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Abstract

This paper gives a variety of theoretical results
associated with the Adaptive Neural Control (ANC)
architecture and its application to the control of
flexible structures.

ANC is a new parallel processing, decentralized
architecture for identification and adaptive control that
has been under development by the author and
associates over the past five years. The ANC
architecture consists of a hierarchy of standardized
modules and rules for combining them. In this paper,
we give a step-by-step description of the ANC
components and present basic theorems on
convergence and stability for applications involving
both identification and adaptive control.

Introduction

Despite recent advances in efficiency, current
methodologies for space system control still engage
significant human resources for engineering
development and maintenance. For example, since
fixed-gain space system controllers must be updated
periodically to adjust to in-mission changes in system
dynamics, this implies burdensome ground support
activities. The development of the Adaptive Neural
Control (ANC) architecture by the author and
associates over the past several years is part of an
effort to develop neural network based controllers
capable of self-optimization, on-line adaptation and
autonomous fault detection and control recovery.
This development also supports the Nation's long-
term space exploration objectives for which
autonomous spacecraft involving self-reliant control
systems are a necessity.

The ANC architecture is a set of building blocks
and rules for combining them so as to achieve
massively parallel and decentralized processing for
identification and adaptive control of dynamic
systems. A sequence of papers1'7 have outlined the
ANC scheme and reported numerous simulation and
experimental results. While these previous papers
display important accomplishments in realizing
neural control systems in hardware, the present paper
gives a step-by-step description of the ANC

components and presents basic results on
convergence, and stability.

First, we describe the more or less direct
antecedents of ANC in the literature of 'connectionist'
or 'artificial neural network' systems. Of course, the
foundation of this work is the basic neuron model of
McCulloch and Pitts8, the early decentralized
adaptation algorithm of Hebb9 and the basic multi-
layer feedforward structures defined by Rosenblatt10"13.
Given this basis, the ANC approach utilizes gradient
based learning schemes. Subsequent to the advances
of Widrow and Hoff14"16 wherein the gradient of the
instantaneous error is used, the more general
backpropagation algorithm was invented by Werbos17

and independently developed by Parker18, LeCun19,
Rumelhart, Hinton and Williams20'21 and Rumelhart
and McClelland22. It will be seen below that the
ANC architecture involves a form of local
backpropagation. There are various approachs to the
application of backpropagation systems to temporal
processing (of time series signals). These may be
epitomized by the time-delay neural networks of Lang
and Hinton23 or Waibel et al.24 and the finite-impulse
response (FIR) multi-layer perceptrons of Wan25.
ANC is more closely related to the latter approach.
Associated with this scheme are several basic training
algorithm approaches: "backpropagation through
time" as explained by Werbos17, Rumelhart et al22 and
Werbos26, the "temporal backprop" of Wan27-28 and the
"real-time temporal learning" approach of Williams
and Zipser29. The latter approach, to which ANC
bears the closest resemblance, combines multilayer
perceptrons with tapped delay lines and trains the
network using the "temporal learning algorithm".
This algorithm requires the use of auxiliary
"sensitivity systems" to compute gradients. This
scheme was applied by Narendra and Parthasarathy30

to treat dynamic system identification and control. In
contrast, the ANC approach decentralizes
computations associated with both the forward signals
and the backpropagated signals and adaptation occurs
locally in each synapse. Because of the "local
backpropagation" arrangement, no separate sensitivity
systems are required.

In addition, as is discussed below, there are
further novel features of ANC. One of the most
important of these is the time varying rule for
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assigning the adaptive speed coefficient. In most
neural network schemes, the adaptive speed is either a
constant or is made to be time-varying in a more or
less ad-hoc way as to speed up convergence. The
time-varying adaptive speed utilized in ANC greatly
simplifies the investigation of convergence and
allows a guarantee of convergence under certain broad
conditions.

In the following section, we describe the
hierarchy of ANC components and how they are used
to build up more complex systems.

ANC Architecture Description

The processing architecture described here
combines modular, standardized components to
achieve its objectives. Modularity permits the
parameters of the controller device to be fine tuned to
specific applications with minimum development
effort. The massive parallelism and decentralization
of the architecture allows great latitude in the
allocation of the computational burden and implies
considerable implementation flexibility.

The hierarchy of modular structures that
compose the ANC architecture is depicted in Figure
1. In the order progressing from basic constituents to
higher-level modules, the modular structures include
individual neurons which are interconnected by
synapses and dynamic arrays which are in turn,
grouped into replicator networks, one or more of
which may form an adaptive neural control system.
For ease of explanation, all elements in the hierarchy
are assumed to operate within the framework of a
sampled data computational system — i.e. all
external inputs are sampled periodically at some
particular sample rate, all devices behave as discrete
time systems and all outputs to external devices (e.g.
actuators for control) are put through digital-to-analog
converters. Thus, inputs and outputs as well as
internal signals will be regarded as discrete time series
with the time value denoted by some integer value.

The lowest level of the hierarchy as shown in
Figure 1 contains three devices: an individual neuron,
an individual synoptic connector and a tapped delay
line.

For present purposes, a tapped delay line (TDL)
is a device that takes a scalar time series input and
produces an L-dimensional vector output consisting
of the present value of the input and its L-l delayed
values. The result of passing any signal (•) through
a TDL is denoted by an over bar: (T). At the bottom
of the hierarchy, the basic neuron can be defined as in
Figure 2. Unlike the one-way neurons usually
postulated in neural net applications to adaptive

control, (e.g. Williams and Zipser29, Narendra30) the
neuron defined here is inherently a two-way device
with a forward signal flow path and a backward signal
flow path. The neuron also receives a forward path
bias input and a backward path input. Signals along
the forward path are operated on by the neural
function, which may be a sigmoid function as
illustrated in Figure 2a. Signals along the backward
path are multiplied by the derivative of the neural
function. The forward and backward paths receive
input signals from other neurons via synaptic
connectors. On the forward path, during each
computational cycle, the neuron sums the forward
path inputs from the synaptic connectors and adds a
forward path bias signal to form signal uk (see Figure
2a). The bias signals are used to connect the system
with the outside world, e.g. the forward bias might be
a training stimulus injected to drive the learning
process in the overall network. Signal ut is then
passed through the neural function (signoid
nonlinearity), g(x), (called the activation function) to
form the forward path output of the neuron, x%. The
neural function g(x), may be assumed to be
differentiable and to have an approximately linear
range for small values of x and to saturate at large
values, approaching +1 as x —» °°and -1 as x —> ».
The range of the values of the argument over which g
is linear is a variable specification. In particular, as a
special case, g(x) can be linear; i.e. g(x)=x. In its
forward path operation, the neuron is essentially the
same as the customary definitions.

Fully localized computational capability is
provided by the backward path operations that are
executed simultaneously with the forward path. The
neuron sums the backward path bias inputs (which
may represent error signals injected into the network)
and the backward path inputs. This signal is then
multiplied by g'(uk) to form the backward path
output signal yt. #'(•) is the function formed from
the derivative of g(-), and because of the
characteristics assumed for g(-), is nonnegative with
a single maxima at zero. Thus, the neuron has a pair
of inputs and a pair of outputs, each member of the
pair being associated with signals flowing in opposite
directions.

With reference to Figure 2b, the neuron may be
depicted in a simplified block diagram convention.
The neuron as a whole is represented by a hexagon.
Only the forward path signals are shown explicitly
(the backward path operations can be inferred from the
forward path). Forward path bias signals are always
shown entering the top of the hexagon symbol and
the backward path biases are shown entering the
bottom.
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The characteristics (such as g(-) and g'(0) °f
the neuron in a particular system are fixed and are not
adapted over time. The capability to adapt over the
time actually resides, not in the neuron, but in the
synaptic connectors (or simply synapses) which are
elements that serve to link several neurons together.
Referring to Figure 3, a synaptic connector is also an
inherently two way device with both forward and
backward inputs and outputs. On a forward signal
path the synapse merely multiplies the input * by a
real number, W(n) to produce an output y. W(n) is
the synaptic weight or, more simply, the "weight" of
the connector (sometimes called a "gain"). On a
backward path, the same kind of operations occur: x
is multiplied by W(n) (the same weights as the
forward path) to produce the backward path output

Essentially the synapse is analogous to a bi-
directional cable with the same resistance in both
directions. In addition the synapse may also adjust its
own weight. For example the synapse may use the
formula in Figure 3. The change in the weight from
time n to time n+1 may be simply proportional to
the product of the forward path input to the synapse
and the backward path input to the synapse. This
update rule, is purely decentralized or localized since it
uses only information available to the individual
synapse. Of course, for each synaptic connector there
is the option of constraining the weight — to a
constant or equal to some externally supplied time
varying signal.

The constant of proportionality in Figure 3,
\i(ri), is called here the adaptive speed since it governs
the rapidity of learning. As discussed below, the
adaptive speed is not necessarily a constant and may
be updated (using local information) so as to
guarantee convergence in both system identification
and adaptive control.

With reference to Figure 3b the simple block
diagram convention for the synapse is a directed line
with the synaptic weight indicated above the arrow.
Once again, the backward path operations are implied
while only the forward path signals are shown
explicitly.

Neural systems can be constructed consisting of
several neurons linked by the synaptic connectors.
To clarify how these bi-directional devices fit
together, a three neuron, two synapse system has
been constructed in figure 4a. Figure 4b depicts the
same arrangement of neurons and synapses as in
Figure 4a using the simplified notation identified in
figures 2b and 3b. This serves to illustrate how the
two-way devices 'dove-tail' and how the simple block
diagrams are to be interpreted.

Systems built up of the neurons and synapses
defined above are adequate to address static pattern
classification and nonlinear mapping problems. By
virtue of the backward signal path defined at the most
fundamental level, backpropagation of error and
adaptive learning capabilities are built in. Moreover,
the learning capability is totally localized and
decentralized — separate "sensitivity systems" and
weight update computations are not needed. Each
subdivision of a neural network composed of the
elements defined above has a localized learning
capability. This feature confers a high degree of fault
tolerance — i.e. with a completely decentralized
learning architecture, failure or damage to a subset of
neurons will result in the remaining neurons
eventually assuming the functions of the damaged
components.

However, there remains the problem of applying
networks of this type to tasks involving dynamic
systems with time-varying input and output signals.
This problem is addressed by the second member of
the hierarchy shown in Figure 1. The key to
applying the neurons and synapses of Figures 2a and
3a to dynamic system identification is to organize the
neurons into larger building blocks — termed the
dynamic arrays. As illustrated in Figure 5a arrays
may be connected by Toeplitz synapses. An array is
a "stack" of neurons such that neurons within the
same stack are not connected, but are (at most) only
connected to neurons in some other stack. Basically,
this organization into stacks introduces a temporal
ordering into the network: the position of a neuron
in the array indicates the "age" of the data (relative to
the present instant) it is meant to process. A neuron
that is further from the top of the stack represents a
time instant that is further into the past.

In general, two such stacks of neurons can be
interconnected with any number of connections.
However, it is desirable to impose connectivity
constraints such that the neuron k places from the top
in one array receives (forward path) signals only from
the neurons in another stack that are k places or more
from the top. Any bundle of synaptic connectors
obeying this constraint is termed a Toeplitz synapse.
As illustrated in Figure 5 a, the weights of this bundle
can be represented as an upper triangular matrix.
Fundamentally, this upper triangular structure is
designed to preserve temporal ordering and causality
within higher order networks. In other words, by
forbidding a top level neuron from one stack from
feeding signals into a lower level neuron in another
stack, the system is constrained to be capable of
modelling only causal systems in which the future
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input signals cannot influence the past output
signals.

As indicated in Figure 5b the arrays and synaptic
connections may be simply diagrammed as shown. As
indicated, arrays are represented by double-lined
hexagon symbols. Toeplitz synapses are indicated by
double arrows with the associated weight matrix shown
within the arrow. If two or more Toeplitz synapse
arrows converge on the imput to an array, the input is
the sum of the indicated symbols. As before, only the
forward path signal flows are shown explicitly.

Any network formed by an arbitrary number of
arrays, linked by Toeplitz synapses in any arbitrary
pattern (series connections, parallel, closed-loops or
combinations thereof) is referred to herein as a Teoplitz
network. The two top levels of the hierarchy in figure
1 are examples of Toeplitz networks, assuming
Toeplitz synapses are being used. Considerable details
on the construction of Toeplitz networks for various
tasks in system identification and control are given
in1"7. Here we discuss some of the general properties
of Toeplitz networks that are relevant to all
applications.

A typical configuration for a Toeplitz network is
depicted in Figure 6. An externally provided training
signal, £ is first passed through a tapped delay line so
that £; is the basic input to the network. The output
of some designated array constitutes the output to the
network and this vector is compared with a reference
signal T|(n) obtained by passing a reference signal
r\(ri) through a tapped delay line. T)(«) might be the
output of some dynamic system with £ as input. The
difference, e.(n), is then injected into the backward
signal path of the output array.

The formula for the update of any particular
weight matrix can be obtained as a direct consequence
of the definitions given in Figures 2a, 3a and 5a.
First, we introduce supporting notation. Let * denote
the Hadamard product of matrices (element-by-element
multiplication). (70 is a particular instance of a
synaptic constraint matrix. In the following, let Ua
denote the matrix:

r r _ •n£>XZ<

(i)

(2)

Furthermore, the symbols #(•) and g'(-) denote:

diag
K— 1.. *lj

WKJ is the weight matrix of the bundle of synapses
that feeds the output of neural array j into the inputs of
array K. Let the outputs of array K in the forward and
backward paths, respectively, be *K and XK. Then as a
consequence of our definitions:

(4)

where;
1, if array K is the input array

A =K 10, otherwise
1, if array K is the output array
0, otherwise

and where:

(5)

(6)

(7)

Equally obvious from our definitions (see Figure 3)
and the above notation is that;

W«j (n +1) = WKJ (n) + \L(n)V0 * (XK*J) (8)
where n.(n)>0 (for all n) is the time varying adaptive
speed appearing in Figure 3. |o.(n) is defined
specifically below. However, before considering this
matter we can readily show the following result:

Theorem 1

For the neural network composed as indicated in
Fig. 6 and defined by relations (l)-(8), if we assume
that all the vectors xr and Xr are uniquely determined,
then:

(9)

where g is the sigmoidal nonlinearity of the neurons
(see Figure 2) and g' is its derivative. Suppose that

Proof: Appendix A.
The above result indicates that the increment in each
synaptic weight is proportional to the negative gradient
of the square of the norm of the output error. Thus,
any Teoplitz network set up as we have stipulated in
Fig. 6a is a gradient decent machine.

With regard to |H(n), we first define
\i(n) = aF(n), cc>0 (10)

where we term a the learning rate constant. In
gradient descent schemes, instability in the form of
oscillatory divergence can result if the adaptive speeds
are too large. In the present approach, it is desired to
make |l(n) time varying so that such instability is
avoided. In particular F(ri) provides a scaling of u, such
that stability and convergence requirements are reduced
to a restriction on a. Under broad conditions, a is a
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"universal" constant in that it may be chosen once and
for all (and built into the system) so as to secure
desired convergence rates independently of the detailed
characteristics of the training stimuli or of the systems
to be identified and controlled. This confers the benefit
of stable, autonomous performance.

The specific definition of F(ri) in (10) is:
P(n)F(n) = •
A(n)

P = "performance function"

where

and

J* = desired mean-square
error level

A =" neural activity level"

(ID

(12)

(13)

(14)

= Z(XK*x)2 (15)

all synapses
where XK and X^ denote the inputs on the forward path
and on the backward path, respectively, to synapse K.
In particular, for the structure of Fig. 6:

where denotes the Frobenius norm. In the
definition, (11), of F(ri), the numerator and
denominator are derived from readily accessible signals.
The numerator, P, signifies the performance
requirement of the overall network in terms of the
square of the norm of the output error, ifiX/i)! .

Note that by virtue of the function chosen, the system
is not required to achieve a minimum value of
•jl'e («)|| but only to attain a value that falls below a

desired level, J*. Thus the network attempts to
achieve "good-enough" performance, not necessarily
optimal performance.

The above concludes our definition of the kind of
modules that are used within the ANC architecture. In
the following we consider some general characteristics
of networks composed as in Fig. 6. The next section
offers some simple results concerning convergence
behavior of Toeplitz networks.

3. Some Convergence Properties of Toeplitz Networks

Here we consider some simple, introductory
results on the convergence of Toeplitz networks of the

type indicated in Fig. 6 and with the defining relations
(1-8), (10-16). In particular, we trace the consequences
for convergence of the time-varying adaptive speed
adjustment, (11). The manner of convergence proof
owes much to the work of Narendra in stable adaptive
systems31, except that in the present instance a discrete
time system is being addressed.

To begin, not that -y||"e (w)|| is a function of all

the weight matrices W^,K,j = l,...,Na (where Na is
the number of neural arrays) at time « and of the past
history; {^(n-m),m = 0,l,...} of the training
stimulus. Alternatively, if we stack all of the nonzero
and independent elements of the W^'s in a single
vector, W(n); then -^\\€ (w)|j2 is a function of W(n)

and {£,(n-m),m = Q,l,...}. We symbolize this by
writing:

(17)

or, more briefly, y|{¥ (n)||2 = J(W(n)), when we

wish to emphasize the functional dependence of
Ifefon W. In (17) W(n) e RNs where N, is the is
the total number of independent, nonzero, synaptic
weights. Clearly, by (17), J is a nonnegative
function of W(n), i.e. J (W(n)) > 0 for all W e RNs.

For bounded and convergent response, the crux
of the matter is the "shape" of J(ri) as a function of
W e R s. In order to state the simplest result, recall
that F(xi,X2,...,Xjj) is termed a homogeneous
function of degree M if for p e R:

(18)

andBy differentiating both sides with respect to
sestting P equal to unity, we see that:

1 N 3F
F = ̂

With the above terminology, we may define a slightly
more general class of functions. We shall say that
J(W(nj) is bounded by a homogeneous Junction of
degree M iff:

and J has a single global minimum at W=W0.
Note that the network can succeed in

accomplishing its task only when there is a minimum
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of J that is smaller than the stipulated level, /*, of
acceptable error. Thus, we shall only consider the case
in which J(W0)<J*. The following preliminary
result must be stated:

Lemma 1

If, together with the assumptions of Theorem 1,
J(W(n)) is bounded by a homogeneous function of
degree M and /(W0) < J* then, defining:

where ! = 1 has been used. Defining:

W(n~)=W(n)-WQ

the vector W satisfies:
W(n +1) = \INs --^-8(n)xP(n)4'r(n

where:
./la/fall

(21)

(22)

(23)

, L ( j - r )
J-Jn0 -^-

M
-
3TV

e[0,l]V« (24)

Proof: Appendix B.
Equation (22) is similar to an equation arising

frequently in linear adaptive control (see [31]). A
complicating factor here is that the unit vector *P may
also depend upon W. Nevertheless, it is easy to derive
a sufficient condition for the boundedness of the time
sees {w(re)sRAb;n = 0,l,...}. We have:

Theorem 2

Under the assumptions of Lemma 1:
0 < a < 2M => \\W(n +1)11 £ |lV(n)|Vn (25)n n ii n

Proof: We use (22) to evaluate |iy(rt + l)|| directly:

(26)

(27)

where, obviously, |cos4>(n)| < IVn, (26) becomes:

, 1 ,
cos'!(Kn)p<B)|

(28)

Since |cos(n)| < 1 , the term in brackets on the right is
obviously nonnegative for all n. Finally, since both
|cos(rt)|<l and 8(n)<l for all n, the condition
a < 2M implies that this term is less than or equal to
unity. rj

We note in connection with this result that,
unless cos<j>(n) = 0, the condition <x<2M/8(«) is
necessary for W(n + l) < W(n) . In any case,
Theorem 2 shows that if the learning rate constant is
selected less than twice the degree of homogeneity of
J, then the sequence of W(n) is bounded in norm.
Moreover, as a practical matter, it often transpires that
8(n) = l and cos<|)(n)^0 so that a<2M is also
necessary for nondivergence. Thus, it does not appear
possible to improve the convergence speed of the
network by increasing the learning rate constant
beyond 2M.

Theorem 2 shows a simple condition on the
constant a that guarantees boundedness of the sequence
of synaptic weights. However, the result does not
prove convergence of the network output to some
desirable level of error. We complete our investigation
of the simple case assuming condition (20) with the
following result.

Theorem 3

Under the assumptions of Lemma 1 and
considering a < 2M:

limJ(n)<J* (29)
n— »<»

Proof: Rearranging (28):

(30)

This gives:
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(31)

n-1

However, by virtue of a<2M and Theorem 2,
is bounded for all n. Hence:

» (32)

Thus, the summand is a bounded, nonnegative £2

sequence. The only limit point is zero:

'"'=0 (33)

There are now several possibilities: either the first
factor converges to zero or the second factor does so or
both converge to zero. Consider the first case. This is
possible only if lim -?j§(k) equals either zero or

t-»oo M

two. Since -T7<2 and §(fc) < 1 the limiting value of

two is ruled out. Hence the convergence of the first
factor in (33) to zero implies lim S(fc)=0, or, using

fc—>°°
(24):

lim L(/-J*)
J-JQ

J(k)-JQ

~MW W
(34)

Because of the left-hand inequality in (20), this
implies.

lim ——————— = 0 (35)
fc^~ J(k)-J0

However, the fact that J has a single global minimum,
J0, and J0 </* means that ~L(J-J*)J(J-J0) can vanish only
if J < J*. Therefore, the convergence of the first
factor in (33) to zero implies (29).
Next consider the possibility that the second factor in
(33) converges to zero. In view of the definitions (21)
and (23) this implies lim(W-l

Because of the right hand inequality in (20), it follows
that lim(J

Thus, since J-J0 is nonnegative by assumption,
lim /(&) = J0 </*. Obviously if both factors in

fc->~
(33) converge to zero then the same conclusion
follows. Therefore (33) implies (29). E

The above results, in so far as they are based
upon (20), are very restricted but they do illustrate the
importance of the adaptive speed formula, (11)-(15),
for boundedness and convergence behavior. Also the
last theorem tends to justify the notion that a can be
treated as a "universal" constant — i.e. that a suitable
value of ct can be chosen once and for all and built in
to the network and convergence can then be guaranteed
for a broad class of tasks. Further, the condition a <
2M often provides a reasonably firm, practical
guideline in the design of Toeplitz networks. In many
instances, / is either locally or even globally
approximated by a homogeneous formation of degree
M. Thus, in practice, for a given class of problems,
one estimates a lower bound on the degree of
homogeneity and chooses a < 2M. Numerical and
experimental experience (that will not be reviewed
here) seems to indicate that a = M is, on the whole,
the "best" choice — i.e. convergence is fastest and
oscillatory behavior does not occur.

The assumptions underlying above results are
very restricted and much remains to be done. In
particular it is of interest to determine the behavior of
the network when /, considered as a function of the
weights, has several local minima. On this issue, no
rigorous results are forthcoming, but in the next
section we do offer an intriguing conjecture based on
numerical experience.

4. A Conjecture Regarding Instability Local Minima

In general nonlinear problems, the function
J(W(n)) is not globally convex — i.e. has several local
minima rather than a single global minimum. This
situation is illustrated schematically in Figure 7 where
W is as defined above. Neural networks heretofore
employed to solve optimization or system
identification problems generally experience the
difficulty that then- solution can be trapped in one of
the high lying local minima — i.e. points A,B,C,D or
E in Figure 7 — thus failing to achieve satisfactory
performance (that is: failing to converge to minima
that lie below the acceptable performance tolerance, J*
in Figure 7). The system discussed here however,
appears to exhibit quite different behavior. Based on
particular examples, we conjecture that because of the
structure of the adaptive speed function in (11-15)
high-lying minima (points A-E) are unstable in
general. In other words, if the weights, W, are
initially in the vicinity of point C for example, the
system executes ever larger departures from C. We
further conjecture that within finite time the network
leaves the "valley" having point C as its bottom and
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ultimately enters one of the "valleys" associated with
minima below J*. Once this occurs ( and assuming a
<2M for each of these low-lying valleys), the system
converges to a value of W within the low-lying valley
and the final performance, / is less than J*. If
generally true, this feature would make the present
system very attractive for applications involving
complex nonlinear optimization problems that have
numerous local minima.

Some evidence that local minima larger than J*
are unstable can be gleaned from simple examples.
Consider W e R1 and

(36)
Obviously 7-/0 is homogeneous of degree 2 and if /o <
J*, the origin is stable for oc< 4. However, for /0 >
J*, the counterpart to (28) is:

(37)

In this case, even for previously stable values of a the
origin is unstable. Actually there is a repelling
singularity at the origin. Numerical simulations of
(37) show \W\ going through a succession of episodes
wherein \W\ first approaches the zero smoothly then is
abruptly "bounced" away from zero. Trajectories are
very sensitive to initial conditions.

A slightly more complex example serves to
show that not only are high lying local minima
unstable, but the system does eventually settle into
one of the minima for which /</*. Consider again,
VKeR , but with:

2
As illustrated in Figure 8, this error function has seven
local minima, including die global minimum at W=0.
The counterpart to (22) is:

%
L(J — J ) (39)

Taking /*=0 and a =1.0 we see that, according to our
conjecture, only the origin can be stable. With these
values, Figure 9 shows a superposition of W(n) for
120 different initial values of W distributed evenly
over [0, 15] in increments of 0.125 (obviously
trajectories for negative initial values are the
reflections about the ordinate). It is seen that although
the system spends a larger fraction of time around the
local minima near W=l and W=2, all trajectories
eventually terminate at W=0, which is the one
minimum where J < J*. If one tries similar
experiments with J* >0, then the system is found to
settle into one of the (possibly several) local minima
for which J < J*.

These and similar examples provide incentive for
the rigorous formulation and proof of the above
conjectures in future work.

5. Conclusion

In this paper we have given a self-contained
description of the Adaptive Neural Control (ANC)
parallel processing architecture for identification and
control. Fundamental results on convergence were
given for a simple situation which tends to show that
network stability can be built in by appropriate prior
choice of the learning rate constant. This result is
essentially due to the time-varying adaptive speed
update which is a novel feature of the architecture.
Moreover, numerical experience suggests that ANC
systems do not settle into high-lying local minima of
the error function. This intriguing conjecture is the
object of further invesigation.
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Appendix A
Proof of Theorem 1

i _ ~
First, we evaluate the derivative of 4-|e|| with

respect to (H^- )gm — where this denotes the (£, m)th

element of Wkj. If this element is constrained to be
zero because Wkj is constrained to be upper triangular,
then the increment is zero. Therefore, consider the
nontrivial case where £^m. Using (7) we first
obtain:

=¥

0, (A.1)
'm

Next, we use (3) to evaluate

.WTX. (A.2). Xj

where e^ ' is the unit coordinate vector:

Also, define:
G' = block-diag {g'(Uk)}

rn wl2 ... wlN
72l W22 ••• W2N

YNN

(A.3)

(A.4)

(A.5)

and let denote:
~°,
O,

subblock (A.6)

where
0

denotes the dimension of with

With the above notation, we note that the
assumption that all the */s and the Xr's are
determinate means that (IN-G'WT)~l exists,
because otherwise the Xr's would be indeterminate.
This also implies the nonsingularity of (IN-G'W).
Hence, from (A.2), we obtain:

( X ) m (A.I)

Therefore, returning to (A.1), we have:

i'ftn

Obviously since G'(I - WTG')~l =(I-GWT)~1G'
we obtain:

9 1 ,|-||2
2" "

(A.8)

(A.9)

Therefore, on comparing this with (A.8), we conclude
that:

However, referring to (5), it is apparent that:

for (>m. Considering all ^and m and interpreting
d 1||1"|2 to mean that its (l,m)th element is

—•^•||e'||2. we obtain:1 rtm 2.

However, by (8), the right hand side of (A.ll) is
simply •^(Wkj(n + l)-Wkj(n)). This completes the

proof. n
Appendix B

Proof of Lemma 1
Noting that W is the vector wherein all the

nonzero elements of the W^'s are stacked, (9) implies
that:

(B.I)
_ _

Expressing this in terms of W:
W(n + l) = W(n)-\l(n)-j^ (B.2)

Using (10), (11) and (12):

f^^7 (B.3)

Now, comparison of (8) and (9) shows that
^™- = -Xrxr where xr and Xr denote the inputs on

the forward and backward signal paths, respectively, to
synapse r. Then (15) implies:
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A = (B.4)

Note also that since (20) is assumed, we can write:

0 i foj g^

where
8(n)e(0,l]V« (B.6)

We can substitute (B.4) and (B.5) into (B.3) to get:
i L(J-J i,,, - . i ^ i d J d j

Tj^j^JTQ(n)Jfwdwsw
\dW\ (B.7)

where the last line follows by noting

WT-Mr = MTTT W and by using definition (23).aW \^oW j
Making use of (24) in (B.7) yields (22). Notice that
since J0=J(W0)<J*, L(J-J*)<J-J0 for all
W(n) e RNs. Hence in view of (20) we may conclude

that 5(«) e [0,1] for all n. This completes the proof.
D

Adaptive Neural Control
Systems

Replicator Networks

Dynamic Arrays &
Toeplitz Synapses

Individual Neurons

Figure 1. Hierarchy of Modular Neural Structures Progressing from Basic
Constituents to Higher-Level Modules.
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Neuron Definition

Simple Block Diagram Convention
Forward l**th Blu

rythlrtR Within (he

Top D

Figure 2. Definition of Basic Neuron, (a); Simplified Diagram Convention, (b).

Synaptic Connector

x* Forward Path Input -

y = n«cku'jird Path Output-^P

V

Weight Adiplion Liw

Synaptlc Connector

Simple Block Diagram Convention

w(n)

>-y ~ Forward Path
Output

r- Backward Path
Input

Figure 3: Synaptic Connector (a); Simplified Diagram, (b).
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Example of Neuron-Synapse Connections

The above configuration is represented by:

Figure 4: Example of Neuron-Synapse Connections: Detailed Diagram, (a); Simplified Block Diagram (b).

Two Gangia Connected by One Toeplitz Synapse

J

Toeplitz Synapse - with Weight Matrix

0 ° >v,,
0 0 0

Sicnplirted Illock Diagram Omvcntkm

Figure 5: Two Dynamic Arrays Connected by One Toeplitz Synapse. Detailed Diagram (a); Simplified
Block Diagram Convention, (b).
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Net having »im«jj«.m dined waglit mm kjes

c.
Figure 6: Summary of the Standard Setup for the Toeplitz Network Involving Arbitrary Interconnections of
Dynamic Arrays.

Figure 7: Global Convergence Conjecture: The System Never Comes to Rests in High-Lying Local
Minima Such as Regions A-E. Instead, Such Regions are Exited in Finite Time and the System Winds Up
in One of the Shaded Regions for Which J<J*.
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-1 0 1
Synaptic Weight

Figure 8: Penalty Function for the Example of Equation (38) Displays Seven Local Minima.

10n

si

Figure 9: Superposition of 120 Trajectories of the System of Equation (38) Corresponding to Initial
Values Along the Interval [0,15], Spaced 0.125 Apart, (a = 1.0, j' = OJ.
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