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This work presents an entropy-based monitor function for mesh movement with an
application to the Euler Equations. The entropy variables provide an alternate description
of the system and are used in conjunction with the conserved variables to develop a monitor
function which is shown to be an efficient method of detecting waves. Two moving mesh
algorithms are examined: a Gauss-Seidel iterative method and an Arbitrary Lagrangian-
Eulerian method. Numerical results in 1D and 2D are used to demonstrate their ability.

I. Introduction

Adaptive meshing is a powerful method to make the most efficient use of computational resources, and
indeed, in many situations, may be the only viable approach. The are numerous possible strategies, each
of which begins by evaluating some kind of refinement indicator or monitor function. In response to the
indicator, some local action is taken, for example mesh enrichment (h-refinement), locally improved order
of accuracy (p-refinement), mesh reorientation, and mesh movement. In the matter of indicators, two
contrasting approaches have been taken in the past. One is empirical, and relies on intuitive methods for
detecting “flow features” that are thought to be important. This is usually not expensive, but weaknesses
are the need to supply and tune multiple parameters, and the absence of an incentive to refine regions that
may appear insignificant but may be important for the proper formation of the desired features. A more
theoretically-based approach begins by formulating an optimisation problem. For example, we can seek a
mesh that will minimise the error in some predicted scalar quantity J , such as lift, and this can be done
by solving an adjoint problem to obtain the sensitivity of J to local errors in the solution. Drawbacks to
this approach are the expense of the adjoint solution, and the need to focus on a specific objective J whose
choice may not be obvious.

In a companion paper,1 it is shown that taking the objective J to be the net flux of entropy through
the domain boundary has some remarkable properties, and can be viewed as a form of automatic feature
detection. It seems that any unresolved aspect of the solution, whether flow-based or geometrical, generates
numerical entropy, and that the net entropy flux will therefore be sensitive to the resolution of that feature,
and also to any region that influences it. In1 it is found that geometrical features, shocks, boundary layers
and trailing vortices are all picked up. Moreover, the adjoint solution that provides the sensitivities for
this choice of objective is available at virtually no cost, because it is simply the transformation of the flow
solution into entropy variables

v(u) = ∂u(−ρuS) (1)

where S is the thermodynamic entropy S = ln(p)− γ ln ρ.
In this paper, we discuss mesh adaptation for unsteady flow problems. In principle, the adjoint approach

could still be applied. The objective J could now be the net entropy flux through a control volume consisting
of the entire space-time domain, but this would of course be very expensive, being essentially global in time
(0 ≤ t ≤ T ). Suppose that we have fixed resources that we want to utilise efficiently in time, for example by
allocating them between the first half of the computation (0 ≤ t ≤ T/2) and the second half. But of course
during the first half we have no idea how complicated and demanding the second half will be.

We could apply an adjoint approach over some fixed block of timesteps, or even over a single timestep,
but we have not pursued this in any detail. Instead, we present a feature-based method that derives some
∗Graduate Student
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inspiration and encouragement from the adjoint approach. This employs a feature detector that is related
to the entropy variables, which we call the entropy distance, and use this to drive a moving mesh,2–5 in
which mesh points migrate to the important areas of the flow. As observed above, this is merely one of the
possible mesh adaptation strategies, and not necessarily the most efficient. Our object is to show that the
entropy distance works as an effective driver that replaces a variety of empirical drivers, appearing to serve
as a universal “feature detector”. Although our presentation is chiefly in terms of the Euler equations, the
entropy distance is defined for any set of conservation laws equipped with an entropy function.

We also make some observations about computing conservation laws on a moving mesh that may have
more general application. In particular, we present a generalization to moving grids of the MUSCL-Hancock
method that is fully explicit and second-order accurate. This is more direct and accurate than methods that
rely on interpolating from one mesh to another. We also make some observations on the so-called Moving
Mesh Partial Differential Equation, or MMPDE, providing a more efficient hyperbolic reformulation of what
is usually presented as a parabolic problem.

II. Governing Equations

The governing equations are the Euler Equations, however, this methodology also applies to any hyper-
bolic system of PDEs with an entropy, such as the shallow water, the Navier-Stokes, and the Magnetohy-
drodynamics equations.6 All of these can be written in vector form as

ut + f ixi
= ut + f iuuxi = ut + Aiuxi = 0 (2)

or, for the Euler equations, expanded as

∂

∂t

 ρ

ρV
E

+∇ ·

 ρV
ρVV + Ip
V(E + p)

 =

 0
0
0

 , (3)

with the equation of state p = p(ρ, i). For an ideal gas as

p = (γ − 1)ρi, ρi =
(
E − 1

2
ρVTV

)
. (4)

The hyperbolicity of the system implies Ai = f iu = RiΛLi.

III. Entropy Variables

Define the physical entropy, of an ideal gas as

S = ln
(
pρ−γ

)
. (5)

The entropy inequality can then be written as

St + V · ∇S ≥ 0, (6)

or in generalized form for a convex entropy function g(S), g′ > 0 and g′′/g′ < γ−1 as7

gt + V · ∇g ≥ 0. (7)

The entropy variables, v, then come from

U(u) = −ρg(S), v = UTu . (8)

Following,8 the change of variable Jacobians uv and vu, are both symmetric and positive definite since
vu = Uuu = uv

−1. We can now write (2) as

uvvt + f ivvxi
= 0, (9)
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where the matrices fv are also symmetric. Barth8 shows that the change of variable Jacobian is then
necessarily of the form

uv = RCCTRT = R̃R̃
T

(10)

for a diagonal eigenvector scaling matrix C. R̃ contains the right eigenvectors of A. Because the Euler
equations are rotationally invariant, it is not important which of the Ai is chosen. It could be any one one of
them, or some linear combination arising from a coordinate rotation. The scaling, however, is important, and
is what allows the monitor function to be defined. Defining L̃ = R̃

−1
we also have the inverse relationship

vu = (R̃R̃
T

)−1 = L̃TL̃. (11)

III.A. An Euler Equation Example in 1D

First, as in9,10 define the entropy variables using g(S) = S
γ−1 , so that the entropy function is given by

U(u) = − ρS

γ − 1
= − ρ

γ − 1
ln(pρ−γ), (12)

which gives the entropy variables as

v =

 −
S
γ−1 + γ+1

γ−1 −
E
p

ρu
p

−ρp

 . (13)

The change of variable Jacobians are then

uv =

 ρ ρu E

ρu ρu2 + p ρuH

E ρuH ρH2 − a2p
γ−1

 (14)

and

vu =
γ − 1
p2


γp2

(γ−1)2ρ + 1
4ρu

4 − 1
2ρu

3 − p
γ−1 + 1

2ρu
2

− 1
2ρu

3 p
γ−1 + ρu2 ρu

− p
γ−1 + 1

2ρu
2 −ρu ρ

 (15)

with a2 = γp
ρ and H = a2

γ−1 + u2

2 . We write the right and left eigenvectors in the forms that are usually
given, such that the matrices R,L are mutually inverse, but not otherwise scaled;

R =

 1 1 1
u− a u u+ a

a2

γ−1 − ua+ 1
2u

2 1
2u

2 a2

γ−1 − ua+ 1
2u

2

 (16)

L =
1

2a2

 γ−1
2 u2 + ua −(γ − 1)u− a (γ − 1)

2a2 − (γ − 1)u2 2(γ − 1)u −2(γ − 1)
γ−1

2 u2 − ua −(γ − 1)u+ a (γ − 1)

 . (17)

The scaling matrix is then

C2 = R−1uvR−T = LuvLT =
ρ

γ

 1
2 0 0
0 γ − 1 0
0 0 1

2

 . (18)

The scaled eigenvectors are
R̃ = RC, L̃ = C−1L. (19)
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III.B. The Entropy Distance

Let two states u1,u2 be given, and let the associated entropy variables be v1,v2 in any number of dimensions.
Consider the scalar quantity

z2 = (v1 − v2)T (u1 − u2) = ∆vT∆u. (20)

For infinitesimal changes, we have

z2 = dvTdu = duTvTu du = duT (L̃T L̃)du = (L̃du)T (L̃du). (21)

Now Ldu gives the amplitude of the wavestrengths in a Riemann problem having u1,u2 as data, so that z2

represents the sum of the squares of the wavestrengths.
Consider space divided into two halves by a plane; one half containing fluid in the state u1, and other

in the state u2. We have the remarkable result that the sum of the squares of the wavestrengths exchanged
between the two states does not depend on the orientation of the plane. Therefore z2 is a measure of distance
in state space, and is independent of location in physical space.

For infinitesimal changes there is an alternative form,

z2 = dvTdu = dvTuvdv = dvT (R̃R̃T )du = (R̃Tdv)T (R̃Tdv) (22)

which is valid because R̃Tdv = R̃Tvudu = R̃T (L̃T L̃)du = L̃du is an alternative expression for the
wavestrength.

If the states are not close, we can follow a proof in7 that considers the path v = v1 + θ(v2 − v1) for
θ ∈ [0, 1] and then writes

z2 = ∆vT∆u = ∆v
∫ u2

u1

uvdv = ∆vT
∫ 1

0

uvdθ ∆v. (23)

Because uv is symmetric, so is its integral, which represents a positive definite matrix. Therefore the quantity
z2 is positive for all pairs of states u1,u2. Note that it has the dimensions of density.

The definition of entropy, and hence of entropy distance, is unaffected by considering the Navier-Stokes
equations. It offers a natural measure of distance that requires no adjustable parameters. Based on the
analysis leading to (21) it is a detector of local activity that is equally sensitive to all types of wave motion.

IV. Monitor Function

The heuristic that motivates many mesh-movement algorithms is that “important” features require fine
mesh spacing. In one dimension, we might take w(u)∆x to be a constant, where w(u) is a “monitor function”
that measures importance. Traditionally, the monitor function is a gradient-based function.3 The simple
choice w(u) = |∂u/∂x| is inadequate, because it would lead to infinite spacings in zero gradients. Instead, a
common alternative is

w(u) =
√

1 + β2(∂w/∂x)2 (24)

for some constant β and some choice of the dependent variables w. When discretized, this takes the form

w(u) =
√

1 + β2(∆w/∆x)2. (25)

This monitor function has several flaws. First, it is not dimensionally consistent, and will change with the
choice of measuring units. Second, there seems to be no universality about it. We propose a monitor function

w(u) =
√

1 + β2z2/ρ̄ (26)

for some density ρ̄ included to make w dimensionless. The free parameter β seems necessary. It controls
the “aggression” with which the mesh adapts. If β = 0, no adaptation takes place, but if β is very large, all
mesh points will be drawn into the most prominent feature.

It should be acknowledged that the quantity ∆vT∆u was used long ago11 to trigger a different kind of
mesh movement scheme. This involved a kind of shock tracking in one dimension. It exploited the ability of
the monitor to track all kinds of discontinuity, but did not exploit its isotropic character. Also, properties
of the product ∆vT∆u were employed in7 to reconstruct a contact wave within the HLL flux model.
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V. Mesh Redistribution

As a desirable heuristic, we may propose that all elements of a mesh are equally important. This very
loose definition begs several questions. What do we mean by “element” (node, edge, face, volume?); what
do we mean by “important”?, and important to what end?. The adjoint approach interprets the principle as
meaning that all cells should contribute equally to the error in J . In1 the policy is implemented by refining
those cells that contribute much more than the average to that error. A strict equidistribution is not enforced
and might not be practical.

Our method borrows from that brach of the moving mesh literature that expresses a desirable property
of the mesh through deriving a PDE to be satisfied by the mesh. We introduce a computational space ξ in
which the mesh is uniform, and a mapping x(ξ) that defines the actual mesh.

Geometric properties of the actual mesh can be represented by elements of the transformation matrix
xξ. A common approach is to minimise the integral of some scalar functional of the mapping, and the
Euler-Lagrange equations then provide a differential equation to be satisfied by the mesh coordinates. This
is the moving mesh PDE.2,4, 5 Devising the functional to be minimized is somewhat empirical, but we follow
here a proposal by Ceniceros and Hou12 (see also3), to minimise

E =
1
2

∫
w((gradξx)2 + (gradξy)2)dξ. (27)

If the weighting function w is constant, then by a well-known result, both x and y would satisfy Laplace’s
equation. If w is not constant, then the procedure seeks to place grids that are both fine and smooth in
those regions where it is large.

The Euler-Lagrange equations turn out to be

∇ξ · (w ∇ξx) = 0. (28)

For w > 0 this is an elliptic equation, a desirable property that prevents mesh tangling.
An extreme form of equidistribution would be to insist that this equation be satisfied everywhere at all

times, but this would be very expensive. Moreover, the equation merely expresses an heuristic principle, and
there is little point in seeking an exact solution. It has been usual to convert equations such as (28) into a
time-dependent equation with a pseudo-time τ ;

xτ = κ∇ξ · (w ∇ξx)) = 0 (29)

and to run a few iterations of this mesh problem at each timestep of the physical problem.
This amounts, of course, to a simple FTCS method for the parabolic problem, which has the drawback

of requiring very small timesteps when the mesh is fine. To work around this, Tang and Tang3 advocate a
Gauss-Seidel method which doubles the allowable steps. In Section VI.B we report a further acceleration (in
principle by orders of magnitude) by transforming to a hyperbolic formulation.

VI. Mesh Update and Finite Volume Method

To implement a moving mesh algorithm efficiently, we need to interweave the mesh movement and solution
update steps. For compressible flows, this needs to be done conservatively. Tang and Tang3 accomplish this
as follows.

1. At the beginning of each timestep, with the current solution u on the current grid G, perform one
iteration of the grid update, and make a conservation interpolation of u onto the new grid,

2. Iterate the previous step “3-5 times”,

3. Update the solution on the new grid, using a two-step second-order Runge-Kutta scheme.

Even with only one iteration, this method contains an interpolation step and two update steps. We
now describe a version that eliminates the interpolation step, and so removes one source of error, while also
requiring only one Riemann solution per interface and retaining second order accuracy.
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VI.A. Arbitrary Lagrangian-Eulerian (ALE) Approach

The interpolation step can be avoided by computing the new solution on a moving grid as detailed below.
Numerous authors have documented the formulation of the Euler equations in a time-dependent coordinate
system, and the well-known software package CLAWPACK13 offers this as an option. Stockie et. al.,4

reported a method that exploited this. They used Crank-Nicholson rather than Gauss-Seidel to update the
mesh, and used CLAWPACK to update the solution. They experienced difficulty maintaining stability, and
devised a rather elaborate procedure to overcome this.

We have taken a more straightforward approach, based on a generalization to moving meshes of the
Hancock scheme.14 The Hancock scheme is second-order, monotone, and fully discrete. It is the subject
of a recent analysis by Berthon15 and has been extended to third-order by Suzuki.16 Here we make a
straightforward generalization of the second-order version, and have found it very satisfactory. Although
this is a two-step scheme, it requires only a single call to a Riemann solver for each timestep per interface.

VI.A.1. One dimension

Figure 1. A finite volume cell in a one-dimensional moving mesh.

Define the new nodal positions xn+1
i = xni + ∆tẋni with an interface speed ẋni . By integrating the

conservation law (2) around the control volume we obtain

un+1
j (xn+1

i+ 1
2
− xn+1

i− 1
2
) = unj (xni+ 1

2
− xni− 1

2
)−∆t

((
fi+ 1

2
− ẋi+ 1

2
u+
i+ 1

2

)
−
(
fi− 1

2
− ẋi− 1

2
u−
i− 1

2

))
. (30)

The flux on the interface is now f − ẋu and it is easy to show that this quantity may be obtained from Roe’s
Riemann Solver as

f − ẋu =
1
2

(fL + fR − ẋ(uL + uR))−
∑
k

αk|λk − ẋ|rk. (31)

In Hancock’s method we take the initial data in cell i be

ui(x, 0) = ūi + S̃i(x− x̄i), (32)

where the bar denotes cell averaged values and the slopes S̃i are limited. Evaluate ui at the left and right
cell edges, giving u−i and u+

i . From these states, evaluate f−i and f+
i . Then, halfway through the timestep

evaluate

u+
i− 1

2
= ūi − S̃

(
1
2

∆xi −
1
2

∆tẋi− 1
2

)
− 1

2
∆t
∆xi

(f+
i − f−i ) (33)

u−
i+ 1

2
= ūi + S̃

(
1
2

∆xi +
1
2

∆tẋi+ 1
2

)
− 1

2
∆t
∆xi

(f+
i − f−i ). (34)

These are the states to use in the Riemann problem in Equation (30). The additional terms involving ẋ
impose only a small overhead.

Again, we took only one step to determine the new location of xi, so that

ẋi =
1

∆t
(xn+1
i − xni ). (35)
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VI.A.2. Two dimensions

Define a cell j with edges i and linear conserved variable distribution

uj = uj + ∇̃uj · (ri − rj) (36)

for cell center rj = (xj , yj), edge midpoint ri = (xi, yi) and limited gradient ∇̃uj . Define an edge midpoint
velocity vector as ṙi = [ẋi, ẏi]T with ẋi = 1

∆t (x
n+1 − xn) and ẏi defined correspondingly. Let Anj and An+1

j

be current and new cell areas respectively. The Hancock update is then

un+1
j = unj

An

An+1
− ∆t
An+1

∑
i

(
fn+ 1

2
i · nn+ 1

2
i − un+ 1

2
i (ṙi · n

n+ 1
2

i )
)

(37)

where ni = [nx, ny]T is the scaled outward edge normal and the flux is calculated via a Riemann solver. The
conserved variables at tn+ 1

2 at edge i are

un+ 1
2

i = unj + ∇̃unj · (rni − rnj )− ∆t
2An

∑
i

f(unj + ∇̃unj · (rni − rnj )) · nni (38)

and within Roe’s Riemann Solver we define a normal mesh velocity as ṙn = 1√
n2

x+n2
y

(ẋnx + ẏny). The

flux is then calculated from

f =
1
2

(
fL + fR − ṙn(uL + uR)−

∑
αk|λk − ṙ|rk

)
. (39)

VI.B. A hyperbolic approach to mesh movement

The mesh distribution equation (29) is elliptic. To satisfy it to a sufficient approximation, we have followed
other workers by embedding it in the parabolic problem,

xt = κ[(wxξ)ξ + (wxη)η]. (40)

An alternative is to embed it in the following 6× 6 hyperbolic relaxation system;

xt = κ(pξ + qη) (41a)

pt =
(wx)ξ − p

τ
(41b)

qt =
(wx)η − q

τ
(41c)

where κ and τ are for the present arbitrary parameters. The calculation

xtt = κ(pξ,t + qη,t) (42a)

=
κ

τ
[((wx)ξ)ξ − pξ + ((wx)η)η − qη] (42b)

=
κ

τ
[((wx)ξ)ξ + ((wx)η)η − xt/κ] (42c)

(42d)

shows that the hyperbolic system converges to same limiting solution as the parabolic system, which is the
solution to the elliptic problem. This is of course true for any values of the parameters, but these can be
chosen, as pointed out by Nishikawa,17 to allow large stable timesteps. The wave propagation speeds for
this system are ±

√
κw/τ . By taking the relaxation time τ ∝ w the wavespeed, and therefore the Courant

number can be held constant over the domain. The equal magnitude of left- and right-going wavespeeds
makes for an easy implementation of upwinding. Further details will be presented elsewhere.
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VI.B.1. Discretization

In one dimension, the system is

xt = κpξ (43)

pt =
wxξ − p

τ
. (44)

These equations can be discretized on a staggered grid, with p stored in cell centers and x in its natural
location at vertices. As a result of a partial one-dimensional stability analysis, the scheme

xn+1
j = xnj +

κ∆t
∆ξ

(pnj+ 1
2
− pnj− 1

2
) (45)

pn+1
j = pnj +

3
8

(pnj−1 − 2pnj + pnj+1) +
∆t
τ

(
wnj

(xn
j+ 1

2
− xn

j− 1
2
)

∆ξ
− pnj

)
(46)

was employed, with ∆t = τ and κ = 3/(4 maxw). It is possible that better parameters exist.
In two dimensions, a similar scheme and staggered grid was used. A major advantage to this split system

is the ability to take two timesteps in x without updating the monitor function.

VII. Results

VII.A. One dimension

Sod’s problem18 is a shocktube with uL = [1.0, 0.0, 1.0]T and uR = [0.125, 0.0, 0.1]T . To preserve monotonic-
ity, the harmonic limiter was used on conserved variable slopes. For the monitor function, equation (26) in
these numerical tests, differences between cell states were taken from cell centers, leaving w defined on cell
edges. To obtain w in cell centers we took averages wi = 1

2 (wi+1/2+wi−1/2). This leaves the mesh uncoupled,
so some slight smoothing was added as in previous work.3,5 We will explore alternative procedures.

We measure errors in the computed solutions by comparing them with cell averages for the exact solution,
calculated using a five-point Gaussian quadrature, and accounting for the locations of the discontinuities.
Using β = 30 in the monitor function to adjust the amount of wave movement and a constant timestep of
∆t = ∆x

4 we can see a definite error reduction as shown in Figure 2. The percentage error reduction

ered =
100(euniform − emm)

euniform
(47)

measures by how much the error has been reduced by switching from a uniform mesh to a non-uniform mesh
from the moving mesh algorithm. One other monitor function is compared, devised by Stockie et. al.4 and
recommended by Tang and Tang.3

w =

√
1 + 20

(
ux

max |ux|

)2

+ 100
(

sx
max |sx|

)2

(48)

with s = p/ργ . This type of monitor function requires a different indicator for each type of wave in the
system.

Table 1 below displays the reduction in error achived by combining each monitor with one iteration of
the process “remesh + interpolate + update”. This directly compares the monitor functions and shows
substantial benefit from using the entropy distance. Next, in Tables 2 and 3, we look at the effect of
eliminating the interpolation step to yield the process “remesh + moving update”. In all cases, the direct
update yield similar results at a reduced cost. Figures 3 and 4 show the accuracy, measured in the L1 norm
for both monitors.

The order of accuracy for all schemes can be measured as very close to 1.0. This is quite typical for
nominally second-order schemes on this problem whose solution is mostly comprised of jumps and constant
states. For smoother problems we have found that our code is in fact second-order accurate.

The solutions at T = 0.125 are plotted in Figure 2. All moving mesh methods outperform the uniform
mesh and better resolve all three waves. The mesh movement, shown in Figures 5-7, follow all three waves
and results in cells surrounding the waves, as determined by the monitor function.

8 of 15

American Institute of Aeronautics and Astronautics



N 50 100 200 400
β = 30 36.7 32.2 29.1 18.8
Tang 10.8 8.7 12.3 10.0

Table 1. Percentage error reduction with interpolation followed by update.

N 50 100 200 400
β = 30 41.0 32.8 28.1 32.4
Tang 18.5 19.4 14.6 15.7

Table 2. Percentage error reduction with Gauss-Seidel direct update on moving mesh.

N 50 100 200 400
β = 30 36.4 30.6 27.6 26.0
Tang 25.7 27.4 14.5 24.2

Table 3. Percentage error reduction with hyperbolic relaxation direct update on moving mesh.

VII.B. Two dimensions

We study Woodward and Colella’s double Mach reflection problem19 with states uL = [8, 57.16,−33.00, 563.54]T

and uR = [1.4, 0.0, 0.0, 2.5]T initially separated by a shock at x = 1
6 + y√

3
in a domain Ω = [0, 4]× [0, 1].

We start with an initially uniform grid of ∆x = ∆y = 1/24. Here, the monitor function defined on each
cell interface is taken to be w =

√
1 + 30z2/ρ. Slight smoothing is then applied to suppress the odd-even

decoupling. Timesteps of ∆t = 0.001 were taken in each case. To avoid a directional bias when taking one
iterative step, Jacobi Iteration was used in place of Gauss-Seidel. Looking at density at 0.2 seconds in Figures
8-10, both moving meshes do a better job capturing the features of the flow. In particular they resolve the
oblique shocks more sharply by creating smooth patterns of diamond-shaped cells. The singularity at the
start of the wedge is also much better resolved with a moving mesh.

Density contours are shown in Figures 11-13. The density contours are evenly spaced and equal in each
situation. For both of the moving grids, there is a clear superiority in resolving the shockwave close to its
fixed origin, but little or no advantage in resolving features on the right of the diagram. We think that this is
because the features at the left are rather stable, and the mesh has evolved to fit them quite nicely, whereas
the features on the right are newly arrived, and the mesh does not yet fit them well.

The resolution of the moving oblique shock is interesting. It is noticeably sharper on the moving grids
than on the fixed grid, but because it is unsteady it does not have time to draw the mesh to itself in the
way that it does at the origin. The shock attains its best resolution in those places where it is most long-
established. However, once the shock has passed, the grid reverts to uniformity, which would be desirable if
some other feature were to arrive later.

VIII. Conclusions and Future Work

The monitor function (26) was very successful in detecting both acoustic and convective features.
In one dimension, the gain in accuracy obtained by moving the mesh points using our preferred combi-

nation of the entropy monitor and ALE update amounted consistently to about 45%, compared with about
15-20% for the procedure in.3 Given that our method showed only roughly first-order accuracy on the Sod
problem, the same gain could have been achieved by doubling the number of mesh points, which quadruples
the cost, given that time steps also have to be reduced.

In two dimensions, it was difficult to quantify the improvements, but probably the resolution of the
discontinuities was again roughly doubled. The cost of doubling the grid in two dimensions is a factor of
eight, and in three dimensions is sixteen. We found that our two-dimensional code spent about 30% of
its time in mesh management. The ALE implementation of the moving mesh incurs only a light overhead
relative to a fixed mesh, but in general, because some cells are reduced in size the time step is reduced and
more timesteps have to be taken. Although the present results are merely preliminary, it seems that there
could be situations where the moving mesh algorithm would pay off quite handsomely. There are numerous
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implementational details that are quite empirical at present, and we intend to explore the alternatives,
preferably putting them on a more rational basis.

One benefit in comparison with other refinement strategies is that the mesh retains its original topology,
so that no indirect addressing is required. If indirect addressing is acceptable, then some form of AMR
may be preferred. The advantage of AMR is that points can be added directly to the active areas, whereas
with moving meshes they must be brought from a distance. However, the entropy distance should still be a
powerful monitor function.
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Figure 2. Comparison of Density for Solutions on a uniform mesh, GS moving mesh, GS+ALE moving mesh, HR+ALE
moving mesh, and Exact solution on a 50 Cell Mesh at 0.125 seconds.
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Figure 3. Density Error in the L1 norm versus number of mesh cells using entropy distance monitor function.
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Figure 4. Density Error in the L1 norm versus number of mesh cells using Tang and Tang’s monitor function (48).
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Figure 5. Mesh Movement with 50 Cells for β = 30 using “Gauss-Seidel remesh+interpolate+update” method.
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Figure 6. Mesh Movement with 50 Cells for β = 30 using “Gauss-Seidel remesh+direct update” method.
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Figure 7. Mesh Movement with 50 Cells for β = 30 using “hyperbolic relaxation remesh+direct update” method.
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Figure 8. Density of double Mach reflection on a uniform mesh at t = 0.2 seconds.
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Figure 9. Density of double Mach reflection on a moving mesh using hyperbolic relaxation at t = 0.2 seconds.
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Figure 10. Density of double Mach reflection on a moving mesh using Jacobi iteration at t = 0.2 seconds.
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Figure 11. Twenty evenly spaced density contours of double Mach reflection on a uniform mesh at t = 0.2 seconds.
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Figure 12. Twenty evenly spaced density contours of double Mach reflection on a moving mesh with hyperbolic
relaxation at t = 0.2 seconds.
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Figure 13. Twenty evenly spaced density contours of double Mach reflection on a moving mesh with Jacobi iteration
at t = 0.2 seconds.
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