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3-D Elasticity-based Modeling of Anisotropic Piezocomposite 
Transducers for Guided Wave Structural Health Monitoring 

Ajay Raghavan* and Carlos E.S. Cesnik† 
Department of Aerospace Engineering, University of Michigan, Ann Arbor, Michigan, 48109-2140 

Anisotropic piezocomposite transducers (APTs), such as macro fiber composites and 
active fiber composites, have great potential to be used as structurally integrated 
transducers for guided-wave structural health monitoring (GW SHM). Their main 
advantages over conventional monolithic piezoceramic wafer transducers are mechanical 
flexibility, curved surface conformability, power efficiency, their ability to excite focused 
GW fields, and their unidirectional sensing capability as a GW sensor. In this paper, models 
are developed to describe excitation of GW fields by 3-3 APT transducers in isotropic 
structures. The configurations explored are plane Lamb-wave fields in beams with 
rectangular cross-section, axisymmetric GW fields in cylinders, and 3-D GW fields in plates 
The dynamics of the substrate and transducer are assumed uncoupled. The actuator is 
modeled as causing shear traction at edges of the actuator’s active area along the fiber 
direction. The sensor is modeled as sensing the average extensional strain over the active 
area along the fiber direction. The work is unique in that the formulation is based on 3-D 
elasticity, and no reduced order structural assumptions are used. This is crucial to model 
multimodal GW propagation, especially at high frequencies. A formulation is also proposed 
to model their behavior as GW sensors. Finally, results from experimental tests to examine 
the validity of the models are discussed and the possible sources of error examined in detail.  

Nomenclature 
a = actuator size 
b, b3/b2 = structure thickness/width 
cp/cs = dilatational/shear bulk wave speed in an isotropic material 
Cc = sensor capacitance 
E = Young’s modulus 
f = body force per unit volume 
f( ) = arbitrary function 
g33 = piezoelectric constant of an anisotropic piezocomposite sensor 
He( ) = Heaviside function 
k = dielectric constant 
t = time 
u = particle displacement 
Qc = electric charge accumulated 
S = surface area of the sensor 
r, θ, z = cylindrical coordinates 
Ri/Ro = inner/outer radius of a cylinder 
Vc = sensor output voltage 
x1, x2, x3 = Cartesian coordinates 
α/β = through-thickness wavenumber of the dilatational/shear wave-component of a guided wave 
δ( ) = Delta function 
ε = strain 

                                                           
* Graduate Research Assistant and AIAA Member 
† Associate Professor and Associate Fellow, AIAA; Corresponding author; Email: cesnik@umich.edu; Phone: 1-
734-764-3397; Fax: 1-734-763-0578 

47th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Confere
1 - 4 May 2006, Newport, Rhode Island

AIAA 2006-1793

Copyright © 2006 by Ajay Raghavan and Carlos E.S. Cesnik. Published by the American Institute of Aeronautics and Astronautics, Inc., with permission.



 
American Institute of Aeronautics and Astronautics 

 

2

ε0 = electric permittivity of free space 
φ = Helmholtz scalar potential 
Η = Helmholtz vector potential 
ϕ( ) = generic function used for definition of 2-D spatial Fourier transform 
λ, µ = Lamé’s constants for an isotropic material 
ρ = material density 
σij = stress component (i,j = 1,2,3 or r,θ,z) 
τ0 = magnitude of shear stress exerted by a 3-3 anisotropic piezocomposite actuator on its host structure 
υ = Poisson’s ratio 
ω = angular frequency 
ξ = wavenumber of a propagating guided wave 
ψ = generic variable 

I. Introduction 
uided wave structural health monitoring (GW SHM) stands out as a highly promising solution for the important 
problem of damage prognosis in aerospace and mechanical structures. It essentially involves exciting GWs in 

the structure with high frequency tonebursts using structurally integrated transducers and analyzing the signals of the 
waves in the structure to extract information about damage in it, if present1. Most commonly, uniformly poled 
piezoceramic (typically lead zirconium titanate, i.e., PZT) wafer transducers are used to excite and sense GWs in 
this approach. However, these are ceramic, and hence rather brittle, making them very susceptible to damage during 
handling or in operation. For SHM, it is crucial to have transducers that can survive events causing damage to the 
structure and estimate the remaining service life of the structure in the aftermath of such events. In addition, 

piezoceramics have poor surface conformability and are not suitable for mounting on curved structures such as 
aircraft shells. In order to overcome these disadvantages of piezoceramics, various options have been explored. 
Monkhouse et al.3 designed polyvinylidene fluoride (PVDF) films with copper backing layers to improve its 
response characteristics. An interdigitated electrode pattern was deposited using printed circuit board (PCB) 
techniques for modal selectivity. Badcock and Birt4 used PZT powder incorporated into an epoxy resin (base 
material) to form poled film sheets, which were used as transducer elements for GW generation and sensing. 
Hayward et al.5 designed interdigitated transducers (IDTs) with 1-3 coupling piezocomposite layers, consisting of 
modified lead titanate ceramic platelets held together by a passive soft-set epoxy polymer, and sandwiched between 
two PCBs for wavenumber and modal selectivity. However, the actuation capability of these alternatives was 
demonstrated to be poor compared to that of conventional uniformly poled piezoceramics. 

Conformal anisotropic macro fiber composite (MFC) transducers, shown in Fig. 1, were developed at NASA 
Langley2. They utilize interdigitated electrode poling and piezoceramic fibers embedded in an epoxy matrix. Fine 
ceramic fibers provide increased specific strength over monolithic materials, allowing conformability to curved 
surfaces. Compositing the ceramic provides alternate load path redundancy, increasing robustness to damage. It was 
shown that these types of actuators have significantly higher energy densities than monolithic piezoceramics in 
planar actuation for quasi-static applications6. In MFCs, by using the piezoelectric “3-3” mode of actuation along the 
fiber direction (instead of the transverse ones, like in the conventional piezoceramic wafer), the actuation authority 

G 

 
Fig. 1.    a) (left) The packaged MFC and b) (right) The components of a MFC actuator2 
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can be theoretically as higher as three times that of a monolithic crystal (since the “3-3” piezoelectric constant is 
typically three times larger than the “3-1” piezoelectric constant). In addition, when used as a sensor, the more 
powerful converse effect causes its response to be stronger than that of a monolithic crystal (again, roughly by three 
times). Thus, MFCs provide the added advantage of being power efficient. Furthermore, due to the orientation of 
fibers along a particular direction, MFCs can be used to excite directionally focused GW fields in structures, as well 
as be insensitive to GWs incident normal to the fiber direction as sensors. Finally, by suitably tailoring their 
interdigitated electrode pattern, they can be tuned to excite particular wavelengths, and thereby achieve GW modal 
selectivity. All these characteristics make MFCs very attractive candidates for use as permanently mounted GW 
SHM transducers. MFCs and active fiber composites (AFCs), which are very similar in construction (with some 
differences in the fiber manufacturing process), have been explored by some researchers for use as GW SHM 
transducers in some preliminary tests with encouraging results7-10. The present paper addresses modeling of the GW 
field excited by these transducers and their response when used as GW sensors. These transducers are referred to as 
3-3 anisotropic piezocomposite transducers (APTs) in this work. 

The free GW modes in isotropic plates and cylinders were first studied by Lamb11 and Gazis12 respectively 
using the theory of elasticity. Earlier works on modeling excitation of GW fields using the theory of elasticity have 
mostly used 2-D plane wave models, wherein variations normal to the direction of propagation (but not through the 
structure thickness) were neglected. The book by Viktorov13 on 2-D models based on the theory of elasticity for 
Lamb wave excitation in isotropic plates by non-destructive testing (NDT) transducers was the pioneering work in 
this direction. A heuristic model was also proposed for extending the 2-D model to the case of 3-D excitation by 
NDE transducers. Ditri and Rose14 used plane strain models to describe excitation in composites by NDT 
transducers. Santosa and Pao15 solved the generic 3-D problem of excitation of GWs in isotropic plate by an impulse 
point body force using the normal modes expansion technique. Wilcox16 presented a 3-D elasticity model describing 
the harmonic GW field by generic surface point sources in isotropic plates, however the model was not rigorously 
developed, and some intuitive reasoning was used to extend 2-D model results to 3-D. Giurgiutiu17 developed a 2-D 
model for plane Lamb-wave excitation by surface bonded piezo-actuators on isotropic plates. As pointed out in Ref. 
17, the key difference between NDT transducers and surface-bonded piezo-transducers is that the former, not being 
permanently mounted on the structure, principally operate by “tapping” or causing normal traction on the free 
surface of the structure while the latter cause shear tractions. Some works have described the excitation of GW fields 
by finite dimension monolithic piezo-actuators using Mindlin plate theory18-20, but these can at best model one mode 
of the several GW modes that can be excited, and that too approximately. The only efforts in the literature that 
sought to address the modeling of anisotropic piezocomposite actuators for GW SHM were the works by Schulz et 
al.7 and Datta et al.8. There, simple reduced order beam and plate models were presented to model GW excitation by 
AFCs in isotropic structures, without any experimental validation provided for the models. It is well known that at 
the high frequencies used for GW SHM, reduced order models are inadequate, being primarily developed for quasi-
static to low frequency applications. Hence, there is a need to develop high fidelity theoretical models to model GW 
excitation and sensing in structures using 3-3 APTs, which will be very useful to gain insights into the nature of the 
GW field excited by these elements as well as to design GW SHM systems using these.  

With the above in mind, this work aims to develop 3-D elasticity models for GW excitation and sensing by 3-3 
APTs and test these models experimentally using MFCs. 

II. Theoretical Formulation 
Earlier work by the authors21-23 addressed excitation and sensing of GW fields by arbitrary shape finite 

dimension monolithic piezoelectric wafer transducers using 3-D elasticity. The actuator was modeled as causing 
shear traction on the structural substrate surface along the free edge of the actuator, in the direction normal to the 
free edge. The sensor was modeled as sensing the average in-plane extensional surface strain over its bonded surface 
area. Thus, effectively the dynamics of the transducer and the plate are assumed uncoupled, and this was 
theoretically and experimentally shown to be a good assumption when the product of the transducer stiffness and 
thickness was small compared to that of the plate. To the best knowledge of the authors, this is the first work in the 
literature to provide GW field solutions for finite dimension piezo-actuators using 3-D elasticity. The present work 
seeks to develop and verify analogous models based on the theory of elasticity for 3-3 APTs in various structural 
configurations. It is hypothesized that a similar approach can be used to model GW excitation and sensing by finite 
dimension 3-3 APTs. The key difference is that the 3-3 APT, when used as an actuator, is modeled as causing shear 
traction at the edges of the active area (the surface area occupied by piezoelectric fibers) along the fiber direction 
only. Similarly, when it is used as a sensor, it is modeled as only being sensitive to the in-plane extensional strain 
component along the fiber direction, again over the active area. For modeling the excitation when used as actuator, 
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the GW field solution in terms of displacement and strain was obtained by solving the 3-D elasticity-based boundary 
value problem using integral spatial transforms and the residue theorem from complex analysis. As in the earlier 
work by the authors21-23 on modeling monolithic piezoelectric transducers, two important assumptions are made in 
the subsequent theoretical analysis. One is that the frequency dependence of the piezoelectric constants is negligible, 
which is a reasonable assumption in lieu of the work by González and Alemany24. The other is that material 
damping can be ignored. This is also a practical assumption for metallic structures, since damping tends to be 
negligible in metals. Models are developed for the cases of plane Lamb-wave excitation in isotropic beams, 
axisymmetric GW excitation in isotropic cylinders and 3-D GW excitation in plates by surface-bonded 3-3 APTs. A 
generic formulation for the voltage response of the 3-3 APT when used as a sensor is also developed. 
 
A. Plane Lamb-wave Excitation in Isotropic Beams with Rectangular Cross-Section 

For the case of plane Lamb-wave excitation by 3-3 APTs in isotropic beams with a uniform rectangular cross-
section, the configuration for which a solution is sought is shown in Fig. 2. The beam is infinitely long along the x1-
direction and the other two dimensions are 2b2 and 2b3 respectively along the x2- and x3-directions. The 3-3 APT 
spans or nearly spans the width of the beam on one free surface. Its fibers are oriented along the beam axis, i.e., the 
x1-direction. If the problem is defined rigorously, i.e., if traction free surface conditions are to be satisfied along all 
the four sides of the cross-section, in principle the solution consists of an infinite number of modes at any frequency  
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Fig. 2.    Model for 3-3 APTs surface-bonded on isotropic beams with rectangular cross-section 

 
and the problem is very complex to solve analytically. More details on such an approach can be found in 
Kastrzhitskaya and Meleshko25. However, if 2b3 >> 2b2, then the configuration can be approximated to be a 2-D 

plane wave problem along the beam axis, and the condition 
3

( ) 0∂
=

∂x
 can be used to simplify the governing 

equations. The derivation by Giurgiutiu17 for 2-D models describing Lamb-wave excitation by piezoceramics is then 
applicable here. As discussed above, the effect of the 3-3 APT is to cause shear tractions at (a, b2) and (-a, b2) as 
shown. Thus, one obtains the following surface condition (for harmonic excitation at angular frequency ω): 

 

21 2 0 1 1( ) [ ( ) ( )] i tx b x a x a e ωσ τ δ δ −= = − − +  (1) 
 
where τ0 is the magnitude of the shear traction. To solve the boundary value problem, the 1-D spatial Fourier 
transform is applied along the x1-direction and after applying the surface conditions along 2 =x b  and 2 = −x b , the 
following expression is obtained for displacement along the x1-direction (the residue theorem from complex analysis 
is used for the Fourier spatial inversion): 
 

1 1( ) ( )0 0
1 1 2

( ) ( )sin sin
( , , )

( ) ( )

S A

S A

S AS A
i x t i x tS A

S S A A
S A

i N i Na a
u x x b t e e

D D
ξ ω ξ ω

ξ ξ

τ ξ τ ξξ ξ
µ µξ ξ ξ ξ

− −= + = − −
′ ′

∑ ∑  (2) 

 
where 
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2 2
2 2 2 2

2 2
1 2

2 2 2 2 2 2

2 2 2 2 2 2

2
 ;   ;  ;  

( ) cos cos  ;  ( ) cos sin 4 sin cos

( ) sin sin   ;  ( ) sin cos 4 cos sin

ω ω λ µ µ
α ξ β ξ

ρ ρ

ξβ ξ β α β ξ β α β ξ αβ α β

ξβ ξ β α β ξ β α β ξ αβ α β

+
= − = − = =

= + = − +

= + = − +

p s

S S

A A

c c
c c

N b b D b b b b

N b b D b b b b

 

(3) 

 
λ and µ are Lamé’s constants for the plate material and ρ is the material density. The superscript S corresponds to 
the symmetric Lamb modes and the superscript A corresponds to the antisymmetric Lamb modes. The wavenumber 
ξ of a specific mode for a given ω is obtained from the solutions of the Rayleigh-Lamb equation for free waves in an 
isotropic plate, which is: 
 

12

2 2 2

tan 4
tan ( )

b
b

β αβξ
α ξ β

±
−

=
−

 
 
 

 
(4) 

 
where the positive exponent is for symmetric Lamb modes and the negative one is for antisymmetric Lamb modes. 
The dispersion curves (plots of phase velocity ω ξ=c  versus harmonic frequency) for the Lamb modes in 
Aluminum are shown in Fig. 3. While harmonic excitation is considered here and the subsequent sections, the 
response to any excitation signal can be obtained by taking the inverse Fourier transform over the excited frequency 
range. 
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Fig. 3.    Phase velocity dispersion curves for the 
Lamb modes in an Aluminum plate 

Fig. 4.    Phase velocity dispersion curves for an 
Aluminum cylinder of internal diameter 200 mm 
and thickness 1 mm generated using Disperse25 

 
B. Axisymmetric Guided Wave Excitation in Isotropic Cylinders 

In this section, the problem of axisymmetric GW excitation by 3-3 APTs in solid or hollow cylinders (with ring-
like cross sections) is considered. Consider an infinitely long isotropic hollow cylinder of outer radius Ro and inner 
radius Ri (possibly zero). A 3-3 APT actuator of length 2a is surface-bonded on the outer free surface so that it 
wraps around the outer circumference. The fibers are oriented along the cylinder axis. The cylindrical co-ordinate 
system is a natural choice for solving this problem, and the origin is chosen at the center of the mid-plane of the 3-3 
APT, as shown in Fig. 5. The starting point of this problem is the governing equations of motion from 3-D elasticity: 
 

2( ) .u u f uλ µ µ ρ+ ∇∇ + ∇ + =  (5) 
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Fig. 5.    Configuration of 3-3 APT surface-bonded on a hollow cylinder 

 
In this case, the body force f = 0. Furthermore, the equations of motion can be decomposed into the Helmholtz 
components using 
 

0
u φ= ∇ + ∇×

∇ =.
Η

Η
 (6) 

 
It can be shown using Eq. (6), that Eq. (5) is equivalent to the equations: 
 

2 2
2

2                ;        p
p

c
c
φ λ µφ

ρ
+

∇ = =  (7) 

2 2
2        ;        s
s

c
c

µ
ρ

∇ = =
Η

Η  (8) 

 
In this problem, the conditions / 0θ∂ ∂ = and 0uθ =  hold. The non-zero displacement components are then given 
by: 
 

( )1                   ;                   r z

r
u u

r z z r r
θθφ φ ∂ Η∂Η∂ ∂

= − = +
∂ ∂ ∂ ∂

 (9) 

 
Thus, only the Helmholtz components φ and Ηθ are required. As before, the response to harmonic excitation at 
angular frequency ω is considered. Thus, one obtains: 

2
2

2

( ) = - ( )
t

ω∂
∂

 (10) 

 
Applying the spatial Fourier transform along the z-direction yields the following equations: 
 

22
2 2

2 2 2

1 1 1            0              ;              0
r r r rr r r

θ θ
θ

φ φ α φ β
∂ Η ∂Η∂ ∂  + + = + + − Η = ∂ ∂∂ ∂  

 (11) 

 

where 
2 2

2 2 2 2
2 2
1 2

 and 
c c
ω ωα ξ β ξ= − = − , ξ is the wavenumber along the z-direction. The ∼ over bar indicates the z-

direction Fourier transform of the corresponding variable. The solutions to Eqs. (11) are: 
 

( ) ( )1 0 2 0 3 1 4 1( ) ( )            ;            ( ) ( )ω ω
θφ α α β β= + Η = +i t i tD J r D Y r e D J r D Y r e  (12) 

 
where 0 1 and  J J are the Bessel functions of the first kind and of order 0 and 1 respectively, 0 1 and  Y Y are the 
Bessel functions of the second kind and of order 0 and 1 respectively, 1 2 3 4, ,  and D D D D  are constants to be 
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determined, using the surface conditions at  and i or c r c= = . If the problem under consideration were that of a solid 
cylinder, i.e., 0ic = , then 2 4, 0D D =  and the other two constants could be found using the surface conditions at 

or c= . The stresses are related to the displacements through the equations: 
 

( )2            ;                                r z r z
rr r rz

u u u u
u

r r z z r
λσ λ µ λ σ µ

∂ ∂ ∂ ∂ = + + + = + ∂ ∂ ∂ ∂ 
 (13) 

 
Using, Eqs. (11)- (13) gives the stresses in terms of 1 4D D− . The externally applied stresses are: 
 

( )0( ) ( ) ( )             ;               ( ) 0                                
( ) 0                                                    ;               ( ) 0         

ωσ τ δ δ σ
σ σ

= = − − + = =

= = = =

i t
rr o rz o

rr i rz i

r c e z a z a r c
r c r c                        

 (14) 

 
Equating the Fourier transforms of the externally applied stresses to the expressions in terms of 1 4D D−  yields: 
 

11 12 13 14 1

21 22 23 24 2
0

31 32 33 34 3

41 42 43 44 4

0
1

 =2 sin
0
0

M M M M D
M M M M D

i a
M M M M D
M M M M D

τ ξ

     
     
     
     
     

   

 (15) 

 
where 
 

2 2 2 2
11 0 1 12 0 1

13 0 1 14 0 1

21 1

( ) ( ) 2 ( )     ;      ( ) ( ) 2 ( )
( ) ( )                   ;      ( ) ( )

2 ( )                                     ;   

o o o o o o

o o o o o o

o

M R J R J R M R Y R Y R
M R J R J R M R Y R Y R
M i J R

β ξ α α α β ξ α α α
β β β β β β

αξ α

= − − = − −
= − + = − +
= 22 1

2 2 2 2
23 1 24 1

   2 ( )

( ) ( )                              ;      ( ) ( )
o

o o

M i Y R

M J R M Y R

αξ α

ξ β β ξ β β

=

= − = −

 (16) 

 
and the constants 3 4 and i iM M (i = 1 to 4) are obtained by replacing Ro by Ri in 1 2 and i iM M respectively. The 
constants Di  (i = 1 to 4) can be solved for using Cramer’s rule, yielding expressions of the form: 
 

( )
( )

i
i

d
D

ξ
ξ

=
∆

 (17) 

 
where 
 

12 13 14 11 12 13 14

22 23 24 21 22 23 24
1

32 33 34 31 32 33 34

42 43 44 41 42 43 44

0
1

( ) 2 sin .det , etc.   and    ( )= det
0
0

M M M M M M M
M M M M M M M

d i a
M M M M M M M
M M M M M M M

ξ ξ ξ

   
   
   = ∆
   
   
   

 (18) 

. 
The final expressions for radial and axial displacements are of the form: 
 

[ ]

[ ]

( )
1 1 2 1 3 1 4 1

( )
1 0 2 0 3 0 4 0

1 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( )

1 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( )

ξ ω

ξ ω

α ξ α α ξ α ξ ξ β ξ ξ β ξ
ξ

ξ ξ α ξ ξ α β ξ β β ξ β ξ
ξ

∞
− −

−∞

∞
− −

−∞

= − − + +
∆

= − − + +
∆

∫

∫

i z t
r

i z t
z

u d J r d Y r i d J r i d Y r e d

u i d J r i d Y r d J r d Y r e d
 (19) 
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O
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1ξ 2ξ
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ξR

C

1ξ−2ξ−

 
Fig. 6.    Contour integral in the complex ξ-plane to invert the displacement integrals using residue theory 

 
The integral along the real ξ−axis is replaced by a contour integral in the complex ξ−plane. The values of z will 
determine the shape of the contour. For example, if >z a  then contributions from negative wavenumbers are not 
allowed on physical grounds, hence the integral must only include the residues at positive wavenumbers, as shown 
in Fig. 6. The integrands in Eq. (19) are singular at the roots of the dispersion equation ( ) 0ξ∆ = , designated ξ̂ . 
These can be obtained from the dispersion curves for the cylinder under consideration, as shown in Fig. 4. Using the 
residue theorem for the first integral in Eq. (19) yields in this case:  
 

( )Res I( )
C

Id Id i
ξ

ξ ξ π ξ
∞

−∞

+ = − ∑∫ ∫  (20) 

 
where 
 

( )
1 1 2 1 3 1 4 1

1 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( )

i z tI d J r d Y r i d J r i d Y r e ξ ωα ξ α α ξ α ξ ξ β ξ ξ β
ξ

− −= − − + +  ∆
 (21) 

 
C is the semi-circular contour in the lower half-plane while “Res” stands for the residue of the integrand at a 
singularity of I. The contribution from C vanishes as the radius of the surface R → ∞, as explained in Miklowitz27 
for a similar plane-wave excitation problem. Thus, the following expressions are obtained for displacement in the 
region >z a :  
 

ˆ( )

1 1 2 1 3 1 4 1
ˆ

ˆ( )

1 0 2 0 3 0 4 0
ˆ

ˆ ˆ ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )ˆ( )

ˆ ˆ ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )ˆ( )

ξ ω

ξ

ξ ω

ξ

π α ξ α α ξ α ξ ξ β ξ ξ β
ξ

π ξ ξ α ξ ξ α β ξ β β ξ β
ξ

− −

− −

−  = − − + + ′∆

−  = − − + + ′∆

∑

∑

i z t

r

i z t

z

ieu d J r d Y r i d J r i d Y r

ieu i d J r i d Y r d J r d Y r

 (22) 

 
C. 3-D Guided Wave Excitation in Isotropic Plates 

The final configuration that will be examined is that of 3-3 APTs surface-bonded on isotropic plates. Consider a 
rectangular 3-3 APT of dimensions 2a1 and 2a2 surface-bonded on the surface of an infinite isotropic plate of 
thickness 2b, as shown in Fig. 7. The coordinate axis system is chosen such that the x3-axis is normal to the plane of 
the plate and the x2-axis is along the fiber direction. The starting point is the equations of motion in terms of the 
Helmholtz components, i.e., Eqs. (7) and (8). The double spatial Fourier transform is used to ease solution of this 
problem. For a generic function of two spatial coordinates ϕ,  it is defined by: 
 

1 1 2 2( )
1 2 1 2 1 2( , ) ( , ) i x xx x e dx dxξ ξϕ ξ ξ ϕ

∞ ∞
+

−∞ −∞

= ∫ ∫  (23) 
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and the inverse is given by: 
 

1 1 2 2( )
1 2 1 2 1 22

1( , ) ( , )
4

i x xx x e d dξ ξϕ ϕ ξ ξ ξ ξ
π

∞ ∞
− +

−∞ −∞

= ∫ ∫  (24) 

 
Applying the double spatial Fourier transform on Eqs. (7) and (8) and considering harmonic excitation as before , 
one obtains the following equations: 
 

2 2
2 2

1 2 2 2
3

( )
p

d
dx c

φ ωξ ξ φ φ− − + = −  (25) 

2 2
2 2

1 2 2 2
3

( )
s

d
dx c

ωξ ξ− − + = −
ΗΗ Η  (26) 

 
Let: 
 

2 2
2 2 2 2

1 2 1 22 2( )      ;       ( )
p sc c

ω ωξ ξ α ξ ξ β− − + − − +2 2= =  (27) 

 
The solutions of Eqs. (25) and (26) are of the form (the i te ω  factor is dropped from all subsequent equations and will 
be brought back in the final expression): 
 

1 3 2 3 1 3 3 4 3

2 5 3 6 3 3 7 3 8 3

sin cos      ;       sin cos
sin cos      ;       sin cos

C x C x C x C x
C x C x C x C x

φ α α β β

β β β β

= + Η = +

Η = + Η = +
 (28) 

 
Furthermore, it can be shown that the constants C2, C3, C5 and C8 are associated with symmetric modes and that the 
constants C1, C4, C6 and C7 are associated with antisymmetric modes. For the subsequent analysis, only the 
symmetric modes are considered. The contributions from antisymmetric modes can be derived analogously. The 
linear strain-displacement relation and the constitutive equations for linear elasticity yield: 
 

, ,
1 ( )        ;        2
2ij i j j i ij kk ij iju uε σ λε δ µε= + = +  (29) 

 
Using Eqs.(6), (28) and (29), it can be shown that the transformed stresses at 3x b=  are: 
 

2 2 2
33 2 1 2 3 2 5 1

2 2
32 2 2 3 2 5 1 2 8 1

2 2
31 2 1 3 1 2 5 1 8 2

( ) cos (2 )cos ( 2 )cos

(2 )sin ( )sin ( )sin ( )sin

(2 )sin ( )sin ( )sin ( )sin

C b C i b C i b

C i b C b C b C i b

C i b C b C b C i b

σ µ ξ ξ β α µξ β β ξ β β

σ µ ξ α α ξ β β ξ ξ β ξ β β

σ µ αξ α ξ ξ β β ξ β ξ β β

 = + − + + − 
 = + − + − + − 
 = + + − + 

 (30) 

 
Since the 3-3 APT is modeled as causing shear traction along the fiber direction, the surface conditions are: 
 

[ ][ ]
31

32 0 1 1 1 1 2 2 2 2

33

( ) ( ) ( ) ( )  
0

0
ω

σ

σ τ δ δ
σ

=

= + − − − − +

=

i te He x a He x a x a x a  (31) 
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is modeled as

2b

Infinite 
isotropic 

plate

3-3 APT

∞

∞

∞

∞

x2

2a2 2a1

x3
x1

Infinite 
isotropic 

plate

Uniform 
surface shear  

traction τo

∞

∞

∞

∞

Fig. 7.     Model for 3-3 APT to solve for the excited GW field in isotropic plates 
 

Equating Eqs. (30) and (31) would give three equations in four unknowns. The fourth equation results from the 
divergence condition on Η, and consequently, Η , given by: 
 

31 2

1 2 3

0
x x x

∂Η∂Η ∂Η
+ + =

∂ ∂ ∂
 (32) 

 
Using Eqs. (28) in (32) and evaluating at 3x b=  gives: 
 

3 1 5 2 8( sin ) ( sin ) ( sin ) 0C i b C i b C bξ β ξ β β β− + − + − =  (33) 
 
With four equations and four unknowns, the unknown constants C2, C3, C5 and C8 can be solved for from the matrix 
equation: 
 

2 2 2
21 2 2 1

2 2
3 2 1 22 2 1 2 1

2 2
5 11 1 2 1 2

81 2

0( ) cos 2 cos 2 cos 0
( , )2 sin ( )sin sin sin 1
(2 sin sin ( )sin sin

0 sin sin sin

Cb i b i b
C Fi b b b i b
C Fi b b b i b
Ci b i b b

ξ ξ β α ξ β β ξ β β
ξ ξξ α α ξ β β ξ ξ β ξ β β
ξµξ α α ξ ξ β β ξ β ξ β β

ξ β ξ β β β

 + − −  
   − − −    =
   −
   

− − −    

1 2, )
0

ξ

 
 
 
 
 
 

 (34) 

 
Solving for the constants and applying the inverse Fourier transform ultimately yields the following expressions for 
the transformed displacement components on the free surface 3x b= : 
 

1 2

2
(cos sin )0

1 3 1 22
0 0

4 ( )
( ) sin sin( cos )sin( sin )   

( sin . ( ))

π
ξ γ γ ωτ ξ

γ ξ γ ξ γ γ ξ
π µ β β ξ

∞
− + −= = ∫ ∫

S
S

i x x tS S SS
S

S

M
u x b a a e d d

i b D
 (35) 

1 2
2 3

2
(cos sin )0 1 2

2
0 0

( )
4 sin( cos )sin( sin ) ( , )cos

cos( sin . ( ))

π
ξ γ γ ω γ

τ ξ γ ξ γ ξ γβ ξ
γπ µ β β ξ

∞
− + −= =

−
∫ ∫

SS
S S s

i x x tS
S

s

u x b d
a a Lb e d

i b D
 (36) 

1 2

2
(cos sin )0

3 3 1 22
0 0

4 ( )
( ) tan sin( cos )sin( sin )                      

( )

π
ξ γ γ ωτ ξ

γ ξ γ ξ γ γ ξ
π µ ξ ξ

∞
− + −−

= = ∫ ∫
S

S
i x x tS S SS

S
S

T
u x b a a e d d

D
 (37) 
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-Im ξ

γ = 0

γ= 2
π

S
Iξ

S
IIξ

R → ∞

C

Fig. 8.     Surface construction in the complex 
ξ−γ  space  

Fig. 9.    Harmonic wave field (u3) by square 3-3 
APT at 100 kHz , A0 mode (the plate area shown is 
10 cm × 10 cm, and the actuators are 0.5 cm × 0.5 
cm). The fibers are along the vertical direction. 

Fig. 10.     Harmonic wave field (u3) by 0.5 cm × 0.5 
cm square uniformly poled piezo-actuator  

Fig. 11.     Harmonic wave field (u3) by three-
element comb array of 0.5 cm × 0.5 cm square 3-3 

APTs  
 
In this case, to obtain the 2-D spatial inverse Fourier transform, residue calculus is used again as in the previous 
section. However, in this case, the integral is two-dimensional and the integral in the real ξ−γ  plane is replaced by a 
surface integral in the complex ξ−γ space. The sign of x1 and x2 will determine the shape of the contour. For 
example, if 1 1 2 2,x a x a> >  then contributions from negative wavenumbers are not allowed on physical grounds, 
hence the surface must only include the first quadrant, i.e., γ ∈ (0, π/2) and the lower half of the complex ξ−γ space 
as shown in Fig. 8. Applying the residue theorem as in the previous section, the following expressions are obtained 
for the displacement components: 
 

1 2

2
(cos sin )0

1 3 1 2
0

4 ( )
( ) sin sin( cos )sin( sin )       

( sin . ( ))

π

ξ γ γω

ξ

τ ξ
γ ξ γ ξ γ γ

πµ β β ξ
− +−

= =
′∑ ∫

S

S

S
i x xS i t S SS

S
S

M
u x b e a a e d

b D
 (38) 

1 2

2
(cos sin )0 1 2

2 3
0

4 sin( cos )sin( sin ) ( , )cos( )
cos( sin . ( ))

π

ξ γ γω

ξ

τ ξ γ ξ γ ξ γβ γ
πµ γβ β ξ

− += =
′∑ ∫

S

S

S S s
i x xS i t S

S
s

a a Lbu x b e e d
b D

 (39) 
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1 2

2
(cos sin )0

3 3 1 2
0

4 ( )
( ) tan sin( cos )sin( sin )                      

( )

π

ξ γ γω

ξ

τ ξ
γ ξ γ ξ γ γ

πµ ξ ξ
− += =

′∑ ∫
S

S

S
i x xS i t S SS

S
S

i T
u x b e a a e d

D
 (40) 

 
where 
 

( )2 2 2

2 2 2 2 2 2 2 2 2 2 2

2 2 2 2

( ) cos 3 cos sin 4 sin cos

( , ) ( cos ) sin ( cos ) cos sin 4 cos sin cos

( ) ( ) cos sin 2 cos sin

ξ ξ β ξ β α β αβ α β

ξ γ ξ γ β ξ γ ξ γ β α β αβξ γ α β

ξ ξ β ξ α β αβξ β α

 = − + 
 = − + + + 

= − −

S

S

S

M b b b b b

L b b b b

T b b b b

 (41) 

   
Similarly, the contributions from the antisymmetric modes can be found. It is interesting to note that the expressions 
for 1u  and 2u  have contributions from the roots of both the Rayleigh-Lamb equation ( 0=SD ) as well as the 
equation for horizontally polarized or SH-waves ( sin 0β =b ), whereas that for 3u  has contributions only from the 
roots of the Rayleigh-Lamb equation. This is logical in hindsight, since SH-waves do not cause out-of-plane 
displacements. An approximate closed form solution can be obtained for the far field using the method of stationary 
phase. As explained in Graff28, for large r: 
 

2
0

1

( )( ) 4
0

0

2( ) ( )
( )

ψ
πψψ

ψ

πψ ψ ψ
ψ

+≈
′′∫

i rirhf e d f e
rh

 (42) 

 
where 0( ) 0h ψ′ = , f( ) is an arbitrary function, and ψ1 and ψ2 are arbitrary end-points of the interval of integration, 
which contains ψ0. Hence, the following asymptotic expression holds for particle displacement along the 1-direction 
in the far field in the region 1 1 2 2,x a x a> > : 
 

( )0 4
1 3 1 2

4 ( )2( ) . . sin .sin( cos ).sin( sin )       
( sin . ( ))

πξ ω

ξ

τ ξπ θ ξ θ ξ θ
πµ ξ β β ξ

− + −−
= =

′∑
S

S

S
i r tS S SS

S S
S

M
u x b a a e

r b D
 (43) 

 
where ( )1

2 1tan x xθ −=  and 2 2
1 2r x x= + . This indicates that the GW field tends to a circular crested field with 

angularly dependent amplitude in the far field.  
In other regions of the plate, the included region of the contour will change. For example in the region, 

1 1 2 2 2,x a a x a> − < < , due to the presence of both positive and negative wavenumbers along the x2-direction and 
only positive wavenumbers along the x1-direction, the included region of the contour will be from 2γ π= −  to 

2γ π= . 
The predicted harmonic out-of-plane displacement patterns due to excitation of the A0 Lamb mode at 100 kHz in 

a 2-mm Aluminum plate by a square 3-3 APT and a square uniformly poled piezo-actuator are shown in Fig. 9 and 
Fig. 10, respectively. For ease of visualization, only 10 cm × 10 cm of the plate is shown and the field was set to 
zero for radius r > 9 cm in both cases. These illustrate how the GW field tends to a circular crested wave field with 
directionally dependent amplitude at large distances from the actuator. In addition, they highlight the directionally 
focused nature of the GW field from 3-3 APTs. The waves propagate in a roughly collimated beam in a limited 
sector centered about the fiber direction. This directionality is expected to be refined even more if the electrode 
pattern of the transducer is designed in a comb-transducer like fashion (see Fig. 11). This can be achieved by 
designing the clusters of electrode fingers spaced at intervals equal to half of the wavelength of the excited GW. 
Such a comb transducer also has much better modal selectivity being more tuned to excite a particular wavelength 
chosen by design. 
 
D. 3-3 Anisotropic Piezocomposite Transducers as Sensors 

In this case, the underlying assumption is that the 3-3 APT senses the average in-plane extensional strain along 
the fiber direction over its length, and is insensitive to the other strain components. Let the direction along which its 
fibers are oriented be the 2-direction of the structure. By the IEEE standard on piezoelectricity29, this being the 
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poling direction, it is the 3-direction of the 3-3 APT. Consider the charge accumulated by a 3-3 APT sensor surface-
bonded on a structure in a GW field. This is given by: 
 

33 0 33
221

ε
ε

ν
=

− ∫c

c

c
c

c S

E k g
Q dS  (44) 

 
where 33c

E  is the in-plane Young’s modulus of the sensor material, kc is the dielectric constant of the sensor 

material, νc is the Poisson’s ratio of the sensor material, ε0 is the permittivity of vacuum, g33 is a piezoelectric 
constant29, ε22 is the in-plane extensional surface strain along the structure’s 2-direction and Sc is the surface area of 
the sensor. An important assumption made here is that the sensor is infinitely compliant and does not disturb the 
GW field. This is reasonably satisfied in the case of 3-3 APTs if the product of the sensor’s thickness and Young’s 
modulus is small compared to that of the plate on which it is surface-bonded and if it is of small size. If the 
capacitance of the sensor is given by Cc, the output voltage response of the piezo-sensor is obtained as: 
 

33 0 33
22.(1 )

ε
ε

ν
= =

− ∫c

c

cc
c

c c c S

E k gQ
V dS

C C
 (45) 

III. Experimental Tests and Results 
To examine the validity of these derived theoretical models, experiments were conducted with Aluminum beam 

and plate specimens. In these experiments, MFCs were bonded on either surface at the center and used as actuators. 
For both specimens, experiments were conducted to examine the correlation between theoretical and experimental 
frequency response functions. The first transmitted pulse sensed by a surface-bonded MFC sensor at some distance 
from the center was monitored. Two sets of experiments were conducted. In the first set, the actuators were excited 
in phase to excite symmetric modes while in the second they were excited out of phase in order to excite the 
antisymmetric modes. These actuators were powered with a 3.5-cycle Hann-windowed sinusoidal toneburst over a 
range of center frequencies. The highest excitation frequency was well below the cut-off frequency of the first 
symmetric Lamb mode in the first set. In the second set, it was well below the cut-off frequency of the first 
antisymmetric Lamb mode and the first antisymmetric SH-mode. Thus, the S0 mode was predominantly excited in 
the first set while the A0 mode was predominantly excited in the second set. Apart from these experiments, an 
experiment was also performed using a laser vibrometer to test the accuracy of the theoretically predicted spatial 
variation of the GW field excited by MFCs in plate structures. The values of the Aluminum material properties used 
for the theoretical curves were as follows: Young’s modulus EAl = 70 GPa, Poisson’s ratio υ = 0.33, density ρ  = 
2700 kg/m3. 
 
A. Beam Experiment for Frequency Response Function  

A 1-mm thick Aluminum alloy strip clamped at both ends was instrumented with three MFCs, each 0.2 mm 
thick, as illustrated in Fig. 12. The actuators were excited with a 5-V (peak-to-peak) signal and the average 
amplitude of the sensor response over 16 samples was noted to reduce the noise levels. To predict the theoretical 
sensor response trend versus frequency, one needs to use the value 2a = 3.2 cm (which is the length of the active 
area of the MFC) in the beam formulation. Only the contributions from the S0 mode were included for the first set. 
Similarly, only contributions of the A0

 mode were considered for the second set. The harmonic sensor response, 
found using Eq. (44) should also be integrated over the frequency bandwidth of excitation for calculating the 
response to a 3.5-cycle sinusoidal toneburst signal. The theoretical (also referred to as analytical) and experimental 
results are compared in Fig. 13. Both curves are normalized to the peak response amplitude over the considered 
frequency range.  

 
B. Plate Experiment for Frequency Response Function 
 For the plate experiment, a 1-mm thick Aluminum plate of dimensions 50 cm × 50 cm and clamped on all sides 
was instrumented with three MFCs, each 0.3 mm thick, as illustrated in Fig. 14. As in the previous experiment, two 
of these MFCs at the center were used as actuators while the third was used as a sensor. In this case, the actuators 
were excited with an 18-V (peak-to-peak) signal. For each reading, the excitation signal was repeated at a frequency 
of 1 Hz (this was small enough so that there was no interference between successive repetitions) and the averaged  
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1 mm

2 cm 1.5 cm

70 cm

3.2 cm

27 cm

35 cm

Aluminum strip MFC

0.2 mm  
Fig. 12.     Illustration of thin Aluminum strip instrumented with MFCs  
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Fig. 13.     Theoretical and experimental normalized sensor response over various frequencies in the beam 

experiment for S0 (left) and A0 (right) modes 
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Fig. 14.     Schematic of Aluminum plate experiment  
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Fig. 15.     Theoretical and experimental normalized sensor response over various center frequencies in the 

plate experiment for S0 (left) and A0 (right) modes 
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signal over 64 samples was used. To predict the theoretical sensor response trend versus frequency, one needs to use 
the value 2a1 = 1.5 cm and 2a2 = 2.8 cm (which is the size of the active area of the MFC) in the plate formulation. 
As in the beam experiment, only the contributions from the relevant mode were included for each set. It was found 
from analysis that the contribution of the SH-modes to the sensor response was negligible and, therefore, these were 
ignored. This is logical, since the MFC sensors are sensitive to only extensional strain while SH-waves 
predominantly cause shear strains. The theoretical and experimental results are compared in Fig. 15. Again, both 
curves are normalized to the peak response amplitude over the frequency range considered. The error bars based on 
the standard deviation of the amplitudes over the 64 samples (capturing 99.73% of the data points), and normalized 
by the peak amplitude are also shown. 

 
C. Plate Experiment using Laser Vibrometer 

To test the theoretically-predicted focusing capability of the MFC along its fiber direction in plate structures, an 
experiment was conducted using a Polytec scanning laser vibrometer system that employed a Polytec OFV-303 
sensor head and OFV-3001-S controller. The same plate specimen as described in Section III.B was used. Again, the 
actuators were excited with a 18-V (peak-to-peak) 3.5-cycle Hann windowed sinusoidal toneburst signal. However, 
for this experiment, the center frequency was kept fixed at 30 kHz and the actuators were excited out-of-phase to 
excite the A0 mode predominantly. The laser vibrometer measured out-of-plane surface velocity signals at a chosen 
point, and was equipped with a computer-controlled scanning head (Polytec OFV-040) so that the scan point could 
be swept with precision over the plate area. Measurements were done over a grid spanning a quarter section of the 
plate surface (up to 20 cm from each symmetry axis), since the field is expected to be symmetrical about the two 
axes in the plane of the plate. The grid spacing was 0.6 cm along the fiber direction (which is a third of the A0 mode 
wavelength at 30 kHz). Along the other direction in the plane of the plate near the actuator, the spacing was 0.5 cm 
(for the first four columns of the grid starting from the symmetry axis). Beyond this region, the spacing was 1 cm. In 
addition, as in the previous section, the excitation signal was repeated 64 times for each point at a frequency of 1 Hz 
and the averaged signal was recorded. Furthermore, wavelet-denoising using the discrete Meyer wavelet was 
employed to cleanse the signals. The experimentally obtained surface plots at three particular time instants over the 
quarter section of the plate are shown in Fig. 16a (normalized to the peak value of surface velocity over the plate in 
the time span up to 200 µs). The surface plots for the same GW fields obtained using the theoretical model 
developed in this work are shown adjacent to these in Fig. 16b. These are also normalized to the theoretically 
predicted peak velocity over the plate area in the same time span. These plots were generated assuming pure A0 
mode excitation. SH-modes were not considered since they do not cause out-of-plane displacements. 

IV. Discussion and Sources of Error 
A. Frequency Response Function Experiments  

In the beam experiment, for the symmetric mode, the peak response frequency is well captured by the model. In 
addition, the qualitative trend of the sensor response with varying frequency is also captured. Similar conclusions 
hold for the antisymmetric mode. In this case, however, the peak response frequency is the lowest frequency of 
testing. The qualitative prediction of the trend of the response is good, albeit with some marginal quantitative error 
in the location and relative magnitude of peaks. The frequency at which the second peak occurs is slightly over-
estimated for both modes.  

In the plate frequency response experiment, there is qualitative agreement in the trend between the theoretical 
and experimental results. However, there is some error in the prediction of frequencies of peak sensor response. The 
frequencies of the peaks are over-estimated for the S0 mode while they are under-estimated for the A0 mode. 
Evidently, the extent of disagreement between theory and experiment is greater in the plate experiment than in the 
beam experiment. This may be associated with the actuators in the latter being slightly thinner than those in the plate 
experiment. This strengthens the assumption of uncoupled transducer and substrate dynamics in the beam 
experiment. 

The correlation between the experimental and theoretical results in the plate experiment for frequency response 
is weaker than that obtained in previous experiments conducted by the authors21-23 for monolithic piezoelectric 
transducers. This is partly due to the use of thicker Aluminum plates (3.15 mm versus 1 mm in the present work) in 
those experiments while maintaining the same transducer thickness (0.3 mm) used here. Due to this, the assumption 
of uncoupled transducer and plate dynamics was stronger in Refs. 21-23 than in the present test. These indicate that 
for thinner Aluminum plates with relatively thick MFCs, models that are more detailed might be needed for better 
accuracy in predicting the exact location of the peaks and their relative amplitudes. It would be desirable to use 
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coupled models involving dynamics of both the transducer and the underlying substrate for both excitation and 
sensing. Since only few 3-D elasticity/piezoelectricity solutions for solids bounded in all dimensions (in this case, 
the actuator) can be found in the literature, such models may become intractable for purely analytical solution with 
no simplifying assumptions. Therefore, a hybrid approach incorporating the analytical model in this work along with 
some numerical formulation or experimentally determined parameters to model the actuator dynamics might be 

t = 100 µs
 

t = 100 µs

t = 150 µs
 

t = 150 µs

t = 200 µs
 

t = 200 µs

Fig. 16.     Normalized surface plots showing out-of-plane velocity signals over a quarter section of the plate 
spanning 20 cm × 20 cm. The MFC is at the upper left corner, shown using a striped rectangle, and its fiber 

direction is along the vertical direction. a) (left) Experimental plots obtained using laser vibrometry and b) (right) 
Theoretical plots obtained using the model developed in this work. 
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required. Some incipient efforts along these lines for GW excitation using monolithic piezoelectric transducers can 
be found in Refs. 30-31. 

Another source of error comes from the impossibility of exciting a pure mode. While there were two actuators 
bonded on either free surface at the center of the plate, there would always be some mismatch in their piezoelectric 
properties due to manufacturing imperfections. In addition, due to the finite thickness of the sensor, when the wave 
packet is incident on it a small portion of the incident GW mode is converted to other modes due to scattering. 
Because of this, it was verified that some excitation of antisymmetric modes existed in the symmetric mode 
experiments and vice versa. An effort was made to ensure that the time window over which the peak was recorded 
(using the theoretical time-domain waveforms) was for the relevant mode of interest. In spite of this, the results are 
slightly affected by the overlapping of the two modes over certain frequency ranges.  

Finally, in the beam experiment, due to the proximity of the sensor to the boundary, some of the low frequency 
data for the first transmitted pulse is slightly compromised by reflections from the boundary. At lower frequencies, 
due to the larger time-spread of the excitation signal, the reflection tends to overlap with the first transmitted pulse. 
This is more significant for the S0 mode due to the higher wavespeeds at low frequency. These effects were 
significantly reduced in the plate experiment by bonding the sensor closer to the actuators.  

 
B. Laser Vibrometer Experiment  

The experimental surface out-of-plane velocity images obtained for the plate in Fig. 16a are in good agreement 
with their theoretical counterparts. The theoretically predicted focused nature of the GW field along the MFC fiber 
direction is well captured in the experiment. There is also qualitative agreement in the patterns of the weak radiation 
along the other directions. However, the amplitude for those is slightly stronger in the experimental plots. In 
addition, the tendency of the GW field towards a directionally dependent circular crested field in the far field, which 
was also predicted theoretically, is evident in the experiment. There is some noise in the experimental plots, despite 
the use of wavelet denoising. This is because the plate, in spite of lightly sanding its surface, was a poor diffuse 
reflector in some areas when the laser was incident at an angle. At such points, this was partially compensated by 
adjusting the focus of the laser’s lens. Another minor source of error in correlation is the presence of the MFC 
sensor (on the other free surface of the plate relative to that being scanned). This may have caused weak scattering 
of the GW field due to the slight change in local stiffness and mass induced by it.  

V. Concluding Remarks 
In this work, 3-D elasticity models to describe the generation of guided waves (GWs) by 3-3 anisotropic 

piezocomposite transducers (APTs), such as macro fiber composite (MFC) and active fiber composite transducers, 
in various structural configurations were presented. The configurations explored were plane Lamb-wave fields in 
beams with rectangular cross-section, axisymmetric GW fields in cylinders and 3-D GW fields in plates. A generic 
formulation to model the behavior of a 3-3 APT as GW sensor was also proposed. The use of these transducers for 
GW structural health monitoring was discussed. Their advantages over conventional piezoelectric wafer transducers 
in terms of flexibility, curved surface conformability, power efficiency and ability to excite and sense unidirectional 
GW fields along their fiber direction were highlighted. In the developed models, the transducer and substrate 
dynamics were assumed uncoupled. When used as actuator, the 3-3 APT was modeled as causing shear traction at 
the edges of the active area, along their fiber direction. When used as sensor, the 3-3 APT was modeled as being 
sensitive to the average in-plane extensional strain over its active area, again along its fiber direction. Experimental 
tests were conducted to verify the model’s frequency response function capability for beams and plates. The results 
were in agreement with the theoretical predictions for the beam model, where thinner MFCs were used. For the plate 
model, relatively thicker MFCs were used. The trends were predicted well but there was some error in the locations 
of the peaks and their relative amplitudes. The sources of error were discussed. Models that account for the coupled 
transducer and substrate dynamics might yield better agreement with the results from the plate experiment for 
frequency response. In addition, the out-of-plane GW velocity patterns from MFC actuators were examined in the 
same plate specimen using a laser vibrometer. These patterns correlated well with the theoretical predictions. The 
MFC’s theoretically predicted focusing ability along its fiber direction was confirmed. In the future, experiments 
with thicker plates are planned to examine the validity of the uncoupled actuator-substrate model for higher plate-to-
actuator thicknesses. Eventually, extensions of these models for composite structures will also be explored. 
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