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ABSTRACT 

A limiting method has been devised for a grid-independent flux function for use with the two-dimensional Euler 
and Navier-Stokes equations. This limiting is derived from a monotonicity analysis of the model and allows for 
solutions with reduced oscillatory behavior while still maintaining sharper resolution than a grid-aligned method. In 
addition to capturing oblique waves sharply, the grid-independent flux function also reduces the entropy generated 
over an airfoil in an Euler computation and reduces pressure distortions in the separated boundary layer of a 
viscous-flow airfoil computation. The model has also been extended to three dimensions, although no angle-limiting 
procedure for improving monotonicity characteristics has been incorporated. 

INTRODUCTION 

Many sophisticated numerical techniques for deter- 
mining the flux a t  a grid interface for one-dimensional 
flow computations now exist. Among these is the ap- 
proximate Riemann solver of ~ o e ' ,  which linearizes the 
system of governing equations about an average state 
and solves it exactly. The physics of the flow is well- 
represented by this method since the Riemann problem 
is modeled locally at each grid interface. 

Unfortunately, in two or three dimensions, most 
flow solvers that employ any type of Riemann solver 
implement it  in a direction-split manner, where one- 
dimensional theory is applied in each grid direction sep- 
arately. Because of this, the advantage in sophistication 
of the Riemann solver is lost. In reality, the waves can 
travel in infinitely many directions. Constraining them 
to the grid directions is inconsistent with the physics 
of the flow and can result in improper interpretation of 
waves that are not aligned with the grid. 

A two-dimensional grid-independent approximate 
Riemann solver which obtains fluxes on grid faces via 
wave decomposition has been d e ~ e l o ~ e d ~ ? ~  for use with 
the Euler and Navier-Stokes equations. It utilizes infor- 
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mation propagating in the velocity-difference direction, 
rather than in the grid-normal direction, so it more ap- 
propriately interprets and hence more accurately re- 
solves shock and shear waves when they lie oblique 
to  the grid. In reference 2, i t  was shown that, al- 
though oblique shock and shear waves can be captured 
very sharply using this method, results are also non- 
monotone (in the sense that oscillations and/or over- 
shoots in flow variables such as pressure were evident 
near discontinuities). In the present study, a mono- 
tonicity analysis is undertaken in an effort to devise 
a suitable limiting procedure that will allow for sharp 
capturing of flowfield discontinuities with little or no 
nearby oscillations. Also, the grid-independent method 
is extended to three dimensions. 

The grid-independent method uses five waves 
(rather than four, as in the standard grid-aligned 
method of Roe) to describe the difference in states at a 
grid face. Four of these are similar to  the grid-aligned 
waves, except that they do not act in the grid-normal 
direction: two acoustic, one shear, and one entropy 
wave act in the direction defined by the local velocity- 
difference vector. The fifth wave is a shear wave which 
acts at a right angle to  the other four. It allows for crisp 
representation of oblique shear waves. 

The implementation of this method is nearly iden- 
tical to  that of the grid-aligned method. Hence it is 
very simple computationally to  program. Since five 
waves are used as opposed to four, i t  is only slightly 
more costly per iteration. In practice, i t  is necessary to 
freeze the information-propagation directions partway 
through the computation to  inhibit a nonlinear feed- 
back which can induce oscillatory behavior in the flow- 
field and inhibit convergence. 



N O M E N C L A T U R E  

cell area 

speed of sound 

components of unit vector 

specific total energy 

flux vectors 

flux for scalar convection equation 

specific total enthalpy 

heat transfer coefficient 

Mach number 

unit direction vector 

pressure 

heat flux terms 

normal velocity 

wave vectors 

Reynolds number 
parallel velocity 

temperature 

time 

conserved variables 

components of velocity 

drift velocity of shear wave 

velocity 

Cartesian coordinates 

parameters defining allowable 8: 

angle-of-attack, or flow angle 

free parameter in 5-wave model 

ratio of specific heats, taken as 1.4 
differences defined by equation (46) 

cell face length 

angular directions 

matrix of wavespeeds 

wavespeed component in grid direction; 

also second coefficient of viscosity 

coefficient of viscosity 

density 

viscous shear stress terms 

flux per unit length 

angle between planes 

vector of wavestrengths 

Subscripts: 

d velocity-difference direction 

f flow direction 

9 grid-normal direction 

4 j grid indices 

L,  R from the left, right 

v viscous 

Superscripts: 
A Roe-averaged 

* associated with 8:-direction 

** associated with (6; + a/2)-direction 
I indicates frozen direction 

T W O - D I M E N S I O N A L  M O D E L  

Governing Equations and Numerical Method 

The two-dimensional Navier-Stokes equations can 
be written as 

where the conserved variables are U = [p, pu, pu, p ~ ] ~  
and the inviscid flux vectors are 

The viscous fluxes are 

where 
auk 

Tij = P (% dxj  + 2) + X-b,, dzk 

and X is taken as - ( 2 / 3 ) ~  (Stokes' hypothesis). The 
ideal gas equation-of-state closes the set of equations: 

The equations can be discretized in finite volume 
form as 

P49 

(7) 

0 
T ~ I C O S ~ ~  + r12sinOg 
~ ~ ~ c o s 8 ~  + r22sinOg 

(V,rlj - Ql)cosOg + ( V ' j ~ z j  - ~ z ) s i n 8 ~  

where Og is the angle that the outward-pointing cell face 
normal makes with the x-axis, and qg is the outward 
velocity normal t o  the cell face, given by 



Here, S L A s L  is the inviscid normal flux a t  cell face 1, 
evaluated through the use of either a grid-aligned or 
grid-independent flux function. The term (O , )LA~L is 
the viscous normal flux at cell face t, evaluated using 
central differencing. 

A summary of the two-dimensional grid-indepen- 
dent flux function is given here. Full details of the 
derivation can be found in references 2 and 3. The flux 
per unit face length is written as 

where the five waves are given by 

Hats denote Roe-averaged variables, as defined in ref- 
erence 1. The five equations in (11) represent, respec- 
tively: +O& acoustic, -0; acoustic, (8; + ;) shear, 0; 
entropy, and 82 shear waves. The velocity-difference di- 
rection ed = tan-'(AvlAu), where A(.) s (.)R - 
defines the primary direction of assumed wave prop- 
agation a t  each interface. It  is frozen as 0; a t  some 
point during the computation in order to avoid nonlin- 
ear feedback in the solution. The variables q^& and TI; 
are defined by 

The kth wave of this system has a strength hk, evalu- 
ated as the kth component of the vector 6 ,  where 

The components of the wavespeeds in the grid direction 
are 

The parameter determines the strength of the 
(0; + ;) shear wave relative t o  the acoustic waves. The 
current method for determining is due to  Parpia4 and 
is derived in reference 3. It  is defined by: 0 z 

min [ m a x i  ( AUCOS~; Apl(fi) + Avsine& ) ' , .05} , I] , (15) 

and is generally frozen along with 8; as an aid to con- 
vergence. 

This flux function has been used both in con- 
junction with an explicit mstage finite-volume upwind 
scheme as well as with an implicit finite-volume upwind 
approximate-factorization (A-F) scheme (CFL2D5). A 
stability analysis given in reference 2 of the explicit 
scheme showed the method t o  be stable in conjunc- 
tion with m = 2 or more stages (with appropriately 
chosen coefficients). A stability analysis of the implicit 
A-F method for the Euler equations, given in reference 
3, indicates a practical stability limit of about 4 for 
the CFL number for first-order spatial differencing and 
about 2 for second-order when grid-aligned approximate 
left-hand side Jacobians are employed. 

Monotonicitv Analvsis 

The method for analyzing the monotonicity of the 
two-dimensional Euler equations is derived from consid- 
erations of the scalar convection equation ut + au, = 0. 
The results of the Euler equations analysis are consid- 
ered to  be valid for the Navier-Stokes equations as well, 
since the viscous terms add dissipation which tends to 
mitigate numerical oscillations that may occur near re- 
gions of high gradient. 

The one-dimensional scalar convection equation is 
written in finite-volume form, with forward-Euler time 
stepping ( i  is a given cell bordered by (i - 1) to the left 
and (i + 1) to the right): 

Here fi+llz and fi-112 are flux functions on the (i+1/2) 
and (i - 112) cell faces, respectively, and Ax is the dis- 
tance between the gridpoints. Consider now a computa- 
tional stencil in which u:+l only depends on u l ,  u?+~ ,  
and uL1. Godunov6 showed that one way to insure 
that spurious oscillations do not develop is to require 
that variations in u in each neighboring cell causes a 
variation in the same direction in cell i. In other words, 
if u , - ~  increases, then u, should also increase, or at 
worst remain unchanged. A similar requirement holds 
for changes in the (i + 1) cell. These requirements can 
be written 

du;+l du:+l 2 0 and - a":- 20 (17) 
dul+ 1 



or, since fi+l/z is identical to  f (ui+lr u,) and f,-1/2 is 
identical to  f (u;, w - ~ ) ,  

A third restriction is ~ U ? + ~ / ~ U Y  2 0, but this merely 
limits the time step. 

As an example, consider first-order upwind differ- 
encing, which is already known to be monotone: 

Here, 13 f,+llz/du;+l = +(a-  la(), which is non-positive, 
and d f;- l/2/dui- 1 = (a  + [a ( ) ,  which is non-negative. 
Hence first-order upwind differencing satisfies (18), as 
expected. A counter-example is central-differencing, 
which is already known not to be monotone: 

Here, i t  is seen that (18) can never be satisfied except for 
the degenerate case of a = 0, since both a f~+ l12 /~u ;+ l  
and 8fi-l12/au;-l = +a. 

In order to  analyze the two-dimensional Euler 
equations in conjunction with the 5-wave model, they 
are written in finite-volume form with forward-Euler 
time stepping, and it is assumed for simplicity that the 
mesh is made up of square cells: 

It  is further assumed that the computational stencil is 
made up of only (i, j ) ,  ( i +  1, j ) ,  (i- 1, j ) ,  (i, j + I ) ,  and 
(i, j- 1), so that in  one time step Ui,j  is only a function 
of its initial value and the values in the four immediate 
neighboring cells. This is a spatially first-order accurate 
scheme. 

Now, instead of one equation, there are four cou- 
pled equations, and the quantities a~:f  ' / ~ u E ,  where 
k = ( i +  l , j ) ,  (i - l , j ) ,  ( i , j  + I), ( i , j  - I ) ,  are not 
single variables but 4 x 4 matrices. The four eigenval- 
ues of each of these matrices represent the change of 
four local characteristic variables a t  (i, j )  with respect 
to the change in those same variables in the correspond- 
ing neighboring cell. Since the equations are decoupled 
with respect to these local characteristic variables, non- 
negative eigenvalues imply a type of monotonicity prop- 
erty. This property is utilized t o  help define a limiting 

procedure for reducing oscillations in two-dimensional 
solutions. 

The conditions equivalent to  (17) for the Euler 
equations are 

for k = (i + 1, j ) ,  (2 - 1, j ) ,  (i, j + I), (i, j - I), or, equiv- 
alently, 

where e.v.(-) represents "the eigenvalues of (.)". If the 
grid-normal angle Bg is varied over the full range of pos- 
sible angles, then satisfying all four inequalities in (23) 
is redundant. Satisfying the two inequalities on oppos- 
ing faces (say the (i + 112, j )  face and the ( i  - 112, j) 
face) is then sufficient to  insure this monotonicity prop- 
erty. 

In order t o  proceed with the monotonicity analysis 
for the 5-wave grid-independent model, write (10) in 
slightly different form: 

1 
-{[R*I 2 IIA*]cos(e; - e,) 1h*+ 

[ R ]  is the matrix of wave vectors acting in the 6;- 
direction (~1,2,4,5 in (11)). [R*"] is the corresponding 
matrix of wave vectors acting in the (8: + $)-direction 
(only the shear vector, R3 in ( l l ) ,  is used in the 5- 
wave model). Then [A*] = diag(i5 + 6, q^L - 6, i h ,  42) 
and [A**] = diag(+i + 6, r̂ i - ii, +;, +A) are the corre- 
sponding wavespeeds in those same directions. The 
wavestrengths, taken from (13), in the two directions 
are 

The present study concentrates on the variations 
in fi* and a**. I t  is assumed that the wave vectors, 
wavespeeds, and @& are constant, and all variables are 
taken as the Roe-averaged values. Therefore this is a 



linearized analysis. With these assumptions, one can 
obtain 

1 ad 
=--(8,)- a ~ ; , , , ~  2 au 

ah* 
{ [  2 * ] c o (  - 8 )  1 -  (27) 

~ U R  

along with a similar expression for 6'O;-llz,j/dU;-l,j. 

The derivative matrices ah*/auR and d h * * / d u R  are 
obtained in a straightforward fashion from (25) and 
(26). The monotonicity constraints are 

The monotonicity analysis is carried out numer- 
ically. The Mach number M, flow angle a, and 0 are 
chosen, then 8, and 65 are each varied independently be- 
tween -90" and 90" with incremental changes of a/32. 
Eigenvalues are computed for each condition. If they 
meet the criteria of equation (28), then monotonicity is 
preserved a t  that condition. It turns out that plotting 
(8: - a) us. (8, - a) removes the dependence on a (in 
other words, plots are the same regardless of the value 
of a). 

A sample plot is shown in figure l(a).  The condi- 
tions are M = 3, 0 = 0.95. There are two very small 
regions where monotonicity is preserved. (Note that 
some points may be missing from these monotonicity 
plots wherever the eigenvalue solver does not converge 
within a specified number of iterations. However, we 
are more interested in general regions than in specific 
points.) As a specific example, from the figure it is 
seen that the scheme is monotone for approximately 
30" < 8; - a < 75" when 8, - a = 75". This allowable 
8; region is sketched in figure l (b) .  

It is also evident from figure l ( a )  that if (8, - a )  lies 
between roughly -60" and 60°, then no 8: chosen will 
insure monotonicity. Other 0's less than 1.0 produce 
similar plots. Only when ,B = 1.0 is there always some 
8; that will yield a monotone scheme, as demonstrated 
in figure 2(a). Here, the diagonal where 8: = 0, corre- 
sponds to  the grid-aligned scheme. The effect of Mach 
number is shown in figures 2(b) and (c) for ,O = 1.0. 
At low Mach numbers, only thegrid-aligned method is 
monotone (i.e. 8: must = 8, and must = 1.0), while at 
higher supersonic Mach numbers the monotone region 
is extended slightly from the M = 3 case. 

It is clear from this analysis that the restrictions on 
allowable 8; for a monotone scheme given by this anal- 
ysis are quite severe, if not impossible to  meet. Fortu- 
nately, in practice it appears that the restrictions on 8: 

can be relaxed somewhat while still maintaining reason- 
ably non-oscillatory solutions near discontinuities for a 
wide variety of flows. 

Through extensive numerical experimentation, the 
following observations have been made regarding re- 
ducing the oscillatory behavior of the grid-independent 
model to  an acceptable level: (1) When M > 1 best 
results are obtained when 8; is limited t o  lie between 
a+ K *sign(Bg -a) and 8,. K is a small number for lower 
Mach numbers and is larger for higher Mach numbers. 
(2) When M << 1 8: does not need to be restricted, ex- 
cept in a very small region (see (3) below). Between M 
= 0 and M = 1 best results are obtained if the allowable 
region transitions smoothly between the subsonic and 
supersonic cases. (3) In the boundary layer region of 
Navier-Stokes solutions, odd-even point decoupling can 
occur when 8; is taken as (Og&:) and a x 8;. This con- 
dition occurs on grid interfaces in the boundary layer 
that are aligned with the flow direction, and is due to 
the fact that all components of the 8;-wavespeeds in the 
grid direction equal zero and the (8; -t q) shear wave 
has an extremely small wavespeed. Hence the dissipa- 
tion is very small and the result is essentially central- 
differencing in that direction. By limiting the angle 8; 
to  lie outside of a small region near (8; - a) = 0 at 
(8, - a) = *go0, this decoupling can be alleviated. Nu- 
merical examples of viscous flows both with and without 
8;-limiting will be given in the Results section. 

An attempt has been made to parameterize the 
"monotonicity regions" in accordance with the three 
observations made above. The empirically-generated 
8:-limited regions for four different Mach numbers are 
shown in figures 3(a) through (d). It should be stressed 
that the determination of these regions is based only 
loosely on theory and primarily on numerical experi- 
mentation. The following empirical scheme has been 
found to give good results for a wide variety of prob- 
lems. It is by no means deemed to be the best scheme 
for improving the monotonicity properties of the 5-wave 
model. First, some variables are defined: 

y - 8 { t a n )  + 1 (31) 

Y4 I ' 8 {tanh (y) + 1) (32) 

Y7 - + ,/ max [ ( i ) z { ( ~ g a ) + ~ ) l , O 1  (35) 



The allowable regions are then taken as: 

If (8: - a) does not lie within one of the allowable re- 
gions, then it is limited to  either yl l  or ylz, whichever 
is closer. 

Results and Discussion 

A first-order Euler computation of supersonic chan- 
nel flow with a 15' finite-length ramp is computed at  
an inflow Mach number of 2.0 on a 49 x 17 grid. (This 
case was first used to  test grid-independent flow solvers 
by Levy et. aL7) Figures 4(a) through (c) show Mach 
contours and Mach number values along j=constant 
cuts for the grid-aligned scheme, the 5-wave model (8;- 
unlimited), and the 5-wave model (8;-limited). The 
unlimited grid-independent method yields extremely 
sharp shocks, but many oscillations are evident in the 
flowfield. The limited method reduces the oscillations 
while still providing more resolution than the grid- 
aligned scheme. 

An unexpected advantage of the grid-independent 
model over the grid-aligned scheme turns up  during the 
course of a grid convergence study using the Euler equa- 
tions to  solve subsonic flow over an airfoil. Figure 5 is 
a plot of computed drag coefficient us. the inverse of 
the square root of the grid density for the grid-aligned 
scheme and the 5-wave model on three different grids for 
M = 0.3 and a = lo, using first-order spatial discretiza- 
tion. The finest grid is a 257 x 73 0-mesh with average 
minimum spacing on the body of 0.0031~ and maximum 
grid extent of 20c. Coarser meshes are achieved by re- 
moving every other point from the next finest mesh. 
The "exact" Euler solution should give zero drag. The 
5-wave model, restarted from the grid-aligned solution 
with 8; frozen, gives a far better prediction of the drag 
than the grid-aligned scheme for all three grids. En- 
tropy contours for both methods on the coarsest and 
fir.est meshes, figures 6(a) and (b) and 7(a) and (b), 
indicate significantly lower entropy production over the 
airfoil surface using the 5-wave model. (Contour values 
plotted are 0.001 through 0.03 in steps of 0.001 for all 
four figures.) 

It  is believed that the difference in entropy levels is 
due to  the different ways that the two models interpret 
the flow near the stagnation point of the airfoil. Near 
the stagnation point, the flow undergoes very rapid 
turning with relatively small changes in pressure. The 
grid-aligned model interprets this turning t o  be in part 
due to  the action of + and - acoustic waves with nearly 
offsetting Ap's. Because the local flow is subsonic, the 
wavespeeds associated with each of these acoustic waves 
are of opposite sign, so the flux computed at  interfaces 
near the leading edge is assigned a pressure which is too 
high or low by an amount Ap. This results in increased 
entropy generation. In contrast, the 5-wave model in- 
terprets the rapid turning near the stagnation point to 
be due primarily to  the action of a (8; + ~ / 2 )  shear 
wave, which has no associated pressure jump across it. 
The entropy is lower as a consequence. 

Second-order spatially accurate computations for 
both the 5-wave and the grid-aligned models entail 
extrapolating the left and right states a t  each inter- 
face from primitive variables in the grid-aligned direc- 
tions. It  should be noted a t  this point that,  in gen- 
eral, second-order computations using the 5-wave model 
show only small improvement over grid-aligned compu- 
tations. Shock waves that lie oblique t o  the grid are 
usually resolved with about the same thickness using 
both methods. Also, the amount of entropy generated 
over an airfoil in a subsonic Euler computation is of the 
same order for both the 5-wave and grid-aligned models. 

However, a specific case where an advantage of the 
5-wave model over the grid-aligned model is realized in 
a second-order computation is for viscous separated flow 
over a NACA 0012 airfoil a t  M = 0.5, a = 3O, and Re = 
5000. On even reasonably fine meshes, the grid-aligned 
scheme does a poor job since there is a detached shear 
layer emanating from about midchord which is not ori- 
ented with the grid. The shear is misinterpreted as a 
combination of shear and compression, with the end 
result of a distortion in the computed pressure. An ex- 
ample is shown in figure 8(a) for a computation on a 
129 x 49 C-mesh with minimum spacing of 0.0004~ and 
maximum outer boundary extent of 14c. Figure 8(b) 
shows results over the rear half of the airfoil using the 
5-wave model with no limiting on 82, restarted from the 
grid-aligned solution with 8: frozen. Here the odd-even 
point decoupling mentioned in the Monotonicity Anal- 
ysis section can be seen. When @:-limiting is employed, 
this decoupling is no longer evident and the pressure 
distortions in the shear layer are significantly reduced 
as shown in figure 8(c). (In each of these figures, contour 
values of 0.9 through 1.2 in steps of 0.005 are plotted.) 

T H R E E - D I M E N S I O N A L  M O D E L  

The extension of the grid-independent flux function 
to  three dimensions is fairly straightforward. The flux 
per unit face area is given by ( lo) ,  but now the five 



waves are represented by and 0 is defined by 

where 

rj: = O(c,)'d + C ( c Y  + .;(c,): (45) 

and 
Ari ~ ( ( c , ) ~  - 1 ) ~ u  + (cx)(cY)Av+ 

The variables c,, cy, and c, represent the components 
of the unit normal direction vector n' in the a, y, and z 
directions, respectively. They can be written: 

where the angles 0 and $ define a direction in three di- 
mensions as depicted in figure 9. The velocity-difference 
direction Zd, defined by the angles (Bd, $d), is obtained 

Aw .I. sign(Au) j48) 
$d = tan 

4 a u 2  + Av2 

The angles are each defined from -5 to 5 .  As in two 
dimensions, the direction of wave propagation is frozen 
as n'& in order to  eliminate nonlinear feedback in the 
solution. 

The vector of wavestrengths is given by 

where 

All of_the waves except for the shear wave repre- 
sented by R3 have wavespeeds in the n';-direction. The 
direction of propagation of the shear wave-,~3 is taken 
normal to  the plane spanned by VL and VR. This di- 
rection is chosen so that  the model is able to sharply 
capture oblique shear waves through which the veloc- 
ity undergoes rotation. Its derivation is discussed in 
greater detail in reference 3. The velocity ii, of this 
shear wave is identically zero when the direction of 
wave-propagation is not frozen. When the direction is 
frozen, then ii:, although small, is no longer necessarily 
zero. It  is given by 

where (c,):, (cy):, and (c,)', are the components of the 
frozen shear-propagation direction in  the three coordi- 
nate directions. 

Finally, the components of the wavespeeds of all 
five waves in the grid-normal direction are written: 

A monotonicity analysis in three dimensions pro- 
ceeds in much the same way as the analysis in two di- 
mensions. However, for simplicity i!'is assumed that the 
shear-wave speed associated with R3 is identically zero 
(which would be exactly true if the wave-propagation 
direction was never frozen). 

-, 
Results are plotted as allowable In'& -Zf I us. Ing - 

Zf 1, for various &, where q$, is the angle between the 
plane defined by the vectors (Sg, Zf ) and the plane de- 
fined by the vectors (62, Gf). The quantities within the 
absolute value signs indicate an  angular difference Le- 
tween two vectors. When plotted this way, results are 
independent of the flow vector Zf .  

A result is given in figures 10(a) through (c) for M 
= 3, and p = 1. Figure 10(a) shows results for the cases 



when $ p  < 15'. The allowable region for monotonic- 
ity looks very similar to the two-dimensional region a t  
these same conditions (see figure 2(a)). It includes the 
grid-aligned wave model 5; = 5,. Notice that for the 
three-dimensional case, in contrast to  two dimensions, 
the absolute value of the angular differences are plot- 
ted so that only positive differences are given. This is 
done because of the difficulty associated with assigning 
a positive or negative angular difference in three dimen- 
sions. When 15' < q5p < 30°, the plot of figure 10(b) 
results. Here, the monotone region is similar to  figure 
10(a) except that the grid-aligned model is no longer 
representable. When 30' < +p < 45', the monotonicity 
region diminishes significantly in size, as shown in fig- 
ure 10(c). Finally, when 45' < q5p < 90°, no region is 
monotone, according to this analysis. 

A specific example is taken from this case. Refer- 
ring to figures 10(a) through (c), when In', - sf ( = 75', 
the allowable IZ& - Sf 1 goes from about 25' to 75' for 
4, < 15', from about 25' to 65' for 15' < d p  < 30°, 
and from about 35' to  45' for 30' < 4p < 45'. A 
sketch is first drawn in figure l l ( a )  of the Zf vector 
and the Zg vector, separated by 75', with the allow- 
able s&-directions in the (fig, sf )-plane ( 4 ~ ~  = 0') indi- 
cated by shading. Next, in figure l l ( b ) ,  the allowable 
5;-directions in all three dimensions are indicated by 
including the results from the cases when the (fi;, sf )- 
plane differs significantly from the (fig, sf)-plane. 

A second case using M = 0.3, /3 = 1 is shown in fig- 
ure 12 for 4p = 0'. When 4p > 0°, there are no regions 
of monotonicity. This figure indicates (as did figure 2(b) 
for two dimensions) that only the grid-aligned method 
is monotone at these subsonic conditions. However, it is 
believed that this constraint, as well as the constraints 
imposed when the flow is supersonic, can be relaxed 
somewhat in practice. Although an empirical limiting 
method has not been devised for three-dimensional flow 
due to its inherent complexity, it is believed that a suc- 
cessful method would be patterned much the same as 
the method currently employed for two dimensions. 

A sample three-dimensional Euler result is given for 
flow through a channel with a ramp. This case was first 
performed by Parpia? The geometry is shown in figure 
13. Computations are performed on a 41 x 17x 17 grid at 
an inflow Mach number of 2.8. Pressure contours in the 
i= 1 and i= 17 planes (far and near walls) are shown in 
figures 14(a) and (b) and 15(a) and (b) using first-order 
spatial discretization. The 5-wave model is seen to yield 
sharper shocks than the grid-aligned model for this case. 

CONCLUSIONS 

A monotonicity analysis is performed for a multi- 
dimensional flux function applied to the Euler equa- 
tions. From the analysis, a limiting procedure is de- 
vised for two-dimensional flow which yields solutions 
with reduced oscillatory behavior while still maintain- 
ing sharper resolution of flowfield discontinuities than 

the grid-aligned flux function. The effect of the limiting 
is demonstrated for the case of supersonic channel flow 
with a ramp. The limited model is also applied to a 
subsonic Euler computation over an airfoil and a sep- 
arated viscous flow Navier-Stokes computation over an 
airfoil. First-order accurate results for the subsonic air- 
foil flow yield lower entropy and hence more accurate 
drag predictions than the grid-aligned model. In the 
Navier-Stokes case, pressure distortions computed in 
the separated region over the airfoil by the grid-aligned 
model are reduced by the grid-independent model. The 
model is also extended to three dimensions, and a mono- 
tonicity analysis shows the behavior to be similar to the 
two-dimensional case. First-order results for a three- 
dimensional channel flow with a ramp give sharper res- 
olution of oblique shocks than the grid-aligned model. 
A limiting procedure is not developed for the three- 
dimensional model. 
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Fig. 1 Monotonicity for M = 3, P = 0.95 
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1.4 
a) grid-aligned model 

Fig. 4 Mach contours and Mach number values, channel 
flow, M = 2, 1st-order 



b) &wave model (8; not limited) 

c) 5-wave model (0;-limited) 

Fig. 4 Continued 

Fig. 6 Grid convergence study, NACA 0012, M = 0.3, 
Q = l o ,  1st-order 



Fig. 6 Entropy contours, NACA 0012, M = 0.3, a = l o ,  
1st-order, grid-aligned model 

Fig. 7 Entropy contours, NACA 0012, M = 0.3, a = lo ,  
1st-order, 5-wave   nod el 

a) grid-aligned model b) 5-wave model (8; not limited) 

c) 5-wave model (@;-limited) 

Fig. 8 Pressure contours, NACA 0012 airfoil, M = 0.5, 
a = 3O, Re = 5000, 2nd-order Navier-Stokes 



Fig. 9 3-D angle definition 
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Fig. 10 Monotonicity regions, M = 3, P = 1 



a) allowable Ti: in (n',, sf)-plane b) allowable 5: in three dimensions 

Fig. 11 Monotonicity for M = 3, P = 1; allowable ii& when 
15, - iif I = 75' 

Fig. 12 Monotonicity region, M = 0.3, /3 = 1, +,, = 0° 



Fig. 13 Geometry of 3-D channel 

Fig. 14 Pressure contours, 3-D channel flow, M = 2.8, 1st- 
order, grid-aligned   nod el 

Fig. 15 Pressure contours, 3-D channel flow, M = 2.8, 1st- 
order, 5-wave model 


