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Periodicity of <TQ requires that the bracketed quantity in the pre 
ceding equation be zero. Thus, integration gives 

F = C + (D/r) - I{r) 

where 

Kr) Iff rh(r) aQ(r)dr 

The first of Eqs. (1) and periodicity of <rr require that 

rVr = periodic terms — 6 — (rF) — 
dr 

(G + ™) 

(6) 

(7) 

(8) 

Combining Eqs. (2) and (5) and integrating yield 

rVr = d J rha0dr + periodic terms + J(6) (9) 

In view of the first of Eqs. (1) and the periodicity of o>, J(d) must 
be periodic. Then, combining Eqs. (6), (8), and (9) yields 

(d2G/dd2) + G = periodic terms - C6 

which integrates to give 

G(6) = CiO sin 6 + C20 cos 6 + periodic terms - CO 

Finally, the most general stress function guaranteeing peri
odicity of all stresses is 

4>{rt0) = Cod + Cird sin 6 + C2r6 cos 6 - rOl(r) + f(r, 0) (10) 

where the C's are constants, I(r) is defined by Eq. (7), and \p is 
periodic in 0 and has continuous second partial derivatives. 

I t is interesting to note the simplicity of Eq. (10). Except for 
the presence of the rdl(r) term, it is identical to the Mich ell5 

solution of the biharmonic equation, which governs the iso
tropic, homogeneous, uniform-thickness elasticity problem 
without body forces. The results of this note have been used 
by the author in the solution of several plane elasticity prob
lems involving varying thickness and polar orthotropy. 
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in any small-strain theory) as distinguished from Leonard's 
definition of <m. 

This has been overlooked by Leonard, and as a result, the error 
as compared with the exact theory is less than he indicates. The 
theoretically correct value of Gu found by him is 0.714 pr. 
The value used in Ref. 2 is 0.75 pr, only 5 percent more. But 
since —1/3 < sin y < 0 in the actual test cylinder owing to the 
coating of neoprene and friction between thread sets, the error in 
application was probably considerably smaller than this and 
surely within the limits of engineering accuracy, aside from the 
direct contribution of the elastomer to shear stiffness. 
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IN ADOPTING the result <rn = 0.75 pr in his treatment of the 
second problem, Dr. Topping has assumed that the stresses 

due to pressure are not influenced by the resulting strains. This 
is not a good assumption, since the radius of the cylinder increases 
approximately 15 percent due to large shear strains in the fabric. 
However, his use of an = 0.75 pr does indeed largely com
pensate for the use of the incorrect formula Gu = <n\. The im
portant points to be made are: (1) large shear strains must 
often be taken into account if fabric behavior is to be under
stood, and (2) the effective minimum shear stiffness is dependent 
on the geometry and loading and a single simple formula—such 
as Gn = en—should not be expected to represent all situations. 
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WE WHO ARE INTERESTED in fabric structures are much in
debted to R. W. Leonard for an interesting and rigorous 

generalization of the analysis of Ref. 2. I take exception, how
ever, to the statement that the limitations of the theory of Ref. 
2 appear not to have been fully recognized, for they were ex
plicitly pointed out in the derivation. Some liberties were taken, 
however, in applying the theory to a pressurized cylinder having 
its thread sets originally at 45° with the axis of the cylinder, and 
this is admittedly not entirely clear from Ref. 2, although the 
difficulties are discussed. 

In Ref. 2, the relation Gn = <rn was obtained for the case of 
small strains and threads initially at right angles, where how
ever, <7n was the stress in the diagonal threads assuming no de
formation (the effect of the Poisson strain on stress is neglected 

FOLLOWING is an analytical method for designing a shroud1 

which will generate the hypersonic pressure distribution on a 
hemisphere. The method was found to be successful through
out the region of subsonic flow (0 < rj ^ 44°, Fig. 1). This 
shroud was designed as part of a low-turbulence wind tunnel 
used for investigating the effects of cooling on boundary-layer 
transition on a hemisphere.2 

The design of the shroud contour was carried out in two steps. 
First, an approximate solution for the incompressible, irrota-
tional flow field was found in the region 0 < 77 < 45°, and, second, 
the resulting contour was corrected for compressibility near the 
sonic region, assuming one-dimensional flow. 

Proceeding to the incompressible problem, a stream function, 
\p(r, -q), can be defined by 

bib/br = — ru sin rj ) 
> (1) 

dx/z/dr) = r2v sin 77 ) 

where u and v are the velocities in the rj and r directions, respec-

t This work was supported by the U.S.A.F. under contract AF49(638)~ 
336, monitored by the Air Force Office of Scientific Research. 

* Presently, Staff Scientist, United Technology Corp. 



758 J O U R N A L O F T H E A E R O S P A C E S C I E N C E S — J U N E 1 9 6 2 

tively (Fig. 1). The irrotationality condition expressed in terms 
of yp leads to the following linear equation: 

r\b2f/W) + (dV/cty2) - cot y(dip/bv) = 0 (2) 

The hypersonic velocity distribution can be very accurately ex
pressed,2 for 7} < TT/4:, by the linear relation 

u(R, v) = as<J- 77, (17 < i r /4 ) (3) 

where as is the speed of sound at the stagnation point and y 
is the ratio of specific heats. Thus, the boundary conditions on 
the zero streamline, for 0 < -q < 7r/4, become 

HK v) = 0 _ \ 

(b#/br)(R,v)= -RasVz/vnsinr)^ 

lA(r, 0) = 0, (r > R) ) 

(4) 

The usual method of solving an elliptic differential equation 
is to specify either the dependent variable or its normal deriva
tive (or a linear combination of both) at every point on the bound
ary of a closed region. However, in the present application the 
problem is to determine the shape of one boundary (shroud 
streamline) such that both \p and b\j//br have the specified values 
on the known boundary (hemisphere). 

Although no straightforward analytical methods appear to 
exist for solving Eq. (2) with conditions [Eqs. (4)], an approxi
mate closed-form solution is obtained by making a few minor 
simplifications. Since in the range 0 < rj < TT/4 both sin ?? and 
cot 7] are given to within 1 percent by the first two terms in their 
series expansions, Eq. (2) becomes, to a high degree of approxi
mation, 

r2(dty/dr2) + (dty/di?2) 

with the boundary conditions 

f(R, v) = 0, (0 < 77 < x/4) 

<¥, 
d7 

[(I/77) - (77/3)](5^/d77) = 0 (5) 

-(R,v) = -RasJ2: U 2 - j H , 0 < 77 < TT/4 

t(r, 0) = 0 , (r > R) 

In attempting a power-series solution of the form 

\p{r, 77) : X) aw2 

n = l 

(6) 

(7) 

to the above problem it is found from the first and second bound
ary conditions that \p can be written in the relatively simple form 

f(r,v) = a2(r)ri2 + a4(»?4 (8) 

By substituting Eq. (7) into Eq. (5) and applying the boundary 
conditions [Eqs. (6)], the following two simultaneous differential 
systems result for determining a2(r) and a^r): 

r V + (2/3 )a2 = - 8 a 4 \ 

az'(R) = -Ras\/2/^ > (9) 

a2(R) = 0 ) 

and 
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rW + (4/3 )a4 = 0 \ 

a,\R) = (Ras/6)V2h< (10) 

<n(R) = 0 J 

After solving these equations (Cauchy type) the stream function 
given by Eq. (8) is determined. The final result may be written 

\f/(r, 77) = —R2a, V '2 r_ 

7 R 

- Vifsin (V 12 R 

Vf sin(Vf2
in 

" 2 - fe n (Vl i n i ) } 4 

(11) 

Thus, the (incompressible) shroud contour for any given volume 
flow is determined by setting \p = constant in Eq. (11) and solving 
the quadratic in 772 for 77 = 77(f). 

The shroud shape, showing the compressibility corrections in 
the sonic region, is given in Fig. 1. The upstream contraction 
section was made to converge somewhat faster than the predic
tions of Eq. (11) for practical reasons. For 77 > 45°, the gap 
between the shroud and the sphere surface was made greater 
than that specified by theory so that boundary layer growth 
would not influence the position of the sonic point. 

The measured pressure distribution on the shrouded sphere 
is compared with the desired hypersonic pressure distribution in 
Fig. 2. Excellent agreement is indicated nearly to the sonic 
point. 
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A SIMPLIFIED METHOD for rapidly determining the conditions 

for neutral burning for a solid-propellant interrupted-tube 
grain is presented in terms of the initial grain geometry, the burn
ing rate, and time. 

With the current interest in the segmented solid-propellant 
rocket motor, the interrupted-tube type of grain design has re
ceived considerable attention. In general, a rather neutral-
burning propellant grain is desired, which is obviously not readily 
obtainable with the inherent progressivity associated with a 




