
Geometric Optimization in the Presence of Contact 
Singularities 

Jungsun Park* and W. J. Andersont 
The University of Michigan, Ann Arbor, MI 48109 

Abstract 

T h e  stress singularity of a sha rp  wedge con- 
tacting a half p lane  can b e  avoided by  chang- 
ing t h e  wedge shape. Shape optimization is ac- 
complished wi th  the geometric s t ra in  method 
(GSM), an optimali ty criterion method.  Sev- 
eral  numerical examples a r e  provided for dif- 
ferent  materials  i n  t h e  wedge and half plane t o  
avoid stress singularity near  t h e  sha rp  corner 
of t h e  wedge. Opt imum wedge shapes are ob- 
tained a n d  critical corner angles are compared 
wi th  t h e  angles f rom analytical contact mechan- 
ics. Numerical results a r e  well matched t o  an- 
alytical a n d  experimental  results. I t  is  shown 
t h a t  shape optimization by  G S M  is a useful tool 
t o  reshape t h e  wedge a n d  t o  avoid a stress sin- 
gularity. T h e  method  applies t o  more  general 
geometries where  t h e  singular behavior would 
b e  difficult to avoid by  classical means. 

Nomenclature 

V = determinant of coefficients of 
system equation in contact 
mechanics 

[Dl = strain-displacement matrix 
[El = stress-strain matrix 
f = functional for failure criterion 
G = shear modulus 
[Kl = global stiffness matrix 
[Nil = displacement shape function 

= total number of nodes in 
an element 

= total number of elements 
= applied load vector 
= equivalent load due to 

geometric strain 
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Subscripts 
G 
N 

Superscripts 

(4  
1,II 

= order of stress singularity 
= real part of a complex 
= polar coordinates 
= coordinate transformation matrix 
= displacement 
= geometric displacement 
= displacement components 
= coordinate vector 
= design variable 
= Dundurs' parameters 
= acceleration factor 
= exterior design, interior, traction 

and constrained boundary 
= wedge angle 
= critical wedge angle separating 

between the presence and absence 
of singularity 

= length in infinitesimal element 
= strain components 
= geometric strain components 
= coefficient of friction 
= Poisson's ratio 
= Airy stress function 
= stress components 

= objective stress in principal 
axes 1 and 2 

= applied body force and fully- 
stressed domain 

= geometric 
= vector 

= element e 
= half plane and wedge 
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Introduction Theoretical Background 

The stress distribution in an infinite single wedge was 
solved by Flamant using the three-dimensional Boussi- 
nesq solution [I,  21 (the Flamant solution is sometimes 
called "simple radial distribution"). Michell [2, 31 ex- 
tended the theory of two-dimensional wedge contact for 
loads on the wedge faces or for tractions on the infinite 
boundary by using the Boussinesq and Flamant solu- 
tion. 

Williams [4] developed the stress distributions near a 
singularity for various boundary conditions for angular 
corners of plates in extension. Bogy [5, 61 studied the 
singular stress field for two-wedge bonded contact by 
using the Mellin transform [7] and Williams' method. 

A wedge contacting a half plane has been studied by 
Dundurs and Lee [8] to investigate the stress singular- 
ity near a sharp edge for frictionless contact. Theo- 
caris and Gdoutos [9] extended the problem for fric- 
tional and bonded contact by using a simplified ap- 
proach. Based on the previous work, Comninou [lo] 
found critical wedge angles a t  which power stress sin- 
gularities disappear for frictional contact. 

Historically, notches have been used to eliminate high 
stresses near disks shrunk fit on circular shafts [ll] .  Ex- 
periments have been done to relieve the stress singular- 
ity a t  the reentrant sharp corner using notches (Bijak- 
Zochowski et al. [12]). 

Recently, a few studies [13, 14, 151 have been done on 
the mathematical theory of shape optimization for con- 
tact problems on the basis of optimization theory. The 
mathematical theories are limited to a simple problem 
such as the Signorini problem [16], in which a plane 
elastic body is supported by a rigid frictionless foun- 
dation. The theory is not robust because the objective 
functional is not continuously differentiable. 

The present study starts from the idea that the stress 
singularity of the sharp wedge contacting the half plane 
may disappear by changing the wedge shape using the 
geometric strain method [17, 181, an optimality crite- 

Flat-Sided Wedge Contacting a Half Plane 

In Fig 1, a half plane is compressed by a wedge with 
an interior angle 7 .  It  is assumed that 1) the contacting 
bodies are isotropic and homogeneous, 2) the contact 
surface has a coefficient p of Coulumb's dry friction and 
3) the deformation near the sharp wedge is well approx- 
imated by plane strain theory. The Airy stress function 
4 is introduced to satisfy the biharmonic equation (Eq. 
1). Stress (Eq. 2-4) and displacement (Eq. 5-6) rela- 
tions are given in polar coordinates. 

Figure 1: Wedge in contact with a half plane 

rion method. Several numerical examples have been Boundary conditions are defined at the interface and 
done for different materials in the wedge and the half free surfaces of the wedge and the half plane: 
plane. The optimum shape of the wedge (including the - .  
bounding corner angle) is obtained, thus avoiding the ui(r,  0) = uil(r, 0), 
stress singularity. The corner angle is compared to the 

(7) 

critical wedge angle obtained from classical analysis. U,~(T,  I 0) = &(r, 0) = -puge(r, 0) for r > 0, (8) 



where u ~ ~ ( T ,  0) must be compressive and u and a de- where 7 is the wedge angle and 
note components of displacement and stress. The su- 
perscripts I and I1 refer to  the half-plane and wedge, F(P; 7, a ,  p ,  P) = (1 a )  cospX(sin2 P7 - p2 sin2 7) + 
respectively. i ( 1  - a )  sinp?r(sin 2 m  + p sin 27) + 

Several bonded-wedge problems were solved by Bogy /J sin pn[(l - a)p( l  + P) sin2 y - 
to decide the order of the stress singularity. Bogy ap- 2p(sin2 ~7 - p2 sin2 7)] (16) 
plied the Mellin transform to the boundary value prob- 
lems and obtained a general solution of the biharmonic The Power singularities correspond to  the real roots 

equation (the Mellin transforms of Airy function). The F ( ~ ;  7'1  a, 8 ,  P )  in the O < p < In astudy of 

general solution was used to obtain the Mellin trans- the roots of F(p; 7,  % P, P) for discrete values of ~ h ~ s -  
forms of the stresses, displacements and boundary con- ical parameters, Gdoutos has shown in i91 that 
ditions. The eight system equations (the Mellin trans- there is a t  most one real root in the interval 0 < p 5 1. 
forms of boundary conditions) involve eight unknown 
functions. The order of the stress singularity can be Comninou showed that no power singularities ap- 
decided from the zeros of the determinant of the coef- pear for certain of a, and with 
ficients of the system equations. Algebraic details can = and that the curve bounding the presence of 
be found in Ref. [5, 61. power singularities is analytically expressed. This curve 

If p is a zero of 2, in 0 < Re(p) 5 1, the orders of the 
stress singularities may take the following forms: 

aF(1;7,o,p.,)  = 
a p  

(17) 

( O(rp-l) if p is real, and 0 < p < 1 ; 

O[rCdl cos(q log r)] or O[rC-' sin(q log r)], 
if p = + iv is complex, and 
o < < <  1 ; 

O(1) if there is no zero of D in 
0 < Re(p) < 1, and aV/ap  # 0 
a t p =  1. 

(12) 
Dundurs [19, 201 shows that the influence of the elas- 

tic constants is governed by only two independent vari- 
ables: 

The o is a measure of the difference in plane strain 
modulus ((1 - v 2 ) / ~ ) .  (In Ref. [8], Dundurs explains a 
as an index for the mismatch in the uniaxial compliance 
of the two bodies.) For special cases, a has different 
values: 1 for a rigid wedge and an elastic half plane; 
-1 for a rigid half plane and an elastic wedge; 0 for an 
wedge and half plane with identical elastic materials. 

Using the parameters a and P, one expresses the de- 
terminant of the coefficients of the system equations in 
rather simplified fashion: 

Substitution of Eq. (16) into Eq. (17) leads to 

One can calculate the wedge angle 7, bounding power 
singularity for special cases of wedge contact. Based 
on Eq. (18), the bounding angle is shown in Fig. 2 
for frictionless contact. A good geometric optimization 
method should move design points lying in the singular 
region into the nonsingular region. 

Figure 2: Critical wedge angle for the presence of the 
power singularity 



Geometric Strain Method for Shape 
Optimization 

The geometric strain method, developed by Suh, An- 
derson and McDonald [17, 181, has not been widely pub- 
lished, and will be reviewed here. A continuous body 
(Fig. 3) is considered for shape optimization. Surface 
tractions are applied on the boundary rt. Body forces 
are applied in the domain Ra. The boundary r, is con- 
strained and the rd is an exterior design boundary, free 
to move. ri is an interior boundary, which is fixed dur- 
ing the geometric strain calculation. The purpose of 
this study is to shape the exterior design boundary rd 
to  satisfy a fully-stressed state in a portion of R denoted 
by Qs. 

Figure 3: Design domain 

A typical approach to optimization is: 

Min. : V ( g d )  = Jn dv 

Subject to : f(ul(z) ,  u2(z), a&)) 5 0 Vz E Rs 
(19) 

where gd is a design variable vector which defines the 
shape of the exterior design boundary rd; u l ,  a 2  and us 
are the components of principal stress; and functional 
f represents a failure criterion, such as the maximum 
distortion energy theory. 

We, however, will use an optimality criterion: 

where Rs is the fully-stressed domain which satisfies 
the failure criterion. The geometric strain method is 
derived from the optimality criterion Eq. (20) to obtain 
an optimum shape which satisfies the fully-stressed de- 
sign. Most practical solutions for fully-stressed designs 
are either the optimum design or close to it [21]. 

Geometric Strain Method for Two-Dimensional 
Plane Problem 

The geometric strain method is based on the stress 
ratio method, which is commonly used to attain the 
fully-stressed design in one-dimensional truss problems. 
This idea is extended to obtain the fully-stressed design 
of a general elastic body. 

A twedimensional infinitesimal element, as shown 
in Fig. 4, is introduced using the axes of the principal 
stresses at  a point. Only normal stresses are considered 
in the principal coordinates. The fully-stressed state in 

Figure 4: Two-dimensional infinitesimal element in 
principal coordinates 

the element can be obtained by changing the dimension 
of the perpendicular faces of the element. The amount 
of the length change which will lead to a fully-stressed 
state is termed the geometric displacement. 

It is assumed that the forces acting on the faces of 
the infinitesimal element remain constant at  the values 
of ulAt2 and u2Atl. The current stresses can reach the 
objective stresses (aol and oOz in the principal axes of 
stress) by changing the length of the face of the element. 

The principal geometric strain can be derived: 

The geometric strain can be obtained from the princi- 
pal geometric strain by transforming from the principal 



coordinates (1,2) to the global coordinates (x,y) the stresses on the current design and a new design is 
found. The procedure is repeated until the response of 

[&>l = [T(Z)I~[~%)I[T(Z)I (25) the new design satisfies the optimality criterion. 

where [c,] is the matrix form of the geometric strain and 
[ T ( g ) ]  is the transformation matrix between the prin- The First Phase: Finite Element Analysis 
cipd geometric strain and geometric strain in global 
coordinates. Note that [T(g)l is same as the trans- Use the finite element displacement formulation: 

- .-,- 
formation matrix between the principal stress and the 
stress in global coordinates. 

The displacement g is solved numerically from Eq. (29) 
(26) and proper boundary conditions. 

The stress g can be derived from the displacement g: 
The principal geometric strain [&] is 

O I 
5 = [El [DIE 

&(z) 
(30) 

[ 4 d l  = [ 0 C2(d (27) where [El is the stress-strain matrix, and [Dl is the 
strain-displacement matrix. The geometric strain matrix is symmetric and can be 

represented in vector form: The Second Phase: Fully-Stressed Design 

A new shape, closer to the fully-stressed design, will 
(28) be determined. The geometric strain is derived from 

the stresses in the first phase and from the optimal- 
ity criterion. Geometric strain is defined at  every grid where c.,, tau are the x and y components of the normal 
point in the fully-stressed domain Rf . geometric strains, respectively and y,,, is the shearing 

geometric strain. The geometric strain vector is defined The geometric strain in element &), interpe 
in the fully stressed domain Q j  and will be zero outside lated by the geometric strains at  all grid points of the 
the domain. element e ,  using the same displacement shape function 

The geometric displacement u,(:) is defined as the 
amount of the geometry change. The geometric dis- 
placement is obtained by converting the geometric 
strain into equivalent nodal loads and solving the load- 
displacement relation. 

Since optimal shapes depend nonlinearly on design 
parameters, finding the optimal shape can require nu- 
merous iterations. In order to reduce the number of 
iterations, an acceleration factor is used. The prod- 
uct of the geometric displacement and the acceleration 
factor is added to the geometry of the current design 
to obtain a new design, which is expected to be the 
fully-stressed design. The procedure is repeated after 
checking the stresses in the fully-stressed domain Rj 
until convergence is achieved. 

Shape Optimization of Contact 
Problems by the Geometric Strain 

Method 

used in the first phase: 

where ;c is the position vector with respect to the local 
coordinate of the element e ,  Ni(%) is the displacement 
shape function, r$ is the geometric strain at  the local 
node number i of the element el and n, is the total 
number of nodes in element e .  

The geometric strains are treated as if they were ini- 
tial strains in the finite element method and are con- 
verted to equivalent nodal loads. This becomes a new 
load case acting on the original system, but with differ- 
ent boundary conditions (Eq. 36). 

The equivalent nodal load ~ 2 )  of element e due to 
the geometric strain can be calculated: 

The geometric strain method is divided into two Substitution of ~ q .  (31) into ~ q .  (32) leads to: 
phases. In the first phase, the stresses of a current de- n, 

sign are obtained by the finite element method. In the = J J J [ D ( ~ ) ] ~ [ E ] ( ~ ) ( C  N(:):b)dv (33) 
second phase, the geometric strain is calculated from v(e> i=l  



The total equivalent load l', is the summation of all 
the equivalent nodal loads of all elements: 

N E  

The stiffness matrix of the first phase, [I(] of Eq. 
(29), is used as the stiffness matrix for the equilibrium 
equation of the geometric displacement zQ: 

The boundaries are held fixed except the exterior design 
boundary rd: 

where r is the boundary of the whole domain Q. The 
geometric displacement is the solution of Eq. (35) and 
Eq. (36). 

To obtain the new shape, every grid point on the de- 
sign boundary rd is changed according to the geometric 
displacement obtained from Eq. (35) and (36). Let zi 
represent the position vector of the grid point i. Then 
the new position vector gYeW is: 

where is the geometric displacement vector of the 
grid point i and aj is an acceleration factor to speed 
convergence. 

One replaces the old position vector of every grid 
point on the exterior design boundary rd with the new 
position vector of Eq. (37) and keeps the current con- 
nectivity, which defines the relationship between ele- 
ment and grid points. The finite element model of the 
new shape can be automatically obtained unless there 
is a severely distorted element. If the design boundary 
is severely wrinkled or the elements are severely dis- 
torted, a smoothing technique for the design boundary 
is used and the elements for the whole domain R are 
remeshed. 

Computer Implementation 

The program for the geometric strain method is made 
of three major modules: input of analysis and design 
data, finite element analysis, and optimal design. A 
flow chart is shown in Fig. 5. 

INPUT 
INPUT MODULE I I 

. . . . . . . . . . . . . . . . . . . . . . . . . . . .  

F.E.A. 
MODULE 

OPTIMIZATION I ' .ODULE 

NEWSHP 1 9% 
Figure 5: Flow chart for the geometric strain method 

Data Input 

This module (INPUT) reads the finite element anal- 
ysis and optimal design data. The finite element anal- 
ysis data include control data, geometric data, bound- 
ary conditions and material properties. Optimal design 
data include control data, design grids and constraints. 
The input module calls GAUSSQ whose function is to 
generate the sampling point positions and weighting 
factors according to the order of the integration rule. 

Finite Element Analysis 

Finite element analysis includes: 1) stiffness and 
stress matrices generation (STIFPS) and applied load 
vector generation (LOADPS), 2) solution procedure 
(FRONT) of equilibrium Eq. (29), and 3) stress re- 
covery (STREPS). 

Optimization 

In this module, GRAPH displays the contour plots on 
maximum principal stresses from stress recovery. CON- 
VER checks whether the current design satisfies design 
constraints. GEOMET uses an acceleration factor to 
produce a new design and calls GSTRAN to calculate 
geometric strain. It calls LOADPS to calculate equiv- 
alent nodal loads due to the geometric strain and calls 



FRONT to find the geometric displacement. NEWSHP 
checks whether the design boundary is smooth. If the 
boundary is severely wrinkled, it calls POST to make 
the boundary smooth and remesh the whole domain. 

Numerical Examples 

As considered in the theory of a wedge contact, the 
stress singularity may disappear a t  certain combina- 
tions of parameters a, 0 and wedge angle 7. The 
present numerical study investigates whether the stress 
singularity can be avoided by changing the shape of a 
wedge by using the geometric strain method. A local 
wedge angle at the contact point is obtained as a part 
of the optimum shape, and the stress singularity disap- 
pears. 

Numerical examples for a wedge contacting a half 
plane (Fig. 6) use various materials in the wedge and 
the half plane. The optimal wedge shape is sought. 
A fixed load P is uniformly distributed on the top of 
the wedge. The distance 2a is held fixed during the 
optimization. The method tends to minimize volume 
of material under a fixed load. 

Results will be presented in the form of figures of 
baseline and optimal shapes. Stresses in the baseline 
and optimum designs will be presented to recognize the 
presence/absence of the stress singularity. Finally, the 
optimal wedge angles from the numerical method and 
critical wedge angles from the analytical method will 
be compared. 

Figure 6: Wedge in contact with a half plane 

Basel ine Design Mode l  

A half model is used for the study by using reflective 
symmetry (Fig. 7) for reduction of size problem. Di- 
mensions are a = 40 mm and b = 80 mm. The initial 
shape of the design boundary is straight, but is subse- 
quently allowed to curve. For the finite element model 
in Fig 8, 182 nodes and 153 elements are used. The 
wedge has 96 elements and the half plane has 48 ele- 
ments. Four-node plane-strain quadrilateral elements 
are used. 

Figure 7: A half of the wedge in contact with a half 
plane 

The wedge and the half plane are connected by 9 fric- 
tionless, linear contact elements. The contact elements 
transfer only compression, have no length, and are sized 
to carry equally distributed force. The stiffnesses of the 
contact elements are very high (lo6 greater than stiff- 
nesses of the wedge and the half plane). The distributed 
load P is 300 Nlmm. The bottom, left and right sides 
of the half plane are clamped. 

The purpose of the present study is to  avoid a stress 
singularity rather than to find exact stress fields near 
the sharp edge. Therefore, extremely fine finite meshes, 
usually used in the numerical analysis of stress singu- 
larities, are not used. However, somewhat fine meshes 
(on the order of a half mm) are required to model high 
stresses around the sharp edge, as shown in Fig. 8. 

For design optimization by the geometric strain 
method, thirteen design nodes and thirteen stress con- 
straints are used. The design region Rf is the single 
outer layer of wedge elements. The stress constraint is 
that maximum principal stress in this region should not 
exceed 110 % of the applied stress. The design bound- 
ary in this problem can be moved horizontally, except 
for the top node, which is fixed. All boundaries of the 



( a  = 0) and smooth contact (p = 0): 

yielding 7, = 77.45'. 

Figure 8: Baseline design of wedge in contact with a 
half plane 

whole domain R, except the exterior design boundary 
rd ,  are fixed. The constrained domain is given fixed 
boundary conditions in the solution procedure of the ge- 
ometric displacement-equivalent load. If all stresses in 
the design boundary are less than 110% of the applied 
stress (300 M P a ) ,  then it is assumed that the stress 
singularities along the sharp edge have disappeared. 

Example  1: A Wedge Contac t ing  a Half P l a n e  
wi th  Identical  Mater ia l s  (Frictionless) 

Starting with the baseline design in Fig. 8, the GSM 
obtains the shape in Fig. 9 after 8 iterations. The 
wedge angle at  the contact point is 78.8'. Maximum 
principal stresses are shown in Fig. 10 for the baseline 
and optimum designs. The singularity which exists in 
the initial baseline design disappears in the optimum 
design. 

Figure 9: Optimal wedge shape for the wedge and the 
half plane (identical materials) 

The critical wedge angle from contact mechanics can 
be obtained from Eq. (18) for identical elastic materials 

The optimum wedge angle 7 = 78.8' by the GSM is 
1.7% higher than the critical wedge angle 7, = 77.45', 
placing the design slightly within the "dangerous" re- 
gion of Fig. 2. The GSM result therefore needs to have 
some design conservation added, perhaps by "sharpen- 
ing" the contact angle by 2'. 

A Baseline Design 
Optimum Design 

0  2 4  6 8 1 0 1 2 1 4  
Design Node 

Figure 10: Maximum principal stresses at  the baseline 
and optimum design (identical materials) 

Example  2: A Wedge Contac t ing  a Half Plane 
wi th  Different Elastic Mater ia l s  (GI = 2G2 and 

y = vz = 0.3; a = -1) 3 

In this example, the material of the half plane is 
twice as stiff as the wedge. After 5 iterations, starting 
from the baseline design (Fig. 8), the geometric strain 
method provides the optimum wedge angle 7 = 83.7'. 
The optimal shape of the wedge is shown in Fig. 11. 
Maximum principal stresses are shown in Fig. 12 for the 
baseline and optimum designs. The singularity which 
exists in the initial baseline design again disappears in 
the optimum design. 

The critical wedge from contact mechanics can be 
obtained from Eq. (18) for the doubly stiff half plane 
G1 = 2G2 and y = v2 = 0.3 (a = -5)  and frictionless 
contact (p = 0): 

yielding 7, = 82.62'. 



The optimum wedge angle y = 83.7' by the geomet- 
ric strain method is 1.3 % higher than the critical wedge 
angle 7, = 82.62'. 

Figure 11: Optimal wedge shape for G1 = 2G2 and 
ul = u2 = 0.3 

A Baseline Design 
n Optimum Design 

0  2 4  6 8  10 12 14 
Design Node 

Figure 12: Maximum principal stresses at  the baseline 
and optimum design with G1 = 2G2 and ul = uz = 0.3 

Example 3: A Wedge Contacting a Half Plane 
with Different Elastic Materials (G2 = 2G1 and 

v1 = u2 = 0.3; a = 4 )  

In this example, the material of the wedge is twice 
as stiff as the half plane. After 13 iterations, starting 
from the baseline design (Fig. 8), the geometric strain 
method provides the optimal wedge angle y = 72.6O. 
The optimal shape of the wedge is shown in Fig. 13. 
Maximum principal stresses are shown in Fig. 14 for the 
baseline and optimum designs. The singularity which 
exists in the initial baseline design disappears in the 
optimum design. 

The critical wedge from analytical mechanics can be 
obtained from Eq. (18) for doubly stiff wedge G2 = 2G1 
and vl = v2 = 0.3 ( a  = 4 )  and frictionless contact 
( p  = 0) at  the interface: 

yielding 7, = 70.33' 

The optimum wedge angle 7 = 72.6' by the geo- 
metric strain method is 3.2% different from the critical 
wedge angle 7, = 70.33O. 

Figure 13: Optimal wedge shape for G2 = 2G1 and 
~1 = v2 = 0.3 

A Baseline Design 
o Optimum Design 

0 2 4 6 8 1 0 1 2 1 4  
Design Node 

Figure 14: Max principal stresses at  the baseline and 
optimum design with G2 = 2G1 and vl = v2 = 0.3 

Example 4: An Elastic Wedge Contacting a 
Rigid Half Plane (GI = m, CY = -1) 

This case belongs to the Signon'ni problem, which 
is a contact problem of a linearly elastic body with a 



rigid frictionless foundation. For modeling this prob- a Baseline Design 
lem, only the wedge is modeled. The bottom surface Optimum Design 
of wedge is vertically constrained and horizontally free. 
The wedge angle for the baseline (Fig. 15) is chosen to 
be 105', different from the 90' rectangle in the previ- 
ous examples in order to  start with an infeasible design. 
(The exact solution is the vertical edge.) t 

Figure 15: Baseline design of elastic wedge in contact 
with a rigid half plane 

0  2 4  6 8 1 0 1 2 1 4  
Design Node 

Figure 17: Maximum principal stresses a t  the baseline 
and optimum design for an elastic wedge and a rigid 
half plane problem 

The optimal wedge angle y = 91.3' is obtained by The solutions from the numerical approach are com- 
the geometric strain method after 6 iterations from the pared with the analytical wedge angles in Table 1. 
baseline design. The optimal wedge shape (Fig. 16) 
has the maximum principal stresses in Fig. 17 for the 
baseline and optimum designs. Again, the singularity 

Table 1: Comparison of the wedge angles between nu- which exists in the initial baseline design disappears in 
merical and analytic approaches the optimum design. 

Figure 16: Optimum shape of elastic wedge in contact 
with a rigid half plane 

Analytical Numerical 
Materials Method Method 

(vl = vz = 0.3) Angle Angle Angular 
(deg) (deg) Error (%) 

G1 = G2 77.45' 78.8' 1.7 

Conclusions 

For a comparison with contact analysis, set cr = -1 A numerical method has been devised to optimize 

in Eq. (18): the shape of solid bodies in the presence of stress sin- 

1 + p t a n y  = 0, (41) gularities. The numerical tools used are finite element 
analysis and the geometric strain method. Numerical 

which yields 7s = 90' for frictionless contact (P = 0). examples of a plane-strain wedge contacting a half plane 
The optimal wedge angle 7 = 91.3' is 1.5% higher than were solved for frictionless contact involving identical 
the critical wedge angle 7s = 90' from the theory of materials, stiffer wedge, stiffer half plane and rigid half 
contact mechanics. plane. 

It  was proven that the numerical approach is useful 
to reduce the high stress in the sharp-wedge contact 
problem. From the design standpoint, it would be wise 



to "sharpen" the contact angle (make the included an- [lo] Comninou, M., "Stress Singularity at a Sharp Edge 
gle more acute) by 2O to  account for the approximation in Contact Problems with Friction," Journal of 
of such a coarse mesh. A better alternative would be Applied Mathematics and Physics (ZAMP), Vol. 
to refine the mesh. 27, 1979, pp. 493-499. 

The numerical approach can be extended to more [ l l ]  Peterson, R. E., Stress Concentration Factors, 
general contact problems such as frictional contact, and John Wiley, 1974, pp. 251-253. 
contact between fdimensional bodies. Work is under- 
way in this direction. [12] Bijak-Zochowski, M., Waas, A. M., Anderson, W. 
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