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Abstract

The problem of forming images that are optimal
with respect to a Mean Square Error (MSE) crite-
rion, based on �nite data, is considered. First, it is
shown that the MSE criterion is consistent with the
general goal of classifying images, in that decreasing
the MSE guarantees a decrease in the probability of
misclassifying an image. The problem of choosing
sampling locations for image formation that opti-
mize the MSE is then formulated. It is shown that
this MSE minimization problem has a solution un-
der certain conditions and necessary conditions for
a minimum are obtained. The results are illustrated
on a simple image formation problem.

1 Introduction

This paper is motivated by the goal of taking
high resolution images of exo-solar planets at
distances of up to 15 parsecs. The images that
are obtained would be used to answer true false
questions such as ` Is the percentage of oxygen in
the planet's atmosphere greater than 10 ?'. We
formulate an optimal imaging problem keeping
the above objective in mind. We require that
the imaging scheme be such that it minimizes the
probability of misclassifying an image, given that
the set of images has been partitioned into two
non-empty classes. We show that, under certain
assumptions, minimizing the mean-squared error
in the estimated image results in the image being
optimal with respect to the classi�cation goals. We
limit ourselves to the case when we can only take
a �nite number of measurements. In this case we
postulate that we have apriori information that the
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image belongs to a �nite dimensional subspace of
the original in�nite dimensional space. This allows
us to obtain an unbiased estimate of the image
from a �nite number of observations. Then we pose
an optimization problem with respect to the mean
squared error of the estimated images that result
from di�erent choices of the measurement/vantage
points. We show that this optimization problem,
under certain conditions, has a solution.
The process of light propagation between two par-
allel planes in three-dimensional space is described
as a spatial convolution of the electromagnetic
�eld of the object(source of the radiation) with
the Huygens-Fresnel(H-F) operator1;2. Though
this is not explicitly stated, it is easily shown that
the H-F operator is a unitary operator. Hence
if we measured the �eld due to the object at
some plane downstream from it, the image of the
object is reconstructed by simply convolving the
measured �eld with the inverse of the H-F operator
(i.e. its adjoint). The problem is well-posed since
unitary operators are all-pass �lters the resulting
deconvolution problem is trivial. However all
optical instruments can only measure the �eld over
a �nite region. In this case the image formed by
the optical instrument is represented by a spatial
convolution of the object �eld with the point-spread
function (psf) of the optical instrument3. The psf
of an optical instrument is a low-pass �lter and
hence the problem of deconvolution in this case is
ill-posed3. This problem has been widely studied in
the image processing community and is solved using
regularization methods3�5. In some applications,
the point-spread function of the optical instrument
being used might not be known perfectly. These
problems are treated as blind-deconvolution prob-
lems where the psf of the instrument and the image
are estimated simultaneously6;7. Thus the problem
is under-determined in the sense that the measure
of the support of the image is much larger than the
measure of the measurement region. This problem
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can be overcome by having apriori knowledge that
allows us to constrain the image to be in a class of
functions with the property that any function in the
class can be determined perfectly (in the absence
of noise) by taking measurements in a region of
arbitrarily small measure. Under conditions of
bandlimitedness/ analyticity on the image, the
image can be reconstructed perfectly over the
entire in�nite plane by taking measurements on
a countable set/set of arbitrarily small measure
1;8. If we have further apriori information that
the image belongs to a certain �nite dimensional
subspace, then the image can be reconstructed
perfectly by taking a �nite number of observations.
The problem of �nding the best orthonormal basis
to represent such a class of images has been studied
extensively and has a counterpart in �nding best
rational orthonormal basis in controls9�12.

In medical imaging research , the Mean
Squared Error (MSE) has been used as the criterion
for posing a variety of static and sequential obser-
vation selection problems13�15. The problem in the
case of medical imaging very closely resembles the
MSE minimization that we consider in this paper.
However our problem is generalized to the case of
in�nite dimensional spaces. Also we justify the use
of the MSE as an optimization criterion by showing
that it is consistent with the goal of classifying an im-
age correctly. Also note that the problem of optimal
imaging is similar to the optimal sensor placement
problem in various other applications such as large

exiblble structures, chemical processes and power
systems16�19.
The rest of the paper is organized as follows. In
section 2 we formulate the optimal imaging problem
according to the classi�cation goals. In section 3, we
show that the MSE is consistent with the classi�ac-
tion goals. In section 4 we formulate the problem
of obtaining optimal vantage points with respect to
the MSE. In section 5 we give a simple example to
illustrate the concepts presented in the paper.

2 Imaging Problem Formula-
tion

In three-dimensional space , consider two parallel
planes as shown in Figure(1).The process of light
transmission between these planes is represented
mathematically as a spatial convolution im = h � io
where io is the electromagnetic �eld emanating from
the object in the object plane , im is the �eld on the

measurement plane , and the operator h is unitary
and known. The imaging problem is then to recon-
struct io based on the noise corrupted knowledge of
im over a �nite region of the measurement plane (i.e.
we don't have measurements of im over the whole
in�nite plane) in an `optimal fashion' i.e. solve the
following equation for io

im = A(h � io) + n; (2.1)

where A is de�ned as follows:

A( �P ) =

�
1 if �P 2 S
0 otherwise

S denotes the �nite region over which the measure-
ments are taken and �P represents some point on
the measurement plane.

D

h

i
o

im

Object /Image plane
Measurement plane

Figure 1: Process of Image Formation

The solution of eq.(2.1) is to be optimal in the
sense of minimizing the probability of misclassifying
the image as will be de�ned next. Assume that the
set of images I has been partitioned into two non-
empty subsets W1,W2 i.e.

I = W1 [W2

W1 \W2 = �
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Let îo be an estimate of io from eq.(2.1). Then

De�nition 2.1 The misclassi�cation error �(̂io) for
an estimate îo of object io is de�ned to be

�(̂io; io) = prob(̂io =2 Wk = io 2 Wk) (2.2)

where Wk denotes class k.

Hence the estimate îo of the object should be such
that it minimizes the misclassi�cation error of the
object into one of the two classes I=II ,i.e.,

î�o = argmin
îo

�(îo; io) (2.3)

In general, the misclassi�cation error would be ex-
tremely di�cult to evaluate from the estimated im-
age and hence we need to �nd an error metric that
could easily be evaluated from the estimated image
and that is consistent with the classi�cation goal as
formulated above. We could frame this mathemati-
cally as �nding an error metric between the actual(i)
and estimated image(̂i),jji� îjj such that

argmin
î
jji� îjj = argmin

î
�(̂i; i) (2.4)

Given this error metric, the problem of �nding an
optimal estimate would be to �nd î�o such that

î�o = argmin
îo

jji� îojj

Thus the imaging problem posed is two-fold:

P 1 Find an error metric that is consistent with goal
of classifying a given image into one of several pos-
sible classes.

P 2 Find the optimal estimate of the image w.r.t
the above metric

In Section3 we answer Problem P1 and show that the
Mean Squared Error criterion is an error metric that
is consistent with the goals of image classi�cation.
In section4 we formulate the problem of �nding the
optimal vantage points with respect to the MSE of
the estimated image.

3 Optimal Imaging : The Case
of Linear / Isotropic features

In this section we show that the mean squared
error/weighted-mean squared error satsis�es the
goal of image classi�cation as previously de�ned,

under certain conditions. The problem of optimal
imaging is stated as follows :
Let i denote a �xed but unknown image. Let î(�)
denote a family of estimates of i parametrized by
� 2 S. Find

�� = argmin
�2S

�p(̂i(�); i):

Consider the following assumptions,

A 3.1 The noise corrupting the measurements, e,
is a zero-mean, and quadratic-mean-continuous ran-
dom process

A 3.2 We are given a feature extraction function
F : L2(D)! < and x0 2 R such that

F (i) � x0 () i 2 I1;

F (i) > x0 () i 2 I2: (3.1)

A 3.3 The noise process corrupting the measure-
ments is Gaussian.

Next we present the following result.

Proposition 3.1 Suppose assumptions A3.1, A
3.2, A 3.3 hold. Let î1 and î2 be noisy estimates
of i such that EjF (i) � F (̂i1)j2 � EjF (i) � F (̂i2)j2.
Let F be a linear map. Then �p(̂i1; i) � �p(̂i2; i).

Proof:
By Assumption A3.2, there exists x0 2 < such that
F (i) < x0 ) F (i) 2 I2 and F (i) > x0 ) F (i) 2 I1.
Let �i1 = i� î1 and �i2 = i� î2. Since �i1,�i2 satisfy
, A3.3 and F is linear, (F (i)� F (i1;2)) are gaussian
random variables. Note that by Assumption A3.1,
the estimates î1 and î2 are unbiased and hence we
can set

F (̂i1) � N(F (i); �1); (3.2)

F (̂i2) � N(F (i); �2); (3.3)

where by hypothesis we have that �1 � �2. Let
i 2 I2.

�p(̂i1; i) = prob(F (̂i1) =2 I2) = prob(F (̂i1) > x0)

= prob(
F (̂i1)� F (i)

�1
>
x0 � F (i)

�1
):(3.4)

Noting that F (̂i1)�F (i)
�1

� N(0; 1) ,

�p(̂i1; i) = prob(N(0; 1) >
x0 � F (i)

�1
): (3.5)

(3.6)
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Similarly,

�p(̂i1; i) = prob(N(0; 1) >
x0 � F (i)

�2
): (3.7)

Noting that x0 > F (i) and �1 � �2, it follows from
above that �p(̂i1; i) � �p(̂i2; i).
The case when i 2 I1 can be treated similarly.
Q.E.D
Hence, from the above proposition we can conclude
that if A3.1-A3.3 are satis�ed by the estimates, then
the optimal imaging problem reduces to �nding ��

where

�� = argmin
�2S

EjF (i)� F (̂i(�))j2:

Hence, to choose the optimal estimate we need to
evaluate the quantity EjF (i)�F (̂i(�))j2 for the var-
ious estimates. It is possible to evaluate the above
for the case of a linear map. In fact,

EjF (i)� F (̂i(�))j2 =
Z
D

Z
D
f(t)R�i(�)(t; s) �f(s)dtds;

(3.8)
where f 2 L2 is the unique representation of the
linear operator F 20. Thus, in the case of a linear
feature map, evaluating

�� = argmin
�2S

Z
D

Z
D
f(t)R�i(�)(t; s) �f(s)dtds;

results in an optimal estimate in the sense that the
misclassi�action error is minimized.
In the following we show that if a feature map satis-
�es the property of "local isotropy" then minimizing
the MSE of the estimates results in an optimal esti-
mate.

De�nition 3.1 A functional g : X ! R is called
`locally isotropic' if it is di�erentiable throughout X
and, given x 2 X, j�g(x;h)j is a constant for all h 2
X where j�g(x;h)j represents the frechet deruvative
of the functional g at x with increment h.

A 3.4 The feature map F is locally isotropic and
linear.

Then we have the following proposition

Proposition 3.2 Suppose assumptions A3.1,
A3.2, A3.4 hold. If Ejji� î1jj2 � Ejji� î2jj2, then
it follows that EjF (i)�F (i1)j2 � EjF (i)�F (i2)j2,
the terms F (̂i1) andF (̂i2) being interpreted as
quadratic mean integrals.

Proof: Let us expand the various terms involved in
the above expression.

Ejji� î1jj2 = E
Z T

0
j�i1(t)j2dt =

Z T

0
R1(t; t)dt:

(3.9)
By Assumption A3.1 , �i1 is quadratic mean contin-
uous , R1(t; t) is continuous and hence the integralR T
0 R1(t; t)dt exists. Hence

Ejji� î1jj2 =
Z T

0
R1(t; t)dt; (3.10)

Ejji� î2jj2 =
Z T

0
R2(t; t)dt: (3.11)

By Mercer's theorem 21, any covariance function
R(t; s) can be represented as

R(t; s) =
1X
n=1

�n'n(t) �'n(s); (3.12)

where f'n(t)g1n=1 is orthonormal in L2[0; T ] and
f�ng are real and positive. Hence it follows from
(3.10),(3.12) that

Z T

0
R1(t; t)dt =

1X
n=1

�(1)n ; (3.13)

Z T

0
R2(t; t)dt =

1X
n=1

�(2)n : (3.14)

By hypothesis, we have

1X
n=1

�(1)n �
1X
n=1

�(2)n : (3.15)

Also, we have

EjF (i)� F (̂i1)j2 = E(
Z T

0
f(t)�i1(t)dt

�Z T

0
f(s)�i1(s)ds)

=
Z T

0

Z T

0
f(t)R1(t; s) �f(s)dtds:(3.16)

Again by Mercer's theorem it follows that

EjF (i)� F (̂i1)j2 =
Z T

0

Z T

0
f(t)(

1X
n=1

�(1)n 'n(t) �'n(s)) �f(s)dtds

1X
n=1

�(1)n (
Z T

0

Z T

0
f(t)'(1)n �'(1)n (s) �f(s)dtds)

=
1X
n=1

�(1)n (j
Z T

0
f(t)'(1)n (t)dtj2);(3.17)
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i.e.,

EjF (i)� F (̂i1)j
2 =

1X
n=1

�(1)n j�F (i;'(1)n )j2; (3.18)

EjF (i)� F (̂i2)j2 =
1X
n=1

�(2)n j�F (i;'(2)n )j2: (3.19)

By the local isotropy of F and (3.15) it follows that

EjF (i)� F (̂i1)j2 =
X
n

�(1)n K

�
X
n

�(2)n K = EjF (i)� f (̂i2)j2; (3.20)

where K = �F (i;h).
Q.E.D
In view of the above result, we have that if the fea-
ture map F was "linear-isotropic", then �nding

�� = argmin
�2S

jji� î(�)jj2

results in an optimal estimate in that the misclassi-
�cation error is minimized.

4 Optimal Image Acquisition :
Finite Number of Observa-
tions

In this section we formulate the problem of optimal
observation selection for imaging, given that only a
�nite number of observations can be made. We uti-
lize the results of the previous section in order to
show optimality of the vantage points. In this sec-
tion we shall be assuming that the feature involved
is linear or isotropic. We require that the image be
perfectly determined through a �nite number of ob-
servations in the absence of noise. In the presence of
noise, the optimal choice of observations would be
those that minimize the e�ect of noise on the syn-
thesized image.

De�nition 4.1 We de�ne an N-sampling domain
as a set S = ft1; t2; :::; tNg where 8i; ti 2 <.

We denote by i=S the set of the sample values of
the function i on the set S. We make the following
assumption.

A 4.1 Let i 2 span[�1; ::; �N ] where f�1; ::; �Ng is
a known orthonormal set of vectors.

Suppose we take noise corrupted measurements of
Hi at S = ft1; ::; tNg. We need to estimate i from

these observations ( note that the problem here is
just a particular case of the one de�ned in eq(2.1)).
By the linearity of H and the A4.1, it follows that
Hi 2 span[H�1; ::; H�N ]. Let H�k =  k. We ob-
tain the estimate of the image ,̂i , in the following
steps:
Step 1 First we form an estimate of Hi, ĤiS , as:

ĤiS(t) = [ 1(t); � � � ;  N (t)]	
�1
S (Hi=S + �); (4.1)

where

	S �

2
64
 1(t1)  2(t1) � � �  n(t1)
...

...
. . .

...
 1(tN )  2(tN ) � � �  n(tN )

3
75 ;

assuming that 	S is invertible and

� =

2
64
�(t1)
...
�(tN )

3
75 ;

�(ti) being the noise corrupting the observation at
ti.
Step 2 Then we obtain the estimate of i, î, by set-
ting î = H�1ĤiS.
It can be shown that since H is a unitary operator,

Ejji�H�1ĤiSjj2 = EjjHi� ĤiSjj2; (4.2)

We assume that the noise corrupting the measure-
ment at tk is zero-mean with variance �2(tk) and
that it is independent of the noise corrupting the
measurements at any other point.
It can be shown that the value of the MSE in taking
measurements on the sampling set S = ft1; ::; tng is
given by

e2(S) = trace(	�1S RS
� 	

�1
S

�
); (4.3)

where 	S is as previously de�ned ,

RS
� = diag(�2(t1); ::; �2(tN )); (4.4)

and (:)� denotes the complex conjugate transpose
of a matrix.

Similarly it can be shown that the value of
EjF (i)� F (̂i)j2 is given by

ef (S) = trace(	�1S RS
� 	

��

S G);

where
G = FF �;

5
American Institute of Aeronautics and Astronuatics



and
F = [< f; �1 >; ::; < f; �N >]:

Let S be constrained to remain in some D � <N .
Then the problem of optimal imaging can be stated
as �nd

S� = argmin
S2D

e2(S); (4.5)

for the case of an isotropic feature, and as �nd

S� = argmin
S2D

ef (S); (4.6)

for the case of a linear feature.
In the following proposition we show the ex-

istence of a solution to the above optimization prob-
lem

Proposition 4.1 If the basis functions f 1; ::;  Ng
are continuous and the constraint set D is compact
then the functionals e2 and ef attain their minimum
on D.

Proof:
By the assumption that the functions f 1; ::;  ng
are orthonormal, it follows that there exists some
S0 2 D s.t. e2(S0) < 1. Consider the set
F = fSje2(S) � �(S0)g. The function e2 is con-
tinuous at all points in F since the only points
of discontinuity of the functional e2 is where it is
unbounded. Hence by the de�nition of continuous
functions it follows that F is closed and also
compact(since it is a subset of D). Thus e2 attains
its minimum on F and hence in D. The case for ef
can be teated similarly.
Q.E.D.

It can be shown that the above optimization
problems can be framed as constrained optimiza-
tion problems with inequality constraints (the set
constraint is treated as the inequality constraint).
The following are �rst order necesssary conditions
for a relative minimum 22

5�(S�) + �t 5 �g(S�) = 0;

�t�g(S�) = 0; � � 0;

where
@�
@ti

= �2�2trace(	�1
@	
@ti

	�1	��)); (4.7)

�g(S) =

2
64
a1 � t1
...
an � tN

3
75 ;

assuming that the noise is independent identically
distributed, i.e., RS

� = �2I and ti � ai 8i = 1; ::; N .

Remarks:
1) It can be shown that the choice of the optimal
vantage points is independent of the choice of the
basis vectors.
2) If we consider the case when the basis consists
of only one vector, the optimization problem is to
choose one point such that the MSE is minimized.
It turns out that this optimal vantage point is
precisely that point where the ` signal to noise ratio
' of the function to the noise is maximum.
3) The error criterion looks like a generalized signal
to noise ratio .

5 Illustrative Example

In this section we present a simple numerical
example that illustrates the problem formulation
that was presented in the previous section. The
example presented here is a �nite-dimensional case.
In this �nite dimensional setting it can be seen
that a feature cannot be isotropic.( However note
that it can be shown that isotropic maps do exist
in general). In this example we comnsider a linear
feature.

In Fig.2, the topmost plot represents the
image at the object plane.It is a discretized image
with four pixels on each side. The bottom plot
in the same �gure represents the image at the
measurement plane. The feature considered in this
example is the sum of the pixel values of the image.
It is assumed that the image lies in class I if the sum
is less than a threshold value of 4.1 and it belongs
to class II otherwise. The sum of the pixel values
of the object as shown in Fig.7 is 4 and hence the
object belongs to class I.

We assume that it is known that the support
of the object is constrained to the central four
pixels of the image. Note that the image can be
represented as a vector if we stack the rows of the
image lexicographically . In doing this, the image
is represented as an element in <16. It then follows
that the knowledge that the support is constrained
to the central 4 pixels of the picture translates into
saying that the basis of the image is fe6; e7; e10; e11g
where ei denotes the ith co-ordinate vector in <16.
Hence, the basis for the image at the measurement
plane is fHe6; He7; He10; He11g. These basis
images are shown in Fig.3.

The problem of optimal imaging with respect
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Figure 3:

to the weighted-MSE is to choose the four pixels
of the image at the measurement plane at which
to make measurements so that the weighted-MSE
in estimating the image is minimized, assuming
that the statistics of the noise corrupting the
measurements is known. We assume that the noise
corrupting the measurements is i.i.d with Gaussian
statistics. The variance of the noise is assumed
to be 0.05. In Fig.9 we show the object and the
optimal estimated image. The optimal locations of
the measurements on the measurement plane are
represented by the `@' in Fig.4.

In Fig.5 we show a comparison plot of the
weighted-MSE and the misclassi�cation error . Ev-
ery point on the X-axes in the plots represents a
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Figure 4:

particular choice for the measurement points on the
measurement plane. We obtained that the optimal
weighted-MSe estimate and the optimal ME esti-
mate were the same. However there were cases for
which the above did not hold true in the simula-
tions .( The di�erent cases were obtained by di�erent
choices of the transformation between the image and
the measurement plane). The misclassi�cation er-
rors for this example were obtained through Monte-
Carlo simulations and would account for the discrep-
ancy between the minimum weighted-MSE estimate
and the minimum ME estimate in these cases. In
closing we would like to say that in a signi�cant num-
ber of cases the min weighted-MSE estimate exactly
matches the minimum ME estimate.

6 Conclusions

An optimal imaging problem was formulated such
that the solution minimizes the probability of mis-
classifying the image. It was shown that if the clas-
si�cation was done using a given feature map and if
the feature map was isotropic, the MSE criterion is
consistent with the optimal imaging problem. The
problem of obtaining optimal vantage points was
then formulated with respect to the MSE criterion.
It was shown that the optimization problem has a
solution under the condition that the observations
be constrained to a compact set. The results were
illustrated through a simple �nite dimensional ex-
ample. It was noted that the isotropy of the feature
map may be a restrictive condition. It will be our
future endeavour to relax this condition. We note
that the MSE criterion is one particular topology on
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Figure 5:

the image estimates under which the goal of optimal
imaging is satis�ed. However there might be other
error criteria that could be de�ned under which the
above goal could still be satis�ed. The relationship
of the MSE topology with the other topologies, if
they exist, remains to be explored.
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