
404 J. THERMOPHYSICS VOL. 4, NO. 3

values of B. This value corresponds to natural convection
from an isothermal flat plate embedded in a porous medium
as obtained using the Oseen linearization.5 A similarity (exact)
solution to this problem was performed by Cheng and
Mikowycz9yielding Nu = 0.888 Ra«2. In the other extreme, as
A becomes very large, the overall heat transferjiiminishes for
all values of the wall conductivity and therefore the thermal
communication between the pipe fluid and the porous mate-
rial. In all cases, the counter-flow configuration yields a
higher overall heat flux than the parallel-flow configuration.
This effect, however, weakens as the parameter B decreases,
such that for values of £<0.1 the overall heat transfer
through the pipe is identical for both cases. Note that decreas-
ing B while keeping A constant is equivalent to increasing the
flow rate in the pipe.

Conclusions
In this technical Note, a simple yet reliable analysis was

presented for the problem of counter-flow and parallel-flow
convection in a vertical pipe surrounded by a porous material.
Important results revealed interesting features of the tempera-
ture distribution of the pipe outer surface, of the mean fluid
temperature in the pipe, and of the overall heat flux from the
pipe to the surroundings. As the values of parameters A and B
approach zero, the outer pipe surface approached an isother-
mal condition. A maximum was observed in the 00 distribution
in the parallel-flow case. This maximum is more pronounced
and occurs closer to the pipe inlet for larger values of B.

The overall heat flux through the pipe reaches a plateau as
A decreases. This plateau corresponds to natural convection
from an isothermal vertical wall embedded in a porous
medium. The counter-flow configuration yields higher overall
heat transfer than for the parallel-flow configuration. This
feature diminishes as the pipe flow rate is increased (or the
parameter B is decreased).
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Introduction

T HE interpretation of the contemporary problems of ther-
momechanics in terms of entropy production is lately re-

ceiving increased attention. Because of its size, no attempt will
be made here to survey the literature (see, for example, Be-
jan1'2 for applications involving heat transfer and Arpaci3'4
and Arpaci and Selamet5'6 for applications involving radiation
and flames). The following brief review on the local entropy
production is for later convenience.

The development of the entropy production in moving me-
dia requires the consideration of the momentum, energy, and
entropy balances. The fundamental difference,

Total energy — (Momentum)v/ — (Entropy) T

may be rearranged to yield

{Du Ds Dv

(1)

p(Dt Dt Dt -Ts'"(2)

where s# is the rate of deformation. For a reversible process,
all forms of dissipation vanish, and

Du Ds D\
(3)

which is the Gibbs Thermodynamic relation. For an irre-
versible process, Eq. (3) continues to hold provided the process
can be assumed in local equilibrium. Then, the local entropy
production is found to be

where the first term in brackets denotes the dissipation of
thermal energy into entropy (lost heat), the second term de-
notes the dissipation of mechanical energy into heat (lost
work), and the third term denotes the dissipation of any (ex-
cept thermomechanical) energy into heat. When radiation is
appreciable, <?/ denotes the total flux involving the sum of the
conductive flux and the radiative flux

Qi = q + q (5)

Neglecting contribution of viscous dissipation and assuming
conductive and radiative heat fluxes to be in the transversal
direction, Eq. (4) may be rearranged as

(6)

Foregoing general considerations are applied below to a forced
convection boundary layer.
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Radiation Affected Forced Convection
Consider the effect of radiation on the forced convection

boundary layer over a horizontal flat plate. For heat transfer
studies, rather than velocity profiles, a good approximation of
these profiles near boundaries is convenient. This approach, in
the absence of radiation, is well known and has been studied
extensively (see Curie7 for an early reference and Arpaci and
Larsen8 for a later reference). Also, the extension of the ap-
proach to the limiting cases of Pr < 1 and Pr > 1 are discussed
in Arpaci and Larsen.8 Since the case of Pr < 1 is for opaque
fluids and has no application to radiation-affected problems
and the case of Pr > 1 is known to approximate for all fluids
with Pr > 1, here only the latter case is considered.

Replacing the longitudinal velocity by its tangent on the wall
and using this velocity in the conservation of mass to deter-
mine the transversal velocity and including the radiation ef-
fect, the thermal energy balance gives

„

(8)

_ I _ 2 I w

,/*/a*"^
subject to (Lord and Arpaci9)

< J(£*-,
where TW denotes the wall shear stress, KP the Planck mean
absorption coefficient, Eb the emissive power, ew the wall emis-
sivity, EI the second exponential integral, and r the optical
thickness. The boundary conditions to be satisfied are

T(0,y) = T(x,0) = Tw (9)
A similarity variable including both conduction and radia-

tion is not feasible because of intrinsic lack of similarity be-
tween conduction and radiation. However, the effect of thin
gas radiation on conduction is small. This fact suggests the use
of the similarity variable for conduction by which the radiation
effect can be treated locally similar.

Introducing ri=y/g(x) (see, for example, Arpaci and
Larsen8), into Eq. (7) leads to the equation satisfied by g(x),

which readily gives

8(x) =
H"L Jo

1/3

(rw/fJi) 1/2

and r/ =

U (TW

L JO

(10)

In terms of Eqs. (10) and the approximation E2 - exp( -
Eqs. (7) and (8) are combined to

subject to 0(0) = 1 and 0(oo) = 0. Here, \ = (Kp/KR)l/2 is the
weighted nongrayness, KR the Rosseland mean absorption co-
efficient and

17 T -T '1 W * 00

^ = Gx1/2, G =

7 =

4cx/3
).332

(12a)

(12b)

Conduction+Radiation
x = 0.1 m e=1.0

s

2 4
Similarity Variable, rj

Fig. 1 Dimensionless temperature versus similarity variable.

Emission
3 k(Tw — T^KM Conduction over KM

I (12c)

KM = (KpKR)l/2 being the mean absorption coefficient. As
P—0, the effect of radiation diminishes, and Eq. (11) reduces
to the case of pure conduction, as expected.

Equation (11) was solved as a boundary-value problem by
using the finite difference code PASVA3 developed by Lentini
and Pereyra10 and, employing the wall gradient of temperature
obtained from PASVA3, as an initial-value problem by using
the single step code DVERK based on a fifth- and sixth-order
Runge Kutta-Verner approximation developed by Hull et al.11

The results obtained separately from PASVA3 and DVERK
are found to agree to five decimals. Figure 1 shows the varia-
tion of 0 against rj for pure conduction, which can be obtained
by letting the right side of Eq. (11) equal to zero, and the
combination of conduction and radiation as expressed by Eq.
(11). The present study utilizes air properties at the film tem-
perature and assumes Uw = 2m/s.

In terms of 17 and 0, the conductive constitution becomes

(13)

where j; and g are defined by Eqs. (10) and (12), respectively.
Inserting T, the thin gas radiative heat flux, and the conduc-
tive heat flux expressed by Eq. (13) into Eq. (6), the volumetric
local entropy production is found as

d0
"dr,

A:d0
x I ~~T"^dr; (14)
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Fig. 2 Rate of local entropy production versus similarity variable.

For illustrative purposes, assuming a wall temperature of
Tw = 500 K, Fig. 2 depicts the variation of s™ against rj for
pure conduction, conductive, and total (conductive +
radiative) components in combined conduction and radiation
problems.

Heat Transfer
The total heat flux on boundaries,

C _j_ nR (\^\

q^ being available from a usual boundary approach and q*
being the spectral average of the monochromatic wall heat flux
to be evaluated next. From 6zi§ik,12 Siegel and Howell,13 or
Sparrow and Cess,14

(16)bw-2 EbE2(rf)drf

o J
Split the interval into two domains: [0, TA] and [TA, oo], TA
denoting the thickness of the conduction boundary layer. Then
the integration of Eq. (16) yields

(17)—7
'

Assume a third-order polynomial in r for Eb satisfying the
apparent conditions,

and

and the limit of weak radiation,

yields

(18)

(19)

Eb-Ebw 1 / rV 3 / r \
F——F~~ = o \ / ~ o l ~ ~ )£Lbw — tLboo L \TA/ Z \TA/

In terms of Eq. (20), the wall heat flux from Eq. (17) yields

(21)q* = ew(Ebw -Eboo)( l -~ r A

This relation apparently excludes the effect of conduction. To
include this effect, reconsider the conditions given by Eq. (18),
and, in place of Eq. (19), now utilize the wall balance of the
thermal energy

d2T
dy2

which in terms of Eq. (8) may be rearranged to give

d2T
dy2 - —)(Eb» - Eboo)

(22)

(23)

Also, from the (linearized) Stefan-Boltzmann law

d2E. . d2T
(24)

where TM = [(ewT* + Tt)/(ew + 1)]1/4. The elimination of
thermal curvature between Eqs. (23) and (24) gives

d2Eb

dr2 (25)

where (9 = 4aT^/3kTMKM. Then, the polynomial approxima-
tion subject to Eqs. (18) and (25) yields

(26)

where (P0 = 12X(P(1 - ew/2) T|. In terms of Eq. (26), Eq. (17)
results in

(27)

which shows the explicit effect of conduction on the radiative
heat flux. However, for the thin gas radiation, r A (P~l ,
TA < 1, and, to first order, the explicit effect of conduction on
the radiation flux is negligible, and Eq. (27) reduces to Eq.
(21), which is the upper limit of the radiative flux obtained
from strict radiative considerations. Now, in terms of this flux,
the total heat transfer becomes

dT—dy ew(Ebw —Eboo)[ 1 — - TA (28)

where, after neglecting the effect of thin gas radiation on the
thermal boundary layer, rA = KMA = KMd/Prl/3. From approx-
imate studies on viscous boundary layers, d — 5.0x/Re^/2

9 and
TA = 5.0Tx/Re*/2 Prl/3. Also, from thermal boundary-layer
studies,

Nux = 0.629( - dd/dy \w)Rex
/2Prl/3 (29)

which, for the pure conduction case

(-dO/dy !„)* = 0.538

gives

NU* = 0.339 Rex
/2 Prl/3 and rA = - Tx/Nu* (30)
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Thus

Nux (-dfl /djyU) 3 / rx V 5 rx \
NH* ~ ( - kd/dy\w)« 4 €w \Nu?) \ 4 Nu«J

and the local thermal entropy production on the wall is

Introducing a wall local entropy production number,
11* = Sx'x2/k, Eq. (31) may be arranged as

(32)(32)

(33)

TW

With the definition of local Nusselt number

XT <£ tf (9T/8y)\w
*~rf~tf~(Tw-TJ/x

Eq. (32) may finally be expressed as

^('-f'K'+fCK2 (34)
\ * w/ \ Qw/

Concluding Remarks
The radiation-affected forced convection over a flat plate is

investigated in terms of thin gas. The distribution of entropy
production within and outside the radiation-affected thermal
boundary layer is evaluated. The retained nonlinearity of tem-
perature in the entropy production leads to an extremum in
this production within the boundary layer rather than on the
boundary.
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Introduction

A DERIVATION of the monochromatic intensity balance
(transfer equation) under the influence of emission, ab-

sorption, and scattering is available in the literature.1'2 The
following brief review is for later convenience.

The monochromatic transfer equation integrated over the
frequency domain gives

(D

where / is the intensity, I0 its equilibrium state, K the absorp-
tion coefficient, as the scattering coefficient, P = K + OS the
extinction coefficient, Q the solid angle, and P(//,//)
the phase function that satisfies

(2)

// being the direction of the optical energy balance and // the
direction of the scattering.

The first specular moment of Eq. (1) yields the radiative
energy balance

dx.
;,/,)7dQ'dQ-| (3)

where q* = Jq//; dQ is the radiative heat flux in the */ direction,
Eb = TrI0 the equilibrium blackbody emissive power, and
/ = {n/ dQ the specular integrated intensity. In view of Eq. (2)
and

P(//,/,)/dQ'dQ = P(/;,/,)7 dG dQ'= 4TJ (4)
QjQ' JO'L JQ J

Eq. (3) may be rearranged as

da*
dXj

= K(4Eb-J) (5)

The second specular moment of the transfer equation leads to
the radiative momentum balance

(6)

(7)

where II// is related to the radiative stress T§ by

r£ = M 7/ / /7dQ=in / y

c being the velocity of light.

Received Jan. 30, 1989; revision received Aug. 9, 1989. Copyright
© 1989 American Institute of Aeronautics and Astronautics, Inc. All
rights reserved.

* Professor, Department of Mechanical Engineering and Applied
Mechanics.

tSenior Engineer/Scientist, Advanced Technology Center.


