .  F le tcher8  bases  mos t  of his discussion on 
the u - 1 case  and devotes little attention to the 
eJ + l a s e .  In the trajectory optimization prob- 
lems of this paper,  the a j  f 1 case occurs  more  
often than not because of the difficulty of the prob- 
lem and the u s e  of finite difference formulas for  
the gradient calculations. 
about the aJ r 1 case  have been included in this 
section and Appendix A than in Ref. 8. 

-, 

Thus, m o r e  details 

3. Theoretical Basis 

Subject to: A H J ~  = AHJ (symmetry)  (3 .3 )  

where Tr(  ) E t r ace  of ( ) a n d  W is an a r b i t r a r y  
ma t r ix  to be specified. The expression obtained 
for  AHJ by solving the above minimization prob-  

16 l e m  involves the a r b i t r a r y  m a t r i x  W.  Goldfarb 
found that W-' = H f l  resu l t s  in Eq. (2 .2 )  and 

( A ~ J ~ H J A ~ J ) ~  r e su l t s  i n E q .  2.1). the D F P  

A H J ~ &  Z 0, where z a r b i t r a r y  n-vector,  

W 1 = H J + ~  - (P8jSPOxJ)(HjAgJAgJTHj) 

formula.  He a l so  showed that z r, (AHJl l  - 
. 

A H J I l = H J + l  - H J i n E q .  (2.2), a n d A H J l o z  
HJ+l ; HJ in E ~ .  (2.1). This means  that Eq. 
(2.  2 )  IS less likely to tend toward singularity 
while Eq. (2.1) is less likely to tend toward un- 

The algorithm of Section 2 is basically a 
scheme fo r  choosing between two formulas f o r  the 
HJtl-matrix while preserving a reasonable s tep-  I 
size. E i ther  Eq. (2.1) o r  (2.2) is used to define boundedness. Fletcher8 obtained a similar result 
H J t l .  quation (2. ') is the DFP fad, by a different arg-ent, and this forms the bas i s  

i 
of h is  algorithm. a rank-two formula. Equation (2 .2)  i s  a l s o  a rank- 

two formula which has  been studied in its own right 
in Refs. 15 and 16. The fact that Eq. ( 2 . 2 )  is rank- 
two may be seen  by rewriting i t  as 

T 

kJTAgJ  

8 

Denote the formula of Eq. (2 .1)  by Ho and the 
formula of Eq. (2 .2)  by HI .  
pa rame te r  and define the l inear  combination 

Let u s  now cons ider  F le t che r ' s  method. 

&JAXJT AxJ% Le t  + be a sca l a r  
T 

HJC1 = (I - A ~ ~ T ' A ~ ~ )  H J  ('-&xJTAgJ 
AXjAgj 

) +  

H + = ( l - + ) H o  t + H l  (3.5) 
(3 .1 )  

In Ref. 15. Brovden shows that both Eas .  (2.11 
and (2 .2 )  a r e  members  of h i s  one-parameter class 
of formulas introduced in Ref. 5, and that both 
satisfy the "quasi-Newton property", HJtl AxJ = 
Ag J. 
pa rame te r  to be ze ro  while Eq. (2 .2 )  results if 

ca l  exoerimcnts comoarina the use of Ess. 12. 1) 

Equation (2 .1 )  results by choosing his p J- 

T -..- p = 1 /(Ag Ax J). Broyden noted th;t in numeri- 

and (2: 2 )  S A r a t e l y  Hnd with a 1-D sea rch  that 
the algorithms had similar charac te r i s t ics  in the 
ear ly  s tages  but quite different charac te r i s t ics  in 
the terminal stages.  
the fact that p 
in the ea r ly  %rages of the algorithm because the 

This behavior is explained by 
= I/(Ag JTAxJ) may be near  zero 

gradients may be relatively large(where l A g ~  T A x J )  
= IgJi.l T  AX^ - gJ  T bxJl = l g J T ~ x J /  in a q u a s i -  
Newton scheme which employs a 1 - D  search).  
Since Eq. (2 .2 )  and a 1-D sea rch  f o r  the DF'P pro-  
g ram were  required in the simulations,it was an  
easy  task to a l so  obtain simulations of Broyden's 
new method, i . e ,  Eq. (2.2) with a 1-D search .  
These results a r e  presented in Section 4, also.  

Before considering F le t che r ' s  justlfication fo r  
the bas ic  algorithm. mention should be made of the 
occurrence of Eqs.  (2, 1)  and (2. 2 )  in Ref. 16. 
Since numerous updating formulas for  the H-matrix 
have been proposed In the past decade,Grocnstadt 17 

+ It is shown in Ref. 8 that if 4s [0,1], then H 
possesses  the following property: 11 f (x)  i s  a 
quadratic function wi th  C = [fxix. ositive definite, 
then the eigenvalues of G1" H+ d1f2 (ar ranged  in 
o r d e r )  tend monotonically to one for  any sequence 
of vectors Ax. (1 .e . .  H tends to the inverse 
Hessian G-l  in a ce r t a in  sense.  ) Note that the 
property docs not r equ i r e  a 1-D search .  In addition 
to this property, i t  is shown that i f  + { [0,1], then 
H-l may  diverge f r o m  G. 

+ 

Since Eq. (3.5) r ep resen t s  an infinity of formu- 
las, if it  is to be use fu l  there mus t  exist a rule f o r  
selecting which va lue  of +r  [O, 11 to use  on a given 
i te ra te .  
noting that a typicaI pitfall in the c lass ica l  Davidon 
method i s  the tendem.cy of the updating ma t r ix  H to 
become either singnlalar o r  unbounded. He shows 
that if + > +' , then ?.he eigenvalues (11.. . , I n )  of 
H , H I (a r ranged  in ascending o r d e r )  a r e  such 
t h i t  1iT+) Z Ai($' ) pi = 1,. . . p), which implies 

and Ho is "less unbmunded" that H1. 
tes t  fo r  nearness  t o  singularity would indicate 
whether to use Ho or Hi, which a r e  the ex t reme 
elements of t h e c l a s s H + .  + f [ O , l ] .  

Fletcher p re sen t s  such a scheme by 

is "less singular" that Ho = H I 
Thus, a simple 

H1 = H+ I+=1 + + = O '  

considered the problem of choosing the "best" up- 

( e . g . ,  symmetry and finite-convergence fo r  a 
quadratic with a 1-D search) .  After investigating 
a number of performance indices,  Greenstadt 
found that the following optimization problem gave 
tractable results: 

Fletcher shows tha t  

T T 
date formulas subject to appropriate constraints A + = + I AgTAx/(Ag Ax - Ag HAg) 

defines the "rank one" formula 

H J + ~  = H J i ( h x J  - WJAgJ) (AXJ - HJagJ) T I  
( 3 . 6 )  W 

T 
Minimize: F(AHJ) = Tr (WAHJWAHJ ) (3.2) AgJT(Axj - H j A Q ) .  

3 



The interesting thin 
if AgTAx > 0, then $1 [O,l], and the formula does 
not r e s t r i c t  the eigenvalues of € I  in any way. Thus. 
one can use the rank one formula to indicate which 
value of + c  ( 0 , l )  should be used by simplychccldng 
the sign of AgTAx - AgTHAg; that i s ,  if AgTAx> 0 
is enforced, then AgTAx - AgTHAg > 0 implies + > 1 (which means  H1 should be used) and AgTAx- 
AgTHAg < 0 implies + < 0 (which means Ho should 
be used). 
used to avoid singularity. 
step ( 6 )  of Section 2. 

about this formula i s  that 

If AgTAx - AgTHAg = 0, then Hl is 
Note that this tes t  is 

The only other s teps  in the algorithm of 
Section 2 which need to be discussed a r e  s teps  ( 3 )  
and (4). Step ( 3 )  is a check to determine if the 
stepsize is so l a rge  that an  unreasonably smal l  
decrease  in the function is attained. That is, 

fJ+1 = f j  t gjTAxJ t q A 2 )  (3.7) 

implies 

If 0 < AfJ/gJT AXJ << 1. then the decrease  in cost 
is unreasonably smal l  with respect to the steep- 
ness o i  the gradient. 

Step (4 )  is a ' lf i l ter" fo r  the tes t  

Ag JT A x  > 0. ( 3 . 9 )  

It was noted in a number of simulations before the 
insertion of s tep  (4 )  that condition (3 .9 )was  vio- 
lated. It is well known that i f f  is  bounded f rom 
below, then there ex is t s  a l a rge r  value of aJ 
which will cause the inequality to  be satisfied,  and 
in F l e t c h e r ' s  paper a scheme for increasing OJ is 
presented. However, this scheme might resu l t  in 
numerous costly gradient evaluations. 
problems of the next section, a single gradient is 
approximately a s  costly as fourteen to eighteen 
function evaluations. ) Since gradient calculations 
are so costly, an approximate test  had to be de- 
vised to avoid the calculation of more  than one 
gradient per  iteration, and step ( 4 )  i s  the result .  

(In the 

It was noted that whenever the AgJTAyJ>  0 
tes t  was violated, the value of Ig  T A x ~ /  was ap-  
preciably smal le r  than the value f g ~ ? ;  Aa~.1l(hv0 
to three o rde r s  of magnitude smal le r ) .  That i s ,  
on successive i te ra tes  on which A ~ T A X  > 0, the 
value of  TAX was changing by zero  to one-to-a- 
half o rde r s  of magnitude, whereas i t  changed by 
a t  l ea s t  two to three  o rde r s  of magnitude when the 
tes t  was violated. 

Note that to cause lgJTAxJl to increasetoward 
T (gJ - lAxJ_ l [ ,  one need only increase  the value of 

the sea rch  a rame te r ,  which is the same  remedy 

t e s t  was employed before the computation of 
fo r  the A ~ J  ! AXJ > 0 violation. Thus, the following 

g(x JtI): u 

4 

if gJTAxJ is a t  l e a s t  100 t imes  g rea t e r  than 
gJ-1  i. e. 'f AxJ.l.. then  the stepsize is increased  and a 

decrease  in gJTAxJ is guaranteed. 
gTAx < 0 i s  guaranteed on each i te ra te  because of 
step ( 3 ) .  ) F o r  all the shuttle computations this 
test  always detected the AgJTAxJ > 0 violation 
without computation of g(xJ+l )  for  an unacceptable 
xJtl - value. 

(Note that 

The tes t  (3. IO) has not been proved mathemati-  
cally and i t  seems feasible that there exist  ca ses  
when the tes t  is sa t i s f ied  by AgJTAxJ < Oand/orthe 
tolerance value of 100 i s  unsuitable f o r  other 
physical situations. However, AgJTAxJ mus t  be 
computed in each iteration fo r  the H-formulas,and 
thus, the AgJTA 
checked and guaranteed. In any case ,  no m o r e  
computation is requi red  than in the original 
F l e t che r ' s  method since gJTAxJ mus t  be com- 
puted fo r  o t h e r  formulas in the method. 

> 0 inequality can always be 

4.  Space Shuttle Tra jec tory  Optimization 

A number of  Space Shuttle t ra jec tory  optimi- 
zation problems were  simulated in the develop- 
ment of the a lgor i thm,  including three  ascent  
problems and a reentry problem. A comparison 
of numerous a lgo r i thms  fo r  the stage-and-half 
configuration a s c e n t  problem a r e  presented he re  
along with pare ia l  results for a pressure- fed  
boos ter  configtaration ascent  problem. 

The stdgeGnd-half  optimization problem in- 
volved eighteem pa rame te r s  (azimuth adjustment 
parameter. payload, pitch angle a t  the time when 
engines dropped. and fifteen pitch ra tes ) .  where 
payload i s  to brc maximized. The optimization i s  
from ten secomls a f te r  liftoff to orbital  insertion 
(SO x 100 *th Lnclination specified). 
f o r  this optimization problem a r e  presented in 
Tables 2 and 3.. 

The resulrs 

In Table 2 .% comparison of DFP  an& the Modi- 
fied F l e t c h e r ' s  method i s  shown for  the case of a 
reasonably good  guess for the initial parameter  
vector. 
fifty-second i t e r a t e  of the DFP  method indicates 
that the problem i s  reasonably converged on that 
i terate.  Considering the fifty-second i te ra te  of  
the DFP  method a s  the converged solution, four  
digit accuracy cs  obtained by D F P  on the twenty- 
sixth i te ra te  a n d  by the Modified F l e t c h e r ' s  
Method on the tb i r ty- f i r s t  i t e ra te  (with respec t  to 
payload and boumdary condition satisfaction).  Since 
DFP requi res  m o r e  function evaluations and since 
a single gradieizt calculation corresponds roughly 
to eighteen function evaluations, the computing 
t imes to reach dhe twenty-sixth i te ra te  in DFP  
and the th i r ty - f i r s t  i t e ra te  i n  Modified F le tcher  
are approximately the same.  As shown in Table 2 ,  
ten more  i t c r a t r s  a r e  obtained for  the Modified 
F le t che r ' s  method in the same  amount of computer 

The relatively smal l  value of gTIIg on the 



time, However, DFP  ge ts  a lower value for  the 
cost  in the same amount of computer Lime, thus 
exhibiting better terminal convergence. 

In Table 3 a comparison of six algorithms i s  

In the f i r s t  column the gradient method 
shown fo r  a poor guess of the initial parameter  
vector.  
(with a I - D  sea rch )  is included to show the diffi-  
culty of obtaining good te rmina l  convergence in 
this problem. The next two methods, D F P  and 
Broyden, were  the best  pe r fo rmers  with Broyden 
slightly be t te r  than DFP. Note that DFP  and 
Broyden give identical costs ( t o  four  digits) in the 
ea r ly  i te ra tes  and  then Broyden begins to get 
slightly lower costs;  this is the s a m e  charac te r -  
i s t ic  Broyden15 noticed. The l a s t  three columns 
show three methods which use only a crude search: 
Modified F le tcher ,  DFP  with a crude search ,  and 
Broyden with a crude search .  All three methods 
gave comparable resu l t s  with Modified F le tcher  
obtaining the lowest cos t  in ten minutes computer 
t ime,  All three H-formulas satisfy the main 
property of F l e t c h e r ' s  paper  ( i . e . ,  +c[O. l ] ) ,  
and for  this particular prohlem probably give 
s imi la r  results because the H-matrix remains 
well-behaved. Although these three  methods a r e  
not better than D F P  o r  Broyden (with sea rches )  on 
this problem, they a r e  appreciably be t te r  than the 
gradient method and yet do not require extensive 
programming. 

Table 4 shows an  incomplete study of results 
obtained for the pressure- fed  boos ter  shuttle 
ascent problem. 
the main diagonal of the H-matrix in  the DFP  
method became appreciably sma l l e r  than the other 
elements of the main diagonal in thc ear ly  i terates.  
This caused the 1-D search  considerable trouble 
is obtaining a minimum, as noted by the l a rge  
number of function evaluations (especially on the 
3rd,  4th, and 5th i t e r a t e s ) ,  In this particular 
problem the Modified F l e t c h e r ' s  method performed 
better than the DFP method in that i t  required a 
considerably l e s s  number of function evaluations 
and obtained a lower cost  value in the same  num- 
be r  of i t e ra tes .  Note how the Modified Fletcher 
method uses  both of !he formulas on this problem 
( i . e . ,  Eq. ( 2 . 1 )  is used 6 t imes ,  Eq. (2 .  2 )  is 
used  5 t imes) .  

In this prohlem an  element of 
L.- 

&ring the course of the study a number of 
observations were  made with respect to the pe r -  
formance of the algorithms and reports of their  
performance in the l i terature.  These a r e  sum-  
mar i zed  below. 

(1) The performance of the DFP  method i s  
stronelv deoendent UDOn the 1.D sea rch  used. In 

.... 

the e a r i y  par t  of the .study, the Modified Flctchei 
method required approximately the same  amount 
of computer t ime a s  DFP to obtain the same  cost 
on a number of different problems. Then a m o r e  
sophisticated sea rch  was used in the DFP  algo- 
rithm. The DFP method then became a much 
be t te r  per former .  This explains how, in the 

l i t e ra ture ,  numerous  algorithms are reported to 
outperform DFP, when with an  efficient s ca rch  
D F P  is clearly the be t to r  per former .  (In Ref. 8, 
F l e t c h e r ' s  method is reported to outperform D F P  
on a number of s t anda rd  functions. 
when the two were  compared  with the NASA-MSC 
PEACE D F P  p rogram,  D F P  eas i ly  outperformed 
Fletcher '  s method. 1 

(2 )  In a number of papers  in the l i t e ra ture ,  little 
emphasis i s  given to the expense of computing 
gradients a s  opposed to function evaluations. 
example, the IB&f Scientific Subroutine18 version 
of D F P  calculates a gradient each  time it  evaluates 
the function. This calculation i s  not se r ious  on 
low-dimension, t e s t  type problems, but i t  is ex- 
t remely  important when realist ic problems a r e  
attacked (espec ia l ly  problems which require nu- 
m e r i c a l  integration fo r  the function and gradient 
evaluations). 

(3 )  In the ear ly  s t a g e s  of the study, the effect of 
resett ing to a grad ien t  s tep  every  so many iterates 
was investigated. On the problems considered 
herein i t  was not found to be helpful; in fact, i t  
was found to be de t r imenta l  in the terminal s tages  
of convergence because  the H-matr ix  had to be 
rebuilt.  
l i t e ra ture  which get improved convergence with 
r e se t  a r e  of relatively low-dimension. (Ono 
theoretical  advantage of r e se t  i s  if it is included 
in any stable H-mat r ix  type algorithm, then 
convergence can bo proved f o r  the s a m e  c lass  of 
functions for which convergence can be proved f o r  
the gradient method. ) 

However, 

F o r  

Most of the example problems in the 

5. Conclusions 

A parameter  optimization method deviscd by 

The resu l -  
F lc tcher  ha5 been modified to make it an  effective 
scheme for  t ra jec tory  optimization. 
tant scheme has the following desirable features:  

( 1 )  An elaborate 1-D sea rch  is not required,  and 
thus .  the scheme is e a s y  to program;  

(2 )  Davidon-type formulas  a r e  utilized; 

( 3 )  Because of a f i l t e r  for  theAgJTAxj > 0 tes t ,  
no m o r e  than one gradiont per i teration has becn 
required in simulations to date. (Other schcmes  
which do not invol.vc a 1 - D  sea rch  sometimes 
suffcr f rom requiring m o r e  than one gradicnt 
computation on a number  of i terations.  ) 

The experience gained with this algorithm has 
suggested thc following theoretical  studies: 

(1) Study the mathematical  requirements of.&$ 
searches .  
defino apparently convergcnt crude sea rch  a1r:o- 
rithnis which in fact caused convergence to fa l se  
minima. As the popularity of algorithms without 
1-D soarchcs  gains, a f i rmrmthcm~t i cd  fmidation 

It was found that one could eas i ly  

5 



fo r  the compatibility of c rude  searching with 
respec t  to convergence (and ra tes  of convergence) 
should be developed. 

v 

(2)  Tes t  for  AgjTAxJ > 0 not requiring g(xJ+ll. 
This problem was  discussed in  Section 3, where 
an  empir ica l  tes t  not requiring g(xJ+i) was devel. 
oped. It would be  desirable  to have a mathemat-  
ically sound tes t  f o r  this: of course,  the cur ren t  
test may  be  mathematically bound but a proof of 
i t s  validity has not been developed. 

h addition to the study of the Modified 
F le t che r ' s  method, a new method due to Broydenl5 
w a s  simulated, but not extensively. It performed 
slightly be t te r  than D F P  and thus merits fur ther  
analysis. 

Finally, with respect  to the relative m e r i t s  of 
D F P  and the Modified F le t che r ' s  method, if an  
efficient I -D sea rch  is available i t  appears  that 
D F P  ( o r  possibly the new Broyden formula)  gives 
the bes t  resul ts .  especially in the te rmina l  s tages  
of convergence. 
I - D  sea rch  is not available o r  the H - m a t r i x a p r s  
ill-conditioned in the DFP  method o r  single- 
precis ion computations a r e  desired,  then the 
Modified F le tcher  method appears  to be an  a t t r ac -  
tive alternative. 

However i f  e i ther  an  efficient 

APPENDIX A 

Crude Searches 

STE.PSI2.E INCKEASE: 
a ~ l  i s  an est imate  of UJ. 

Given XJ and a J1, where 
Define 

Evaluate f [ x ~ k ]  (k = 1. 2 , .  . . ) w i t h  

* J (k+l )  = 5 ( k  = 1.2,. . . . K) (A2) 

where K is the leas t  integer where a function in- 
c r ease  occurs ,  i. e . ,  

Define 
J(Kt1) = 2. a J(K-1)s (A4 ) 

and then define a J  to be e i ther  a j ( ~ - l )  o r  u J ( ~ t l ) ;  
whichever gives the leas t  function evaluation. 

STEPSIZE DECREASE: Given x T  and a m  where 
an is an es t imate  of uJ. Evalu&e f[xJlf ( k  = 
1, 2 , .  . . ) by Eq. (Al)  with 

where K is the l ea s t  integer where a function in- 
c rease  occurs  ( i . e . ,  Eq. (A3)) .  Define uJ to  be 

J ( K - 1 ) .  u 

(NOTE: In Eqs. (A2) and (AS) above, the 
factors 5 and 2 w e r e  found to be  convenient 
choices in the problems of this paper .  
any values g rea t e r  than one m a y  be used. ) 

However, 

Finally, the fac tors  5 and 2 were  a l so  used in  
the increase  and decrease  portions of Steps 3 and 
4. Section 2 .  
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T No.  of - df = -g Hg Function Search 
c o s t  m a i o n s  Pa rame te r s  d e  ' e = o  

. 13201 x 1 0  1 _-. - . 7 9  x IO4 

. 10640 x 10' 1 2  ,646 x - .  90 x 10' 

. 10322 x 10' 4 ,701  x - .  68 x IO' 

. 21987 6 ,440  -. 28 x 10 
,14202 6 795 x - .  21 x IOo 
. 84552 x IO::] 6 . 124 x 10' - .  28 x 

-. . ~ _ .  . . .~... ~ - .  

,98038 4 . 161 x IO-' - .  37 x 10; 

, 84198 x IO-', 4 876 x 10' - .  b l  x 10 
,84187 T. IO-' 3 326 - .  3 6 x  IO-' 
,84182 x 1 0  5 198 x 1 0 ;  - . 4 8 x  1 0 ~ ~ 1  
, 84181 x 10". 3 . 280 x 10 - . 7 9 x  10 

! 

- 4  

- - -  _ - _  - _ -  _ _ -  

No. of 
;tepS for  Stability 
luadratic Guaranteed 
Conver- 
gence (fJtI'fJ) 

No. ,of 
Function 
,Wuations c o s t  

_. . _- ... . . .. .- __.. .. 
, 13201 x IO' 1 
. IO913 x 10' 5* 
. 10595 x 10' 4* 

10480 x 10' 5* 
. 57441 2 %  
, 25564 2*  
. 85738 x 10:: 4 1 

, 8 4 2 1 2 ~  10 2. * 
. 84206 x 10-  2 t  

. 84202 x 10 4 98 

. 84427 x I O - ,  2* 

, 8 4 2 0 4 ~  10:: 2 P 

:-.I:-.- 
--- 

m 1 YES 

*\-e$ if a I - D  search  i s  employed 

Conjugacy 
for  

Ouadratic 
Function 
p i T ~ = O i t j  

NO* 

--- - .- 

NO* 

NO 

YES 

Reset 
Philosophy 

.. .. . .. -. - .... .- 

Twa well-defined 
tes ts  

.. .... .. - 

None pvoposed 

Well defined: 
based on too-small  

s tep o r  l inear  
dependence problems . __ . .._ , . . . . . .- 

None proposed 

ethod of this paper 

Method f o r  Choosing 
Step-Length 

Choose uJ so that 

~ ( X J )  - f (Xj+l ) 'E ajgJTHJgJ 

,o is sat isf ied [ O < e  < 1 given) 
I_ _ _  ..__ -- - 

Crude search  f o r  function 
decrease:  never  go to 
I - D  s e a r c h .  t Some- 

t imes  to 1-D search .  t t  

Well-defined: select  f r o m  
2 values: if no function 
decrease  go to 1 - D  

search .  
~ ~ ... ~- .--.. 

Golden section 
bracketing procedure 

VMethod of Ref. 8. 

Table 1. Summary  of Pa rame te r  Optimization Methods Without'a I - D  Search  

-- --__ 
Davidon-Fletchc r-Powell  T--- - Modified Fletcher  

Search 
Pa ramete r8 _. -. - .. . . . ..- 
._- 

125 x 10:: 
,312 x 10  
. 156 x IO-' 

195 
I95 
488 x IO-' 
763 x IO-' 

298 x IO-' 
,477 x l o - '  

596 IO- '  
142 x l o - 3  

I I I I 
formula (Eq.  2 .  1 )  b e d  Llroyden formula (Eq .  2 .  2 )  

Stage-And-IIalf Configuration: Good !nitial xo.  Table 2 .  

9 
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Cost 
... 

1611 
397.7.  
63.07 
30.72 
16.58 
7.395 
4.426 
3.422 
3.241 
2.388 
2.123 

,4776 
,4309 
,3682 
,3238 
,3104 

No. of 
m 

Eval.  

1 
1 0  
5 
6 
4 
3 
3 
3 
3 
4 
5 
3 
4 
4 
3 
3 

.. . 

- _  2 

- . 9  x 10' 
- .  1 x 102. 

-. 3 Y 10- 
1.058 ; 5* 
1.057 1 7*  
1.057 j 3 t 
1.056 ! 6" 

- . 4  x 
- . 4  x l o - z  
-. 3 x l o - z  
- _  3 x 

1 .033  4:' 
1.029 3 1: 

,9816 3 t  
,9751 3 t  

-. 2 x 10 

,nccs) 

(7 min . ,  Univac 1108; ce 

i differences) 

E lteratio 

- 
D F P  

(with sei 

. . . .. . - ... . . . 
llodified Fletch< 

. .  . 
D F P  

(crude s 

c o s t  

- .  
Broydon 

with s e a r c h )  

71. 1 
13. 75 

2.792 
1. 311 

,8897 
,2636 
.162l  i 4 
,1563 I 4 

. 1 0 4 5 ,  I 4 

.0967 4 

.0921 5 
,0886 4 
,0873 I 5 
.08551$ 5 
.08508' 6 
,08485' 4 

I 

;=adient Methoc 
:h) 

Fn. 
0. c 

:ya 
1 
7 
4 
4 
4 
4 
5 
4 
4 
4 
4 
4 
4 
4 
5 
4 
5 
6 
6 
5 

lo. c 
Fn. 
:Val 

1 
I O *  

7 :> 
3r; 

- 

5 t  

3 t  
3 t  
3 t  

3 t  
3 t  
3 '6 

4 t  
3* 
3 a: 
3 t  
3 t  

3 :t 

rch 
\To. c 
fi. 

Eva 

1 
10  
4 
7 
3 
3 
3 
3 
3 
3 
3 
4 
5 
5 
3 
3 
4 

?o. 0 
m 

1 
7 
5 
5 
4 
4 
4 
4 
4 
4 
4 

17 
17 
1.E 
17 
6 
4 
4 
25 
4 

c o s t  c o s t  

1611 
271.1 

54.65 
13 .04  
10.83 
8.667 
7.736 
6.922 
6.438 
6.123 
6.038 
5.143 
3.574 
2.891 
2.834 

c o s t  

1611 
271..1 

13.75 
2.792 
1.311 

,8897 
.2636 
,1621 
.1563 
.1554 . 1461 
.1183 . 1046 
.0972 
.0923 
,0888 
.0875 
.0855: 
,08516 
.0849( 

611 
97.7 
34.64 
32.24 
30.95 

8.795 
6.003 
5.968 
3.123 
2.631 
2.420 
2. 205 

,8923 
,5323 
.3663 
.3252 
,3092 

1611 
397.7 
34.64 
32.27 
28.  31 
7.948 
5.  571 
4.809 
3.429 
2. 850 
2.749 
1 .  815 
1. 528 
.433' 
.374i 
,361' 
.348! 

0 
1 
2 
3 
4 
5 
6 
7 

9 
10  
12 
14  
16 

a 

18 
20 2.790 
22 , 2.718 
30 ; 2.457 
50 , 1.739 
60  1 1.727 

- - -  I - - -  
(10 min., Univac 1108; forward differences) 

Table 3. Stage-And-Half Configuration; Poor Initial xo. 

Davidon-Fletchc r -Powell  I Modified Fletcher  
t e  ration 
(umber 

c o s t  Search 
P a r a m e t e r  

_ _ _  
. I 2  x 10-4 
, 7 8  x 
. 7 8  Y 

. 9 5  x 

. 24 x 

.12  x 10 

. I 2  x 

.12 x 1 0  

. I 2  x 

. 48  x 10 ; :  

. 1 2  x 10;; 

_ _ _  
t r a l  

1 1.058 
1. 057 
1 .  056 
1.056 

2 
3 
4 
5 I 1.053 

O I 1 
4 1 25 x 
5 I : 9 5 x  lo-2 

26 
37 ' . 6 8 x  10 

' 1 ' 3 5 x  10:: 

30 ~ . 1 0  x 10' 
6 ' 1,050 
7 ! 1.024 

5 ' . 5 3  ] 

9 . 9 3  x 10  
8 I 1.001 6 .84 x 10; 

9 1  i .9883 
1 0  ! ,9615 

5 .68 x 10' 
7 . 2 1  x 102 
7 . 16  x 10: 
5 .44 x 10 
5 .94 x 10' 

I . l o x  loa 
22  

vac 1108; ccntral  diffc 

. 1 ). 
- I_ 

.9592 

(22 .  5 min . ,  

Used DFP formula (Eq. 

nc  to Sineularirv in DFP Mcthod. . , 
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