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The advantages of employing multiple approximation methods and the effectiveness
of weighted average surrogate modeling for approximation and reduction of helicopter
vibrations is studied. Multiple surrogates, including the weighted average approach, are
considered so that the need to identify the “best” approximation method for the rotor
vibration reduction problem is eliminated. Various approximation methods are used to
generate a vibration objective function corresponding to a flight condition in which blade-
vortex interaction causes high levels of vibration. The design variables consist of the cross-
sectional dimensions of the structural member of the blade and non-structural masses. The
optimized designs are compared with a baseline design resembling an MBB BO-105 blade.
The results indicate that (a) multiple surrogates can be used to locate low vibration designs
which would be overlooked if only a single approximation method was employed, and (b)
that the weighted average approach protects against the worst individual surrogate, while
performing as well as the best individual surrogate. Furthermore, the surrogates were
used in a global sensitivity analysis to identify the most significant design variables for the
vibration reduction problem.

Nomenclature

c Blade chord
CW Helicopter weight coefficient
Cd0 Blade profile drag coefficient
Cdf Flat plate drag coefficient
D Vector of design variables
d1, d2 User defined parameters used in weighted average surrogate construction
E Young’s modulus
E[ ] Expected value operator
Ei Global error metric corresponding to the ithsurrogate
Eavg Average of the global error metrics for all surrogates
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f(x) Assumed polynomials which account for the ‘global’ behavior in kriging
fx Vector of basis functions associated with assumed polynomials in kriging
F Matrix of basis functions associated with assumed polynomials in kriging
F4X , F4Y ,

F4Z 4/rev hub shears, non-dimensionalized by m0Ω2R2

F̂4X , F̂4Y ,

F̂4Z Surrogates for the non-dimensional 4/rev hub shears
GMSEi Generalized mean square error corresponding to the ithsurrogate
g(D) Constraints
h Height of the blade cross-section
J Objective function
Ĵ Surrogate objective function
JP Mass polar moment of inertia of the rotor
m0 Baseline mass per unit length
mns Non-structural mass located at the elastic axis
M4X ,M4Y ,

M4Z 4/rev hub moments, non-dimensionalized by m0Ω2R3

M̂4X , M̂4Y ,

M̂4Z Surrogates for the non-dimensional 4/rev hub moments
Nb Number of rotor blades
Nbasis Number of basis functions associated with assumed polynomials in kriging
Nc Number of behavior constraints
Ndv Number of design variables
NRBF Number of radial basis functions associated with RBNN’s
Nsm Number of surrogate models
Nsp Number of sample points
Ntp Number of test points
pk, ϑk Fitting parameters in kriging corresponding to the kth design variable
p(x) Function considered in GSA
R Blade radius
Rkrg Spatial correlation matrix used in kriging
Rkrg(·) Spatial correlation function in kriging
rkrg(x) Spatial correlation vector in kriging
Stotal

i Total sensitivity index due to the ith design variable
Si...k Partial sensitivity index due to the interactions among the ith . . . kth design variables
t1, t2, t3 Thicknesses of the blade cross-section, see Fig. 3
V (p) Total variance in the function p(x)
V total

i Total variance due to the ith design variable
Vi...k Partial variance due to the interactions among the ith . . . kth design variables
wpoly, wkrg, wRBNN Weight coefficients corresponding to each surrogate
wi Weight coefficient corresponding to the ith surrogate
x(i) ith sample point
x1, x2 Cross-sectional dimensions, see Fig. 3
XFA, ZFA Longitudinal and vertical offsets between rotor hub and helicopter aerodynamic center, see

Fig. 6
XFC , ZFC Longitudinal and vertical offsets between rotor hub and helicopter center of gravity, see

Fig. 6
y(x) Unknown function to be approximated
y(i) output response at x(i)

y Vector of observed function outputs
ŷ(x) Approximation of y(x)
ȳ Factor used to normalize errors
Z(x) Realization of a stochastic process in kriging

Symbols
αd Flight descent angle, see Fig. 6
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αi Weight associated with the ith radial basis function in RBNN’s
β Vector of coefficients used in kriging
β̂ Generalized least squares estimate of β
β0, βi, βij Fitting coefficients in polynomial regression
βp Blade precone angle
εpr Approximation error in polynomial regression
ε Absolute percent error of surrogate predictions
λk Hover stability eigenvalue for kth mode
ζk, ωk Real and imaginary parts of λk, respectively
µ Advance ratio
ν Poisson’s ratio
Ω Rotor angular speed
ωF1, ωL1, ωT1 Fundamental rotating flap, lead-lag and torsional frequencies, /rev
ωL, ωU Lower and upper bounds for frequency constraints, /rev
φRBNN Radial basis functions used in RBNN’s
ρfiller Material density for non-structural filler mass
ρstruct Material density for the structural member of the blade
σ Rotor solidity
σallowable Allowable blade stress
σxx, σxη, σxζ Blade stresses
σ2

var Variance of the Gaussian process Z(x)
σ̂2

var Generalized least squares estimate of σ2
var

σY Yield stresses
τ Parameter which control radius of influence for each neuron in RBNN’s
θpt Blade built-in pre-twist angle

I. Introduction

Vibration is one of the most critical concerns in the design of modern rotorcraft. Stricter demands for
enhanced performance, comfort, and customer acceptance require designs with reduced vibration levels.

In helicopters, the dominant source of vibrations is the rotor, which transfers vibrations to the rotor hub and
fuselage at harmonics that are predominantly integer multiple of Nb/rev, where Nb is the number of blades.

During the last 25 years, two principal approaches to vibration reduction have emerged. The first
approach is passive and uses structural/multidisciplinary optimization for reducing vibrations.1–3 The second
approach utilizes active control methods.4,5 The passive approach is used by blade designers to improve
the vibration characteristics of the rotor. On the other hand, the active approach is still considered a
research topic which is slowly approaching implementation. This study is aimed at the passive approach
where the vibration reduction problem is formulated as a mathematical optimization problem subject to
appropriate constraints. The objective function consists of a suitable combination of the Nb/rev hub shears
and moments that are computed from an aeroelastic response code; constraints are specified on blade stability
margins, frequency, blade geometry, autorotational properties, and blade stresses. The design variables can
be dimensions of the blade cross-section, mass and stiffness distributions along the span, or geometrical
parameters which define advance geometry tips. Typical levels of vibration reduction achieved with passive
approaches have been in the range of 30-60% relative to a baseline design.

Due to the complex rotary-wing aerodynamic environment, the aeroelastic response simulations needed for
vibratory load calculations are computationally expensive. Therefore numerous evaluations of the vibration
objective function are costly. Consequently, direct combination of the objective function generated by an
aeroelastic response simulation with traditional optimization algorithms is computationally very expensive.
Moreover, traditional optimization search algorithms can converge to local optima, which are known to occur
in this class of problems.

To overcome these obstacles, approximation concepts have been used.6–8 A typical approach when
using approximation, or surrogate methods, is to assess the performance of various surrogate models and
then select the one which performs the best. This method was recently applied to the helicopter vibration
reduction problem in Ref. 9, where 2nd order polynomial response surfaces, radial basis function interpolation,
and kriging were considered for construction of the vibratory hub load surrogates. The study was based
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on a comprehensive helicopter simulation code which utilizes advanced modeling techniques such as free
wake modeling. Eight design variables were used to characterize the blade’s spanwise mass and stiffness
distributions, including blade cross-sectional dimensions and non-structural masses. The results showed that
kriging was the most accurate global approximation method considered and led to the best design, which
produced 67% vibration reduction.

Most research dealing with surrogate modeling has been concerned with the choice among different
surrogates. However, the choice of the “best” surrogate model is determined by a number of factors, and
once selected the choice of the “best” surrogate model is seldom reviewed. These factors include: the number
of points used to construct the surrogate model (sampling density), the scheme used to select points (design
of experiment), and parameters/nature of the surrogate model. Different surrogate models have been shown
to perform well under different conditions and for different objectives. For instance, for a given application,
the most accurate approximation method may not necessarily lead to the most optimal design. Thus, a
single approximation method has not distinguished itself as the most suitable for engineering applications.

As an alternative to seeking the “best” approximation method, there has been recent work on the col-
laborative use of an ensemble of surrogates.10 Typically, the cost of obtaining data required for developing
surrogates is high, so it is desirable to extract as much information as possible from the data. Since sur-
rogates can be constructed without significant expense compared to the cost of acquiring data, use of an
ensemble of surrogates can prove effective in distilling correct trends from the data while protecting against
poor surrogate models. The combination of multiple surrogates is motivated by our inability to find a unique
solution to the non-linear inverse problem of identifying the model from a limited set of data6 and essentially
serves as an approach to account for uncertainty in the surrogates.

While the ensemble of surrogate approach has yet to be applied to the helicopter rotor blade vibration
reduction problem, it has been used in various optimization applications.10–13 In Ref. 10, the generalized
mean squared cross-validation error was used to develop a weighted average surrogate model. For a number
of analytical and applied problems, it was demonstrated that the weighted average surrogate model protects
against the worst individual surrogate in all cases while performing as well as the best.

In addition to replacing computationally expensive objective functions in optimization, the surrogates can
also be used to replace expensive global sensitivity analysis (GSA)14 function evaluations. Global sensitivity
analysis is used to rank the design variables in terms of influence on the objective function over the entire
design space, as opposed to partial derivatives which estimate the local sensitivity of a function in the
vicinity of a design point. The GSA based on Ref. 14 has been used in various applications,15–17 however
identification of the most important design variables using surrogates and GSA has not been considered in
previous helicopter vibration studies.

The overall objectives of this paper are to demonstrate the advantages of utilizing multiple surrogates,
which results in little additional cost compared to using only one surrogate, and to apply GSA to the
helicopter vibration reduction problem. The specific objectives of the paper are listed below.

• Develop the weighted average surrogate model based on three approximation methods: polynomial
response surfaces, kriging, and radial basis neural networks.

• Demonstrate that the weighted surrogate approach always protects against the worst individual surro-
gate while generally performing as well as the best individual surrogate in terms of predictive capability
and optimization.

• Locate multiple low vibration blade designs by optimizing the individual surrogates as well as the
weighted average models.

• Perform surrogate based GSA to identify the most significant design variables for helicopter vibration
reduction using structural optimization.

II. Overview of the Aeroelastic Response and Stability Analysis

The simulation code used in this study is based on a comprehensive aeroelastic analysis code.18–24 The
aeroelastic response analysis can represent the behavior of hingeless rotor blades as shown in Fig. 1, with
actively controlled flaps; as well as blades with advanced geometry tips as shown in Fig. 2. The key ingredients
of the aeroelastic response analysis are: (1) the structural dynamic model, (2) the unsteady aerodynamic
model and (3) a coupled trim/aeroelastic response procedure that is required for the computation of the
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steady state blade response. The aeroelastic response analysis and overviews of the blade stress calculations
and aeroelastic stability in hover analysis are described next.

Coupled
Flap-Lag-Torsion

Dynamics

Swashplate

Rotor Hub

Pitch Link

Figure 1. Helicopter rotor blade with trailing edge flaps.

ψ

Ω

knr, kr

jr

jnr
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Figure 2. A blade with advanced geometry tip.

II.A. Structural Dynamic Model

The structural dynamic model is based on an analysis developed by Yuan and Friedmann19,25 which is capable
of modeling composite blades with transverse shear deformations, cross-sectional warping, and swept tips.
This study is limited to the behavior of isotropic blades with spanwise varying properties. The equations
of motion are formulated using a finite element discretization of Hamilton’s principle, with the assumption
that the blade undergoes moderate deflections. The beam type finite elements used for the discretization
have 23 nodal degrees of freedom. Normal modes are used to reduce the number of structural degrees of
freedom. In this study, eight modes are used: the first 3 flap modes, first 2 lead-lag modes, first 2 torsional
modes, and the first axial mode.

II.B. Aerodynamic Model

The attached flow blade section aerodynamics are calculated using a rational function approach (RFA).20,26

The RFA approach is a two-dimensional unsteady time-domain theory that accounts for compressibility
as well as variations in the oncoming flow velocity. This two-dimensional aerodynamic model is linked to
an enhanced free-wake model which provides a non-uniform inflow distribution at closely spaced azimuthal
steps.27–29 Although the simulation code can also account for dynamic stall at high advance ratios,22 dynamic
stall was not considered in this paper because the vibration levels being approximated are those due to blade
vortex interaction (BVI), which occurs at low advance ratios.

II.C. Coupled Trim/Aeroelastic Response

The combined structural and aerodynamic equations form a system of coupled ordinary differential equations
that are cast into first order state variable form20 and integrated in the time domain using the Adams-
Bashforth predictor-corrector algorithm. A propulsive trim procedure, where six equilibrium equations
(three forces and three moments) are enforced, is used in this study.18,30 The trim equations are solved
in a coupled manner with the aeroelastic equations of motion. The vibratory hub shears and moments are
found by integrating the distributed inertial and aerodynamic loads over the entire blade span in the rotating
frame, then transforming these loads to the hub-fixed non-rotating system, and summing the contributions
from each blade.19 In the process, cancellation of various terms occurs and the primary components of the
hub shears and moments have a frequency of Nb/rev, which is known as the blade passage frequency.

II.D. Blade Stresses

After the blade responses are obtained from the coupled trim/aeroelastic response solution, the stresses in
the blade at any spanwise location can be recovered by using strain-displacement and constitutive relations.
Solving for the stresses in this manner accounts for the complicated loading a blade encounters and is
consistent with the structural dynamic model. The procedure for calculating stresses is as follows:
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1. For a given azimuth angle, the displacements at any spanwise location are calculated by the aeroelastic
response code.

2. The displacements are then substituted into the nonlinear strain-displacement relations,19 giving the
strains at any spanwise location.

3. Stresses are calculated from the stress-strain relations.

This calculation gives the blade stresses at any spanwise location and at any azimuth angle.

II.E. Aeroelastic Stability in Hover

The process for determining the hover stability of the blade is based on the method used in Ref. 19, and is
described below:

1. The non-linear static equilibrium solution of the blade is found for a given pitch setting and uniform
inflow, by solving a set of nonlinear algebraic equations. Note that uniform inflow is used only in the
hover stability calculation. The forward flight analysis employs a free-wake model for inflow calculation.

2. The governing system of ordinary differential equations are linearized about the static equilibrium solu-
tion by writing perturbation equations and neglecting second-order and higher terms in the perturbed
quantities. The linearized equations are rewritten in first-order state variable form.

3. The real parts of the eigenvalues of the first-order state variable matrix, λk = ζk + iωk, determine the
stability of the system. If ζk ≤ 0 for all k, the system is stable.

For this study, the linearization process from Ref. 19 is modified to account for the aerodynamic states
introduced by the RFA model.9

III. Formulation of the Blade Optimization Problem

The formulation of the blade optimization problem in forward flight consists of several ingredients: the
objective function, design variables, and constraints. The mathematical formulation of the optimization is
stated as: Find the vector of design variables D which minimizes the objective function, i.e. J(D) → min,
where the objective function consists of a combination of the Nb/rev oscillatory hub shears and moments.
For a four bladed rotor, the objective function is given by

J = KS

√
(F4X)2 + (F4Y )2 + (F4Z)2 + KM

√
(M4X)2 + (M4Y )2 + (M4Z)2 (1)

where KS and KM are appropriately selected weighting factors.
The vector of design variables D consists of the thicknesses t1, t2, t3, and the non-structural mass mns

located at the shear center, which are specified at several spanwise locations and shown in Fig. 3. The
three thickness design variables were defined at the 0%, 25%, 50%, 75%, and 100% stations, while the non-
structural mass design variable was defined at the 68% and 100% blade stations, resulting in a total of 17
design variables. These two blade stations were chosen for the non-structural mass because previous studies
have shown that non-structural masses are most effective for vibration reduction when they are distributed
over the outboard 1/3 of the blade.31,32 The cross-sectional variables were assumed to vary linearly between
stations. The non-structural mass at the elastic axis inboard of the 68% station was set to zero. The design
variables have side constraints to prevent them from reaching impractical values; these are stated as

D(L)
j ≤ D ≤ D(U)

j , j = 1, 2, ..., Ndv. (2)

In addition, four types of behavior constraints, given by

gi(D) ≤ 0, i = 1, 2, ..., Nc, (3)

are placed on the design variables. The first type of behavior constraints are frequency placement constraints,
which are prescribed upper and lower bounds on the fundamental flap, lag, and torsional frequencies of the
blade. The frequency placement constraints on the fundamental flap frequency are written as

gflap(D) =
ωF1

ωU
− 1 ≤ 0 (4)
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and
gflap(D) = 1− ωF1

ωL
≤ 0 (5)

where ωU and ωL are the prescribed upper and lower bounds on the fundamental flap frequency. Similar
constraints are placed on the lag and torsional frequencies, i.e. glag and gtorsion. In addition, all blade
frequencies must differ from integer multiples of the angular velocity – 1/rev, 2/rev, 3/rev, ... , etc. – to
avoid undesirable resonances.

x1

x2

t1

t2

t3

mfiller

h = 0.12c
mns

c

Figure 3. Simplified model of the blade struc-
tural member.

Another behavior constraint is an autorotational constraint,
which ensures that mass redistributions produced during the
optimization do not degrade the autorotational properties of
the rotor. Although there are several indices which can be
used to represent the autorotational properties of the blade,
the one used in this study is to require that the mass polar
moment of inertia of the rotor be at least 90% of its baseline
value.33 Mathematically, this is expressed as

g(D) = 1− JP

0.9JP0
≤ 0 (6)

where JP is the mass polar moment of inertia of the rotor when
it is spinning about the shaft, and JP0 is the baseline value.

The third type of behavior constraints are aeroelastic stability margin constraints, expressed mathemat-
ically as

gk(D) = ζk + (ζk)min ≤ 0, k = 1, 2, ..., Nm (7)

where Nm is the number of normal modes, ζk is the real part of the hover eigenvalue for the kth mode, and
(ζk)min is the minimum acceptable damping level for the kth mode. It should be noted that the most critical
modes for stability are usually the first and second lag modes.

The final behavior constraint is a yield constraint obtained by substituting the blade stresses into Von
Mises’ criterion, which is expressed mathematically as

2σ2
xx + 6(σ2

xη + σ2
xζ)

6
− σ2

allowable

3
≤ 0 (8)

where σxx, σxη, and σxζ are the axial and shear stresses, and σallowable is the material yield stress divided
by a factor of safety. At discrete values of the azimuth angle, Eq. (8) is evaluated at spanwise locations
corresponding to the finite element nodes. The maximum evaluation of Eq. (8) is used for the constraint,
and is given as

g(D) = MAX

[
2σ2

xx + 6(σ2
xη + σ2

xζ)
6

− σ2
allowable

3

]
≤ 0 (9)

where MAX[ ] denotes the maximum value of Eq. (8) over each set of azimuth angle and blade stations
at which it is evaluated. Therefore the yield constraint is enforced at the blade station and azimuth angle
where the stress condition is most critical.

IV. Global Sensitivity Analysis

Global sensitivity analysis (GSA), as presented by Sobol,14 is used to estimate the effect of different
design variables on the total variability of the objective function. In this approach, the significance of
a design variable is quantified by calculating the contribution of the variable to the total variance of a
function. The higher the variance caused by a variable, the more significant the variable is. The advantages
of conducting such an analysis include assessment of the importance of design variables and fixing non-
essential variables during optimization, thus reducing the dimensionality of the problem. As proposed in
this study, GSA isolates the variability in the objective function due to main effects, i.e. variability due to
each design variable alone, as well as variability due to interactions between all of the design variables. A
brief overview of the GSA is given below.
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A surrogate model, p(x), of a function of a vector of independent input variables, x in domain [0, 1], is
assumed and modeled as uniformly distributed random variables. The surrogate can be decomposed into
the sum of functions of increasing dimensionality given by

p(x) = p0 +
Ndv∑
i=1

pi(xi) +
Ndv∑

1≤i<j≤Ndv

pij (xi, xj) + . . . + p1,2,...,Ndv
(x1, x2, . . . , xNdv

) (10)

where

p0 =
∫ 1

0

p(x) dx . (11)

By enforcing the condition
∫ 1

0
p

i,...,m
dxk for k = i, . . . , m, the decomposition given by Eq. (10) is unique and

the total variance of p(x), V (p), can be decomposed in a similar fashion:

V (p) =
Ndv∑
i=1

V
i
+

Ndv∑
1≤i<j≤Ndv

Vij + . . . + V1,2,...,Ndv
, (12)

where V (p) = E[(p− p0)
2], and E[ ] denotes the expected value operator. It can be shown that the partial

variances in Eq. (12) are given by the following expressions:

Vi = V (E[ p | xi
])

Vij = V (E[ p | xi,xj
])− Vi − Vj (13)

Vijk = V (E[ p | xi,xj ,xk
])− Vij − Vik − Vjk − Vi − Vj − Vk ,

and so on. The contribution of xi alone to the total variance is accounted for with Vi, while Vij , Vijk, and
so on account for the variance due to interactions among xi and the other design variables. Note that

E[ p | xi ] =
∫ 1

0

pi dxi (14)

and

V (E[ p | xi
]) =

∫ 1

0

p2
i
dxi . (15)

The total contribution of the ith design variable to the total variance is given as

V total
i = V

i
+

Ndv∑
j,j 6=i

V
ij

+
Ndv∑
j,j 6=i

Ndv∑
k,k 6=i,j

V
ijk

+ . . . . (16)

To calculate the total sensitivity of the function to any design variable, xi, the set of design variables is
divided into two subsets – the first subset contains only xi, while the second contains all of the remaining
design variables and is denoted as B. The total variance due to xi can now be rewritten as

V total
i = Vi + Vi,B (17)

where Vi,B is the measure of the variance that is dependent on interactions between xi and all of the other
design variables. The total variance due to the effects from all design variables is calculated from the following
relation,

V (p) = Vi + VB + Vi,B (18)

where VB is the partial variance corresponding to B.
Finally, sensitivity indices are calculated in order to quantify the significance of a design variable. For

example, the first and second order sensitivity indices are given by

Si =
Vi

V (p)
(19)
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and
Sij =

Vij

V (p)
. (20)

The first order sensitivity index accounts for the main effects of a design variable. The effects of interactions
among design variables are captured by the higher order sensitivity indices. For the ith design variable, the
total sensitivity index is given by

Stotal
i =

V total
i

V (p)
. (21)

The relative significance of each design variable can be obtained by ranking each variable according to its
respective total sensitivity index, with the most significant variables corresponding to higher indices.

V. Global Approximation Methods

The goal in using global approximation, or surrogate, methods is to replace the “true” objective function
and expensive constraints with smooth functional relationships of acceptable accuracy that can be eval-
uated quickly. In order to construct the surrogates, the objective function and constraints must first be
evaluated over a set of design points. The surrogate is then generated by fitting the initial design points.
Although function evaluations, which come from the expensive helicopter simulations, are needed to form
the approximation, this initial investment of computer time is significantly less compared to global searches
using non-surrogate based optimization methods. Once the surrogates have been obtained, they are used to
replace the more expensive “true” objective function and constraints in the search for the optimum and in
the GSA.

The surrogate objective function can be generated in two ways: (a) the vibratory hub shears and moments
in Eq. (1) are replaced by surrogates and used to build the surrogate objective function, as in Eq. (22), and (b)
the overall output, J , is approximated directly. Six responses need to be approximated in the first approach,
and 1 response needs to be approximated in the second approach. Both methods will be considered in this
study.

Ĵ = KS

√
(F̂4X)2 + (F̂4Y )2 + (F̂4Z)2 + KM

√
(M̂4X)2 + (M̂4Y )2 + (M̂4Z)2. (22)

The stress constraint is the only constraint which requires a forward flight simulation, and is therefore the
only computationally expensive constraint. Consequently, a surrogate constraint is used in place of Eq. (9)
during optimization. Since the cost of fitting and optimizing the surrogates is generally much less than
generating the initial data set, multiple surrogates are considered in order to fully utilize the sample data.
Descriptions of the methods for constructing the global approximations are given below.

V.A. Design of Computer Experiments

When the initial data set is produced by a deterministic computer code (as is the case in the vibration
reduction problem), the term “design of computer experiments,” is more appropriate than design of experi-
ments.8,34 The distinction is necessary because in physical experiments there is measurement error and other
random sources of noise that cannot be controlled, which affects the choice of the design point. However,
in computer experiments, there is no random error; i.e., for a deterministic computer code, a given input
will always yield the same output. Thus, the design of computer experiments need only be space-filling.
Figure 4 illustrates the difference between a conventional design of experiment and a space-filling design. In
the figure, locations of design points where experiments are to be conducted, which in this case represent
design points where aeroelastic response simulations are performed, are shown for a design space which has
two design variables.

A commonly used space-filling design is Latin hypercube sampling (LHS).35 In LHS, each design variable
is partitioned into Nsp equally spaced sections, or strata. Every design variable Di, where i = 1, 2, ..., Ndv,
is sampled once in each strata, which forms Ndv vectors of size Nsp. The components of the Ndv vectors
are then randomly combined to form an Nsp × Ndv matrix known as a Latin hypercube, where each row
corresponds to a design point at which a computer experiment is performed. A major disadvantage of Latin
hypercube sampling is that design points can cluster together due to the random process by which design
points are created. To prevent this, optimal Latin hypercube (OLH)6 sampling is used in this study to ensure
a more uniform (or space-filling) design of computer experiment. Optimal Latin hypercube sampling creates
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Figure 4. Design of physical experiment vs. design of
computer experiment.

Figure 5. Conventional LH vs. Optimal LH in two dimen-
sional design space.

a more uniform design than conventional LHS by maximizing a spreading criteria, rather than randomly
creating design points from the samples. Figure 5 illustrates the difference between a conventional Latin
hypercube and an optimal Latin hypercube. In this study, the OLH algorithm from the iSIGHT software
package is used.36,37 Methods for fitting the data points in the OLH are described next.

V.B. Polynomial Response Surfaces

Suppose a deterministic function of Ndv design variables, that needs to be approximated, has been evaluated
at Nsp sample points. Sample point i is denoted x(i) = (x(i)

1 , ..., x
(i)
Ndv

) and the associated response is given
by y

i
= y(x(i)) for i = 1, ..., Nsp. A polynomial regression approximation to y(x) can be written as

y(x) = ŷ(x) + εpr (23)

where ŷ(x) is the function chosen to approximate the true response y(x), and εpr is the error associated with
the approximation. It is important to note that the errors are assumed to be independent; i.e. the errors at
two points close together will not necessarily be close. This assumption will be revisited when considering
kriging. In this study, 2nd order polynomials are used for ŷ(x). The least squares regression approximation
is given as38

ŷpoly = β0 +
Ndv∑
i=1

βixi +
Ndv∑
i=1

Ndv∑
j=1,i<j

βijxixj +
Ndv∑
i=1

βiix
2
i . (24)

In addition to Eq. (24), a reduced term polynomial surrogate in which statistically insignificant terms
are removed is considered. The reduced term polynomial is obtained by sequentially removing coefficients
with t-statistics less than 1 from the full term polynomial.

V.C. Kriging Surrogates

Kriging is based on the fundamental assumption that errors are correlated, which is in contrast to the
assumption of independent or uncorrelated errors made in polynomial regression. This implies that one
assumes the errors at two points close together will be close. In fact, the assumption that the errors are
uncorrelated is only appropriate when the sources of error are random, such as in the case of measurement
error or noise. In the case of deterministic computer simulations, there is no source of random error.
Therefore, it is more reasonable to assume that the error terms will be correlated and that this correlation
is higher the closer two points are to each other.

In kriging, the unknown function y(x) is assumed to be of the form

y(x) = f(x) + Z(x) (25)

where f(x) is an assumed function (usually polynomial form) and Z(x) is a realization of a stochastic (ran-
dom) process which is assumed to be a Gaussian process with zero mean and variance of σ2

var (i.e. Z(x)
follows a normal, or Gaussian, distribution.39,40 The function f(x) can be thought of as a global approx-
imation of y(x), while Z(x) accounts for local deviations which ensure that the kriging model interpolates
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the data points exactly. The covariance matrix of Z(x), which is a measure of how strongly correlated two
points are, is given by

Cov[Z(x(i)), Z(x(j))] = σ2
varRkrg (26)

where each element of the Nsp ×Nsp correlation matrix Rkrg is given by

(Rkrg)ij = Rkrg(x(i),x(j)) (27)

and Rkrg(xi,xj) is a correlation function which accounts for the effect of each interpolation point on every
other interpolation point. This function is called the spatial correlation function (SCF) and is chosen by the
user. The most commonly used SCF is the Gaussian correlation function,

Rkrg(x(i),x(j)) = exp

[
−

Ndv∑
k=1

ϑk|xk
(i) − xk

(j)|pk

]
, (28)

which is also employed in this study. The Gaussian SCF is dependent on the distance between two points.
As two points move closer to each other, |xk

(i) − xk
(j)| → 0, and Eq. (28) approaches unity which is the

maximum value of the Gaussian SCF. In other words, the Gaussian SCF recovers the intuitive property that
the closer two points are to each other, the greater the correlation between the points.

The fitting parameters ϑk and pk are unknown correlation parameters which need to be determined. In
order to determine these parameters, the form of f(x) needs to chosen. In this study, f(x) is assumed to be
a linear polynomial and is given by

f(x) = fT
x β (29)

where fT
x is a 1×Nbasis vector, Nbasis is the number of basis functions associated with the linear polynomial,

and β is a Nbasis × 1 vector of coefficients. Similarly, F(x) can be defined as an Nsp ×Nbasis matrix where
the ith row corresponds to the evaluation of the Nbasis functions at the ith sample point. Furthermore, a
common simplification is to fix all pk = 2. In Ref. 9, allowing pk to vary offered no clear benefit over fixing
pk = 2. Therefore, fixing all pk = 2 is employed in this study. In order to find ϑk, the generalized least
square estimates of β and σ2

var, denoted by β̂ and σ̂2
var respectively, are employed:39,40

β̂ = (FT(Rkrg)−1F)−1FT(Rkrg)−1y (30)

and

σ̂2
var =

(y − Fβ̂)T(Rkrg)−1(y − Fβ̂)
Nsp

(31)

where y is a vector of observed function outputs at the interpolation points; both vectors are of length
Nsp. With σ̂2

var and β̂ known, ϑk are found such that a likelihood function39,40 is maximized. The likelihood
function, given in Eq. (32), is a measure of the probability of the sample data being drawn from a probability
density function associated with a Gaussian process. Since the stochastic process associated with kriging
has been assumed to be a Gaussian process, one seeks the set of ϑk that maximize the probability that the
interpolation points have been drawn from a Gaussian process.

−
[
Nsp ln(σ̂2

var) + ln |Rkrg|
]

2
(32)

The maximum likelihood estimates (MLE’s) of ϑk represent the “best guesses” of the fitting parameters. Any
values of ϑk would result in a surrogate which interpolates the sample points exactly, but the “best” kriging
surrogate is found by optimizing the likelihood function. This auxiliary optimization process can result in
significant fitting time depending on the size of the system. Due to the optimization process needed to create
the kriging surrogate, kriging is only appropriate when the time needed to generate the interpolation points
is much larger than the time to interpolate the data – which is the case in the helicopter vibration problem.
With all parameters known, the kriging approximation to a function y(x) can be written as34,39–41

ŷkrg = fT
x β̂ + rkrg(x)T(Rkrg)−1(y − Fβ̂) (33)

where
rkrg(x) =

[
Rkrg(x,x(1)), Rkrg(x,x(2)), ..., Rkrg(x,x(Nsp))

]T
(34)

The column vector rkrg(x) of length Nsp is the correlation vector between an arbitrary point x and the
interpolation points, x(1), ... , x(Nsp).
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V.D. Radial Basis Neural Networks

Radial basis neural networks (RBNN) approximate a function as a weighted sum of radial basis functions,
also known as neurons.

ŷRBNN =
NRBF∑

i=1

αiφRBNN (x) (35)

where φRBNN(x) is the response of the radial basis function at x, and αi is the weight associated with the
radial basis function. In this study, the MATLAB routine newrb is used to construct the RBNN. Gaussian
function’s given by Eq. (36) are used for the neurons.

φRBNN(η) = exp(−η2) (36)

In this case, the dummy variable η would be
(
τ

∥∥x− x(i)
∥∥)

, where
∥∥x− x(i)

∥∥ is the Euclidean distance
between two vectors. The parameter τ is inversely related to the user defined parameter denoted spread,
which controls the radius of influence for each neuron. Specifically, the radius of influence is the distance at
which the output of a neuron reaches a certain small value corresponding to half of the spread parameter.
A high spread would cause the neuron responses to be smooth, and a low spread would result in highly
non-linear responses. The spread is set to 0.5 in this study. The number of radial basis functions and
associated weights are determined by satisfying the user defined error goal for the mean square error in the
approximation. The goal parameter is set to the square of 5% of the mean response in this study.

V.E. Weighted Average Surrogates

In addition to the individual surrogates described above, a weighted average surrogate based on the imple-
mentation described in Ref. 10 will be employed. The weighted average surrogate is formulated as a weighted
sum of the three individual approximation methods, i.e.

ŷWTA = wpoly ŷpoly + wkrg ŷkrg + wRBNN ŷRBNN (37)

where wpoly , wkrg , and wRBNN are the weights associated with each surrogate. The weights are calculated in
such a way that they (a) reflect the confidence in each individual surrogate and (b) filter out adverse effects
associated with individual surrogates which represent the sample data well, but predict poorly at designs
not included in the sample data. Furthermore, the sum of the weights in Eq. (37) are constrained to sum to
1 so that if all of the individual surrogates give the same output at some input, then the weighted surrogate
will also recover this output. A weight scheme which satisfies these issues is given below.10

wi =
w∗

i

Nsm∑
i

w∗
i

(38)

where
w∗

i
= (Ei + d1Eavg)d2 , d1 < 1, d2 < 0 (39)

Eavg =
Nsm∑

i

E
i
/Nsm (40)

and Nsm is the number of surrogate models. The weights are based on a global data based error measure for
each surrogate, denoted Ei. In this study, the generalized mean square error(GMSE) based on leave-one-out
cross-validation is used as the error measure, and thus

Ei =
√

GMSEi . (41)

Details on how the GMSE is determined are given in the Appendix. In Eq. (39), d1 and d2 are user defined
parameters which control the relative influence of the individual surrogate error, Ei, and the average of the
individual errors, Eavg, on the weight. Small values of d1 and large negative values of d2 result in high
weights for the best individual surrogate, which satisfies the first goal mentioned above for determining the
weights. Large values of d1 and small negative values of d2 result in more emphasis on the average of the
error, which would protect against surrogates which may predict well at sample data points, but give poor
predictions at unsampled locations in the design space. Based on a parametric study conducted in Ref. 10,
d1 and d2 are set to 0.05 and -1 respectively. Note that the intuitive property that the higher the error, the
lower the weight corresponding to a surrogate is recovered since d2 < 0
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VI. Results

This section presents accuracy measures of the approximation methods that have been described, vibra-
tion reduction results using surrogate objective functions, and GSA results. The helicopter configuration
used in all computations is given in Table 1. The simulations are conducted at an advance ratio of 0.15
and descent angle of 6.5◦, where high vibration levels due to strong blade vortex interaction (BVI) are en-
countered. Figure 6 illustrates a helicopter in descent; this figure is also employed for the propulsive trim
calculation.

Dimensional Data

R = 4.91m Ω = 425rpm

Non-Dimensional Data

Nb = 4 c = 0.05498R

βp = 0.0◦ Cdo = 0.01

θpt = 0◦ αd = 6.5◦

µ = 0.15 CW = 0.005

σ = 0.07 Cdf = 0.01

XFA = 0.0 ZFA = 0.3

XFC = 0.0 ZFC = 0.3

Table 1. Rotor and helicopter parameters needed for the
computations.

Aluminum Material Properties

E = 70.7GPa

ν = 0.33

ρstruct = 2700 kg/m3

σY = 324MPa

Non-structural Filler Mass Density

ρfiller = 237.4 kg/m3

Locations of the Vertical Walls

x1 = 65.4mm x2 = 111.6mm

Table 2. Fixed parameters defining the structure and
cross section.

In addition to the information provided in Table 1, additional information is needed for the fixed cross
sectional parameters, objective function, constraints, and the finite element discretization of the blade. The
material properties and the chordwise locations of the vertical walls are given in Table 2. The weighting
factors in the objective function, KS and KM , are selected to be 1. These weighting factors result in
an objective function which represents the sum of the 4/rev oscillatory hub shear resultant and the 4/rev
oscillatory hub moment resultant in the hub-fixed non-rotating frame. For this study, the following side
constraints are enforced:

1.0 mm ≤ t1 ≤ 8.0 mm (42)

1.0 mm ≤ t2, t3 ≤ 12.0 mm (43)

0.0 ≤ mns/m0 ≤ 0.25 (44)

The upper and lower bounds used for the frequency placement constraints, /rev, are given below.

0.60 ≤ ωL1 ≤ 0.80 (45)

1.05 ≤ ωF1 ≤ 1.20 (46)

2.50 ≤ ωT1 ≤ 6.50 (47)

In the aeroelastic stability constraints given by Eq. (7), the minimum acceptable damping for all modes,
(ζk)min, is chosen to be 0.01. Additionally, the constraints are modified for the 2nd lag mode, which can
sometimes be slightly unstable. To prevent this situation, a small amount of structural damping is added
to this mode. For this study, 0.5% structural damping is added to stabilize the 2nd lag mode of the baseline
blade. For the stress constraint, a factor of safety of 1.5 is used. The rotor blade was discretized into the 6
finite elements shown in Fig. 7.

In this study, two sets of fitting points are used to build the surrogates – a 300 point optimal Latin
hypercube (OLH) and a 500 point OLH. From the 300 point OLH, 283 points had converged trim solutions
and were used to build the surrogates; while out of the 500 point OLH, 484 points had converged trim
solutions.
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Figure 6. Helicopter in descent flight condition.
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Figure 7. Finite element node locations.

VI.A. Weighted Average Surrogate Construction

The weight coefficients necessary to define the weighted average surrogates are given in Tables 3 - 4. The
weight coefficients obtained when using the full term polynomial response surface are given in Table 3.
Generally, the kriging surrogate has the highest weight for all responses and both sample sizes in Table 3.
When the reduced term polynomial is used in place of the full term polynomial, as shown in Table 4, the
polynomial is weighted the most for all responses and sample sizes. Furthermore, Tables 3 - 4 show that the
radial basis neural network generally has the lowest weight.

Table 3. Weight coefficients of the weighted average surrogates, with full term polynomial response surfaces

Weight Sample F4X F4Y F4Z M4X M4Y M4Z J Yield

Coefficient Size Constraint

wpoly 283 0.407 0.395 0.322 0.374 0.306 0.291 0.333 0.353

wkrg 283 0.478 0.473 0.458 0.460 0.449 0.412 0.461 0.443

wRBNN 283 0.115 0.132 0.219 0.167 0.245 0.297 0.206 0.205

wpoly 484 0.422 0.436 0.360 0.378 0.340 0.333 0.379 0.400

wkrg 484 0.449 0.422 0.425 0.448 0.405 0.381 0.419 0.424

wRBNN 484 0.129 0.142 0.215 0.175 0.255 0.286 0.203 0.176

Table 4. Weight coefficients of the weighted average surrogates, with reduced term polynomial response surfaces

Weight Sample F4X F4Y F4Z M4X M4Y M4Z J Yield

Coefficient Size Constraint

wpoly 283 0.497 0.493 0.431 0.472 0.406 0.401 0.443 0.433

wkrg 283 0.406 0.396 0.385 0.388 0.385 0.349 0.385 0.388

wRBNN 283 0.097 0.110 0.183 0.140 0.209 0.250 0.172 0.179

wpoly 484 0.465 0.474 0.409 0.427 0.384 0.377 0.424 0.436

wkrg 484 0.415 0.394 0.393 0.413 0.378 0.356 0.388 0.399

wRBNN 484 0.120 0.132 0.199 0.161 0.238 0.267 0.188 0.165

VI.B. Surrogate Accuracy Results

The predictive capabilities of the individual and weighted average surrogates were quantified using a set of
data points not included in the construction of the surrogates. The predicted responses from the surrogates
were then compared to the “actual” responses at the test points. The test points came from a 200 point
OLH, of which 197 had converged trim solutions. None of the blade designs from the 197 test points were
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coincident with the blade designs from the two OLH’s used to create the surrogates. Using the test points,
the absolute percent error is given by

εi =
|y(i) − ŷ(i)|

ȳ
(48)

where y(i) is the “actual” response computed by the helicopter simulation, ŷ(i) is the response predicted by
the surrogate at the ith test point, For the vibratory load errors, ȳ is the mean of the absolute values of the
responses from the 197 test points, while for the errors in the surrogate stress constraint,

ȳ =
σ2

allowable

3
. (49)

Based on Eq. (48), the average and maximum percent errors are:

ε
avg

=

∑Ntp

i=1
ε

i

Ntp
(50)

εmax = Max
{

ε1 , . . . , εNtp

}
(51)

where Ntp is the number of test points. The maximum percent error represents the worst prediction error,
while the average percent error represents the surrogate’s predictive capability over the entire design space
since all 197 test points are included.

The average and maximum errors are given in Figures 8 and 9 respectively for 7 responses – 6 underlying
hub shears and moments and the stress constraint. Note that “(red)” indicates the use of reduced term
polynomial surrogates. Among the individual surrogates for each response, the lowest average errors range
from 2-53% and the highest average errors range from 5-69% for the 283 sample set. By comparison, the
average errors of the weighted average surrogates range from 2-53%. These results indicate that the weighted
average surrogates performed as well as the best individual surrogates, while protecting against the poor
performance of the worst approximation method for all 7 responses. A similar result is obtained for the 484
point sample set where the lowest average errors in Figure 8(b) range from 3-55% while the average errors
of the weighted average surrogates range from 2-52%.

For the 283 point sample set, the kriging surrogate has the lowest average error of the individual surrogates
for each response, while for some responses with the 484 point sample set, the polynomials corresponded
to the lowest average errors. So the choice of the “best” surrogate in terms of approximating over the
entire design space is dependent on the sample size for the responses considered in this study. However, the
weighted average surrogates performed as well as the best approximation methods regardless of sample size,
which exemplifies the advantage of this approach.
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Figure 8. Average errors of the underlying vibratory loads and stress constraint.

Similar to the results for average error, Figure 9 shows that the weighted average surrogates typically
perform as well as the best individual surrogate in terms of maximum error. For the 283 and 484 point
sample sets, the lowest maximum errors are 32-331% and 30-313% respectively, while the weighted aver-
age surrogate maximum errors range from 37-368% and 40-339%. The largest difference between the best
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individual surrogates and the weighted average models occurs when approximating the M4Y and M4Z re-
sponses. However, even for these two responses, the weighted average surrogates still protected against the
worst individual model, which are the radial basis neural networks. It is worth noting that even though the
weighted average surrogates are constructed using a global error measure – see Eq. (41) – they still perform
well compared to the individual surrogate models in terms of maximum error, which is a local error measure.
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Figure 9. Maximum errors of the underlying vibratory loads and stress constraint.

The errors in the surrogate objective function are given in Figures 10 and 11. The surrogate objective
function was generated with two approaches: (a) combining the underlying surrogate hub shears and moments
to form the approximate objective function as in Eq. (22) and (b) by directly fitting the outputs for J at the
sample points. In terms of average error, the kriging surrogate is the best individual fitting method, with
19-24% errors for both sample sizes. For both methods of fitting the objective function and both sample
sizes, the weighted average surrogates perform as well as the kriging surrogates in terms of average error.
The largest difference in average error between the weighted average surrogates and the kriging surrogate is
only 2% and occurs in the case of the 484 point data set when combining the underlying responses to form
the approximate objective function. In terms of maximum error, the weighted surrogates never produce an
error more than 24% above the error from the best individual surrogate, and always perform better than the
worst surrogate. So regardless of the method used to form the approximate objective function, the weighted
surrogates performed as well as the best individual model in terms of average error, and performed better
than the worst surrogate in terms of maximum error.
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Figure 10. Average errors in the surrogate objective function.

A comparison of the errors in Figures 8 - 11 with the weight coefficients in Tables 3 - 4 shows that the
surrogate with the highest weight is not necessarily the most accurate when using test points to measure
error. For example, consider the case of approximating the overall objective function directly. The results in
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Figure 11. Maximum errors in the surrogate objective function.

Table 4 indicate that reduced term polynomials are more accurate than kriging surrogates when using the
GMSE – see Appendix – as the global error measure. However, Figure 10 shows that the kriging surrogates
are more accurate than the reduced term polynomials when using the average error based on test points
– see Eq. 48 – to quantify error. This example illustrates a major issue with attempting to identify the
most accurate individual surrogate for a given application: the most accurate approximation method may
be dependent on the metric used to quantify error.

It is interesting to note that increasing the sample size from 283 to 484 generally had little effect on the
accuracy of the surrogates. This indicates that for the 17 dimensional design space, increasing the number
of fitting points from 283 to 484 was not sufficient to significantly enhance the surrogates’ predictions of the
responses considered in this study.

VI.C. Optimization Results

Optimization results based on surrogate objective functions and constraints are presented in this section.
Optimization of the surrogate objective functions was conducted with the Multi-Island Genetic Algorithm
in iSIGHT.

Table 5 gives the optimization results when using the underlying hub shears and moments to build the
surrogate objective function. Note that vibration reduction is computed relative to the vibration levels of a
baseline blade resembling an MBB BO-105 blade. The stress margin is given by

1−

√
σ2

xx + 3(σ2
xη + σ2

xζ)

σallowable
. (52)

A stress margin < 0 would correspond to a design which violates the stress constraint. Table 5 shows that
the best individual surrogate differs with the sample size. For the 283 point sample set the reduced term
polynomial produces the best design, with 67.3% vibration reduction; while for 484 points, kriging produces
the best design, with 68.7% reduction. Significant vibration reduction is also obtained with the weighted
average surrogates, which produce up to 63.9% vibration reduction with 283 sample points and up to 70.2%
reduction with 484 sample points. For both sample sizes, the weighted average surrogates led to better
designs than the worst individual surrogate, and even led to a better design than any individual surrogate
in the case of 484 sample points using the reduced term polynomial.

Optimization results corresponding to direct approximation of the overall objective function are given
in Table 6. The full term polynomial led to the best design among the individual surrogates for the 283
sample set, while the radial basis neural network, which is the least accurate surrogate, led to the best design
for the 484 point sample set. However, the full term polynomial is the worst individual surrogate with 484
sample points. These results represent extreme examples in the sense that the best individual surrogate for
one sample set is the worst surrogate for another sample set, and the least accurate surrogate led to the
best design in one instance. Even under these circumstances, the weighted average surrogates always led to
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Table 5. Comparison of predicted and “actual” vibration reductions using approximate underlying responses, along
with actual stress margins.

Surrogate Sample Predicted Actual Actual ωL1ωL1ωL1 ωF1ωF1ωF1 ωT1ωT1ωT1

Size Reduction Reduction Stress Margin

Poly. 283 100.0 % 66.4 % 0.017 0.671 1.062 5.036

Poly(red) 283 100.0 % 67.3 % 0.014 0.641 1.059 4.679

KRG 283 94.2 % 59.0 % 0.008 0.613 1.059 4.176

RBNN 283 94.9 % 53.7 % 0.016 0.624 1.059 4.334

Wtd. Avg. 283 95.4 % 61.3 % 0.003 0.601 1.055 4.285

Wtd. Avg.(red) 283 96.7 % 63.9 % 0.008 0.604 1.057 4.120

Poly. 484 100.0 % 58.9 % 0.006 0.608 1.056 3.958

Poly(red) 484 100.0 % 62.2 % 0.007 0.603 1.056 3.919

KRG 484 87.0 % 68.7 % 0.008 0.621 1.058 4.560

RBNN 484 98.7 % 52.4 % 0.006 0.603 1.056 4.018

Wtd. Avg. 484 88.3 % 68.1 % 0.003 0.618 1.059 3.866

Wtd. Avg.(red) 484 89.5 % 70.2 % 0.003 0.615 1.059 3.796

better designs than the worst individual surrogate, and the weighted average surrogates based on full term
polynomials led to better designs than any of the individual approximation methods.

Table 6. Comparison of predicted and “actual” vibration reductions when directly approximating the objective function,
along with actual stress margins.

Surrogate Sample Predicted Actual Actual ωL1ωL1ωL1 ωF1ωF1ωF1 ωT1ωT1ωT1

Size Reduction Reduction Stress Margin

Poly. 283 394.4 % 64.4 % 0.005 0.610 1.058 4.330

Poly(red) 283 512.3 % 60.1 % 0.005 0.605 1.057 4.231

KRG 283 120.0 % 54.1 % 0.006 0.600 1.055 4.252

RBNN 283 93.9 % 57.4 % 0.009 0.602 1.055 4.420

Wtd. Avg. 283 234.9 % 70.5 % 0.008 0.604 1.055 4.538

Wtd. Avg.(red) 283 221.7 % 65.0 % 0.000 0.604 1.059 3.871

Poly. 484 222.4 % 45.0 % 0.001 0.627 1.060 3.960

Poly(red) 484 207.1 % 50.0 % 0.000 0.600 1.058 3.710

KRG 484 145.1 % 55.8 % 0.000 0.606 1.057 3.981

RBNN 484 97.4 % 67.5 % 0.000 0.631 1.057 4.670

Wtd. Avg. 484 116.7 % 67.6 % 0.010 0.620 1.057 4.602

Wtd. Avg.(red) 484 129.2 % 58.8 % 0.008 0.625 1.056 4.380

Tables 5 and 6 also show that among the individual surrogates, the approximation method which led to
the best design depended on the sample size. Therefore, if the best individual approximation method with
one sample set were the only method used with the other sample set, inferior designs would be obtained
compared to those found by utilizing multiple surrogates. Moreover, the weighted average surrogates were
never the worst surrogate in terms of optimization, and generally performed as well as the best individual
surrogate for both sample sizes and both methods of generating the surrogate objective function.

The optimal fundamental blade frequencies presented in Tables 5 and 6 indicate that the optimal designs
differ and that the BVI flight condition is characterized by many local optima. In order to illustrate the
effectiveness of using multiple surrogates for identifying different low vibration designs, the predicted vibra-
tion reduction from each surrogate at all of the optimal designs from Table 6 are given in Table 7, along
with predicted stress margins. While all surrogate objective functions predict that each optimal design is a
reduced vibration design, some superior designs are missed due to errors in the surrogate constraints. For

18 of 25

American Institute of Aeronautics and Astronautics



example, when using 283 sample points, the full term polynomial surrogate objective function predicts that
the optimum design corresponding to the weighted average surrogate results in 484% reduction; which is
superior to the 394% predicted reduction corresponding to its own optimum design. However, as indicated by
the stress margin, the full term polynomial surrogate stress constraint incorrectly predicts that the weighted
average optimum design yields. So if only full term polynomial surrogates were used, the superior design
corresponding to the weighted average surrogates and 70.5% actual vibration reduction would not have been
selected due to the inaccurate surrogate constraint. These results illustrate the benefits of utilizing multiple
surrogates – for the relatively low cost of generating and optimizing multiple surrogates compared to the cost
of generating the sample data, various low vibration designs were found which otherwise would be overlooked
if only using a single approximation method. Furthermore, utilization of multiple surrogates was useful for
locating various local optima in addition to the global optimum.

Table 7. Predicted vibration reduction by each of the surrogates at all of the optimal designs from Table 6, along with
predicted stress margins in parentheses.

Optimum Sample Predicted Predicted Predicted Predicted Predicted Predicted

Size Reduction & Reduction & Reduction & Reduction & Reduction & Reduction &

Stress Margin Stress Margin Stress Margin Stress Margin Stress Margin Stress Margin

w/ Poly. w/ Poly(red) w/ KRG w/ RBNN w/ Wtd. Avg. w/ Wtd. Avg.(red)

Poly. 283 394% (0.0147) 341% (0.0080) 99% (0.0761) 91% (0.0001) 196% (0.0383) 205% (0.0324)

Poly(red) 283 571% (-0.0002) 512% (0.0001) 115% (0.0083) 94% (-0.0191) 262% (-0.0003) 287% (-0.0002)

KRG 283 298% (-0.0180) 283% (-0.0098) 120% (0.0840) 91% (0.0005) 173% (0.0298) 187% (0.0275)

RBNN 283 427% (-0.0515) 300% (-0.0482) 90% (0.1141) 94% (0.0001) 203% (0.0295) 184% (0.0207)

Wtd. Avg. 283 484% (-0.0263) 417% (-0.0640) 119% (0.0407) 93% (0.0000) 235% (0.0083) 247% (-0.0130)

Wtd. Avg.(red) 283 387% (0.0464) 378% (0.0435) 99% (0.0620) 92% (0.0002) 193% (0.0436) 222% (0.0427)

Poly. 484 222% (0.0076) 200% (0.0077) 72% (0.0074) 93% (-0.0386) 133% (-0.0007) 130% (-0.0002)

Poly(red) 484 215% (0.0047) 207% (0.0045) 82% (0.0056) 93% (-0.0379) 135% (-0.0025) 137% (-0.0022)

KRG 484 108% (0.0001) 104% (0.0003) 145% (0.0068) 90% (-0.0426) 120% (-0.0044) 118% (-0.0043)

RBNN 484 48% (-0.0149) 37% (-0.0012) 104% (0.1076) 97% (0.0004) 81% (0.0380) 75% (0.0410)

Wtd. Avg. 484 154% (-0.0286) 146% (-0.0223) 102% (0.0625) 78% (0.0060) 117% (0.0152) 116% (0.0154)

Wtd. Avg.(red) 484 185% (-0.0002) 185% (0.0005) 86% (0.0045) 91% (-0.0108) 124% (-0.0001) 129% (0.0002)
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Figure 12. Comparison of the best and worst optimal de-
signs with the baseline design.

Although all of the optimal designs in Tables 5
and 6 are different, they all result in significant re-
duction of the vertical shear, F4Z , which is the pri-
mary mechanism for reducing the objective function
corresponding to this flight condition. This is illus-
trated in Figure 12, where the best and worst designs
– 70.5% and 45.0% vibration reduction respectively
– from Tables 5 and 6 are compared with the MBB
BO-105 baseline vibratory loads. The two optimal
design reduce the vertical shear by 74% and 41%.
While the other vibratory loads are also reduced,
the vertical shear is the largest and therefore its re-
duction is the most critical for minimizing the ob-
jective function. Furthermore, all of the designs in
Tables 5 and 6 correspond to stress margins < 0.02,
which shows that the stresses in the optimal blades

are relatively close to the allowable stress.
The significant differences in predicted and actual amounts of vibration reduction in Tables 5 and 6

indicate that the surrogates are inaccurate at their respective optimal designs. Furthermore, the surrogates
were susceptible to predicting impractical amounts of vibration reduction, i.e. ≥ 100%. Thus it was especially
critical for this problem to conduct simulations at each optimal design in order to obtain the actual amount
of reduction. Even though they are not accurate every where in the design space, the surrogates still led to
reduced vibration designs.

VI.D. Global Sensitivity Analysis Results

The variability in the surrogate objective function due to the most significant design variables are given in
this section. All results in this section are based on direct approximation of the overall objective function.
Figures 13 - 17 show the total variability including interactions among design variables and variability due
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to main effects. Design variables which are predicted to account for less than 3% of the total variability
are considered to be relatively unimportant, and therefore are not shown. In addition, Figures 13 - 17 also
give the total variability from all of the depicted design variables, as well as the total variability from the
remaining design variables which individually account for less than 3% of the variance. Note that results
generated with radial basis neural networks are not depicted because all design variables were predicted to
account for 5-9% of the total variability. Thus, the GSA based on radial basis neural networks predicts that
all of the design variables essentially have equal importance.
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Figure 13. Contribution to the variability in the objective function from the most significant design variables using full
term polynomial surrogates.
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Figure 14. Contribution to the variability in the objective function from the most significant design variables using
reduced term polynomial surrogates.

From Figures 13 - 17 it is clear that the GSA predicts t1 at the 25%, 50%, and 100% blade stations are
the three most important design variables, no matter what sample size or approximation method is used
in the analysis. However, beyond this observation, the results of the global sensitivity analysis are highly
dependent on the sample size and the approximation method. For instance, using the kriging surrogate and
283 sample points, t1 at the 50% station is predicted to be the second most important variable. In contrast,
this variable accounts for the third most variability in the objective function when using 484 sample points
to create the surrogate. Furthermore, increasing the number of sample points changes which variables the
GSA determines to be the most important for each surrogate. Comparing the results corresponding to the
kriging surrogate with the other surrogates in Figures 13 - 17 with 283 sample points illustrates the effect
of using different surrogates. The kriging surrogate predicts that 4 variables are the most significant and
account for 89.5% of the total variability, while GSA with the other surrogates predicts that 7-10 design
variables are significant.
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Figure 15. Contribution to the variability in the objective function from the most significant design variables using
kriging surrogates.
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Figure 16. Contribution to the variability in the objective function from the most significant design variables using
weighted average surrogates with the full term polynomial.
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Figure 17. Contribution to the variability in the objective function from the most significant design variables using
weighted average surrogates with the reduced term polynomial.
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In order to verify that the unimportant variables according to the GSA have little effect on the predictive
capabilities of the surrogates, the surrogates were reconstructed after eliminating the unimportant design
variables and the errors were compared to the errors when all of the design variables were included in
the fitting process. The results of this comparison are summarized in Table 8, which gives the ratios of
the reconstructed surrogates’ errors to the errors obtained when using all of the design variables. The
most extreme application of the GSA occurs in the case of kriging with 283 sample points, in which 13 of
the 17 design variables were considered unimportant. In this case, the average error of the 4 dimensional
kriging surrogate was 13.9% higher than the 17 dimensional kriging surrogate, while the maximum error was
essentially the same. Other than the case of kriging with 283 sample points, the reconstructed surrogates
after the GSA were only slightly less accurate or even more accurate – i.e. ratios less than 1 – than the
original surrogates. For example, the reduced term polynomial based on 283 sample points is 21.3% more
accurate than the original surrogate in terms of average error. Instances in which the reconstructed surrogates
are more accurate suggest that the eliminated variables are unimportant since they impair the predictive
capabilities of the surrogates when included.

Table 8. Ratio of errors after unimportant design variables are left out during surrogate construction to errors with
all variables included

Surrogate Sample Number of Ratio of Ratio of

used in Size Eliminated Average Maximum

GSA Variables Errors Errors

Poly 283 7 0.822 1.025

Poly(red) 283 8 0.787 0.971

KRG 283 13 1.139 1.023

Wtd. Avg. 283 10 1.030 0.878

Wtd. Avg.(red) 283 10 1.014 0.880

Poly 484 9 0.917 0.980

Poly(red) 484 8 0.930 1.015

KRG 484 10 0.951 0.896

Wtd. Avg. 484 10 1.043 0.811

Wtd. Avg.(red) 484 10 1.048 0.838

The GSA was also utilized to refine the search for the optimum with each surrogate. After the unimpor-
tant design variables were removed, the reconstructed surrogates were optimized. The unimportant variables
were fixed at their original optimum values from optimization when all variables were included in the surro-
gate construction. The results of this analysis are given in Table 9. Using the GSA to refine the optimization
search generally resulted in superior designs to the original optimal designs. The most significant improve-
ment occurred in the case of kriging surrogates based on 484 sample points, where the refined search led to
an additional 13.8% vibration reduction. The weighted average surrogates were the only models in which
the refined optimization did not always produce a better design. The failure of the refined search based on
GSA to lead to better designs in the case of some of the weighted average surrogates does not necessarily
mean that the GSA led to the removal of important design variables. Rather, the failure to produce a better
design may be attributed to the fact that the surrogates are not accurate at the optimal designs.

VII. Conclusions

The results in this paper demonstrate the effectiveness of employing multiple surrogates as a relatively
inexpensive method for fully utilizing expensive sample data. In addition, it was shown that the weighted
average surrogate approach protected against the worst individual surrogate and generally performed as well
as the best in terms of predictive capability and optimization. It was demonstrated that when applying
surrogate based optimization to the helicopter vibration reduction problem, superior blade designs may
be overlooked if only a single approximation method is employed. Furthermore, the multiple individual
surrogates can be combined into a weighted average surrogate whose performance was shown to be robust
with respect to issues such as sample size and the various responses considered in this study. Finally, it was
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Table 9. Comparison of “actual” vibration reductions using reconstructed surrogates based on the GSA, with surrogates
based on all design variables

Surrogate Sample Actual Actual Actual ωL1ωL1ωL1 ωF1ωF1ωF1 ωT1ωT1ωT1

Size Reduction Reduction Stress Margin

(all variables) (after GSA) (after GSA)

Poly. 283 64.4 % 70.4 % 0.005 0.623 1.058 4.521

Poly(red) 283 60.1 % 66.9 % 0.003 0.621 1.057 4.454

KRG 283 54.1 % 58.0 % 0.017 0.640 1.058 5.139

Wtd. Avg. 283 70.5 % 60.2 % 0.004 0.602 1.057 4.071

Wtd. Avg.(red) 283 65.0 % 64.8 % 0.003 0.613 1.059 3.952

Poly. 484 45.0 % 52.4 % 0.006 0.626 1.057 4.346

Poly(red) 484 50.0 % 60.7 % 0.008 0.618 1.056 4.512

KRG 484 55.8 % 69.6 % 0.001 0.606 1.055 4.569

Wtd. Avg. 484 67.6 % 63.9 % 0.006 0.608 1.056 4.395

Wtd. Avg.(red) 484 58.8 % 65.1 % 0.004 0.616 1.056 4.497

demonstrated that the application of GSA to the helicopter vibration problem was an effective method for
eliminating unimportant design variables. The principal results from this study are summarized below.

• The weighted average approach generally produced surrogates which were as effective as the “best”
individual approximation method for predicting over the entire design space, regardless of the sample
size. In contrast, the “best” individual surrogate for predicting over the entire design space was
dependent on the sample size.

• The weighted average surrogates generally performed as well as any individual surrogate with respect
to maximum errors, which are local error measures, even though a global error measure is used to
construct the weighted average models.

• Regardless of whether the surrogate objective function was formed by approximating the underlying
vibratory loads, or by directly approximating the overall response, the performance of the weighted
average surrogates was comparable to the best individual method in terms of average error, and per-
formed better than the worst approximation method in terms of maximum error.

• The weighted average surrogates were effective for locating reduced vibration designs for both sample
sizes and both methods of generating the surrogate objective function.

• Optimization of multiple surrogates was an effective and relatively inexpensive method for locating
reduced vibration blade designs which would have been overlooked if only a single surrogate was
employed. Feasible designs ranging from 45-70.5% vibration reduction were located.

• The predictive capabilities of the surrogates could be enhanced by eliminating design variables which
are determined to be unimportant using GSA. In the instances where the predictive capability was not
enhanced, the error was generally only slightly higher.

• It is possible to locate superior blade designs by refining the search for the optimum based on the GSA.
However, if the surrogates are not accurate at the optimal designs, the refined search may not always
lead to improved blade designs.

Appendix: Generalized Mean Square Cross-Validation Error

In general, the data is divided into k subsets, i.e. k-fold cross-validation, of approximately equal size.
A surrogate model is constructed k times, each time leaving out one of the subsets from training, and
using the omitted subset to compute the error measure of interest. The generalization error estimate is
computed using the k error measures obtained (e.g., average). If k equals the number of sample points, this
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approach is called leave-one-out cross-validation (also known as PRESS in the polynomial response surface
approximation terminology). Equation (53) represents a leave-one-out calculation when the generalization
error is described by the mean square error,

GMSEi =
1
k

k∑
i=1

(
yi − ŷ(−i)

i

)2

(53)

where ŷ(−i)
i

represents the prediction at x(i) using the surrogate constructed with all sample points except
(x(i), y

i
). The advantage of cross-validation is that it provides a nearly unbiased estimate of the generalized

error and the corresponding variance is reduced, when compared to split-sample, considering that every point
gets to be in a test set once, and in a training set (k − 1) times, regardless of how the data is divided.

Acknowledgments

This research was supported in part by the FXB Center for Rotary and Fixed Wing Air Vehicle Design,
NASA GSRP grant NNA-06CB71H for Bryan Glaz, and partial funding from the Center for Rotorcraft
Innovation (CRI) under WBS 2006-B-01-01.2-A17. Support for Tushar Goel was provided by the Institute
for Future Space Transport, under the NASA Constellation University Institute Program (CUIP), with Ms.
Claudia Meyer as program monitor. Furthermore, some of the material in this study is based upon work
supported by the National Science Foundation under Grant No. 0423280.

References

1Friedmann, P. P., “Helicopter Vibration Reduction Using Structural Optimization with Aeroelastic/Multidisciplinary
Constraints - A Survey,” Journal of Aircraft , Vol. 28, No. 1, January 1991, pp. 8–21.

2Celi, R., “Recent Applications of Design Optimization to Rotorcraft—A Survey,” Journal of Aircraft , Vol. 36, No. 1,
January-February 1999, pp. 176–189.

3Ganguli, R., “Survey of Recent Developments in Rotorcraft Design Optimization,” Journal of Aircraft , Vol. 41, No. 3,
May-June 2004, pp. 493–510.

4Friedmann, P. P. and Millott, T. A., “Vibration Reduction in Rotorcraft Using Active Control: A Comparison of Various
Approaches,” Journal of Guidance, Control, and Dynamics, Vol. 18, No. 4, July-August 1995, pp. 664–673.

5Friedmann, P. P., “Rotary Wing Aeroelasticity - Current Status and Future Trends,” AIAA Journal , Vol. 42, No. 10,
October 2004, pp. 1953–1972.

6Queipo, N. V., Haftka, R. T., Shy, W., Goel, T., Vaidyanathan, R., and Tucker, P. K., “Surrogate-Based Analysis and
Optimization,” Progress in Aerospace Sciences, Vol. 41, 2005, pp. 1–28.

7Won, K. and Ray, T., “A Framework for Design Optimization using Surrogates,” Engineering Optimization, Vol. 37,
No. 7, October 2005, pp. 685–703.

8Simpson, T. W., Booker, A. J., Ghosh, D., Giunta, A. A., Koch, P. N., and Yang, R., “Approximation Methods in
Multidisciplinary Analysis and Optimization: A Panel Discussion,” Structural and Multidisciplinary Optimization, Vol. 27,
No. 5, July 2004, pp. 302–313.

9Glaz, B., Friedmann, P. P., and Liu, L., “Surrogate Based Optimization of Helicopter Rotor Blades for Vibration Re-
duction in Forward Flight,” 47th AIAA/ASME/ASCHE/AHS/ASC Structures, Structural Dynamics & Materials Conference,
Newport, RI, May 1-4 2006, pp. 1–21, AIAA Paper 2006-1821.

10Goel, T., Haftka, R. T., Shyy, W., and Queipo, N. V., “Ensemble of Surrogates,” Structural and Multidisciplinary
Optimization, Vol. 33, 2007, pp. 199–216.

11Zerpa, L., Queipo, N., Pintos, S., and Salager, J., “An Optimization Methodology of Alkaline-Surfactant-Polymer Flood-
ing Process using Field Scale Numerical Simulation and Multiple Surrogates,” Journal of Petroleum Science and Engineering,
Vol. 47, 2005, pp. 197–208.

12Goel, T., Zhao, J., Thakur, S. S., Haftka, R. T., and Shyy, W., “Surrogate Model-Based Strategy for Cryogenic Cavitation
Model Validation and Sensitivity Evaluation,” 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit ,
Sacramento, CA, July 9-12 2006, AIAA Paper 2006-5047.

13Samad, A., Kim, K. Y., Goel, T., Haftka, R. T., and Shyy, W., “Shape Optimization of Turbomachinery Blade using
Multiple Surrogate Models,” ASME Joint US-European Fluids Engineering Division Summer Meeting, Miami, FL, July 17-20
2006, FEDSM 2006-98368.

14Sobol, I., “Sensitivity Analysis for Nonlinear Mathematical Models,” Mathematical Modeling & Computational Experi-
ment , Vol. 1, No. 4, 1993, pp. 407–414.

15Vaidyanathan, R., Goel, T., Shyy, W., and Haftka, R. T., “Global Sensitivity and Trade-Off Analysis for Multi-Objective
Liquid Rocket Injector Design,” 40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit , Ft. Lauderdale, FL,
July 11-14 2004, AIAA 2004-4007.

16Mack, Y., Goel, T., Shyy, W., and Haftka, R. T., “Multiple Surrogates for the Shape Optimization of Bluff Body-
Facilitated Mixing,” 43rd AIAA Aerospace Sciences Meeting and Exhibit , Reno, NV, January 10-13 2005, AIAA 2005-0333.

24 of 25

American Institute of Aeronautics and Astronautics



17Homma, T. and Saltelli, A., “Importance Measures in Global Sensitivity Analysis of Nonlinear Models,” Reliability
Engineering and Systems Safety, Vol. 52, 1996, pp. 1–17.

18Millott, T. A. and Friedmann, P. P., Vibration Reduction in Helicopter Rotors Using an Actively Controlled Partial Span
Trailing Edge Flap Located on the Blade, NASA CR 4611, June 1994.

19Yuan, K. A. and Friedmann, P. P., Aeroelasticity and Structural Optimization of Composite Helicopter Rotor Blades
with Swept Tips, NASA CR 4665, May 1995.

20Myrtle, T. F. and Friedmann, P. P., “Application of a New Compressible Time Domain Aerodynamic Model to Vibration
Reduction in Helicopters Using an Actively Controlled Flap,” Journal of the American Helicopter Society, Vol. 46, No. 1, Jan.
2001, pp. 32–43.

21de Terlizzi, M. and Friedmann, P. P., “Active Control of BVI Induced Vibrations Using a Refined Aerodynamic Model
and Experimental Correlation,” Proceedings of the 55th Annual Forum of the American Helicopter Society, Montreal, Canada,
May 1999, pp. 599–615.

22Depailler, G. and Friedmann, P. P., “Reductions of Vibrations Due to Dynamic Stall in Helicopters Using an Actively
Controlled Flap,” Proceedings of the 43rd AIAA/ASME/ASCE/AHS/ACS Structures, Structural Dynamics and Materials
Conference, Denver, CO, April 2002, AIAA Paper No. 2002-1431.

23Patt, D., Liu, L., and Friedmann, P. P., “Simultaneous Vibration and Noise Reduction in Rotorcraft Using Aeroelastic
Simulation,” Journal of the American Helicopter Society, Vol. 51, No. 2, 2006, pp. 127–140.

24Liu, L., Friedmann, P. P., and Patt, D., “Simultaneous Vibration and Noise Reduction in Rotorcraft - Practical Imple-
mentation Issues,” Proceedings of the 46th AIAA/ASME/ASCE/AHS/ACS Structures, Structural Dynamics and Materials
Conference, Austin, TX, April 2005, AIAA Paper 2005-2245.

25Yuan, K. A. and Friedmann, P. P., “Structural Optimization for Vibratory Loads Reduction of Composite Helicopter
Rotor Blades with Advanced Geometry Tips,” Journal of the American Helicopter Society, Vol. 43, No. 3, July 1998, pp. 246–
256.

26Myrtle, T. F., Development of an Improved Aeroelastic Model for the Investigation of Vibration Reduction in Heli-
copter Rotors using Trailing Edge Flaps, Ph.D. thesis, University of California, Los Angeles, 1998, Mechanical and Aerospace
Engineering.

27Patt, D., Liu, L., and Friedmann, P. P., “Rotorcraft Vibration Reduction and Noise Prediction Using a Unified Aeroelastic
Response Simulation,” Journal of the American Helicopter Society, Vol. 50, No. 1, January 2005, pp. 95–106.

28Johnson, W., CAMRAD/JA - A Comprehensive Analytical Model of Rotorcraft Aerodynamics and Dynamics, Vol I.
Theory Manual , Johnson Aeronautics, Palo Alto, CA, 1988.

29Johnson, W., CAMRAD/JA - A Comprehensive Analytical Model of Rotorcraft Aerodynamics and Dynamics, Vol II.
Users’ Manual , Johnson Aeronautics, Palo Alto, CA, 1988.

30de Terlizzi, M. and Friedmann, P. P., “Aeroelastic Response of Swept Tip Rotors Including the Effects of BVI,” Proceed-
ings of the 54th Annual Forum of the American Helicopter Society, Washington D.C., May 1998, pp. 644–663.

31Friedmann, P. P. and Shanthakumaran, P., “Optimum Design of Rotor Blades for Vibration Reduction in Forward
Flight,” Journal of the American Helicopter Society, Vol. 29, No. 4, 1984, pp. 70–80.

32Lim, J. W. and Chopra, I., “Aeroelastic Optimization of a Helicopter Rotor,” Journal of the American Helicopter Society,
Vol. 34, No. 1, 1989, pp. 55–62.

33Celi, R. and Friedmann, P. P., “Structural Optimization with Aeroelastic Constraints of Rotor Blades with Straight and
Swept Tips,” AIAA Journal , Vol. 28, No. 5, 1990, pp. 928–936.

34Sacks, J., Welch, W. J., Mitchell, T. J., and Wynn, H. P., “Design and Analysis of Computer Experiments,” Statistical
Science, Vol. 4, No. 4, 1989, pp. 409–435.

35McKay, M. D., Beckman, R. J., and Conover, W. J., “A Comparison of Three Methods for Selecting Values of Input
Variables in the Analysis of Output from a Computer Code,” Technometrics, Vol. 21, No. 2, May 1979, pp. 239–245.

36Jin, R., Chen, W., and Sudjianto, A., “An Efficient Algorithm for Constructing Optimal Design of Computer Experi-
ments,” Journal of Statistical Planning and Inference, Vol. 134, No. 1, 2005, pp. 268–287.

37Koch, P. N., Evans, J. P., and Powell, D., “Interdigitation for Effective Design Space Exploration using iSIGHT,”
Structural and Multidisciplinary Optimization, Vol. 23, No. 2, 2002, pp. 111–126.

38Jin, R., Chen, W., and Simpson, T. W., “Comparative Studies of Metamodeling Techniques Under Multiple Modeling
Criteria,” Structural and Multidisciplinary Optimization, Vol. 23, 2001, pp. 1–13.

39Jones, D. R., Schonlau, M., and Welch, W. J., “Efficient Global Optimization of Expensive Black-Box Functions,” Journal
of Global Optimization, Vol. 13, 1998, pp. 455–492.

40Sasena, M., Flexibility and Efficiency Enhancements for Constrained Global Optimization with Kriging Approximations,
Ph.D. thesis, University of Michigan, 2002, Mechanical Engineering.

41Simpson, T. W., Peplinski, D., Koch, P. N., and Allen, J. K., “Metamodels for Computer-based Engineering Design:
Survey and recommendations,” Engineering with Computers, Vol. 17, 2001, pp. 129–150.

25 of 25

American Institute of Aeronautics and Astronautics


