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In this paper, we develop a detailed model of the process of image formation in Multi-
Spacecraft Interferometric Imaging Systems (MSIIS). We show that the Modulation Trans-
fer Function of, and the noise corrupting, the synthesized optical instrument are dependent
on the trajectories of the constituent spacecraft and obtain these explicit functional rela-
tionships. We show that “good” imaging using MSIIS is equivalent to painting a “large
disk” with smaller “paintbrushes” while maintaining a minimum thickness of paint, given
that the goal of imaging is the correct classification of the formed images. This implies that
the trajectories of the constituent spacecraft have to be “dense” enough in a given region,
while making sure that they are “slow” enough. This is illustrated through an example.
Keywords: spacecraft formation flying, interferometry, synthetic aperture optics.

I. Introduction

The research presented in this paper is motivated by the prospect of taking high resolution images of
extra-solar planets at distances of up to 15 parsecs.1 Other astronomical observations, such as the study
of protoplanetary disks in various stages of their formation, also require high resolution imaging. This high
resolution imaging is to be performed by a multi-spacecraft interferometric imaging system (MSIIS). A sur-
vey of different technologies that could be used for these missions is given in.2, 3

In this paper, we model the process of image formation in an MSIIS. We also model the noise inherent
in such systems. We show that both the Modulation Transfer function (MTF) of the synthesized optical
instrument and the noise corrupting the image formed by such an optical instrument are dependent on the
trajectories of the constituent spacecraft. Further, if we formulate the goal of imaging as the correct classifi-
cation of the formed images, we show that satisfactory imaging by an MSIIS is analogous to the “painting”
of a large resolution disk with smaller “coverage” disks or “paintbrushes” while maintaining a minimum
thickness of paint.

The problem of design of MSIIS is related to the fields of synthetic aperture optics and formation flying.
The relationship of our work to these topics is discussed next. The topic of long baseline interferometry falls
under the category of synthetic aperture optics,4 that was first developed in the context of synthetic aperture
radars (SAR).5 The method consists of emulating a large optical instrument by a number of smaller ones
and combining their contributions in a proper way to obtain an image that has resolution comparable to
that of the large optical instrument. For a discussion of the various metrics used in the optimization of these
systems, please refer to6 and the references therein. All the abovementioned designs optimize the locations
of the constituent telescopes such that some metric of image quality is maximized. Thus, these correspond to
static optimization problems. However, for an MSIIS, due to the high resolution requirements, the “design
variables” are the trajectories of the constituent spacecraft. In fact, we show the explicit dependence of the
MTF on the trajectories of the constituent spacecraft. Further, we show that the noise corrupting the image
in an MSIIS is a function of the spacecraft trajectories and the rate of arrival of photons on the observation
plane. Given that the goal of imaging is the correct classification of images, the design of an MSIIS reduces
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to a trajectory optimization problem, where some resource utilization of the system is minimized while sat-
isfying the imaging constraints placed on the trajectories of the constituent spacecraft.

In recent years, there has been substantial research on the topic of multiple-spacecraft formation flying.
For a detailed discussion of the issues involved, please see7, 8 and the references therein. However, in the
case of an MSIIS, the end goal of satellite formation flying is the synthesis of a good imaging system. With
the exception of,9, 10 none of the above contributions takes the imaging aspects of the problem into account.
These papers do so by coverage of the so-called (u, v) plane, i.e., the spatial frequency plane, however, the
adequacy of the coverage is not quantified. Moreover, the orbit design problem is not addressed: Hill orbits
are used and the design problem is the optimization of the relative orientations of the constituent spacecraft.
Thus, the work so far in the formation-flying literature has failed to take the specific demands of the imaging
problem into consideration, which would be critical in the design of an MSIIS. In the present work, we model
the image formation in an MSIIS and formulate an optimization problem that balances the imaging goals of
a system with its formation flying goals. The solution to the optimization problem is addressed in a separate
paper.8

The original contributions of this paper are as follows:

• None of the work in the synthetic aperture optics literature has so far addressed the high resolution
requirements inherent in the detection of extra-solar planets and other similar high-resolution astro-
nomical observations. This work is the first attempt at modeling the “dynamics” underlying the process
of image formation in such a system.

• We model the process of image formation in an MSIIS. In particular, we show that the MTF of,
and the noise corrupting, the image formed by an MSIIS are dependent on the trajectories of the
constituent spacecraft. Further, we show the explicit functional dependence of the above on the
spacecraft trajectories.

• Given that the goal of imaging is the correct classification of an image, we show that the formation
of “good” images by an MSIIS is analogous to painting a “large disk” with smaller “paintbrushes”
while maintaining a minimum thickness of paint. This implies that the spacecraft relative trajectories
must be “dense” enough in a given region, which is determined by the resolution specifications, while
ensuring that their relative motions are “slow” enough. These requirements are explicitly quantified
in this paper.

The rest of the paper is organized as follows. In section 2, we formulate the problem of design of an MSIIS.
In section 3, we discuss some optics preliminaries and model the process of image formation in an MSIIS.
In section 4, we model the noise inherent in such a system. In section 5, we discuss the properties of the
formulated imaging model and show the analogy to “painting”. In section 6, we give a numerical example
in which we illustrate the requirement that the trajectories be “dense” enough in a given region.

II. Problem Formulation

As mentioned in the Introduction, the design of an MSIIS should optimize some resource utilization
(such as time or fuel) while taking “good” images. The design problem can then be framed as the following
constrained optimization problem: “minimize the time (or fuel) required by an imaging maneuver while
ensuring that the imaging constraints are satisfied.” In the following, we give a mathematical formulation of
the optimization problem stated above.

Let the number of spacecraft in an MSIIS be denoted by N . Let the trajectory of the kth spacecraft be
denoted by rk(t) ∈ <3, 1 ≤ k ≤ N . Let the set of the possible trajectories be denoted by r̄. Let I denote
the set of images of interest and let i ∈ I be a particular image. Let î(r̄) be the image formed by the MSIIS
following trajectory r̄, i.e., the constituent spacecraft of the MSIIS follow the trajectories defined by r̄. Let
Q(̂i, i) denote an image quality metric depending on an image i and its estimate î. Let T (r̄) denote the time
of the imaging maneuver in following trajectory r̄. Then, the problem of designing minimum time maneuvers
for an MSIIS can be framed as follows:

min
r̄
T (r̄) (1)
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subject to
Q(i, î(r̄)) ≥ Qmin, ∀ i ∈ I, (2)

where Qmin is a pre-specified lower bound on the performance desired of the imaging system.

Now, we can specify the image quality metric of interest to us. We note that there might be other metrics
of image quality, but the following metric is consistent with the imaging application we have in mind. We
assume that the images formed by the MSIIS will be used for the classification of the exo-solar planet (or
any such astronomical object) into one of two classes (note that the case of more than two classes is a trivial
extension of the case of two classes). The formation of an image by an optical instrument can be represented
by the following convolution,4

ip(x, y) = h(x, y) ∗ i(x, y) + n(x, y), (3)

where h is the point spread function of the optical instrument and n is the noise corrupting the image, or
equivalently by the following product in the Fourier domain,

Ip(ν) = M(ν)I(ν) +N(ν). (4)

Here, M represents the modulation transfer function (MTF) of the optical instrument. In the case of an
MSIIS, the MTF function (and the psf) depend on the trajectories of the constituent spacecraft. In fact, in
the next section we shall show that the noise and the MTF are both functions of the MSIIS trajectory, x̄.
Furthermore, the image is reconstructed through an operator G, i.e.,

Î(ν) = G(ν)Ip(ν). (5)

In this work, for the sake of simplicity, we assume that G(ν) = 1/M(ν). Let the set of images, I, be
partitioned into two non-empty classes, I1 and I2. We define the probability of misclassification of an
estimate of some image i ∈ I as:

εp(̂i, i) = prob(̂i /∈ Ik/i ∈ Ik). (6)

We say that an MSIIS (or any imaging system) performs satisfactory imaging if the following is satisfied for
all i ∈ I,

εp(̂ī(r), i) ≤ pmin, (7)

where pmin represents the maximum allowable probability of misclassification. Note that, since the MTF
and the noise corrupting the image in an MSIIS are both dependent on the trajectory of the MSIIS, it follows
that the estimated image and the probability of misclassification are both functions of the MSIIS trajectory.
Then, we pose the design of minimum time maneuvers for an MSIIS as the following optimization,

min
r̄
T (r̄) (8)

subject to
εp(̂i(r̄), i) ≤ pmin, ∀ i ∈ I. (9)

We make the following observations about the optimization problem posed above:

• The optimization problem is framed as minimizing the time of the imaging maneuver subject to the
“imaging constraint” that the probability of misclassification of any image in a given set be less than
some pre-specified upper bound.

• We need to find the relationship between the synthesized optical instrument and the trajectories of the
constituent spacecraft.
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• In general, it will be prohibitively expensive in terms of computations to evaluate the probability of
misclassification given the trajectory of an MSIIS. Hence, the optimization problem posed above is
not easily amenable to Mathematical Programming methods. Moreover, in general it would be pro-
hibitively expensive to evaluate the probability of misclassification numerically, given the trajectory of
the MSIIS. Coupled with the high dimensionality of the problem, this precludes the possibility of using
global optimization methods such as genetic programming. The solution to the optimization problem
posed above is addressed in.7, 8

• Hence, we need to find sufficient conditions on the noise process corrupting the imaging system, in
terms of easily evaluated second order properties of the noise process, such that the imaging constraints
are satisfied. This question is addressed in.6

In the following section, we shall formulate a model for the process of image formation in an MSIIS. We
shall show that the MTF of the synthesized aperture is a function of the spacecraft trajectories. Moreover,
we shall show that the noise corrupting the final image formed by an MSIIS is a function of the photon
arrivals on the measurement plane and the spacecraft trajectories.

III. Equivalent Optical Aperture

In this section, we obtain the description of the equivalent optical aperture that is created by a maneuver
of an MSIIS. The propagation of an electromagnetic field from the image plane to the measurement plane is
described by the Huygens-Fresnel Principle (HFP):4

U(P ) =
1
jλ

∫

ΣI

U(Q)
e2πj

r
λ

r
ξ(θ)dS, (10)

where U(P ) represents the value of the scalar field variable at point P and λ denotes the wavelength of the
incident radiation. This situation is illustrated in Fig. 1 (the other variables in the equation are defined in
the figure). Here, ΣI represents the image plane, Σo represents the measurement or the observation plane, P
is a point on the observation plane, Q denotes a point on the image plane, r represents the distance between
these points, θ and φ are the angles between the relative position vector between the points P and Q and
the normals to the surfaces Σo and Σi at P and Q respectively, and ξ(.) is a known shape function. The
above equation allows us to find the value of the electromagnetic field at a plane downfield from the image
plane.

The Inverse Huygens Fresnel Principle (IHFP) expresses the field on the image plane in terms of the field
on the observation plane (this is a statement of the time reversibility of light):

U(Q) =
−1
jλ

∫

Σo

U(P )
e2πj

r
λ

r
ξ(φ)dS. (11)

In our case, the distances involved are very large and hence, to a good approximation, we have ξ(θ) ' 1 and
ξ(φ) ' 1. In general, the electromagnetic field at the image plane is a random quantity and thus, the field
measured on the observation plane is also random. The mutual intensity between two points P1 and P2 is
defined as:

J(P1, P2) =< U(P1)U∗(P2) >, (12)

where x∗ denotes the complex conjugate of the random variable x and < . > denotes the expectation
operator. In fact, the mutual intensity is the physical quantity that is measured by a pair of spacecraft
in an MSIIS. This measurement is done by evaluating the visibility and phase of the fringe that is formed
by interfering the light collected by a pair of spacecraft (see pg. 338 in11). Thus, using the IHFP and the
definition of mutual intensity, it follows that,

I(Q) =
1

λ2z2

∫

Σo

∫

Σo

J(P1, P2)e
2πj

λ (r(Q,P1)−r(Q,P2))dS1dS2, (13)
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Figure 1. Propagation of Electromagnetic Field

where I(Q) =< U(Q)U∗(Q) > denotes the intensity of the field. The situation is shown in Fig. 2. The
various physical quantities of interest are shown in the figure. We assume that the electromagnetic field of
the radiating object (i.e., the planet we are imaging), is incoherent. Mathematically, this means that

J(Q1, Q2) = I(Q1)δ(Q1 −Q2), (14)

where δ(.) denotes the Dirac impulse function. Thus, the object is completely described by its intensity
profile. Furthermore, we note from (13) that the intensity profile of the object can be evaluated by mak-
ing mutual intensity measurements on the observation plane and using (13). When the mutual intensity
measurements are corrupted by noise, it can be seen that (13) represents the minimum variance unbiased
Gauss-Markov estimate of the object. Using the above development, we shall describe the process of image
formation in an MSIIS.

Let there be N spacecraft in the MSIIS. Let the positions of the spacecraft be denoted by r1(t), · · · , rN (t).
Let

∆rmn(t) = rm(t) − rn(t), 1 ≤ m,n ≤ N. (15)

We assume that interferometric measurements are made between each pair of spacecraft. Consider an
infinitesimal time interval, [t, t + dt], and the incremental image accrued during this interval, dIp(Q, t).
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Then, using (13),

dIp(Q, t) =
A2

λz2

N∑

m=1

N∑

n=1

Ĵ(Pm, Pn)e
2πj
λz (r(Q,Pm)−r(Q,Pn))dt, (16)

where Ĵ(Pm, Pn) represents the noise corrupted measurement of the mutual intensity measurement between
the spacecraft positions, Pm and Pn, and A denotes the area of the telescopes. Note that, Ĵ(Pn, Pm) =
Ĵ∗(Pm, Pn) by definition. Let

Ĵ(Pm, Pn) = J(Pm, Pn) + δJmn(t), (17)

where δJmn(t) is the noise corrupting the mutual intensity measurement between the mth and the nth

spacecraft at instant t.
We also assume that the object we are imaging is spatially bounded, i.e., it has finite spatial dimensions.

Thus, there exists a known Γ ⊆ ΣI such that the support of the image lies within Γ. Now, we introduce the
“field-of-view” (FOV) or “picture frame” function, AP , where

Ap(Q) =

{
1, Q ∈ Γ
0, Q /∈ Γ.

(18)

In general, the support of dIp will not be within Γ. Thus, we crop the formed image dIp with the FOV
function. Hence,

dIp(Q, t) =
A2

λz2

N∑

m=1

N∑

n=1

Ap(Q)Ĵ(Pm, Pn)e
2πj
λz (r(Q,Pm)−r(Q,Pn))dt

+
A2

λz2

N∑

m=1

N∑

n=1

Ap(Q)δJmn(t)e
2πj
λz (r(Q,Pm)−r(Q,Pn))dt. (19)

At this point, we make a few simplifications using the fact that the distance between the image and the
observation plane is very large compared to the other distances involved. Let Q = (xQ, yQ, 0) and Pm =
(xm, ym, z). Then,

r(Q,Pm) =
√

(xm − xQ)2 + (ym − yQ)2 + z2

' z[1 +
(xm − xQ)2

2z2
+

(ym − yQ)2

2z2
]. (20)

Thus, it follows that

r(Q,Pm) − r(Q,Pn) ≈
1
z
[
1
2
(xm − xn)(xm − 2xQ + xn) +

1
2
(ym − yn)(ym − 2yQ + yn)]. (21)

Also, it follows from the FHP that,

J(Pm, Pn) =
1

λ2z2

∫

ΣI

I(Q′)e
2π
λz (r(Q′,Pm)−r(Q′,Pn))dS′. (22)

Simplifying the exponents in (19) using (21) and substituting (22) in (19), we obtain the following equation,

dIp(Q, t) =
A2

λ2z2

∑

m

∑

n

Ap(Q)
λ2z2

∫

ΣI

I(Q′)e
2πj
λz [∆xmn(xQ′−xQ)+∆ymn(yQ′−yQ)]dS′dt+

A2

λ2z2

∑

m

∑

n

Ap(Q)δJmn(t)e
−2πj

λz [∆xmnxQ+∆ymnyQ]e−jψmn(t)dt, (23)

where

ψmn(t) =
1
λz

(ρ2
m − ρ2

n), (24)

ρ2
m(t) = x2

m(t) + y2
m(t). (25)
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Then, it follows that

dIp(Q, t) =
A2

λ4z4

∑

m

∑

n

Ap(Q)
∫

ΣI

I(Q′)e
2πj
λz [∆rmn.(Q

′−Q)]dS′dt+ · · ·

A2

λ2z2

∑

m

∑

n

Ap(Q)δJmn(t)e
−2πj

λz [Q.∆r]e−jψmn(t)dt, (26)

where · denotes the standard scalar product in <2. Recall the following Fourier transform identities:4

F(f∗g) = f̂ ĝ, (27)

F(f(x)e−2πj(a.x)) = f̂(ν − a), (28)

where F and * denotes the Fourier transform and the convolution operator respectively. Let

Hmn(Q) =
∫

ΣI

I(Q′)e
2πj
λz (∆rmn.(Q

′−Q))dS′. (29)

Then, using the identities (27) and (28), and the relationship (29), taking the Fourier transform of both sides
of (26), we obtain the following,

ˆdIp(ν, t) = [
A2

λ4z4

∑

m

∑

n

Âp(ν)∗Ĥmn(ν) + · · ·

A2

λ2z2

∑

m

∑

n

ÂP (ν − ∆rmn
λz

)δJmn(t)e−jψmn(t)]dt. (30)

In the above equation, all the hatted variables represent the Fourier transforms of their unhatted counter-
parts. Again, due to the Fourier identities, it follows that

Ĥmn(ν) = Î(ν)δ(ν − ∆rmn
λz

). (31)

Substituting (31) in (30), we use the sampling property of the delta function to obtain

ˆdIp(ν, t) = [
A2

λ4z4

∑

m

∑

n

Âp(ν −
∆rmn
λz

)Î(
∆rmn
λz

) + · · ·

A2

λ2z2

∑

m

∑

n

ÂP (ν −
∆rmn
λz

)δJmn(t)e−jψmn(t)]dt. (32)

Hence, the frequency content of the final picture is given by the following equation,

Îp(ν, t) =
A2

λ4z4

∫ T

0

∑

m

∑

n

Âp(ν −
∆rmn
λz

)Î(
∆rmn
λz

)dt+ · · ·

A2

λ2z2

∑

m

∑

n

∫ T

0

ÂP (ν − ∆rmn
λz

)δJmn(t)e−jψmn(t)dt, (33)

where T denotes the total time of the imaging maneuver for the MSIIS.
Since z is large, I(P1) ≈ I(P2) ∀P1, P2 ∈ Σo (as follows directly from the HFP). Let

Iest = I(P ), P ∈ Σo, (34)

i.e., Iest is the intensity of radiation at the observation plane. We have

Iest =
Î(0)
λ2z2

. (35)
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Note that a good estimate of Iest would be available at the end of the imaging maneuver. Then, multiplying
(33) by the factor λ2z2

A2Âp(0)Iest
, we have the normalized equation

Îp(ν) =
∫ T

0

∑

m

∑

n

Âp(ν −
∆rmn
λz

)Î(
∆rmn
λz

)dt+ · · ·

1
Iest

∫ T

0

∑

m

∑

n

Âp(ν −
∆rmn
λz

)δJmne−jψmn(t)dt. (36)

In the above equation,

Âp(ν) =
Âp(ν)
Âp(0)

, (37)

Î(ν) =
Î(ν)
Î(0)

, (38)

Îp(ν) =
λ2z2

A2Âp(0)Iest
Î(ν). (39)

At this point, we make the following approximation,
∫ T

0

Âp(ν −
∆rmn
λz

)Î(
∆rmn
λz

)dt ≈
∫ T

0

Âp(ν −
∆rmn
λz

)Î(ν)dt. (40)

The justification of the above approximation is as follows. The shape of Âp is shown in Fig. 4.3 for
a circular FOV function. Note that the values of Âp(ν) are high (of the order of 1) close to ν = 0, and
drop off sharply for values of ν further out. Thus, it is reasonable to expect that the major contribution
to the left hand side in (40) is due to the time instants when (ν − ∆rmn

λz ) ≈ 0. We know that the object
being imaged is spatially bounded and that the spectra of spatially bounded images are analytic functions
in the spatial frequency plane.11 Thus, it follows that the spectrum of the image is continuous. Thus, if
(ν − ∆rmn

λz ) ≈ 0, then Î(∆rmn

λz ) ≈ Î(ν). Hence, we can make the approximation in (40). Then, assuming that
the approximation holds, we have:

Îp(ν) = M(ν)Î(ν) +N(ν), (41)

where

M(ν) =
∫ T

0

∑

m

∑

n

Âp(ν −
∆rmn
λz

)dt, (42)

N(ν) =
1
Iest

∫ T

0

∑

m

∑

n

Âp(ν −
∆rmn
λz

)δJmne−jψmn(t)dt. (43)

Equation (41) describes the equivalent optical instrument that is formed by the imaging maneuver of an
MSIIS; M(ν) is the modulation transfer function of the synthesized optical aperture and N(ν) represents
the noise corrupting the measurement (in the frequency domain). Note that both the MTF and the noise
corrupting the optical instrument are dependent on the trajectory of the spacecraft. In the next section, we
shall formulate a detailed model of the noise corrupting the image in an MSIIS.

IV. Modeling of the Noise Process in an MSIIS

In this section, we shall formulate a model for the noise corrupting the image formed by an MSIIS.
Specifically, we shall show that the noise is dependent on the arrival rate of the photons from the source at
the observation plane. From the previous section, we know that the noise corrupting the image formed by
the MSIIS at spatial frequency ν is given by the relationship,

N(ν) =
1
Iest

∫ T

0

∑

m

∑

n

Âp(ν −
∆rmn
λz

)δJmne−jψmn(t)dt. (44)
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As noted before, δJmn is the noise in the mutual intensity measurement made between the mth and the nth

spacecraft at time t. Consider the infinitesimal time interval [t, t+ dt]. Here we note that δJmn, in general,
is a complex random variable. Let us denote its real and imaginary parts by δJrmn(t) and δJ imn(t) respectively.

The light collected from the two spacecraft is interfered to form a fringe, which is detected using a
photodetector array. For a detailed description of such a system, please refer to.11 Let the number of
detectors in the array be denoted by M and let the area of each element be denoted by dA. It is known that
(see chapter 9, section 4, pg. 490-501 in11):

E[δJrmn] = 0, (45)

var[δJrmn] =
e

MdAdT
Iest, (46)

where e = hc
λ denotes the energy of the photons incident on the photodetectors, and var[x] denotes the

variance of the random variable x. Similarly,

E[δJ imn] = 0, (47)

var[δJ imn] =
e

MdAdT
Iest. (48)

Furthermore, it is known that,
E[δJrmn(t)δJ

i
mn(t)] = 0. (49)

If the total number of photon arrivals across the photodetector array is large enough, then due to the central
limit theorem, it follows that δJrmn and δJ imn are both Gaussian random variables. Furthermore, since they
are uncorrelated, it follows that they are independent. Let

Atot = MdA. (50)

Thus, it follows that

δJrmn(t) ∼ N(0,
eIest
AtotdT

), (51)

δJ imn(t) ∼ N(0,
eIest
AtotdT

), (52)

where N(µ, σ) denotes a Gaussian random variable with mean µ, and variance σ. We define

Nmn(ν) =
1
Iest

∫ T

0

Âp(ν −
∆rmn
λz

)δJmne−jψmn(t), (53)

i.e., the noise at spatial frequency ν due to the mth and nth spacecraft pair. Let

T = Ldt. (54)

Then, we can approximate Nmn(ν) as follows

Nmn(ν) ≈
1
Iest

L∑

k=1

Âp(ν −
∆rkmn
λz

)δJkmne
−jψk

mndt, (55)

where

δJkmn = δJmn(kdt), (56)
ψkmn = ψmn(kdt), (57)

∆rkmn = ∆rmn(kdt). (58)

Noting that δJkmn and δJ lmn are independent random variables whenever k 6= l, and that eψ
k
mn is a pure

phase term, it follows that Nmn(ν) is a complex zero-mean Gaussian random variable with variance given
by

var[Nmn(ν)] =
2e

IestAtot

L∑

k=1

|Âp(ν −
∆rmn
λz

)|2dt. (59)
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Again, note that Nmn(ν) is independent of Npq(ν), unless m = q and n = p, or m = p and n = q. However,
we have that

Âp(ν −
∆rmn
λz

)Âp(ν +
∆rmn
λz

) ≈ 0, (60)

and hence, we have the following equation:

var[N(ν)] =
2e

IeAtot

∑

m

∑

n

(
L∑

k=1

|Âp(ν −
∆rmn
λz

)|2dt). (61)

Noting that Iest = eµ, where µ is the average arrival rate of photons on the measurement plane, it follows
that

var[N(ν)] =
2
µtot

∑

m

∑

n

(
L∑

k=1

|Âp(ν −
∆rmn
λz

)|2dt), (62)

where µtot = µAtot, i.e., the average arrival rate of the photons over the entire detection area. Thus, as
dt→ 0, we can write the noise corrupting the image at spatial frequency ν as follows:

N(ν) =
√

2
µtot

∫ T

0

∑

m

∑

n

Âp(ν −
∆rmn
λz

)δJ̄mn(t)dt, (63)

where δJmn(t) is a unit variance circular Gaussian White noise process. Thus, we have characterized the
nature of the noise corrupting the image formed in an MSIIS. In the next section, we shall list a few of the
salient features of the image model which was formulated for the process of image formation in an MSIIS.

V. Properties of the Imaging Model of an MSIIS

The final image formed by an MSIIS can be written as follows (in the Spatial frequency domain):

Îp(ν) = M(ν)Î(ν) +N(ν), (64)

where

M(ν) =
∫ T

0

∑

m

∑

n

Âp(ν −
∆rmn
λz

)dt, (65)

N(ν) =
√

2
µtot

∫ T

0

∑

m

∑

n

Âp(ν −
∆rmn
λz

)δJ̄mn(t)dt. (66)

We make the following observations about the imaging model that is formulated above:

• The MTF, M(ν), and the noise corrupting the image formed by the MSIIS, N(ν), are functions of the
spacecraft trajectory.

• The noise magnitude is inversely proportional to the square root of the arrival rate of the photons
from the source on the measurement plane. Also, the noise magnitude is inversely proportional to the
square root of the collection area of the telescopes. Thus, the noise can be reduced by increasing the
collection area of the telescopes. However, note that costs (and other possible issues such as fuel usage)
often dictate the size of the telescopes that can be put in space.

• Consider the image model of an MSIIS, (64). We can obtain an estimate of the image by dividing
throughout by M(ν). Then, the noise corrupting the estimated image is given by

e(ν) =
N(ν)
M(ν)

. (67)
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It can be seen that e(ν) is zero-mean circular Gaussian with variance given by

var[e(ν)] =
E|N(ν)|2

|M(ν)|2

=
2
µtot

∫ T
0

∑
m

∑
n |Âp(ν − ∆rmn

λz )|2dt
|
∫ T
0

∑
m

∑
n Âp(ν − ∆rmn

λz )dt|2
. (68)

Also, note that Âp(ν − ∆rmn

λz ) ≈ 0, except when (ν − ∆rmn

λz ) ≈ 0. Thus, the above expression can be
approximated as

var[e(ν)] =
1
µtot

1
∫ T
0

∑
m

∑
n Âp(ν − ∆rmn

λz )dt
. (69)

Note that the above is a “Noise to Signal Ratio” in the sense that it is a measure of the noise corrupting
the final reconstructed image. Further, the denominator of the above expression is equal to the number
of photons that are collected at the spatial frequency, ν. Thus, the “Signal to Noise” ratio at a spatial
frequency is equal to the number of photons that are collected at that spatial frequency. Note that the
frequency content of an image is evaluated by forming fringes at various spatial frequencies. The above
result states that the accuracy, or the signal to noise ratio, of the fringe formed, is directly proportional
to the number of photons used to form the fringe.

• Let us consider the instantaneous situation over the Fourier domain in the infinitesimal time interval,
[t,t+dt]. The MSIIS is equivalent to an optical filter, whose MTF is given by

dM(ν) =
∑

m

∑

n

Âp(ν −
∆rmn
λz

)dt. (70)

If we approximate the function Âp by a disk function, i.e., a function whose support is the circular
region in which, Âp(ν) ≈ 1, then the instantaneous picture is shown in Fig. 4.4. If we assume that the
frequency content of the image is mostly concentrated in the region Ω, (which we would know from
the resolution requirements), then the build-up of the MTF of the optical aperture can be likened to
the painting of a “big disk” or “resolution disk” by a number of smaller “paintbrushes” or “coverage
disks”. Typically, the ratio of the radii of the big disk to the coverage disks is equal to the number of
pixels desired in the image. Referring to (69), we observe that the variance of the noise at any spatial
frequency is inversely proportional to the “thickness” of the paint laid down at that frequency. Hence,
in order to take a good image, the scaled relative trajectories of the constituent spacecraft (scaled by
the factor λz̄), need to be dense to a radius ρ, (the radius of the coverage disks), within the resolution
disk Ω. Mathematically, this means that for at least one pair of spacecrafts, (m,n),

||∆rmn
λz

− ν|| ≤ ρ, ∀ν ∈ Ω, (71)

where ||.|| denotes the <2 Euclidean norm, ρ = R/N , (in the case of an N x N image), and R is the
radius of the region Ω.

Also, the paint laid down at any spatial frequency ν is equal to the MTF accrued by the spacecraft
trajectories at that frequency and is equal to the time spent by the scaled relative trajectories within
radius ρ of the spatial frequency point. Hence, the relative trajectories need to be ”slow” enough so
that the requisite signal to noise ratio can be achieved at every spatial frequency point, i.e.,

M(ν) ≥ ∆, ∀ν ∈ Ω. (72)

The issue of the minimum level of signal noise ratio, ∆, required is addressed in.6 In the next section,
we give a numerical example where we illustrate the pitfalls in imaging without ensuring that the
relative trajectories of the constituent spacecraft are dense enough in the region Ω.
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VI. Imaging Example

In this section, we present an imaging example where we obtain a 100 x 100 image of a Jupiter-sized
planet at a distance of 8 Parsecs. The radius of the region Ω can be found using the Rayleigh two-point
resolution criterion.4 However, we can scale the problem such that R = 1, where R is the radius of the
resolution disk. Note that, as mentioned before, ρ = R/N , where the image is N x N pixels. Thus in this
case, N = 100. In this example, we assume that we are imaging using a four spacecraft system. It has
been argued in7, 9, 10 that spiral trajectories might be the most efficient way of covering the spatial frequency
plane. In fact, it has been shown in7, 8 that they are time optimal. However, care needs to be taken to
ensure that these spiral trajectories are dense enough so that they cover the resolution disk without leaving
gaps. In the following example, we compare the imaging performance of two spiral trajectories: trajectory 1
is tight enough such that the spatial frequency is covered densely to radius ρ by the relative trajectories of
the constituent spacecraft and Trajectory 2 is a looser spiral which does not satisfy the denseness condition
of the trajectories, as required by (71). In Figs. 5 - 8, we show the time history of image formation for
Trajectory 1. The top left hand corner of the plots shows the spatial frequency plane coverage, the top right
hand corner plot shows the formed image and the bottom left hand corner plot shows the actual image. In
Figs. 9 - 12, we show the same for Trajectory 2. It can be seen that the performance of Trajectory 1 is far
superior to that of Trajectory 2. Hence, this illustrates that the spacecraft relative trajectory need to be
dense enough for good imaging performance. Also, they need to be slow enough such that enough signal to
noise ratio is built up so that the reconstructed image is good enough, as required by (72).

VII. Conclusions

In this paper, we have obtained a detailed model for the process of image formation in an MSIIS. We
have shown that the MSIIS can be described by an equivalent optical instrument. We have shown that the
MTF of the synthesized instrument, and the noise corrupting the final image in an MSIIS are functions of
the trajectories of the constituent spacecraft. Moreover, we have introduced the notion of image formation
by an MSIIS being analogous to the “painting” of a big disk by a number of smaller “coverage disks” or
“paintbrushes”. This is also the first attempt at the modeling of the “dynamics” of image formation in
MSIIS. We have shown that satisfactory imaging corresponds to the spacecraft relative trajectories being
“dense” enough in a given region while ensuring that they are “slow” enough. These requirements have
been explicitly quantified. Furthermore, it would be reasonable to expect that the critical paint thickness
for satisfactory imaging performance would be dependent on the application at hand, i.e., the questions that
the image would be used to answer.6 The solution to the time optimization problem posed in this paper is
addressed in.7, 8 However, the problem of fuel minimization while satisfying the imaging constraints is an
open question and is a subject of our current research.
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Figure 5. Image formed at 0.05Tf by Trajectory 1
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Figure 6. Image formed at 0.20Tf by Trajectory 1
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Figure 10. Image formed at 0.20Tf by Trajectory 2

20 of 22

American Institute of Aeronautics and Astronautics



20 40 60 80 100

20

40

60

80

100 0

1

2

3

4

5

6

7

x 10
−4

20 40 60 80 100

20

40

60

80

100

1

2

3

4

5

6

7

8

x 10
−3

20 40 60 80 100

20

40

60

80

100 0

5

10

15

Figure 11. Image formed at 0.5Tf by Trajectory 2

21 of 22

American Institute of Aeronautics and Astronautics



20 40 60 80 100

20

40

60

80

100 0

1

2

3

4

5

6

7

x 10
−4

20 40 60 80 100

20

40

60

80

100

1

2

3

4

5

6

7

8

x 10
−3

20 40 60 80 100

20

40

60

80

100 0

5

10

15

Spatial Frequency Coverage Formed Image 

Actual Image 

Figure 12. Image formed at Tf by Trajectory 2

22 of 22

American Institute of Aeronautics and Astronautics


