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Abstract

The shear response of aluminum foam, including size
effects, is measured and quantified for a closed cell
aluminum foam. The shear stiffness is shown to
depend linearly on density, while the strength ex-
hibits a power law dependence. The linear response
is shown to be independent of strain rate for low
rate dynamic loading, while the strength and en-
ergy absorption increase with increasing strain rate.
The density dependence of the stiffness is repro-
duced analytically based on the composite cylinders
model. Optical techniques are used to measure the
strain field of the experimental specimens through-
out the loading program. By evaluating concentric
sub-regions of the sample, a sample size of 18 mean
cell diameters is determined to be the dimension
below which the uncertainty in the predicted shear
modulus of an aluminum foam sample increases sig-
nificantly. This length scale threshold is replicated
in a periodic finite element structure with randomly
distributed imperfections.

1 Introduction

Metal foams represent an attractive alterna-
tive for sandwich structure cores for multiple rea-
sons. With metal foam cores, the adhesive sub-
strate of a sandwich structure may be eliminated
with in-production integral bonding to metallic face
sheets, stiffening the sandwich and broadening its
range of operating environments [1]. Metal foams
exhibit a compressive stress-strain response that is
ideal for energy absorption and impact alleviation
with a long, constant stress, plastic strain plateau
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[2]. An open cell metal foam offers an opportunity
to eliminate the catastrophic nature of water or cryo-
genic gas permeation that has crippled the long-term
use of sandwich constructions with honeycomb cores
[3]. An open cell construction also allows for active
cooling of the sandwich structure, elevating its range
of acceptable operating temperatures.

For integration into sandwich structures, the
shear behavior of metal foam must be understood.
Some disparate results regarding shear behavior cur-
rently exist in the literature. One study found a
linear relationship between shear strength and den-
sity [4], while a cubic lattice model subjected to
shear loading predicted a non-linear power law de-
pendence [5]. Another investigation offers only a
few data points for shear stiffness and strength of
melt-foamed aluminum [6]. Furthermore, these ex-
periments involved thin specimens, with no account
for size effects.

The present paper offers the full shear re-
sponse curves for a broad range of density. The
density dependence of stiffness and strength are
found experimentally with the former being repro-
duced analytically. The strain rate dependence of
the shear response is also considered for low-rate
dynamic loading. The effect of specimen size, rela-
tive to the mean cell size, is analyzed experimentally
with a unique approach involving digital image cor-
relation. The observed behavior is reproduced with
a finite element model. These analyses identify a
threshold in the ratio of specimen size to cell size
below which the shear response of a given sample is
associated with a significant amount of uncertainty.
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2 Shear Response - Experi-

ments

The details of the experimental procedure
and an extended analysis of the results are presented
in [7]; a summary is presented here. Square sam-
ples of SiC stabilized aluminum foam, produced by
Cymat (Ontario, Canada), were subjected to shear
loading in a window frame device. The frame, shown
in Figure 1, is similar to that suggested by ASTM
C273, but modified to avoid through the thickness
size effects, such that bulk properties may be mea-
sured. Samples ranging in density over 4 —15% were
tested to obtain the density-dependent relationships
for the mechanical properties. Strain rate effects
were studied through the low-rate dynamic regime
covering the range of 3.65E — 5/s to 0.17/s.

A representative response curve, up to and
beyond the maximum load, is shown in Figure 2.
The material exhibits a linear region leading to a
peak load and a subsequent dramatic loss of load
carrying capability, as large visible fractures form at
the peak load. The post-linear response of aluminum
foam in shear is markedly different from its uniax-
ial response, which exhibits a long constant stress
plateau after peak load, leading to densification and
a further increase in load carrying capability [2]. The
early onset of plastic deformation, illustrated by the
unloading response of Figure 2 is typical of all metal
foam deformation [5].

The strain rate dependence of the shear re-
sponse for static and low-rate dynamic loading is
shown in Figure 3 for two samples of like density.
The linear response is clearly independent of strain
rate, while the strength and energy absorption show
a slight increase. On average, the samples subjected
to dynamic loading had a specific strength 24%
greater and specific energy absorption 36% greater
than equivalent samples under static loading.

Figure 4 and Figure 5 show the density de-
pendence and strain rate dependence of the modu-
lus and strength, respectively, of aluminum foam in
shear. The modulus follows a linear dependence on
density and is sufficiently lower than the lower bound
of a model presented in [5]. The static strength fol-
lows a power law dependence as predicted in [5].
For a complete understanding of the shear strain
rate dependence of aluminum foam, the methods
employed in the present work must be extended to
higher strain rates via, for example, drop tower and
split Hopkinson bar experiments.

The sensitivity of aluminum foam to compres-
sive and tensile strain rates have been studied in [8]-
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[12]. Static experiments on the uniaxial behavior of
aluminum foams were conducted in [4],[13]-[16]. [4]
and [6] measured the static shear properties of some
aluminum foam samples based on ASTM C273 with-
out consideration of cell size effects.

2.1 Shear Response - Analysis

A model for the density dependence of the
shear modulus of aluminum foam is presented by the
authors in [17] and is summarized here. The model
considers a transversely isotropic representative vol-
ume element (RVE) oriented in three-dimensional
space. The constitutive properties of the RVE can
take various forms such as a concentric cylinder con-
sisting of a fiber surrounded by matrix material or
a platelet reinforcement set in a matrix, as shown
in Figure 6. The concentric cylinder may be used
to model an open cell foam or the network of cell
edges (cell edges are the intersection of cell walls) of a
closed cell foam, which have been shown to dominate
metal foam deformation [18]. The constitutive prop-
erties are evaluated to include cell wall imperfections
such as curvature and corrugation, which couples
bending and stretching deformation in the cell edges,
also consistent with observations [18]. The magni-
tude of these imperfections and the geometry of the
RVE are taken from measurements presented in [19].

The RVE is subjected to both a state of con-
stant shear strain, following the method of [20], as
well as a state of constant shear stress. In composite
materials, a state of constant strain is an appropri-
ate assumption when fibers are oriented parallel to
the direction of loading, whereas a state of constant
stress is appropriate when the fibers are oriented per-
pendicular to the direction of loading. For a foam,
then, with its load bearing members oriented ran-
domly in space, a stress state between these two ex-
tremes is appropriate. The assumption of constant
stress results in the Reuss bound for the shear mod-
uli and the assumption of constant strain results in
the Voigt bound.

The Voigt bound is

prEI(65 + 4p,vp — 4p§yﬁ)

G oam — 1
foom = 9001 + ppu) @I+ A, ad) )
and the Reuss bound is
G _ 60p,E,1
Toam = {61+ 56p,vy + 42w f2) 2T + AY, a2)
(2)

in which the terms are defined as follows: p, is the
relative density of the foam, F; is the uniaxial mod-
ulus of the foam’s parent material, I and A are the
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cross-sectional properties of the cell edges, vy is the
Poisson ratio of the foam, and a,, are the magnitudes
of the sinusoidal imperfections in the foam cell edges,
magnitudes which were reported in [19].

Within the validity of its assumptions, the
model produces an envelope of theoretically accept-
able values for the shear modulus of the aluminum
foam studied in the present work. The envelope and
the experimental data presented above are plotted
together in Figure 7. The model and the experi-
mental data agree well. Also plotted is the lower
bound of a theory that uses a cubic lattice structure
RVE [5]

(3)

A proper extension of the theory presented
here is to extend the model to include mechanism-
based failure such that the entire shear response may
be analyzed.

Gfoam = 2(10 — 01)E5[05p2 + 03p7-]

3 Size Effects - Experiments

The results presented above and in the re-
lated papers are bulk property measurements. In
each work, the aluminum foam has been treated as
a continuous, homogeneous medium, despite obvi-
ous inhomogeneities. Regardless of this fact, such
a treatment is valuable if aluminum foam is to be
integrated into engineered structures, in which pre-
vailing analysis rests on these very assumptions. By
treating the foam in this manner, congruent to our
analysis of materials such as metals, woods, and
polymers, it is possible to directly compare the per-
formance of aluminum foam with other competitive
engineering materials.

As metals are inhomogeneous on the mi-
croscopic level, comprised of individual crystals,
metal foams are inhomogeneous on the cell level.
When a sufficient amount of the inhomogeneous sub-
structure is considered, the material acts as a homo-
geneous continuum. In the present work, experi-
mental measurements related to the shear response
are used to determine the length scale at which alu-
minum foam may be treated as a homogeneous con-
tinuum.

The square specimens that were tested in
shear, as described above, were painted flat white
and sprinkled with black glitter to form a random
black and white pattern. As the specimen was de-
formed, high resolution black and white digital im-
ages (202822044 pixels) were captured incremen-
tally. With Surface Displacement Analysis software
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from the Instron Corporation, the images were seg-
mented into boxes of 32z32 pixels. The software
invokes digital image correlation to follow the move-
ment of the black and white pattern in each box,
outputting an average displacement vector for each
box. This provides a displacement field for the entire
surface of the sample.

Shear strains may be evaluated by consider-
ing square sub-regions of the sample, concentric with
the sample itself, as is shown in Figure 8. The values
for displacement of each point along the edge of the
sub-region provide the deformation of the edge of
the sub-region. By interpreting the change in angle
between the edges of the sub-region from picture to
picture, shear strains may be quantified incremen-
tally, consistent with the definition of engineering
shear strain [21]. In summing up each increment
of shear strain, the state of strain in the sample is
known at distinct points throughout the loading pro-
gram.

Sub-regions of varying size, all concentric
with the sample itself, are evaluated for shear strain.
The size of the sub-region is expressed in mean cell
diameters. Measurements of the mean cell diameters
for a range of aluminum foam densities is available
in [19] and is used here to define the mean cell di-
ameter. The smallest sub-region shown in Figure 8,
for example, has 9 mean cell diameters along each
of its edges. The next larger sub-region is 12 mean
cell diameters in size, and so on by three’s.

With the strain known for each sub-region,
the stress-strain response curve may be plotted for
each sub-region, as is shown in Figure 9. The results
clearly indicate that for sub-regions with dimensions
shorter than 18 mean cell diameters, the local stress-
strain response deviates significantly from the bulk
material response. And for sub-regions with dimen-
sions larger than 18 mean cell diameters, the re-
sponse remains consistent with the bulk properties.

Figure 9 indicates a decline in material stiff-
ness with decreasing sample size, but this is not a
general result. Some specimens may even exhibit an
increase in stiffness with decreasing sample size. As
the sample size decreases, the mechanical behavior
of individual cells is magnified as it is no longer av-
eraged out by as many competing neighboring cells.
The general result is that the uncertainty in the ma-
terial response increases as the sample size decreases.
This is the essence of mechanical behavior in ma-
terial samples that are of a size compararble to or
smaller than the characteristic dimension.

The experimental result is further illustrated

in Figure 10, in which the ratio &< is plotted as a
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percentage versus the number of cells in the sub-
region. € represents the uncertainty in the shear
modulus for a given sub-region. The uncertainty is
defined as the difference between the shear modulus
of the sub-region and the shear modulus of the bulk
material, Gpyr. As the number of cells increases, the
ratio reaches a value of less than 5% at a sub-region
size of 18 cells and remains small and constant for
all sub-regions of larger dimensions.

The result presented here compares favor-
ably with results for other macroscopically inhomo-
geneous materials. [22], [23], and [24] each found
that size effects in reticulated foams dominated the
sample response if the critical dimension of the sam-
ple measured fewer than 20 mean cell diameters [2].
Furthermore, the strength of the sub-regions repre-
sented in Figure 9 does not decline, consistent with
the results of [25], in which shear strength of metal
foam samples did not decline until the sample di-
mensions were less than 3 mean cell diameters.

Optical strain measurement is an ideal
method for obtaining size effects for two reasons.
First, a broad range of sample sizes may be tested
simultaneously and, therefore, subjected to identical
test conditions. Second, the ratio of surface area to
volume is unchanged. When the samples are ma-
chined, cells on the sample edge are damaged. The
mechanical integrity of these cells is diminished, yet
they still contribute to the overall volume of the sam-
ple. The ratio of the damaged edge cells to undam-
aged cells increases as the sample size decreases. In
the present method, this ratio remains constant, al-
lowing for the testing of small samples that are free
of cells damaged by cutting.

3.1 Size Effects - Analysis

The subject of homogenization of inhomo-
geneous materials is a complex topic that requires a
rigorous mathematical approach to obtain a true un-
derstanding of its related nuances. Such approaches
are summarized in [26] and [27]. The present ap-
proach is an attempt to illustrate and replicate with
a simple, sensible model the size effect behavior ob-
served in the experiments.

Aluminum foam has been modeled as a ran-
dom structure and as a periodic structure; its cells
have been considered perfect as well as imperfect.
In [17], as summarized above, the foam is modeled
as a random structure with imperfections. In [2]
and [25], among others, it is modeled as a perfect
periodic structure. Even though simple observation
reveals that aluminum foam is an imperfect, semi-
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random structure, the results of the previous section
illustrate that the random and imperfect nature of
the foam structure is important in shear only for
samples with dimensions fewer than 18 mean cell di-
ameters. For a sample smaller than the threshold
value, the shear response depends highly on the spe-
cific imperfections contained within the sub-region.
Some imperfections act as stiffening mechanisms,
while others promote compliance. As the sample
size decreases, imperfections dominate and the un-
certainty in its material response increases.

In the present analysis, a periodic structure of
NzN cells with randomly distributed imperfections
is created and analyzed with finite elements. The
structure is not meant to model aluminum foam. It
is used as a tool to understand the behavior of pe-
riodic structures in shear as imperfections are intro-
duced. The uncertainty in shear stiffness of the im-
perfect structures is of primary concern. The model
will be used to observe the disappearance of this un-
certainty as the sample size grows (as the number of
cells, N, increases).

A 10210 imperfect periodic structure is
shown in Figure 11, as an example. The structure is
made of four basic unit cells, one perfect and three
imperfect (Figure 12), randomly distributed, each
with an equal probability of inhabiting any given
cell location. There are 100 (N?) cell locations. The
structure is sheared and the shear stiffness is com-
puted. The structure is then given a different cellu-
lar distribution using the same four basic cells and
the shear stiffness is measured. This is repeated at
least three times for each value of N chosen from the
range 3 < N < 50. For a given value of N, multiple
runs, each with its associated imperfect cell distribu-
tion, produce a range of shear stiffnesses. The range
is taken to be the uncertainty, ¢, in the shear stiff-
ness of the Nz N periodic structure. It was found
that no more than three runs for each value of N
was necessary to produce a representative range of
shear stiffness values.

The models were created and solved in
ABAQUS with B23 cubic beam elements with solid
rectangular cross-sections. The dimensions of the
structure were scaled such that the perfect struc-
ture had a constant shear stiffness regardless of the
value of N.

The ratio G,,e:fm
ber of cells N in Figure 13, in which Gpergect is
the shear stiffness of the perfect periodic structure
shown in Figure 14. The histogram in Figure 13 is
remarkably similar to that in Figure 10. For struc-
tures with greater than 18 cells in each dimension,

is plotted versus the num-
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the uncertainty in shear stiffness becomes small and
remains relatively constant for all larger specimen
sizes.

A pertinent response to this result is to con-
sider the degree of imperfection introduced in the
above model. Perhaps this set of allowable imperfec-
tions is such that the uncertainty in shear stiffness
just so happens to drop off for sample dimensions
larger than 18 cells. Perhaps a more detrimental
set of imperfections (i.e.- imperfections that reduce
the shear stiffness of a given sample more drastically
than those chosen here) would require even larger
sample sizes before the uncertainty in shear stiffness
approaches a constant value.

To investigate such a possibility, each beam
member of the perfect structure shown in Figure
14 is given a 50% probability of disappearing from
the structure entirely. In the previous problem only
the cross bars (the diagonal elements of each cell)
were given a 50% probability of disappearing, while
the horizontal and vertical cell members always re-
mained. An example of the newly-degraded struc-
ture is shown in Figure 15.

The same procedure of introducing three sets
of imperfections into each Nz N sample is followed
and the results are plotted in Figure 16. Clearly, de-
spite the drastic increase in imperfection population,
the uncertainty in the shear stiffness of the structure
still approaches a constant value when the specimen
dimensions are greater than 18 cells.

Structures of different geometry (i.e.- honey-
combs with circular, hexagonal, or triangular cells)
and varying degrees of imperfection would be valu-
able subjects of study in order to understand the
dependence, if any, of the results presented here on
such parameters. The only size effect studies regard-
ing aluminum foam known to the authors are found
in [25] and [28]. In [25], the shear modulus of an
analytical regular hexagonal honeycomb structure is
analyzed by equilibrium and is shown to converge to
have bulk shear stiffness when the number of cells
is three or greater through the thickness. Since the
model contains perfect cells, the convergence prop-
erties do not represent the averaging out of imper-
fections, as are present in metal foams. Rather, the
convergence depends solely on the shape of the cell
chosen, in this case, hexagonal honeycomb. In [28],
aluminum foam specimens of varying thickness are
sheared experimentally. It is found that the strength
of these foams does not depend on specimen thick-
ness for specimens with at least three cells through
the thickness. The results of the present study are
consistent with [28]. As illustrated in Figure 9, a loss
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of strength is not observed for any of the specimens,
each of which is larger than three cell sizes.

4 Conclusions

The results presented in the present paper are
intended to reveal the characteristics of aluminum
foam that are of primary concern for sandwich struc-
ture cores. The shear response was measured and
shown to have an initial linear region accompanied
be increasing plastic strain even at low load lev-
els. After peak load, the load carrying capability
of the foam dropped off quickly. Up to low-rate dy-
namic loading, the linear response was independent
of strain rate while the peak load and energy absorp-
tion each increased as the strain rate increased. A
model based on the composite cylinders model simu-
lated the network of imperfect cell edges and offered
an envelope of predicted values for the aluminum
foam shear modulus.

Size effects were studied through experiment
and simulation. Digital image correlation provided
the full displacement field on the surface of the
foam throughout the experimental loading program.
Shear strain was calculated over concentric sub-
regions of varying size within the sample. For sub-
regions with dimensions shorter than 18 mean cell
diameters, the shear response became uncertain.
This uncertainty increased as the size of the sub-
region decreased. The same behavior was observed
through a finite element model of a periodic struc-
ture with randomly distributed imperfections. For
structures with dimensions shorter than 18 cells, the
uncertainty in the shear response increased as the
sample size decreased. This behavior was constant
for various degrees of cellular imperfection.
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Figure 1: The loading frame used in shear testing of

aluminum foam
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Figure 2: Representative shear response curve with
unloading behavior. Plastic strain exists at very low
load levels and increases throughout the linear re-

gion, stiffening the unloading response.
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Figure 3: Comparison between the static and dy-
namic response curves for two samples of equivalent

density
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and dynamic loading. No rate effects are observed
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Figure 5: Shear strength versus density for static
and dynamic loading. Rate effects are observed.
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as shown
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Figure 7: The model produces appropriate bounds
for the experimental shear moduli.

Figure 8: The black and white patterned speci-
men with its concentric sub-regions over which shear
strain is calculated. The black lines represent the
boundaries of the sub-regions.
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Figure 9: The shear response of various sub-regions
within a given sample
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Figure 10: The shear modulus of the sub-regions
converges to that of the bulk sample as the size of
the sub-region approaches 18 mean cell diameters.

AlAA-2003-1946

\/

A

Figure 11: The finite element model of a 10210 im-
perfect periodic structure. The geometry of each cell
is chosen randomly from the four cells in Figure 12

Perfect Imperfect

Imperfect Imperfect
Figure 12: The four cells that are used to construct
a periodic structure with randomly distributed im-
perfections
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Figure 15: The finite element model of an imper-
fect periodic structure in which the imperfections
are such that any member of any cell has a 50%
probability of being non-existent

Figure 13: The uncertainty in the shear stiffness of
the imperfect structure in Figure 11 approaches a
constant value for a structure larger than 18x18 cells.
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Figure 16: The uncertainty in the shear stiffness of
the imperfect structure in Figure 15 approaches a
constant value for a structure larger than 18x18 cells.

Figure 14: The perfect periodic structure has Nz N
perfect cells.
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