ATAA JOURNAL
Vol. 33, No. 7, July 1995

New Mode Tracking Methods in Aeroelastic Analysis
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Within the context of analysis of finite element models, a methodology is developed for the tracking of complex
eigenvalues and eigenvectors through changes in aeroelastic eigenvalue problems. The goal is to eliminate diffi-
culties caused by mode switching (i.e., frequency crossing). Two new methods for mode tracking are presented
and compared with an existing method. The first new method, the complex higher order eigenpair perturba-
tion algorithm, is based on a perturbation expansion of the eigenproblem. It iteratively computes changes in the
eigenpairs due to parameter perturbations with the important feature of maintaining the correspondence between
the baseline and perturbed eigenpairs. The second new method is the complex cross-orthogonality check method
which uses mass biorthogonality of the left and right eigenvectors to re-establish correspondence after a standard
reanalysis. Applications of mode tracking technology are presented in V-g and p—k subsonic aeroelastic analyses.
Each application procedure is outlined and examples are given. Recommendations are made based on method ease

of use and robustness in the example problems.

Nomenclature

[A] = aerodynamic matrix from the doublet lattice method;
complex, nonhermitian; function of geometry, k£, and M

b = reference semichord of a wing

[C] = cross-orthogonality check matrix

¢ = weighting factor for the homogeneous solution in the
eigenvector perturbation calculation

[D] = coefficient matrix in the eigenvector perturbation
solutions, singular

{F} = static pseudoload vector appearing in eigenvector
perturbation calculations

f = frequency, Hz

g = artificial structural damping in V—g aeroelastic analysis

k = reduced frequency, (wb/V)

[k] = modal stiffness matrix, diagonal

M = Mach number

[m] = modal mass matrix, diagonal

p = root of the p—k aeroelastic analysis equation, k(y + i)

q = dynamic pressure (% %)

14 = air speed

{V} = particular solution for eigenvector perturbation from
Nelson’s method

[Z] = matrix of {z} column vectors

{z} = air-on vibratory mode of normal mode participation
factors, eigenvector in V—g and p—k aeroelastic analysis

o = real part of ¢ weighting factor

B = imaginary part of ¢ weighting factor

y = true damping in p—k aeroelastic analysis

A = perturbation symbol denoting exact change from a
reference

0 = component phase to be rotated to 0 in phase correction
enforcement
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A = complex eigenvalue
& = collection of terms in solution for ¢
0 = air density
w = circular frequency, rad/s
Subscripts
i = associated with the ith eigenpair
L = associated with the left eigenvector
R = associated with the right eigenvector
Superscripts
(k) = aeroelastic increment number —r
T = standard transpose, hermitian transpose denoted by ()
0 = baseline value
1 = perturbed value resultant from parameter change, e.g.,
0'=0"+20
Introduction

ODE tracking is a general technology applicable to eigen-

value problems which have variable parameters. Eigenvalue
problems can be classified as being either self-adjoint or nonself-
adjoint. In the self-adjoint case, energy is conserved within the sys-
tem model, the eigenpairs are real, and the left eigenvectors are
identical to the right eigenvectors. The structural eigenvalue prob-
lem is an example of this, and mode tracking is applied to structural
optimization in Ref. 1. In the nonself-adjoint case, energy is not
conserved within the system model, the eigenvalues and eigenvec-
tors are complex in general, and the left eigenvectors differ from the
right eigenvectors. Aeroelastic eigenvalue problems are examples
of nonself-adjointness, with the nonconservatism resulting from the
fluid flow. It is worth emphasizing that structural optimization and
aeroelastic analysis are not the only members of the self-adjoint and
nonself-adjoint classes to which mode tracking techniques can be
applied. Rather, this technology is applicable whenever modal data
needs to be uniquely identified throughout a sequence of variations
in the parameters of the eigenproblem statement (see Ref. 2).

In subsonic aeroelastic analysis, the air-on vibratory frequencies
and modes are ordered by their air-off frequencies (free vibration
frequencies). As the airspeed is changed, the vibratory frequencies
will change and mode crossings can occur. Mode crossings that
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are not properly tracked can cause misidentification of aeroelastic
phenomena, since the observed variations of aeroelastic modes with
respect to the incremental parameter will be erroneous. When this
occurs, the factors leading to flutter and divergence are not properly
understood and attempts to improve performance will be misguided
and likely unsuccessful.

Mode tracking techniques are used to establish correspondence
among the sets of point solutions that are generated at the discrete
parameter values of the incremental aeroelastic analysis. To gener-
ate curves for specific vibratory modes, it is necessary to determine
the modal identity of each point solution. Several methods for the
connection of these point solutions currently exist. First, point solu-
tions may be connected by hand using the judgement of the analyst.
This can quickly become a daunting and confusing task. Second,
modes can be correlated based on complex eigenvalue similarity.
This is the simplest automated approach and the least robust. A
more sophisticated approach proposed by Desmarais and Bennett
for V—g analysis relies on the shape of the characteristic polyno-
mial and uses Laguerre iteration to converge from a previous to a
corresponding current eigenvalue. In this method, the increments in
reduced frequency that are taken must be very small, and correla-
tion failure occurs when the closest zero of the polynomial to the
starting point is not the correct corresponding eigenvalue. Lastly,
a recent method proposed by van Zyl* improves on the Desmarais
and Bennett method by correlating the modes based on complex in-
ner products between current and previous right eigenvectors. This
latter method bears similarities to the complex cross-orthogonality
check (C-CORC) method presented herein, but neglects the very
useful mass biorthogonality property of the left and right complex
eigenvectors (see C-CORC method discussion).

The two new methods presented herein, the complex higher or-
der eigenpair perturbation algorithm (C-HOEP) and C-CORC, per-
form automated mode tracking based on robust mathematical argu-
ments, specifically through perturbation expansion or through mass
biorthogonality.

Mode Tracking Methods for Nonself-Adjoint
Eigenvalue Problems

Mode tracking algorithms maintain correspondence between
baseline and perturbed eigenpairs (set of frequencies and modes on
adjacent iterations or increments). They either replace or augment
the eigenproblem reanalysis phase of an optimization algorithm (see
Ref. 1) or incremental process (such as aeroelastic analysis). In
aeroelastic analysis, this entails tracking the complex eigenpairs as
either reduced frequency (V-g method, p—k method) or airspeed
(p—k method) is incremented.

Two new methods are proposed for use in mode tracking for
nonself-adjoint problems: the complex higher order eigenpair per-
turbation algorithm and the complex cross-orthogonality check
method.

Complex Higher Order Eigenpair Perturbations (C-HOEP)

This method is an extension of Ref. 5 in that it performs a per-
turbation expansion on a nonself-adjoint eigenproblem for which
the associated eigenpairs are complex. All perturbation terms are
retained, leading to coupled equations for the eigenvalue perturba-
tion and the left and right eigenvector perturbations. The approach
is general and will be illustrated by way of specific examples: per-
turbation of the reduced frequency in the V—g aeroelastic analysis
equation and perturbation of the reduced frequency or the velocity
in the p—k aeroelastic analysis equation.

Aeroelastic Analysis, V—g Equation
The eigenproblem statement for V—g aeroelastic analysis can be
written as follows:

[(1 +ig)Ik] ~ w?([m] + [AD]{zr} = {0} (¢))

where [A] is the complex, nonhermitian aerodynamic matrix de-
rived from the doublet lattice method,%” g is the artificial structural
damping necessary to sustain harmonic oscillation (which is re-
quired for the unsteady aerodynamics), w is the frequency of the
harmonic oscillation, [k] and [m] are diagonal modal stiffness and

mass, respectively, and {zz} is the right eigenvector made up of
complex normal mode participation factors. This equation can be
rewritten

[[k] = A(Im] + [AD]{zr) = {0} @
where
r=a?/(1 +ig) 3)

is the complex eigenvalue. The associated left eigenproblem is

&Ll k] = A(Im] + [AD] = {0}7 o)

Perturbing the reduced frequency & in Eq. (2) affects the aero-
dynamic matrix and the eigenpairs, giving the following equation
written for the ith eigenpair:

(K] — (A +Ax) Am1+[AT+HAADT ({2} |, +{Azr):) = {0} (5)

After canceling the baseline solution, the full-order eigenvalue per-
turbation equation is derivable by premultiplying by either the left
or the right baseline eigenvector. In the former case, the baseline
solution can be canceled a second time, giving

0T 1aafe ),

Ak = ——
{20}, @ml+14D{zk}

6

In the latter case, the baseline solution cannot be canceled again,
and the following equation results:

Ak =

T

T
{2h}, (11— A0 (Om] + [A' D) {Azr) — 2%}, —1AaA1zh},

—
{zh}; 1+ 14Dz},

Q)]

If left eigenvector data are available, Eq. (6) is preferable to Eq. (7)
due to its convergence characteristics.
The corresponding eigenvector perturbation equations are

[DY{Azr); = (Fr) ®
@2y, (D' =T, ©)

where
[D'; = (k] — AL (m] + [A']) (10)

is singular and

{Fr)i = (MIAA]+ A% (Im] + [A'D ) {5} an

T = (2], (AT + AN @nI +14'D)  (12)

are static pseudoloads. Equations (8) and (9) are solvable since they
are “consistent” ({Fr}; is orthogonal to {zlL }; and {F}; is orthogonal
to {z}e},-). This biorthogonality of the pseudoload vectors is true for
nonself-adjoint problems in general.

The total solution for {Azg}; is made up of homogeneous and
particular solutions. Since [D'1;{z%}; = {0}, {zL}; isahomogeneous
solution for {Azg}; in Eq. (8). The total solution for {Azg}; is then
a sum of the particular solution {Vz}; and a weighted {z}};:

{Azg}i = cp, {Z}g}i +{Vz)i (13)

Equation (13) must be altered since {z}}; is unknown. Expanding
{z}}; and collecting {Azg}; terms gives

CR;

e . {ar} + = o Wl (14)
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Employing conditions of magnitude normalization for the current
and projected systems

{o} &%}, = {zR}T{ k) =1 (15)

and substituting Eq. (14) for {Azz}; in an expansion of Eq. (15)
yields the following equation for cg,:

cRiC—Ri- — CR; — C—R: = ER.' (16)

where

br, = m,- {

is a real number. Equation (16) involves two unknowns, because
the weighting factor cg, is complex in general. Thus, the magnitude
normalization of Eq. (15) is not enough to define a unique complex
eigenvector, and an additional condition must be imposed. This ad-
ditional condition is a phase correction, which forces the maximum
magnitude component of a complex eigenvector to have zero phase
by multiplying the vector by a unit magnitade scalar of opposite
phase. This correction is unique despite the phase discontinuity at
=+, and can be viewed as a complex extension of the sign conven-
tion defined for real eigenvectors (see iteration invariance discussion
in Ref. 1). That s, real eigenvectors require a normalization and sign
convention in order to be defined uniquely, and complex eigenvec-
tors require a normalization and phase correction in order to be
defined uniquely.

Two approaches can be taken in enforcing the phase correction
condition. The first approach is to assume that cg, is real. The desired

root is then
cr, =1 — /1 +E&p (18)

In this case, the homogeneous soiution contribution in Eq. (13)
is not rotated in phase, and the phase-correction condition is not
enforced on each C-HOEP iteration. Instead, the phase of the per-
turbed eigenvectors must be corrected after C-HOEP convergence.
This approach is simpler but less rigorous.

The more rigorous approach is to enforce the phase correction
condition on each C-HOEP iteration. That is, use cg, to rotate the ho-
mogeneous solution in Eq. (13) such that the phase of the perturbed
eigenvector satisfies the phase-correction condition. This approach
is preferred. First, it must be recognized from Eq. (14) that

{2k}, = {2k}, +1aza) = 1/ —cr) ({22}, + (Veki) (19

v}, + Ve (2o} + VRl Vel D)

Therefore, to enforce zero phase on a component of {z}g }i, the phase
of 1/(1—cg,) must cancel the phase of the corresponding component
of {z‘,’e ;+{Vr}:. Denoting the phase of the corresponding component
of {z(}e i + {Vr}: by 6% and letting

CR[ = Upr +lﬂR (20)

where the vector index is not to be confused with the imaginary
number i, it is straightforward to show that

Br = (ar — 1) tan b 2D

Substituting Eq. (21) into Eq. (20) and substltutmg the result into
Eq. (16), one finds the solution for og,

tan? O — &g,
=1—,)1-—X"5& 22
*r tan® 6 + 1 @2

where the extraneous root has been deleted. Equations (17) and
(20-22) define a cg; value which yields unique, normalized, and
phase-corrected perturbed eigenvectors. Also, Egs. (20-22) reduce
to Eq. (18) for 6g = 0.

The magnitude normalization and phase-correction conditions for
the left eigenvectors are the same as for the right eigenvectors. De-
noting the phase of the corrected component of {z‘i i+{V.}ibyb,,

the following equations are solved in order for the left eigenvector
perturbation:

&, =} } Wi+ {8 + T v @23

/ tan® 6; — &,
o =1—,/1 — ———M—= 24
L tan? 6, + 1 @4

Br = (ar — ) tang, (25)

¢y, =oap +if (26)

Azl = 10} + —L vy, @7
! 1-— CL; Ll - CL; )

The left eigenvectors will be required if Eq. (6) is to be used in
an incremental process. The same modified and decomposed [D'];
matrix may be used in the computation of particular solutions for
{Az.); and {Azg}; so long as the same pivotal element is used for
the left and right systems (this is the standard procedure; consult
Ref. 8 for details of Nelson’s method).

Relaxation has proved to be useful in accelerating the convergence
of the eigenpair perturbation technique. When repetitive overpredic-
tion of the eigenpair perturbations occurs (resulting from very large
parameter perturbations or convergence criteria that are not strict
enough over a series of increments), underrelaxation of AA;, {Vg};,
or {V.}; estimates can be performed to tame the oscillations. These
oscillations have been observed to be phase oscillations, which
are detected if the current change in an estimate and the change
on the previous C-HOEP iteration differ in phase by more than 7 /2.
In the example problem of the Applications section, only AX esti-
mates are underrelaxed, and a constant underrelaxation factor of 0.6
is used.

The algorithm flowchart for C-HOEP is shown in Fig. 1. Iter-
ation O consists of obtaining an initial estimate of the eigenvalue
perturbations from a first-order approximation to Eq. (6) or (7). The
nonlinear iterations are then performed, which consist of solution
of the approximately singular eigenvector perturbation equations
[Egs. (8) and (9)], followed by the full-order update for the eigen-
value perturbation [Eq. (6) or (7)]. Solution for the eigenvector per-
turbations requires the computation of the particular solutions of
Egs. (8) and (9) ({V}; and {V.};) by Nelson’s method,? calculation
of cg, from Egs. (17) and (20-22), and ¢, from Eqs. (23-26), and

First Order A}; } Iteration 0
Nelson's Method for particular ,
solutions {Vz}; and {V; };

Oscillation of
{Vg)ior{vy};2

(Under-relax {Vg}ior{ VL}D
1

cp;andcy;

(Compute weighting factors)

(Compute {Azg}; and {AZLD

Fig.1 C-HOEP algorithm with underrelaxation.
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finally solution of Eqs. (14) and (27) for {Azg}; and {Az.};. Un-
derrelaxation of AX;, {Vr};, or {V.}; estimates is performed when
oscillation is detected. These iterations continue until the conver-
gence criterion is satisfied. Mode tracking is possible because the
computations involve the ith eigenpair only, creating a direct corre-
spondence between current and projected data.

Aeroelastic Analysis, p—k Equation
The p-k aeroelastic analysis problem, as presented by Hassig.’
Equation is based on incremental solution of the following equation:

[[k] — o V2[A] + (V/b)* pIm]]{za} = {0} (28)
where
p=k(y+i) 29)

and [A] differs from that of the V—g method by the factor 2k2/pb?.
Implementations of the p—k method by MSC/NASTRAN and
ASTROS'*!! place a p/k term on the out-of-phase portion of the
aerodynamics (imaginary part of [A]). This modification better pre-
dicts near zero frequency behavior,'? specifically static instability in
short period modes (full airplane instability of zero frequency and
positive damping), and divergence (cantilever wing instability of
zero frequency and zero damping), but it complicates the perturba-
tion equations and will not be presented here. For simplicity in the
perturbation equations, the eigenvalue will be defined as

L= (V/b)’p* = *(y + i) (30)

where the proper w, y pair are defined for a A value by the fact that
w > 0. The dynamic pressure will be absorbed into [A] which will be
denoted as [g A]. Then, [Aq A] will account for changes in air speed
as well as changes in reduced frequency. The right eigenproblem
can now be written

((k] — [g A + Alm1}{zz} = {0} (€29
and the associated left eigenproblem is

T} [k — [gA] + Alm]] = {07 (32)

The perturbation equations for expansion of Egs. (31) and (32)
for the ith eigenpair are

—— Allg!
A = _{_MM (33)

{ } [m{zk },

and
[D'1:{Azg}i = {Fr)i (34
(8z); (D'}, = TF2), (35)

where

[D']; = [kl —[gA']+ A'[m] 36)

and
{Fr)i = ([AqA] — An[mD {2}, &)
T = T2}, (AqAl - AxIm) @8)

Equations (14), (17), (20-22), and (23-27) also apply to p—k aero-
elastic analysis and AA;, {Azgr};, and {Az;}; are computed in the
same manner as described in the V—g aeroelastic analysis section.

Complex Cross-Orthogonality Check (C-CORC)

The C-CORC method is a complex extension of the method of
Gibson.!® For nonself-adjoint eigenvalue problems, one can make
use of the biorthogonality property of the left and right eigenvectors
to recorrelate the complex modes. The expression for the [C] matrix
is dependent on the mass operator in the eigenproblem statement.
For V—g aeroelastic analysis, the [C] matrix is

€1=[Z7] @1+ aop[zf] 69

where k and k — 1 are the current and previous increments, respec-
tively. In p—k aeroelastic analysis, the expression is similar:

[C]= [Zg(_l)]T[m(k)][Zg()] (40)

If the [C] matrix is diagonally dominant in magnitude, then no mode
switching has occurred; if the matrix is not diagonally dominant,
the locations of the dominant values can be used to recorrelate the
current iteration modes. Obviously, these calculations require left
eigenvector information which is not generally computed. Also,
using the proper conjugation of the left eigenvectors is essential
to success of the method. To measure the assurance with which
the correlations are made, corruption indices (the second largest
magnitude in a column of [C] divided by the first largest magnitude,
i.e., the runner-up correlation divided by the selected correlation; see
Ref. 1) are calculated.

A variant on this approach was proposed by van Zyl,* in which a
correlation index is defined as

R
TR

Since right eigenvectors are neither self- nor mass orthogonal for
nonself-adjoint eigenvalue problems, use of the biorthogonality
property in C-CORC allows for more range in the correlation indices
and, therefore, easier distinction of proper correlations than van
ZyV’s approach. That is, the correlation indices in an orthogonality-
based method will tend toward zero for the noncorrelated modes
and toward unity for the correlated modes, whereas the correlation
indices for van Zyl’s method may all tend toward unity, making cor-
ruption indices greater and the distinction of the proper correlation
more difficult.

(41

Applications

It is important to distinguish between the different solution tech-
niques used in aeroelastic optimization and incremental aeroelas-
tic analysis. An excellent report by O’Connell et al."* discusses
the various computational procedures for aeroelastic problems. In
aeroelastic optimization, points of zero damping are sought directly,
typically by repeated solution of the flutter determinant.!>'6 These
points of instability can be ordered by air speed or by frequency
and may switch order under a design change. This would be an
interesting area to apply mode tracking technology in the future.

In incremental aeroelastic analysis, the case of interest in this pa-
per, air-on vibratory modes are computed at various increments of a
parameter. This parameter is the reduced frequency (k) in V—g type
aeroelastic analysis and is the air speed (V) in p—k type aeroelastic
analysis. These incremental analysis methods show the variation
of damping as a function of the incremental parameter and aid in
the identification of flutter phenomena (such as hump modes, e.g.,
the near instability of mode 4 in Fig. 4 near 900 n/s) that might
otherwise be missed.

V—g Aeroelastic Analysis

In V—g aeroelastic analysis, the analysis steps through reduced
frequency (k) values, extracting complex eigenpairs on each step,
until the desired flutter points are obtained (when the artificial damp-
ing required for harmonic oscillation is greater than that available
from the structure). Mode tracking is used to automatically connect
these point solutions, so that the effect of the parameter variations
on the aeroelastic vibratory modes can be studied. Existing meth-
ods for mode tracking in V—g aeroelastic analysis include manual
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Fig. 2 Rectangular wing with doublet lattice discretization.
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Fig.4 V-gplotfor0 <k <1,

correlation, correlation based on complex eigenvalue similarity, the
method of Desmarais and Bennett,? and the method of van Zyl,* as
discussed in the Introduction.

The new approaches to be demonstrated are C-HOEP and C-
CORC. As the reduced frequency k is incremented, new aerody-
namic matrices are computed or interpolated from known values.
In C-HOEP, the change in the aerodynamic matrix [A A] drives the
perturbations to the eigenvalues and right and left eigenvectors, and
one iteration loop to convergence is performed for each incremen-
tal k£ value. In C-CORC, a reanalysis based on the new [A] and
a recorrelation based on [C] are performed for each incremental
value. Both methods are demonstrated in the following example and
compared with the method of van Zyl.

Example 1: Mode Tracking in V—g Aeroelastic Analysis for a
Rectangular Wing

The aerodynamic planform and doublet lattice discretization for
the rectangular wing are shown in Fig. 2. The underlying structure
was kept simple and is an aluminum cantilever beam with a two bay
box cross section (Fig. 3). The structural box is centered in the wing
chord for simplicity, which has a destabilizing effect since it causes
the structural center of mass to be well aft of the aerodynamic center.
A total of six normal modes is retained, three each of bending and
torsion. For sea level density (p = 1.225 kg/m®), matched point
divergence occurs for V = 165 m/s (M = 0.485) and matched
point flutter occurs for V = 205 m/s (M = 0.603). For Mach
0.603 at sea level, a V—g analysis for k varying from 1.0 to 0.0
was performed, resulting in Figs. 4 and 5. In these figures, only the
analysis points with zero damping accurately represent the dynamics
(since g is an artifice) and only the analysis points at V = 205 m/s
represent matched points (since the analysis is run for sea level
density and M = 0.603). Also, the velocity values computed for
the higher modes are far from subsonic for this range of & values.
These are the weaknesses of the V-g analysis method. The most

180 T
160 +
140 + —&— Mode 1
120 1 ——o—— Mode 2
100 + ~=—e—— Mode 3

80 —0— Mode 4

60 —+— Mode 5

40 1 ——&— Mode 6

oscillatory frequency (Hz)

20 +

V (airspeed in m/sec)
Fig.5 V-fplotfor0 <k <1.

important thing to note is apparent in Fig. 5, where the modes are
seen to veer away from one another. That is, frequency crossings
are not a problem for this example, and simply ordering the modes
by frequency magnitude is sufficient.

Whereas frequency crossings may be rare for a clean wing, with
modes that are strongly coupled by the aerodynamics, this is not
true for more complex configurations, where some modes are not’
greatly affected by the aecrodynamic changes.

Performance of the mode tracking methods was evaluated for this
example problem. The methods were programmed in MATLAB
and used to “‘connect the dots” in Figs. 4 and 5. The lack of frequency
crossings allows evaluation of the mode tracking methods well past
their region of convergence, since the proper correlations are known
with assurance. Detailed data and results are documented in Ref. 2.

In C-HOEBP, use of left eigenvector data is desirable, and only a
relatively small penalty is paid for calculating the left eigenvector
perturbations in addition to the right eigenvector perturbations since
the same modified and decomposed [D']; matrix is used for the left
and right calculations. In fact, itis often cheaper to calculate both the
left and right eigenvector perturbations using left and right eigen-
vector data than to calculate right eigenvector perturbations using
right eigenvector data only. This is due to the faster convergence and
fewer number of C-HOERP iterations required. Thus, calculation of
both eigenvector perturbations is recommended for C-HOEP in in-
cremental processes.

As expected, increasing the perturbation size decreases the per-
formance of both methods, and proper correlation of the modes is
less assured. Decreasing assurance of modal correlation is mani-
fested in higher numbers of iterations required for convergence in
C-HOEP and in higher corruption indices in C-CORC.

C-HOEP tends to be slightly more computationally expensive
than C-CORGC, although the number of modes tracked and the con-
vergence tolerance used in C-HOEDP, and the extraction routine used
and the range of modes extracted prior to C-CORC are all vari-
ables which cloud the efficiency issue. Relative efficiency of the
mode tracking methods, however, is not as important for aeroelastic
analysis as it is in structural optimization,' since the matrices are
typically of low order (modal coordinates) and both C-HOEP and
C-CORC computational expenses are dwarfed by the expense of
calculating the aerodynamic matrices.

There are large changes in the vibratory modes near £ = 0.4,
causing the methods to have convergence problems. When near-
ing flutter, the vibratory mode shapes become very similar, as if
a classical frequency coalescence were occurring. Mode tracking
with the C-HOEP, C-CORC, and van Zyl methods is tested in true
incremental fashion for the range 0.1 < k < 0.4 in order to test
robustness in this difficult region. The initial &£ is 0.5 and uniform
decrements are taken of 0.1 with the baseline updated at each step.
Performance of the methods is measured in the number of failed
correlations (fc) that are made, in the number of iterations needed
to reach convergence for C-HOEP, and in the maximum corruption
for C-CORC and van Zyl. A failed correlation occurs in C-HOEP if
the algorithm converges to an incorrect eigenpair due to excessively
large perturbations in the eigenproblem. A failed correlation occurs
in C-CORC and van Zyl if the mode shapes become too similar
and the largest magnitude component in a column of the [C] matrix
corresponds to an incorrect mode. Since there is a priori knowledge
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Table 1 Robustness of C-HOEP, C-CORC, and van Zyl’s
method near flutter points

C-HOEP C-CORC van Zyl
k iters fc MCorr* fc MCorr* fc
040 5 0 0.212 0 0.980 0
0.30 6 0 0.337 0 0.989 0
0.20 8 0 0.432 0 0.994 0
0.10 20 0 1.437 1 1.004 1

Table 2 Robustness of mode tracking methods
near flutter points

C-HOEP C-CORC van Zyl

k iters fc MCorr* fc MCorr* fc
045 3 0 0.109 0 0.972 0
0.40 4 0 0.107 0 0.978 0
0.35 4 0 0.136 0 0.983 0
0.30 4 0 0.185 0 0.988 0
0.25 5 0 0.192 0 0.991 0
0.20 5 0 0.267 0 0.993 0
0.15 9 0 0.681 0 1.010 1
0.10 10 0 0.632 0 _— _
0.05 15 0 0.990 0 - —_—

of the proper correlations, a modified maximum corruption index
(MCorr*) is calculated for measuring C-CORC and van Zyl per-
formance. This corruption index divides the largest noncorrelated
value in a column of [C] by the properly correlated value. A value of
greater than 1.0 shows correlation failure; whereas in standard prac-
tice, where the correct correlations are not known a priori, values of
greater than 1.0 are not possible. Table 1 shows the results.

It can be seen from the failed correlation count that C-HOEP is
the most robust for the difficult region of k values. Similar mode
shapes near flutter can cause C-CORC and van Zyl to fail, whereas
C-HOERP can still track modes despite this mode shape similarity.
Note that it takes more iterations to converge in the C-HOEP method
as k = 0.0 is approached since the change in air speed is increasing.
Also, as evidenced by its very high corruption values, van Zyl's
method has little range in the correlation values, making it difficult
to distinguish the proper correlations. This lack of differentiation is
due to the fact that van Zyl’s correlation indices do not make use of
the eigenvector biorthogonality property.

An additional test case was performed in which the 1n1t1a1 k is
again 0.5, and increments of 0.05 are taken until the final k value
of 0.05 is attained. A similar result occurs, as shown in Table 2, in
that C-CORC nearly fails at the final increment (k = 0.05) with
a maximum corruption of 0.99 and for which C-HOEP converges
in 15 iterations with no failed correlations. For this range of k, van
Zy!I's method is noticeably less robust, in that it fails at £ = 0.15.

Once a mode tracking method fails in an incremental process, it
is difficult to recover since the following iteration modes are being
correlated with or computed from a bad set. The only known way to
recover is to detect the failure, back up, and decrease the step size.

p—k Aeroelastic Analysis

The p—k aeroelastic analysis is performed differently from the
V-g analysis since V is the incremental parameter instead of k.
Since k is an unknown, an iterative loop must be performed to match
the [A] matrix to the p root. That is, a value for k£ must be assumed
to calculate an [A] matrix, which gives a p root in the eigenpair
computation, which yields a new k estimate from Eq. (29). This
new k defines a new [A], and iteration is performed until agreement
is achieved. Convergence on a value of k in this manner has been
observed to be unstable near flutter points, even with use of under-
and overrelaxation of k. In particular, underrelaxation sometimes
cannot take large oscillations in the predicted k value (hunting) when
flutter points are being approached. For a commercial installation,
a more robust method for converging on k will be required.

It is very important to recognize the increase in logical com-
plexity that this indefiniteness in k causes. Unlike the V—g method
in which a given k£ value defines exactly n vibratory modes for a

modalized equation of order n, the p—k method has the feature that
there may be more than » modes at a given airspeed for which the
aerodynamics match the p root. There are still only n vibratory
modes for a given value of &, but since k and, therefore, [A] are
variable, each converged vibratory mode is now a product of its
own distinct eigenvalue problem, and the number of eigenpairs is
no longer rigidly defined. In a sense, the eigenvalue problem is not
well posed since the stiffness operator depends on the eigenvalue.
These additional modes are extraneous roots of the p—k aeroelastic
equation and are typically explained to be aerodynamic poles (roots
derived from the unsteady aerodynamics alone which are not asso-
ciated with the structure). The extraneous roots can cause problems
for the mode tracking algorithms, since the algorithms can mistak-
enly lock onto one of these roots if the extraneous root is similar to
the correct root.

Implementation of a mode tracking method for p—k aeroelastic
analysis is, then, a two step process. Whereas, in V—g aeroelastic
analysis, one C-HOEP convergence loop or C-CORC recorrelation
is performed for each incremental k value for each mode, an ex-
tra iteration loop must be performed in p—k aeroelastic analysis to
converge on a k value for each V value for each mode. Since, at
most, one mode is meaningful for a given k value, C-HOEP has
the advantage that it can track that one mode of interest and not be
concerned with the other modes.

The calculation of the aerodynamic matrices is a major part of the
computational expense. For this reason, a goal of a p—k aeroelastic
analysis algorithm is to minimize the number of evaluations of [A]
while maintaining the ability to generate matched points (analysis
points for which the density, velocity, and Mach number reflect a
standard atmosphere condition). One approach is to interpolate [A]
in terms of k for several prescribed values of Mach number, and then
attempt to match a meaningful density and Mach number to each
velocity. This approach is taken by the implementations of the p—k
method in MSC/NASTRAN and ASTROS. In another approach,
the density (along with speed of sound and altitude) is fixed, and
an incremental change in velocity is accompanied by a proportional
change in Mach number. The aerodynamic matrix must then be in-
terpolated for both £ and M (preferably with a surface spline). The
assumption is that fixing the altitude and varying the Mach number
is more physically meaningful than fixing Mach numbers and vary-
ing altitude. This latter approach is employed in the following p—%
example problem, so each analysis point in the figures represents a
matched point condition for a constant altitude.

Example 1: Mode Tracking in p—k Aeroelastic Analysis for a
Rectangular Wing

The same rectangular wing planform and structure (Figs. 2 and
3) are used. Again, six normal modes are retained, three each of
bending and torsion. For sea level density and matching Mach num-
ber, vibratory modes are extracted for eight subsonic velocities in
the range 100 m/s < V < 300 m/s. Unlike the Vg analysis results,
frequency crossings are present for the p—k analysis. Without mode
tracking, the frequency crossings are not tracked and the resulting
V—y and V—f plots for the first three modes are as shown in Figs. 6
and 7 (where failed correlations are shown with dashed lines). With
mode tracking, the frequency crossings are properly tracked and the
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Fig. 6 V—y plot with no mode tracking.
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Fig. 8 V—v plot with mode tracking.
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Fig. 9 V-f plot with mode tracking.

correct V—y and V—f plots are as shown in Figs. 8 and 9. Mode
tracking is especially important in p—k aeroelastic analysis because,
in addition to the converged vibratory modes (such as those shown
in Figs. 6-9), the nonconverged modes (when matching p to [A]
for a mode, there are n — 1 other nonconverged modes) and the
extraneous modes (aerodynamic poles) can also cross frequencies
with the modes of interest. Thus, in p—k analysis, there are many
more modes available to create confusion than in V-g analysis.

Comparing the flutter results of the V~g and p—k aeroelastic anal-
ysis methods (Figs. 4 and 8), it is evident that mode 2 flutters at an
airspeed of 205 m/s for both analysis methods. Comparing the di-
vergence results of the V—g and p—k aeroelastic analysis methods,
it can be seen that the p—k method fails in predicting divergence.
Whereas mode 1 in Fig. 8 resembles the divergence mode of Fig. 4,
it never achieves the zero frequency/zero damping condition char-
acteristic of divergence modes. Presumably, placing the p/k term
on the out-of-phase portion of the aerodynamics in the p—k aeroe-
lastic equation formulation (as discussed earlier) would remedy this
shortcoming.

Performance of the C-HOEP, C-CORC, and van Zyl mode track-
ing methods in p—k aeroelastic analysis has been evaluated for the
first three aeroelastic vibratory modes (Tables 3-5). There is less
difference between C-CORC and van Zyl’s method for p—k analy-
sis than for V—g analysis, since the mass operator used in C-CORC
for p—k analysis is simply the diagonal modal mass matrix (the

Table 3 Comparison of incremental mode tracking

methods for mode 1
C-HOEP C-CORC van Zyl
| Mlter fc MCorr fc MCorr fc
100 5 No 0.15 No 0.19 No
140 14 No 0.51 No 0.70 No
180 13 No 0.48 No 0.91 No
220 8 No 0.15 No 0.75 No
260 13 No 0.43 No 0.80 No
300 19 Yes 0.84 Yes 0.79 Yes

Table 4 Comparison of incremental mode tracking

methods for mode 2
C-HOEP C-CORC van Zyl
\4 Miter fc MCorr fc MCorr fc
100 8 No 0.73 No 0.32 No

140 15 No 0.52 No 0.87 No
180 18 No 041 No 0.60 No

220 10 No 0.33 No 0.49 No
260 6 No 0.19 No 048 No
300 6 No 0.20 No 0.40 No

Table 5 Comparison of incremental mode tracking
methods for mode 3

C-HOEP C-CORC van Zyl
\4 Mlter fc MCorr fc MCorr fc

220 10 No 0.34 No 0.39 No
240 12 No 027 No 0.38 No
260 20 No 0.50 No 0.51 No
280 25 Yes 0.83 Yes 0.98 No
300 22 Yes 0.11 Yes 0.86 Yes

identity matrix for mass normalized normal modes). Therefore, the
comparison between C-CORC and van Zyl illustrates the difference
between correlation based on previous left and previous right eigen-
vectors, without the added difference of the presence of a complex,
nonhermitian mass operator in C-CORC.

In tracking mode 1 (Table 3), the data were extracted for increment
of 40 my/s from a starting point of 100 m/s with an initial £ guess of
1.0. The Mlter heading denotes the maximum number of C-HOEP
iterations required to converge within a 107%% tolerance on A} over
all iterations on k for the given air speed. Likewise, the MCorr
heading denotes the maximum corruption value in the C-CORC and
van Zyl methods for the mode being tracked over all iterations on k
for the given airspeed. The fc headings tell whether or not a failed
correlation occurred for the mode tracking method. C-HOEP and
C-CORC both show moderate difficulty for the 140, 180, and 260
m/s increments, through high numbers of maximum iterations in C-
HOEP and high maximum corruption values in C-CORC. It is more
difficult to distinguish relative correlation assurance in van Zyl’s
method, since the corruption indices have less range than those of
C-CORC. At the 300-m/s increment, for example, the larger number
of iterations required in C-HOEP, 19, and the larger corruption value
in C-CORC, 0.84, provide clues to the failure of these methods,
whereas the corruption value of 0.79 in van Zyl’s method does not
stand out from the values for previous velocity increments. All three
methods fail for the 300-m/s increment. The velocity increments
must be decreased in order to verify the proper correlation for V =
300 m/s, and when this is done, the mode tracking methods are
successful in tracking mode 1 into a region of large oscillations in
k that underrelaxation cannot tame. Here, a more robust method for
converging on k is needed. In these decreased increment analyses for
mode 1, no clear performance advantage was found among the three
mode tracking methods since the locations and types of correlation
failures coincided exactly.

For vibratory mode 2, Table 4 shows the performance data for
increments of 40 m/s from an initial velocity of 100 m/s (initial k
guess = 1.0). For this mode, all three methods succeed in mode
tracking for each increment, with the most difficulty shown on the
third increment for C-HOEDP, on the first increment for C-CORC,
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and on the second increment for van Zyl’s method. This shows that
the three methods are very different, in that one method can have
difficulty with an increment for which another method exhibits high
correlation assurance.

For vibratory mode 3, Table 5 shows the performance data for
increments of 20 m/s from an initial velocity of 220 m/s (initial
k guess = 1.2). Both C-HOEP and C-CORC fail on the final two
velocity increments, and van Zyl’s method nearly fails at 280 m/s
before failing at 300 m/s. The exact nature of the failures differ.
On the V = 280 m/s increment, C-HOEP fails by converging to
an extraneous root (aerodynamic pole), and C-CORC fails by erro-
neously correlating mode 2 instead of mode 3. C-CORC remains
locked onto mode 2 for the final increment with a low corruption
index of 0.11. This low value might mislead an analyst into high
correlation assurance if the failure on the previous increment was
not detected. On the final increment, van Zyl’s method fails by con-
verging to the same aerodynamic pole which caused C-HOEP to
fail. Decreasing the velocity increments to 10 m/s allows the mode
tracking methods to progress further (no table). C-HOEP fails on
the V = 290 m/s increment by again converging to an aerodynamic
pole, whereas C-CORC survives near failure at the V = 290 m/s in-
crement (with a maximum corruption of 0.92) and fails on the final
increment by again correlating mode 2 instead of mode 3. Van Zyl’s
method succeeds for each increment, surviving a high corruption
of 0.94 on the final increment. Refining the velocity increments to
5 m/s steps (no table) allows C-CORC to successfully mode track
through each increment, with a maximum corruption value of 0.71
on the V = 300 m/s increment. C-HOEP, on the other hand, fails
on the final increment (V' = 300 m/s) by once again converging to
an aerodynamic pole. Van ZyI’s method succeeds again, with the
corruption on the final increment decreasing slightly to 0.90.

Van Zyl’s method appears to be more robust for p—k aeroelastic
analysis, since it is more successful in tracking mode 3 for the veloc-
ity increments shown. Also, it appears that C-CORC and van Zyl’s
method are more robust than C-HOEP in their ability to avoid aero-
dynamic poles. More research is needed on these extraneous roots
and how they can be avoided. All three methods are successful in
tracking vibratory modes through changes in reduced frequency and
through increments in air speed, provided that the velocity increment
is decreased sufficiently. This is the only way to verify the correct
correlations.

Conclusions

New mode tracking techniques, C-HOEP and C-CORC, have
been developed and applied to the automated connection of point
solutions in subsonic aeroelastic analysis. They have been com-
pared to an existing technique proposed by van Zyl. All three meth-
ods are successful to varying degrees in mode tracking for V—g
and p—k aeroelastic analyses. By eliminating problems caused by
mode switching, the factors leading to flutter and divergence will
be better understood and attempts to improve performance will be
more effective.

Compared with the computation and interpolation of the [A] ma-
trices for various values of k and M, the mode tracking methods
are very inexpensive. Therefore, ease of use and robustness of the
methods are the key issues when it comes to selecting a mode track-
ing technique.

In V—g aeroelastic analysis, C-HOEP has been shown to be more
robust in the example problem than C-CORC, and both C-HOEP
and C-CORC easily outperform van Zy!’s method. Although similar
to C-CORC, van Zyl’s method lacks the use of the biorthogonality
property, making it more difficult to distinguish the proper correla-
tions due to a reduced range in the correlation indices. Near flutter
points, different flutter modes can become very similar, causing
vector product correlation methods (C-CORC and van Zyl) to fail.
C-HOEP can successfully track modes near flutter despite mode
shape similarity. )

The performance trend for V—g analysis completely reverses it-
self for p—k analysis, although the performance differences are of
less magnitude. In p-k analysis, van Zy!’s method outperforms
C-CORC and C-HOEP despite its lack of range in correlation
indices. This result is somewhat surprising in that C-HOEP and

C-CORC have stronger mathematical bases. It is believed that the
simple mass operator used in p—k analysis (the diagonal modal mass
matrix, which is the identity matrix for mass normalized normal
modes) is the reason for the success of van Zyl’s approach, in that
van Zyl’s approach does not suffer in this case from not accounting
for a mass operator. C-HOEP performs well but is slightly less effec-
tive than the other two, since it has been susceptible to converging
on extraneous roots of the p—k aeroelastic equation (aerodynamic
poles). More research is needed on these extraneous roots in order
to better understand how they can be avoided.

General recommendations for the choice of a mode tracking
method can be made. For the specific application of p—k aeroelastic
analysis, van Zyl’s method works well due to the simplicity of the
p—k mass operator and is recommended, at least until it is learned
how the extraneous roots can be avoided with C-HOEP. However,
for V—g aeroelastic analysis and other nonself-adjoint eigenvalue
problems with general mass operators, van Zyl’s method is not rec-
ommended. For these problems, C-CORC may be preferable due
to its simplicity and ease of integration. Or, if the problem is more
difficult and large mode changes are possible, then C-HOEP is rec-
ommended due to its robustness.
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