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The effects of blade mistuning on the aeroelastic vibration characteristics of high- 
energy turbines are investigated, using the first stage of the oxidizer turbopump in the space 
shuttle main rocket engine as an example. A modal aeroelastic analysis procedure is used in 
concert with a linearized unsteady aerodynamic theory that accounts for the effects of blade 
thickness, camber and steady loading. Extreme sensitivity of the dynamic characteristics of 
mistuned rotors is demonstrated. In particular, the aeroelastic modes become localized to a 
few blades, possibly leading to rogue blade failure, and the locus of the aeroelastic 
eigenvalues loses its structure when small mistuning (of the order present in actual rotors) is 
introduced. Perturbation analyses that yield physical insights into these phenomena are 
presented. A powerful but easily calculated stochastic sensitivity measure that allows the 
global prediction of mistuning effects is developed. 

1. ODUCTION 

The current trend in the design of high performance propulsion turbomachinery has 
resulted in systems designed for finite service life. These systems produce high power, in 
compact and light-weight machines which require stringent safety factors and margins. In 
this environment, the design engineer is faced with the task of accurately predicting system 
performance and dynamics. When designing for specific life and reliability goals, the 
structural dynamic behaviors of the turbomachine are of paramount importance. 
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The prediction of the dynamics of turbomachine rotors is further complicated by the 
presence of blade-to-blade differences in structural and material properties. These 
differences are unavoidable because they arise from manufacturin deviations and in-service 
degradation. They result in random blade-to-blade variations in natural frequencies , a 
phenomenon commonly referred to as frequency . Although most current 
analyses do not account for mistuning, mistuned rotors may exhibit dynamic characteristics 
that are vastly different from those assemblies with identical blades, termed tuned rotors. 

In particular , previous studies have demonstrated that mistuning (a) increases the 
aeroelastic stability of rotors (Bendiksen, 1984; Crawley and all, 1985) and (b), results in 
larger forced response amplitudes (Ewins , 1973; El-Bayoumi and Srinivasan, 1975; Kielb 
and Kaza, 1984). Furthermore, it has recently been shown that mistuning can alter the 
overall dynamics of rotors in a qualitative fashion. Namely, the equally distributed 
vibration amplitudes that characterize tuned rotors have been shown to become loc 
mistuning to a few rotor blades, termed rogue blades (Pierre and urthy, 1991; Wei and 
Pierre, 1988a; Valero and Bendiksen, 1986). This has important implications in that the 
resulting energy confinement within a few blades indicates a possible cause for rogue blade 
failure in rotors. 

In this paper we investigate the effects of blade mistuning on the aeroelastic 
vibration characteristics of a class of bladed-disk assemblies, namely high-energy turbines. 
The specific rotor we analyze is the first stage of turbine blades of the oxidizer turbopump 
(HPOTP) in the space shuttle main rocket engine ( S S  rotor was selected 
because it exhibits many of the characteristics of modern high performance turbomachinery 
designs. These include h energy density, low blade asp t ratio, high aerodynamic 
loading and advanced supe y materials. In addition, the S S  E turbopump turbines have 
been plagued with in-service blade failures during development and operational experience. 
These blades have suffered both low-cycle and high-cycle fatigue, which leads to the obvious 
presumption that significant dynamic loadin exists. Contrary to previously suggested 
failure mechanisms (e.g. , thermal shock), the present work proposes a theory which is based 
on the intrinsic dynamic characteristics of mistuned rotors. 

The main results of our study are that rotors with characteristics similar to the 
E rotor are extremely sensitive to small mistuning and that their dynamics is 

to a few blades and qualitatively altered; for example, aeroelastic modes become 
the locus of the eigenvalues loses its structure when small mistuning is introduced. 

The paper is organized as follows. Section 2 presents the structural 
aerodynamic models and the formulation of the aeroelastic eigenvalue problem for 
energy turbines. In Section 3 
various levels of mistunin erturbation methods that 

merical results are presented for the S S  

and 
high 
with 
into 

mistuning effects are applied in a stochastic sensitivity measure is 
developed that allows us to predict the sensitivity of bladed disk assemblies to random 
mistuning without having to solve mistuned aeroelastic eigenvalue problems. The 



effectiveness of the sensitivity measure is illustrated by applying it to an advanced 
unshrouded fan stage. Finally, Section 6 concludes the paper. 

There are two main contributions in this work. First, we show the extreme 
sensitivity to mistuning and the occurrence of localized vibrations for a full model of a real 
bladed-disk assembly, namely the SSME turbopump turbine. This has important 
implications for the SSME turbine in particular and high-energy turbines in general, because 
localized vibrations result in higher blade amplitudes and stresses and thus in shorter fatigue 
life and possibly rogue blade failure. Second, a a1 contribution lies in the 
development of the powerful stochastic sensitivity measure, which allows for the global 
prediction of mistuning effects based solely upon tuned system information. The sensitivity 
measure is a generic tool that can be applied to any bladed-disk assembly. 

In this paper the bladed disk is modeled as a coupled system of N blades. Each 
blade’s dynamics is described by a single in-vacuum (rotating) natural mode of vibration, 
say the nth natural mode. This simplified representation assumes that the coupling between 
the natural modes of an individual blade is negligible. Therefore, the rotor equations of 
motion are a system of N ordinary differential equations, each of which corresponds to an 
individual blade on the rotor. (Note that for the SSME turbopump turbine we developed a 
general formulation and a computer program that allow for interactions between various 
blade modes; however, we found that the blade natural frequencies for the SSME 
turbopump are so well separated that inter-mode coupling is insignificant; this justifies the 
single-mode per blade assumption.) 

For simplicity, we assume that the blades are coupled only aerodynamically, and that 
of the blades through the disk or at the shrouds. 

aeroelastic free vibration of the assembly, and thus include 
in our model only those aerodynamic forces that are motion-dependent. The application of 
component mode analysis to the N-blade assembly yields a set of N homogeneous, linear, 
ordinary differential equations in the modal amplitudes of the blades. We look for motions 
such that all the blade coordinates oscillate with the same frequency and/or decay or grow at 
the same rate. This yields the following 

ng 

ic eigenvalue problem of order N: 

[A2M + K  -A(ma)]u  = O  

where 

- u = [ u, ,u2, .  . . ,uN IT is the complex eigenvector of the blade modal amplitudes, 
where T denotes a transpose 

are the real inertia and stiffness matrices, respectively 
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is the complex aerodynamic matrix, which depends on the assumed frequency, 

@G * 

- A is the complex eigenvalue 

Since there is no structural coupling, the rotor mass and stiffness matrices are diagonal and 
of the form 

(2) M = I  

where the blade modes have been normalized with a unit modal mass, and u)( , )~ is the nth 
natural frequency of the jth blade (rotating and in a vacuum). For a tuned assembly the 

diagonal elements of Kare identical and equal to @;n)o, the nominal blade frequency 

squared, Le., K = U ( ~ , ~ I .  For a mistuned rotor, the individual blade frequencies are 
generally distinct and the stiffness matrix is diagonal but not proportional to 

2 

The aerodynamic coupling matrix A is a fully populated complex matrix which is 
evaluated using the unsteady aerodynamic theory of Verdon and Caspar (1982, 1984). 
Verdon's method is employed to calculate the unsteady forces on the blades due to a 
particular natural mode of motion for a (tuned) cascade of identical blades. This results in 
a traveling wave representation of the aerodynamic fcrces for the tuned cascade. A detailed 
description of the unsteady force calculation using this theory is given by Smith (1990, 
1991). 

The transformation of the aerodynamic influence coefficients between traveling 
wave coordinates and individual blade, or physical coordinates is defined by 

N 

(4) A = E A E *  

N 

where A ,  the aerodynamic matrix in traveling wave coordinates, is a diagonal matrix of 
complex elements 

N n N  N 

(5) A = d i a g [ A ~ , A z ,  . . . , A  N I  

The unitary transformation matrix 

(6) E = [ e l , . . , e i ,  ..., e N ]  

where 
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(7) 
1 27r p. =-( j-1) 

' N  
j = l ,  ..., N 

where p j  is the inter 

Note that an iterative procedure is required in order to solve the aeroelastic 
eigenvalue problem, Eq. (l), because the aerodynamic forces are dependent upon the 
frequency of vibration. First, a frequency of oscillation is assumed, and the corresponding 
aerodynamic matrix The eigenvalue problem is then solved and the 
eigenvalue whose frequency is closest to the assumed frequency is used to recalculate the A 
matrix. This iterative procedure is continued until the assumed frequency matches the 
natural frequency corresponding to one of the eigenvalues. 

is calculated. 

The solution of Eq. (1) consists of N pairs of eigenvalues and eigenvectors. For an 
eigensolution (A, u ), the blade assembly's motion is given by u e k .  The real part of the 
eigenvalue, Re( A ) ,  determines the damping for the mode, while the imaginary part, Im( A), 
is the damped natural frequency of oscillations of the mode. Flutter in a mode occurs when 
the real part of the eigenvalue is greater than or equal to zero (and if the damped natural 
frequency of the mode equals the assumed frequency). 

For a tuned assembly the matrix diagonalizes the aeroelastic problem, Eq. (1). 
This means that the eigenvectors of the system are the columns of E, hence the aeroelastic 
mode shapes of the tuned assembly are the ej, j =  1, .  . .N, given by Eq. (7). For a motion in 
thej th mode all blades vibrate with e 
pj between adjacent blades. We will refer to the modes of the tuned assembly as constant 

es. Physically, these normal mode motions are waves traveling 

through the assembly with a phase change pj at each blade. To each backward traveling 
wave ej corresponds a forward traveling wave e ~ 9 + 2  which has the same number of 
(traveling) nodal diameters. After diagonalization of Eq. (1) with the similarity 
transformation defined by , the aeroelastic eigenvalues of the tuned assembly are readily 
given by: 

1 amplitudes but with a constan 

j = l ,  ..., N 

where the subscript (n) , representing the nth blade mode, is dropped for simplicity. 

For a mistuned assembly the constant interblade phase angle vectors ej do not 
uncouple the system (1) and thus are not the aeroelastic modes. A numerical or a 
perturbation solution of the aeroelastic eigenvalue problem is then required. In this work, 

: the mode shape of each blade is identical, 
the natural frequency of each blade is a small deviation from the nominal blade frequency, 



and the frequencies for the individual blades are random numbers from a 
uniform probability distribution function. The modes of mistuned assemblies are studied in 
the following sections. 

The first stage of the SS turbopump is a rotor consisting of 78 blades equally 
spaced on the disk. A three-dimensional finite element model is used to calculate the first 
three free vibration natural frequencies and mode shapes of individual blades in a vacuum. 
In order to account for blade root flexibility, linear springs are included at the surfaces of 
the firtree lobes. ecall that structural coupling is not included in the model and that the 
blades are coupled solely through aerodynamic effects. The unsteady, motion-dependent 
aerodynamic forces are calculated from a two-dimensional, linearized , unsteady 
aerodynamic theory applied in axisymmetric strips along the airfoil span. No structural 
energy dissipation is included in the model. Figure 1 displays the finite element model of 
one HPOTP turbine blade, alon with the first three natural frequencies. For details on the 
structural and aerodynamic models see Smith (1990, 1991). 

We observe in Fig. 3. that the individual blade natural frequencies are well 
separated. Since the damping (both structural and aerodynamic) for this rotor is typically 
very small, the dynamic interactions between the various blade modes due to aerodynamic 
coupling is negligible. Thus it is reasonable to model each blade as a single-degree of 
freedom oscillator for a given natural mode. 

We solved the aeroelastic eigenvalue problem for the tuned rotor and for random 
mistuning of various strengths. istuning was measured by its dimensionless standard 
deviation, E ,  equal to the standard deviation of the squares of the blade natural frequencies 
divided by the square of the nominal natural frequency. We used a si le mistuning pattern 
for all results. The first three blade modes were considered. For the tuned system, we 
found that most of the interblade phase angle modes in the second group of modes 
(corresponding to an edgewise motion of the blades) und flutter instability, i.e., have a 
positive real part of the eigenvalues. This instability e removed easily by including 
small structural damping in the model (Smith, 1991). flutter was found in the other 
groups. Therefore, we focused our investi ts of mistuning on this second 
group of modes, because it is the least damped. In all the results presented, the eigenvalues 
are non-dimensionalized with respect to the square of the nominal blade frequency. 

eri s 

The root locus of the 78 aeroelastie ei envalues in the e ewise mode group is 
displayed in Fig. 2 for various mistuning values The imaginary p of the eigenvalues is 
plotted versus their real part. Note the re lar pattern featured by the root locus of the 
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tuned assembly. As mistuning increases, the regularity of the root locus is gradually lost, 
and for very small mistuning of standard deviation 0.2% the locus consists of a constellation 
of eigenvalues with little discernible pattern. This qualitative change for very small 
mistuning indicates the ex y of the aeroelastic dynamics of the HPOTP 
turbine to mistuning. Besides the loss of structure of the root locus, we note that mistuning 
causes a narrowing of the range of the real parts of the eigenvalues (representing damping) 
but a stretching of the root locus in the imaginary direction (frequency). In particular, we 
observe that the real part of the most unstable eigenvalue (that with the largest real part) 
decreases when mistuning is introduced, there confirming the well-known stabilizing 
effect of mistuning (Bendiksen, 1984; Pierre and 

es 

The high sensitivity to mistuning detected in the root locus plots is perhaps best 
illustrated by the changes in the corresponding mode shapes. Figure 3 displays the 
amplitude pattern of the most unstable aeroelastic mode shape for several mistuning values. 
As expected, the mode shape of the tuned rotor is a constant interblade phase angle mode 
and thus features identical amplitudes for all blades. When mistuning increases, the whole 
assembly ceases to participate in the motion and the vibration becomes confined to a few of 
the blades, i.e., the phenomenon of occurs. The sensitivity of the 
assembly dynamics to mistuning is extreme: even for a very small mistuning of 0.05% the 
blade amplitudes vary widely throughout the rotor, and for 1% mistuning only four blades 
participate in the motion to any significant degree! This indicates that the transition from 
constant interblade phase angle modes to localized modes is very rapid. 

The localization of the mode shapes is also illustrated in Fig. 4, which includes phase 
information about the modes. Polar plots of the eigenvectors are shown in the complex 
plane (imaginary versus real part). Each dot on these plots represents the complex 
amplitude of one blade, where the distance from the origin to the dot is the real amplitude 
and the angle with the horizontal axis is the phase (not the interblade phase angle). Figure 
4 displays the mode shape corresponding to the highest frequency eigenvalue (that with the 
largest imaginary part) for the mistuning values of Fig. 3. We note that for the tuned 
system the highest frequency mode is the one with zero interblade phase angle (this is 
coincidental), represented in the complex plane by 78 equal amplitudes and 78 phases equal 
to zero, hence by a single dot. As mistuning of standard deviation 0.01% is introduced, we 
observe a significant scatter in the blade amplitudes. ost blades vibrate with amplitudes 
close to 0.5 and only a few blades have amplitudes close to 1,  indicating the onset of 
localization for the extremely small mistuning E -0.01 % ! Another interesting observation is 
that the phase angles are much less affected by mistuning than the amplitudes: all phase 
angles remain between 0 and, say, 20 degrees, a scatter much smaller than that of the 
amplitudes. Thus although substantial localization occurs, all blades still vibrate 
approximately in phase. This feature is largely lost when localization becomes severe, as 
shown by the plots for ~ = = 0 . 1 %  to 1%. The phase angles then do not have a particular 
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pattern. We also note that the localization of the highest frequency mode in Fig. 4 is more 
severe than that of the most unstable mode in Fig. 3. For example, for & = 1 % the highest 
frequency mode features a single blade vibrating, versus four blades for the most unstable 
mode. 

In order to illustrate further this dependence of localization on the mode number, 
Fig. 5 shows the amplitude patterns of four of the 78 aeroelastic mode shapes for a given 
mistuning strength: two modes at the extremes of the frequency cluster, namely the lowest 
and highest frequency modes, and two modes near the middle of the frequency cluster, the 
least and most stable modes. Observe that the modes with the extreme frequencies are 
substantially more localized than those near the middle of the frequency band, and hence 
they are more sensitive to rnistuning. 

The localization of aeroelastic mode shapes by mistuning has important practical 
consequences for the HPQTP turbine and possibly other high-energy turbines. 
means that for such systems, most tuned aeroelastic calculations are probably invalid not 
only in a quantitative but in a a~itative sense as well. Secon , strong mode localization 
appears to be unavoidable bec its onset occurs for mistunin levels that are well below 
those resulting from typical manufacturing tolerances. For example, for the SSME turbine, 
testing of several hundred blades led to mistuning standard deviations ranging from 0.5% to 
5% in the various mode groups, while the onset of localization, in the present analysis, is 
for ~ = 0 . 0 1 % .  Thir the localization of the aeroelastic modes is a potentially dangerous 
phenomenon, even ough mistuning helps stabilize the rotor. This is because the 
vibrational energy is concentrated in a few of the blades rather then being distributed 
equally throughout the rotor. Hence a few blades of the mistuned rotor vibrate with much 
larger amplitudes than if the rotor were tuned, which results in larger stresses, shorter 
fatigue life, and possibly blade failure. Thus localization provides a plausible explanation 
for the occurrence of blade cracks and single blade failures (rogue blades). 
although our results are only concerned with the free response of the HPQTP turbine, we 
expect its forced response to be affected by mistuning in a similar way and forced response 
localization to occur, because the response can be expressed as a combination of motions in 
the free aeroelastic modes. Such correspondence between free and forced response is 
indicated by studies of localization in simple models of structurally coupled mistuned 
assemblies (Wei and Pierre, 1988a, 1988b). 

ocalize es 

We have seen in Fig. 3 that the transition from constant interblade phase angle (or 
extended) modes to localized modes is very rapid, occurring primarily between 0% and 
0.5% mistuning. We also note in Fig. 3 that the region of localization of a mode (Le., the 
location of the blades with the largest amplitudes) changes for every rnistuning level, until 
severe localization is reached for ~ = 0 . 5 % .  This suggests that the transition from extended 
to localized modes is complex. In this section we examine this transition region. 
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Although Fig. 6 seems to isplay ei~envalue crossin s, several studies of mode 
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we refer t~ those as 66crossings” in 
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the most unstable mode becomes localized at various locations on the rotor as mistuning 
increases. These changes in the localization region correspond to the crossings with other 
eigenvalues. 

The most striking feature of the transition region is its complexity (recall that only 
ten of the 78 eigenvalues are displayed in Fig. 6). Although the bladed disk considered is a 

system, it is apparent from Figs. 6 and 7 that its dynamics is extremely complicated 
for this range of mistuning, because the mode shapes and eigenvalues are greatly affected 
by small changes in the mistuni For example, numerous mode switchings occur. Thus, 
in practice, it is difficult to p 
transition region. 

ict accurately the modes of assemblies operatin 

For mistuning greater than 0.596, the transition to localized modes is nearly 
complete (see the mode shapes in Fig. 3). This localization region is characterized by fewer 
eigenvalue loci crossings than in the transition region, and by nearly li ear variations of 
these loci with mistuning. This linear variation is due to the fact that the localized modes 
can be approximately associated with single decoupled blades, the frequency of which varies 
linearly with small mistuning (see the perturbation analysis in Section 4). This is in contrast 
with the region of very small mistuning, which features the high sensitivity associated with 
parabolic variation. 

Figure 8 displays the imaginary parts (frequencies) of the ten lowest frequency 
eigenvalues versus mistuning. The same features as in Fig. 6 are present; as mistuning 
increases from zero, we encounter first a narrow region of extended modes, then a complex 
transition region where numerous frequency crossings occur, and finally a localization 
region where the frequencies vary nearly linearly with mistuning. Note, however, that the 
transition region for these ten lowes,t frequencies is much narrower than in Fig. 6 for the 
ten most unstable modes. This confirms the fact, observed in Fig. 5, that modes near the 
extremes of the frequency cluster (e.g., the low frequency ones) are more sensitive than 
those near the middle of the cluster (e.g., the most unstable ones), and that localization 
occurs first for the former. 

Our results for the NPOTP turbine indicate that severe localization occurs at the 
mistuning levels measured for the SS E blades (typically between 1% and 4%), and that no 
modes belong to the transition region. However, structural coupling through the disk or tip 
shrouds would lower the sensitivity to mistuning and thus extend the transition region. 
Therefore it is conceivable that some of the modes of the real HPOTP rotor belong to the 
transition region and, although very different from extended modes, are not fully localized 
to a few blades. Moreover, other high-energy turbines may have different parameter values 
(interblade coupling, number of blades, blade stiffness, etc.) and thus may feature modes 
in the transition region. These modes would be difficult to predict accurately, as discussed 
above. 
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The first three normal modes of the turbine blade are bending, edgewise, 
and torsion, respectively. re 9 displays the amplitude atterns of the most unstable 
mode of the assembly i . The frequency mistunin pattern, as well as the 

en to be identical for all ree mode groups. We 
mode is substantially affected by mistuning, it 

does not become localized. On the other hand, the modes in the edgewise and torsion 
groups become strongly localized, the latter slightly more than the former. Thus, the 
bending mode group is much less sensitive to mistuning than the edgewise and torsional 
mode groups, which feature nearly the same sensitivity. This behavior is explained in the 
next section. 

In this section we of the physical mechanisms that govern the 
dynamics of mistuned ass , we have developed erturbation schemes 
that predict the high sensitivity to mistuning as well as characterize the degree of 
localization of the modes. ere we apply tlh n approach to the HPOTP turbine. 
For details on the perturbat n analyses, see 

The most natural rocedure to study the dynamics of a mistuned 
assembly is one that considers the tuned assembly as the ~ n ~ e r t u r b e d  system and the blade 

as the small ~ e r t ~ r ~ a t i o n .  
n method, yields easiEy ei urbations to any order in 

(first- and second-ord owever, this classical 
erently flawed in case ity and localization. This is because 

choosing the small mistuni eter requires the eigensolution of the 
mistuned assembly to be a that of the tuned assembly. Clearly, this 
is not the case when the ion and root locus scattering occur, 
since in this case m alterations in the 
assembly’s dynamics. capture the drastic 

cuss below however, the 
mere fact that the technique fails in the presence of localization can be used to predict the 
high sensitivity to mistunin 

This approach, which we refer to as the cl 
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Let us now explore the mechanisms of failure of the classical perturbation method. 
We denote the unperturbed stiffness matrix of the tuned assembly by 
perturbation matrix due to small mistuning by , where the latter is a diagonal matrix of 

mistunings in the squares of the individual blade frequencies, 6 ~ , " ,  such that 6mi / mo << 1 
for i- 1,. . . ,N. The stiffness matrix of the perturbed (mistuned) assembly is therefore 

= K + 6K . The modes of the unperturbed system are the interblade phase angle modes 
given by Eqs. (7) and (8). Those of the perturbed system can be expanded in a perturbation 
series as 

a; = aii + sa; + s2a; 
ui =ei  + 6ui + a2ui 

(9) i = 1 ,  ..., N 

where 
order) terms in the small mistuning. 

and 6" (respectively 62A; and 6 2 u  i )  are first-order (respectively second- 

Applying perturbation theory to the eigenvalue problem (Courant and Hilbert, 1953), 
one can show that the first-order perturbation of the eigenvalues is 

i = l ,  ..., N 

We readily observe that for small mistuning this is always a small term. Hence the first- 
order eigenvalue perturbation c ot reveal high sensitivity to mistuning. Moreover, all 
eigenvalues are shifted by an id a1 amount and, for a mistuning pattern that averages to 
zero, the change in the eigenvalues equals zero. Another interesting remark is that the 
perturbation of the eigenvalue squared is real, therefore mistuning, to the first-order, does 
not affect the stability of the assembly (or very little). Here we reach the seemingly 
contradictory conclusion that if the average mistuning throughout the rotor is not zero, Le., 
if we stiffen or soften 11 the blades on the average, the flutter boundary remains 
unchanged! The explanation of this paradox lies in the fact that the assumed frequency that 
was used for the aerodynamic computations is then no longer valid. If the effect of 
mistuning with nonzero mean on flutter is sought, the full mistuned eigenvalue problem 
must be solved in order to determine the correct assumed frequency. These remarks 
suggest that, although simple and cost-effective, perturbation methods must be used with 
care in a design environment. 

Returning to our main discussion, we ROW give the second-order perturbation of the 
eigenvalues: 
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i = I ,  ..., N 

where * denotes complex conjugate and I. I the modulus of a complex quantity. In Eq. (1 l) ,  
the numerator in the summation is a measure of the square of the mistuning (in the 
frequency squares), and the denominator is the spread among the interblade phase angle 
aerodynamic coefficients. For the HPOTP turbopump, these aerodynamic coefficients are 
small because the unsteady aerodynamic forces are small compared to elastic and inertia 
forces and provide very wea coupling between the es. Equation (8) shows that the 
spread in the interblade phase angle aerodynamic coefficients is simply that in the tuned 
aeroelastic eigenvalues. From Fig. 2, this spread is seen to be about four orders of 
magnitude smaller than the square of the nominal blade frequency. Thus, if mistuning is of 
the order of, say 1%, the numerators and denominators in Eq. (11) are of comparable 
magnitudes and the second-order eigenvalue perturbation is of the order of one, not second 
order. The fact that eigenvalue perturbations become large indicates the failure of the 
perturbation analysis and reveals the high sensitivity of the assembly dynamics to 
mistuning. 

Several remarks are in order. First, the above discussion examines a single term in 
the summation, Eq. (11). Multiple terms in the summation generally increase the 
magnitude of second-order perturbation. Thus we expect the sensitivity to mistuning to 
increase with the number of blades (this is discussed in Section 5). Second, although not 
shown here, the aeroelastic eigenvector perturbations behave similarly to the second-order 
eigenvalue perturbations, i.e., the sensitivity of the eigenvectors is inversely proportional to 
the aerodynamic coefficients. This is consistent with the drastic alterations of the mode 
shapes observed in Fig. 3. Third, although the failure of the perturbation analysis indicates 
high sensitivity to mistuning, the perturbation results e nnot be used to characterize the 
behavior of the mistuned assembly, as they are qualitatively in error. ourth, a classical 
pertubation analysis does not always fail. For example, if mistuning is extremely weak, 
e.g., 0.01 % for the SSME turbopump, the ratios in Eq. (1 1) may be sufficiently small for 
the perturbation expression to be valid. This is also the case if the interblade coupling is 
strong, such that the aerodynamic coefficients, and thus the denominators in Eq. (11) are 
not small. In these cases mistuning has a small effect on the assembly’s dynamics. 

We now have an understanding of the mechanism for high sensitivity to mistuning. 
It is the closeness of the aeroelastic eigenvalues of the tuned assembly that determines how 
sensitive the assembly is. This spread in the eigenvalues is governed by the magnitude of 
the aerodynamic coefficients, and therefore by the strength of the aerodynamic interblade 

‘coupling (see Eqs. (8) and (11)). This mechanism is the same as that identified for 
assemblies with structural interblade coupling (Wei and Pierre, 1988a). In the case of the 
HPOTP turbine the interblade coupling is very weak and thus the tuned aeroelastic 

13 



eigenvalues are very close, which results in an extreme sensitivity to mistunin 
by the results in Section 3. 

e can use the closeness of the tuned eigenvalues to predict the 
sensitivity in the various groups of modes. For the first group of modes (bending), we 
found that the spread in the imaginary parts (the frequencies) of the tuned eigenvalues is 
approximately 0.004 96 , while the corresponding spread for the second group of modes 
(edgewise) is only 0.001 96. This means, since the distance between eigenvalues is governed 
by the strength of aerodynamic effects, that the interblade coupling is weaker for the 
edgewise modes than for the bending modes. Accordingly, the edgewise modes feature a 
much higher sensitivity to mistuning than the bending modes, as shown by the localization 
displayed in Fig. 9. 

While identifying the cause of high sensitivity is useful, it does not provide answers 
regarding the behavior of the mistuned assembly, viz. the occurrence of mode localization. 
In order to characterize the dynamics of mistuned assemblies, we have developed a modified 
perturbation approach described below. 

The key idea behind the modified perturbation scheme is to recognize that high 
de coupling and hence 
th this approach, the (mo tem is 
led mistuned blades in a vaccum. It thus has distinct 
e blades happen to have the same frequencies, but we 
modified) perturbation consists of the small unsteady 

aerodynamic forces, which provide the interblade couplin ach norma1 mode of the 
unperturbed system features uncoupled oscillations of a mistuned blade, with all 
others remaining quiescent. When weak aerodynamic inter 
neighboring blades participate in the motion, but do so with small amplitudes because the 
small coupling is not sufficient to cause a resonance amon the slightly different blades. 
Each mode of the mistuned assembly is a perturbation of th oscillations of a single blade, 

es around it, depending upon 
the relative magnitudes of the coupling and the mistuning. mples of localized modes are 
given in Fig. 3. In summary, the modified perturbation method simply utilizes the fact 

enough interblade coupling or strong enough blade mistuning, the modes of 
the mistuned assembly are perturbations of the modes of the decoupled mistuned assembly, 
i.e., of single blade oscillations. 

to that blade or to a small group of b 

The modified perturbation scheme can be easily implemented by treating the 
aerodynamic matrix in Eq. (1) as the perturbation; for details see Pierre and 
The mistuned assembly eigenvalues are given by, to the second-order in the interblade 
coupling: 

1 



(12) a; = -( + 6 ~ ~ 2  + A,  - +H.O.T. 

k +i 

where the zeroth-, first-, and second-order terms in the interblade coupling are the first 
three terms on the right-hand-side, respectively. Clearly, the effect of the aerodynamic 
coupling is to modify slightly the assembly eigenvalues from the individual blade 
frequencies. Also, the second-order term in Eq. (12) indicates that the modified 
perturbation approach fails when mistuning is too small. 

er 

Figure 10 displays the percentage error between the “exact” numerical 
eigensolution and the two perturbation results versus the strength of mistuning, for the 
imaginary part of the lowest frequency eigenvalue. We note that for very small mistuning 
the classical perturbation result agrees well with the exact solution, such that in this region 
the mistuned assembly behaves as a perturbation of the tuned one. This corresponds to the 
region of parabolic variation of the eigenvalues in Fig. 8. As mistuning increases the 
classical perturbation result diverges rapidly from the exact solution, while the modified 
perturbation approximation approaches the exact solution. This second zone, where neither 
perturbation scheme provides a good approximation of the eigensolution, corresponds to the 
complex transition region. Finally, as mistuning increases to 0.5 %, the agreement between 
the exact and modified perturbation solutions becomes nearly perfect. In this case the 
mistuned assembly behaves as a perturbation of an assembly of decoupled blades. This 
corresponds to the localization region characterized by straight eigenvalue loci in Fig. 8. 
Finally, note that the error of the appropriate perturbation schemes is never greater than 
0.05 % . This makes the cost-effective perturbation methods accurate analysis and design 
tools. 

As an example of mistuned assembly dynamics prediction, Fig. 11 displays the root 
locus of the eigenvalues of the % mistuning, by both the modified 
perturbation scheme and the exact solution procedure. The perturbation method clearly 
captures the features of the root locus, both qualitatively and quantitatively. For example, 
the scattering of the locus, as opposed to the regular structure of the tuned locus, is 
reproduced by the perturbation result. We also note that the exact frequencies (the 
imaginary parts) are closely matched by the perturbation results. Larger discrepancies occur 
for the real parts (the damping values) and we believe this is due to the fact that damping is 
small for all the modes. Finally, we note that one of the eigenvalues (or at least its real 
part) is not predicted accurately by the perturbation method. We believe this occurs 
because, in the random mistuning pattern used, two neighboring blades have nearly equal 
mistuned natural frequencies. In this case the modified perturbation approach fails, see Eq. 

POTP assembly with 

(12). 
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The perturbation schemes discussed above provide a physical understanding of the 
sensitivity to mistuning and allow for the analysis of localized modes. In this section we 
develop a sensitivity measure that will allow the designer to predict, in a very simple way, 
the effects of mistuning on the various aeroelastic modes. Because mistuning is random in 
nature, a statistical approach is chosen to obtain a compact measure of sensitivity. This 
measure allows us to predict mistuning effects essentially with a single scalar for each 

owever, a possible drawback of this stochastic measure is that i 
s of mistuning patterns may result in dynamic behaviors much differen 

average behavior predicted by the sensitivity measure (for example, a “sinusoidal” 
mistuning pattern alters the dynamics much less than a truly random pattern). 

The sensitivity measure defined below does not require the mistuned system solution 
and thus is cost effective. Moreover, since the forced response of mistuned assemblies 
consists of linear combination of responses in the free modes of vibration, the sensitivity of 
the aeroelastic modes will provide useful information about that of the forced response. 
Thus, this measure has the potential to become a valuable design tool. 

The basic idea is to define the sensitivity of the system by taking the statistical 
average of the second-order eigenvalue perturbation (here mistuning is the perturbation). 
This is motivated by the findings in Section 4, which showed that the mechanism for high 
sensitivity, Le., the closeness of the tuned eigenvalues, is embedded in the second-order 
perturbation, while the first-order perturbation always remains small. We rewrite Eq. (1 1) 

using the expression for the interblade phase angle mode shapes, e j ,  given in Eq. (7). 
After some algebra, we obtain: 

r 

k fi L 

At this point we need to define the mistunings in the frequency squared, JOE, p=1, ..., N, 
as independent and identical random variables of mean zero and standard deviation, (T. This 
simply means that the blades are chosen randomly from an (ideally) infinite population. 
Next we take the statistical average, over the random mistunings, of the second-order 
eigenvalue perturbation. This simply yields 
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(14) < 62(a;) >= - NO2 i = l ,  ..., N 
k=’ A t  - A i  
k #i 

because c ( 6m:)2 >= d a n d ,  for p # q ,  < 6m,6mq >= 0 ,  where c . > denotes an average. 

Now consider the Taylor expansion of the ith eigenvalue in terms of mistuning, Eq. 
(9), and take its statistical average. Since the first-order perturbation is proportional to 
mistuning, it averages to zero and we obtain 

i = l ,  ..., N 

This shows that to the second order, the locus of the average of an eigenvalue versus the 
mistuning standard deviation is a parabola. The curvature of this parabola determines the 
sensitivity of the associated aeroelastic mode to mistuning. Hence we rewrite 

(16) <a; >= aii +sio” i = 1, ..., N 

where we have defined the stoc astic sensitivity easure of the ith eigenmode to 
mistuning as 

i = 1, ..., N 

We say a mode features a low, or normal sensitivity when the expansion (16) is 

valid. This occurs when the term Sid is second-order and therefore when the sensitivity 

measure Si is of the order of one. High sensitivity in a mode occurs when Sid  is first- 

order or larger, implying the failure of the perturbation analysis. This happens when Si is 
large. 

In order to intepret results it is useful to make our sensitivity measure 

dimensionless. in terms of the dimensionless 

mistuning standard deviation E ,  where &=dwo2 .  by a 
representative eigenvalue of the system, such that all sensitivities are referred to 1 rather 

than to the various bt. by the eigenvalue 

This is achieved first by expressing Si 

The second step is to divide Si 

Here we choose to nondimensionalize Si 
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corresponding to the tuned blade frequency squared, -wo2 (ideally we should divide by bF 
given in Eq. (8) but this would result in a complicated expression for Si ; moreover, for 
small aerodynamic coefficients, these two normalizations are nearly equivalent). The 
selected normalization yields the dimensionless sensitivity measure: 

i = l ,  ..., N 

From Eq. (18), we observe readily that the sensitivity measure increases as the 
aerodynamic interblade coupling decreases and as the number of blades increases. Detailed 
results are given below. 

Here we use our stochastic sensitivity measure in order to reach general results 

regarding mistuning effects. Note that is a complex number that characterizes the 
sensitivity of both the frequency and damping of a tuned mode to mistuning. The damping 
in a mode, however, is always small (this does not mean it is unimportant) and we have 
consistently observed that the sensitivity of the frequency is the one that governs mistuning 
effects. Hence we focus on the real part of our sensitivity measure. 

Since the computation of aerodynamic forces for the SSME turbine is expensive, we 

used another blade assembly to investigate the effectiveness of $ in predicting high 
sensitivity and localization. This rotor is an advanced unshrouded fan stage, studied earlier 
by Pierre and Murthy (1991) and Kaza and Kielb (1984). Complete details about the models 
and the rotor properties can be obtained from the above references. 

Figure 12 displays the real part (representing frequency) of the sensitivity of the 
modes of a 78-bladed rotor. The eigenvalues are sorted from the lowest frequency tuned 
mode to the highest frequency one. The sensitivities of all the modes are very large (much 
larger than 1; note the scale). This predicted high sensitivity is confirmed by the lowest 
frequency mode of the 78-blade rotor, displayed in Fig. 13 for ~ = 0 . 6 3 % .  This mode 
exhibits strong localization features. oreover, Fig. 12 shows that the modes with the 
lowest and the highest frequencies are much more sensitive to mistuning than those near the 
middle of the frequency cluster. This is fully consistent with the results presented in Fig. 5 
for the SSME turbine, which showed that the least and most stable modes (typically located 
near the middle of the mode group) are less severely localized than the lowest and highest 
frequency modes. 

Figure 13 displays the lowest frequency mode of this rotor for various numbers of 
blades, from N = 2 0  to N==78. We note that while the mode of the 20-blade assembly is 
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localized to approximately one-half the blades on the rotor 
same mode increases rapidly with the number of blades. 
sixth of the blades participate significantly in the motion. 

The sensitivity measure of the real part (frequency 

the degree of localization of the 
For the 78-blade rotor only one- 

of the lowest frequency mode is 
plotted in Fig. 14 versus the number of blades in the rotor. (The sensitivity is negative 
because the lowest frequency is decreased by the introduction of mistuning.) We note that, 
in absolute value, the sensitivity measure increases rapidly with the number of blades, 
thereby confirming the localization results shown in Fig. 13. (Note that the sensitivities for 
small numbers of blades are not small, but only appear so because of the large scale.) 

On a final note, we point out that the calculation of the sensitivities for all the 
modes is a trivial task that requires only the tuned assembly’s eigensolution. No solution of 
the mistuned eigenvalue problem is required. This sensitivity measure could be used 
effectively as a design tool. 

S 

The main finding of this study is that the aeroelastic characteristics of high-energy 
turbines can be highly sensitive to small random blade mistuning. Weak aerodynamic 
coupling between blades is the cause of this sensitivity. As an application, the aeroelastic 
modes of the SSME HPOTP turbine were examined. 

Upon introduction of small mistuning, the root locus of the aeroelastic eigenvalues 
loses the regular structure that characterizes the tuned assembly to become randomly 
scattered, and the constant interblade phase angle mode shapes of the tuned assembly 
become strongly localized to a few of the blades. The occurrence of vibration localization 
has important consequences for high-energy turbines. Localization results in a confinement 
of vibrational energy to a few of the blades, and therefore in a possibly large increase in 
amplitude for those blades. In turn, stresses are larger and fatigue life is shorter, which can 
ultimately result in the failure of those few blades. 

We did not consider structural coupling, either through the disk or tip shrouds, in 
our study. However, previous research (Wei and Pierre, 1988a; Pierre and Murthy, 1991) 
has shown that aerodynamic and structural coupling affect the sensitivity to mistuning in the 
same qualitative fashion. Hence, including structural coupling in our model would increase 
interblade coupling and lower the sensitivity to mistuning. Let us consider an extreme 
situation where the structural coupling is ten times stronger than the aerodynamic one. 
Since the degree of localization is a function of the ratio of coupling to mistuning (Pierre, 
1988), the assembly with both aerodynamic and structural couplings requires a mistuning 
ten times larger than that for the aerodynamic-only system in order to produce the same 
localization. For the SSME, since 0.1% mistuning causes strong localization in the 
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aerodynamic-only system, it means that a mistuning of 1 %  would be needed. With 
mistuning estimates typically ran $6, we conclude that high sensitivity and 
strong localization would still be observed in this extreme situation. The study of mistuned 
assemblies with both structural and aerodynamic interblade coupling will be the subject of 
future research. 

Although our study focused on the free response of blade assemblies, the forced 
response problem is of greater interest to the turbine designer. The next step in our 
research is to examine mistuning effects on the forced response. We conjecture that high 
sensitivity to mistuning and vibration localization also occur for the forced response of 
mistuned assemblies. This is based on two reasons. The first is that previous studies of 
localization in simple models of structurally coupled assemblies have shown that both free 
and forced responses feature localized vibration patterns (Wei and Pierre, 1988a, 1988b). 
The second reason is that the forced response, through modal analysis, is expressed as a 
linear combination of responses in the free modes, and thus retains the key features of the 
free dynamics of the assembly, especially near resonances. This is in fact why a thorough 
understanding of the free response is necessary before tackling the forced response problem. 

The perturbation techniques and the sensitivity measure introduced in the paper, 
besides providing a physical understanding of mistuning effects, are cost-effective and have 
the potential to become useful tools for the turbine designer. 

Finally, the pattern of blade mistuning along the assembly can strongly affect the 
localization of the aeroelastic modes. Based on our modified perturbation analysis, we 
conjecture that a “maximum randomness” in the mistuning pattern causes the most 
extreme localization. Conversely, “smooth” mistuning (e.g., a sinusoidal pattern) will 
probably lessen the strength of localization and tend to distribute energy among all blades. 
This suggests that it may be possible to o ize mistuning patterns to reduce localization 
and sensitivity to mistuning. If simple enough, such a system could be implemented in the 
manufacturing process of the assembly. 

This work was supported by the Institute for Computational Mechanics in Propulsion 
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