

Supporting Information © Wiley-VCH 2010

69451 Weinheim, Germany

RNA Dynamics by Design: Biasing Ensembles Towards the Ligand-Bound State**

Andrew C. Stelzer, Jeremy D. Kratz, Qi Zhang, and Hashim M. Al-Hashimi*

ange_201000814_sm_miscellaneous_information.pdf

I.	Supplemental Methods	
	a. Sample preparation and resonance assignments	S2
	b.RDC measurements and order tensor analysis	
	c. Measurements of resonance intensities and K _d s	S2
II.	Supplemental Tables	S4
	a. Table S1	S4
	b.Table S2	S6
III.	Supplemental Figures	
	a. Figure S1	
	b.Figure S2	
	c. Figure S3	
	d.Figure S4	
IV.	Supplemental References	S11

Supplemental Methods

Sample preparation and resonance assignments. Uniformly ${}^{13}C/{}^{15}N$ labeled TAR^{GC} was prepared by run-off *in-vitro* transcription using synthetic double-stranded DNA containing the T7 promoter and RNA sequence of interest (*Integrated DNA Technologies*). Elongated and non-elongated TAR^{GC} constructs were purified by 15% (w/v), and 20% (w/v) denaturing polyacrylamide gel electrophoresis containing 8M urea and 1x TBE, respectively, followed by electroelution in 20 mM Tris pH 8 buffer and EtOH precipitation. The resultant RNA pellet was dissolved and exchanged into NMR buffer (15 mM sodium phosphate, 0.1 mM EDTA, and 25 mM NaCl at pH ~6.4) using a Centricon Ultracel YM-3 concentrator to a final concentration of ~0.5-1.0 mM (Millipore Corp.). All NMR samples contained 10% D₂O. All experiments were conducted in NMR buffer at 298 K on an Avance Bruker 600 MHz NMR spectrometer equipped with a triple-resonance 5 mm cryogenic probe. The TAR^{GC} NMR spectra were assigned using conventional NMR methods employing exchangeable 3D ¹H-¹⁵N NOESY-HSQC and non-exchangeable 2D ¹H-¹³C NOESY-HSQC, 2D HCN, 2D IP-COSY experiments. Argininamide (ARG, Sigma Aldrich) and Neomycin B (NEOB, MP Biomedicals) titrations were performed by sequentially adding ~2uL of concentrated ARG and NEOB samples to 0.1 mM TAR^{GC} and TAR-ARG, up to final ligand concentrations of 2.5 mM and 0.8 mM, respectively. 2D HSQC spectra were collected at each titration point.

RDC measurements and order tensor analysis. RDCs were measured in TAR^{GC} and EI-TAR^{GC} as previously described^[1,2] using ~7mg/ml and ~23 mg/ml of Pf1 phage order medium³, respectively (Table S1). The RDCs measured in the two helices of TAR^{GC} were subjected to an order tensor analysis (Table S2).^[4-6] RDCs measured in E-AU-TAR^{GC} and E-GC-TAR^{GC} were normalized (L=0.66) as previously described^[2] to take into account differences in the degree of alignment arising from use of a slightly different Pf1 phage concentration. The normalized RDCs measured in each helix were combined in the order tensor analysis. Due to deviations from Watson-Crick geometry, the A22-U40 and terminal G17-C45 base-pairs were excluded from the analysis. The program AFORM-RDC^[6] was used to estimate errors in the order tensor arising from "structural noise" and RDC measurement uncertainty. A-form helices were constructed using Insight II (Molecular Simulations, Inc), noting that the propeller twist angles had to be corrected from +15° to the standard A-form value of -15°.^[6]

Measurements of resonance intensities and K_d**s.** Resonance intensities were measured and normalized to a baseline value of 0.1 as described previously for EI-TAR and EI-TAR-ARG⁷. TAR-ARG Dissociation constants were calculated from the change in weighted average chemical shift for each titration point using the equation^[8],

$$\delta_{obs} = \delta_{free} + (\Delta \delta_T) \times \left(\left[Arg \right]_T + \left[RNA \right]_T + K_d \right) - \frac{\sqrt{\left[\left[ARG \right]_T + \left[RNA \right]_T + K_d^2 \right] + \left(4 \left[ARG \right]_T \left[RNA \right] \right)}}{2 \left[RNA \right]_T} \right)$$

in which $[ARG]_T$ is the total ARG concentration, $[RNA]_T$ is the RNA concentration based on UV absorbance at 260 nm, $\Delta \delta_T$ is the difference in chemical shifts between the free and ligand-associated states (in ppm), d_{obs} is the observed chemical shift (in ppm), and δ_{free} is the chemical shift in the free state (in ppm). The data was fit using the Origin software (OriginLab Corporation) in which $\Delta \delta_T$ and K_d were allowed to float.

SUPPLEMENTARY TABLES

Residue	Bond	EI-TAR ^{GC}	TAR ^{GC} -ARG	TAR ^{GC}
G17	(C8H8)	18.0	NA	-1.3
G17	(N1H1)	-14.6	-10.1	0.7
G17	(C1'H1')	NA	NA	NA
G18	(C8H8)	NA	0.0	NA
G18	(C1'H1')	NA	NA	NA
G18	(N1H1)	-18.5	-3.9	NA
C19	(C5H5)	NA	NA	-2.4
C19	(C6H6)	11.3	NA	NA
A20	(C2H2)	25.2	8.4	2.3
A20	(C8H8)	21.0	30.5	11.7
A20	(C1'H1')	NA	NA	-19.2
G21	(C8H8)	24.5	44.7	19.4
G21	(C1'H1')	NA	-48.0	-17.2
G21	(N1H1)	-20.2	-22.8	9.3
G22	(C2H2)	NA	NA	NA
G22 G22	(C8H8)	23.8	NA	20.9
G22	(C1'H1')	2.2	NA	8.9
G22 G22	(N1H1)	-16.5	-18.7	4.5
U23	(C5H5)	NA	37.7	-0.9
U23	(C6H6)	3.6	38.4	5.4
U23	(C1'H1')	-4.5	37.9	0.2
C24	(C5H5)	-3.8		-3.7
C24 C24	(C6H6)	0.9	-6.5	
C24 C24	· ,	-5.2	6.4	1.9
	(C1'H1')		-10.2	-2.9
U25	(C5H5)	-0.5	1.5	0.4
U25	(C6H6)	-1.8	-14.8	0.1
U25	(C1'H1')	-2.1	-7.3	-1.3
G26	(C8H8)	23.2	26.9	12.4
G26	(C1'H1')	NA	NA	-10.9
G26	(N1H1)	NA	NA	3.2
A27	(C2H2)	20.7	33.2	12.5
A27	(C8H8)	20.7	25.2	7.0
A27	(C1'H1')	NA	-8.0	-6.5
G28	(C8H8)	NA	25.6	8.1
G28	(C1'H1')	NA	-13.9	-12.0
G28	(N1H1)	NA	-18.3	6.4
C29	(C5H5)	NA	NA	6.1
C29	(C6H6)	12.6	37.4	17.7
C29	(C1'H1')	NA	NA	NA
U31	(C5H5)	18.0	31.3	14.3
U31	(C6H6)	19.9	31.2	16.9
U31	(C1'H1')	-13.7	-21.5	-8.8
U32	(C5H5)	NA	25.4	10.4
U32	(C6H6)	12.1	15.3	2.9
U32	(C1'H1')	19.2	25.2	9.0
C33	(C5H5)	6.0	-6.1	1.0
C33	(C6H6)	13.2	12.1	4.1
C33	(C1'H1')	1.0	-33.6	-8.5
G34	(C8H8)	22.6	24.1	7.7

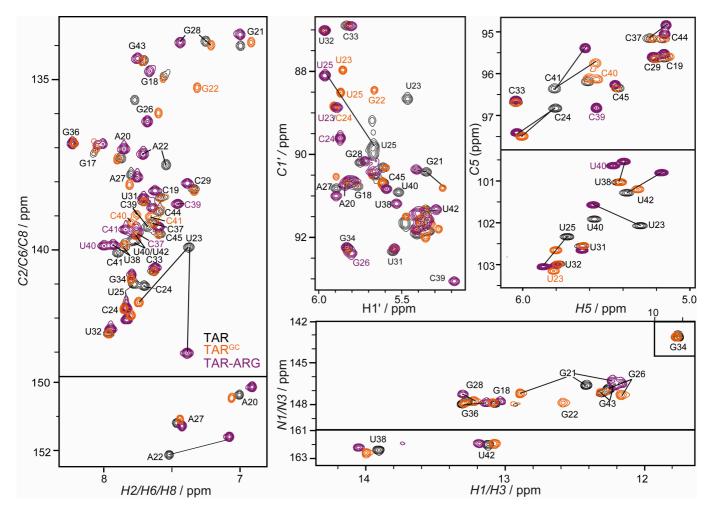
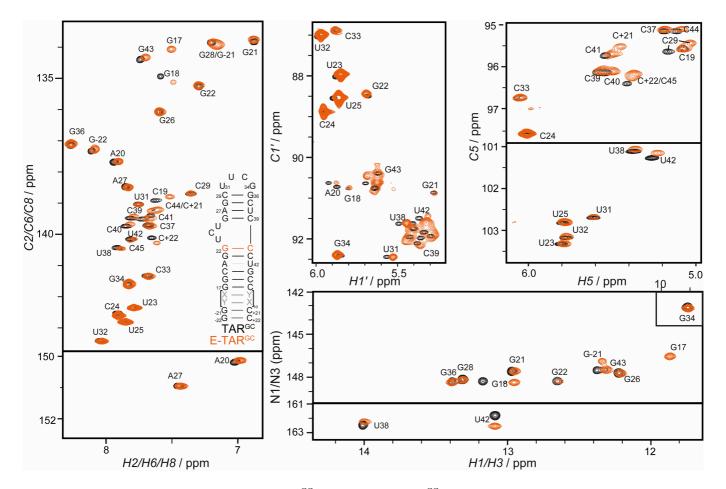
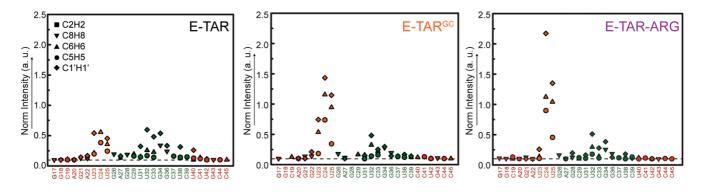
Table S1. RDCs measured in EI-TAR^{GC}, TAR^{GC}-ARG, and TAR^{GC}.

G34	(C1'H1')	20.1	11.6	5.2
G34	(N1H1)	-24.9	NA	7.1
G36	(C8H8)	25.7	46.6	21.5
G36	(C1'H1')	-11.2	NA	NA
G36	(N1H1)	NA	-21.5	7.8
C37	(C5H5)	20.8	NA	20.7
C37	(C6H6)	14.0	NA	NA
C37	(C1'H1')	NA	NA	-8.0
U38	(C5H5)	23.2	NA	18.8
U38	(C6H6)	NA	23.7	7.1
U38	(C1'H1')	-13.2	-20.2	-9.3
U38	(N3H3)	-11.1	-11.4	4.3
C39	(C5H5)	NA	NA	13.0
C39	(C6H6)	14.6	NA	13.5
C39	(C1'H1')	NA	-38.5	NA
C40	C6H6	15.9	NA	19.2
C40	(C5H5)	NA	NA	9.6
C40	(C1'H1')	NA	NA	-13.1
C41	(C5H5)	22.6	NA	10.9
C41	(C6H6)	NA	NA	NA
U42	(C5H5)	22.4	37.7	16.7
U42	(C1'H1')	NA	-7.3	NA
U42	(N3H3)	-14.5	-17.5	6.4
G43	(C8H8)	15.1	26.9	14.5
G43	(C1'H1')	NA	NA	NA
G43	(N1H1)	NA	-7.2	-2.0
C44	(C6H6)	NA	NA	-2.7
C44	(C5H5)	NA	NA	18.5
C45	(C6H6)	NA	NA	-0.9
C45	(C5H5)	NA	17.8	6.7
C45	(C1'H1')	NA	-16.6	-6.7
G-21	(C8H8)	19.6	NA	NA
C+21	(C5H5)	21.8	NA	NA

Table S2. Statistics for order tensor analysis of RDCs measured in the helices of EI-TAR^{GC} and TAR^{GC}-ARG using idealized A-form helices as input coordinates. Shown are the number of RDCs (*N*) used in the order tensor determination, the root-mean-square deviation (RMSD) and correlation coefficient (*R*) between measured and back-predicted values, asymmetry parameter (η), generalized degree of order (ϑ),internal generalized degree of order (ϑ _{int}), and inter-helical bend angle (β). Errors in ϑ , ϑ _{int}, η , and β are obtained using the program AFORM-RDC and take into account both RDC measurement uncertainty and local structural noise in the idealized A-form helix.^[6]

	Helix	N	RMSD (Hz)	R	η	ϑ(x10 ⁻³)	ϑ_{int}	β°
E-TAR ^{GC}	Ι	19	4.1	0.98	0.19±0.08	1.04±0.04	1.02±0.1	11.9±6.5
E-TAK	II	12	3.2	0.98	0.16±0.10	1.06±0.10		
TAR ^{GC} -	Ι	13	1.9	0.99	0.36±0.21	1.89±0.21	0.88±0.14	17.7±6.0
ARG	II	14	4	0.99	0.26±0.17	2.15±0.20		

SUPPLEMENTARY FIGURES

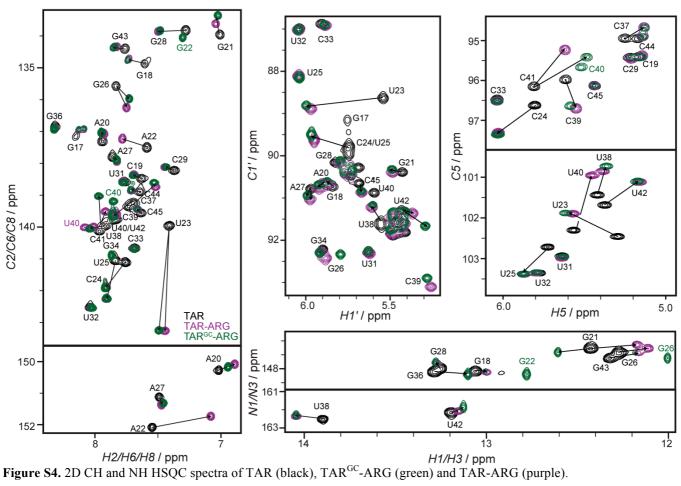

Figure S1. 2D CH and NH HSQC spectra of TAR (black), TAR^{GC} (orange) and TAR-ARG (purple)

Figure S2. 2D CH and NH HSQC spectra of TAR^{GC} (black) and EI-TAR^{GC} (orange) demonstrating that elongation does not affect the structural and dynamical integrity of TAR^{GC}. Significant perturbations are primarily localized at residues near the site of elongation.

Figure S3. Normalized resonance intensities measured in 2D HSQC spectra of EI-TAR, EI-TAR-ARG, and EI-TAR^{GC}. Residues in helix I, helix II, and the bulge are colored-coded red, green, and orange respectively.

SUPPLEMENTARY REFERENCES

- 1. S. W. Pitt, A. Majumdar, A. Serganov, D. J. Patel, H. M. Al-Hashimi, J. Mol. Biol. 2004, 338, 7-16.
- 2. Q. Zhang, A. C. Stelzer, C. K. Fisher, H. M. Al-Hashimi, *Nature* 2007, 450, 1263-7.
- 3. M. R. Hansen, P. Hanson, A. Pardi, *Method Enzymol.* 2000, 317, 220-240.
- 4. J. A. Losonczi, M. Andrec, M. W. F. Fischer, J. H. Prestegard, J. Magn. Reson. 1999, 138, 334-342.
- 5. M. H. Bailor, C. Musselman, A. L. Hansen, K. Gulati, D. J. Patel, H. M. Al-Hashimi, Nat. Protoc. 2007, 2, 1536-46.
- 6. C. Musselman, S. W. Pitt, K. Gulati, L. L. Foster, I. Andricioaei, H. M. Al-Hashimi, J. Biomol. NMR 2006, 36, 235-49.
- 7. Q. Zhang, X. Sun, E. D. Watt, H. M. Al-Hashimi, Science 2006, 311, 653-6.
- 8. E. R. P. Zuiderweg, *Biochemistry* **2002**, 41, 1-7.