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I. INTRODUCTION

A. The Aim of This Investigation

If viscosity and heat conduction are negligible in a stellar
atmosphere, then whenever the temperature gradient exceeds the adiabatic
gradient, convection can occur. The character of the flow pattern, and
particularly the scale of motion, will depend on the superadiabatic
excess and its space variation. For reasons we will discuss later, the
convective pattern will tend to develop in cells of zero horizontal
dimension so that the motion would be entirely vertical.

However, when the effects of viscosity and heat conduction
are introduced, the situation is altered. A certain minimum excess over
the adiabatic temperature gradient is required before convective insta-
bility becomes possible, and even when this minimum excess is achieved,
the pattern of motion is not the same as in the inviscid, nonconducting
case. The most striking feature of the altered convective instability
is that, although cellular motion is again expected, there is one par-
ticular cell dimension, or mode of maximum instability, which is
preferred.

These qualitative statements describe experimental and theor-
etical results of long standing. The occurence of cellular convection
when a certain critical temperature gradient is exceeded was detected
in the experiments of Benard (1900). In a famous paper stimulated by
Benard's experiments, Rayleigh (1916) showed that a mode of maximum
instability and a critical gradient were to be expected on theoretical
grounds. Even earlier, Rayleigh (1883) and Lamb (1890) had discussed

the convective instability of inviscid, nonconducting media. Yet, the
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astrophysical importance of these studies was not appreciated until
Unsold (1930) showed that temperature gradients in stars can be super-
adiabatic in regions where hydrogen or other abundant elements are being
ionized. Since that time, much attention has focussed on problems of
convective instability, especially those involving constraints found

in stars and planets.

In spite of this increased interest in convective instability,
the nature of the heat transport mechanism has not been widely discussed,
and most of the work has followed Rayleigh's (1916) in including only
thermal conduction. But in stellar atmospheres, radiative transfer is
by far the dominant mechanism of heat transport both because it is a
volumetric effect and because the radiative conductivity considerably
exceeds the thermal conductivity [Eddington,(l930% Chapter V; Edmonds,
(1957)1.

The aim of the present work is, therefore, to study the
modifications of the classical stability theory that are required by a
radiating medium. The usual classical approximations are retained; most
notably it is assumed that the superadiabatic layer does not encompass
large variations in temperature and pressure. This restricts the direct
application of the results to early-type stars, though it is hoped that
the insights gained may lead to approximations which will permit the
extension of the work to include the conditions demanded by the later

spectral types.

B. Convection in Stars

Observational evidence for the presence of convection in stars

comes mainly from the absorption-line profiles of stellar spectra.
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Doppler broadening, too great to be explained by thermal motions of atoms,
indicates the existence of large-scale motions in a variety of stars.
These motions have generally been referred to as "turbulence" in the
astronomical literature, and probably the convection is turbulent in the
late spectral types. For example, in the sun, the r.m.s. vertical
velocity as found from Doppler shifts of "granules" is about .4 km/sec
[Richardson and Schwarzschild, G950)L and with reasonable estimates of
viscosity [Edmonds (1957ﬂ and scale height, this implies a Reynolds
number of 101L.

Attempts to produce models of stars with convection have
generally been based on some idealized picture of the convective
processes. No complete theory has been produced and each model has
left at least one parameter to be fitted to the observations. The most
elaborate approach has been the application to the solar convection zone
of the mixing-length theory of turbulence initiated by Biermann (1937,
1948) and Siedentopf (1932). Nowhere in the theory is the mixing length
specified, though in her model of the solar convection zone, Vitense
(1953) uses the scale height as a mixing length.

Perhaps the most promising alternative approach lies in the
study of nonlinear convective instability begun by Malkus (1954 a) and
developed further by Stuart (1958) and Malkus and Veronis (1958). Malkus'
(1954 a) theory has succeeded in predicting what seem to be transitions
from laminar to turbulent convection. Such transitions have been ob-
served by Schmidt and Saunders (1938) and further investigated experi-

mentally by Malkus (1954 b).
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The starting point of the nonlinear theories is a complete
understanding of the problem of instability with respect to perturbations
of small amplitude. The main concern of the work done so far has been
with problems in terrestrial contexts, and they naturally develop from
the Rayleigh-type convection. If the techniques used are to be extended
to stellar problems, a complete solution of the linear stability problem
under astrophysical conditions must be found. These conditions include

(l) large variations in density and temperature with

height in the atmosphere,

(2) the bounding of an unstable layer by stably-stratified

gases which however may be penetrated by motions, and

(3) the smoothing of temperature fluctuations by

radiative transfer.
Studies of the effect of these conditions on the motion have been
attempted where only one of the conditions is introduced at a time, but
the complete solution of even the linear problem with all three effects
present is still awaited. 1In the next section we make reference to the

work on the first two effects.

C. Convective Instability in a Layer of Varying Density

The study of convective instability began with the work of
Rayleigh (1883) and Lamb (1890). The interest at the time was primarily
in water and atmospheric waves, and as we have mentioned, the relevance
of such studies to problems of stellar atmospheres was not appreciated
until Unséld's pioneering work.

In this early work the effects of viscosity and heat conduction

were ignored. A static fluid, stratified in horizontal plane-parallel



layers was subjected to a uniform, vertical gravity field. Small,
arbitrary perturbations were introduced in the state variables and
these were coupled through the equations of motion to a flow pattern
of small amplitude. The critical situations of zero density gradi-
ent (imcompressible fluid) and zero superadiabatic gradient (com-
pressible) were assumed to be exceeded. All disturbances grew in
time since no stabilizing influences were included. The aim of the
investigations was to see which disturbances developed most rapidly.
Only disturbances periodic in horizontal planes were con-
sidered. Thus, if Cartesian coordinates are used, and X and y are
the horizontal axes, the disturbances depend on x and y like
exp(ikxx + ikyy) where the k's are wave numbers. A given mode of
disturbance is characterized by the horizontal wave number k =
(2 + ki)l/g.

turbance is like e

It was assumed that the time dependence of a dis-
0t yhere n must depend on k. In all cases, for
both compressible and incompressible flow, and for a number of
initial configurations, the rate of development, n, is zero for

k = 0 and increases monotonically with increasing k. Thus, dis-
turbances of small horizontal dimension develop most gquickly.

The increase of n with increasing k can be understood intui-
tively; we will here follow a brief discussion given by Hide (1955). Hide
first recalls that a given static density distribution is unstable if it
is not a minimum potential energy configuration. The tendency of an un-

stable configuration, he argues, will be to convert potential energy
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into kinetic energy in the most efficient way possible. Since
only vertical motions are effective in this conversion, a disturb=-
ance consisting entirely of vertical motions should develop most
quickly. This is the pericdic disturbance of zero horizontal wave
length (infinite k) and it is, therefore, the preferred mode of
instability. Similarly, the disturbance of infinite horizontal
wave length consists entirely of horizontal motion and should be
entirely stabilized, as the theory predicts. The details of the
theory are to be found in lamb's book (1931; see especially page
541 f£f); Lamb (1890) considered the compressible flow and Rayleigh
(1883) the incompressible. Some numerical results, especially a
graph of n versus k, were recently derived by Skumanich (1955)

for a polytropic atmosphere. OSkumanich stressed the result that,
in a polytropic atmosphere, n - as k — .

Another aspect of convective instability in atmospheres
of varying density is the penetration of the motion into the am-
bient stable layers. Unno (1957) has considered this effect in
an atmosphere of exponentially varying density in which the (con-
stant) scale height changes discontinuously at one depth in the
atmosphere. Here again n increases with k. Further work on this
aspect of the problem has been done by Gribov and Gurevich (1957)%,
but apparently the only readily accessible reference is an

abstract.

* I am indebted to Dr. W. V. R. Malkus for drawing this work
to my attention.



The situation changes entirely when the effects of viscosity
and heat transport are admitted. Each of these favors stability, and
each increases in effectiveness with increasing k. The case in which
viscosity alone enters the picture has been considered in connection with
variable density and incompressible flow by several people at Yerkes
Observatory [Chandrasekhar (1955), Hide (1955), Fan (1955)]. The situ-
ation is that infinite wave number implies infinite viscous stress, and
the result is found that the greatest rate of development occurs for a
finite k, depending on the initial configuration and the parameters of
the problem. Even in this case the critical gradients for the onset of
convection remain the adiabatic and zero gradients for compressible
and incompressible flow respectively. It is not until both viscosity
and some form of heat transport act that an adverse density gradient can

be stable.

D. The Rayleigh Theory

If a density fluctuation appears in a medium with an adverse
density gradient, the disturbed region of fluid will be driven vertiecally
by the resulting net buoyancy force. Viscous forces will oppose the
motion, but so long as nothing acts to wipe out the fluctuation, the
buoyancy and viscous forces will balsnce and a sustained motion will
result. This situation, which was discussed at the end of the preceding
section, bears a similarity to the case of a sphere falling through a
viscous fluid with the Stokes terminal velocity. However, in real
fluids heat conduction will destroy the concomitant temperature fluctu-

ation and the longevity of the buoyancy force is curtailed. The question



in any given case is then, does a sustained motion arise or are the
fluctuations destroyed so quickly that convection cannot be maintained.
The answer, of course, must depend on the initial temperature gradient
and the nature of the fluctuation, as well as on the hydrodynamic
parameters of the fluid.

The familiar heat transport mechanism, thermal conductivity,
was Tirst introduced into stability problems by Rayleigh (1916). This
complication of the theory required the introduction of equations other
than the equations of motion, since an additional variable, the temp-
erature, now appeared. A heat conductivity equation and an appropriate
equation of state were therefore introduced into the problem by Rayleigh
(1916)9 [The set of equations was not original with Rayleigh, and he
credits them to Boussinesq (1903).]

To compensate for the new difficulties, Rayleigh made use of
certain very natural approximations, which he attributed to Boussinesg
(1903), of which only one is a severe limitation. This approximation
treats all variations of density as negligible except when they appear
in conjunction with gravity. Thus, any derivative of the static density
distribution is neglected when multiplied by a perturbation quantity
if the term involved does not contain a gravity factor. Hence,
Rayleigh's work (and the present one as well) does not apply to layers
of fluid with large density variations from top to bottom.

Rayleigh also treated the motion as incompressible so that
both the equations of continuity and state become simplified. However,
Jeffreys (1930) has shown that so long as the density does not vary

greatly across the layer, the results obtained for incompressible
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motion can be transformed into exact results for the compressible case
by everywhere replacing the temperature gradient by its excess over
the adiabatic gradient.

As in the previous investigations, Rayleigh sought solutions
of the perturbation equations which depend on x, y and t like
exp(ikgx + ikyy + nt). He assumed n to be real and set n = 0 to obtain
the critical equation of marginal stability. Thereby, he found a single
equation for the vertical velocity component alone. The equation 1s a
sixth order ordinary differential equation involving the horizontal wave
number k = (ki + k?,)l/2 and a non-dimensional parameter known as the
Rayleigh number,

-_Zocéal’}
R - &%

Here, g is the acceleration of gravity, & the compressibility, B is the
static temperature gradient, d the layer thickness, v 1s the kinematic
viscosity, and
X = 4

where,( is the thermal conductivity, p is the density, and ¢ is the
specific heat per gram. All these quantities are constants across the
layer. The problem is to find the minimum value of R, for given k,
which will permit solutions of the differential equation. The parameter
R, it may be added, 1s interpretable as a ratio of buoyancy force to
viscous force,

Since the work of Rayleigh, a number of other papers have
appeared, extending Rayleigh's results to a greé%er variety of boundary

conditions [Jeffreys (1926), Low (1929)], and introducing some refinements,
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We will summarize briefly the outcome of these papers which culminated

in the comprehensive discussion by Pellew and Southwell (1940). The

mathematical aspects are omitted here since they are essentially contained

in the later chapters and are also concisely summarized by Prandtl (1952).
For a fixed horizontal wave number it is possible to find

solutions of the equation of marginal stability. Solutions do not

exist for all values of R; there is a minimum allowed value of R for

each horizontal wave number depending on whether the boundaries are

free surfaces or rigid walls. Figure 1 shows schematically the sort of

result obtained for a particular type of boundary; it shows the locus

of minimum eigenvalues of R. The curve has a minimum value, Rcrit’

which occurs for a value of k, kKypits known as the mode of maximum

instability.

/

D \}_T///

crit

kcrit

Figure 1. Minimum Eigenvalue of R Vs. k (Schematic)



11~

The solutions corresponding to the minimum eigenvalue are the so-called
fundamental modes; they are the ones which do not have zeros inside the
fluid layer. The results of the various investigations are summarized

in the table. Wave numbers are expressed in the dimensionless form

a = kd, and agrit gives the mode of maximum instability.

TABLE I

CRITICAL RAYLEIGH NUMBERS AND MODES OF MAXIMUM INSTABILITY

Nature of Boundaries aarit Rapit
Two Free Surfaces 2.22 6577
Two Rigid Surfaces 3.13 1707.8
One Free, One Rigid 5036 1100.7

The conclusion is that a layer of fluid is stable against thermal con-
vectlion unless R > R,pit. However, if the critical Rayleigh number is
exceeded, disturbances in a band of wave numbers are unstable, and the
most unstable mode is that corresponding to Sapite

Pellew and Southwell (1940) showed that a variational principle
can be found for the problem which gives accurate approximations to the
minimum allowed values of Re Their method gave impetus to later re-
searches on problems of convective instability. They also demonstrated
that, if n is complex, its real part is negative, Hence, overstability
cannot occur and setting n = 0 to find_the condition for marginal
stability is valid. Previously the justification for setting n = O in
this way, the so-called principle of the exchange of stabilities, was
appeal to experiment. We will see in Appendix I that the principle is

also valid in the radiative csse,
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E. The Stability of the Radiative Gradient

We have mentioned that radiative transfer can play a role in
stabilizing a stellar atmosphere by effectively equalizing temperature
differences. Another aspect of convective instability in a radiating
medium is that the initial static temperature gradient is not a constant,
as in the case when the static gradient is produced by the action of
thermal diffusion alone. Thus the problem arises, how is the Rayleigh
theory to be modified to allow for a variable steady-state temperature
gradient.

The problem of a variable temperature gradient has been dis-
cussed by Malkus (1954 a) who noted that the form of Rayleigh's differ-
ential equation is essentially unaltered. The Rayleigh number enters
as before, except that the temperature gradient is replaced by its
average value. Malkus has shown that, for the case of free bounding
surfaces, a variational principle exists for the calculation of minimum
allowed values of the mean Rayleigh number. The effects of variation
in the temperature gradient are thus included in the mean measure of
stability.

Using Malkus' variational principle, Goody (1956) has investi-
gated the stability of static gradients arising fram the cambined action
of radiative transfer and thermal diffusion. The static gradients are
calculated on the basis of the Eddington approximation. To describe the
flow of heat by radiative transfer Goody uses two alternative approxima-
tions: (a) the opaque approximation in which radiative transfer is
treated as a diffusion process; (b) the transparent approximation in

which essentially Newton's law of radiation is employed and transfer
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effects are neglected. For several values of the ratio of radiative to
thermal conductivity, numerical calculations of the mean critical
Rayleigh number are performed. The results depend upon the conductivity
ratio and the optical thickness of the layer. Goody's results apply
strictly only to very large and very small optical thicknesses, though
he graphically interpolates to obtain estimates for the intermediate
cases. No attempt is included to subtract the adiabatic gradient out,
and application to a compressible medium would require a separate

numerical calculation.



II. THE SMOOTHING OF TEMPERATURE FLUCTUATIONS
BY RADIATIVE TRANSFER*

A. Preliminary Remarks

In the last chapter we saw that an atmosphere which is able to
wipe out temperature differences effectively will tend to be stable
against thermal convection. The equation describing the smoothing of
temperature fluctuations by radiative transfer is developed in this
chapter. One of the by-products of the development is an expression
for lifetimes of such fluctuations under the action of radiative transfer
alone.

Radiative lifetimes are of interest in a variety of problems
of stellar hydrodynamics, and the processes considered have received
attention in the astrophysical literature. ©Some numerical estimates
are given by Whitney (1955) for radiative lifetimes in stellar pulsation
and by Oster (1958) for radiative relaxation times in solar flares.
Approximate formulae were developed by Unsold [cf. Unsold (1955)] and
by Vitense (1953) for studies of the solar convection, but these are for
optically thick and thin perturbations. An equation for the smoothing
of fluctuations in the chromosphere was developed by Parker (1953)
which also neglected transfer effects. The trend of these investigations
indicates a need for a formalism to incorporate effects of radiative
transfer into problems of stellar hydrodynamics. This need is partly

met in the work of the present chapter.

B. The Radiative Heat Equation

We seek to express an equation for the time variation of

temperature in a radiating medium. The basis for this equation will be
* Much of this chapter has appeared elsewhere [Spiegel (1957)].

-1k4-
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the statement of the conservation of energy for the medium. Changes
will be supposed to proceed quasi-statically, so that a temperature
distribution, source function, and mean absorption coefficient can be
defined for the medium at any instant.

Let ¥ be a position vector, t be the time, and let

e(¥;t) = internal energy per unit mass,

o(R;t) = matter density,

T(R;t) = temperature,

p(X;t) = pressure,

Q(Y;t) = radiative heat exchange rate per unit volume,
K(X;t) = thermal conductivity, and

¢(§;t) = rate of viscous dissipation of energy per

unit volume.

Then we have [e.g., see Goldstein (1938); Chapter XIV]

Ae*”“a”() WVT)““ Q@+ 0 (1)

as the expression of conservation of energy where

4 0 = B _ =,
JE TRt TR T AT T WV

The symbol u; denotes the velocity vector with components (u,v,w).

The viscous dissipation term is of second order in the velocity
and will be negligible in all problems considered herein. Likewise,
thermal conduction is not important in most stellar problems [Eddington
(1930), cf. Chapter V], and though the retention of the thermal con-

duction term would entail no special difficulty, we neglect it. For
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example , Edmonds (1957) has noted that the thermal conductivity is
always less than or equal to 5% of the radiative conductivity for the
physical conditions encountered in Vitense's (1953) model of the solar
convection zone.

For the internal energy, we have the relation
Ci,e = Cv A-T (2)

where ¢ is the specific heat per gram at constant volume. The net
rate of radiative energy exchanged per unit volume with the surroundings

is rate of absorption minus rate of emission. If

B(%;t) = source function integrated over frequency,
J(%;t) = mean intensity integrated over frequency,
k(%;t) = mean (grey-body) absorption coefficient per cm.,

where K is an inverse length, and J and B are in units of intensity

(i.en, ergs/cmg/sec/sterad). Then we may write
Q = wx (J -B) (3)

The mean intensity is an average of contributions from over
the entire medium, suitably weighted according to the extinction. The
extinction of a beam between two points depends exponentially on the
optical separation between them. We define the optical separation

2 -2
between two points % and £ as

n
t(%35) = [@IFE) A »
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- >
where ?:g - X and = "(‘, . Then the mean intensity

can be expressed

C-y
>
(._+

~—”’
t

——
f

A%\

(X

>
where d & is a volume element and the integration is over all space.

The transit time of 1light has been neglected.
To proceed further we will assume local thermodynamic equilib-

rium and thus take the Planck function for the source function. Hence

B ngw (6)

T

where o0 is the Stefan-Boltzmann constant.
Finally, if we assume incompressibility we may neglect the

dt (p) term, though in the absence of motion the effect of compressi-

bility can be included by replacing ¢, by cp.
Now on combining Equations (1), (2), (3), (5) and (6) we

obtain

ot 4

PCV c(iL-Tg'. - L{’O“K JK«T Lﬂ[n 1‘

L/Y-Nf
|

which will be one of the fundamental equations of this investigation.
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C. The Linearized Equation

Let the temperature be expressed as

Ty = T+ 8(Rt) (8)

where TO is some equilibrium distribution and @ is the temperature
fluctuation. In the convective instability problem which we will con-
sider in later chapters, the assumption is made that any perturbations
in equilibrium quantities are small. Actually, for the case of stellar
temperatures this assumption still allows reasonably large fluctuations
in temperature, so that even in the relaxation-time study the approxi-
mation !9|< < TO is of interest. We can then neglect terms of second

order in €.

Since we have assumed incompressibility, one variable suffices
to specify the state of the system. Thus, if we choose the temperature
as the state variable, any other physical parameter of interest can be
expressed in terms of the temperature explicitly, and in terms of ¥ and
t implicitly. If we call f a typical quantity, we may write the Taylor

expansion, to first order in 9, as

F(L) = F(T) + 1T 'r=q:,9 (9)

In the sequel, we will use the notation f_ = f(TO) and f! = (%%)

and write the ¥ and t dependence explicitly in the following way:

£(R;t) = £,(R) + £4(R) o (F,t) (10)
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Then, if there are no motions in the equilibrium state,

Equation (7) reduces to

-T

T;ﬂ(;) = J[ Toui( 'g) E-mﬂ" KOK_E:) cL—E: (11)

which 1s the condition of radiative equilibrium. More generally, on
combining Equations (7), (8), (10) and (11), and neglecting 0(02) we

get

I

oty + (AT

(L&jg‘cf)o {%{!ﬁ,(i’-&?}T (?—W) T 9(* ﬂ d7 .

tT°@) 0Rt)  + "
f [K:mm p(3+¥5t)

-
= -
where ™ = E- X + In the last integration, let us replace the
/

variable ﬂ/ by 4L = “/R.'
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Then Equation (12) becomes
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(13)
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The terms on the right hand side of Equation (13) represent the various
physical origins of the radiative smoothing of temperature fluctuations.
In this linear formulation only the effects of perturbations on the
source function and absorption coefficient appear. The first term on
the right hand side of Equation (13) represents the change in energy
absorbed at ¥ as a result of the alferation of source function through-
out the atmosphere. In the second term is contained the alteration in
the rate of emission at X which results from the disturbance in the
source function there. The third term arises from the perturbation in
the absorption coefficient throughout the atmosphere and gives the re-
sultant change in energy absorbed at ¥. The absorption-coefficient
perturbation term consists of two opposing tendencies, since a change in

absorption coefficient produces a change in both the absorption and
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emission. We will see that these opposing tendencies cancel exactly
in the isotropic radiation field of a homogeneous medium.

In order to obtain the relaxation time for the radiative
smoothing of the fluctuation © we will discard the caonvective terms in
Equation (13)5 Even the remaining terms are too complicated to deal with
in the general case, and we turn to an examination of the equation for

homogeneous media.

D. The Homogeneous Medium

For an infinite homogeneous medium with no motions, Equa-

tion (13) becomes

A -3, JI :m 3.2 P :
505t - /]| S 0T DT~ o) +
T , | - > i E:'K“R' (]_ll-)
[k ATt~ kO (R4 R e O
T o ot i

where

r e

is an inverse time, and the subscript denoting equilibrium values has

3
)/ _ (6 0 K,ifj (15)

been suppressed. Let us first consider the absorption-coefficient

perturbation term

-~ KN

S dF 68
4T

(.- L;L&J[e (X+¥t) - kn 9(?+a?;ﬂ]

nl
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In the second term of'qb,'we will use QF as an integration variable in-
stead of T. However, we will call the new integration variable T to

retain consistency with the first term. Then

- -k
~ ‘ﬁak NN T g;l '
(¥ e O(Y+T oty d e
| - KM (17)
N *LD. | - w?‘ : ew ’Z- _;2
l{gl j O(X+T51) o Krdy

If we now interchange the order of integration and perform the integra-
tion over A, we find that

03 - 0 (18)
Hence, the perturbation of absorption coefficient has no net effect on
the smoothing process in a homogenecus medium. This is true only in
this linear approximation; the linear theory neglects the interaction
of absorption-coefficient perturbation at a point with the perturbation
in source function at other points.

With the vanishing of @D, Equation (17) reduces to

S_—t
0. T4\ = S. € 3 N, “’)
3 038 = Y| BP0 d? = B o)
If we take the Fourier transform of this equation, we obtain

2 o(1;t) = -m(B) O(kt) (20)

at
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where
.—;_9

- _RX -
d?@;ﬂ :(i'_'_lt)gfe()(,t) € d\X (21)

and

— | LK&V Q”m' -
/Y\(Q\> = Y( l”J € FTE K“dr) (22)

Then q) decays exponentially in time according to the equation

OTt) = pEore™ o)

where the initial disturbance specified by (b(E;O) is of arbitrary
form.

The integral term in n,

Q{(EJ - J Gma\'y e-mL «dT (2k)

YT ?

can be evaluated using spherical coordinates. If uy = COS(Q,F), we can

write

@ <9<) = _7’% [Zﬂmd“ JH‘?&%R/‘L O{/Uk (25)

o ~1
After integrating over u, we have

R = §) ¢ =2
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Hence,

N

~ . K -1 K
RO - 3ot g ()
Then, n becomes

m () = )’(1 '72— ) ’\ 29

The quantity l/n is the approximate decay time for a pertur-
bation of characteristic length 1/k. The ratio k/k is a measure of the
optical thickness of the perturbation. As k/k varies from zero to
infinity, n(k) varies monotonically from 7 to O.

In the former limit, when the perturbation is optically thin,
only local emission operates to smooth out the fluctuations. Wherever
the temperature is raised, the rate of emission is increased; where it
is lowered, there is a decreased emission rate. But no self-reversal
occurs, and any given point does not, in a manner of speaking, see neigh-
boring points. In this way, the smoothing rate becomes independent of k.

At the other extreme, large optical thickness, K/k — o0 and
n(k) —9(§§§)k2' The dependence of n on k is just as in qrdinary thermal
conductivity and 7/3&2 has the same dimensions as the conduction coef-
ficient in the usual heat equation. In this 1limit, a photon travels
several mean free paths before escaping from a perturbed region, and

the smoothing rate is no longer volumetric.

In general, if the initial perturbation is Q(Q;O),

_. « 12
| 2 ~LR
¢(@)O>ffﬁﬁyj'9(%jo)€ ¢

o (29)
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and the solution of Equation (19) is obtained by taking the inverse

transform of Equation (23). We then find that

s

is the general solution for small disturbances in a homogeneous medium.

E. Spherically Symmetric Disturbances

As an example of the sort of calculation that might arise, let
us consider initial disturbances which are symmetric about the origin.

The general solution, Equation (30), becomes

. : o “:, M“,t ey ».b‘ :-\ n
S e R AT e T 5) A (31)
Y SR G500 AF
: € 7
where 3 = é We can integrate over all angles in the k; integral
and obtain
S
(07 k) e pea - mt
Y § by e (;,;

\ ’ (\w),T{,’\ N~ (32>

Pat
In turn, the kK integration can be performed over all angles and we find

that the distribution remains spherically symmetric at all later times.
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Thus,
%0 Do
2 o [ o /o “t
A\ s "
Bixit) = 25 | AR A ek anbxBizo)
where x = YQ ‘.

In particular, let us consider

B(g0) = 6. ¢

where 6, = 6(0;0) and £ are constants. We find, then, that

| 4§° "'DO..Yt‘W‘c@t"ﬁ) AR
@(Xﬁ):.}‘{'{ 90! e & & k OM\VQX Mjm (34)

The integral in Expression (34) is difficult to perform in general
and must be done numerically. For the present discussion we will re-
strict ourselves to an examination of the time dependence of the
temperature at the center of a disturbance with k¢ = 1. Then, if we

set x = Oand K¢ = 1 in the integral of Equation (34), we obtain

LGS A Y
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With the transformation

-1k
Vo= ot I (36)

Equation (35) becomes

4B [ vty cy )

. N I

; e o . H

i ( {') ‘l L ;i ety ,::w | Q v 1 Aty
\3 o - AW\ G

o]

(37)

This integral expression may be readily evaluated by Gaussian quad-
ratures; a four-point quadrature leads to the result presented in

. . . st . . .
Figure 2. The solid curve is a plot of 2(8203 against the dimension-
less time, 7t. We see that the decay is somewhat slower than would
result from the simple exponential decay curve, e'7t, represented by

the broken line.
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Figure 2. Decay of Central Temperature in a
Spherically Symmetric Disturbance



-28-

It is interesting to note that the rate of cooling at the center of the
disturbance decreases in time. This is probably due in part to the
spreading out of the disturbance as time passes, with the result that
the center of the disturbance becomes optically shielded from undis-

turbed regions.

F. Some Numerical Values

To obtain some idea of the relative importance of radiative
effects, let us briefly examine the situation in the solar photosphere.
Using the model given by Allen (1955), and ¢y from Biermann's (19%2)

tables, we find the results in Table II.

TABLE 1T

CHARACTERISTIC TIMES OF THE SOLAR PHOTOSPHERE

Mean optical depth 0.5 1.0

1/7 (seconds) 2.5 1.7

The value 1/7 is the limiting lifetime of optically thin perturbations
and represents the lower limit of possible lifetimes. These are small
compared to observed lifetimes of about 4 minutes for features in the
solar photosphere.

However, with these wvalues of 1/7, we can ask what optical
thickness of perturbation would lead to a 4-minute lifetime in Equa-
tion (28). For the uppermost visible layers, the following results

are found.
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TABLE III

SCALE OF DISTURBANCE WITH 4-MINUTE LIFETIME

——

Mean optical depth 0.5 1.0
k/k 5.5 7.0

1/k (km) 500 350

These values of 1/k are of the order of magnitude of the so-called
granule size [cf. Rogerson (1958)] although a number of geometrical
factors are omitted, and we may expect radiative effects to be of

importance in stellar hydrodynamics.



ITI. THE EQUATIONS OF THE PROBLEM

A. The Basic Equations

Consider an atmosphere in a uniform vertical field of gravi-
tational acceleration, g. Let us use a Cartesian coordinate system
with z as the vertical coordinate measured positively upwards. The

equations of motion are

f_QQ;L - ?ﬁ. jvf‘? LL (38)

oL(U a ) PN
p — — _ji S VAVAR
i s + f ‘ (39)

fw.- — _2F fvvlur —%§ (40)
AZ

where Vv is the kinematic viscosity and u, v, and w are the velocity

components.

We will restrict ourselves to the Boussinesq approximations
discussed in Section D of Chapter I; in this way we can treat the
motion as incompressible, and still have the possibility of converting
to compressible results by means of the Jeffreys theorem discussed in

that section. Then the equation of continuity is

U "anr aw“ o
ox Tyt - (1)

-30-
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Since the fluid is treated as incompressible, we require only
one variable to specify the state of the system. We may, therefore,

take as an equation of state,
f = ﬁo[l'—x(T"I’:)] (42)

where O is the compressibility and po is the density corresponding to
some reference temperature To.
Our final equation is the radiative heat Equation (7) de-

veloped in the preceding chapter,
-7 — y

r__}4 e —
e BTN jﬁl WLOLZ‘I
F~dx (7)
Here we have written c¢ for the specific heat with the understanding
that when the motion is incompressible c, is implied, but cp should
be used when extending the results to compressible fluids by the
Jeffreys theorem.
The six equations, Equations (38) - (42) and (7), for the

six unknowns p,T,p,u,v,w form the basis of this investigation.

B. The Equilibrium-State Equations

Let us assume that the basic equations admit an equilibrium
solution with no motions. If we then set all time derivatives equal

to zero and let the velocity vanish, we obtain from Equations (38), (39)

and (40), ’(zfﬁ = 0
X (43)

of _ A
Bﬁ-~o (Lh)

’5 =
A% A )
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Equations (43) and (44) imply that the steady-state pressure depends
on z alone; i.e., the atmosphere must be plane-parallel in the equi-
librium state. Equation (45) is the well-known condition of hydrostatic
equilibrium.

The radiative equilibrium condition obtained from Equation (7)

we found to be Expression (11) -
-C
e —

Tq = JKTL\ 4Tt ok

(11)

We will denote solutions of the equilibrium equations by Por Py and TO,
where these three quantities depend only on z. It is taken for granted
that the equilibrium solution can be obtained. Equations (45) and (ll)
are the basic equations of model atmosphere theory for grey atmospheres

in local thermodynamic equilibrium.

C. The Perturbation Equations

The question to be investigated is whether an atmosphere
described by the equilibrium solution pg, T, Py Will be restored to
equilibrium if the medium is slightly displaced from the equilibrium
configuration. To answer this question, we consider a configuration

described by
fo= okt 8
T = T.+ 0 (ke)
b= ot S@D

and ask whether the initially small quantities 8p, ©, dp will grow or

diminish in time. The velocity in this disturbed state, (u, v, W), is
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also supposed to be small. We will then introduce solutions (46) into
the basic equations and neglect all second order terms in small
gquantities.

The equations of motion, Equations (38) - (40), become

g2l = 8k 4 eyl ()

1e] g X

g ~ Q
fc%% = -—;ji ;vw’—q% (b9)

in which we have made use of the equilibrium equations, Equations (43),
(44), (45), and (11). The equation of continuity, Equation (41), re-

mains unaltered:

\~ Bw
BU - %% = 0 (41)

The equation of state, Equation (42), becomes
§§:~=><3>09 (50)

In Chapter II, we derived the linearized heat equation,

Equation (12). In that equation, let us introduce the notation

= 4L (51)
dZ
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where it is understood that when we speak of the applications to com-

pressible media, this definition is to be replaced by

_ 4L (dT
- d\% O\Z AD (52)

in which (%g) is the adiabatic gradient. In either case, we know that

AD
an atmosphere is completely stable unless BL O for at least some values
of z. We will here consider only atmospheres having some horizontal
layer, of thickness d, in which B may be negative. We assume that B
vanishes on the bounding planes of this layer and that B i1s positive
definite outside the layer. The origin of coordinates will be taken
such that z = O on the plane midway between the two bounding planes.
Whether any particular combination of negative B, and d will be adequate
to produce convection is still a matter to be investigated. In any
case, for |zﬁ>% there will be stabilization and the disturbance quanti-
ties will go to zero as |z|—> .

We have already assumed that the density changes across the
layer |z|§:% are not appreciable. Consistent with this approximation,
we will assume that T, and k, also do not vary much in lz.f %. Then
since the integrands of the terms on the right hand side of Equation (12)
become small for ‘ZF>%, variation in Ty and K, outside the (possibly)

unstable layer will not cause much change in the values of the integrals

of Equation (12). Hence, Equation (12) becomes

90 o z

;t: + @W - Y {Ko HKRL e dg N 6 (53)
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where, as in Section D of Chapter II, the absorption-coefficient per-
turbation term has vanished identically. Equations (47), (48), (49),
(41), (50), and (53) form the set of six equations governing the six
disturbance quantities 5¢,0,%p,u,v, and w. It will be our next step to

reduce the number of equations.

D. The Equations in © and w Alone

Ultimately, we will reduce the six equations derived in the
previous section to a single equation in one unknown. As we shall see,
it is also convenient to carry out the reduction to two equations in
two unknowns as an intermediate step.

Let us differentiate Equations (47) and (48) with respect to
x and y respectively. In these equations, we may treat o, as constant,
as implied in the Boussinesq approximation introduced above. On adding
the results of the differentiation we obtain

Wi U (5 )

(54)

where

" ECH
Vi = ST % (55)

and the equilibrium subscripts are hereafter omitted. We can then

combine Equations (54) and (41) to obtain
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If we eliminate ®p between Equations (49) and (50) and operate
L
on the result with Y?rwe find that

L EM ¢ ol Rok 2
g%v w=—3zV op + | AVARVART IS’ %‘X PV 6

(57)

We can eliminate dp by differentiating Equation (56) with respect to z

and adding the result to Equation (57). Then
oot 4 - (56)
75T;<;7 W = '1)‘;7 1}j’ + E%‘><§;Z 63 5

together with Equation (53),
i
e \

25% + €>1tr = ‘)/ Vf}is - 2. E} CLE? - 6} (53)

4TI

provide two equations in the two unknowns © and w.

At this point, the contrast between the present work and the
classical theory is made clear. In the classical case, in the reduction
to two equations in © and w, one of the equations 1s our present Equa-
tion (58). The other equation would differ from Equation (53) primarily
in having the Laplacian of © on the right hand side instead of the
terms which are there. Also, in the spirit of Malkus' (1954 a) exXtension
of the classical work, we may mention that B in Equation (53) may vary
with z according to the equations of radiative equilibrium.

It should be emphasized that the use of the Boussinesq ap-
proximations appeared frequently in the operations leading to Equa-

tion (58).



E. The One-Dimensional Equations

The first step in dealing with Equations (53) and (58) will be
to reduce the partial derivatives to total derivatives by seeking

separable solutions. In particular, let us take

’ Nt
U (t,t) = e R ()

(59)

and

p(x%Z5t)

where k., ky and n are constants. We see that in the space dependence

elﬁxX+LQ%%+Lnt @(Z) (60)

of these solutions, we have merely restricted attention to particular
harmonic components in the horizontal plane. Since the equations are
linear, any linear combination of these will also be a solution. With
these forms of the solutions, Equations (53) and (58) become the

one-dimensional equations

AW = (D~ Q) Wogedad

and
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+
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where . Y L
% - ﬁx + ‘%g*)
Q= &d)(lx: &ﬁi)ChggﬁdW
j = gék
ok (63)
A
o= b
and

The two coupled equations, Equations (61) and (62), in © and W, together
with the boundary conditions stated in the next section, will be used
in Appendix I to demonstrate the principle of the exchange of stabili-

ties.

F. The Boundary Conditions

In the regions of stable stratification the perturbations
will be damped out, and for great enough distances from z = O they
must vanish entirely. In principle, all that we can say is that as z
approaches the limits of the atmosphere (possibly at infinity) the per-
turbation must go to zero. Actually, as far as practical calculation
is concerned, it is likely that the perturbations can be taken as zero
outside some finite z interval containing z = 0. If hj and hp are

positive, real constants, we can then state that

u=v=w=0=0p=20 =0 for z > hy, z £ -hy (65)



where the h's will have to be specified for any given situation, and

may be infinite. Of course, hy > g and hp2 &

From the vanishing of u and v, we conclude that

H=W=0 {o Z >0, 2, (66)

Also since u and v vanish, we deduce from Equation (41) that

QW _ -0
ﬁ—-o ‘%ﬁfLZ%%H Z'g‘e\’).

and, hence, that

DW =0 o 220 Z<h, (67)

The vanishing of Op and dp yields no additional information.

The question arises whether these conditions suffice to
specify the problem uniquely. When we combine Equations (61) and (62)
into a single equation in W’(say), we will have an integro-differential
equation with fourth order derivatives. We expect to require at least 4
boundary conditions. Indeed, we do have 4 conditions on W and its first
derivative. We have also included a pair of conditions on ® which can
be looked on as integrability conditions, though rather strong ones.
We will see that these conditions suffice to determine the critical

stability condition unambiguously.



IV. THE ONSET OF CONVECTION

A. The Equation of Marginal Stability

We have mentioned that the principle of exchange of stabilities
is that the case n = 0 separates the stable and unstable regimes. The
validity of this notion for the radiative case is demonstrated in
Appendix I. If the equations admit non-trivial solutions in the case
of n = 0, we say that the conditions under which this may happen, are
the conditions of marginal, or neutral stability. We then seek the
condition of marginal stabllity by setting n = 0 in Equations (61) and

(67). Then, in marginal stability,

~ ,,_l Wdl L
(3-a) W = 5-a0 e

/e ./
TNBEYAT - 8l1) @

Limits of integration in Equation (69) and in the sequal are omitted
with the understanding that the range of 1ntegratlon is over values of‘f
for which perturbations do not vanish, i.e. ,-__, g < '%ﬁ

A combination of Equations (68) and (69) yields the following

equation in W alone.

JE - W) & i

\& W

-40-



-

and

where <f3> is the average B in—%f ’; $

j\ - %%CX:<F3>>(7(1
Y Y

I

Equation (70) then governs the marginal stability of a medium of

given B. BSubJject to the boundary conditions, there are only certain
values of N for which solutions of Equation (70) can be found. For a
given value of a, the minimum value of A\ that admits solutions gives the
critical condition for the onset of convection in the mode described

by a. It is our aim to find these minimum allowed values of 2.

B. A Variational Principle

We can rewrite Equation (70) as

[X(EDPE) s = 2 WD)

F] = (D = Cf)l \A] (73)

and

KD =F ST =K -1 o

where O is the Dirac function.

Let ﬁ’be a solution of the adjoint equation

' O
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where

]

Ny 1~'ll/\{7
o= (D-a) W -6)

~ ad
The boundary conditions on W and F are, from Equations (66) and (67),

~.)

W-DW= T

H

, ‘ N
O %ﬁj\a §~$ ~ é%% , ‘} > %8%

and on W and F

W:DW: 1—:’10ng< ?k)SE%i (78)

Then, as we shall now show, the expression

v = AT XEDTOTY
[FOW) A

is stationary with respect to small, arbitrary variations in W and W

which satisfy the boundary conditions.
~J ~J
For suppose we know that there are functions W,F,W and F
satisfying the equations. Let us make the guessesE1 g.t and.1j+ % I?u
at F and F where g}jand gi}1vanlsh on the boundaries. By means of
~ ~J
Equations (73) and (76) we can then find correspondiné“ﬁgukmd.gd +Sﬂk]

and make them satisfy the boundary conditions.
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~NJ
Now, if our guesses are reasonably good; Sff1and S-Fj’will be
small gquantities. In that'oase, the error we make in computing A by

Expression (79) will be, to first order in small quantitles

| joqu X (H[FO SEE)-T ]
H] = —= meW 350\5 |

(80)

Jd]fdf%ﬂj)ﬁ(”?(]/)‘ [(WSF+ F Sw)dd
RO W®MAT [\ A

With Equation (79) this reduces to

D)= aﬁiwoq { L[ 1F) )X(I f)+
& }LIFT)%FS)X )~a)\j[r§W+\«/<r] Hé

Since W and F satisfy Equation (72), the foregoing equatlon becomes

N

T (8e)
X (X j & '\5 N} Li,g }

The second term in Equation (82) may be transformed by partial inte-

gration; we find that

[Fetumds = [TEIFMd e
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In this partial integration, the boundary conditions on W and ]j‘va
were required.

Now, since the F's must vanish at the integration limits, we
have by the definition of adjoint integral operators [cf. Morse and

Feshbach (1953), p. 8771,

(43 [ BEO Fen X (1) EOS Tk ()0
(84)

So that on introducing Equations (83), (84), and (75) into the Eypres-

sion (82) we find

Ox] =o© (85)

Hence, the Expression (79) for \ is an extremum, and moreover, in
order to specify the extremum expression the boundary conditions stated

in Equation (77) are both necessary and sufficient.

C. The Constant Gradient Approximation

The variational Expression (79) can in principle be evaluated
for any particular equilibrium situation specified by a B/(ﬁ? . In
particular, by careful calculation based on comparison with radiative-
equilibrium model atmospheres, it should be possible to determine which
spectral types are stable against thermal convection. But it would be
rather a long process to do carefully for all spectral types. Indeed,
one might wonder whether the stabilizing effects of radiative transfer
are important in any stars which satisfy the approximations introduced.
It would, therefore, be of some value to produce by less elaborate

calculation than that called for in general, a survey of possible
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instability conditions. To do this, we will make some idealizations
of the situvation.
First, let us suppose that the stabilization outside the super=-

adiabatic zone is very effective. Then, the perturbations would die off

d

- ( |
very quickly for %ﬁw 2 3: (i.e., for lj} Z 7{ ). This suggests

d
setting hl = hy = E’ or in other words ftreating the boundary conditions

9 P T
I
)

A A T v ch R AR (85)
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Then, as a further approximation we will neglect the variation

of B across the superadiabatic layer, taking

With Conditions (86) and (87), the equation of marginal

stability becomes

JRIVINE (A =) = = 26 WK e

-

iy
ri-

L
%

where, again,
o8
T = (:[5L- o) W (89)

The boundary conditions and the form of B now resemble those in the
classical theory. In Chapter II we saw how thé form of the radiative
heat equation reduced to that of a thermal conduction equation when

%i — oo, We would, therefore, anticipate that Equation (88) should

reduce to Rayleigh's differential equation when%ifnw-ﬁan That this is

the case 1s shown in Appendix III.
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In this constant-gradient approximation the extrema of A\ may
be computed approximately by the variational principle, which in the

present approximation becomes

L. [rods- [ABERENFOFE)
¢ [‘Fowm« 7

It may be seen [for example, in the discussion of the eigenvalues of
symmetric kernels by Courant and Hilbert, (1955); Chapter III] that

the extremsa are minima for positive .

Ds Calculation of \gpit

To approximate the minimum allowed value of A for a given

choice of a, we begin by selecting an-I;isatisfying

e =Fep=o0 .

which is the third of Conditions (86). Also, since-Ijjand ® are pro-
portional. We may be gulded in our choice of I;1by any intuition we
have about the temperature distribution. Having chosen ];1, we may
find W by solving Equation (89) subject to the remaining boundary
conditions., In general, the original choice of J;qwould involve one or
more variational parameters, and we would select those values of the

parameters which give minimum values for A\ in Expression (90).
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The situation exists in the present problem that the exact

T

eigenvalues are known for the classical theory (i.e,, the case 61*9 00).

There, the function

P(j‘) = coMTT, =3, (%)

produces values of A\ in good agreement with those resulting from the
exact solutions. The g is essentially a variational parameter (though
not all values are allowed by the boundary conditions) and the value
=1 minimizes \ as a function of fffor all a. With this choice of fij)
a value of about 1715 is found for the critical Bayleigh number when
the boundaries are rigid; the exact answer, as seen in Table I of Chap-
ter I, is 1708 to four significant figures. Hence, in the present cal-

culation, we expect that the trial function

() = waTy o

should give reliable results for large E%_'

However, for small lgék it is possible that altogether
different trial funections would be preferable. But the ine¢lusion of
variational parameters would be somewhat involved here in that mini-
mizing the expression for \ with respect to these parameters involves
a long numerical process in general. We will, therefore, follow the
alternate procedure of computing ) for two quite different trial
functions which involve no variational parameters, and selecting the
one of these which gives the minimum values of \. The Jjustification

for this procedure is the a posteriori one that where the procedure

is needed ‘t
(/&

not large) the different trial functions lead to nearly
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the same eigenvalues, so that A\ is fairly insensitive to the choice
of trial function.
Our first choice of trial function is ];ﬂ of Expression (93);
|

this is a natural choice because we know it to be quite adequate for

T%ak . On the other hand, we might expect that for transparent

layers (small T%i ) the temperature disturbance would go to zero more

large

steeply than in the opaque case. At least we are familiar with this
sort of behavior from ordinary radiative transfer problems. Another
motivation in our choice of an alternative trial function is the formal
equivalent of the preceding reason. Namely, since the derivative of

is left unspecified by the boundary conditions, we would like to vary
this property of Iﬂ as much as is possible. A function with vanishing
derivatives on the boundaries seems appropriate. Therefore, we are

prompted to adopt as a second trial function
D) = 14 e (94)

The amplitude factors in both trial functions are arbitrary, and have
been left unspecified since they have no effect on the results. The
two trial functions are exhibited in Figure 3; the normalization of

both in the figure is such that

F ) =L (o)
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Figure 3. Illustrating the Trial Functions

Even though we have chosen trial functions containing no vari-

ational parameters, the calculations of A by Expression (90) are rather

lengthy. The procedures are carried out in Appendix IV for ET7 and

T
in Appendix V for im. We summarize the results here.

Using 11] as trial function, we obtain from Expression (90)
the result
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where
%’“ - ar+T” (96)
and
+1
— Ry
Uam)= e‘q Wb (-0 ol x (97)

with

-\ 7
A = (98)

1\

2

The integral IJ'QI,T) has been computed by a 5-point Radau formula,
and the term involving U i1s significant in the result to about only
one part in ten thousand. We have tabulated U in Appendix VI. A two-

point Radau formula results 1n the approximate expression
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For Azwe obtain the formula

N 2 4—0:1 14 5|LTL*(GC‘+m w&\&
. :Q%Z - a i wcuo. X13 -
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L_%m‘]’l‘-r{‘x ~;LT‘L’(; \%—’H' 7\—[/( )
where
cZ = +(7:lt) o)
and
+ |

SEIE iy

V(o) = Pt A €

1
o " o |
+ 4T 7
_" Q@\x\\q ‘\\ 50‘ g(!_&j\f\%,(' Xs L& ;

The two-point Radau approximation gives

-

Bﬁ+flm }PQ-Cl) (103)

Viar) =

The term in )‘2 which involves V makes an even smaller contribution

than the counterpart U-term in 7‘1 and we may neglect it.
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Given these formulae, the procedure for computing critical
values of \ can be carried out graphically. For a fixed ., we merely
plot A\ versus a, and locate the minimum. The minimum value of \ is
then \qpjt, @nd we know that a radiating layer of gas is stable against

convection unless

>\2 ’Xcﬂt (10%)

The values of xcrit and Bapit for the two different trial functions

are given in Table IV.

TABLE IV
VALUES OF Aopit AND &cpit
T8y Mgy ®2epit Merit DIfE.
0 Lo 70.10 L.8 69.03 1.5
1 L.75 68.09 L.72 67.13 1.k
5 L.55 60,42 L.55 59.82 1.0
1 L.32 51.63 L.b 51.51 0.2
T 3.56 25.30 3.7 26.42 k.3
5 3.27 1h4.41 3.5 15.62 8.1
10 3.14 L.80
-4

1000 3.11 5.27x10 3.1 6.52x10'” 13.5

Our first concern is whether the results obtained are at all
accurate. The transition of our Equation (88) into the Rayleigh
differential equation at large shows (cf. Appendix III) that 372X

goes into a Rayleigh number. Thus, our present results at T = 1000
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ex
give radiative-Rayleigh numbers 3T >‘|CT'@(_ = 1716 and S’L”l)\,_wﬁ —
1956. The former result compares favorably with the classical 1708.

Hence, the difference of 13% in chri and Xchit are of no concern

t

since we know that Moaps is quite accurate. As T becomes smaller, the

t
two computations give more similar results. The fact that two quite
different trial functions give comparable eigenvalues lends confidence
to the accuracy of the results. We will at each T adopt the minimum
of the two results. Thus, we take A .j¢ = Mopit for T 71 and Aeriy =
Mopit TOT T$1.

The nature of the differences in \j,.;, and Ao, 4 are quite
reasonable on physical grounds. Our choice of };; was motivated by a
feeling that, for transparent layers, the drop to the boundary value
is quite rapid. In this way we might expect :El to be more nearly a
solution than ‘IT for small 1. The results bear this out. However,

and A2 for small T, are small. This is

the differences in chr’ erit

it
because }: and T:'do not differ so much in actual value as in de-
rivative. Since at small values of T, the smoothing of temperature
fluctuations is primarily through emission losses and depends mainly
on.the value of @ (or F), the two trial functions give similar results.
On the other hand, for large T radiative transfer behaves like a dif-
fusion, and diffusion is determined primarily by the derivative of ©
(or F). Hence, we find the relatively large difference between chrit
and ANepit at large T plausible.

To summarize the calculation, we plot \.,.;jt and a..;. as

functions of T, drawing the curve through the preferred values as dis-

cussed above for the case of A,n.jt- The values for acrit can be
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considered identical for the purposes of our accuracy. Figure 4 shows

Aerit @ a function of 7, and acpit Versus T is plotted in Figure 5.

E. Physical Interpretation

As is the case with most of the dimensionless parameters
describing hydrodynamic stability, the parameter A can be arrived at
as a ratio of certain forces from purely qualitative arguments. We
offer here a semi-qualitative derivation of the instability criterion
of the last section in order to clarify this remark and some of the
physical significance of \ as an instability parameter. However, when
we speak of this as a physical interpretation it must be made clear that
we have succeeded only in making plausible that \ is indeed the relevant
stability parameter in this problem. The question of why the critical
values of X\ are what they are is in no way answered by these crude
arguments.

Thus, A, just as the classical Rayleigh number, can be thought
of as a ratio of buoyancy force to fiscous force. In a rough way, we
can take as the requirement for instability the condition

buoyancy force > viscous force.

For a perturbed fluid element of dimension £, we would have

) 0 >mQ" b’ (105)
gyl 2Tl 4=
for instability, where 7 is the coefficient of viscosity.

Suppose that in the lifetime, t, of the disturbance w repre-

sents a typical speed and £' is the distance traversed. Then

dw v w4

———

gz = L (106)
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Also, as in Equation (50)

Yo = -¢* 0 (50)

Let us approximate 6 by
~N Q/’ U Q )
6= ¢ B (107)
Then, with Equations (106), (50), (107) and the definition

\) - TL/ (108)
5

the requirement for instability becomes

gl '&Lt > (109)

-
We see that the greater is £, the more unstable the perturbation is,
and in particular £¥d 1s the most favorable possible case for in-
stability. Then, the condition for any instability becomes

7 =Bl l

L 2 (110)
V

In general, we should expect the lifetime t to be set by the

3
dominant dissipation mechanism. If, for example, this is thermal

diffusion

¢

2 ]
g g C%”// | (111)

W K

_t

where ) is the corductim coefficient. Then the instability condition

\
%‘_O%X%{)_— ’P = (112)

becomes
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Of course, as we have seen, the critical Rayleigh number is not unity,
3

but more like 10°. The variational procedure in the classical theory

with the trial function..fi gives

N %; 8'K,CL }+c;QQ_a
1;2 - ‘ qy at ol (113)
a
as the criterion for instability to wave number a. This criterion is
the particular one for the boundary conditions we have adopted, the

so-called rigid boundary conditions. Here, as in Equation (96), q is

the three-dimensional, non-dimensional wave number
Y.

G = (aF + YT (96)

For the case of a radiating medium, the lifetime as given

by Equation (28) is

, |
+ = (T (11%)
Y{l-=¢ - )
k %
The instability Condition (110) becomes

Bl U4t
i‘%—‘ = ’>\ 2 (\" @_’t ?%) (115)

1

This, like Condition (112), is very crude. But we know that the radi-
ative instability condition should reduce to the diffusive one in the
optically thick case, and X in that case should be replaced by 7/3R2

as in Section D of Chapter II. With this expectation, and Condition
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(115), we can make a reasonable guess at the missing factors in Condition
(115). Using the simplest form that will produce the correct limit at

large T/a, we obtaln as the approximate eriterion for instability,

%dleld. Ira + ot 11y
a 7\/&[ %] Toty) 00

The critical values of N in this approximate criterion differ only by

about 20% from those of the more precise Condition (95).



V. CONVECTIVE INSTABILITY IN EARLY STARS

A. Plan of This Chapter

In Section C of Chapter I, we mentioned the need for a theory
of convective processes in stars and suggested the possibility of ex-
tending current work in non-linear hydrodynamics [e.g., Malkus and
Veronis (1958)] to application in stellar problems. The study of the
linear problem under stellar conditions was proposed as a necessary
first step in such a development. In Chapters III and IV, a restricted
linear problem of this sort was considered; it was undertaken to investi-
gate the convective stability of a radiating layer of fluid with (nearly)
constant mean properties. We saw that the stability of such a layer is
described by two non-dimensional parameters, a radiative analog of the
Rayleigh number and the optical thickness of the layer. The natural
next step in the development of the convection theory is the extension
of the linear study to include the effects of variable density. How-
ever, this will not be undertaken here, and we will conclude the present
investigation by examining the stability of those stellar atmospheres
most suited to the approximation of the present theory=——the stars of
early spectral type.

In this chapter, we will evaluate the stability parameter A
for a number of model atmospheres of class B and early A. We will see
that one can expect convective instability in the atmospheres of most
of these stars. In the case of early B stars, we will make a hypothe-
sis about the relative importance of convective and radiative energy

transport, while in the case of the early A stars we will see that

-60-



-61-

there is some evidence that the convection is stabilized by rotation
in at least large regions of the stellar atmospheres. Finally, we will
close the'chapter with a summary of the results of this dissertation.

B. Expression of A for Application
to Stellar Atmospheres

To test for the possibility of convection, we need to know
a number of properties of the equilibrium state for the evaluation of
the instability parameter, A. Many of these are tabulated in the
published model atmospheres, but the practice is not uniform, and sup-
plementary calculations are often required. We may minimize such cal-
culations by re-expressing A in terms of quantities most usually tabu-
lated in the model atmosphere work.

First, we may use the hydrostatic condition, Equation (45),

to write

& - fT 2 by (117)
dz ’@ OKQNQ’%

d-0q T AT

is usually tabulated in preference to
o Lo $ d

in model atmospheres, though even the former is not always presented.

The quantity

We may then introduce the ideal gas equation

GL " mT (118)

where:kis the Boltzmann constant, p is the mean atomic weight, and TN
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1s the mass of unit atomic weight. We find that

%T % AT g T (119)
d g ¢

so that
% J.T oV.T) _ _3AMm A (120)
Z/AD k
where
( ow,?,T> .
clﬂp%‘ﬁl l‘?‘ﬂw Al)
Also, in an ideal gas, the expansion coefficient is
x = __\,, (122)

T

and if n 1is the coefficient of viecosity,

v = Y]/f (123)

Hence, Equation (71) for \ becomes

CGREEE)
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This expression for A\ is then to be evaluated and compared to the

appropriate value of A,,.j for the model. The quantities on the right

eri
hand side of the expression have been taken as constant in the develop-
ment and the choice of average values must somehow be made, though this
should not be an important consideration in cases where the approxi-
mations of the theory apply.

We may also note that most of the quantities on the right
hand side of Formula (124) are tabulated as part of the results of the
model atmosphere calculations, except for principally cp and 7. Rosa

pmcy
and Uns®ld (1948) have tabulated

as a function of T andd:_
for stellar material with 15% helium by numbers of atoms. Edmonds (1957)
has similarly tabulated n for the 15% helium abundance.

Iet us then turn to an examination of the convective stability

of stellar atmospheres.

C. Convective Instability in the B Stars

Hydrogen and helium are the most abundant elements in stellar
atmospheres and, wherever these elements are in an intermediate stage
of ionization, the temperature gradients may become superadiabatic
[Unsd1ld (1930)]. Depending on the effective temperature,'Ib, the
surface gravity, g, and the chemical composition, a star may have
ionization zones of H, He I or He II near its surface. A summary of
the various possibilities for different tre and g and for a 15% numeri-
cal abundance of helium is given by Mme. Pecker (1953) in her
extensive study of stellar convection zones. Her considerations show

that the possibility of convection, even due to He II ionization, does
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not arise if the effective temperature is above 35,000°K, and the
surface gravity is below lO5 cgsu, since the ilonization of these ele-
ments is essentially complete beyond this limit. The limit seems to
exclude almost no known stars, and the possibility of convection arises

in most stellar atmospheres.

1. The BO Stars (TL = 36,800°)*

In the BO stars, temperatures are so high that hydrogen is
almost completely ionized all the way to the surface of the star. Even
the first ionization of helium is reasonably complete, and the only
possibility for an ionization instability lies in the second ioniza-
tion of helium. Underhill (1950) and Rudkjbing (1947) have computed
models of such stars and found that convective instability is indicated
by the Schwarzschild criterion. Traving (1955) finds a similar result
in his discussion of the BO star, T Scorpil, but he concludes that
convection cannot develop because of the stabilization by radiative
transfer. Traving's argument concerns properties of the fully developed
motion, and we will summarize it briefly in the next section.

For the purpose of discussing the stability of the BO stars,
Underhill's tabulations are the most convenient of those mentioned.

The parameters in this model are

Te = 36:8000
log g = k.2
H/He = 85/15

* In the assignment of spectral types to various models, we will
always adopt the type mentioned by the computer of the model.
This may mean deviations of a few tenths in the type assigned
to a given effective temperature. However, this has no bearing
on our considerations, and we use the spectral designations
only as nomenclature. The meaningful quantity here is the
effective temperature.
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where H/He denotes the ratio of numbers of hydrogen and helium atoms.
Figure 6 shows the adiabatic excess, A, as a function of the mean

optical depth, T, in Underhill's model, where

—~—

AT = —KdZ (125)

and K, it will be recalled, is the absorption coefficient per cm.
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Figure 6. A Vs. T in Underhill's Model

The points plotted are those obtained directly from Underhill's paper;
the solid curve is used to extrapolate these computations. The dashed
curve is the form of A called for in the constant-p approximation. We
see that the value of A drops fairly rapidly just outside the super-
adiabatic layer. This means that the gases Jjust outside the layer

are quite stably stratified, as is required by our boundary

conditions for the constant-p approximation. Also, the temperature
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and density respectively vary by 7% and 30% across the superadiabatic
layer, and this seems to fulfill the Boussinesq approximation, i.e.
that the mean properties of the fluid do not change appreciably across
the superadiabatic layer.

The optical thickness of the layer is T = 1, and using a
mean value of k across the layer we find 4 = T/n =1.2 x 108 cm. With
these data and the tables of Rosa and Unsdld, and of Edmonds, we find
A = 500. The critical value of X for T =1 is Agpq¢ = 50 (cf. Table IV).
Thus, M exceeds the critical value by an order of magnitude and there
seems to be ample reason to expect thermal instability in Underhill's
model. Of course, the question raised by Traving as to the later de-
velopment of the motion cannot be answered by stability considerations

alone, and we will defer discussion of this matter to the next section.

2. B2 Stars (Te= 20,400°)

As we decrease the effective temperature from BO, the zone
of He II ionization will move deeper into the star. Saito (l95h) has
computed models which show this effect. Though these models do not
closely satisfy the radiative equilibrium condition (i.e., constancy
of flux conditions), they probably provide an adequate description of

the temperature gradients. We find that for Saito's hottest models,

i.e., for
Te = 20,400°K
log g = 3.8, 4.2
H/He = 85/15,

the gradient does not become superadiabatic until a mean optical depth
of about 8 is reached. Saito's calculations do not extend beyond

optical depth 10 and, hence, do not provide adequate information for
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examining the stability. But even if convection does occur, it will

probably be too deep to produce easily observable effects.

3. B5 stars (Te = 15,500°)

If we turn next to Saito's models withrI; = 15,500° and the
same chemical composition and gravities as above, we find that He I
now produces a superadiabatic gradient and no effect of the He IT ioni-
zation is detected above mean optical depth of 10.

Figure 7 shows the variation of A with physical depth,Z, in
the atmosphere of the log g = 3.8 model. The origin of Zis set arbi-
trarily at mean optical depth 1. Thus, if we use T to denote mean
optical depth,

- ©dt
e
Z(T) = —f k() (126)

as may be seen on integrating Equation (125).

A summary of values for the stability is shown in Table V.

TABLE V

STABILITY CRITERION QUANTITIES FOR SAITO'S MODEL WITH Je = 15,500°K

g d P T A Aerit

8

6.31 x 103 3.6 x 10° 1.6 x10™2 1.5 7.6 x10° 43

L 8

1.59 x 107 1.k x10° 3.0x10°Y 1.8 1.5%x10° 39

We see that instability condition is easily met in B5 stars. However,
the Boussinesq approximation for density is not well satisfied; a fac-

tor of about two in density occurs across the superadiabatic layer.
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The temperature, on the other hand varies by only about 20%. Also, A
drops off quickly outside the superadiabatic layer, as in the case of
Underhill's BO model. It seems reasonable to accept the result that

there is marked instability in B5 stars.

0.3 05 0.8 1.2 1.8 243.0 7
| | | ! | T 7

AN

N A

-8
% = | ‘ | | >z x 107" (cm)

Figure 7. A Vs. z for Saito's Model with log g = 3.8 andrI: = 15,500°

The situation with B stars thus is that convection due to
He I ionization disappears as we go from B5 to B2. However, at the
disappearance of He I convection, therI; is not yet high enough for
He IT ionization to appear near the surface of the star. It is not
until we reach temperatures over 30,000° that He II produces effects

near the surface. Hence, there would seem to be a small gap of spectral
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types that do not show the effects of convection. As we have mentioned,
it is not clear whether convective effects become detectable even in
BO stars. The remarks of the next section are directed at this problem.

D. The Effectiveness of Convection
in the Early B Stars

We mentioned in the preceding section a suggestion advanced
by Traving (1955) that the development of convection in the BO stars
is inhibited by radiative transfer. Traving argues in terms of a
mixing length model for the developed motion. He equates the mixing
length to the scale height and computes the ratio of energy excess in
a turbulent element to total energy radiated in the lifetime of the
element. Vitense (1953) has given an approximate formula for this
ratio. At a mean optical depth of 1 in his own BO star model, Traving
finds this ratio to be 1o'u. Traving, therefore, concludes that con-
vection will not be important in BO stars.

Qur own considerations have shown that in Underhill's BO

~J

model there 1s convective instability with 2 = |0 . In this section,
rit

we will attempt to find an approximste criterion for the effectiveness

A

of convection as indicated by the degree of instability, -ST,+.
v
It should be emphasized, however, that we will utilize the r;;ults of
experiments whose application and interpretation in the present context
is not unambiguous and our conclusions must be viewed with caution.
In his discussion of convection in stars, Unsdld (1955) cites
the experimental work of Schmidt and Saunders (1938) on Rayleigh-type

convection. Schmidt and Saunders observed a transition from laminar

to turbulent convection at a Rayleigh number of 47,000. [The critical



number for the onset of convection was found to be 1700 by Schmidt
and Milverton (1935)}¢ The transition to turbulent motion found by
Schmidt and Saunders is accompanied by a discrete transition in slope
of the curve of heat transport versus Rayleigh number. Unsdld remarks
that, since the Rayleigh number in stars usually exceeds the value of
47,000, we may regard all stellar convection as turbulent.

While we will not take exception to the viewpoint that stellar
convection is normally turbulent, we may express concern at the appli-
cation of the laboratory results to stars in general. The experiments
of Schmidt and Saunders, and of most investigators, provide solid
boundaries for the convecting layer. Moreover, the conditions of the
Boussinesq approximation are well met in the laboratory. We will see
in the next section that these restrictions are already vioclated in
early A stars; they are even less closely approximated in later spec-
tral types. On the other hand, we have seen that the case is somewhat
different for the early B stars. There the Boussinesq approximation
is not a bad one, and the gas surrounding the superadisbatic layer is
stably stratified so that penetration beyond the unstable layer is
likely to be small. Hence, any application of laboratory results to
stars should be restricted to these early B stars.

Another major difference between the laboratory situation
and the stellar conditions is that radiative transfer acts in the
latter case. That, of course, has been the concern of this work and
we have learned that in the constant-gradient approximation the classi-
cal and the radiative theories are formally equivalent with a differ-

ential operator replaced by an integral operator. Alsoc, we saw that A\



~T1-

is physically analogous to the Rayleigh number, the difference being
in the critical value of each for the onset of convection. We will
then make the hypothesis that we may apply experimental results to
early B stars by replacing R/Rc by M/Ac in these results, where R,
and A, represent the critical values of the Rayleigh number and of A
for the onset of convection.

The experimental results we will use are those of Malkus
(l954b) who has studied the heat transport in layers of distilled water
and acetone up to Rayleigh numbers of lOlO. Malkus has found a number
of discrete transitions in the heat tramsport as a function of Rayleigh
number, some (1ncluding apparently the one noted by Schmidt and Saunders)
are merely transitions from one type of turbulent flow to another.

Malkus points out that it is possible to represent the total heat flux)}+b

across the convecting layer by
&
H = K (-Pi) (127)
I (R,

where T{oand a are constants, K is the conductivity, and B is the
(constant) static gradient. The experimental values of a and.?%odiffer
on different sides of one of the aforementioned discrete transitions,
but this one occurs at a high enough 7%, to be of no interest here.
Also, there is some question about the agreement with other experiments,
but for the cases of interest to us, the agreement with other wbrk is
good.

Let us now assume that even in the convective case, the heat

flux across the layer due to thermal conduction is KB. Then, the
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average fraction of convective energy transport is

M= (4) - |

(R,

This neglects the distortion of B by the motion. Then, let us intro-

(128)

duce the quantity x such that

R, = * Re (129)

so that a
u(__
= 1- x\3

By the hypothesis made earlier, we may replaceTK/%Lc by x/xc

(130)

in these expressions. Then, in a radiating layer

a
\__‘:|_A(—>§ (131)

where A and a are constants. One objection to this procedure which
may be raised is that in the experiments convective transport competes
with heat conduction, but in stars convective and radiative transport
compete. ©Since radiative transfer is more efficient than heat con-
duction, we expect that the estimate of (ﬂ made in Equation (131) may
be too large. Another difficulty to be noted is that B will not gen-
erally be constant in the equilibrium configuration of a star and the
expression for rﬂ is, at best, a gross estimate for that reason as
well.

To adequate accuracy for our purposes, Malkus' determina-

tion of the constants in the heat transport law leads to A = 1 and
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a = 0.3. Thus
0.3

F = | —(é‘f) (132)

In Underhill's model with \,/\ = .1, we find rﬂ = .5. Hence,
our hypothesis leads us to suspect that an appreciable fraction of the
heat flux across the unstable layer is carried by convection. However,
since the unstable layer is not extensive in optical depth, the con-
sequences of convection for the structure of the star may still be
small.

In order to see what the effect on the structure of the star
may be, let us adopt a model in which a fraction, [_1, of the total
flux is transported across the superadiabatic layer by convection.
Elsewhere the flux is supposed to be entirely radiative. If :}7-15
the net radiative flux, ;i is the optical depth at the top of the
superadisbatic layer, and T is again the optical thickness of the layer,

we have

2
V/aN
U

| o iL;q For
3’ = (I—r)"' Teq Fov
o Tﬁ* For

kx4
N\
~l
N
ardl
+
3

(133)

i (
\v
=
+
<

This approximastion for 2?‘13 meant only for early B stars in which the
penetration of motions into the subadiabatic layers is expected to be
small. Also, the question of how the mean absorption coefficient is

to be defined is left open., Presumably, the choice of mean will be that

which gives the best approximation to the radiative equilibrium condition.
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For a grey atmosphere in local thermodynamic equilibrium,
but not necessarily in radiative equilibrium, the Eddington approxi-

mation leads to the expression [cf. Unsdld (1955), p. 1k2]

oT'= £ Flo)+3[ FENF 4 ¢ LB,

Q

With the assumed form of ?, we then find

TY7) = 1" I_q [l +2 7T - CP(T”)] (135)

where
o, T T,
- 3 - = ™~ g ¥
Q(T) = 2 (T ’C’.), T < T AT 156
%F T: 2 Q’ﬁ"f

For a model in radiative equilibrium, we would have @ ('1-")5 0.
Considering Underhill's model once more, we have '-':l E-

T =1, and from our semi-empirical discussion of her model, r’ = 1/2.

Then
0 TsL

§M = { FED T3 il
3 —_ .
T T>3
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and we see that the discussion of convection does not lead to drastic
revisions of the temperature distributions. At most, a 3% change in

is required at T = 3. The conclusion drawn by Traving, that convection
will not develop, is borne out by these considerations to the extent
that no great changes in structure are produced. The reason seems to
be more that the unstable layer is optically thin rather than that
convective transport does not occur.

The questionable nature of the calculations of this section
makes it desirable to look for an observational check on their useful-
ness. We should like to compute spectral changes resulting from the
changes in temperature distribution. The hydrogen discontinuities
would probably be suitable spectral features for this purpose. Un-
fortunately, it seems that the uncertainties in the abundance of helium
in B stars [Jugaku (1958)] would mask any effects of the magnitude we
would be interested in. Hence, any further progress in this problem
must come from improvement in the hydrodynamical theory. It is hope-
ful that some definite progress has been made in understanding the

discrete transitions in convection [cf. Malkus and Veronis (1958)].
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E. Instability in Farly A Stars

In studying the stability of B star atmospheres, we began at
fI;: 36,800° and moved to successively cooler stars. We noticed that
in B5 stars, as contrasted to the BO stars, deviations from the Boussinesq
approximation appeared. It should come as no surprise then, that devia-
tions from the conditions of this approximation are even larger in the
A stars. In spite of this, it seems worthwhile to carry the stability
discussion to early A stars where we encounter instability due to hydro-
gen lonization. In this way, though the conclusions drawn must remain

gualitative, we will at least gain some idea of the restrictions to be

anticipated in later work directed at studying hydrogen convection zones.

1. A0 Stars ( Le = 10,700°)

For the purpose of examining the instability of AQO stars,
two of the models calculated by Saito (1954) are convenient. These are
for ']1,= 10,700°, H/H, = 85/15, and log g = 3.8 and 4.2. Saito tabu-
lates the adiabatic and radiative gradients and the geometrical depth
as functions of mean optical depth. A similar tabulation has been given
by Ueno and Matsushima (1950) for log g = 4.09 and the same effective
temperature, iI: = 10,700°; their model differs from Saito's in exclud-
ing helium and in having a slightly different temperature distribution.
Figures 8 and 9 show A as a function of T and 7 respectively
as given in the three models. As previously in this chapter, £ = 0O
at T = 1. (In the Ueno-Matsushima model, the tabulated 7 is too large

by a factor of 10 for T< 1. This has been corrected in Figure 9.)
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In each of the Saito models, there are two potential instabilities.

One is due to the ionization of hydrogen, and the other’deeper one 1is
due to the first ionization of helium. Comparison of the Saito models
with the Ueno-Matsushima model indicates the diminution of the hydrogen
ionization zone by the presence of helium. It would seem that the
introduction of the helium ionization zone would more than compensate
for this weakening of the instability, and it is plausible that two
zones would merge once convection develops. This may not be the case
in cooler stars where helium would curtail the hydrogen convection
without producing an unstable layer near the surface of the star.

For the various superadiabatic layers in the figures, the
Boussinesq approximation is poor; the zones are each two or more scale
heights in geometrical thickness. For genersl information we may,
nevertheless, mention that k/xc is a factor 2 larger for Saito's log g =

4.2 model than for his log g = 3.8 model,with the great density of the

Y
former outweighing the effect of large d in the latter. We also notice

a tendency in these models for layers Jjust beneath the deepest super-

adiabatic layers to become rapidly subadiabatic, hence, stable.

2. A3 Stars ( le = 8900°)

As a last example, let us consider the models computed by
owawa (1956) for 1. = 8900°, log g = 3.5, 4.0, 4.5 and no helium
present. Osawa has iterated his model calculation to achieve the
condition of radiative equilibrium quite closely. This has the advantage,
for us, of providing a rough check on the adequacy of the non-iterated
models at |, = 10,700°.

Osawa has not tabulated the gradients nor z, and these must be

found by supplementary calculation. The adiabatic and radiative
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gradients may be computed with formulae given, for example, in Unsbld's
(1955) book and z may be found by numerical integration from Equation
(126). The results of such calculations are shown in Figures 10 and 11
giving A respectively as function of T and of 2. Only hydrogen ioniza-
tion zones appear, though we would surmise that the presence of helium
would produce other, deeper superadiabatic zones.

The optical and geometrical thicknesses of the hydrogen
ionization zones for Osawa's three models and the Ueno-Matsushima model
are shown in Table VI. For the Osawa models with log g = 4.0 and 4.5, we
have had to extrapolate the plots of A versus T and z beyond the point

to which the model has been computed.

TABLE VI

d AND T FOR THE HELIUM-FREE MODELS

Model T ( °K) log g d (km) T
Osawa #1 8,900 3.5 4.5 x 103 8.6
Osawa #2 8,900 4.0 1.5 x 103 12.1
Osawa #3 8,900 k.5 k.0 x 106 15.5
Ueno & Matsushima 10,700 4.09 2.4 x 103 2.4

We see that the geometrical thickness of the hydrogen ionization zones
does not change appreciably from L = 10,700° to 8,900°, but the
optical thickness does. OSome of the difference in optical thicknesses
is due to the differences in absorétion coefficient tables used by the
different authors and also to the inclusion of Hg in the absorption

coefficient by Osawa. But some of the increase must be real,and probably
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arises from the increased effectiveness of H~ absorption at the lower
temperature. The implication of this increase of T with decreasing
would seem to be an increase of the observational (i.e., optical) im-
portance of the convective zones as well as a diminishing importance
of radiative effects on the large'écale motions. In this connection,
we may mention that for Osawa's models #l and #2 X/xcrit =5 x lO3
and for his model #3 Mierit = 10“, though the precise values depend
on the method of averaging such variable quantities as the density.

An interesting feature of Osawa's models is the slow rate of
decrease of A with z, just below the superadiabatic layers. It seems
that this would permit penetration of the motions into the subadiabatic
regions. We might, therefore, expect the convection zones in stars
of this sort to be of great vertical extent, and convection to play an
important role in fhe determination of the stars!' structures.

The opposite point of view has been taken by Hunger (1955)
who has computed model atmospheres in the temperature range 'I; = 8,660°
to 9,500, and assumed that convection effects are unimportant. Hunger's
conclusion is based on the same line of reasoning which we described
in Section C of this chapter in connection with Traving's (1955) work.
That is, Hunger computes the ratio of energy excess in a turbulent ele=-
ment to the total energy radiated in the lifetime of tﬁe element at
T =1 in one of his models. He finds a value of J.O'3 and concludes
that no appreciable amount of energy will be transported by convection
in the atmosphere under consideration. However, the dependence of A
on z displayed in Osawa's models would have led us to suspect that if
convective heat transport is important in these stars, 1t becomes so

only at optical depths greater than 2 or 3. Hence, it is not unexpected



that the ratio computed by Hunger, is small at optical depths where
the material is quite transparent.

On the other hand, Osawa has found reasonable agreement
between his computed Balmer discontinuities, and those observed by
Chalonge and Divan (1952). More recently, Bless (1958) has had remark-
able success in matching his observed continuous spectra of A stars with
the spectra predicted with Osawa. We must then conclude that either
convection is not extensive in A star atmospheres or that if 1t is, the
effects on the structure of the stars is too deep optically to be
detected. It would be difficult,. at present, to distinguish between
these two possibilities.

The possible effects of convection on the observed continua
have been examined by various authors who compute two models for each
star considered; one in convective equilibrium, and one in radiative
equilibrium. For example, Hack (1956) has done this for A stars and
has found considerable difference between convective and radiative
models. However, Hack assumes that when convective equilibrium occurs,
it does so as soon as the radiative gradient exceeds the adiabatic.

The result of such an assumption is to include convective effects too
high in the atmosphere, and thus, to overestimate the effect of con-
vection.

The possibility that convection is stabilized by other
factors must also be examined. The rotational velocity of A stars is
often quite high, and a typical equatorial velocity is 100 km/sec,
[Struve (1950)]. Also, magnetic fields are quite common among A stars,

[Babcock (1958)]. It seems likely that cariolis and electromagnetic

forces play an important part in convection in A stars.
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3. The Effect of Rotation

In general, rotation seems to stabilize convection in a fluid,
but Cowling (1951) has shown how non-uniform rotation may lead to
shear instability. If we neglect this latter possibility, we can in
general expect that A star rotation has an inhibiting effect on the
atmospheric convection.

The influence of coriolis forces on the convective instability
of a horizontal fluid layer with an adverse temperature gradient has
been studied by Chandrasekhar (1951). The framework of his investiga-
tion is that of the classical Rayleigh-type convection, and it inecludes
the Boussinesq approximation. Chandrasekhar shows that the critical
Rayleigh number for the onset of convection in a rotating layer is

fola cu¢ 4
dependent on the non-dimensional parameter -T-;= ok
where {0 1s the angular velocity about a direction making an angle {)

Re °

with the vertical. The ratio 4%& , where 1{‘ is the critical
Rayleigh number in the absence of rotation, has been tabulated as a
funection ofT'by Chandrasekhar. Because of the formal equivalence be-
tween the classical and the radiative Rayleigh theories, in at least
the constant-p approximation, we can expect that the values of xc/xg
are the same as ﬁz%@: for given.T-, where AQ 1s the critical value
of A when _T“= o.

For an A star, we may take Qo= 10‘6 sec‘l, and for Osawa's

8

models, d ¥ 10%m and V ¥ 10° cm?Amc. Then | ¥ 4 x 1010 cos? g,

At the pole of the star, § = 0, and we find from the asymptotic form

4

given by Chandrasekhar for large | , that xc/xg ¥ 5 x 107. For Osawa's

models we found x/xg = 5 x 103. Hence, at the poles of a typical A star,



the rotation would suffice to stabilize ordinary convection. However,

as Chandrakhar shows, instability under most astrophysical situations is
likely to arise as oscillations of increasing amplitude (overstability).
Since the situations at the poles of the stars we are discussing are just
stable to disturbances of the steady type, we may anticipate that over-
stability will arise. At somewhat lower latitudes the situation is more
complicated, but in the equatorial regions the possibility of steady corn-
vective instability is the 1likely one.

At this point, we must stress the qualitative nature of this dis-
cussion. All the stability criteria employed are derived with the use of
the Boussinesq approximation, and we have already seen that the application
of such criteria to A stars is of questionable validity. Moreover, we are
actually dealing with the stability of a spherical shell by treating various
latitude regions independently. These are but a few of the limitations
which must be emphasized here, the qualitative features of the arguments
may be correct and we are confronted with some interesting conclusions.

Instability seems to arise as overstability at the polar regions
of these rotating stars, and as steady convective motion at the equatorial
regions. This would lead to latitude variations other than those due to
flattening of the star by rotation, and we would expect a latitude varia-
tion in certain spectral features. The Balmer jump, for example, should
be weaker in stars seen equatorially than in stars seen pole on. [of
course, as Bless (1958) has discussed, other aspects of rotation might
lead to latitude variations of spectral features.]

We may also wonder about the evolutionary significance of

these phenomena. As a star evolves from the main sequence, it expands
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and its angular velocity decreases. Then fr and kc/kg must also de=-
crease, and convective instability spreads to all latitudes. At the
same time, the expansion of the star leads to changes in the general
instability situation by the increase of d,and the decrease of g and
the density in the outer layers. We are confronted with a number of

interacting physical processes and perhaps the origin of stellar

pulsation is among them.

F. Summary of the Investigation

The basic motivation in this work is a need for an under-
standing of the convective processes in stars. This problem involves
the solution of non-linear equations for which not even the correspond-
ing linear problem has been solved in general. The specific aim of this
investigation is then, to study the linearized convection problem, i.e.,
the problem of the onset of convection, and to include the effects of
radiative transfer as exactly as possible. The spirit of the work has
been to make whatever approximations are necessary to facilitate the
inclusion of the radiative effects. Thus, the Boussinesq (1903) approxi-
mation introduced into this type of problem by Rayleigh (1916) has been
retained; that is, throughout the fluid layer whose stability is studied
it is assumed that all the equilibrium quantities are nearly uniform.

The present investigation begins with a discussion of the heat
equation appropriate to a radiating medium. This medium is assumed
to be grey and in local thermodynamic equilibrium at all times. For the
purpose of exemplifying the nature of the radiative terms, as opposed
to the more familiar conductive term, the decay of temperature fluctua-

tions in the absence of fluid motions is studied. The fluctuations are
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taken as departures of small amplitude from the temperature distribution
in radiative equilibrium. In the case of an infinite, homogeneous
medium, the egquation simplifies considerably, and the problem may be
reduced to quadratures by Fourier transform methods. In particular, an
expression for the lifetime of any Fourier harmonic of the temperature
perturbation is obtained. It is found that in the solar photosphere

the observed "granule" lifetime of four minutes corresponds to a half
wavelength of about 400 km.

In the next phase of the work, the radiative heat equation is
introduced into the study of the convective instability of a horizontal,
radiating layer of fluid. The development generally parallels the classi-
cal work of Rayleigh (1916) and its extensions by Jeffreys (1926, 1928,
and 1930) and by Pellew and Southwell, and includes the approximations
just discussed. An equation of marginal stability is derived, and it is
seen that convection may arise when a non-dimensional analog of the
Rayleigh number exceeds a certain critical value. It is indicated that
a variational principle exists for the calculation of this critical
number, and that the effects of variable temperature gradient on the
ceritical value may be admitted, as in the variational principle derived
by Malkus (1954 &) in another connection. The critical value of the
instability parameter is seen to depend on the optical thickness of the
layer as well as the nature of the boundaries. In the case where the
temperature gradient is treated as constant and the boundaries are
treated as rigid walls, critical values of the instability parameter
and corresponding values of the wave number of the most unstable periodic
disturbance are computed. The results are shown for several optical

thicknesses of the layer. This portion of the work concludes with a



-89..

phenomenological derivation of an approximate form for the critical
value of the instability parameter.

The final part of the investigation deals with the convective
instability in the atmospheres of stars of early spectral type. The
ionization zones in these atmospheres, in which the equilibrium temp-
erature gradients (radiative gradients) exceed the adiabatic gradients
are tested for instability in terms of the criterion derived in the
main body of the investigation. A number of model atmospheres are ex-
amined, and it is noted that the Boussinesq approximation is well sat-
isfied for the superadisbatic layer in the early B stars, but that it
becomes less valid as one goes toward later spectral types. In general,
application of the stability criterion shows that convective instability
is to be expected in the atmospheres of most stars, though there are
some early B stars in which the instability occurs quite deep, optically.

The next step in this line of inquiry should be the extension
to the case where the layer may have large density variations from top

to bottom. The writer plans to undertake this extension of the work.



APPENDIX I

The Principle of the Exchange of Stabilities

We have Equations (61)
B W = (D)W - qrd ') @

and Equation (62)

m®+%\J=Y{J (15D B o1’ - 6] o

where 3 GA Q\”&za “L such that

% P
W=DW =0 =zo %&12‘&1)-§\<"5\—",
In general, n may be complex, and © and W will be too. The complex

conjugate of Equation (61) is
kA * 2 be *
ol (0-0) W= (D-d) W - qeda @

The quantities ©% and W¥ satisfy the same boundary conditions as @ and W.

On multiplying Equations (62) and (AI.1) together, we obtain
%«a‘&v@*fﬁﬁ(:ﬂ’l)ﬂ dq”-@(x)} -
%cxotamo O @vw D~ Q QCL‘“W(DI 1) 4‘ (AI.2)

If we integrate Equation (A1.2) over‘K we obtain, on carrying out

the various partial integrations,

(3\) :[| + m\*eo\’l’Iﬁ N\%Oto\"(fI3 + %O(’d"OC“K(Is"Io: O
(AI.3)
-90.
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hI,-- JKD’- oW *] [(])"— &)W] AT (a.4)
L = [fow)(ow) + W W dg )
I,=-]8" 64 .6
L =[0*mas |K(5-1) 0(5) o W

We see at once that I, Ip, and 13 are real and positive. Also I is

real, since

3.J13 =2 Jds B e B K(FT1) -

AR 4 e
< [1far e emK(I-f1) = o (.6
We can also see that 13211;' Let

D) = [0r) K(I-T) .9

and define the operator :?’by

g’{g-} '-'1_":»5-006}@5 Q(Y)O\K (AI.10)

v} = Fle} Fixy e
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The definition of K is Expression (64)

oo 4% [ 0T L0y '?";L'*T*SL
e e
K(5D = T’dej 5 47(§+ T+ §*)

Then

_Ji‘?f

3’{K} gtﬂjok;ok 14 € B aT eiw}»rmﬂ-»(w]

On comparison with Expression (24) for@_ we see that

-l

Fi&} - O

and we may conclude that

\?{Kj\ < 1

Hence,

3{@§| <

and by Parseval's theorem,

Bl< |8

From this we see that

goql(a\1 > (a7 |0l ¢

T{e]

(A1.12)

(A1.13)

(AT.14)

(AI.15)

(AI.16)

(A1.17)
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whence

[d3 %@ 2[dT @' T x

Is > I"i (A1

If we now let

]:5> = :[5 _-j[H (A1

Equation (AI.3) becomes

2
avli+ M*%d I+ /“‘%“dzqzl'g + Qo d'd’yTs =0 (a1
where all the I's are positive.
We let
n=n,+ ini (A1

where n,, and n; are real. Then, on equating the real and imaginary

parts of Equation (AI.El) to zero, we obtain the conditions

RVT, +%9¢5L"cﬁyls +(QO\?I,_+ c}raok"(l*IQ,) M, = 0 (AT

(QAC"I,_-— %ocdf'cﬂ'IS) m, =0 (AT

A1l the quantities in these equations are positive with the possible

exception of B. If B is positive, then we see from Equation (AI.23)

.18)

.19)

.20)

.21)

.22)

.23

.2h)

that n, is negative. If B is negative, then n, may be positive, but ny
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must be zero. Thus, whenever n is complex, its real part is negative,

and overstability is ruled out.
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The Kernel E:
The kernel in the equation of marginal stabllity is defined

in Equation (64%) as

N G S PR
(s} rl,fmj_.: ) VF Y

Consider first the integral

‘L . j+%e-% §‘+'f"+§1 M-
LT

d.? (AIT.1)

We have

1 2

ol -t 'qu+s

oL _ _ c e’ua.§ CK% (AI1.2)
° o JEHTHT

But this last integral is a well-known Fourier transform [see Magnus

and Oberhettinger, (1954); p. 118], and we have

& = 2 (T ) (2.3

where]a( 1s the special Hankel function of zeroth order. We may then
o

integrate Equation (AII.3); we find

T) L(O) - L{ u +S «J’L’ +Qx) v’ (ATT.4)
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From Equation (AII.1) we find that
+ 00 LQX%

__‘“ , O) _ J 5 = 1 % (ATI.5)

whence [Magnus and Oberhettinger, (1954); p. 116)

e T[ —Qx\‘ + 2
f__,(0> = (7 32)%. € T (AI1.6)
Then
IR TR (o .
. ( () :W e ljho _ ; Bd\t/(AII,?)
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The first integral in Equation (AII.B) we have already encountered

in Equation (AII.1); thus, we have
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We can perform the 1 integration in the foregoing equation since we
see that it is the inverse of the Fourier transform encountered in

Equation (AII.2). Then we can write

o aEE
K(}ﬂ)r:zho(anw—“ifom e (ATT

In the second integral, let

a.S :hﬂﬁ-o} (ATI
Then
"’C/d‘t!, $2-) %
QS = s - < AT (ATT
Hence,
%’L
JH": ~a3[7|
- T (VT e
K(‘ID km(qs“‘m _‘D:J T‘;‘:"“"" (ATT
i S5

Finally, we may introduce an integral representation forji;, namely,

s _~GSITl

M) = ( == ds

[ (ATT

[see Magnus and Oberhettinger, (1954), p. 27]. With this expression,

we conclude that

0 e—~0«l’5\5

K(\-ﬂ) = %C:X o S2- | dS (ATT

H”a?

.10)

.11)

.12)

.13)

J1k4)

.15)



APPENDIX II1

Reduction to the Classical Theory

I
When the perturbation dies out at K = i‘z the condition

“"}
of marginal stability is Equation (88),

L

[ ROFNFGAT = FEY = - AW e

-
—

2

where
=0« YW (89)

and, as we saw in Appendix II,

oo e-lf'f I S

K(”') | 2% <t- ) C)‘S (ATT.15)

Hg’:‘b
et
/bk =T +Or (ATTT.1)
Then ]—11
N e M d
JK_(D"T I) = _7:,{, (%‘- %:,Yl L (AITT.2)

Also, let us writeé& as the operator for thejzetransform, so that

IFS - |

|
Sy

K(\]‘“T/I> F(T/B CU/ (AIII.3)
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Since ]]—f/ in ‘ggj?}_ is always less than unity, we may write

T(y) = ZF(I)”)

where we assume that all derivatives exist. We have then that

where

N, (3) = f Eg-r’)QK(H—I’I)M

(= (65 BO-0)ds
S

| S
(—I)Qj (1-1') R(1-3) &
17 Q1
Ngs) = [ R oodn e | xR e ds

[+

If we define
b 3
A b)) = gax K (x)dx
then

Ne (5) = AL -T) + 60 AL(E+)

(ATII.N)

(ATII.5)

(AITI.6)

(ATII.7)

(ATIT.8)

(AIII.9)

(AIII.10)
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Now, using Expression (AIII 2), we may write /\las
e
Q(E) = "f 5 «1) f X € d x (AITI.11)

By repeated partial integration, we find that

| S }'péxo\x _Qfl.,.[ -}xb\gZ ()"l“&) :} (AIII.12)
o oyl |
whence
! 'cg Yy [ by St by
b) = R Yt r GA \6)]
Aq( ) *}TF' L) (- %) I-e WZOT\T (ATTI.13)

Let us now investigate the transition to the classical 1limit

as T o. In that case, the A‘)\ become

a9
Ap\(\3> R ’).S T}j (ATII.14)

where we have neglected only terms of negative exponential order. For

N, we have
I

(5 Ay
Nl .S) _ el J%Q*'J—o]‘/—‘ for ¥ eve

(AIII.15)

and

Nx(-“ =0 | for { odd.
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By integration by parts, we can show that

S
_|| z (Q-')
NQ — (¢ >' % + ,E__, Ng\—]_ ) &‘:l)u,é).n (AIII.16)
I

T T
l\jo = < CD{ By (ATTT.17)
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| o ¥ .9
(\/* = (/b,i+q1)l or + E_ NL (ATIT.19)

Qwv\ No = — —&-— (AIII.20)

e300 et
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T =
Hence,
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and Equation (88) reduces to
(D-a) W = -(3¥A) W

which is Rayleigh's differential equation with the Rayleigh number

replaced by 3T2X.



APPENDIX IV

The Calculation of Ay

We wish to evaluate

] :Ffoq [ Els[ SS’KOH’DF(K’)F(I)
© [EW 4

where
-1 ,
L (1) = weny, (93)
(Dl'o\l) \/\T' = E ) (ATV.1)

and, as we saw in Appendix II,

-m\i -1’18

__ K’ — ‘J 5= ds (ATT.15)

I“f--

Equation (AIV.1) must be solved for Wy, subject to
+ |
W, = DW, =0 ak I=1%7 (aTV.2)

The general solution of (AIV.1) is

W= A wshal + B adhal + Cqeeag 4
D1 andhaf % 13 T (ATV.3)

where A, B, C, D are arbitrary constants and q? = a? + 1t2 The

equation of marginal stability and the boundary conditions are even:
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-104-

let us take even solutions. Then

W, = A wsellat +DID«MQ\QS+%% CHaTLT (ATV. k)

Also,

DW= (O A+D) Awh QT + A QN«Q\QT ~%‘ MT‘S (ATV.5)

Applying the boundary condltlons we find

R |
% A+ fl,.,&ﬁ O -
and
Q
o Tt ey (AIV.7)

Hence W; 1is specified for any a. We may now carry out the integra-

tions. First,
L
+‘L

f—F df = 17(}0‘3 = ]/L (ATV.8)

_\.

The more difficult part is

Jo= Jidﬂioulfi( 7-7) o T (f/‘)

s

(AIV.9)

or
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Consider first the integral

_J_’ _ ( lm’ﬁ]/ e_QSH’] [ OL}/

-
Y
We can write

— 7 /. -S/ 'Ll
-3 f

and integrate. We obtain

—

| 38
J' = W!:LOLS Q,QQ:T[S +Te

asy  -QsJ
e +¢€
Consider next, the integral

jm = J OBQ:R} Ji d]
2

This may be readily integrated; it turns out to be
3 = __L_-{ S+ = (H’ C—QS)
2 S —
. AT Qv a4 -

Then Jo becomes

/ -a,s(T/—-)') %

(AIV.11)

(AIV.12)

(ATV.13)

(ATV.14)

(AIV.15)

(ATV.16)
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2

The first integral in (ATV.16) can be performed by using s< as

integration variable. Then

ey
O\:L

| /c— ",t by > d-S
Jo =2 T ¢ . =1 (as™T)

oS
-Hft( e s (ATV.17)

NS ((igxﬂfl)z'

‘ 2
The second term in JO can be integrated by using _Ei__i_ as inte-
S

gration variable. Thus,

gt EE (- S

D e o) +

(A1V.18)

The final integral in Jb cannot be done explicitly, but if we transform
it so that the integration limits are -1 and +1, we may apply quadrature

formulae quite readily. If we let

/
L = D) (ATV.19)

where

—'/t
) = {: ClE;t' o
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the transformation may be carried out. Then

g :%{%w“ﬁz EiG T%*Ea)

/»( 7+ = GDW'I'TE% (B'TL -
iﬁ%?)%[(%m -mr)( T ﬂ T ot UE

(AIV.20)

where

+| a

- ST a_
T;)—<0qu) = _{ 2 T L-ZziﬂTF:IT' ohx

i o .|t (ATV.21)
i)+ ]

The integral ‘[j(tk{t> is tabulated in Appendix VI according to
the results of a five-point Radau formula.

Finally, we have to consider the integral

X_TF. W, df

This last integration involves no special difficulty and we obtain

JFWO\ Lab“\ ( %-'%? ;?ﬁi (A1V.22)
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Then, on gathering the results of the integration from Equations

(ATV.10), (AIV.20) and (AIV.22), we have

ol

- [ (ete)] -

R ol T (l RIS ) +
i b Y

g e+l | [ 4T
%W—R® LT

e ’C‘Qm{

m‘ﬁ’




APPENDIX V

The Calculation of o

We have again to evaluate a number of integrals to find

_ J;E'fo\] - J%O\T S_IOU’K(H'S/I) Pm(:()—jj (T’)

" S'lﬂwl df (AV.1)

where

T (1) = [+ wed™] (oh)

and
(D?-‘_OLL )l-WL - ﬂ (AV.2)

We repeat the result of Appendix II, namely,

_a|-1ls
e

Ruer) -3 s e

t
at!

—

First, we solve Equation (AV.2) for W,. We find

W = Aeedaf + B owhal + Cf csdhad +
Dgwa]’ﬂt—c—? WadTY 4

(AV.3)
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where A, B, C, D are as yet arbitrary and qg = a® + (21)2. The

conditions to be satisfied by Wé are
— -7 - =+ 4+

W. = DW,= o ok J=%12 (s.)
2

If we take only even solutions and use these conditions, we learn that

Az - LEE)(ambes oRY)
cﬁ'%ﬁ (o4 Mq) (av.5)

and

o (7)o

D - (AV.6)

od %ﬁ (at 2 Q)

B and C are zero.

The first integral is

[Hdr= [(roem)al o 3

Py (AV.7)

Then, we must consider

p -'ffd] ﬁﬂ/ R (17-71) (o ) e my) e
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which may be rewritten

%:ZI As fa(jjow('*mm“’maﬂ+

q?“

_ / —&SlT’j/l
AT I+ oL AT > € (47.9)
This is equivalent to
3 =y /
_e| E J oq[ OW(HLQDQNU+
T kT
N -as|T]
oaA T csanmy’ ) e (aV.10)
Consider
T : _anﬂ
g' LO\T CoadTy & (Av.11)
which may be rewritten as
T -y
5, _ Jo\'j wlnsze—asﬁi)
! < (AV.12)

.L

+J d.g " cparm] e'o“ (5°7)

J
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Thus

Pl@

95 L[}_m AT 4+ o

@s)+ @O

sy -asqy
(e S )} (AV.13)

With Formula (AV.13) and some manipulations, we find

} :@J ds ) » 2 Lot s B
2L _NSET [as @) (@5) +aTO" @s)'+(M*

1
as
L [ (@8) >4 LT ] T

57+ |
@5)" CQST{(GS)?'-&QTE)J LOS)°‘+(21t){£ € (AV. 1)

L@s)

After considerable calculation, this becomes

DA
(- ) 4 o- %\W'T““ Sl
- = \! ’t'+03'> g TR %W*W foram) [T

-1 T :
et & esk EV(QM% (A1)

- 2 2
%%{ﬁwm T Y -2 (- oIEE)
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where
+ a.
} T A TR) A X
\ﬂa)ﬂ - 60\ a2
- m) Km)+(2'L)_] (AV.16)

Also,

J,i' W. dj :Zo‘f% [&41 - M(@*‘m (MQ")J (AV.17)

Q% awh O+

Hence, we cobtain

- g ~1 Y o?
%{ Sl ag ok %Jr%_(tv 2;41-%?)4-

~ %L\IT ¢ 42Tt q,—= 2T
16%<f {—T—m;————&;‘)"’ﬁﬁ(\ 4% )va\{(% taor -11\:’2*)(%7,1—21)} +
R Ek'T v«m} { o'+ 5qd -
-

5|)_Tc"(0~+°3[>(w’-&\0- ~1) g
QD (WQ-M)
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APPENDIX VI

Tabulation ofU (Q{t’) As Calculated
By a Five-Point Radau Formula

-
a 0.1 0.5 1.0 5.0

1.0 | 3.656 (-3)| 2.898 (-3) | 1.818 (-3) | 5.99 (-6)

2.0 | 1.20% (-3)| 9.27 (-4) | 6.28 (-4)1 1.84

2.5 5.83 (-4)| L.71 2.28 (-4) | 1.38

3.0 | 2.83 2.33 1.69 1.00 (-6)

3.1 2.4 2.01 1.48 9.3 (-7)

3.3 ] 1.82 1.51 1.2 (=4) ] 8.1

3.5 | 1.35 1.13 (-4) | 8.5 (-5)1| 6.8

3.71 1.02 (-4)] 8.5 (-5)| 6.4 5.8

boo| 6.5 (=5)| 5.4 h.2 4.6

4.5 3.1 1.9 1.7 3.0

5.0/ 1.5 (-5)| 1.3 (-5)| 1.0 (-5)| 1.9 (-7)

6.0 k4 (-6)| 3 (-6) | 2 (-6) | 1 (-8)
Numbers in parentheses indicate powers of ten to be included

as factors.



BIBLIOGRAPHY

Allen, C. W. 1955 Astrophysical Quantities, London, University
of London, Athlone Press.
Aller, L. H. 1953 Astrophysics, New York, Ronald Press.
Babcock, H. W. 1958 Ap. J., III, 1k1.
Benard, H. 1900 Rev. Gen. Sci. Pur. Appl., 12, 1261, 1309.
Biermann, L. 1937 Ast. Nach., 264, 395.
1942 Zts. £. Ap., 21, 320.

1948 Zts. f. Ap., 25, 135.

Bless, R. C. 1958 University of Michigan Thesis.
Boussinesq, J. 1903 Theorie Analytique de la Chaleur, Tome II,
Paris.
Chalonge, D. and 1952 Ann, 4' Ap., 15, 201.
Divan, L.
Chandrasekhar, S. 1952 Proc. Roy. Soc., A, 217, 306.
1955 Proc. Camb. Phil. Soc., 51, 162.
Courant, R. and 1953 Methods of Theoretical Physiecs, Vol. I,
Hilbert, D. New York, Interscience.
Cowling, T. G. 1951 Ap. J., 11k, 272.
Eddington, A. S. 1930 The Internal Constitution of the Stars,
Cambridge, University Press.
Edmonds, F. N. 1957 Ap. J., 125, 535.
Fan, T. Y. T. 1955 Ap. J., 121, 508.
Goldstein, S. 1938 Modern Developments in Fluid Mechanics,
Oxford University Press.
Goody, R. M. 1956 J. Fluid Mech., 1, 42k,
Gribov, V. N. and 1957 Phys. Abstracts, No. 3045.

Gurevich, L. E.

Hack, M. 1956 EAN, 13, No. k466,

<115~



-116-

BIBLIOGRAPHY (CONT'D)

Hide, R. 1955 Proc, Camb, Phil. Soc., 51, 179,
Hunger, K. 1955 Ztss fo. Ap., 36, 42,
Jeffreys, H. S 1926 Phil. Mag., 2, 833.
1928 Proc. Roy. Soc., A, 118, 195.
1930 ~ Proc. Camb. Phil. Soc., 26, 170.
Jugaku, J. 1958 University of Michigan Thesis.,
lamb, H, 1890 Proc, Roy. Soc., 4, 84, 551.
1931 Hydrodynamics, 6th Ed., Cambridge.
Iow, A. R. 1928 Proc. Roy. Soc., 4, 125, 180,
Magnus, W, and 1954 Formulas and Theorems for the Functlons of
Oberhettinger, F. Mathematical Physlcs, New York, Chelsea
Pub. Co.
Malkus, We Ve Ra 1954 a  Proc. Roy. Soc., A, 225, 19%.

1954 v Proc. Roy. Soc., 4, 225, 185.

Malkus, W. V. R. 1958 Jo Fluid Mech., 4, 225,
and Veronis, G.

Morse, P. M. and 1953 Methods of Theoretical Physies, Vol. I,
Feshbach, H. New York, MeGraw-Hill,

Osawa, K. 1956 Ap., J., 123, 513.

Oster, L. 1958 7tS. o ADwy 44, 26,

Parker, E. N, 1953 Ap, J., 117, 431,

Pecker, C. 1953 Ann, d'Ap., 16, 321.

Pellew, A, and 1940 Proc. Roy. Soc., A, 176, 312,

Southwell, Re Va

Prandtl, L. 1952 Essentials of Fluid Dynamics, Chap. V,
New York, Hafner Pub. Co.

Rayleigh, Lord 1883 Proc. London Math, Soc., 14, 170 (also
Scientific Papers, Vol. 2, 200).

1916 Phil, Mag., (6), 32, 529.



=117~

BIBLIOGRAPHY (CONT'D)

Richardson, R. 8. & 1950 Ap., J., 111, 351.
Schwarzschild, M.

Rogerson, Jr., J. B. 1958 Sky and Tel., 52, 112.

Rosa, A. and 1948  Zts. f. Ap., 25, 20.
UnsGld, A.

Rudk jobing, M. 1947  Pub. Cop. Obs., No. 145.

Saito, S. 1954 Contributions from Inst. Ast., University

of Kyoto, No. 48.

Schmidt, R. J. and 1935 Proc. Roy. Soc., A, 152, 586.
Milverton, S. W.

Schmidt, R. J. and 1938  Proc. Roy. Soc., A, 165, 216.
Saunders, O. A.

Schwarzschild, X. 1906  Gott. Nach., 41.

Siedentopf, H. 1932  Astr. Nach., 247, 297.

Skumanich, A. 1955 Ap. J., 121, Lo8.

Spiegel, E. A. 1957 Ap. J., 126, 202.

Struve, O. 1950 Stellar Evolution, Princeton University

Press, Princeton.

Stuart, J. T. 1958 J. Fluid Mech., in press.

Traving, G. 1955 Zts. f. Ap., 36, 1.

Ueno, S. and 1950 Pub. Ast. Soc. Japan, 2, 32.
Matsushima, S.

Underhill, A. B. 1950 Pub. Cop. Obs., No. 1D1.

Unno, W. 1957 Ap. J., 126, 259.

Unsdld, A. 1920 Zts. f. Ap., 1, 138.

1948  Zts. f. Ap., 25, 11,

1955 Physik der Sternatmospharen, Berlin,
J. Springer.

Vitense, E. 1953  Zts. f. Ap., 32, 132.
Whitney, C. A. 1955 Stellar Pulsation, Harvard University Thesis.







