MVMA TWO-DIMENSIONAL CRASH VICTIM SIMULATION, VERSION 6

VOLUME 2

The User's Manual

B. M. Bowman, Research Scientist R. O. Bennett, Senior Research Associate

> Transportation Research Institute The University of Michigan 2901 Baxter Road Ann Arbor, Michigan 48109-2150

> > June 30, 1988

• . •

•

Technical Report Documentation Page

;

1. Report No.	2. Government Accession No.	3. Recipient's Catalog No.
UMTRI-88-23		
4. Title and Subtitle MVMA Two-Dimensional Cr Version 6. Volume 2.	rash Victim Simulation,	5. Report Date June 30, 1988 6. Performing Organization Code
	8. Performing Organization Report No.	
7. Author's) B. M. Bowman and R. O.	Bennett	UMTRI-88-23
9. Performing Organization Name and Addre	55 Ture 4 2 4 4 2	10. Work Unit No. (TRAIS)
The University of Mich	i i i nstitute igan	302743 11. Contract or Grant No.
Huron Parkway and Baxte	er Roads	13. Tues (D
ATTA AMDON, MICHIYATI 40 12. Sponsoring Agency Name and Address	3109-2150	13. Type of Report and Period Covered
Motor Vehicle Manufactu	irers Association	Final Report
Detroit, Michigan]	14. Sponsoring Agency Code
15. Supplementery Notes This report 1985, titled "MVMA Two- This report is for Vers	ort is an update of the r Dimensional Crash Victim Sion 6.	report released June 28, Simulation, Version 5."
16. Abstract Volume Two is in	ntended primarily as a gu	ide to the day-to-day usage
This volume contain	ondi crasni viccimi simulat	or.
with a detailed descript tions and certain normal are presented for two e	tion of input data quanti l output quantities are c xample exercises of the c	ties. Normal output op- lescribed. Input and output computer model.
Volume One presents describing the crash dyr relating to program des	s the analytical formulat namics. Volume Three pro ign and implementation.	ion of the equations vides detailed information
	•	
17. Key Words,	18. Distribution Sta	Iom on t
Automotive Safety Desigr		
Occupant Dynamics, Restr Whole-Body Response	raint Systems UNLIMITED	
19. Socurity Classif, (of this report)	20. Security Classif, (of this page)	21- No. of Pages
		402 (p. 215 - p. 488)

Reproduction of completed page authorized

. · ·

TABLE OF CONTENTS

					Page
Table	e of C	Contents	5		i
List	of Fi	gures			vii
List	of Ta	bles			xiii
Ackno	owledg	gements			xix
VOLU	ME 1				
1.0	Intr	oductio	n		1
2.0	Anal	ysis			7
	2.1	Coordi	nate Syste	ms and Geometry	7
	2.2	Formul	ation of t	he Equations of Motion	19
	2.3	Additi	on of Join	t Torques to the Equation of Motion	37
		2.3.1	Passive J	oint Torques	37
		2.3.2	Muscle Te	nsion Forces	44
	2.4	Additi	on of Forc	es to the Equations of Motion	47
		2.4.1	Force-Def	ormation Relations	47
		2.4.2	Mutual De	formation Between Two Force Producers	56
		2.4.3	Addition	of Generalized Forces from Contacts	60
		2.4.4	Addition and Steer	of Generalized Forces from Belts, Airbag ring Assembly	61
		2.4.5	Addition	of Head Applied Forces	65
	2.5	Comput	ation of	Belt Forces	67
		2.5.1	A Three-	Belt Submodel (BELT)	67
			2.5.1.1	Lap Belt	69
			2.5.1.2	"Shoulder" Belt	72
			2.5.1.3	Lower Torso Belt	73
			2.5.1.4	Addition of Belt Forces to the Equations of Motion	74
		2.5.2	An Advan	ced Belt System Submodel (BELT2)	75
			2.5.2.1	Belt Deflection and Lever Arms	76
			2.5.2.2	Force Equalization (free slipping)	81

i

		2.5.2.3	Torso Belt Interbelt Influence	82
		2.5.2.4	Inertia Reels: Spoolcut, Frame Deformation, Locku	D 87
		2.5.2.5	Slip Points, or Rings	87
		2.5.2.6	Determination of Ring Position	89
		2.5.2.7	Adjustment of Lap Belt Attachment Point	92.1
2.6	Computa	ation of	Contact Forces	93
	2.6.1	General	Geometry of a Contact Surface Element	96
	2.6.2	Effects	at the Edge of a Contact Surface Element	102
	2.6.3	The Thick	kness of a Contact Surface Element	109
	2.6.4	The Gener Ellipse	ration of Force in Contact Between a Body and a Contact Surface Element	110
	2.6.5	Specifie Vehicle	d Motion of a Contact Surface Relative to the (Occupant Compartment Collapse)	115
	2.6.6	Generati Plowing)	on of Tangential Contact Forces (Friction and	115
	2.6.7	Force In	teractions Between Body Ellipses	119
	2.6.8	Structur Rule)	al Deformation of Contact Regions (Migration	128
		2.6.8.1	Displacements for Normal Forces and Permanent Deformation (Migration Rule)	128
		2.6.8.2	Relaxation of the Displaced Region (Migration Rule)	131
		2.6.8.3	Corner Point Migration Rules	135
	2.6.9	Force Co	ntinuity at Corners within a Contact Region	135
	2.6.10	Multiple	Circles Intersecting with One Line Segment	140
		2.6.10.1	Ordering	142
		2.6.10.2	Maximum Deflection Designator	142
		2.6.10.3	Cavity Coefficients	144
		2.6.10.4	Deflections Against a Surface with a Cavity	144
		2.6.10.5	Progressive Adjustment of Interdependent Forces	145
2.7	Inflat	able Occu	pant Restraint System Submodel (also see 2.11)	149
		2.7.1 A	irbag Enclosure	149
		2.7.2 A	ssumptions 4/3/87	152

Page

.

ii

			Page
	2.7.3	Simulation Description	153
	2.7.4	Notation	158
	2.7.5	Thermodynamic Model	161
		2.7.5.1 Thermodynamics During Inflation	161
		2.7.5.2 Thermodynamics During Exhaust	163
	2.7.6	Restraint Force Calculation	184
		2.7.6.1 Pressure Force	167
		2.7.6.2 Skin Tension Force	167
2.8	Energy-	Absorbing Steering Column Submodel	173
	2.8.1	Model Description: Structure	173
	2.8.2	Model Description: Steering Assembly Reactions	175
		2.8.2.1 Maximum Allowable Reaction	175
		2.8.2.2 Reactions Required for Rigidity	175
		2.8.2.3 Constraints	175
	2.8.3	Occupant Description	176
	2.8.4	Contact Forces	178
	2.8.5	Equations of Motion	178
		2.8.5.1 Matrix	179
		2.8.5.2 Constraints	181
	2.8.6	Analysis: Steering Assembly	182
	2.8.7	Analysis: Occupant	195
	2.8.8	Analysis: Geometry of Contact Surfaces and Contact Points	195
	2.8.9	Analysis: Interference Between Occupant and Steering Assembly	198
	2.8.10	Analysis: Body Contact Forces	203
		2.8.10.1 Resolved Contact Forces for Occupant	205
		2.8.10.2 Resolved Contact Forces for Steering Assembly	208
	2.9	Vehicle Motions	211
	2.10	Non-Body Links and Ellipse Contact Profiles	214
	2.11	Advanced Airbag System (Overview)	214.07
		iii 6/28/85	

.

.

VOLU	ME 2					Page
3.0	User	s' Guic	ie			215
	3.1	Descri	ption of	Input Data Cards		215
	3.2	Detail	ed Descri	ption of Input Data Quantities		335
	3.2 -	A Misc	ellaneous	Model Use Considerations		407
	3.3	Descri	ption of	Normal Output		412
	3.4	Sample	Input an	d Output		415
		3.4.1	Introduc	tion		416
		3.4.2	Input Da	ta for Example l		416
			3.4.2.1	Title Cards		419
			3.4.2.2	General Controls for IN and GO		419
			3.4.2.3	Vehicle Motion		421
			3.4.2.4	Occupant Description		421
			3.4.2.5	Occupant Position		425
			3.4.2.6	Vehicle Interior		425
			3.4.2.7	Friction Characteristics		428
			3.4.2.8	Interaction "Inhibition" Cards		430
			3.4.2.9	Belt Restraint System		430
			3.4.2.10	End of Data Deck for INP		430
			3.4.2.11	Output Processor Controls		433
		3.4.3	Selected	Output from Simulation Example 1		435
			3.4.3.1	Data Set Echo		435
			3.4.3.2	Summary of Input Data		435
			3.4.3.3	Printer-Plot Stick Figure Sequence		436
			3.4.3.4	Printout of Numerical Results		436
		3.4.4	Input Dat	ta for Example 2		465
			3.4.4.1	Belt Restraint System		465
			3.4.4.2	Auxiliary Debugging Printout		467
			3.4.4.3	Output Variable Storage		467
			3.4.4.4	Other "Example 2" Modifications		467
		3.4.5	Selected	Output from Simulation Example 2	6/30/88	467

VOLU	IME 3			Page
4.0	Detailed Program Information			
	4.1	Overal	1 Model Organization and Flow	489
		4.1.1	The Five Processors	490
		4.1.2	Techniques for Efficient Use of Storage	490
			4.1.2.1 Packing Techniques	493
			4.1.2.2 Dynamic Dimensioning	494
			4.1.2.3 Use of "Transfer Vector" Routines	495
			4.1.2.4 Use of External Storage	496
	4.2	The In	put Pre-Processor (INP)	497
		4.2.1	Program Organization and Flow	497
		4.2.2	Packing Techniques	497
		4.2.3	Binary Output Formats	498
		4.2.4	Auxiliary Program Output	498
		4.2.5	Programs Written by INP	499
	4.3	The In	nput Processor (IN)	521
		4.3.1	Program Organization and Flow	521
		4.3.2	Packing Techniques	521
		4.3.3	Binary Output Formats	546
		4.3.4	Auxiliary Program Output	546
		4.3.5	Programs Written by IN	547
	4.4	The Dy	namics Solution Processor (GO)	567
		4.4.1	Program Organization and Flow	567
		4.4.2	Integration Techniques	567
		4.4.3	Packing Techniques	595
		4.4.4	Binary Output Formats	596
		4.4.5	Auxiliary Program Output	625
		4.4.6	Auxiliary Output Symbol References	654

				Page
	4.5	The Ou	tput Pre-Processor (OUTP)	691
		4.5.1	Program Organization and Flow	691
		4:5.2	Packing Techniques	691
		4.5.3	Binary Output Formats	691
		4.5.4	Auxiliary Program Output	691
		4.5.5	Programs Written by OUTP	701
	4.6	The Ou	tput Processor (OUT)	705
		4.6.1	Program Organization and Flow	705
		4.6.2	Output Subprocessors	717
		•	4.6.2.1 Standard List of Comparisons	717
			4.6.2.2 General Comparisons	717
			4.6.2.3 Digital Filtering	732
			4.6.2.4 Special Indices	735
			4.6.2.5 Femur and Tibia Loads	738
		4.6.3	Auxiliary Program Output	742
	4.7	Operat	ional Usage of the MVMA 2-D Model	747
	4.8	Instal	lation of the MVMA 2-D Model on Non-MTS Systems	755
		4.8.1	Special Routines	755
		4.8.2	Fortran Library Routines	770
		4.8.3	Direct Access Data Sets	771
		4.8.4	Differing Word Length	772
5.0	Refe	rences		775
Appe	ndix	A Exam	ples of the Use of Packing Tables	777
	A.1	The Ch	ain to Ellipses	777
	A.2	The Ch	ain to Contact Line Segments	781
	A.3	The Ch	ain to Materials	787
	A.4	The Ch	ain to Interactions	794
	A.5	Examin	ation of Binary File Content	799

vi

LIST OF FIGURES

.

VOL	UME 1	
1.	Relationship of Position Conditions and Interaction Forces Within the Framework of an Initial Value Problem	3
2.	Articulated Body Schematic	8
3.	MVMA 2-D Extensible Neck Geometry	9
4.	Body Link Coordinate Systems	10
5.	Space and Vehicle Fixed Coordinate Systems	11
6.	Shoulder Joint	12
7.	Joint Friction	38
8.	Elastic and Joint-Stop Torques	41
9.	In-Line Orientation	42
10.	Definition of Joint-Stop Angles and Natural Link Position	43
11.	Generalized Muscle Element Model	44
12.	HSRI Representation of Force-Deflection Curves	48
13.	Mutual Deformation of an Ellipse on a Line	57
14.	Resultant Forces and Moment on Body Segment	62
15.	Schematic of Force Applied to Head	66
16.	Simple Belt System Geometry	68
17.	Advanced Belt System	76
18.	Belt Length	80
19.	Torso Belt Friction	84
20.	Slip Ring Friction	88
21.	Belt Geometry at a Slip Point	90
22.	Seven Occupant Ellipses and Eleven Line Segments for · Potential Contact	94
23.	Results of Surface Geometric Discontinuity	97
24.	Multiple Ellipses Interacting with a Single Line Element	98
25.	Deflection Between a Straight-Line Segment and an Ellipse	100
26.	Ellipse 'm' Attached to Body Segment 'n'	101

		Page
27.	Contact Surface Line Element Attached to the Vehicle	103
28.	Effectiveness Factor E as a Function of s	104
29.	Effectiveness Factors for Edge Constant Values of 0. and .5	105
30.	Line-Segment Direction Factors Defined at t=0	111
31.	A Moving Contact at Three Time Points	116
32.	A Corner Coordinate Value and Rate as a Function of Time	117
33.	Approach of Circle to Ellipse	121
34.	Approach of Ellipse to Ellipse	125
35.	Approximation of an Ellipse by Replacement Circle of Varying Position	127
36.	Forces Acting on a Contact Region	129
37.	Definition of Constraints on a Region	132
38.	Definition of Region Coordinate System	136
39.	Contact of Body Circle with Several Corners within a Contact Region	137
40.	Limiting Case of Circle-Line Corner Contact	139
41.	Multiple Circles Interacting with a Single Line Segment	141
42.	Comparison of Older Contact Simulations with Realistic Circle-Line Contact	143
43.	Cavity Coefficient Definitions	145
44.	Case of N Circles Interacting with Line Segment	147
45.	MVMA 2-D Airbag Model	150
46.	Airbag Contact Lines on Occupant	1 51
47.	General Organization of the Airbag Simulation	154
48.	Incremental Force Generation	157
49.	Supply Cylinder and Bag	159
50.	Rate of Work of Moving Boundary	165
51.	Radial Search Vector	166
52.	Skin Tension Force	168
53.	Occupant-Bag Contact viii	169

.

		Page
54.	Bag Penetration by Occupant	170
55.	Energy Dissipating Steering Assembly Model	174
56.	Contact Geometry of Occupant and Steering Assembly	177
57.	Steering Assembly Reaction Subroutine	184
58.	Steering Assembly Contact Force Subroutine	196
59.	Determination of Interference Between Steering Assembly and Occupant Upper Torso	200
60.	Resultant of Contact Forces for Body Segment	206
61.	Resolution of Steering Assembly Contact Forces	209
62.	Occupant Contact Surfaces and Reference Points	210
63.	Vehicle Coordinates	212
VOLU	IME 2	
64.	Data Decks	216
65.	A Data Card	218
66.	Articulated Body Schematic	354
67.	Shoulder Joint	355
68.	Standing Position	356
69.	Schematic Representation of Man	357
70.	Sitting Position	358
71.	Schematic Sitting Position	359
72.	Provision for "Natural" Link Orientation	360
73.	In-line Orientation	362
74.	Definition of Joint Stop Angles and Natural Link Position	363
75.	Three-Belt System Geometry	366
76.	Definition of Location and Dimensions of Contact-Sensing Ellipses	367
77.	Muscle at a Joint	370

ix

		Page
78.	Occupant Model Configuration with all Body Link Angles Equal to Zero, for Input or Output	372
79.	Body Link Angle Conventions for Input Data and Tabular Output	373
80.	Body Link Angle Conventions for Auxiliary Debug Output	374
81.	Static Loading Curve	378
82.	Inertial Spike Curve	379
83.	Static Loading Curve with Force Saturation	380
84.	Unloading with Permanent Deformation from Deflections Greater than $\boldsymbol{\delta}_{C}$	381
85.	Unloading with Energy Loss from Deflections Greater than $^{\delta}c$	382
86.	Cavity Coefficients	383
87.	Effectiveness Factor E as a Function of s	386
88.	Effectiveness Factors for Edge Constant Values of O. and .5	387
89.	Line-Segment Direction Factors	388
90.	Advanced Belt System	394
91.	Belt Attachment Point Coordinates for Advanced Belt- Restraint Submodel	395
92.	Belt Anchor Type Designation for Anchor "i"	399
93.	Designation of Ring-Belt Relationship for Slip Point "i"	400
94.	Airbag Contact Lines on Occupant	402
95.	Example of Printer-Plot Output	407
96.	Arbitrary Decomposition of MVMA 2-D Data Set into Subsets	417
97.	Occupant and Vehicle Interior Configuration for Example 1	418
98.	Title Cards for Example 1	420
99.	General Controls for IN and GO for Example 1	420
100.	Vehicle Motion Cards for Example 1	422
101.	Horizontal Component of Vehicle Acceleration for Example 1	423

х

		Page
102.	Occupant Parameter Cards for Example 1	424
103.	Occupant Position Cards for Example 1	426
104.	Vehicle Interior Profile for Example 1	427
105.	Data Cards for Definition of Geometrical Profile and Material Properties for a Typical Region	429.
106.	Data Cards for Coefficients of Friction for Example 1	431
107.	Interaction "Inhibition" Cards for Example 1	432
108.	Output Processor Data Deck for Example 1	434
109.	Complete Data Set for Simulation Example 1	437
110.	Input Processor Data Deck Echo for Example l (example page)	443
111.	Summary of Input Data (example page)	444
112.	Printer-Plot Time Sequence for Example 1	445
113.	Vehicle Motion for Example 1	453
114.	Head Center of Mass Motion for Example 1	454
115.	Chest Center of Mass Motion for Example 1	455
116.	Hip Motion for Example 1	456
117.	Body Link Angles for Example 1	457
118.	Body Link Angle Accelerations for Example 1	458
119.	Example Region Line Segment Movement from Example 1	459
120.	Example (A) Ellipse-Line Contact Interaction from Example 1	460
121.	Example (B) Ellipse-Line Contact Interaction from Example 1	461
122.	Femur and Tibia Loads for Example 1	462
123.	Unfiltered Head, Chest, and Hip Accelerations for Example 1	463
124.	Severity Indices for Unfiltered Accelerations for Example 1	464
125	Belt Restraint System Cards for Example 2	466
126.	Debugging Printout Specifications for Example 2	468

		Page
127.	Specifications for Storage of Output Categories for Example 2	468
128.	Complete Data Set for Simulation Example 2	470
129.	Printer-Plot Time Sequence for Example 2	475
130.	Example Debugging Printout from Example 2	483
131.	Belt System Response for Example 2	484
132.	Body Link Angle Accelerations for Example 2	485
133.	Unfiltered Head, Chest, and Hip Accelerations for Example 2	486
134.	Severity Indices for Unfiltered Accelerations for Example 2	487
VOLUM	E 3	
135.	Overall Model Information Flow	492
136.	Calling Structure for the Input Pre-Processor (INP)	500
137.	Calling Structure for the Input Processor (IN)	523
138.	Calling Structure for the Dynamic Solution Processor (GO)	568
139.	Calling Structure for the Output Pre-Processor (OUTP)	692
140.	Calling Structure for the Output Processor (OUT)	706
141.	Characteristics of a Martin-Graham Digital Filter	733
142.	Mirror and Polar Images	734
143.	Schematic of Upper and Lower Legs	739
144.	Leg Accelerations	740
145.	Free Body Diagrams of Lower Leg	740
146.	Free Body Diagram with Femur Loads at Knee	741
147.	Free Body Diagram with Femur Load at Sensor	742

.

LIST OF TABLES

.

.

VOLU	ME 1 · •	Page
1.	Belt Index Specifications (Submodel BELT)	69
2.	Belt Index Specifications (Submodel BELT2)	77
3.	Maximum Allowable Reaction Notation	187
4.	Reference Coordinates and Dimensions for Body Contact Surface Segments	197
5.	Contact Force Orientation	204
VOLU	ME 2	
6.	Summary of Required Input Data Cards	220
7.	Input Data	225
8.	Data Cards Referenced by Tutorial System Modules	336
9.	Data Card Fields Referencing Modules	337
10.	Metric/English System Conversion Constants	344
11.	List of Output Categories	351
VOLU	ME 3	
12.	The Five Processors	491
13.	Subprogram Specifications and Appearances for INP	501
14.	Labeled Common Descriptions for INP	502
15-1	Array Dimension Symbols in INP for IN	503
15-2	Array Dimensions in INP for IN	. 504
16.	Description of DATA(I,K) in INP	505
17.	Description of IFAULT(K) in INP	508
18.	Fixed Length Portion of Preliminary Indexed Binary Output Data Set on Logical Device Number NU in INP	509
19.	Variable Length Portion of Preliminary Indexed Binary Output Data Set on Logical Device Number NU in INP	511

		Page
20.	Facsimile of Echo of Input Data Cards from INP	516
21.	Facsimile of Defaulted Card Summary from INP	517
22.	Facsimile of Packing Dictionary from INP	518
23.	Error Messages from INP	519
24.	Main Program for IN	520
25.	Subprogram Specifications and Appearances for IN	524
26.	Labeled Common Descriptions for IN	527
27.	Array Dimension Symbols in IN for GO	529
28.	Array Dimensions in IN for GO	531
29.	Packing Array Layout for Reals in IN (RRQ)	533
30.	Packing Array Layout for Integers in IN (IIQ)	534
31.	The Standard Area for Input Storage in the KACT Array	535
32.	The Typical KACT Entry for Input Storage	536
33.	The Standard Area in STOACT for Input	537
34.	The Typical Ellipse Entry in STOACT for Input	537
35.	The Typical G or R Table Entry in STOACT for Input	538
36.	The Typical Material Entry in STOACT for Input	539
37.	The Typical Inertial or Relative Region Contact Entry in STOACT for Input	540
38.	The Typical Line Segment Contact Entry in STOACT for Input	541
39.	The Typical Entry for Static Curve or Inertial Spike in STOACT for Input	542
40.	The Typical Inhibition Entry in STOACT for Input	543
41.	The Typical Time Point Entry for Line in STOACT for Input	543
42.	The Typical Muscle Tension or Head Force Table Entry in STOACT for Input	544
43.	The Typical Shoulder Stiffness Coefficients Entry in STOACT for Input	544

		Page
44.	The Typical Body-Steering Column Material Entry in STOACT for Input	544
45.	The Typical Steering Wheel Material Entry in STOACT for Input	545
46.	The Typical Steering Column Reaction Material Entry in STOACT for Input	545
47.	Indexed Binary Output Data Set on Logical Device Number NU from IN	548
48.	Binary Record Lengths for Categories	555
49.	Facsimile Packing Dictionary from IN	556
50.	Facsimile of Binary L.D.N NU Index Summary from IN	559
51.	Error Messages from IN	560
52.	Main Program for GO	565
53.	Transfer Vector Routine for GO	565
54.	Subprogram Specifications and Appearances for GO	569
55.	Subroutine/Index Correspondence for Calls to TRAVEC (GO)	588
56.	Labeled Common Description for GO	589
57.	Packing Array Layout for Reals in GO (RQ)	597
58.	Packing Array Layout for Integers in GO (IQ)	598
59.	The Standard Area of the KCON Array	599
60.	The Typical Body Segment Entry of the KCON Array	600
61.	The Typical Material Control Entry of the KCON Array	600
62.	The Typical Ellipse Control Entry of the KCON Array	601
63.	The Typical Region Control Entry of the KCON Array	602
64.	The Typical Contact Segment Control Entry of the KCON Array	603
65.	The Typical Belt Control Entry of the KCON Array	604
66.	The Typical Material Entry of the STOMAT Array	605
67.	The Typical Static or Inertial Spike Curve Coefficients Entry in the STOMAT Array	606

		Page
68.	The <u>T</u> ypical Ellipse Entry of the STOMAT Array	607
69.	The Typical Region Entry of the STOMAT Array	608
70.	The Typical Contact Segment Entry of the STOMAT Array	609
71.	The Typical Segment Position Entry of the STOMAT Array	609
72.	The Typical Belt Entry of the STOMAT Array	610
73.	The Standard Area of the KMIG Array	611
74.	The Typical Segment Force Entry of the STOMIG and STOMUG Arrays	612
75.	The Typical Control Entry of the KACT Array	613
76.	The Typical Time History Entry of the KACT Array	615
77.	The Typical Time History Entry of the STOACT Array	616
78.	The Typical Ellipse-Segment Entry of the CONOUT Array	617
79.	The Typical Ellipse-Ellipse Entry of the CONOUT Array	618
80.	The Typical Region Entry of the CONOUT Array	619
81.	The Typical Belt Entry in the CONOUT Array	620
82.	The Typical Control Entry of the MSTOR Array	621
83.	The Typical Table Entry of the STOR Array	621
84.	INTACT Array Layout	622
85.	KREGNS Array Layout	622
86.	Sequential Binary Output Data Set on Logical Device Number MU.	623
87.	Indexed Binary Output Data Set on Logical Device Number MV.	623
88.	Sequential Binary Output Data Set on Logical Device Number NP	624
89.	Debug Switch Definition	625
90.	Debug Block Number, Debug Switch, and Subroutine Correspondence	628
91.	Description of Debug Printout	630
92.	Formats of Debug Printout	639

.

•

		Page
93.	Symbol Dictionary	655
94.	Subscript Reference Explanations	678
95.	Error Messages from GO	687
96.	Subprogram Specifications and Appearances for OUTP	693
97.	Labeled Common Descriptions for OUTP	694
98.	Array Dimensions in OUTP for OUT	695
99.	Fixed Length Portion of Indexed Binary File on Logical Device Number NU Written by OUTP	696
100.	Variable Length Portion of Indexed Binary File on Logical Device Number NU Written by OUTP	697
101.	Facsimile of Echo of Input Data Cards from OUTP	698
102.	Facsimile of Packing Dictionary from OUTP	699
103.	Error Messages from OUTP	700
104.	Main Program for OUT	702
105.	Transfer Vector Routine for OUT	703
106.	Second Level Transfer Vector Routine for OUT	703
107.	Subprogram Specifications and Appearances for OUT	707
108.	Subroutine/Index Correspondence for Calls to TRAVEC and SUBTVC (OUT)	713
109.	Labeled Common Descriptions for OUT	714
110.	Packing Array Layout for Reals in OUT (RQQ)	715
111.	Packing Array Layout for Integers in OUT (IQQ)	716
112.	List of Injury Related Test Quantities	718
113.	List of Output Categories	719
114.	Output Test Variables and Their Specifications	721
115.	Belt Identifier Names	731
116.	The Exponent Functional Relationship for the GMR Modified Severity Index	736

		Page
117.	Facsimile of the Three Millisecond Average Output	737
118.	Facsimile of HIC Scanning Output	743
119.	Error Message Table from OUT	744
120.	Usage in MTS	747
121.	Usage in JCL	749
122.	Special Routines in the MVMA 2-D Model	755
123.	Subroutine Description: ERROR	758
124.	Subroutine Description: SIOC	759
125.	Subroutine Description: Bitwise Logical Functions	765
126.	Subroutine Description: TIME	767
127.	Code for Dummy EXTIME (Special Routine)	769
128.	Code for Dummy FDATER (Special Routine)	769
129.	Fortran Library Routines	770

<u>Acknowledgements</u>

UMTRI expresses its gratitude to the Motor Vehicle Manufacturers Association, which has provided financial support for development of the MVMA 2-D Crash Victim Simulation model. The authors would also like to thank the numerous other organizations that have supported various model development and applications projects at UMTRI. These projects have made possible the refinements which have made the MVMA 2-D model a powerful, user oriented tool for automotive safety design and diverse other applications.

We thank Dr. D. Hurley Robbins, co-author of MVMA 2-D CVS releases prior to Version 6, for his many contributions toward the development of the model. Dr. Robbins was responsible for obtaining the funding that made the initial development work possible and was part of the team that has nurtured the model since 1972.

We are also most appreciative of the careful, and tedious, work done by Donna Head, Jeannette Leveille, and Carol Sobecki in typing the manuscript for these manuals.

PART 3 USERS' GUIDE

This part of the report contains a detailed description of the data required to operate the MVMA 2-D model and program output generated using sample data sets. The first section contains a tabular listing of all data required, the format of the cards, and the units of physical quantities. The second section supplements this table with text to provide the user with information concerning particular data quantities which may not be easily chosen (e.g., sign conventions on joint angles, integration control parameters, etc.). The third section describes normal output.

Section 3.4 discusses two example simulations, including preparation of the data sets. It is highly recommended that all MVMA 2-D users read this section completely and carefully.

3.1 DESCRIPTION OF THE INPUT DATA CARDS

Two data decks are required for computer simulations made with the MVMA 2-D model. (See Figure 64.) Each data deck consists of a series of eightycharacter lines which will be called "cards" in this discussion. The first data deck is read by the input pre-processor "INP," and the cards are identified by numbers 100 through 1000 in columns 78-80 or 77-80.* Primarily, these cards contain data which describe the crash event, the occupant, the vehicle interior, and the restraint systems. The second data deck is read by the output preprocessor "OUTP."** Each card is identified by a number 1001 through 1600 in columns 77-80. These cards contain data which control printout and various post-processing functions. In general, data cards can be in any order within a data deck. Cards which control model options not used for a particular simulation need not be present. Also, various quantities can be defaulted to constants stored within the program by omitting their cards from the data deck(s).

**"INP" and "OUTP" are two of the five major parts of the computer model, discussed in Volume 3.

^{*}There are a few cases of tabular input where no identification numbers are included (vehicle accelerations, energy-absorbing steering column parameters, airbag parameters).

DATA DECKS

Card Number

100	Cards read by IN
101	100, 200,, 900 content used for
102	automatic titling of pages
1	
1	
i	
1000	1000 (blank) marks end of data deck

1001	
1002	Cards read by OUT
1003	
ł	
l	
I	
1	
1600	1600 (blank) marks end of data deck

FIGURE 64 Data Decks

6/30/88

Each card consists of ten fields. (See Figure 65.) The tenth field is reserved for the previously mentioned card identification number. The first nine fields, consisting of eight columns each, are data fields. Thus, up to nine numbers may be required per card although most cards make use of a smaller number of fields. Numerical data must be specified in either F, E, or D format, examples of which are given with Figure 65. Blanks in numeric fields are treated as zeros by most computer systems, so E- and D-format numbers must be right-adjusted within data fields. Alphanumeric data are required on some cards; blanks within an alphanumeric field will not be ignored since a blank is a legitimate alphanumeric character.

A summary of the cards required to exercise the MVMA 2-D model is included here as Table 6. This table contains a card identification number in the first column, a general description of data contents in the second, and the number of cards which may contain a particular identification number in the third. A detailed description of all data cards and their content, card by card and field by field, is given in Table 7. This table, which includes over 100 card layouts, is the primary reference for preparation of data sets. In addition to collecting in one place a description of all required input data, the table includes information regarding default values for fields of cards omitted from the data deck(s) and also information regarding required units for data, field by field. The units required for running the model with metric-system or English-system data are indicated separately.

Following Table 7, Section 3.2 contains input data descriptions that are more detailed than those included on the card layouts in Table 7. Section 3.2 also includes many figures and tables which should be useful in the preparation of input data sets. This section will answer many of the questions that are likely to arise during input data set development. However, the

217

Acceptable data formats

F	E	D
123.4	1.234E2	1.234D2

FIGURE 65 A Data Card

218

ar . . *

user may sometimes find it necessary to refer to Volume 1 or to the Tutorial System Self-Study Guide [8], which contains the most complete description available of input quantities needed by the MVMA 2-D model.

Supplemental information of wide variety pertaining to input data, modeling considerations, etc., can be found in Section 3.2-A.

I.D.	Card Contents	Number	of Cards
	Control Block		
100	Computer run title	1	
101	Simulation Controls (Card 1)	1	
102	Simulation Controls (Card 2)	1	
103	Simulation Controls (Card 3)	1	
104	Debugging controls	1	
105	Debugging controls	1	
106	Contact interaction controls	up to	100
107	Stored output specifications (Card 1)	[`] 1	
108	Stored output specifications (Card 2)	1	
109	Stored output specifications (Card 3)	1	
110	Stored output specifications (Card 4)	l,	
111	Stored output specifications (Card 5)	1	
112	Stored output specifications for Advanced Airbag (Card	1) 1	
113	Stored output specifications for Advanced Airbag (Card 2	2) 1	

Occupant Parameter Input Block

200	Occupant parameter subtitle	1
201	Occupant body segment lengths	1
202	End of link to center-of-mass lengths	1
203	Mass of body segments	1
204	Moments of inertia	1
205	Head-Neck joint parameters (forward)	1
206	Neck-Upper Torso joint parameters (forward)	1
207	Upper spine joint parameters	1
208	Lower spine joint parameters	1
209	Hip joint parameters	1
210	Knee joint parameters	1
211	Upper Arm-Upper Torso joint parameters	1
212	Elbow joint parameters	1
213	Neck element parameters (for elongation)	1
214	Shoulder element parameters (for elongation)	1

<u>I.D.</u>	Card Contents	Number of Cards
	Occupant Parameter Input Block	
215	Head-Neck joint parameters (rearward)	1
216	Neck-Upper Torso joint parameters (rearward)	1
217	"Natural" link displacements	1
218	Occupant accelerometer and belt attachment parameters	1
219	Contact ellipse specifications (Card 1)	l for each ellipse
220	Contact ellipse specifications (Card 2)	l for each ellipse
221- 226	Contact ellipse material cards (Same as 403-408)	l set for each ellipse material
227	Head-Neck joint muscle tension coefficients	1
228	Neck-Upper Torso joint muscle tension coefficients	1
229	Upper Spine joint muscle tension coefficients	1
230	Lower Spine joint muscle tension coefficients	1
231	Hip joint muscle tension coefficients	1
232	Knee joint muscle tension coefficients	1
233	Upper Torso-Upper Arm muscle tension coefficients	1
234	Elbow joint muscle tension coefficients	1
235	Shoulder-Upper Torso joint muscle tension coefficients	1
236	Neck element elongation muscle tension coefficients	1
237	Shoulder element elongation muscle tension coefficients	1
238	Muscle tension versus time	l for each point in each muscle tension table
239	Radial shoulder joint stiffness (elastic)	l for each point in table
240	Radial shoulder joint stiffness (quadratic)	l for each point in table
241	Radial shoulder joint stiffness (cubic)	l for each point in table
242	Neck element parameters (for compression)	1
243	Material names for neck joints	1
244	Material names for torso joints	1
245	Material names for hip and knee joints	1
246	Material names for shoulder and elbow joints	1
247	Material names for neck (axial) and shoulder	1

	TABLE 6. SUMMARY OF REQUIRED INPUT DATA CARDS	
I.D.	Card Contents	Number of Cards
	Occupant Parameter Input Block	
248	Ellipse material bilinear unloading curves	n + l, where n is number of bilinear curves for the material
	Occupant Description Input Block	
300	Occupant description subtitle	1
301	Initial body link angles relative to vehicle	1
302	Initial body link angular velocities relative to vehicle	1
303	Initial conditions for upper torso and neck	1
304	Initial shoulder location and velocity relative to upper torso attachment	ו
	Vehicle Interior Input Block	
400	Vehicle Interior Characteristics subtitle	1
401- 402	Description of real line contact regions	2 cards for each region
403- 408	Material property specifications	l set for each material
409- 410	Line parameters within a region	l set for each line within region
411	Line segment location	l set for each line segment in a region ordered on time.
412	Friction coefficients	l card for each fric- tion combination
413	Material bilinear unloading curves	n + l, where n is number of bilinear curves for the material

Vehicle	Interior	Belt	Anchors	Input	Block

500	Vehicle interior configuration subtitle	1
501	MODROS belt anchor points relative to vehicle origin	1

<u>I.D.</u>	Card Contents	Number of Cards
	Impact Specification Input Block	
600	Vehicle impact subtitle	1
601	Vehicle initial conditions and accelerometer location	. 1
602	Vehicle horizontal acceleration versus time	1
-	Acceleration versus time	Several cards, 4 time points per card
603	Vehicle vertical acceleration versus time	1
-	Acceleration versus time	Several cards, 4 time points per card
604	Vehicle angular acceleration versus time	I
	Acceleration versus time	Several cards, 4 time points per card
605	Head applied force specifications	1
606	Head applied force component versus time	l for each point in head force table
	Belt Restraint System Input Block	
700	Belt restraint system subtitle	1
701- 703	MODROS belt system parameters	3
704- 709	Belt material cards for MODROS and advanced belt systems	l set for each material name used for belts
710- 719	Advanced belt system parameters	10
720	Advanced belt system and ring parameters	1
721- 723	Advanced belt system inertia reel parameters	3
724	Belt material bilinear unloading curves	n + 1, where n is number of bilinear curves for the material
725	Out-of-plane belt system dimensions	1
	1.	1/29/83

.

I.D.	Card Contents	Number of Cards
	Belt Restraint System Input Block	
726	Unstrained belt lengths	1
727	Belt retractor parameters .	n + 2, where n is number of time- length pairs

Energy Absorbing Steering Assembly Input Block

800	Energy absorbing steering assembly system subtitle	1
801 - 803	EA steering assembly parameters	3
804	Gearbox position versus time	1
-	Position versus time	Several cards, 4 time points per card
805	Head/steering system properties	1
806	Upper torso/steering system properties	1
807	Middle torso/steering system properties	1
808	Lower torso/steering system properties	1
809	Front line intersection points	1
810	Steering wheel material card	1
811	Reaction material names	1
812- 817	Steering assembly system and body material properties	l set for each material name used on Cards 805-811

Airbag	Restraint	System	Input	Block

900	Airbag system subtitle	1
901 - 903	Airbag system parameters	3
904	Airbag mass influx rate versus time	1
-	Rate versus time	Several cards, 4 time points per card
905	Supply gas temperature versus time	1
-	Temperature versus time	Several cards, 4 time points per card

•

.

<u>I.D.</u>	Card Contents	Number of Cards
	Airbag Restraint System Input Block	
906	Bag porosity versus pressure differential	1
-	Porosity versus temperature	Several cards,4 time points per card
907 - 909	Airbag occupant contact reference points	3
910-929	Advanced airbag system parameters	See AAS manual.
	Direct Input Block	
999	Constant values	Up to 100
	Execution and Output Block	
1000	"Go" Card for model execution	1
1001- 1002	Category selection and ordering specification	2
1003	Printout controls	1
1004	Filter and HIC controls	1
1100- 1107	Joint relative angle test values	8
1200- 1201	Standard list test values	2
1202	Face and chest ellipse designation	1
1300	Type A comparisons	1
1400- 1401	Type B comparisons	2
1500 - 1501	Stick figure control parameters	2
1502	Stick figure time point specifications	1
1600	"Go" Card for output processor	1

11/29/83

.
COMPUTER RUN TITLE	Field Name of Quantity Units Definition	HTITLE(1 - 18) Run Title Centered in columns 1 to 72	NOTE: The content of this card is printed in the first line of each page of output. Cards 200, 300, 400, 500, 600, 700, 800, and 900 may be used for a subtitle line, the second line on each page. See	the notes for Card 200.	·				•			MVMA 2-D Model Card 100
--------------------	---	--	--	-------------------------	---	--	--	--	---	--	--	----------------------------

SIMULATION CONTROLS (CARD 1) (9 Fields of 8)

-	Field	Name of Quantity	Units	Definition	Defaults
	1	MKSSWT		Switch = O.Metric units ≠ O.English units	0.
	2			Ellipse man graphics postprocessor plot record increment. If ≥ 0 , no graphics postprocessor recording. (Integral multiple of Field 8, negative to be effective.)	1.
	3	G,g	ft/sec ² (m/sec ²)	Gravity	32.174 9.80665
	4 ·	ΙΝΤΟΡ		=1. Runge-Kutta fixed-step integration (Switch =2. Adams Moulton predictor-corrector fix	any Sw#2.) ed-step 1.
26	5	ТВ	msec	Beginning Time	0.
	6	TF	msec	Final Time	200.
-	7	DT, At	msec	Numerical Integration Step Size	.5
-	8	PTINC	msec	Output Print Increment (must be an integral multiple of Field 7)	5.
6/30/88	9	PLINC	msec	Output Plot Increment (must be an integral multiple of Field 8) for printer plot recording. If zero, no plot re- cording for stick figures.	10.

NOTE: TB must be less than TF. DT and PTINC must be non-zero. A sufficiently small DT (usually .25 or .5) is important.

NOTE:	The Adams Moulton predictor-corrector integration requires two evaluations
	per time step in comparison with four for Runge-Kutta and therefore
	results in shorter execution times. The methods are both fourth-order
	integrations and are of comparable accuracy. Runga-Kutta is slightly
	more stable, however, and in some cases can be used with a larger
	time step than the predictor-corrector integration.

MVMA 2-D Model Card 101

NOTE: See Section 3.2-A.1 regarding the effect on run cost of the values in fields 4, 6, 7, and 8.

•

SIMULATION CONTROLS (CARD 2)

<u> </u>	Field	Name of Quanti	ty Units	Description	Defaults
	1	NBELT		<pre>Switch = 0. no belts = 1. standard (MODROS) lap belt, no shoulder harness (BELT) = 2. standard (MODROS) lap belt plus shoulder harness (BELT) = 3. advanced belt system (BELT2)</pre>	0.
-	2	NBAG		Switch = 0. airbag interaction not desired = 1. simple airbag model (AIRBAG) = 2. advanced airbag model (ADVBAG)	0.
_	3	NSTCOL		Switch = 0. steering column interaction not desired ≠ 0. steering column interaction desired	0.
227	4	LHIB	• •	Switch = 0, Ellipse-ellipse contacts on 106 cards are 1, Ellipse-ellipse contacts on 106 cards are	allowable 0. inhibited
_	5	КНІВ		Switch = $\frac{0}{1}$, Ellipse-region contacts on 106 cards are a 1., Ellipse-region contacts on 106 cards are i	llowable l. nhibited l.
_	6	ILL		0., Ellipse-ellipse contacts can occur Switch = 1., Global control to override LHIB.No ellipse contacts are allowed despite LHIB and 106	l. -ellipse cards.
6/30/	7	FNU	in/sec (m/sec)	Length of scaling ramp to insure friction force contin	10. uity .254
88					

Note: See Section 3.2 for additional information about LHIB on 106-Cards.

*

Card 102

TABLE 7 INPUT DATA. SIMULATION CONTROLS (CARD 3) (9 Fields of 8)

1

Field	Name of Quantity	Units	Definition Defaults
-	DSTEPX	in(cm)	Maximum step to search for balance in shared deflection. $\frac{2^{-1}}{5}$
2	DSTEPN	in(cm)	Minimum step to search for balance in shared deflection. 02 .05
ĸ	FORLIM	lbs(N)	Maximum force for rigid-rigid contact. 100,000. 450,000.
4	HARDCN	lb/in(N/cm)	Linear elastic coefficient for rigid-rigid contact. 26269.
ъ	LIMCNT		Maximum number of iterations for finding force balance. 20:
9	TPC		Fraction of current ramp length for velocity change in .05 moving contact lines.
7	EPSFAC		Number of integration steps for maximum ramp length for 10. velocity change in moving contact lines.
8	BETELP, B		Minimum ratio of shorter to longer semi axis for .75 ellipse to be treated as circle.
6	GAMELP, Y		Fractional position of circle center along semi-major axis .9 relative to position for circle-ellipse tangency at end of axis.
Notes:	See Section 2.6.4 for	Fields 8, 9. If	Field 9 is zero, all ellipses must be circles, or

circle-like," in the sense of Field 8.

MVMA 2-D Model Card 103

1/6/82

DEBUGGING CONTROLS (CARD 1)

3/10/87

229

MVMA 2-D Model Card 104

DEBUGGING CONTROLS (CARD 2) (9 Fields of 8)

Field	Name of Quantity	Units	Definition	Defaults
1	THEX (5)	msec	Time to set debug switches	
2	HEX (5)		Debug switch settings in hexadecimal format	
3	THEX (6)	msec	Same as field l	
4	HEX (6)		Same as field 2	*****
5	THEX (7)	msec	Same as field l	
6	HEX (7)		Same as field 2	
7	THEX (8)	msec	Same as field l	
8	HEX (8)		Same as field 2	
9	KDICTP		 Do not print Switch = Print packing debug dictionary and binary file index summary 	0.

NOTE: There is an additional debug switch which controls debug printout from INP and OUTP. This switch is specified by inclusion in the INP and/or OUTP data decks of any number of cards with negative numbers in their card ID fields. This switch is automatically intialized in INP for no debug printout and may be set anywhere in the data deck before Card 1000 by a card with -2, -3, or -4 in the ID field. These values correspond to debug levels 1, 2, and 3 as discussed in Section 4.2.4 of Volume 3. Debug level can be re-set to 0, 1, 2, or 3 by additional cards with values -1, MVMA 2-D Model -2, -3, or -4 in the ID field. If the debug level is not 0 when the 1000-Card is processed, then its current value will be used in OUTP until it is changed in the OUTP data deck.

CONTACT INTERACTION CONTROLS (9 Fields of 8)

Field	Name of Quantity	Units	Description	
1-2			Ellipse Name	
3-4			Ellipse Name or Region Name	
NOTE:	Each card specifies a com according to the settings	bination which of KHIB, LHIB,	will be interpreted and ILL on Card 102.	
NOTE:	See Section 2.10.4 for ir	formation rega	rding implicitly defined disallowed interactions.	
NOTE:	See Section 3.2-A.1 regar specifications.	ding the effect	on run cost of 106-Card contact interaction control	
NOTE:	See Section 3.2-A.2 regar	ding modeling t	he head-windshield interaction. Also see Card 412.	
NOTE:	See Section 3.2-A.3 regar	ding interpreta	tion of ellipse-line Category 4 output quantities.	

6/30/88

231

MVMA 2-D Model Card 106

		STORED OUTF	UT SPECIFICA (9 Fields of	TIONS (CARD 1) 8)	•
Field	Name of Quantity	Units	Definitio	L	Default <u>s</u>
	Category l		Switch =	50. Store vehicle response Čl. Inhibit	0.
2	Category 2		Switch =	<pre>{0. Store region parameters {1. Inhibit</pre>	0.
3	Category 3		Switch =	<pre>{0. Store region segment movement {1. Inhibit</pre>	0.
4	Category 4		Switch =	<pre>\$0. Store occupant-vehicle contacts, incl \$1. Inhibit</pre>	0.
ല	Category 5		Switch =	<pre>{0. Store neck reaction forces {1. Inhibit</pre>	0.
9	Category 6		Switch =	<pre>{0. Store unfiltered body accelerations {1. Inhibit</pre>	0.
7	Category 7		Switch =	$\begin{cases} 0.$ Store filtered body accelerations l_1 . Inhibit	
8	Category 8		Switch =	<pre>{0, Store severity indices calculated {1, Inhibit from unfiltered data</pre>	0.
9.	. Category 9		Switch =	0., Store severity indices calculated 1., Inhibit from filtered data	-
NOTE: NOTE: NOTE: NOTE: NOTE:	Use Cards 1001 and 1002 t Use field 8 of Card 1003 maximum line segment defl See Section 3.2-A.1 regar on Cards 107-113 for sele See Section 3.2-A.3 regard	o specify desire to request Summa ections. ding the effect ction of output	ed printed ou ry Page outpu on run cost c categories. monitor warr	tput ut for MVMA 2-D Mo of specifications Card 107	

INPUT DATA

TABLE 7

6/30/88

. 232

.

STORED OUTPUT SPECIFICATIONS (CARD 2) (9 Fields of 8)

Field	Name of Quantity	Units	Description	Defaults
-	Category 10		Switch = 0., Store body link angles 1., Inhibit	0.
2	Category 11		Switch = 0. Store body link angular velocities L. Inhibit	0.
3	Category 12		Switch = 0, Store body link angular accelerations l, Inhibit	.0
4	Category 13		Switch = 0. Store body joint coordinates L., Inhibit	0
2 L	Category 14		Switch = 0. Store body joint velocities Switch = 1., Inhibit	0.
9	Category 15		Switch = 0. Store body joint torques Switch = 1., Inhibit	.0
L	Category 16		Switch = 0. Store body joint absorbed energies 1. Inhibit	.0
8	Category 17		Switch = 0. Store body kinetic energies Switch = 1. Inhibit	• • •
6	Category 18		Switch = 0, Store airbag variables Switch = 1, Inhibit	.0
NOTE:	Use Cards 1001 and 1002	to specify d	esired printed output	

233

MVMA 2-D Model Card 108

STORED OUTPUT SPECIFICATIONS (CARD 3) (9 Fields of 8)

Field	Name of Quantity	Units	Description Def	faults
-	Category 19		Switch = 0. Store airbag contact forces l., Inhibit	0.
5	Category 20		Switch = 0 , Store airbag center of mass forces and moments 1 , Inhibit	0.
ю	Category 21		Switch = 0. Store neck joint coordinates 1., Inhibit	0.
4	Category 22	,	Switch = 0. Store shoulder joint coordinates 1. Inhibit	0.
2	Category 23		Switch = 0. Store joint torque linear components	0.
9	Category 24		Switch = 0., Store joint torque nonlinear components l., Inhibit	0.
7	Category 25		Switch = 0, Store joint torque friction components l., Inhibit	0.
ω	Category 26		Switch = 0. Store joint torque viscosity components l., Inhibit	0.
6	Category 27		Switch = 0., Store joint absorbed energy,joint stop componen 1., Inhibit	nts ₀ .
NOTE .	1002 Pue 1001 Shue 1002	to chocify d	ociwod nwintod outnut	

.

NULE: Use cards IUUI and IUUZ to specify desired printed output

MVMA 2-D Model Card 109

AT/	
NPUT [
41	
BLE 7	
T A	

STORED OUTPUT SPECIFICATIONS (CARD 4) (9 Fields of 8)

faults	0.	cs 0.	0.	0.	0.	.0	0.	0.	ng column 0.	
Description De	Switch = 0.Store joint absorbed energy,friction components l., Inhibit	Switch = 0. Store joint absorbed energy,viscosity component 1., Inhibit	Switch = 0. Store center of mass x-component forces Switch = 1., Inhibit (includes head applied forces)	Switch = 0. Store center of mass z-component forces (includes head applied forces)	Switch = 0. Store center of mass resultant moments 	Switch = 0. Store steering column coordinates L. Inhibit	Switch = 0., Store steering column generalized coordinates 1., Inhibit	Switch = 0.5 Store Steering column forces and moments 1.11 Inhibit	Switch = 0. Store forces and moments on body due to steeri	esired printed output.
Units										to specify d
Name of Quantity	Category 28	Category 29	Category 30	Category 31	Category 32	Category 33	Category 34	Category 35	Category 36	Use Cards 1001 and 1002
Field		2	m	4	പ	و	7	ω	6	NOTE:

MVMA 2-D Model Card 110

STORED OUTPUT SPECIFICATIONS (CARD 5) (9 Fields of 8)

Field	Name of Quantity	Units	Description	Defaults
-	Category 37		Switch = 0. Store neck and shoulder forces 1., Inhibit	0.
2	Category 38		Switch = 0. Store muscle tension forces	0.
e M	Category 39		Switch = 0. Store muscle tension energy absorption 1. Inhibit	0.
4	Category 40		Switch = 0. Store femur and tibia loads 1. Inhibit	0.
5	Category 46		Switch = 0 Store head c.g. motion 1 Inhibit	•0
9	Category 47		0., Store chest c.g. motion Switch = 1., Inhibit	0.
7	Category 48		0., Store hip motion Switch = 1., Inhibit	0.
ω	Category 49		0., Store joint relative angles Switch = 1., Inhibit	0.
6	Category 50		0., Store joint relative angle velocities Switch = 1., Inhibit	0.
Note: Note:	Use Cards 1001 and 100 Categories 41-45 are f Cards 1001 and 1002.	2 to specify or quantities	desired printed output. determined by the output processor. See Table 11 and	
NOTE:	See Section 3.2-A.3 re	garding inter	pretation of femur and tibia load output quantities.	

6/30/88

MVMA 2-D Model Card 111

	aults	0.	0.	0.	0.	, 0.	0.	0.	0.	0.	
ONS (CARD 6)	Definition	<pre>Switch = 0., Store advanced airbag system thermo- dynamic variables. l., Inhibit.</pre>	<pre>Switch = 0., Store pressure forces on body. 1., Inhibit.</pre>	<pre>Switch = 0., Store occupant-plane normal flotation forces. 1., Inhibit.</pre>	<pre>Switch = 0., Store occupant-plane tangential flotation forces. l., Inhibit.</pre>	<pre>Switch = 0., Store off-occupant plane normal flotation forces. l., Inhibit.</pre>	<pre>Switch = 0., Store off-occupant plane tangential flotation forces. l., Inhibit.</pre>	Switch = 0., Store bag slap forces on body. 1., Inhibit.	<pre>Switch = 0., Store airbag equilibrium and contact</pre>	<pre>Switch = 0., Store airbag-deformable segment motions. 1., Inhibit.</pre>	
TPUT SPECIFICAT	Units										
STORED OUT	Name of Quantity	Category 51	Category 52	Category 53	Category 54	Category 55	Category 56	Category 57	Category 58	Category 59	
	Field	-	2	e	4	2 2	9	7	8	6	

>

236.1

6/28/85

Card 112

	Defaults	0.		0.	0.	о.	.0	
NS (CARD 7)	Definition	Switch = 0., Store total bag forces on body.	1., Inhibit.	<pre>Switch = 0., Store total inertial x-component bag forces. 1., Inhibit.</pre>	Switch = 0., Store total inertial z-component bag forces. 1., Inhibit.	Switch = 0., Store kinematics for non-body links l., Inhibit.	<pre>Switch = 0., Store resistance forces and moments for non-body links l., Inhibit.</pre>	
Fields of 8)	Units							
STORED OUTPUT	Name of Quantity	Category 60		Category 61	Category 62	Category 63	Category 64	
	Field	-		2	æ	4	5.	6/28/85

.

٩

TABLE 2 INPUT DATA

Card 113

236.2

	1		Ĩ		
Name of Quantity Units Definition	STITLN (1:19) r STITLN (1:72) Columns 1-19 will become columns 1-19 of subtitle.	rds 200, 300, 400, 500, 600, 700, 800, and 900 may be used in two different modes to produce a otitle line, the second line printed at the top of each page of output.	his is a revised implementation of the mode of use of Cards 200, 300, 400, 500, 600, 700, 800, and 00 that has been available in Versions of MVMA 2-D prior to Version 6. The model constructs a ubtitle line from the first 19 columns of Cards 200, 300, 400, 500, 600, and 700 and the first 17 olumns of Card 800 or 900. The model will treat these 19-column fields (or 17) as blocks to be ssembled contiguously. If the joining of two contiguous fields would result in three or more uccessive blanks, the model will sometimes adjust spacing to accommodate an MVMA 2-D version esignation at the end of the subtile line. (Adjustment of trailing blanks for any particular lock can be disallowed by entering "#" in column 20.)	his option normally utilizes only Cards 200 and 300. Mode 2 is made active simply by having at east 10 non-blank characters in the column range 20-72 of Card 200 or 20-53 of Card 300. (If nly one of these cards meets this criterion, it must precede the other one in the data set.) The ubtitle is constructed by appending the first 53 columns of Card 300 to the 72 columns of Card 00. For Mode 2, a Card 400, 500,, or 900 is ignored unless it has "#" in column 20, in hich case its characters in columns 1-19 (or (1-17) will overlay the corresponding columns of hich case its characters in columns 1-19 (or (1-17) will overlay the corresponding columns of hich case its characters in columns 1-19 (or "1-17)"	
	5	ES: C		e 7:	:
Field		LON	Mod	MoM	

OCCUPANT PARAMETER SUBTITLE

.

6/30/88

MVMA 2-D Model Card 200

OCCUPANT BODY-SEGMENT LENGTHS (9 Fields of 8)

Field	Name of Quantity	Units	Definition	Defaults
]	CONDYL,c	inches (cm)	A-P offset of upper neck joint from head c.g. (positive rearward)	1.68 4.27
2	L23, L ₂₃ FLJI(3)	inches (cm)	Upper Torso Length	7.09
.3	L34, L ₃₄ FLJI(4)	inches (cm)	Middle Torso Length	5.95 15.11
4	L45, L ₄₅ FLJI(5)	inches (cm)	Lower Torso Length	7.28 18.49
5	L56, L ₅₆ FLJI(6)	inches (cm)	Hip-Knee Length	17.1 43.43
6	L27, L ₂₇ FLJI(7)	inches (cm)	(not used)	·
7	L78, L ₇₈ FLJI(8)	inches (cm)	Shoulder-Elbow Length	11.91 30.25
8	ASH, a	inches (cm)	Rest point x of shoulder joint relative to upper pos. along centerline toward joint 2 from C.G.	r torso C.G., 1.84, 4.67
9	BSH, b	inches (cm)	Rest point z of shoulder joint relative to upper pos. toward front of body.	torso C.G., O.

NOTE: See Section 2.1, Figures 2 and 6 or Figures 66 and 67.

FLJI(I-1) = length of Ith segment

MVMA 2-D Model Card 201

ډ

END OF LINK TO CENTER-OF-MASS LENGTHS (9 Fields of 8)

Field	Name of Quantity	Units	Definition	Defaults
1	Ll, l ₁	inches (cm)	Head / neck joint -head C-M length (component along inferior-superior axis)	6.14 15.6
2	L2, l ₂	inches(cm)	Neck-Chest C-M Length	4.02
3	L3, l ₃	inches (cm)	· Upper Torso Joint - Middle Torso C-M Length	2.45 6.22
4	L4, 24	inches (cm)	Lower Torso Joint - Lower Torso C-M Length	3.03 7.70
5	L5, L ₅	inches (cm)	Hip-Upper Leg C-M Length	7.41 18.82
6	L6, l ₆	inches (cm)	Knee-Lower Leg C-M Length	7.08
7	L7, L ₇	inches (cm)	Shoulder-Upper Arm C-M Length	5.2 13.21
8	L8, 1 ₈	inches (cm)	Elbow-Lower Arm C-M Length	4.56 11.58
9	ALF,a		Proportion of neck mass at upper joint	0.5

NOTES: 1. See Figure 66 and Sections 2.1 and 2.2 for definitions.

2. $(1-\alpha)m_n$ will be at the lower neck joint.

MVMA 2-D Model Card 202

239

•

a .

MASS OF BODY SEGMENTS (9 Fields of 8)

Field	Name of Quantity	Units	Definition	Defaults
-	Ml, M _l	lb sec ² /in (kg)	Head Mass	0.0242 4.238
2	M2, M ₂	lb sec ² /in (kg)	Chest Mass	0.0641
e	M3, M ₃	lb sec ² /in (kg)	Middle Torso Mass	0.0613
4	M4, M ₄	lb sec ² /in (k g)	Lower Torso Mass	0.0/34
5	M5, M ₅	lb sec ² /in (kg)	Upper Leg Mass (Both Legs)	0.0839
9	M6, M ₆	lb sec ² /in (kg)	Lower Leg Mass (Both Legs)	0.0532
7	M7, M ₇	lb sec ² /in (kg)	Upper Arm Mass (Both Arms)	0.029 5.079
ω	M8, M ₈	lb sec ² /in (kg)	Lower Arm Mass (Both Arms)	0.0214 3.748
6	ЕМ9 "М _п	lb sec ² /in (kg)	Total Neck Mass	0.009 1.576

NOTE: See Sections 2.1 and 2.2 and Figure 66 for definitions.

MVMA 2-D Model Card 203

MOMENTS OF INERTIA (9 Fields of 8)

I1, I1 1bs-sec ² -in(kg-m ²) Head 0.325 12, I2 1bs-sec ² -in(kg-m ²) Chest 3.04 13, I3 13 1bs-sec ² -in(kg-m ²) Middle Torso 0.345 14, I4 1bs-sec ² -in(kg-m ²) Lower Torso 0.327 0.52 15, I5 1bs-sec ² -in(kg-m ²) Lower Torso 0.52 0.52 15, I5 1bs-sec ² -in(kg-m ²) Upper Leg 0.52 0.142 15, I5 1bs-sec ² -in(kg-m ²) Upper Leg 0.2645 0.1422 15, I5 1bs-sec ² -in(kg-m ²) Lower Leg 0.383 0.1422 17, I7 1bs-sec ² -in(kg-m ²) Upper Arm 0.04327 18, I8 1bs-sec ² -in(kg-m ²) Lower Arm 0.223	рГ	Name of Quantity	Units	Definition	Defaults
I2, I2, I2, Ibs-sec ² -in(kg-m ²) Chest 3.04 I3, I3 Ibs-sec ² -in(kg-m ²) Middle Torso 2.39 I4, I4 Ibs-sec ² -in(kg-m ²) Lower Torso 0.27 I5, I5 I5 1s Upper Leg 0.52 I6, I6 1bs-sec ² -in(kg-m ²) Lower Leg 0.2445 I6, I6 1bs-sec ² -in(kg-m ²) Lower Leg 0.2645 I7, I7 1bs-sec ² -in(kg-m ²) Upper Arm 0.04327 I8, I8 1bs-sec ² -in(kg-m ²) Lower Arm 0.0253		I1, I ₁	lbs-sec ² -in(kg-m ²)	Head	0.325 0.0367
I3, I3 13, I3 1bs-sec ² -in(kg-m ²) Middle Torso $2.39 \\ 0.27 \\ 0.52 \\ 0.52 \end{bmatrix}$ I4, I4 1bs-sec ² -in(kg-m ²) Lower Torso $4.6 \\ 0.52 \\ 0.52 \end{bmatrix}$ I5, I5 1bs-sec ² -in(kg-m ²) Upper Leg $2.341 \\ 0.52 \\ 0.1422 \end{bmatrix}$ I6, I6 1bs-sec ² -in(kg-m ²) Upper Leg $0.2645 \\ 0.2645 \\ 0.1422 \\ 0.1422 \end{bmatrix}$ I7, I7 1bs-sec ² -in(kg-m ²) Upper Arm $0.383 \\ 0.04327 \\ 0.0252 \end{bmatrix}$ I8, I8 1bs-sec ² -in(kg-m ²) Lower Arm $0.223 \\ 0.0252 \end{bmatrix}$		I2, I ₂	lbs-sec ² -in(kg-m ²)	Chest	3.04 0.344
I4, I4 Ibs-sec ² -in(kg-m ²) Lower Torso 4.6 0.52 I5, I5 Is lbs-sec ² -in(kg-m ²) Upper Leg 2.341 I6, I6 Ibs-sec ² -in(kg-m ²) Lower Leg 0.2645 I7, I7 lbs-sec ² -in(kg-m ²) Upper Arm 0.3837 I8, I8 lbs-sec ² -in(kg-m ²) Lower Arm 0.0253		I3, I ₃	lbs-sec ² -in(kg-m ²)	Middle Torso	2.39 0.27
I5, I ₅ Ibs-sec ² -in(kg-m ²) Upper Leg $\begin{array}{c} 2.341\\ 0.2645\\ 1.259\\ 1.259\\ 1.422\\ 1.7, I_7 \end{array}$ Ibs-sec ² -in(kg-m ²) Lower Leg $\begin{array}{c} 0.383\\ 0.383\\ 0.04327\\ 0.04327\\ 18, I_8 \end{array}$ Ibs-sec ² -in(kg-m ²) Lower Arm 0.223 \\ 0.0852 \end{array}		I4, I ₄	lbs-sec ² -in(kg-m ²)	Lower Torso	4.6 0.52
I6, I ₆ Ibs-sec ² -in(kg-m ²) Lower Leg 1.259 1.1422 1.1422 1.17, I ₇ Ibs-sec ² -in(kg-m ²) Upper Arm $0.3830.0432718$, I ₈ Ibs-sec ² -in(kg-m ²) Lower Arm 0.0253		I5, I ₅	lbs-sec ² -in(kg-m ²)	Upper Leg	2.341 0.2645
I7, I7 0.04327 18, I8 0.052		I6, I ₆	lbs-sec ² -in(kg-m ²)	Lower Leg	1.259 0.1422
I8, I ₈ 1bs-sec ² -in(kg-m ²) Lower Arm 0.223 0.0252		I7, I ₇	lbs-sec ² -in(kg-m ²)	Upper Arm	0.383 0.04327
		I8, I ₈	lbs-sec ² -in(kg-m ²)	Lower Arm	0.223 0.0252

MVMA 2-D Model Card 204

241

OCCUPANT JOINT PARAMETERS (9 Fields of 8)

Field		Name of Quantity	Units	Definition					
1		KJI (I,1), K _{i,1}	in-lb/deg(N-m/deg)	(elastic or Linear Angular Deflection Coefficient joint stop)					
2		KJI (I,2), K _{i,2}	in-1b/deg ² (N-m/deg ²)	Quadratic Angular Deflection Coefficient (joint stop)					
3		KJI (I,3), K _{i,} 3	in-1b/deg ³ (N-m/deg ³)	Cubic Angular Deflection Coefficient (joint stop)					
4		CJI (I), C ^J _i	in-lb-sec/deg(N-m-sec/deg)	*Viscous Friction Coefficient (elastic; also joint stop unless matl name is specified)					
5		FJI, F ^J _i	in-lb(N-m)	*Constant Friction					
6		VJI, V ^J	deg/sec	*Velocity Threshold for Constant Friction					
7		THSI (I,1), $\theta_{i,1}^{S}$	deg	**Positive -Most Joint Stop (not used for 205 and 206)(or 999.)					
8		THSI (I,2), $\theta_{i,2}^S$	deg	**Negative -Most Joint Stop (or -999.)					
9		RJI (I), R ^J		Conserved-Absorbed energy ratio					
NOTES:	1.	Card 205 I = i = 1 206 I = i = 2 207 I = i = 3 208 I = i = 4 209 I = i = 5 210 I = i = 6 211 I = i = 7 212 I = i = 8	Head-Neck Forward (flexion Neck-Upper Torso Forward Upper Spine Lower Spine Hip Knee Upper Arm-Upper Torso Elbow (relative angl	(flexion) **7. Specify joint stop angles at +/- 999. (flexion) to request values that bracket the time zero relative angle by +/001 degrees. 8. See Cards 215-216 for neck rearward bending (extension). e $\theta_7^R = \theta_7 - \theta_2$)					
	2.	See Figure 2, Secti	on 2.1, and Section 2.3 for	definitions					
D	3.	Field 1: $K_{i,1} > 0$ means elastic coefficient is $K_{i,1}$, and linear joint stop torque coefficient is 0; $K_{i,1} < 0$ means elastic coefficient is 0 and linear joint stop torque coefficient is $ K_{i,1} $.							
/ 30/ 88	*4.	For a neck joint, f or 206 whenever the 215 or 216 will be	lexion-range values for KJI joint is in flexion w.r.t. used for extension.	(I,1), CJI(I), and FJI(I) will be used from Card 205 the equilibrium angle on Card 217. Values from Card					
	5.	These cards may be	supplemented by Cards 243 to	D 246. MVMA 2-D Model					
	6.	Rate-dependent visc stops if Cards 243-	ous damping may be specified -246 are used.	d for joint Cards 205-212					

Contract and the cold cold cold cold cold cold cold cold	OCCUPANT JOINT PARAMETERS (9 Fields of 8)	ield Name of Quantity Units Definition 1 KJI (1,1), K _{1,1} 1b/in (N/cm) Linear Deflection Coefficient	<pre>2 KJI (I,2), K_{i,2} lb/in² (N/cm²) Quadratic Deflection Coefficient 3 KJI (I,3), K_{i,3} lb/in³ (N/cm³) Cubic Deflection Coefficient 4 CJI (I) C^J lb cec/in Viscous Friction Coefficient</pre>	5 (not used) 6 (not used)	7 RSH in (cm) Shoulder Stop Circle Radius (not used for Card 213)	8 (not used)	9 RJI (I), R ^J Conserved-Absorbed energy ratio (not used for Card 213)	40TES: 1. Card 213 I = i = 9 Neck (stretching of element; also see Card 242) 214 I = i = 10 Shoulder (extensible element)	2. See Figure 2, Section 2.1 and Section 2.3 for definitions.	3. Field 1, Card 214: See Note 3, Cards 205-212.	4. THESE CATUS MAY DE SUPPLEMENTED BY CATU FTY.	5. Rate-dependent viscous damping may be specified for neck link and for snoulger stop clrcle if Card 247 is used. MVMA 2-D Model
---	--	--	---	------------------------------	---	--------------	---	--	---	--	---	--

÷

TABLE 7 INPUT DATA

1/6/82

243

.

OCCUPANT JOINT PARAMETERS (9 Fields of 8)

Field		Name of Quantity	Units	Definition
1		KJI (I,1), K _{i,} 1	in-lb/deg (N	-m/deg) *Linear Angular Deflection Coefficient
2		KJI (1,2), K _{i,2}	in-1b/deg ² (N-m/deg ²) Quadratic Angular Deflection Coefficient
3		KJI (I,3), K _{i,3}	in-1b/deg ³ (N-m/deg ³) Cubic Angular Deflection Coefficient
4		CJI (I), C <mark>j</mark>	in-lb-sec/de	g (N-m-sec *Viscous Friction Coefficient (elastic; also joint stop /deg) unless material name is specified)
5		FJI, F <mark>j</mark>	in-lb (N-m)	*Constant Friction
6		VJI, V <mark>j</mark>	deg/sec	*Velocity Threshold for Constant Friction
7	· · · · · · · · · · · · · · · · · · ·	THSI (I,1), θ ^S i,1	deg	**Positive-Most Joint Stop (or 999.)
8				
9		RJI (I), R <mark>j</mark>		Conserved-Absorbed energy ratio
NOTES:	1.	Card 215 I = i = 11 216 I = i = 12	Head-Neck Rear Neck-Upper Tor	(extension) so Rear (extension)
	2.	See Figure 2, Section	2.1, and Sectio	n 2.3 for definitions
	3.	Field 1: See Note 3,	Cards 205-212.	
	4.	These cards may be sup	oplemented by Ca	rd 243.

5. Rate-dependent viscous damping may be specified for joint stops if Card 243 is used.

*6. See Note 4 for Cards 205 and 206 and check field 1 and 2 of Card 217.

**7. Specify joint stop angle as 999. to request a value that is .001 degrees greater than the time zero value of the relative angle. Use a similar specification on Card 205-206 to bracket the initial relative angle.

MVMA 2-D Model Cards 215-216

244

6/30/88

"NATURAL" I	_INK	DIS	SPLA	CEME	NTS (ZETAS)
(9	Fiel	ds	of	8)		

<u>Field</u>	Name of Quantity	Units	Definition	Defaults**
1	THROI(1), θ ^R	Degrees	*Upper neck joint angle for zero "elastic" torque.	999.
2	THROI(2), θ_2^R	Degrees	*Lower neck joint angle for zero "elastic" torque.	999.
3	THROI(3), θ_3^R	Degrees	Upper spine angle for zero torque.	999.
4	THROI(4), θ ^R	Degrees	Lower spine angle for zero torque.	999.
5	THROI(5) θ ^R 5	Degrees	Hip angle for zero torque.	999.
6	THROI(6) θ ^R 6	Degrees	Knee angle for zero torque.	999.
7	THROI(7) θ_7^R	Degrees	Shoulder angle for zero torque.	999.
8	THROI(8) θ_8^R	Degrees	Elbow angle for zero torque.	999.

NOTE: See Figures 8, 73, and/or 74 and Section 2.3 for definitions.

- *NOTE: These values should be properly defined for neck joints if any of the quantities KJI(I,1), CJI(I), or FJI(I) for neck joints on Cards 205, 206, 215, or 216 are non-zero. See Note 4 for Cards 205 and 206.
- **NOTE: Any or all zero elastic torque angles may be entered as 999. to specify that the time zero value of the relative angle(s) should be used. If Card 217 is omitted from the data set, all 999.'s will be assumed.

MVMA 2-D Model Card 217

OCCUPANT ACCELEROMETER AND BELT ATTACHMENT PARAMETERS (9 Fields of 8)

Field	Name of Quantity	Units	Definition
1	АН	Inches (cm)	Offset to head accelerometer, measured upward from upper neck joint and parallel to vertical (S-I) head axis.
2	AC	inches (cm)	Directed distance along upper torso centerline to chest accelero meter measured from lower neck joint.
3	АНН	inches (cm)	Offset to head accelerometer, measured forward from upper neck joint and parallel to horizontal (A-P) head axis.
4	CSIB1, ξ_1^B	inches (cm)	Distance along centerline of lower torso from joint 4 for Lap belt reference point.
5	ZETAB1, ζ_1^B	inches (cm)	Distance perpendicular to centerline of lower torso for Lap belt reference point.
6	CSIB2, $\xi_2^{\rm B}$	inches (cm)	Distance along centerline of upper torso from joint 2 for upper torso belt reference point.
7	ZETAB2, ζ_2^B	inches (cm)	Distance perpendicular to centerline of upper torso for upper torso belt reference point.
8	CSIB3, ∷¢3	inches (cm)	Distance along centerline of torso from upper joint of torso element for lower torso belt reference point.*
9	ZETAB3, ζ ^B ₃	inches (cm)	Distance perpendicular to centerline of torso for lower torso belt reference point.

- NOTE: See Figure 75 and Section 2.5.1 for definitions.
- NOTE: Fields 4 to 9 are not needed if the advanced belt system
 - BELT2 has been selected. See Cards 710-723.
- *The lower torso belt may be attached to the upper, middle or lower torso link (+ξ MVMA 2-D Model downward along body, +ζ toward back of body). See Field 7 of Card 702.
 Figure 75 illustrates attachment to the middle link.

246

1/18/85

Field	Name of Quanti	ty Units	Description
1-2			Name of Ellipse (also name for non-body link) (up to 16 characters)
3-4			Material of Ellipse (up to 16 characters) Blank if rigid.
ъ	KSEG		Ellipse Attachment Indicator
	•		Reference System Designations: 1. = Head 5. = Upper legs 9. = Vehicle 2. = Upper Torso 6. = Lower legs 10. = Inertial 3. = Middle Torso 7. = Upper arms >10. = user-specified link number 4. = Lower Torso 8. = Lower arms ellipse (See Card 249, field 9)
	Pos.(+)	If Reference rigidly atta this is a "s number previ	e System Designation is supplied as a positive number, the ellipse is ached (i.e., "fixed") to the designated system. If greater than 10., then secondary" ellipse and the Reference System Designation refers to a link iously defined on a 249-Card for a non-body link.
	Neg. (-)	If Reference with mass an designated r a "primary" required use the link sys Card 305). non-body lin	a System Designation is supplied as a negative number, then a non-body link ind moment of inertia is defined. The link can move with respect to the reference system. The Name of Ellipse refers to both the non-body link and ellipse fixed to it. Link initial position/orientation is determined from secrifications for primary ellipse position/orientation with respect to stem (on Card 220) and with respect to the Designated Reference System (on A 249-Card is also required. Only -1., -2.,, -10. are allowed, i.e., nks cannot be referenced (connected) to other non-body links.
9			Ellipse friction class (1-5)
7	XEQ	in (cm)	Equilibrium position x-coordinate for CG of user-defined non-body link w.r.t. Designated Reference System (needed only if field 5 is negative)
8	ZEQ	in (cm)	Equilibrium position z-coordinate for CG of user-defined non-body link
6	тнео	degrees	Equilibrium orientation angle of user-defined non-body link
See N01	TES for Card 219	on the next pa	bage. See schematic for non-body links on the following page. MVMA 2-D Model

INPUT DATA

TABLE 7

247

õ/28/85

TABLE 7 INPUT DATA CONTACT ELLIPSE SPECIFICATIONS (CARD 1, CONTINUED)

CARD 219 NDTES:

- If field 5 is positive, a matching Card 220 is required but Cards 249 and 305 cannot be used. -
- If field 5 is negative, matching Cards 220, 249, and 305 are all required 3
- See Section 2.10 for discussion of ellipses that are not rigidly attached to any reference system. . е
- 4. See schematic for non-body link ellipses on the next page.
- If regions or secondary ellipses are to be attached to the link, then the link must be assigned a link number in field 9 of the corresponding 249-Card. (Also see Note 6.) One additional non-body link segment is defined for each link with field 5 negative. . Э
- A value greater than +10 must be specified in field 5 of a 219-Card in order to attach a secondary ellipse to a non-body link. A value less than -10 must be specified in field 6 of a 402-Card in order to attach a region to a non-body link. . ق
- If femur and tibia load are of interest, a knee ellipse should be attached to the upper legs and a foot ellipse should be attached to the lower legs. A hip ellipse, if used, should be assigned to the lower torso element. See Section 4.6.2.5. 7.
- Secondary ellipses on a non-body link do not articulate with respect to the primary ellipse for that link. They serve only to provide a more complex profile for interaction with other ellipses and line segments. . œ
- Fields 7-9 are used only if field 5 is negative. The absolute value of field 5 indicates the coordinate system in which the equilibrium position is defined. . თ

MVMA 2-D Model Card 219

.

CARD	FIELD	ENTRY	DESCRIPTION/EXPLANATION
219	1-2	INFANT (TORSO)	Name of Ellipse
	a	ი -	Reference System Designation. "9" indicates that position data are referenced to the vehicle coordinate frame. Minus sign indicates that this ellipse is not rigidly attached but instead is attached to a non-body link that can move (with respect to system 9, the vehicle. The ellipse INFANT(TORSO) is the "primary" ellipse for the non-body link of like name INFANT(TORSO) thus defined.
249	1-2	INFANT (TORSO)	Name of Ellipse
	თ	.	User-defined segment number. Any number greater than 10 which is not used on any other 249-Card can be used. This is the number assigned to the INFANT(TORSO non-body link reference system.
219	1-2	INFANT-HEAD	Name of Ellipse
	a	11.	Reference System Designation segment number for secondary ellipse. An ellipse of name INFANT-HEAD is fixed, as a "secondary ellipse", to the non-body
219	1-2	INFANT-LEGS	link designated by "11", i.e., to the INFANI(TORSO) link. Name of Ellipse
	വ	.	Reference System Designation segment number for secondary ellipse. An ellipse of name INFANT-LEGS is fixed, as a "secondary ellipse", to the non-body link designated by "11", 1.e., to the INFANT(TORSO) link.
402	1-2	KNEE-SHIN	Name of Region
	ບ •		KPATCH negative segment number for attachment of region. A contact region of name KNEE-SHIN is attached to the non-body link designated by "11", 1.e., to the INFANT(TORSO) link.

EXAMPLE SPECIFICATIONS FOR A NON-BODY LINK ELLIPSE (CARD 219 AND CARD 249)

247.2

6/28/85

6/28/85

INPUT DATA TABLE 7

CONTACT ELLIPSE SPECIFICATIONS (Card 2)

Field	Name of Qu	uant i ty	Units	Description		
1-2				Name of ellipse	(Up to 16 characters)	
e.	XEM, xem		nches(cm)	Fixed x-coordin inertial frame	ate of ellipse center on segment, vehicle, or (See Notes 2 and 3.)	
4	ZEM, zem		nches(cm)	Fixed z-coordin inertial frame	late of ellipse center on segment, vehicle, or (See Notes 2 and 3.)	
പ	¢	-	nches(cm)	Semi-axis lengt	h along ellipse axis number one	
ø	U.		nches(cm)	Semi-axis lengt	th along ellipse axis number two	
1	THEM	5	egrees	Fixed orientati of segment, veh	ion angle of ellipse axis number one w.r.t. x-axis or iner. frame (pos. c-clockwise) See Notes 2/3.	
¢0 *	ISEGB			Link (a value 4 link. Normally shared. See No	18.) which shares ellipse with reference system / for hip, knee, or elbow. Leave blank if not ote 6. Valid pairs: (4.,5.) (5.,6.) (7.,8.)	
NOTES 1. 2.	S: See Section 2.6. The reference s) link (1-8) or to	.1 and figure vstem for fit	e below for elds 3,4,7 1 e or inertia	body segment referen Is specified on Card I system (9 or 10).	nce system definitions. 219, field 5, if this ellipse is fixed to a body. If field 5 of Card 219 is negative, then the	
Ю	eilipse is fixed The x, z, and ar attached. But i reservent to its r	d to the use ngle values if the ellip reference fra	r-defined se give the fix se is the "p ame, these v	agment with segment r ked position in its r brimary ellipse" for Alues are for its eq	number indicated in field 9 of the 249-Card. reference system if the ellipse is rigidly a user-defined non-body link, which can move with guilibrium position.	
+ 4₿0	Fields 5 and 6 r For every Card 5 Ellipse sharing other than (4	may not both 219. there m (field 8) 1 5.), (5.,6.)	be zero.] ust be a Car s recommendé and (7.,8.	If only one of the two d 220 with matching ad for hip, knee, and) Ellipse sharing	<pre>#0 fields is nonzero, that value is used for both. ellipse name. d elbow ellipses and is ignored for link pairs is used to cause an ellipse attached at or near a is used to cause an ellipse attached at or near a is used to cause an ellipse.</pre>	
	joint to rotate of the adjoined the body link to	. for the pu links. With o which it i	hout ellipse s attached (starting (blank field 5, Card 219).	1d). the ellipse will rotate with the velocity of Anierior	
	Head	Upper torso	Middle torso	Lower Upper torso legs	Superior CG × Ini	erior
	•					
		Upp		Lower	Lower _z	
		E L D	15	arms	Iegs Mum 2_D Model	

Example for a "foot" ellipse

MVMA 2-D Model Card 220

CONTACT ELLIPSE MATERIAL CARDS (9 Fields of 8)

NOTE: Contact ellipse material properties are specified in the same manner as contact region material properties. See Cards 403-408 for format.

MVMA 2-D Model Cards _221-226 (403-408)

MUSCLE TENSION COEFFICIENTS (5 Fields of 8)

Field	Name of Quant	ity Units	Definition Defaul	aults
-	AMUS (I,1), a	<pre>l I = 1-9 lb in/deg (N·m/deg) I = 10, ll lb/in (N/cm)</pre>	*Stiffness coefficient a_1 (k = $ a_1 + a_2 M $) (k = $ a_1 + a_2 M $)	0.
2	AMUS (I,2), a	$ 2 I = 1-9 deg^{-1} I = 10,11 in^{-1} (cm^{-1}) $	Stiffness coefficient a_2 (k = $ a_1 + a_2 M $) 0.	0.
m	AMUS (I,3), a	3 I = 1-9 sec/deg I = 10,11 sec/in (sec/cm)	Damping coefficient 0. (c = a ₃ M)	
4	TMUS (I)	I = 1-9 lb in (N.m) I = 10,11 lb (N)	Initial value of muscle force or moment or sultant (normally zero)	0.
5	MUSNAM (1-2,I	(Name assigned to muscle tension table M <u>vs</u> .time. (up to 8 characters)	
	Card 227 I = 1 228 I = 2 229 I = 3 230 I = 4 231 I = 5 232 I = 6 233 I = 7 233 I = 7 234 I = 8 235 I = 9 235 I = 9 235 I = 9 237 I = 10 237 I = 11	Head-Neck Joint $\begin{pmatrix} \theta_1^R \\ \theta_2 \end{pmatrix}$, $\overset{\text{NOTE:}}{\text{Neck-Upper Torso Joint} \begin{pmatrix} \theta_2 \\ \theta_3 \end{pmatrix}$, $\overset{\text{NOTE:}}{\text{Upper Spine Joint} \begin{pmatrix} \theta_3 \\ \theta_4 \end{pmatrix}$, Lower Spine Joint $\begin{pmatrix} \theta_4 \\ \theta_4 \end{pmatrix}$, $\overset{\text{Hip}}{\text{Hip} \begin{pmatrix} \theta_5 \\ \theta_5 \end{pmatrix}}$, Knee $\begin{pmatrix} \theta_6 \\ \theta_5 \end{pmatrix}$, $\overset{\text{NOTE:}}{\text{Moter Torso - Upper Arm Joint} \begin{pmatrix} \theta_7 \\ \theta_7 \end{pmatrix}$, $\overset{\text{Upper Torso - Upper Arm Joint} \begin{pmatrix} \theta_7 \\ \theta_7 \end{pmatrix}$, Shoulder-Upper Torso Joint $\begin{pmatrix} \theta_5 \\ \theta_5 \end{pmatrix}$, Neck (extensible element) (L_n) , Shoulder (extensible element (L_s))	Set al negative if non-zero Maxwell element force should be allowed in compression.	en t

250

MVMA 2-D Model Cards 227-237

		Definition	NAME assigned to muscle tension table M vs. time.	Time associated with a specified muscle tension value.	Muscle contraction force or moment (should be ≥ 0.)	MVMA 2-D Model Card 238
TABLE 7 INPUT DATA	MUSCLE TENSION VERSUS TIME (3 Fields of 8)	l Name of Quantity Units		t msec	TENSE (I), M , T 1b (N) or 1b in (N.m)	
		Field	-	2	m m	

RADIAL SHOULDER JOINT STIFFNESS TABLES (9 Fields of 8)

Field	Name of Quantity	Units	Definition
1	θs	deg	Relative shoulder angle associated with specified linear stiffness.
2	KJI (10,1), K _{10,1}	<u>lb</u> (<u>N</u>)	Linear radial shoulder joint stiffness coefficient.

NOTE: If $K_{10,1}$ is desired to be constant, then the value in field 1 of the 214 Card will suffice. Only if $K_{10,1}$ is to be tabular must 239 Cards be present, one card per point. $K_{10,1}$ is assumed periodic, with period of 360°. Points at $\theta_s = 0°$ and 360° and desired intermediate abscissa values are entered.

MVMA 2-D Model Card 239

RADIAL SHOULDER JOINT STIFFNESS TABLES (9 Fields of 8)

Field	Name of Quantity	Units	Definition
1	θs	deg	Relative shoulder angle associated with specified quadratic stiffness.
2	KJI (10,2), K _{10,2}	$\frac{1b}{1n}$ $(\frac{N}{cm})$	Quadratic radial shoulder joint stiffness coefficient.

NOTE: A table for $K_{10,2}$ is optional. See note for Card 239.

MVMA 2-D Model Card 240 ÷ .

•

RADIAL SHOULDER JOINT STIFFNESS TABLES (9 Fields of 8)

Field	Name of Quantity	Units	Definition
1	θs	deg	Relative shoulder angle associated with specified cubic stiffness.
2	KJI (10,3), K _{10,3}	$\frac{1b}{in}$ ($\frac{N}{cm}$)	Cubic radial shoulder joint stiffness coefficient.

NOTE: A table for $K_{10,3}$ is optional. See note for Card 239.

MVMA 2-D Model Card 241
TABLE 7 INPUT DATA	NECK COMPRESSION PARAMETERS (4 Fields of 8)	Definition	cm) Linear Compression Coefficient	l/cm ²) Quadratic Compression Coefficient	l/cm ³) Cubic Compression Coefficient	n Viscous friction coefficient m)	ssion parameters; see arameters. by Card 247.
	OCCUPANT	Units	1b/in(N,	1b/in ² (1	1b/in ³ (1	Tb sec/ (N sec/	neck compre elongation upplemented
		Name of Quantity	KJI(13,1), K _{13,1}	KJI(13,2), K _{13,2}	KJI(13,3) K _{13,3}	cJI(13), c ^J ₁₃	This card contains Card 213 for neck This card may be s
		q					2. ² .
		Fiel		2	с С	4	NOTE

1/25/80

MVMA 2-D Model Card 242

255

OCCUPANT JOINT-STOP MATERIAL NAMES (8 Fields of 8)

Field	Card Reference	Definition
1-2	205	Material name for upper neck joint flexion.
3-4	215	Material name for upper neck joint extension.
5-6	206	Material name for lower neck joint flexion.
7-8	216	Material name for lower neck joint extension.

NOTES: 1. These materials are used only for joint stops.

2. Neck flexion is forward bending; extension is rearward.

3. Fields 1 (if negative), 2, 3, 4, and 9 of the indicated joint parameter cards are not used for stop if material name is specified. Leave the material name fields blank if polynomial coefficients on the reference card are to be used.

4. Material specifications are made on Cards 403-408.

MVMA 2-D Model Card 243 • •

									·
TABLE 7 INPUT DATA	CUPANT JOINT-STOP MATERIAL NAMES (8 Fields of 8)	Definition	Material name for upper torso joint flexion.	Material name for upper torso joint extension.	Material name for lower torso joint flexion.	Material name for lower torso joint extension.	nding; extension is rearward.	MVMA 2-D Model Card 244	
	0	Card Reference	207	207	208	208	Torso flexion is forward b See Notes for Card 243.		
		Field	1-2	3-4	5-6	7-8	NOTES: 1. 2.		

255.2

3/10/87

OCCUPANT JOINT-STOP MATERIAL NAMES (8 Fields of 8)

Field	Card Reference	Definition
1-2	209	Material name for hip joint forward bending.
3-4	209	Material name for hip joint rearward bending.
5-6	210	Material name for knee joint flexion (bending).
7-8	210	Material name for knee joint extension (straightening).

NOTES: 1. The order of material names for the knee are reversed, in a sense, from the other joints since for this joint, flexion corresponds to rearward bending (into "upper" stop) and extension corresponds to forward bending (into "lower" stop).

2. See Notes for Card 243.

255.3

MVMA 2-D Model Card 245

3/10/87

STOP MATERIAL NAMES lds of 8)	Definition	Material name for shoulder joint, forward arm rotation.	Material name for shoulder joint, rearward arm rotation.	Material name for elbow flexion (bending).	Material name for elbow extension (straightening).		MVMA 2-D Model Card 246
OCCUPANT JOINT-9 (8 Fie	Card Reference	211	211	212	212	See Notes for Card 243.	
	Field	1-2	3-4	5-6	7-8	NOTE :	

3/10/87

.

(6 Fields of 8)	Definition	Material name for neck link elongation.	Material name for neck link compression.	Material name for shoulder link elongation.	(Unused material name)	nk elongation and compression are not specified by the user. They leck link length. tions are specified by the shoulder stop circle radius in field 7	MVMA 2-D Model Card 247
	Card Reference	213	242	214	B	 The "stop" locations for neck lare determined as the initial The shoulder link "stop" loc of Card 214. See Notes for Card 243. 	
	Field	1-2	3-4	5-6	7-8	NOTES: 1 3 3	

INPUT DATA TABLE 7

OCCHPANT JOINT_STOP MATERIAL NAMES

3/10/87

UNLOADING CURVES (3 Fields of 8)

NOTE: Contact ellipse material unloading curves are specified in the same manner as curves for contact region materials. See Card 413 for format.

MVMA 2-Ď Model Card 248 (413)

3/10/87

PRIMARY ELLIPSE/NON-BODY LINK SPECIFICATIONS (9 Fields of 8)

Field	Name of Quantity U	nits	Definition
1-2			Name of Ellipse/Link (primary ellipse/non-body link)
3-4			Torsional Material Name (blank for null material)
5			Radial Resistance Name (blank for null resistance)
6			Tangential Resistance Name (blank for null resistance)
7	lb-sec	**2/in (kg)	Non-body link mass
8	1b-sec**2	-in (kg m**2)	Non-body link moment of inertia
9			User-defined segment number (>10) for this non-body link (See Note 2.)

NOTES: 1. Neither field 7 nor field 8 may be zero or negative.

- 2. Field 9 must be unique and greater than 10 if specified but is not required unless a secondary ellipse or a contact region is attached to this non-body link. The model will renumber consecutively in ascending order of given values.
- 3. Fields 3-6 are optional. Normally either all or none should be specified for a reasonable physical model. Exercise caution with partial specifications.
- 4. Material and resistance names in fields 3-6 relate to primary ellipse displacements away from the equilibrium position/orientation specified on Card 220 in the reference system of field 5 of Card 219.
- 5. If a resistance name is entered in field 5, then Cards 250, 251, or 252 must be included. Card 253 is optional.
- 6. If a resistance name is entered in field 6, then Cards 254 must be included.

MVMA 2-D Model Card 249

256

ELLIPSE ATTACHMENT RADIAL STIFFNESS TABLES (9 Fields of 8)

Field	Name of Quantity	Units	Definition
1			Name for radial stiffness/damping coefficients table.
2		degrees	Circumferential Angle.
3	K1	lb/in (N/cm)	Linear stiffness coefficient for radial attachment of ellipse.

- NOTES: 1. A quadratic and a cubic stiffness coefficient and a damping coefficient can be specified to be used in concert with the linear coefficient specified on this card. If this is desired, Cards 251, 252, and/or 253 may also appear and must have an identical table name specified in field 1.
 - Resistance force for ellipse radial motion away from the initial position of the ellipse center is determined from F = K1 * d + K2 * d**2 + K3 * d**3 + K4 * r where d is the deflection, r is the deflection rate, and K1, K2, K3, K4 are the circumferential angle-dependent resistance coefficients.
 - 3. Circumferential angle is defined as the angle between the x-axis of the ellipse attachment reference system and the vector from the initial position of the ellipse center to its current position. The circumferential angle in field 2 is positive counterclockwise.
 - 4. The attachment reference system for each ellipse is specified in field 5 of Card 219.
 - 5. Each Card 250 specifies one point for a table relating circumferential angle and linear stiffness. At least two points are required to define a table.

MVMA 2-D Model Card 250

256.]

	TABLE 7 INPUT DATA	ELLIPSE ATTACHMENT RADIAL STIFFNESS TABLES (9 Fields of 8)	eld Name of Quantity Units Definition	Name for radial stiffness/damping coefficients table	degrees Circumferential angle.	K2 lb/in**2 (N/cm**2) Quadratic stiffness coefficient for radial attachmen of ellipse.	5: 1. A linear and a cubic stiffness coefficient and a damping coefficient can be specified to be used in concert with the quadratic coefficient specified on this card. If this is desired, Cards 250, 252, and/or 253 may also appear and must have an identical table name specified in fiel	2. See Notes 2 through 4 of Card 250.	3. Each Card 251 specifies one point for a table relating circumferential angle and quadratic stiffne. At least two points are required to define a table.							MVMA 2-D Model
--	--------------------	---	---------------------------------------	--	--------------------------------	---	---	---------------------------------------	---	--	--	--	--	--	--	----------------

256.2

6/28/85

ELLIPSE ATTACHMENT RADIAL STIFFNESS TABLES (9 Fields of 8)

Field	Name of Quantity	Units	Definition
1		·	Name for radial stiffness/damping coefficients table.
2		degrees	Circumferential angle.
3	КЗ	1b/in**3 (N/cm**3)	Cubic stiffness coefficient for radial attachment of ellipse.

NOTES: 1. A linear and a quadratic stiffness coefficient and a damping coefficient can be specified to be used in concert with the cubic coefficient specified on this card. If this is desired, Cards 250, 251, and/or 253 may also appear and must have an identical table name specified in field 1.

2. See Notes 2 through 4 of Card 250.

3. Each Card 252 specifies one point for a table relating circumferential angle and cubic stiffness. At least two points are required to define a table.

> MVMA 2-D Model Card 252

ELLIPSE ATTACHMENT RADIAL DAMPING TABLES (9 Fields of 8)

Field	Name of Quantity	Units	Definition
1			Name for radial stiffness/damping coefficients table.
2		degrees	Circumferential angle.
3	К4	lb sec/in (N sec/cm)	Damping coefficient for radial attachment of ellipse.

NOTES: 1. This card is optional and is used to specify a damping coefficient for use with the stiffness coefficients provided on Cards 250-252. This card may not be included in a data deck which does not have one or more of Cards 250-252 for same table name.

- 2. See Notes 2 through 4 of Card 250.
- 3. Each Card 253 specifies one point for a table relating circumferential angle and damping coefficient. At least two points are required to define a table.

MVMA 2-D Model Card 253

ELLIPSE TANGENTIAL DAMPING TABLES (9 Fields of 8)

Field	Name of Quantity	Units	Definition
1			Name for tangential damping coefficient table.
2		degrees	Circumferential angle.
3	СТ	lb sec/in (N sec/cm)	Damping coefficient for tangential motion of ellipse. (Tangential motion is perpendicular to radial motion.)

NOTES: 1. See Note 3 of Card 250.

 "Frictional" or "plowing" resistance force to tangential motion of ellipse is determined as F = CT * d * THETADOT, where d is radial distance of ellipse center from its initial position and THETADOT is circumferential velocity (See Notes 2-3 of Card 250).

.

3. Each Card 254 specifies one point for a table relating circumferential angle and tangential damping. At least two points are required to define a table.

> MVMA 2-D Model Card 254

.

256.5

TABLE ⁷ INPUT DATA	OCCUPANT DESCRIPTION SUBTITLE	Field Name of Quantity Units Definition	STITL1 (20:38) or STITL1 (73:125) Columns 1 to 19 of this card become columns 20 to 38 in subtitle.	Note: See Mode 2 note on the page for Card 200 for description of an alternate method of specifying run subtitle data.	
-------------------------------	-------------------------------	---	--	--	--

MVMA 2-D Model Card 300

INITIAL BODY LINK ANGLES (RELATIVE TO VEHICLE) (9 Fields of 8)

Field	Name of Quantity	Units	Definition
1	TH1, θ ₁	deg.	Head Angle
2	TH2, θ ₂	deg.	Upper Torso Angle
3	TH3, θ ₃	deg.	Middle Torso Angle
4	TH4, θ ₄	deg.	Lower Torso Angle
5	TH5, θ ₅	deg.	Upper Leg Angle
6	TH6, θ ₆	deg.	Lower Leg Angle
7	TH7, θ ₇	deg.	Upper Arm Angle
8	TH8, θ ₈	deg.	Lower Arm Angle
9	TH9, θ ₉ , θ _n	deg.	Neck angle

NOTE: See Figure 78 for definition.

MVMA 2-D Model Card 301

.

INITIAL BODY LINK ANGULAR VELOCITIES (RELATIVE TO VEHICLE) (9 Fields of 8)

Field	Name of (Quantity	Units	Definition	Defaults
-	, ULHID,	$\dot{\theta}_1$	deg/sec	Head Angular Velocity	0.
2	TH2D,	θ•2	deg/sec	Upper torso Angular Velocity	0.
3	TH3D,	θ .	deg/sec	Middle torso Angular Velocity	0.
4	TH4D,	• •	deg/sec	Lower torso Angular Velocity	0.
5	TH5D,	θ . 5	deg/sec	Upper leg Angular Velocity	0.
9	тн6D,	θ ₆	deg/sec	Lower leg Angular Velocity	0.
7	ТН7D,	ê7	deg/sec	Upper Arm Angular Velocity	0.
8	ТН8D,	•0 8	deg/sec	Lower Arm Angular Velocity	0.
6	TH9D,	ê, ê	deg/sec	Neck Angular Velocity	0.

MVMA 2-D Model Card 302

INITIAL CONDITIONS FOR UPPER TORSO AND NECK (6 Fields of 8)

Field	Name of Quantity	Units	Definition De	faults
1	XH, x ₂	inches (cm)	Initial X coordinate of upper torso C-G rela tive to vehicle origin.	0.
2	XHD, X ₂	ft/sec (m/sec)	Initial X velocity of upper torso C-G relative to initial vehicle X velocity.	0.
3	ZH, z ₂	inches (cm)	Initial Z coordinate of upper torso C-G relative to vehicle origin.	0.
4	ZHD, ż ₂	ft/sec (m/sec)	Initial Z velocity of upper torso C-G relative to initial vehicle Z velocity.	0.
5	ELN, L _n	inches (cm)	Initial length of neck.	4.
6	ELND, Ľ _n	in/sec (cm/sec)	Initial rate of extension of neck.	0.

NOTE: 1. See Figure 2 for definitions of (x_2, z_2) and L_n . 2. L_n cannot be 0. Further, a small value for L_n will necessitate a small integration time step. ${\scriptstyle \Delta t}$ must be no larger than about 0.5 msec if ${\rm L}_{\rm n}$ is 0.1 inches.

3. Note that x_2 is in "inches" while \dot{x}_2 is in "ft"/sec, etc.

259

INITIAL SHOULDER LOCATION AND VELOCITY RELATIVE TO UPPER TORSO ATTACHMENT

Field	Name	Units	Definition	Defaults
1	XS, x _s	in (cm)	Initial X coordinate of shoulder joint rela upper torso attachment point.	tive to 0.
2	XSD, × _s	in/sec (cm/sec)	Initial X velocity in upper torso system.	0.
3	ZS, z _s	in (cm)	Initial Z coordinate of shoulder joint rela upper torso attachment point.	tive to 0.
4	ZSD, ż _s	in/sec (cm/sec)	Initial Z velocity in upper torso system.	0.

NOTE: See Figure 67 for definition of (x_s, z_s) .

.

260

MVMA 2-D Model Card 304

		y link	non-body link CG System.	nk CG relative to	non-body link CG System.	nk CG relative to	∣entation angle System.	orientation angle System.	name is required. 9. field 5.
ATION ANGLE)	Description	of primary ellipse / non-bod	ial value of x-coordinate of tive to Designated Reference	ial × velocity of non-body 11 gnated Reference System.	lal value of z-coordinate of tive to Designated Reference	lal z velocity of non-body li gnated Reference System.	lal value of non-body link or tive to Designated Reference	lal velocity of non-body link tive to Designated Reference	s 219 and 249.) ard 305 with matching ellipse d Reference System on Card 21
LOCATION AND ORIENTA Of NON-BODY LINK (9 fields of 8)	Units	Name	In (cm) Initi relat	ı∕s (cm/s) Initi Desig	In (cm) Initi relat	ı∕s (cm/s) Initi Desig	legrees Initi relat	Jeg/sec Initi relat	dy links. (See Cards 15 is negative, a Ca ect to the Designated
INITIAL	Name of Quantity		XEMO	XEMOD	ZEMO	ZEMOD	тнемо	THEMOD	card is used only for non-boo very Card 219 for which fiel s on this card are with resp
	Field	1-2	E	4	വ	9	7	ω	NOTES: 1. This 2. For e 3. Value

.

INPUT DATA

TABLE 7

MVMA 2-D Model Card 305

26Q.1

7/15/87

6/28/85

260.2

				ł						
3LE 7 INPUT DATA	TERIOR CHARACTERISTICS SUBTITLE	Definition	Run subtitle. Used to describe general character of interior panels used to simulate the interior.	Columns 1 to 19 of this card become 39 to 57 of subtitle.						MVMA 2-D Model Card 400
TAI	VEHICLE IN	Units								
		Name of Quantity	STITL1 (39:57)							
		Field								

•

DESCRIPTION OF REAL LINE CONTACT REGIONS (CARD 1) (2 Fields of 8)

Field	Name of Quantity	Units	Description
1-2			Name of region.
3-4			Name of material (Blank if rigid).

NOTE: This is the first of two descriptive cards which must be supplied for each contact region.

.

DESCRIPTION OF REAL LINE CONTACT REGIONS (Card 2) (9 fields of 8)

Field	Name of Quantity Units	Description
1-2		Name of Contact Region
3	NSR	Number of line segments in region.
4		Region friction class (1. to 10.)
5	IMIG	Switch: = O., Structural deformation allowed. This switch controls use of the migration rules Section 2.6.8. 1., Structural deformation not used.
6	КРАТСН	KPATCH > 0., Region attached to inertial system KPATCH = 0., Region attached to vehicle system KPATCH < 0., Region attached to system KPATCH
7		Switch: = 0., Segment endpoints printed in vehicle coordinates 1., Segment endpoints printed in inertial coordinates
NOTES:	 Field 6 refers to segment position Field 7 refers to output categories Contact regions can be attached to segment) reference system. KPATCH -1. = Head -5. = Up -2. = Upper Torso -6. = Lo -3. = Middle Torso -8. = Lo 	data on 411-Cards. s 2 and 3. any reference system 1. to 10. or to any user-defined (non-body < 0 can be used to designate any system: oper legs -9. = Vehicle ower legs -10. = Inertial oper arms -n. = non-body segment number (n>10) ower arms for attachment of region
	 If n>10, then associated 219- and 2 4. (Reference Note 3.) A value n>10 in non-body link in the same manner the That is, -n (n>10) here corresponds only when the data deck includes a 249-Card for user-defined link numb 5. (Reference Notes 3 and 4.) An example segment) is given following Card 21 6. If -11. < KPATCH < 0., then 219- ar 	249-Cards are required in the data deck. See the next Note. Indicates that the region is to be attached to a user-defined hat a secondary ellipse can be attached by use of a 219-Card. s to +n (n>10) on Card 219. Thus, KPATCH < -10. here is allowable 219-Card with a negative value in field 5 and a corresponding ber [KPATCH] (i.e., value [KPATCH] in field 9). mple pertinent to the case KPATCH < -10. (attachment to non-body 19.

MVMA 2-D Model Card 402 .

263

.

.

6/28/85

TABLE 7INPUT DATAMATERIAL PROPERTIES (CARD 1) (9) Fleids of 8)FieldMATERIAL PROPERTIES (CARD 1) (9) Fleids of 8)FieldName of QuantityUnitsDBS, δ_{B} Inches (cm) * Taximum deficition at vield point Name of material.J DM, δ_{A} Inches (cm) * Deflection at cutoff of inertial spike curve. (Should be at F5DC, δ_{C} inches (cm) * Deflection at breaking point.5DM, δ_{F} Inches (cm) * Deflection at breaking point.5DD, δ_{F} inches (cm) * Deflection at breaking point.5DM, δ_{F} Inches (cm) * Deflection at breaking point.8FM, Fmaxpoint.BFM, FmaxPoint (N mich (N m) * Slope of unloading curve from saturation state. (or megative(WIESI 1. See Section 2.4.1 and Figures 12 and 81 to 85 for definitions.CDM, δ DM, δ <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>264 '</th> <th></th> <th></th> <th>3/1</th> <th>0/87</th>										264 '			3/1	0/87
TABLE 7 INPUT DATA MATERIAL PROPERTIES (CLAD 1) (9 Fields of 8) Mame of Quantity Units Description Mame of Matterial. Mame of matterial. DB, 6 inches (cm) *Taxine curve. (forontality at peak of curve.) (Should be at F DC, 6 inches (cm) *Deflection at beginning of breakdown. DF, 6 inches (cm) *Deflection at beginning of breakdown. DF, 6 inches (cm) *Deflection at beginning of breakdown. DF, 6 inches (cm) *Deflection at beginning of breakdown. DF, 6 inches (cm) *Deflection at beginning of breakdown. DM, F JN, Fmax pounds (N) *Theore saturation state. (or negative saturation state. MA bis of N *Stope of unloading curve from saturation state. for negative saturation state. MA, Fmax pounds (N) *Stope of unloading curve from saturation state. for			Field	1-2	m	4	പ	9	7	ω	6	NOTES:		
TABLE 7 INPUT DATAMATERIAL PROPERTIES (CARD 1)(9 Fields of 8)(9 Fields of 8)(9 Fields of 8)Name of QuantityUnitsDA. $\delta_{\rm B}$ inches (cm) * that pand deficition that allows second loading of inertialDB. $\delta_{\rm B}$ DE: $\delta_{\rm C}$ inches (cm) * Deflection at vield point.DF. $\delta_{\rm C}$ inches (cm) * Deflection at breaking point.DF. $\delta_{\rm C}$ inches (cm) * Deflection at breaking point.DF. $\delta_{\rm C}$ inches (cm) * Deflection at breaking point.DF. $\delta_{\rm C}$ inches (cm) * Deflection at breaking point.DF. $\delta_{\rm C}$ inches (cm) * Deflection at breaking point.DF. $\delta_{\rm C}$ inches (cm) * The second loading of inertialDF. $\delta_{\rm C}$ inches (cm) * Deflection at breaking point.DF. $\delta_{\rm C}$ inches (cm) * Second loading curve from saturation state. (or negative reaction state of saturation state.DF. $\delta_{\rm C}$ inches (cm) * Second loading curve from saturation state. (or negative reaction state of saturation state.DF. $\delta_{\rm C}$ inches (cm) * Second loading curve from saturation state. (or negative reaction state of state of saturation state.DM. F Inches (cm) * Second loading curve from saturation state. <td></td> <td>: - 1. 3. 5.</td> <td>*6.</td> <td>**7.</td>												: - 1. 3. 5.	*6.	**7.
TABLE 7INPUT DATAMATERIAL PROPERTIES (CARD 1) (9 Fields of 8)UnitsDescriptionUnitsDescriptionInches (cm)* Haximum deflection that allows second loading of inertial inches (cm)inches (cm)* beflection at vield point.inches (cm)* Deflection at vield point.inches (cm)* Deflection at beginning of breakdown.inches (cm)* Deflection at breaking point.inches (cm)* Seflection at breaking point.lbs/in (N/cm)* Sione of unloading curve from saturati			Name of Quantity		DA, $\delta_{ m A}$	DB, $\delta_{ m B}$	DC, ⁶ C	DE, δ_{D}	DF, $\delta_{ m F}$	FM, F _{max}	DM, B	See Section 2.4.1 and This is the first of (vehicle region, elli Required conditions: Belts may have materia In this case all ô's per unit strain. Field 9: If a negativ	All &'s for joint stop or N-m/deg. Units for	"Force saturation leve N-M. Units for neck a lbs or N.
<pre>7 INPUT DATA 4. PROPERTIES (CARD 1) (9 Fields of 8) 9. (9 Fields of 8) 9. (9 Fields of 8) 9. (9 Fields of 8) 1. Name of material. Name of material. </pre>	TABLE	MATERIA	Units		inches (cm)	inches (cm)	inches (cm)	inches (cm)	inches (cm)	(N) spunod	lbs/in (N/cm)	Figures 12 and six cards which pse, belt). $0 \le \delta_A \le \delta_B \le \delta_D$ al properties de in Fields 3 to 7 te value is in Fi	o materials are ^ neck and should	el" for joint stu and shoulder lin
	7 INPUT DATA	AL PROPERTIES (CARD 1) (9 Fields of 8)	Description	Name of material.	* Maximum deflection that allows second loading of inertial spike curve. (normally at peak of curve).	*Deflection at cutoff of inertial spike curve. (Should be at F=	*Deflection at yield point.	*Deflection at beginning of breakdown.	*Deflection at breaking point.	<pre>**Force saturation level (If this quantity is zero, force saturation is not used).</pre>	*Slope of unloading curve from saturation state. (or negative)	Bl to 85 for definitions. must be entered for each material specification $< \delta_{\rm F}$; $\delta_{\rm C} \ge 0$. See Section 2.4.1 regarding definitions. fined optionally in terms of strain. (See Cards 702 and 717.) will have strain units (in/in) and Field 9 will be in force ield 9, then the unloading curve is determined from the	in degrees and unloading slope from saturation is in in-lb/deg der link elongation and compression are inches or cm.	op materials has units in-lb or k elongation and compression are Card 403 (221,704,812)

.

.

.

•

TABLE 7 INPUT DATA MATERIAL PROPERTIES (CARD 2)

Field	Name of Quantity	Units	Description
1-2			Name of material.
3	FOREPS, ep	pounds(N)	Epsilon for shared-deflection force balancing (allowed error)
*4		lb-sec/in (N-sec/cm)	Viscous damping coefficient for loading (positive deflection rate)
*5		lb-sec/in (N-sec/cm)	Viscous damping coefficient for unloading (negative deflection rate)
6			(blanknot used)
7			Name assigned to static curve
8			Name assigned to inertial spike
9	99999-00-01-01-01-0-0-0-0-0-0-0-0-0-0-0-		Name assigned to G and R ratios
	and the second		

NOTES: 1. See Section 2.4.1 for fields 2, 7, 8, 9

- 2. See Section 2.6.10 for fields 4, 5, 6
- 3. Field 3 applies to contact regions and ellipses and also to belts if body deformations are allowed.
- 4. Fields 4, 5, (6) may now used for viscous damping parameters. The earlier use was for cavity coefficients $\lambda_1, \lambda_2, \lambda_3$, which are not currently defined on any card in the input data deck. Since the cavity option is not functional, $\lambda_1, \lambda_2, \lambda_3$ are not currently needed, but an input data card will have to be provided for them if the cavity option is made operative.
- *5. Joint stop viscous damping coefficients for joint materials have units in-lb-sec/deg or N-m-sec/deg. Damping coefficients for force-strain belt materials have units lb-sec/deg or N-sec/deg.
- *6. Joint stop viscous damping coefficients replace, rather than add to, elastic range viscous damping coefficients when deflections are into the joint stops.
- 7. No viscous damping force will be generated in the absence of an associated deflection-dependent force.

MATERIAL PROPERTIES (CARD 3) (9 Fields of 8)

Field	Name of Quantity	Units	Description
1			Name assigned to G and R ratios (See Card 404, Field 9)
2	D , δ	inches (cm)	*Deflection associated with a specified G-ratio. If a negative value is given, G is assumed constant.
3	GEE, G		Ratio of permanent deformation to maximum deflection.

NOTES: 1. See Section 2.4.1 and Figure 12.

2. At least one 405 and one 406 card must be included for each name occurring in field 9 of 404 cards.

*3. Belts may have material properties defined optionally in terms of strain.(See cards 702 and 717.) In this case Field 2 will have strain units (in/in).

4. G should not be 1.

5. Deflection is in degrees for joint stop materials (inches or cm for neck and shoulder link elongation and compression).

MATERIAL PROPERTIES (CARD 4) (9 Fields of 8)

<u>Field</u>	Name of Quantity	Units	Description
1			Name assigned to G and R ratios (See Card 404, field 9).
2	D, δ	inches (cm)	*Deflection associated with a specified R-ratio. If a negative value is given, R is assumed constant.
3	ARE, R		Ratio of conserved energy to total energy.

NOTES: 1. See Section 2.4.1 and Figures 12 and 85.

2. At least one 405 and one 406 card must be included foreach name occurring in field 9 of 404 cards.

*3. See Note 3 of Card 405.

4. R should not be 0.

5. Deflection is in degrees for joint stop materials (inches or cm for neck and shoulder link elongation and compression).

MVMA 2-D Model Card 406 (224,707,815)

267

MATERIAL PROPERTIES (CARD 5) (9 Fields of 8)

Field	Name of Quantity	Units	Description
1			Name assigned to static curve (See Card 404, Field 7).
2	D,	inches (cm)	*Deflection at which a value of force is specified. If a negative value is given, polynomial coefficients are to be specified in Fields 3-8.
3	F or C ₁	lbs or (N or lbs/in N/cm)	*Force or linear spring constant.
4	C ₂	lbs/in ² (N/cm ²)	*Second order polynomial coefficient.
5	C ₃	lbs/in ³ (N/cm ³)	*Third order polynomial coefficient.
6	C ₄	lbs/in ⁴ (N/cm ⁴)	*Fourth order polynomial coefficient,
7	C 5	lbs/in ⁵ (N/cm ⁵)	*Fifth order polynomial coefficient.
8	C ₆	lbs/in ⁶ (N/cm ⁶)	*Sixth order polynomial coefficient.

NOTES: 1. See Section 2.4.1 and Figures 12 and 81.

2. At least one 407 card must be included for each name in Field 7 of 404 cards.

3. If a polynomial is selected, force is computed by:

 $F = C_1 \delta + C_2 \delta^2 + C_3 \delta^3 + C_4 \delta^4 + C_5 \delta^5 + C_6 \delta^6$

If tabular input is selected, more than one 407 card must be supplied.

- *4. Belts may have material properties defined optionally in terms of strain. (See Cards 702 and 717.) In this case Field 2 must have strain units and spring coefficients in Fields 3-8 are defined accordingly.
- 5. Deflection is in degrees for joint stop materials, "force" units are in-lb or N-m, and polynomial coefficients have units in-lb/deg or N-m/deg, etc. Units for neck and shoulder link elongation and compression are as indicated in the eight-field layout above.

MVMA 2-D Model Card 407 (225,708,816)

268

3/10/87

			ard 404, Field 8)	s specified. If a efficients are to be					7	-					MVMA 2-D Model Card 408 (226,709,817)
TABLE 7 INPUT DATA	MATERIAL PROPERTIES (CARD 6) (9 Fields of 8)	Units Description	Name assigned to inertial spike (See C	<pre>inches (cm) * Deflection at which a value of force i negative value is given, polynomial cc specified in Fields 4-9.</pre>	lbs or (N or *Force or linear spring constant. lbs/in N/cm)	<pre>lbs/in² (N/cm²)* Second order polynomial coefficient.</pre>	lbs/in ³ (N/cm ³)*Third order polynomial coefficient.	<pre>lbs/in⁴ (N/cm⁴)*Fourth order polynomial coefficient.</pre>	<pre>lbs/in⁵ (N/cm⁵)* Fifth order polynomial coefficient.</pre>	<pre>lbs/in⁶ (N/cm⁶)* Sixth order polynomial coefficient.</pre>	I Figures 12 and 82. I must be included for each name in Field 8 of 404 cards. lected, force is computed by: $C_2\delta^2 + C_3\delta^3 + C_4\delta^4 + C_5\delta^5 + C_6\delta^6$ elected, more than one 408 card must be supplied.	7.	irve should be zero at $\delta_{ m B}$. See Card 403.	07 for joint stop materials.	
		Name of Quantity		D ,	F or C ₁	C_2	C ₃	C ₄	C ₅	С _б	See Section 2.4.1 and At least one 408 card If a polynomial is se F = C ₁ ô + If tabular input is s	See Note 4 of Card 40	The inertial spike cu	See Note 5 of Card 40	
		Field	-	N	m	4	5	6	7	ω	NOTES: 1.	*4.	5.	.9	

•

1/25/80

,

269

TABLE 7 INPUT DATA LINE PARAMETERS WITHIN A REGION (CARD 2) (9 Fields of 8)

			(9 Fields of 8)
Field	Name of Quantity	Units	Description
1-2			Name assigned to line segment.
ю	T, t	msec	Time at which line segment location is specified. If a negative number is entered, line segment location is time-independent and only one 411 card need be entered.
4	ХНАТ(1), × ₁	inches (cm)	x-coordinate of first endpoint.
ß	XHAT(2), z _i	inches (cm)	z-coordinate of first endpoint.
9	XHAT(3), x _{i+1}	inches (cm)	x-coordinate of second endpoint.
7	XHAT(4), z _{i+1}	inches (cm)	z-coordinate of second endpoint.
හ	II		Enter 1., 2., 3., 4., 5., or 6. on t=O cards to indicate that first endpoint is a point of the frontal interior outline for airbag contact.
Notes:	 All coordinates shou Card 402, Field 6 for Card 402, Field 6 for 2. All values must be f 3. These cards must be (4. Field 8: Two to six for bottom of toeboan should be for a point 5. No line segment shou 6. See Section 2.6.8 and 7. The coordinates of th the coordinates of th 	ld be given with r the correspond illed in through ordered with res points must be rd. Numbers mus t near the top o ld pass exactly d Figure 27 for ne first endpoin ne second endpoin	respect to the coordinate system specified on ing region (Inertial or vehicle). field 7. pect to time for each line segment. indicated if airbag is present. 1. should be t be used sequentially and the largest number f the windshield. Number of points minus one equals number of through the inertial origin at t=0. definitions. t of the second segment in a region must be identical to nt of the first segment, etc. MVMA 2-D Model
			Card 411

LINE SEGMENT LOCATION

272

•

FRICTION AND PLOWING CONSTANTS (9 fields of 8)

Field	Name of Quantity	/ Units	Description	Default
1	I	-	Magnitude is ellipse friction class (1. to 5.). If <0, the resistance is desired in negative line direction (see Note that the second	hen plowing es 1-4).
2	J	-	Magnitude is region friction class (1. to 10.). If <0, to resistance is desired in positive line direction (see Note	hen plowing es 1-4).
3	CMU 1	-	Constant friction coefficient	0.
4	CMU2	1/1n (1/cm)	Linear friction coefficient	Ο.
5	CMU3 or PMAX	1/1n**2 (1/cm**2) or 1b (N)	Quadratic friction coefficient if KONTLP=O (see Note 3). *Full value for plowing force (constant) if KONTLP<>O.	0.
6	PMIN	1Ь (N)	Static, or residual, plowing force (tangential force from surface against non-moving ellipse)	broken
•7	PNU	in (cm)	Deflection (normal to surface) at which full plowing resis is applied. Plowing force is ramped linearly for deflect	stance PMAX Ion < PNU.
8	PBETA	lb/in_(N/cm) _	If >0, unloading slope from plowing at turnaround. If <0, magnitude is G-ratio for permanent plowing deforma	tion.
*9	YNU	in/sec (cm/s) sec/in (s/cm)	If >0, plowing velocity at which full resistance is applie plowing is ramped linearly for plowing velocity < \ If <0, magnitude is slope of velocity-ramp factor; force>	ed; /NU. PMAX allowe

NOTES: 1. Friction force for any ellipse/line interaction allowed by 106-Card specification will be zero unless (nonlinear) coefficient of friction data are given on this card for the ellipse/region friction class combination. (See Cards 219/402.) Plowing force parameters for the interaction are specified on the same 412-Card. [There must be only one 412-Card for any interaction].

2. Friction force is computed as the product of the normal force and a nonlinear friction coefficient CMU, where DEL is deflection normal to the surface and

CMU = CMU1 + CMU2 * DEL + CMU3 * DEL**2 .

(CMU3 = 0 if plowing has been selected.)

3. The value KONTLP (plowing resistance control) is determined from the signs of fields 1 and 2.

4. Positive line direction is clockwise around the vehicle interior; negative is counterclockwise.

*5. Normally, the plowing force (in loading) is: (deflection-ramp factor) x (velocity-ramp factor) x PMAX. where the ramp factors become 1.0 for normal deflection and plowing velocity greater than PNU and YNU.

6. Typical plowing parameter values for windshield: PMAX = xxxx N, PMIN = xx N, PNU = x cm, PBETA = +xxxxx N/cm, YNU = +xxx cm/sec

> MVMA 2-D Model Card 412

273

12/15/87

UNLOADING CURVES (3 Fields of 8)

Fields	Name of Quantity	Units	Description
1-2			Name of Material
3	NBI		Number of unloading curves to be specified for this material

NOTES: 1. NBI cards with unloading curve specifications must immediately follow this card.

2. G- and R- ratios are ignored for a material for which unloading curves are specified.

274

MVMA 2-D Model Card 413 (248, 724, 818)

VEHICLE INTERIOR CONFIGURATION SUBTITLE

Field	Name of Quantity	Units	Definition
	STITL1 (58:76)		Run subtitle for Vehicle Interior Configuration Input Block. Columns 1 to 19 of this card become columns 58 to 76 of subtitle.

NOTE: See note on Card 200.

MVMA 2-D Model Card 500
5 See Section 2.3.1 and NULE:

NOTE: This card is not needed if the advanced belt system BELT2 has been selected. See Cards 710-723.

ř,

MVMA 2-D Model Card 501

			×.						
TABLE 7 INPUT DATA	VEHICLE IMPACT SUBTITLE	Definition	Run subtitle for Vehicle Impact Specification Input Bloc Columns 1 to 19 of this card become columns 77 to 95 of subtitle.						Lebom A-C AMVM
		Units							
		ld Name of Quantity	STITL1 (77:95)	DTE: See note on Card 200.					
		Fie		Ň					

Field	Name of Quantity	Units	Definition	Defaults
1	xv, x _v	inches (cm)	X coordinate of vehicle origin	0.
2	XVD, X _v	ft/sec (m/sec)	X component of initial vehicle velocity	0.
3	ZV, Z _v	inches (cm)	Z coordinate of vehicle origin	0.
4	zvd, ż _v	ft/sec (m/sec)	Z component of initial vehicle velocity	0,
5	την, θ _ν	degrees	Initial vehicle pitch angle	0.
6	THVD, ė _v	deg/sec	Initial vehicle pitch angular velocity	0.
7	AA, a	inches (cm)	X coordinate of vehicle accelerometer in vehicle frame	0.
8	C,c	inches (cm)	Z coordinate of vehicle accelerometer in vehicle frame	0.
9	VM		 0. = vehicle motion data are specified as x- and z-accelerometer 1. = inertial x and z accelerations are specified for the vehicle 2. = inertial x and z positions are specified for the vehicle ori 3. = inertial x acceleration and inertial z position are specified the vehicle origin 4. = inertial x position and inertial z acceleration are specified the vehicle origin -1. = translational vehicle motion is defined by x-accelerometer r 	readings origin gin 1. d for d for eading

VEHICLE INITIAL CONDITIONS AND ACCELEROMETER LOCATION (9 Fields of 8)

NOTES: 1. See Section 2.9 for discussion of vehicle motion.

2. For Version 3, Card 601 must precede Cards 602, 603, and 604 in the data deck unless Card 601 is defaulted.

- 3. Field 9 is not used for Version 4.
- 4. If <u>position</u> points are to be specified (field 9 = 2., 3., 4., or -1., or field 2 of Card 604 = 2. or 3.), the integration time step on Card 101 should be no greater than half the minimum difference between any two successive time coordinates in the time-position tables. Equivalently, for a given integration time step Δt , the minimum spacing in the position tables should be at least $2\Delta t$.

5. See Note 9 on Card 603.

6. See Section 3.2-A.2 with regard to specifying vehicle pitching motion with the pivot point method (field 9 of Card 601 equal to -1.).

MVMA 2-D Model Card 601

	Defaults**	24.	-	0.	10000.(25400.)	ation (or position) be greater than zero. 1 and then remains 2 DCONTL(1) may 5 b) Take DCONTL(1) 5 b) Take DCONTL(1) or the 30 mph frontal
VEHICLE HORIZONTAL ACCELERATION VERSUS TIME (4 Fields of 8)	Definition	Number of time-acceleration or time-position pairs.	Acceleration or position indicator 0. = in/sec ² or in (m/sec ² or cm) 1. = g's	For position input only. The fraction of current position ramp length over which full velocity change takes place. (See Note 7.)	ec ²) For position input, estimated maximum magnitude for the inertial x-acceleration. (See Note 5.) adicated in field 9 of Card 601. succeeding unnumbered cards, four time (MSEC) - accelera iling eight fields. and 604 cannot exceed 303.	dicated in field 9 of Card 601. dicceeding unnumbered cards, four time (MSEC) - acceler ing eight fields. and 604 cannot exceed 903. for DCONTL(2) are cm/sec ² , not m/sec ² or g's. Must ersion 4. thereion 4. thereion 4. of velocity ramps to full values over DCONTL (1)*(t_{2} -t for velocity ramps to full values over DCONTL (1)*(t_{2} -t in the the number of integration time steps within the in the time-position table. (n should be at least 2. for default. The twenty-four time-acceleration pairs for of co15.)(55.,-14.5)(70.,-15.5) (95.,-14.7)(100.,-11.7) (95.,-14.7)(100.,-11.7) (95.,-14.7)(100.,-11.7)
· .	Units				in/sec ² (cm/se	cified must be as in for Cards 602, 603, for Cards 602, 603, metric system units is not allowed for of time length t_0^{-1} Acceleration is slo Acceleration is slo howing manner: a) l sive time coordinate sive time coordinate (115.,-19.)(90.,-11)(85.,-19.)(90.,-11)(85.,-19.)(90.,-11)(85.,-19.)(2000,0 illiseconds and acce illiseconds and acce
	Name of Quantity	XdN	НЕАД (1)	DCONTL (1)	DCONTL(2)	The type of motion spectruction (or positing pairs per card starting Summed field 1 values is see Note 2 on Card 601. Note that the required position specification for each position ramp, constant through t_2 . The "AMA Frontal Barrie collision are as follow (15.,-18.5)(110,-4. Default times are in mit befault times a
	feld	-	2	£	*4	01ES:

÷

278

3/10/87

MVMA 2-D Model Card 602

-

•	Defaults** ·	ield 9 2. timepoints specified.	.0	ion (in 0.	ion (in U.	Time in- 0. 602.	magnitude 5000. (12700.)	te of 2000. (5080.) le frame e 5.)	on (or position) pairs per card i cards, for NPZ, NPP, and NPQ poir rst set is for the NPZ time-positi described for fields 3 and 4. 's. Must be greater than zero. rect entry or numerical dif- nput). Even when z-accelero- only these terms enter the equatio t coordinates and the vehicle pitc n (314.1) of Volume 1. If they do ith the pivot point	MO UE I
TABLE 7 INPUT DATA VEHICLE VERTICAL ACCELERATION VERSUS TIME (7 Fields of 8)	Definition	Number of time-acceleration or time-position pairs if f Card 601 is non-negative. Otherwise, the number NPZ of for which the inertial Z <u>position</u> of a "pivot point" is	Acceleration or position units indicator 0. = in/sec ² or in (m/sec ² or cm) 1. = g's	Number of time-position pairs for instantaneous x posit vehicle frame) of the "pivot point"	Number of time-position pairs for instantaneous z posit vehicle frame) of the "pivot point"	For position input only (including pivot coordinates). terval fraction for velocity ramping. See Note 7, Card	For position input (including pivot), estimated maximum for the inertial acceleration. (See Note 5.)	For pivot input, estimated maximum magnitude for the ravelocity change (x- or z-acceleration) within the vehic for the changing location of the pivot point. (See Not	cated in field 9 of Card 601. Also see Section 2.9. cceeding unnumbered cards, four time (msec)-acceleratio . For pivot data there must be three sets of unnumbered rd 601 is non-negative. is followed by three sets of unnumbered cards. The fil- third sets are for the NPP and NPQ time-position pairs or DCONTL(4) and DCONTL(5) are cm/sec ² , not m/sec ² or g ntout calculated by the program will be "jumpy" (althou X-acceleration of pivot point (second derivative of Z i cacceleration of pivot point (second derivative of z i nertial velocities and displacements will be good, and values for the inertial and vehicle relative pivot point on Card 601. These five values should satisfy equatio the program and a warning will be printed. .0.) (2000.0.) d to specifying vehicle pitching motion w ual to -1.).	
	Units						in/sec ² (cm/sec ²)	in/sec ² (cm/sec ²)	ecified must be as ind tion) data follow on s and filling eight field t used if field 9 of C re specified, this car ield 1. The second an d metric system units 1. 2. 2. 2. 3. z-accelerometer pr lowing are smooth: a) ar $\theta(t)$; c) inertial ar $\theta(t)$; c) inertial e unfeliable, vehicle ie unfeliable, vehicle of the vehicle origi) will be adjusted by) will be adjusted by lleration pairs are: (0 2.2-A.2 With regar 9 of Card 601 eq	
	Name of Quantity	ZAN	HEAD(2)	NPP	DAN	DCONTL(3)	DCONTL(4)	DCONTL(5)	The type of motion space Acceleration (or posistarting in field 1 al Fields 3 and 4 are no If pivot point data al pairs described for f Note that the required See Note 2 on Card 60 See Note 3 on Card 60 For input of pivot da unless all of the fol ferentiation of tabul meter calculations ar of motion. Take care to prescrib angle and z coordinat not, ZV (for Card 601 The default time-acce See Section 3. method (field	•
	Field	-	2	3	4	5	9 *	٤+	NOTES: 1. 2. 3. 4. 7. 8. 9. 10.	

. :

.

6/30/88

.

TABLE 7 INPUT DATA VEHICLE ANGULAR ACCELERATION VERSUS TIME (4 Fields of 8)	Name of Quantity Units Definition Definition Defaults*	Number of time - acceleration or time- 2. angle pairs	TRAD $0. = deg/sec^2$ 2. = deg (angle input) 0. 1. = rad/sec^2 3. = rad (angle input) 0.	DCONTL(6) For angle input only. Time interval 0. fraction for velocity ramping. See Note 7, Card 602.	DCONTL(7) (unitssee Note 2) For angle input, estimated maximum magni- 5000. tude for the angular acceleration.	 Acceleration (or angle) data follow on succeeding unnumbered cards, four time (MSEC) - acceleration (or angle) pairs per card starting in Field 1. Units for DCONTL(7) must be deg/sec² if field 2 is 2. and rad/sec² if field 2 is 3. See Note 3 on Card 602 and Note 2 of Card 601. A value of 3000. to 7000. is recommended for field 4. The default time-acceleration pairs are: (0.,0.) (5000.,0.) 	6. See Section 3.2-A.2 with regard to specifying vehicle pitching motion with the pivot point method (field 9 of Card 601 equal to -1.).	· ·
						1. Ac an 2. Un 3. Se 4. A *5. Th	6. Te	
	Field	-	2	e.	4	:5 280		6/30/8

MVMA 2-D Model Card 604

HEAD APPLIED FORCE SPECIFICATIONS

•

<u>Field</u>	Name of Quantity	Units	Definition
1	MUSNAM (1-2, 12)		Name assigned to applied force table F_x vs time (up to 8 characters); leave blank if no F_x table.
2	MUSNAM (1-2, 13)		Name assigned to applied force table F_z vs time (up to 8 characters); leave blank if no F_z table.
3	JFORCE		O. if applied force components are in the inertial frame; non-zero if in the head coordinate system
4	AF , &	in (cm)	X coordinate in head system of point of application of force vector (positive toward feet from head c.g.).
5	^{CF} , c	in (cm)	Z coordinate in head system of point of application of force vector (positive rearward from head c.g.).

NOTE: Printout for head applied forces is obtained by requesting Categories 30 and 31 on Cards 110 and 1001/1002.

281

8/6/80

D FORCE COMPONENT VERSUS TIME	Definition	NAME assigned to applied force table (F_{X} or F_{Z}) vs. time.	Time associated with a specified force value.	Component of applied force vector.	ained by requesting 001/1002. MVMA 2-D Model	Card 606
HEAD APPLIE	Units		msec	(N) dl	ces is obta	
	Name of Quantity		¢.	FORCEX, FORCEZ, F_x, F₃	Printout for head applied for Categories 30 and 31 on Card:	
	Field	-	2	m	NOTE:	

.

BELT RESTRAINT SYSTEM SUBTITLE

<u>Field</u>	Name of Quantity	Units	Definition						
	STITL1 (96:114)		Run Subtitle for Belt Restraint System Input Block. Columns 1 to 19 of this card become columns 96 to 114 of subtitle.						

.

NOTE: See note on Card 200.

• .

. .

MVMA 2-D Model Card 700

.

.

BELT SYSTEM PARAMETERS (CARD 1) (9 Fields of 8)

Field	Name of Quantity	Units	Definition
1	LBLO, 1 ^{BL} o	inches(cm)	Total lap belt length.
2	DELBL, Δ^{BL}	inches(cm)	Total lap belt slack.
3	LBTUO, Q ^{BU}	inches(cm)	Total upper torso belt length.
4	DELBTU, A ^{BU}	inches(cm)	Total upper torso belt slack.
5	FBLMAX, F_{MAX}^{BL}	lbs(N)	Lap belt breaking force.
6	FBTMAX, F_{MAX}^{BT}	lbs(N)	Torso belt breaking force.
7	DELTB, ∆t _B	msec	Time duration for belt failure.

NOTE: See Section 2.5.1 for analysis.

•

NOTE: This card is not needed if the advanced belt system BELT2 has been selected. See Cards 710-723.

284

				ch lap							
E 7 INPUT DATA	<pre>M PARAMETERS (CARD 2) Fields of 8)</pre>	sscription	Name assigned to lap belt material.	Name assigned to body material for shared deflection with belt (or blank if shared deflection with belt is not desired)	Total lower torso belt length. Total lower torso belt slack.	Total lower torso belt slack.	Lower torso belt attachment indicator 2. = upper torso link 4. = lower torso link otherwise = middle torso link	Switch = {0, Force-strain input data. {1, Force-deflection input data.	system BELT2 has been selected. See Cards 710-723.		
TAE	BELT SYST (Units			inches (cm)	inches (cm)			lysis.	the advanced belt	
		Name of Quantity			LBTLO, $\boldsymbol{\ell}^{\mathrm{BT}}$	DELBTL, Δ^{BT}	LBTLA	LBSTAN	See Section 2.5.1 for anal	This card is not needed if	
		Field	1-2	3-4	2	9	7	ω	NOTE:	NOTE:	

MVMA 2-D Model Card 702

BELT SYSTEM PARAMETERS (CARD 3) (9 Fields of 8)

<u>Field</u>	Name of Quantity	Units	Description
1-2			Name assigned to upper torso belt material
3-4			Name assigned to body material for shared deflection with upper torso belt (or blank if shared deflection with belt is not desired).
5-6			Name assigned to lower torso belt material.
7-8			Name assigned to body material for shared deflection with lower torso belt (or blank if shared deflection with belt is not desired).

NOTE: See Section 2.5.1 for analysis.

NOTE: This card is not needed if the advanced belt system BELT2 has been selected. See Cards 710-723.

286

				TABLE 7 INPUT DATA	
				BELT MATERIAL CARDS (9 Fields of 8)	
Field		Name of Quantity	Units	Description	
NOTES:	-	. Belt material prop See Cards 403-408 (BELT) or the adva	erties are for format. nced belt s	specified in the same manner as contact regionomode bell opp system (BELT2).	therties.
	2.	. (BELT option) If as strains.	Card 702, F	Field 8 is set for force-strain, all deflections will be int	terpreted
	с С	. (BELT2 option) If as strains.	Card 717, F	Field 8 is set for force-strain, all deflections will be int	terpreted
	4.	See notes for Card	s 704-709 i	in Section 3.2.	
	5.	With regard to ass see Note 2 of Card	igning belt 720.	t material names for the belt segments in the advanced belt	system,
·					
				•	
				MVMA 2-D Mod Cards 704-70 (403-4	de 1 09 408)

.

287

2/18/81

ADVANCED BELT SYSTEM PARAMETERS (9 Fields of 8)	Name of Quantity Units Definition	ATTANC(1,1,J) in(cm) X-coordinate on body segment of belt attachment point (along centerline from upper joint of torso segment of attachment)	ATTANC(1,2,J) in(cm) Z-coordinate on body segment of belt attachment point (measured perpendicular to torso segment toward front of body)	ATTANC(2,1,J) in(cm) X-coordinate in vehicle of belt anchor	ATTANC(2,2,J) in(cm) Z-coordinate in vehicle of belt anchor	SLAK(J) (J=1-4) in(cm) Initial belt slack (negative if initial tension) for belts 1-4 BL(J) (J=5-7) or total initial unstrained belt length for belts 5-7	- Belt material name (see cards 704-709)	- Force-deflection material name for body segment, anchor defor- mation/belt spoolout, or composite (body and anchor/spoolout).	: 1. See Figures 90 and 91.	 Anchor point for belt 1 is not needed if belt 6 is present. Anchor points for belts 2 & 3 are not needed if belt 5 is present. Fields 1, 2, 8, 9 not used for belts 5,6.7 (Cards 714-716) Attachment points for belts 3 and 4 should be coincident. Tad 710 = belt 1 = upper torso belt Card 711 = belt 2 = lower torso belt Card 713 = belt 3 = inboard lap belt Card 713 = belt 3 = inboard lap belt Card 714 = belt 5 = lower torso belt Card 715 = belt 4 = outboard lap belt Card 716 = belt 7 = upper torso belt Card 716 = belt 7 = upper torso belt Card 716 = belt 7 = upper torso belt Card 718 = belt 7 = upper torso belt Card 719 = belt 7 = upper torso belt Card 719 = belt 7 = upper torso belt Card 719 = belt 7 = upper torso belt Card 719 = belt 7 = upper torso belt Card 719 = belt 7 = upper torso belt Card 719 = belt 7 = upper torso belt Card 710 = belt 7 = upper torso belt Card 710 = belt 7 = upper torso belt extension Card 715 = belt 7 = upper torso belt extension Card 716 = belt 7 = upper torso belt extension Card 718 = belt 7 = upper torso belt extension Card 719 = belt 7 = upper torso belt extension Card 710 = belt 7 = upper torso belt extension Card 710 = belt 7 = upper torso belt extension Card 710 716 Belts 8-9 not needed if body and anchor are both rigid for belt interactions. Material Diporprise, if specified, are for deflections in the direction of belt loading. (See Section 3.2-A.2 properties, if specified, are for deflections in the direction of belt loading. (See Section 3.2-A.2 properties, if specified, are for deflections in the direction of belt loading.
	Field	-	2	3	4	5	6-7	8-9	NOTES	6 / 00 / 00

288

.

6/30/88

 $\widehat{}$

ADVANCED BELT SYSTEM PARAMETERS (7 Fields of 8)

Field	Name of Quantity	Units	Description D	efaults
1	INFLNC	_	Type of interbelt influence adjustment for torso belt tension O. = no adjustment, l. = normal-force friction, 2. = saturati based on force difference, 3. = percent influence	s: on].
2	MBELT	_	<pre>0. = Force-deflection material properties for all belts # 0. = Force-strain material properties for all belts</pre>	1.
3	LBTLA	-	Lower torso belt attachment indicator 2. = upper torso segment 3. = middle torso segment 4. = lower torso segment	4.
4	YSEP(1)	in(cm)	*Out-of-plane separation between torso belt attachment points	0.
5	YSEP(2)	in(cm)	*Out-of-plane separation between lap belt attachment points	0.
6	11(1)		Method for calculating first estimate of torso belt forces: 0. = fixed attachment, 1. = free slipping ("force equalization"	1. ")
7	11(3)		Same except for lap belt.	1.
NOTES :	 For Fields 6 and considering a sin together. Fields 1, 6, and If Field 1 is 1. If Field 6 is the assumption of free slipping (µ Regarding fields Field 2 must be See Figure 93-A. All non-zero Fie 	7, "free sli ngle deflecti 7 should be , two differe zero, the fi f no-slip b =0). The sec 1, 6, and 7, set non-zero. 1d 1 options	pping" means force equalization in the two torso or lap belt segme on for the combined length of these two and all other belt segment nonzero for most realistic results in normal operation. In approaches to calculation of belt friction across the torso may rst estimate to torso belt tensions (unadjusted for friction) is to belts ($\mu = \infty$). 2) If Field 6 is nonzero, the first estimate is ba and approach is preferred. See Note 2 on Card 719. See Note 2 of Card 720.	nts by s acting be used ased on sed on

							•			
		Defaul ts	-	30.	JJ.2405		chment ist as	llowed	ness gram e elts, ing il8 lb).	•
BLE 7 INPUT DATA	YSTEM: RING FORCE EQUILIBRIUM PARAMETERS (5 Fields of 8)	Description	 I. = program is allowed to reset user-specified ring strap stiffness if it is too large relative to stiffnesses of other belts at ring (warning is printed) I. = program is not allowed to reset stiffness 	Maximum number of iterations allowed per evaluation for force balance at ring	Force epsilon for x-,y+, and z-force balance	(nnused)	<pre>> 0. = for system without ring strap, lap belt attac points on lower torso link is allowed to adju links angle change</pre>	<pre>< 0. = adjustment of lap belt attachment point not a</pre>	Is card is not needed. program determines its deflection stiffness (strain stiff nd that of other belts leading to the ring. Since the pro ring position for which there is a force equilibrium if th than about ten times the maximum stiffness of the other b is allowed by the switch in field 1 of this card. A warn itch setting if the ring strap stiffness is too large. ween 10. and 30. Field 3 should be greater than 20N (4.496	MVMA 2-D Model Card 718
F	VANCED BELT	Units			(N)sql	l	1		re absent, th present, th ned length) a determine a ss is greate limit if thi ess of the si e a value bed	
	VD	Name of Quantity	I PRMT(2)	IPRMT(3)	REPS	1	XLAPAJ		If belts 5 and 6 a If a riny strap is divided by unstrai may not be able to ring strap stiffne it is set to that is printed regardl Field 2 should have	
		ield	-	2	e	4	ى		0TES: 1. 2. 3.	
		<u>L</u>	l	I	1	I	1		2	6/30/88

TORSO INTERBELT INFLUENCE (7 Fields of 8)

Field		Name of Quantity	Units	Description
1		ВМИК	-	Kinetic friction coefficient for torso belt with body
2		BMUS	-	Static friction coefficient for torso belt with body
3		ZINFL, ζ	-	*Fraction of total friction force adjustment to be apportioned to lower tensioned torso belt (influencee). (Value .5 is recommended.
4		INF(1,2)	-	<pre>1. = tension in belt l (influencer) causes adjustment in tension for belt 2 (influencee) -1. = belt 2 is influencer, belt l is influencee</pre>
5		RFSAT, F _S	lbs(N)	Force difference saturation level for torso belts
6	n agas gas gas a	AFSAT, F _B	1bs(N)	Maximum force influence for influencer or influencee
7		PERCNT, p _{ij}	-	Positive or negative percent influence (fractional) for modi- fication of influencee by influencer
NOTES:	1.	Certain fields of	this card are n	needed only for certain values of INFLNC , Field 1 of Card 717.
		INFLNC	Fields of C	ard 719 Needed
		0. 1. 2. 3.	none (1e 1,2,3,(4 5 4,6,7	ave out card)
	2.	For the case INFL case, the value for pected to exceed	NC=l., field 4 o or INF should no the lower torso	f this card is used only if field 6 of Card 717 is nonzero. In this maally be 1. since the upper torso belt tension may normally be exbelt tension.
	3.	For field 4, the sion.	influencer shoul	d normally be selected as the belt expected to have the greater ten-
	*4.	The fraction (l - torso belt (influe	ζ) is apportion encer). (See Se	ed to the higher tensioned mVMA 2-D Model

291

.

6/30/88

ADVANCED BELT SYSTEM ANCHOR AND RING PARAMETERS

(8 Fields of 8)

Field	Name of Quantity	Units	Description	Defaults
1	ANCHOR(1)	-	Anchor 1 type: 0. = free (absent or broken) 1. = belt 4, 5, 6, or 7 fixed to anchor (ring is present) 2. = belt 5, 6, or 7 with inertia reel 3. = anchored ring (ring strap absent) or belt 1, 2, 3, or fixed at anchor	3. • 4
2	ANCHOR(2)		Anchor 2 type (See Field 1)	3.
3	ANCHOR(3)		Anchor 3 type (See Field 1)	3.
4	ANCHOR(4)		Anchor 4 type (See Field 1)	1.
5	RING(1)		Belt influence type for upper harness ring: 1. = fixed to (torso) belt or ring absent 2. = friction with belt 3. = free (belt slips freely, no friction)	1.
6	RING(2)		Belt influence type for lower harness ring	1.
7	RINGMU(1)		Coefficient of friction for belt slipping at upper harnes ring (needed only if RING(1) = 2.)	^s 0.
8	RINGMU(2)		Coefficient of friction for belt slipping at lower harnes ring (needed only if RING(2) = 2.)	s 0.

NOTES: 1. See Figures 90, 92, and 93.

3/10/87

 Specification of RING()=1. makes the parts of the belt system on either side of the ring independent. In general, parts of the belt system are independent if separated by no-slip specifications at ring or body. Any belt segments that should be treated as parts of a common strap should be assigned the same material. Whenever belts should be treated as a common strap but the materials for the separate segments are different, the program arbitrarily uses the material for one of the members. (Version 3 prints a warning message.) Specifically, the conditions that make contiguous parts of the system independent are: 1) RING()=1.; 2) II(3)=0. for lap belts (field 7 of Card 717); 3) INFLNC=0. and II(1)=0. for torso belts (fields 1 and 6 of Card 717).

3. If Ring() = 3., then RINGMU() is ignored.

ADVANCED BELT SYSTEM SPOOL LOCKUP

(6 Fields of 8)

Field	Name of Quantity	Units	Description	Defaults
1	REEL(1)	-	<pre>1. = inertia reel at anchor 1 is vehicle sensitive 0. = inertia reel at anchor 1 is webbing sensitive</pre>	1.
2	тlock (1)	msec	Time at which reel 1 locks (vehicle sensitive)(or -1.) -1.
3	ALOCK(1)	g's	Value for resultant acceleration at reel 1 which wil cause it to lock (vehicle sensitive)	1.4
4	PLOCK (1)	deg	Value of vehicle pitch angle which will cause reel l to lock (vehicle sensitive)	14.
5	VLOCK(1)	in/sec (cm/sec)	Velocity for belt feed-out which will cause reel 1 to lock (webbing sensitive) (or -1.)	-1.
6	ALOCK (1)	g's	Acceleration for belt feed-out which will cause reel 1 to lock (webbing sensitive) (or -1.)	.75
NOTE:	Use only Field 2 <u>ø</u> Use only Field 5 <u>o</u>	<u>r</u> Fields 3 and 4 <u>r</u> Field 6 if Fie	if Field 1 is 1. (enter -1. in field 2 if fields 3 & 4 a ld 1 is 0. (enter -1. in Field 5 or 6, whichever is not	are used) used)
NOTE:	This card is neede	d only if Field	1 of Card 720 is 2.	. •

MVMA 2-D Model Card 721

4/3/87

TABLE 7INPUT DATAADVANCED BELT SYSTEM SPOOL LOCKUP(6 Fields of 8)

Field	Name of Quantity	Units	Description
1	REEL(2)	-	
2	TLOCK(2)	msec	
3	ALOCK(2)	g's	same as Card 721 except for lockup at anchor 2
4	PLOCK(2)	deg	
5	VLOCK(2)	in/sec(cm/sec)
6	ALOCK(2)	g's	
NOTE:	Use only Field 2 <u>or</u> Use only Field 5 <u>or</u>	Fields 3 and 4 Field 6 if Fiel	if Field l is l. (enter -l. in field 2 if fields 3 & 4 are used) d l is O. (enter -l. in Field 5 or 6, whichever is not used)

NOTE: This card is needed only if Field 2 of Card 720 is 2.

MVMA 2-D Model Card 722

ADVANCED BELT SYSTEM SPOOL LOCKUP (6 Fields of 8)

1 REEL(3) -	
2 TLOCK(3) msec	
3 ALOCK(3) g's Same as Card 721 except for lockup	at
4 PLOCK(3) deg anchor 3.	
5 VLOCK(3) in/sec(cm/sec)	
6 ALOCK(3) g's	

NOTE: Use only Field 2 or Fields 3 and 4 if Field 1 is 1. (enter -1. in Field 2 if Fields 3 & 4 are used) Use only Field 5 or Field 6 if Field 1 is 0. (enter -1. in Field 5 or 6, whichever is not used)

NOTE: This card is needed only if Field 3 of Card 720 is 2.

MVMA 2-D Model Card 723 .

UNLOADING CURVES (3 Fields of 8)

NOTE: Belt material unloading curves are specified in the same manner as curves for contact region materials. See Card 413 for format.

MVMA 2-D Model Card 724 (413)

DATA	
INPUT	
NBLE 7	
Ĭ	

OUT-OF-PLANE BELT SYSTEM DIMENSIONS (7 Fields of 8)

	for belt l	for belt 2	for belt 3					ed in		elt an	
Description	y-separation between anchor (or ring) and attachment	y-separation between anchor (or ring) and attachment	y-separation between anchor (or ring) and attachment	y-separation between anchor and attachment for belt 4	y-separation between ring and anchor for belt 5	y-separation between ring and anchor for belt 6	y-separation between ring and anchor for belt 7	torso belt attachments and lap belt attachments are enter [1] and YSEP(2)).		ng) is farther from the occupant's mid-plane than is the b f belt anchor is farther from the occupant's mid-plane th	MVMA 2-D Model
Units	in(cm)	in(cm)	in(cm)	in(cm)	in(cm)	in(cm)	in(cm)	arations between f Card 717 (YSEP		ve if anchor (riv L(5-7) positive i	
Name of Quantity	YDEL(1)	YDEL(2)	YDEL(3)	YDEL(4)	YDEL(5)	YDEL(6)	YDEL(7)	 Out-of-plane sep fields 4 and 5 o 	2	3. YDEL(1-4) positi attachment. YDE is the ring.	4. See Figure 93-A.
Field	-	5	m	₽ 29	ما 5.2	9	7	Notes:	6/3	0/38	

.

			(/ Fields of 8)
Field	Name of Quantity	Units	Description
r	BELTL(1)	in(cm)	Unstrained length of belt l (upper torso belt)
2	BELTL(2)	in(cm)	Unstrained length of belt 2 (lower torso belt)
с С	BELTL(3)	in(cm)	Unstrained length of belt 3 (inboard lap belt)
4	BELTL(4)	in(cm)	Unstrained length of belt 4 (outboard lap belt)
5	BELTL(5)	in(cm)	Unstrained length of belt 5 (lower ring strap)
9	BELTL(6)	in(cm)	Unstrained length of belt 6 (upper ring strap)
7	BELTL(7)	in(cm)	Unstrained length of belt 7 (upper torso belt extension)
NOTES: ** 5.3	This card is optional endpoint coordinates a length is entered on t that a belt pair parti dent "belt pair (i.e., the nonzero value is a Unstrained lengths are If the force equalizat belt segment lengths a	for all simulat ind slack. Howe chis card. The cipates in free INFLNC is not issumed to be th issumed to be the issumed to	ions. Unstrained belt lengths are normally calculated by the model from ver, those calculations will be omitted for any belt for which a nonzero calculation is omitted also for one case of a zero entry: in the case slipping (see Note 4) and/or is not (for torso belts only) an "indepenzerocard 717), then if one BELTL() is zero and the other is nonzero, e total length for the pair. ngths in three dimensions (including slack). colly their sum. This sum should include any out-of-plane separation to not the individual lap of the only their sum. This sum should include any out-of-plane separation 2) on Card 717 will be ignored if BELTL(3) and/or BELTL(4) are nonzero.
6/30/88	and force equalization zation is selected (Ca Webbing between the at force annivalization	n has been selec rrd 717, field 6 ttachment points is selected	ted. Similar considerations apply for the torso belts IT Torce equal- .). YSEP(1) will be ignored if BELTL(1) and/or BELTL(2) are nonzero. . for belts 1 and 2 should be included in BELTL(1) and/or BELT2(2) if
. 4 .	Unstrained belt lengt	is, whether calc and L_is unstr	sulated or specified, are used for calculating belt strain: $\epsilon/\delta/L_0$, ained webbing length.
**5.	Use of this card is rewebbing lengths (with space and they must ac	ecommended. Len out hardware) in ccount for all a	igths specified are for MVMA 2-D Model i three-dimensional Card 726 acting, unspooled webbing.

 TABLE 7
 INPUT
 DATA

 BELT
 LENGTHS
 **

				c	
TABLE 7 INPUT DATA LT SYSTEM BELT RETRACTOR PARAMETERS (2 Fields of 8)	Description	Belt Number (1., 2.,, or, 7.)	Maximum belt tension allowed during retraction (lock-up force)	uence of unlabeled cards which specify as a tabular function of time the ed by an actuator in the belt reel. Each card contains a time-retractio n field 1 is in msec and the retraction length value in field 2 is in terminated by a negative value for time.	
ADVANCED BE	Units	ı	(N)sdl	wed by a seq raction caus time value i sequence is	
	Name of Quantity	L	FMAXRT(n)	This card is follo amount of belt ret length pair. The inches or cm. The	
	Field	-	2	NOTE:	295.4

ENERGY ABSORBING STEERING ASSEMBLY SYSTEM SUBTITLE

.

Field	Name of Quantity	Units	Definition	•	
	STITL1 (115:131)		Run subtitle for Steer l to l7 of this card b	ring Column System Input Block. Colu become columns 115 to 131 of subtitle	umns ≥.
NOTE:	Energy Absorbing Ste mutually exclusive. appear. If both are	ering Assembl If only one present, the	y System Subtitle and Air of them is present in the one occurring last will	rbag System Subtitle are e data deck, that one will appear.	

NOTE: Also see note on Card 200.

ENERGY ABSORBING STEERING ASSEMBLY SYSTEM PARAMETERS (9 Fields of 8)

Field	Name of Quantity	Units	Description
-	НL, &	inches (cm)	Length of steering column from instrument panel to steering wheel attachment.
2	HLD, į	in/sec(cm/sec)	Time rate of HL (See Field 1).
m	HAL1, α ₁	deg	Initial angle of steering column measured clockwise from horizontal.
4	HALID, å ₁	deg/sec	Time rate of HALl (See Field 3).
ى ت	HAL2, α_2	deg	Initial angle of steering wheel measured clockwise from horizontal to steering wheel axis.
6	HAL2D, å ₂	deg/sec	Time rate of HAL2, (See Field 5).
7	нн, һ	inches (cm)	Initial distance between the steering column attachment point on the instrument panel and the place of the steering wheel.
8	HHD, Å	in/sec(cm/sec)	Time rate of HH (See Field 7).

ENERGY ABSORBING STEERING ASSEMBLY SYSTEM PARAMETERS

Field	Name of Quantity	Units	Description
1	HA, a	inches(cm)	Distance between upper hinge and steering column center of gravity.
2	HRω, r _ω	inches(cm)	Steering wheel radius.
3	HLOC, ^l c	inches(cm)	Length of lower column from steering gear box to attachment point.
4	HLI, l _o	inches(cm)	Initial value of L.
5	HH1, h ₁	inches(cm)	Distance between upper hinge and the steering column hub constant point.
6	HS1, s ₁	inches(cm)	Reference coordinates to orient the steering assembly with respect to the vehicle reference point $(X - Z)$
7	HS2, s ₂	inches(cm)	respect to the venture reference point (x_V, z_V) .
8	HS5, s ₅	inches(cm)	

ENERGY ABSORBING STEERING ASSEMBLY SYSTEM PARAMETERS (9 Fields of 8)

Field	Name of Quantity	Units	Description
1	HI1, I ₁	lb sec²in(kg	in ²)Moment of inertia of segment 1 of steering assembly.
2	HI2, I ₂	lb sec²in(kg	in ²)Moment of inertia of segment 2 of steering assembly.
3	HM1, m ₁	lb sec²/in(k	g) Mass of segment 1 of steering assembly.
4	H M2, m ₂	lb sec²/in(k	g) Mass of segment 2 of steering assembly.

TABLE 7 INPUT DATA	<pre>GEARBOX POSITION VERSUS TIME (1 Field of 8)</pre>	Jnits Definition	Number of time-position pairs	cards, four time-position pairs per card starting on Field 1. in inches (cm).				MVMA 2-D Model Card 804
		Name of Quantity	HTX11(n), HX111(n)	Data follows on succeeding Time in msec and position				
		Field	-	NOTES: 1. 2.	20.0			

7 INPUT DATA	ING SYSTEM PROPERTIES 9 Fields of 8)	Description	Name assigned to head material (blank if rigid)	Radius of circle for head contact surface.	Constant friction coefficient.	Linear friction coefficient.	Second order friction coefficient.	to simulate "plowing" μ = μ_0 + $\mu_1\delta$ + $\mu_2\delta^2$	MVMA 2-D Model Card 805
TABLE 7	HEAD/STEER	Units		inches (cm)		1/in (1/cm)	1/in ² (1/cm ²)	cient is computed	
		Name of Quantity		RHOI(1), p ₁	SCMU(1,1), μ ₀	SCMU(1,2), μ ₁	SCMU(1,3), µ2	A non-linear friction coeffi	
		Field	1-2	ю	4	5	9	301	

.

.

UPPER TORSO/STEERING SYSTEM PROPERTIES (9 Fields of 8)

Field	Name of Quantity	Units	Description
1-2			Name assigned to upper torso material (blank if rigid)
κ	SCENTX	inches (cm)	Distance from center of semicircle of upper torso to the center line (negative if the center is in fromt of center line).
4	SCENTZ	inches (cm)	Along center line distance (from joint 2) to the center of upper torso semicircle.
ى 302	RHOI(2), p ₂	inches (cm)	Radius of semicircle of the top of upper torso for contact surface.
9	SZETAI(1), ξ ₁₀	inches (cm)	Distance from center line to contact surface of upper torso (negative value).
7	SCMU(2,1), μ ₀		Constant friction coefficient.
ω	SCMU(2,2), μ ₁	1/in (1/cm)	Linear friction coefficient.
6	SCMU(2,3), μ ₂	$1/in^{2}(1/cm^{2})$	Second order friction coefficient.

NOTE: 1. 2.

See Card 805 Note. See Figure 62 for definition of SCENTX, SCENTZ, ρ_2 , $\xi_{10}.$

MIDDLE TORSO/STEERING SYSTEM PROPERTIES (9 Fields of 8)

<u>Field</u>	Name of Quantity	Units	Description
1-2			Name assigned to middle torso material (blank if rigid)
3	SZETAI(2), ξ ₁₂	inches (cm)	Distance from center line to contact surface of middle torso (negative value).
4	SCMU(3,1), μ ₀		Constant friction coefficient.
5	SCMU(3,2), µ1	1/in (1/cm)	Linear friction coefficient.
6	SCMU(3,3), μ ₂	1/in ² (1/cm ²)	Second order friction coefficient.

NOTE: 1. See Card 805 Note. 2. See Figure62 for definition of ξ_{12} .

MVMA 2-D Model Card 807

- 1

INPUT DATA RING SYSTEM PROPERTIES ields of 8)	escription Lame assigned to lower torso material (blank if rigid)	vistance from center line to contact surface of lower corso (Negative).	onstant friction coefficient.	inear friction coefficient.	econd order friction coefficient.	MVMA 2-D Model	LARA SUS
TABLE 7 LOWER TORSO/STE (9	Units	inches (cm)		1/in (1/cm)	$1/in^2$ ($1/cm^2$)	n of ξ ₁₄ .	
	Name of Quantity	SZETAI(3), ξ_{14}	SCMU(4,1), μ ₀	SCMU(4,2), µ1	SCMU(4,3), μ ₂	1. See Card 805 Note. 2. See Figure62 for definition	
	Field 1-2	e e	4	5	م 30	NOTE: 04	

.

FRONT LINE INTERSECTION POINTS (9 Fields of 8)

Field	Name of Quantity	Units	Description
	SCSI(1), x ₁	inches (cm)	Distance from point 1 to the center line of the upper torso.
5	SZETA(1), ξ ₁	inches (cm)	Distance from joint 2 along the center line of upper torso to point l.
m	SCSI(2), x ₂	inches (cm)	Distance from point 2 to the center line of the middle torso.
4	SZETA(2), ξ ₂	inches (cm)	Distance from joint 3 along the center line of the middle torso to point 2.
یں 205	SCSI(3), x ₃	inches (cm)	Distance from point 3 to the center line of the lower torso.
9	SZETA(3), ξ ₃	inches (cm)	Distance from joint 4 along the center line of the lower torso to point 3.
7	SCSI(4), X ₄	inches (cm)	Distance from point 4 to the center line of lower torso.
ω	SZETA(4), ξ ₄	inches (cm)	Distance from joint 5 along the center line of the lower torso to point 4.
NOTE	Points 1 2 3 and 4 and the	cinne of v r	coo Eignoo 60

4 and the signs of x_i , ξ_i see Figure of.

MVMA 2-D Model Card 809

TABLE 7 INPUT DATA	STEERING WHEEL MATERIAL CARD (9 Fields of 8)	Name of Quantity Units Description Name assigned to material of steering wheel edge (for F., F.)	Name assigned to material of steering wheel center (for F ₂)	Name assigned to material of hub (for K _H , F ₄)	: Leave field blank for rigid material.
		Nai			NOTE: Leav
		Field 1-2	3-4	5-6	

٠

.

1/6/82

.

MVMA 2-D Model Card 810

.
REACTION MATERIAL NAMES

(9 Fields of 8)

Field	Name of Quantity	Units	Description
1-2			Name assigned to material for force resistance at F _{A1} .
3-4			Name assigned to material for moment resistance at M_{JI} .
5-6			Name assigned to material for force resistance at F _{A2} .
7-8			Name assigned to material for moment resistance at M_{J}^2 .

307

NOTE: Leave field blank for rigid material.

STEERING ASSEMBLY SYSTEM AND BODY MATERIAL PROPERTIES

Field	Name	of (Quantity	y Units	Description
	A DESCRIPTION OF THE OWNER OWNER OF THE OWNER OWNER OF THE OWNER OWNE				

NOTE: Reaction material properties are specified in the same manner as contact region material properties. See cards 403-408 for format.

MVMA 2-D Model Cards 812-817 (403-408) a. 4

UNLOADING CURVES (3 Fields of 8)

NOTE: Steering system material unloading curves are specified in the same manner as curves for contact region materials. See Card 413 for format.

MVMA 2-D Model Card 818 (413)

1/8/81

TABLE 7 INPUT DATA AIRBAG SYSTEM SUBTITLE

Run subtitle for Airbag Restraint System Input Block. Columns 1-17 of this card become columns 115 to 131 of subtitle. Definition Units Name of Quantity STITL1(115:131) Field

NOTE: See note on Card 800

NOTE: Also see note on Card 200.

DATA	
INPUT	
7	
Ш	
AB	

AIRBAG SYSTEM PARAMETERS (9 Fields of 8)

Defaults	djusted 1.	m +x 161.	36.	2.54	30.	75.4	rane. 2.	assumed). 72.	cle system. 20.	
Definition	*RLTHET switch. 1. = constant angle, 0. = a at each t	Angle of reference line, counterclockwise from	Bag width.	Perimeter iteration tolerance.	Maximum iteration count.	Bag perimeter when fully inflated.	Pressure differential necessary to burst memb	Area of one deflation membrane (Two orifices	X coordinate of bag attachment point in vehic	the had is hoth in contact with the community
nits		egrees	ıches (cm)	nches (cm)		iches (cm)	s∕in ² (N/cm ²)	1 ² (cm ²)	iches (cm_)	e zero until
Name of Quantity Ur	NGLSW	RLTHET De	WIDTH ir	PRMTOL ir	ITRTOP	BPERIM	BGPRSS	ORFICE ir	BGXCOR ir	Airbag contact forces are
-ield		2	3	4	5	6	7	8	6	VOTES: 1)

lhe bag becomes "full" before contact if the thermodynamic volume becomes greater than the full." The bag becomes "full" before contact if the thermodynamic volume becomes greater than the full geometric volume, which is $\pi r^2 w$, where $r = BPERIM/2\pi$ and w = width. The bag becomes "full" <u>after contact</u> if the deformed bag is greater than BPERIM.

If field 1 is 0., the angular location of the center of the full bag will be adjusted at each time step to be at the center of pressure. If field 1 is 1., the center will always be on the fixed RLTHET deployment line. ×2) *

6/30/88

AIRBAG SYSTEM PARAMETERS CONTINUED (9 Fields of 8)

Field	Name of Quan	itity Units	Definition	faults
-	BGZCOR	inches(cm)	Z coordinate of bag attachment point in vehicle system	em
2	GASTMP	Fahrenheit deg.(Celsius deg.)	Temperature of supply gas.	40. 4.44
3	OCCWID(1)	inches(cm)	Occupant head width.	8. 20.32
4	OCCWID(2)	inches(cm)	Occupant shoulder width. 55	20. 50.8
5	OCCWID(3)	inches(cm)	Occupant torso width. 55	20. 50.8
9	OCCWID(4)	inches(cm)	Occupant hip width.	20. 50.8
7	· OCCWID(5)	inches(cm)	Occupant thigh width.	20. 50.8
8			(not used)	
6	TBGFR	msec	Bag fire time.	0.

6/30/88

Field	Name of Qu	uantity Units	Definition	Defaults
-	RX	ft-lb/lbm°F(Joules/kg°C)	Gas Constant	55.15 296.7.
2	РЕХ	lb/in ² (N/cm ²)	Exhaust Pressure (one atmosphere)	14.7 10.135
3	GAMMB		Ratio of Specific Heats (C _D /C _V)	1.4
4	TAU	sec	Decay Time (not used)	-
5	СР	BTU/lbm°F(Joules/gm°C)	Specific Heat at Constant Pressure	0.25 1.0465
6	ISAS	deg	Roof angle with respect to vehicle X-axis.	. 150.
7	RHEAD	in(cm)	Average head radius.	15,24

TABLE ⁷ INPUT DATA AIRBAG SYSTEM PARAMETERS CONTINUED (9 Fields of 8)

AIRBAG MASS INFLUX RATE VERSUS TIME (1 Field of 8)

Field	Name of Quantity	Units	Definition
1			Number of time - rate pairs

NOTES: 1. Data follows on succeeding cards, four time - rate pairs per card starting in Field 1, BTIM and MDOT alternating in the first eight fields.

2. Mass rate units are lbm/sec (kg/sec) and time is msec.

3. Time zero for these data corresponds to the bag fire time, which may be nonzero.

SUPPLY GAS TEMPERATURE VERSUS TIME 1 Name of Quantity Units Definition 1 Data follows on succeeding cards, four time-temperature pairs per card and TEMPS alternating in the first eight fields. Number of supply gas a 2. Temperature in °F(°C) versus time in msec (temperature of supply gas a orifice) 3. Time zero for these data corresponds to the bag fire time, which may bit	Number of time-temperature pairs. four time-temperature pairs per card starting i st eight fields. e in msec (temperature of supply gas as it passe onds to the bag fire time, which may be nonzero. MMM
Image: Second	 S: 1. Data follows on succeeding cards and TEMPS alternating in the fir. 2. Temperature in °F(°C) versus tim orifice) 3. Time zero for these data correspondent of the set of the set

314

TABLE 7 INPUT DATA

					e .'				
TABLE 7 INPUT DATA	BAG POROSITY VERSUS PRESSURE DIFFERENTIAL (1 Field of 8)	Name of Quantity Units Definition Number of pressure-porosity pairs.	 Data follows on succeeding cards, four pressure-porosity pairs per card starting in Field 1, DELTAP and PERM alternating in the first eight fields. 	2. Pressure units are 1b/ft ² (N/cm ²). Porosity units are ft ³ /ft ² /min (m ³ /m ² /min).			MVMA 2-D Model Card 906		
		Field	NOTES:						

Field	Name of Quantity	Units	Definition
-	CSI(1), ξ ₁	inches(cm)	Distance along centerline from reference joint (see card 909) to contact reference point l.
2	ZETAI(1), ₅₁	inches(cm)	Distance perpendicular to centerline from reference joint (see card 909) to contact reference point 1.
Э	CSI(2), ξ ₂	inches(cm)	See Field 1 (Reference Point 2)
4	ZETAI(2),ζ ₂	inches(cm)	See Field 2 (Reference Point 2)
5	CSI(3), ξ ₃	inches (cm)	(Not used.)
9	ZETAI(3),ζ ₃	inches(cm)	(Not used.)
7	CSI(4), ξ ₄	inches(cm)	See Field 1 (Reference Point 4)
ω	ZETAI(4), ζ ₄	inches(cm)	See Field 2 (Reference Point 4)
NOTE:	See Figure 46 and figure o	n Card 909.	

AIRBAG OCCUPANT CONTACT REFERENCE POINTS (CARD 1) (8 Fields of 8)

TABLE 7 INPUT DATA

MVMA 2-D Model Card 907

316

LE 7 INPUT DATA	DNTACT REFERENCE POINTS (CARD 2) 3 Fields of 8)	Definition	(Not used)	(Not used)		See Card 907. Reference Points 6 to 8.						
TAB	IRBAG OCCUPANT C	Units	inches (cm)	inches (cm)	inches (cm)	inches (cm)	inches (cm)	inches (cm)	inches (cm)	inches (cm)		
	Ā	Name of Quantity	CSI(5), ξ ₅	ZETAI(5), 5 ₅	CSI(6), ξ ₆	ZETAI(6), ζ ₆	CSI(7), ξ ₇	ZETAI(7), 57	CSI(8), ξ ₈	ZETAI(8),ζ ₈		
		Field	ſ	2	3	4	5	6	7	8		

E 7 INPUT DATA NTACT REFERENCE POINTS (CARD 3) 1 Fields of 8)	Definition			see Card 90/ Reference Points 9 and 10		Reference PointDefinitionReference Joint1Top of Chest LineNeck2Bottom of Chest LineNeck3Top of Gut LineUpper Torso3Top of Gut LineUpper Torso9Top of Upper Leg LineLower Torso9Top of Lower Leg LineHip9Top of Lower Leg LineHip9Top of Lower Leg LineHip9Top of Lower Leg LineHip9Top of Lower Leg LineKnee10Bottom of Lower Leg LineKnee	MVMA 2-D Model Card 909
TABLE AIRBAG OCCUPANT CON (4	eld Name of Quantity Units	CSI(9), ξ ₉ inches (cm)	ZETAI(9), ^ζ 9 inches (cm)	$CSI(10), \xi_{10}$ inches (cm)	ZETAI(10), ζ ₁₀ inches (cm)	FRONT Upper Middle Lower Upper Lo Torso Torso Legs Le Upper Lower Arms Arms BACK ZETAI	
	Ξ			(T)	4	원 원 원 · · · · · · · · · · · · · · · · ·	

ADVANCED AIRBAG SYSTEM VEHICLE ENCLOSURE SEGMENTS (2 Fields of 8)

Field	Name of Quantity	Units	Definition
1 - 2			Contact segment name from 409 -Card of segment included in airbag "enclosure"

NOTE:

"NENCV" unnumbered cards follow Card 910. See note on Card 910.

318.02

(follows Card 910)

DATA
INPUT
TABLE

ADVANCED AIRBAG SYSTEM INFLATION GAS PROPERTIES (7 Fields of 8)

Defaults	55.15 (296.7)	28.02 1.4	0.25 (1.0465)	14.7 (10.135)	um 68. (20.)	cts 5. (12.7)	
Definition	Gas constant for inflation [or 0.]	Molecular weight (average) for inflation gas [or 0.] Ratio of specific heats for inflation gas	Specific heat at constant pressure	Pressure of external medium (atmosphere)	Temperature of external medi (atmosphere)	Head radius for airbag conta	
Units	ft lb (joules) lbm F° ('kg C°)		BTU(joules)1bm °F(gm °C)	$\frac{1b}{in^2} \left(\begin{array}{c} N \\ cm^2 \end{array} \right)$	°F (°C)	in (cm)	
Name of Quantity	RGAS	MOLEWT GAMMG	CPG	PATM	TATM	RHEAD	
Field		3	4	ما 318.03	9	7	

NOTE:

Field 1 <u>or</u> Field 2 is needed, not both. Enter a "0." (or blank) in the field not used. If non-zero fields are present in both fields, Field 2 will be used.

•

Card 911

•

6/28/85

	(9 Fields of 8)	
Name of Quantity	Units	Definition Defaults
EPSP	$\frac{1b}{\ln^2} \left(\frac{N}{cm^2}\right)$	Convergence epsilon for testing .1 pressure in pressure-volume iteration (.068948)
EPSM 、`	lb in (N-m)	Convergence epsilon for testing 50. unbalanced moment on bag in bag (5.6492) position iteration
EP1	in ² (cm ²)	Distance-squared epsilon for dis0005 tinguishing between cases of 1) real (.0032258) (small) difference between two distances and 2) an apparent difference due to roundoff
EP2	in ² (cm ²)	Distance-squared epsilon for distin0001 guishing between cases of 1) non-coin- (.00064516) cident (but near) points and 2) coincident points made "non-coincident" by roundoff
EP3	in (cm)	X- (or Z-) position epsilon for deter000001 mining if two straight-line segments (.00000254) interact
EP4	in (cm)	X- (or Z-) position epsilon for distin001 guishing between cases of 1) non-coincident (.00254 (but near) points and 2) coincident points made "non-coincident" by roundoff
DMIN	in (cm)	Minimum allowed chord length for arc .3 (bulge) of bag in occupant plane; smaller (.762 arcs are replaced by the chord
ΙΤΡΜΑΧ	· -	Maximum number of iterations allowed for 20. each bag at each time for pressure and volume determination
І ТММА Х	.	Maximum number of iterations allowed for each bag at each 3. time for adjustment of bag position for moment balance (2. or 3.)
	Name of Quantity EPSP EPSM `` EP1 EP2 EP3 EP4 DMIN ITPMAX ITMMAX	(9 Fields of 8) Name of Quantity Units EPSP $\frac{1b}{1n^2} \left(\frac{N}{cm^2} \right)$ EPSM `` 1b in (N-m) EP1 $in^2 (cm^2)$ EP2 $in^2 (cm^2)$ EP3 in (cm) EP4 in (cm) ITPMAX - ITMMAX -

ADVANCED AIRBAG SYSTEM CONVERGENCE EPSILONS AND ITERATION LIMITS

٠

AIRBAG OCCUPANT CONTACT REFERENCE POINTS (CARD 1) (8 Fields of 8)

Field	Name of Quantity	Units	Definition
1	CSI(1), ξ ₁	inches(cm)	Distance along centerline from reference joint (see card 915) to contact reference point l.
2	ZETAI(1), ζ ₁	inches(cm)	Distance perpendicular to centerline from reference joint (see card 915) to contact reference point l.
3	CSI(2), ξ ₂	inches(cm)	See Field 1 (Reference Point 2)
4	ZETAI(2),ζ ₂	inches(cm)	See Field 2 (Reference Point 2)
5	CSI(3), ξ ₃	inches(cm)	(Not used.)
6	ZETAI(3), ₅₃	inches(cm)	(Not used.)
7	CSI(4), ξ ₄	inches(cm)	See Field 1 (Reference Point 4)
8	ZETAI(4), _{ζ4}	inches(cm)	See Field 2 (Reference Point 4)

NOTE: See figures on Cards 914 and 915.

٠

318.05

Card 913

.

a

AIRBAG OCCUPANT CONTACT REFERENCE POINTS (CARD 2) (8 Fields of 8)

318.06

6/28/85

TABLE 7 INPUT DATA AIRBAG OCCUPANT CONTACT REFERENCE POINTS (CARD 3) (4 Fields of 8)	ame of Quantity Units Definition	SI(9), ξ ₉ inches (cm)	(ETAI(9), ^c ₉ inches (cm) con fand 013	SI(10), £10 inches (cm) Reference Points 9 and 10	ETAI(10), ç ₁₀ inches (cm)	ee figure on Card 914. Reference Point Definition Reference Joint		I IOP OF Chest Line Neck 2 Rottom of Chest Line Neck	3 Top of Gut Line Upper Torso	4 Bottom of Gut Line Upper Torso	ir middie cower upper cower of 6 Top of Pelvis Line Lower Torso to Torso Torso Legs Legs 6 Rottom of Pelvis Line Lower Torso	7 Top of Upper Leg Line Hip	Inner Lower of the Hip	Arms Arms Arms 10 Bottom of Lower Leg Line Knee	ZETAI			Card 915		-
	Name of Qua	CSI(9), ξ ₉	ZETAI(9), 5	CSI(10), ξ ₁	ZETAI(10),	Also see figure				FRONT	Torso Tor		Inner	Arms	BACK		<u>ч</u>		7	
	Field	-	2	с	4	NOTE:	210	Q 0	7			Head			6	/28/	/85			
							31	8.0	/						Ь,	/ 28/	50			

ADVANCED AIRBAG SYSTEM AIRBAG CONSTANTS (8 Fields of 8)

Field	Name of Quantity	Units	Definition
1-2			Name assigned to airbag
3	WBAG	in (cm)	Side-to-side width of deflated bag
4	SURFCE	$ft^2 (m^2)$	Total surface area of porous fabric (or negative surface area - see Note 1)
5	TBGFR	msec	Bag fire time
6	Ts	⁰ F (⁰ C)	Constant source gas temperature (see note 2)
7		deg (deg) in lb (N-m) or deg	Bag equilibrium adjustment parameter: compliance for initial θ-adjustment of bag if negative, angle adjustment if positive (+15. is suggested)
8			Number of vehicle interior segments between bag #1 attachment point and attachment point for this bag. (Attachments must be at endpoints of vehicle interior segments of the enclosure.) Number should be positive if counterclockwise from bag # 1 and negative if clockwise. If this airbag is bag # 1, the number entered here will be 0.

NOTES:

- 1. If the bag is constructed such that none (or little) of the porous venting surface will be in contact with the occupant or vehicle interior surfaces, enter the negative of the porous surface area in Field 4.
- 2. Field 6 is needed only if no table for source gas temperature vs. time is included for this airbag in the data set.

318.08

6/28/85

TABLE 7 INPUT DATA	ADVANCED AIRBAG SYSTEM INTERIOR BAGS (4 Fields of 8)	Name of Quantity Units Definition	Name assigned to airbag	Name of one of the airbags immediately inside this bag			l7-Cards if there are no airbags immediately inside.	can be up to twenty airbags total, but no string of successively nested bags can be greater than ags in length.	
	ADVA	Name of Quantity					Omit 917-Cards if there	There can be up to twent five bags in length.	
		Field	1-2	3-4	318.09	NOTES:	<u> </u>	° 6/28/85	

318.10

TABLE 7 INPUT DATA

Use one 918-Card for each deflation vent (omit cards if no vents).

ADVANCED AIRBAG SYSTEM BAG SLAP PARAMETERS (9 Fields of 8)	ald Name of Quantity Units Definition	-2	BMASS 1bm (kg) Bag/gas mass for bag slap	Fluid k for bag-slap 4-parameter viscoelastic model	Fluid c for bag-slap 4-parameter viscoelastic model in (cm)	Solid k for bag-slap 4-parameter viscoelastic model in (cm)	SOLIDC <u>1b sec</u> (<u>N-sec</u>) Solid c for bag-slap 4-parameter viscoelastic model in (cm)	VFACTR - Velocity factor	Switch which indicates whether specified enclosure segments (Cards 920) are allowed or disallowed for bag slap interaction with this bag: 0. if all are allowed (no 920-Cards needed), -1. if allowed are specified, 1. if disallowed are specified.		DTE: Field 8 (VFACTR) is reasonably from 1. to 2. VFACTR = 1. means that the leading surface of the deploying bag moves with constant velocity from "fire" time until contact; VFACTR = 2. means it moves with constant acceleration. Values between 1. and 2. indicate intermediate conditions.	JTE:
	Field	1-2	۳ ا	4	ß	ي ا	18.11	α	6	6/28	: 100 3/85	NOTE:

.

GMENTS FOR BAG SLAP	Definition	Name assigned to airbag	Enclosure segment name allowed or disallowed for bag slap interaction with this bag. See Notes and Card 919.			°or this bag is O or if Card 919 for this bag is absent.	<pre>hay be either one of the vehicle-interior enclosure segment 0 or it may be an occupant body element name. Allowed en- here "b" indicates "blank" and all names begin in column 17: E, LOWERbLEG.</pre>	o vehicle-interior enclosure con and restricted to the content of
ADVANCED AIRBAG SYSTEM ENCLOSURI (4 Fields o	Name of Quantity Units					Cards 920 are unneeded if field 9 of Card 9	The enclosure segment name in fields 3 and names on the unnumbered cards following Car tries for body element names are as follows HEAD, CHEST, MIDSECTION, PELVIS, UPPERbLEG,	The bag slap model may perform better if se body element names listed in Note 2, i.e., segments are allowed for interaction.
	Field	1-2	3-4		NOTES:	1.	2.	с
				318.12		6/2	28/85	

 $\frac{1}{2}$ 3/

•

ADVANCED AIRBAG SYSTEM TABLE NAMES (6 Fields of 8)

Field	Names of Quantity	Units	Definition
1-2			Name assigned to airbag
3			Name assigned to collective V vs. A tables for this bag (<u>P</u> is constant for each tabular curve)
4			Name assigned to table for mass influx rate vs. t
5			Name assigned to table for source gas temperatures vs. t (blank if none)
6			Name assigned to table for bag porosity vs. pressure differential (blank if none)

NOTES:

- 1. There must be one 921-Card for each airbag.
- 2. Names in fields 3-6 may be used for more than one bag.
- 3. Tables are entered with cards indicated:

Card 921 Field	Card for Table Entries
3	922
4	923
5	924
6	925

6/28/85

DATA	
INPUT	
2	
TABLE	

ADVANCED AIRBAG SYSTEM V vs. A FOR CROSS-SECTION OF BAG CONTACT (4 Fields of 8)

Definition	Name assigned to collective V vs. A tables for an airbag	Constant P/T value for a tabular curve, V= V(A)	Area A of cross-section of airbag in occupant plane	Airbag volume, V	
Units		$\frac{1b}{in^2} \frac{(N)}{R^{\circ}(cm^2 k^{\circ})}$	ft ² (m ²)	ft ³ (m ³)	
Name of Quantity					
Field	-	2	e	4	

: NOTES: 318.14

- 1. Use one card for each point on a tabular curve.
- At least two V vs. A curves along which P/T is constant must be defined for each airbag. At least two points must be specified to define each curve (one being for A = 0.). There must therefore be at least four 922-Cards for each airbag unless the same collective V vs. A tables name (field 1) is used for more than one bag. . ح

6/28/85

ADVANCED AIRBAG SYSTEM MASS INFLUX RATE VS. TIME (3 Fields of 8)

Field	Name of Quantity	Units	Definition
1	. •		Name assigned to table for mass influx rate vs. t for an airbag
2		msec	Time relative to "fire" time (i.e., 0. at t = TBGFR)
3	MNDOT	<u>1bm (kg</u>) sec (sec)	Mass influx rate for primary-source inflation gas

NOTES:

- 1. Mass influx table must be defined.
- 2. Use one card for each point in table.

.

DATA	
INPUT	
BLE 7	
TA	

ADVANCED AIRBAG SYSTEM SOURCE GAS TEMPERATURE VS. TIME (3 Fields of 8)

Name of Quantity Units Definition	Name assigned to table for source gas temperature vs. t for an airbag	msec Time relative to "fire" time (i.e., 0. at t = TBGFR)	°F (°C) Source gas temperature
Field Name	L	2	3

NOTES:

1. Omit 924-Cards if no source gas temperature table.

2. Use one card for each point in table.

Card 924

.

ADVANCED AIRBAG SYSTEM BAG FABRIC POROSITY VS. PRESSURE DIFFERENTIAL (3 Fields of 8)

Field	Name of Quantity	Units	Definition
1			Name assigned to table for porosity vs. pressure differential for an airbag
2		<u>_1b (_N_)</u> in ² (cm ²)	Pressure differential
3		ft ³ /ft ² /min [.] (m ³ /m ² /min)	Porosity (volume of gas at atmospheric temperature and pressure which will pass through unit area of bag fabric in unit time)

318.17

NOTES:

- 1. Omit 925-Cards if no porosity table.
- 2. Use one card for each point in table.

6/28/35

ADVANCED AIRBAG SYSTEM BAG PROFILE CONTROLS (5 Fields of 8)

Field	Name of Quantity	Units	Definition
1-2			Name assigned to airbag
3			Time relative to "fire" time (i.e., 0. at t = TBGFR)
4	NPPTS		Number of points specified on bag profile
5	NREF		Point number of a reference point, counting counter- clockwise from bag attachment point = 1. (see Note 3)

NOTES:

- 1. At least one 926-Card must included for each airbag.
- 2. Point number 1 is the bag attachment point. This point (coordinates entered on the first following unnumbered card) must be at least slightly inside the enclosure (Card 910).
- 3. One particular material point, called the "reference point," must be present in each profile for the expanding bag. NREF should be in the range [1/4 NPPTS, 3/4 NPPTS] if possible, and as near the center as possible. Since NPPTS is not necessarily the same for each profile, NREF will not necessarily be the same either.
- 4. This card is followed by a block of unnumbered cards. The block consists of as many cards as necessary to give x and z coordinates of the NPPTS successive points on the bag profile (4 points, i.e., 4 coordinate pairs per card). For each bag, 926-Cards with their blocks of unnumbered cards must appear in the data deck in order of increasing time for profiles of the expanding bag.

		TA	3LE 7 INPUT DATA	
		ADVANCED AIRB	AG SYSTEM BAG PROF (8 Fields of 8)	LE POINTS
	Field	Name of Quantity	Units	Definition
	F	×i	in (cm)	<pre>x- and z- coordinates of points on airbag profile, relative to an axis system located at the bag attach-</pre>
	5	z	in (cm)	ment point and parallel to the venicle-fixed coordinate system
	э	r+ i x	in (cm)	
	4	^z i + 1	in (cm)	
318.1	5	×i + 2	in (cm)	
9	9	^z i + 2	in (cm)	· ·
	7	× i + 3	in (cm)	
I	8	^z i + 3	in (cm)	
6/28/85				
	NOTE:			
	See note	s on Card 926.		

(follows Card 926)

ADVANCED AIRBAG SYSTEM DEFORMABLE ENCLOSURE SEGMENTS (4 Fields of 8)

Field	Name of Quantity	Units	Definition
1-2			Name assigned to airbag
3-4			Name of an enclosure segment which can deform (yield) in response to contact by this bag (see Note)

NOTES:

- 1. Omit 927-Cards if no deformations from contacts by this bag.
- 2. Fields 3-4 contain the name of a vehicle-interior enclosure segment. It will be the name on one of the unnumbered cards which follow Card 910.

TABLE 7 INPUT DATA ADVANCED AIRBAG SYSTEM DEFORMABLE ENCLOSURE (B Fields of 8) (B Fields of 8) Name of Quantity Units m 1bm (kg) m 1bm (kg) r 1b (N) c 1b (N) r nsec sec fard 927. ric curve name in field 3 must be different 8-Cards for vehicle-interior enclosure seg	SEGMENT PROPERTIES	Definition	Name of airbag-deformable enclosure segment (See Note 1)	Name assigned to tabular static force-deflection curve (See Note 2)	Effective inertial resistance (mass) of segment (greater than 0.)	Bag force required to cause initial movement of segment	Viscous damping coefficient	G - ratio for segment displacements	Segment rebound duration time (≠ 0.) from maximum displacement	ure segment name which appears on an unnumbered card	t from names appearing on $225_{ au}$, 407-, 708-, and 816-Cards.	ments not named on any 927-Card.
	TABLE 7 INPUT DATA ADVANCED AIRBAG SYSTEM DEFORMABLE ENCLOSURE (8 Fields of 8)	Name of Quantity Units			m lbm (kg)	(N) ۹۱ ۲	C 1b in (N cm) sec (sec)	9	т	l-2 must contain a vehicle-interior enclosu ng the 910-Card . Also, see Card 927.	itic curve name in field 3 must be different	28-Cards for vehicle-interior enclosure segm
				I directly in the Input, Execu-		er via the Input Processor for or Output Processors. It is ffected routines. Comment of elements of the CVALUE ar-	r metric system simulations and		MVMA 2-D Model Card 999			
--------------------	------------------------------------	-------------------	--	---	--------	--	---	---------	----------------------------			
TABLE 7 INPUT DATA	CONSTANT VALUES (2 Fields of 8)	Units Description	Decimal number for n, l <u><n<< u="">100</n<<></u>	A constant which is to be use tion, or Output Processors		s for the user to enter values in a standard mann gram code in subroutines of the Input, Execution, e common block COMMON/VALUES/CVALUE(100) to the a s INMVMA, READIN, and OUTMVM regarding definition date as uses of the array are changed.	ries should be in Newtons, meters, and seconds fo econds for English system simulations.					
		Name of Quantity	Ę	CVALUE(n)		Cards 999 provide a means use by user-modified proc necessary only to add the statements in subroutines ray should be kept up to	Units for all CVALUE entr in pounds, inches, and se					
		Fields	-	5	NOTES:	<u>-</u> :	2.					
				ł		318.23		3/10/87				

•

•

UNNUMBERED CARDS READ BY "GO" TO CONTROL CASES FOR DEBUGGING PRINTOUT

(Not required) (maximum of 20 such cards)

Description *		Debug Switch Number (1-16)	Case Identifier A	Case Identifier B	
 Columns		1-8	9-16	17-24	
Field		-	0	n	

Notes:

- + 0 0 4

- These cards must be read from logical device number 5. Currently implemented for switches 9 and 10. Ignored by all others. If switch 9 or 10 is specified in Field 1, values are applied to both 9 and 10. If -9999999 is specified in Field 2 or Field 3, any value matches. Otherwise, only cases with matching identifiers will produce debugging output for that debugging switch. For switches 9 and 10, the two identifiers correspond to the interaction IA and IB fed into SETACT All values must be entered with a decimal point. . د و . *

MVMA 2-D Model unnumbered card

.

"GO CARD" DESCRIPTION

This "Go-Card" has no fields. It serves to let the model know that a complete data set has been submitted and to start model execution. This card must be present in the deck.

MVMA 2-D Model Card 1000

TABLE 7 INPUT DATA	Y SELECTION AND ORDERING SPECIFICATION (Free Format, Columns 1-72)	ring of intermixed entries which are either individual listings ngs ("b" below) ordered as desired.	re NN is a one or two digit number in the range O to 50 1 or without leading zeroes. The comma appears literally for punctuation	re NN is as above and the hyphen appears for punctuation. The first ber may be larger or smaller than the second.	are both missing, the default cards below are used. It but blank, then no categories are printed. Only Category 45 De Summary Page (see Card 1003, field 8) will be printed. (b=blank) in first four columns, the default ordering is used it data summary (category 0). 1002 are treated as 73 to 144 of Card 1001. sary in the last specification on the two cards. iteup in Section 3.2 and Tables 11 and 113. ing Table 11 for a description of Summary Page output, which		,5,38,49,50,15,23-26,2-4,18-20,51-64,33-36 ,	-9 , 45	WVMA 2-D Model Cards 1001, 1002
TABLE 7	CATEGORY SELECTION AI (Free Forma	is are made by using a string of intern or contiguous range listings ("b" belo	a) "NN." where NN is a on with or without	b) "NN-NN," where NN is as al number may be la	 Blanks are ignored If card 1001 and 1002 are both miss If card 1001 is present but blank, (stick figures) and the Summary Pa (stick figures) and the Summary Pa ir minus printout of input data summar Cols. 1 to 72 of Card 1002 are trea The comma is not necessary in the 1 See Card 1001, 1002 writeup in Sect See information following Table 11 can be obtained in addition to Cato 		0,1,46-48,10-14,21,22,37,5,38,49,50,1	30-32,16,27-29,39,17,40,6-9,45	
		Specification ("a" below) o			NOTES 1 8 7 6 6 6 7 8 8 7	DEFAULTS	1001	2001	
					320			10/2/86	

PRINTOUT CONTROLS (3 Fields of 8)

ield	Name of Quantity	Units	Definition D	efaults
1	IDB		Switch = 0.no detailed HIC printout 1.print details of HIC scan.	0.
2	ко		0.if separate printout of peak and 3 msec accel calculation is not desired. Switch = ≠0.is logical device number that this information to be put on.	O. on is
3	ΝΙΧΡ		 Do not repeat filtering or computation of switch = Switch = indices in "OUT" rerun if previously dom 0. Repeat using new specifications. 	of special ne. 0.
4	FEMSOR	in (cm)	Distance from hip joint to sensor located on upper leg c line.	enter-13.5 (34.29
5	SKMASS	lb sec ² /in (kg)	Upper leg mass between sensor and knee.	.015 (2.627)
6	TYPEPR		*Number of characters per horizontal inch in printout (computing stick figure scale factor)	(used for 13.6
7	MVSSDB		Switch = 0. no debug for MVSS 201/208 calculations	0.
8	KSUMRY		Switch = 0. no Maximum Deflections Summary Page outpu	t tput
*Notes:	l. A standard lin default) since	e printer gives l xerographic page	32 characters in 13.2 inches (10/in). TYPEPR is norma printers give an image with about 13.6 characters pe	ally 13.6 (er inch.
	2. For TYPEPR the (instead of number is entered as	number of printed nber per inch) may a negative number	d characters per centimeter y be specified if the value Card 1003	

.

3. See pages 352.1 to 352.3 regarding summary page.

321

6/30/88

			LTER AND HIC CONTROLS (8 Fields of 8)		
Field	Name of Quantity	Units	Definition De)ef <u>aults</u>	
-	NPP		NPP is number of filter weignts. Number of points used in filtering each point is 2*NPP + 1.	40.	1
2	FC	Hz	Filter Cut-Off Frequency 5	500.	
3	E E	Hz	Filter Roll-Off Frequency 5	560.	
4	MIRROR	ş	Switch = 0. if extension for filtering at data endpoints $f = 0$. if extension is by mirror image	s is by polar imaç 0.	age
5	FRAK	I	Fraction of max HIC below which scanning is stopped.	0.65	
9	DURMAX	SM	Switch: 0. if any HIC duration is allowed; a nonzero value is maximum allowed duration (ms)	0.	
7	NFLT	I.	No. of points the Tl of a HIC duration is indexed	1.	
8	NSCN		No. of points the T2 of a HIC duration is indexed	1.	
NOTE:	The supplied values l.	of NPP, FT, F FC <u>≤</u> 01	FC must satisfy the following relationships:		
	2.	NPP * DT * (I	FT - FC)≧ ² for 1% 3 for 1/2% expected error		
6/30/88	3. where DT is the val	NPP≦ 500 lue specified	in the original input deck on Card 101, field 7 converted to	o seconds.	
	NOTE: Digital filterin results since no tively "remove"	ıgʻis not cons ormal integrat all high free	sidered to be necessary for simulation MVMA 2-D Model tion time steps (.25 or .5 ms) effec- Card 1004 quency content of the response.		

TABLE 7 INPUT DATA

•

				,, ,				
							MVMA 2-D Model Card 1100-1107	
ABLE 7 INPUT DATA	<pre>telative angle test values (2 Fields of 8)</pre>	Definition High Test Value	Lower Test Value	Neck) (Lower Neck) le Torso (Upper Spine) er Torso (Lower Spine) Torso (Hip) Leg (Knee) Torso (Shoulder) Arm (Elbow)				
	JOINT F	Units deg	deg	dd-Neck (Upper ck-upper Torso oer Torso-Midd ddle Torso-Low oer Leg-Lower ver Leg-Upper ver Arm-Upper oer Arm-Upper				
		Name of Quantity RAH (I)	RAL (I)	1. Card 1100 I=1 Hee 1101 I=2 Nec 1102 I=3 Upt 1103 I=4 Mic 1104 I=5 Upt 1105 I=6 Lov 1105 I=6 Lov 1105 I=6 Lov	2. No defaults			
		Field 1	5	NOTE:				

STANDARD LIST TEST VALUES (CARD 1) (9 Fields of 8)

Field	Name of Quantity	Units	Description		
1	TESTV(1)	g's	Head frontal accelera	tion test value	
2	TESTV(2)	g's	Head vertical acceler	ation test value	
3	TESTV(3)	g's	Head resultant accele	ration test value	
4	TESTV(4)	deg/sec ²	Head angular accelera	tion test value	
5	TESTV(5)	sec	HIC	test value	
6	TESTV(6)	lbs(N)	Face load	test value	
7	TESTV(7)	in(cm)	Chest deflection	test value	
8	TESTV(8)	1bs(N)	Chest load	test value	
9	TESTV(9)	g's	Chest frontal acceler	ation test value	

NOTE: 1. If a test value is set zero or left blank, the corresponding comparison will not be made.

2. No defaults.

MVMA 2-D Model Card 1200

		TABL	E 7 INPUT DATA
		STANDARD LI	ST TEST VALUES (CARD 2) 9 fields of 8)
Field	Name of Quantity	Units	Uescription
-	TESTV(10)	g's	Chest vertical acceleration test value
2	TESTV(11)	g's	Chest resultant acceleration test value (3 msec. average)
е С	TESTV(12)	sec	Chest frontal Severity Index test value
4	TESTV(13)	sec	Chest vertical Severity Index test value
2	TESTV(14)	sec	Chest resultant Severity Index test value
9	TESTV(15)	g's	Pelvic Horizontal acceleration test value
7	TESTV(16)	g's	Pelvic vertical acceleration test value
ω	TESTV(17)	g's	Pelvic resultant acceleration test value
6	TESTV(18)	1bs(N)	Femur load at sensor test value
NOTE: See	: note for card 1200.		

,

MVMA 2-D Model Card 1201

							,			
										MVMA 2-D Model Card 1202
UT DATA	PSE SPECIFICATIONS of 8)	ription	of 'face' ellipse	of 'chest' ellipse						
-ABLE 7 INF	XD LIST ELLI (4 fields	Desci	Name	Name						
F	STANDAF	Units								
		Name of Quantity			o Defaults					
		Field	1-2	3-4	Note: No					

								ei -			
7 INPUT DATA	<pre>\ COMPARISONS fields of 8)</pre>	Description	Category humber of quantity	Column number of quantity	Name of first identifier	Name of second identifier	High test value	Low test value	4. Values needed for Field 2 range from 1 to 31 plus the true column number (excluding the time se-line, ellipse-ellipse, and belt interactions vely.	MVMA 2-D Model Card 1300	
TABLE	<u>TYPE /</u> (8 F	Name of Quantity Units		I	I	1	various	various	Note: See Table 114 for Category and are equal to an offset column). Offsets for ellip are 0, 12, and 23, respecti		
		Field	F	2	3-4	5-6	7	8			8/4/82

TYPE B COMPARISON (CARD 1) (7 Fields of 8)

Field	Name of Quantity	Units	Description
1		-	Category Number of First Quantity
2		-	Column Number of First Quantity
3-4		-	Name of first identifier of First Quantity
5-6		-	Name of second identifier of First Quantity
7		-	Number used to match with 1401 Card and order pair in printout. If left zero, assigned in order of physical position among no match 1400 cards

Note: See Table 114 for Category 4. Values needed for Field 2 range from 1 to 31 and are equal to an offset plus the true column number (excluding the time column). Offsets for ellipse-line, ellipse-ellipse, and belt interactions are 0,12, and 23, respectively.

> MVMA 2-D Model Card 1400

TABLE 7 INPUT DATA	TYPE B COMPARISON (CARD 2) (7 Fields of 8)	Name of Quantity Units Description	- Category Number of Second Quantity	- Column Number of Second Quantity	- Name of First Identifier of Second Quantity	- Name of Second Identifier of Second Quantity	- Number used to match with 1400 Card and order pair in printout. If left zero, assigned in order of physical position among no match 1400 cards	Note: See Table 114 for Category 4. Values needed for Field 2 range from 1 to 31 and are equal to an offset plus the true column number (excluding the time column). Offsets for ellipse-line, ellipse-ellipse, and belt interactions are 0, 12, and 23, respectively.	MVMA 2-D Model Card 1401	
	:	Field	-	2	3-4	5-6	7		8/4/82	

		De faul ts	0.		-33.(-83.8)	70. (177.8)	20. (50.8)	-50. (-127.)	5.	0.	<u>a</u>	
TABLE 7 INPUT DATA	<pre>XE CONTROL PARAMETERS (CARD 1) (9 Fields of 8)</pre>	Description	Switch = 0. if zero coordinate lines desired l. if not desired	UNUSED	Value of X at left margin of plots.	Value of X at right margin of plots.	Value of Z at bottom margin of plots	Value of Z at top margin of plots	<pre>Switch = 0. if no filler points to be plotted >0. = number of filler symbols to be plotted every 10 in. (10 cm) of scaled length.</pre>	Switch = 0. to plot belt anchors and attachments \neq 0. for no plot of belt anchors and attachments.	axis points right and the z-axis points down. If the ud/or ZMIN is adjusted to provide the default plot rang '.8 cm) for Z).	MVMA 2D Model Card 1500
ſ	STICK FIGU	Units	I		in (cm)	in (cm)	in (cm)	in (cm)	in (cm)	1	X since the x- t met; XMAX an and 70 in (177	
		Name of Quantity	IZERO		XLEFT	XRIGHT	ZBOT	ZTOP	NOP	IBELT	XMAX > XMIN and ZMIN < ZMA respective condition is no (103 in. (261.6 cm) for X	
		Field	-	5	т	4	2	9	2	8	NOTE:	

330

· ·

4/13/87

•

DATA
INPUT
7
TABLE

STICK FIGURE CONTROL PARAMETERS (Card 2) (9 Fields of 8)

Field	Name of Quantity	Units	Description	Defaults
-	ISTEP	I	Number of plots to be printed. The maximum number is 31 (not including plots based on input).	11.
5	IELLP	I	Switch = 0.if contact ellipse positions are desired 1.if not desired	0.
۳ ا	HEDRAD	in(cm)	Switch = 0.do not plot circle around head c.g. >0.radius of circle around head c.g.	6. (15.24)
4	IBAG	1	Switch = 0.plot airbag perimeter if present Switch = 1.do not plot airbag perimeter	0.
5	IMHEEL	I	Switch = 0.plot steering col outline if present Switch = 1.do not plot steering col outline	0.
9	ICNTCT	I	Switch = 0.plot line segments of contacts Switch = 1.do not plot contactline segments	0.
-	METH	I	Switch = 0.if time points to be specified on 1502 ca l.if time points to be generated.	ards 1.
8	FIRST	msec	Time at which first plot is desired.	0.
6	DELTA	msec	Time increment between plots. (if zero, all recorded plots will be made.)	0.
NOTE:	Fields 8 & 9 ignored if must be integral multiple	field 7 = 0 . es of the outpu	If field 7 = 0, the time points specified on 1502 cards ut plot increment in field 9 of Card 101.	

3/10/87

MVMA 2-D Model Card 1501

STICK FIGURE TIME POINT SPECIFICATION (9 Fields of 8)

Field	Name of Qua	ntity	Units	Description
I = 1,,9	POINTS (9 N+	<u>I</u> -1)	msec	Time at which plot desired
	where I N	= field = total cards	number number of occurring	1502 in the deck before this card.

NOTE: 1.Limit of β ¹ time points can be specified and they must be specified in order.

- 2. No defaults
- 3. Time points must be integral multiples of the output plot increment in field 9 of Card 101.

MVMA 2-D Model Card 1502 ر م

PLOT VARIABLE SPECIFICATIONS

(1 field of 8)

Field	Name of Quantity	Units	Description
1	NUMVPL	Numbe or to	or of output variables to be recorded for plotting b be used for generation of time history plots

NOTES:

- NUMVPL pairs of unnumbered cards must follow immediately after this card. The first card specifies the MVMA 2-D output variable that is to be recorded. The second card specifies the time increment for recording, etc.
- Recorded time histories are written to the indexed (random access) file attached to logical device number 3.
 The layout of the written file is described in the table which immediately follows the 1503-Card specifications.

332.1

		TABLE 7	INPUT DATA
		PLOT VARIABL (first un (9 fi	E SPECIFICATIONS numbered card) elds of 8)
Field	Name of Quantity	Units	Description
-	KATG, KONVP(1,-)	B	Category number of quantity to be recorded
7	KOL, KONVP(2,-)	1	* Column number of quantity to be recorded
3-4	VPNAME(1-4,-)	1	** Name of first identifier of quantity to be recorded (if Category 2, 3, 4, 63, or 64)
5 - 6	VPNAME(5-8,-)	1	<pre>** Name of second identifier of quantity to be recorded (if Category 4)</pre>
7-9	VPLEGD(1-6,-)	1	User name for this quantity (curve legend if this time history is plotted, up to 24 characters)
* NOTE:	Column 1 is always the first co Category 1 (Vehicle Response) a	umn after the [.] Id Column O.]	[IME column. [To record TIME as a plot variable, select
** NOTE:	Fields 3-4 are needed only for for Category 4 is an eilipse or	belt name. Fo	es from Categories 2, 3, 4, 63, or 64. The "first identifier" • Categories 63 and 64 it is a non-body link name.
	Fields 5-6 are needed only for or a line segment name. The se	utput quantitie ond identifier	es from Category 4. The "second identifier" is an ellipse name is not needed unless the first identifier is an ellipse name.
Allow	ed belt names for first identifie	: UPPER TORSO LOWER TORSO INBOARD LAP OUTBOARD LAP OUTBOARD LAP LOWER RING UPPER RING TORSO BELT	BELT BELT BELT BELT BELT BELT BELT STRAP STRAP STRAP
			MVMA 2-D Model (first unnumbered card for Card 1503)

5/3/88

PLOT VARIABLE SPECIFICATIONS (second unnumbered card) (6 fields of 8)

Field	Name of Quantity	Units	Description
1	VPRFID	-	<pre>* User's assigned curve reference identification (8 characters)</pre>
2	XBEG, VPBEI(1,-)	msec	Beginning time for recording of quantity to be recorded
3	XEND, VPBEI(2,-)	msec	Ending time for recording of quantity to be recorded
4	XINC, VPBEI(3,-)	msec	Time increment at which the quantity is to be recorded. Must be an integral multiple of PTINC (Card 101, field 8)
5	Α .		** Multiplication factor for category/column quantity
6	В		** Addition term for category/column quantity

* NOTE: A unique curve name (reference identification) must be assigned to each plot variable.

** NOTE: The recorded value will be (Ax + B), where x is the printout value for column KOL of category KATG. If A is zero (or blank), then the recorded value will be x, not (Ax + B).

332.3

MVMA 2-D Model (second unnumbered card for Card 1503)

.

EXAMPLE PLOT VARIABLE SPECIFICATIONS

FOR CARD 1503 (and following unnumbered cards)

14.						1503	3
1.	з.					Vehicle X-acceleration	
XVDD	Ο.	40.	1.	-9.80665	5		
46.	1.					Head CG x-position	
X.HEAD	Ο.	40.	1.				
46.	4.					Head CG z-position	
Z.HEAD	Ο.	40.	1.				
12.	1.					Head angle acceleration	
TH1DD	Ο.	40.	1.				
48.	2.					Hip x-velocity	
XD.HIP	Ο.	40.	1.	.01	ο.		
48.	5.					Hip z-velocity	
ZD.HIP	Ο.	40.	1.	.01	ο.		
49.	6.					Relative angle at knee	
RELANGK	. 07	40.	1.	-1.	90.		
49.	5.					Relative angle at hip	
RELANGH	20.	40.	1.				
4.	1.	HIP		SEATCUSH	HION S	SEG4Deflection	
D.HPSC4	Ο.	40.	1.				
4.	5.	HIP		SEATCUSH	HION S	SEG4Normal force	
FN.HPSC4	40.	40.	1.				
4.	6.	HIP		SEATCUSH	HION S	SEG4Tangential force	
FT.HPSC4	40.	40.	1.			-	
4.	8.	HIP		SEATCUSH	HION S	SEG4Slip velocity	
SV.HPSC4	40.	40.	1.			• • •	
63.	2.	FOOT				Foot x-velocity	
FOOTXVE	20.	40.	1.			•	
64.	10.	FOOT				Foot circumferential vel	
FOOTCVE	LO.	40.	1.				

The example 1503-Card specifications in this table illustrate the manner in which time history information for response variables selected from categories of standard output can be directed to a file (logical device number 3) for post-processing. Typically, the purpose would be to plot time history response curves, but various other types of post-processing might be of interest in any particular instance. The user must provide post-processing code for his particular need which will read the time history data from file 3. The layout of file 3 is shown on the three pages that follow this one.

- <u>Notes</u>: 1) Use of fields 7-9 of the first unnumbered card for a curve legend is optional; these fields can, in fact, be used to communicate any alphameric data from the MVMA 2-D data set to the plotting (or other post-processor) program by way of file 3.
 - 2) The use of optional multiplication factors and addition terms for output quantities is illustrated for the time histories identified by user names "XVDD", "XD.HIP" and "ZD.HIP", and "RELANGKN". Respectively, these: a) convert vehicle x-acceleration from g's to m/s**2 and change the sign; b) convert hip x- and z- velocity components from cm/s to m/s; and c) redefine the relative angle at the knee so that it is zero when the upper and lower leg link lines are perpendicular, not in-line (and for the knee in flexion, i.e., for a normal "seated occupant" configuration).

6/30/88

LAYOUT FOR PLOT VARIABLE DATA

ON LOGICAL DEVICE NUMBER 3

The file attached to logical device number 3 is generated via specifications on Card 1503 and following unnumbered cards. The file is a character file consisting of records of 24-character length (maximum). It must be accessed via indexed, i.e., random access, input-output commands.

A time-history curve directory is located at the top of the file. It contains the beginning index values for the sections in this file for all of the time-history variables recorded for plotting (or other post-processing).

The directory is followed by sections containing the data for each time-history variable. Each of those sections begins with a six-record header containing control and description data for the time-history variable. The ordinate data for the time-history curve follows the six-record header.

DIRECTORY SECTION

Record 1: Length of Table of Contents Card

Field	Column Range	Description
1	01 - 16	Table of Contents Identifier: E.g., "MVMA 2-D PLOTS " Format (A16)
2	17 - 20	Number of Variable Curves (NUMVPL) Format (I4)

Record 2 through Record NUMVPL + 1:

Typical Table of Contents of Recorded Variable Entry

Field	Column Range	Description
1	01 - 20	Beginning Index in this file for the first of the recorded curve entries for the respective variable curve Format (120)

332.5

5/9/88

TYPICAL	TIME-HIS	STORY (CURVE HEADER	SECTION	•
Record 1	NUMVPL +	2 thro	ough Last lir	ne of file:	
Typical	Recorded	l Varia	able Curve Er	ntry l	
Field	C	Column	Range	Description	
l		01 -	16	Curve Entry "VAR. CURVE Format (A	Identifier: ENTRY" 16)
Typical	Recorded	l Varia	able Curve Er	ntry 2	
Field	c	Column	Range	Description	
1		01	L	Data Type In S=Simulati (not used Format (dicator: on data currently) Al)
2		09 -	16	User's Curve (VPRFID)	Reference ID Format (A8)
Typical	Recorded	l Varia	able Curve Er	ntry 3	
Field	c	Column	Range	Description	
1		01 -	24	User's Varia (VPLEGD)	ble Curve Legend Format (A24)
Typical	Recorded	l Varia	able Curve Er	ntry 4	
Field	c	Column	Range	Description	
1		01 -	16	Beginning Ab (XBEG)	scissa Value for Curve Format (G16.7)
2		17 -	24	Abscissa Uni "MSEC" F	ts Designation: ormat (A8)
	Note: N a b F v	lo atte utomat be a us 'or nov used as	empt is made tically contr seful feature v the units c s "comments."	at the prese ol units, bu at some tim lesignation f	nt time to t this would e in the future. ields may be

•

5/9/88

332.6

.

Typical Recorded Variable Curve	e Entry 5
Field Column Range	Description
1 01 - 16	Abscissa Spacing for Recorded Curve Ordinates (XINC) Format (G16.7)
Typical Recorded Variable Curve	e Entry 6
Field Column Range	Description
1 01 - 04	Number of Recorded Points (NRKURV) Format (I4)
2 17 - 24	Ordinate Units Designation: "????" Format (A8)

TYPICAL TIME-HISTORY CURVE ORDINATE DATA SECTION

There follow NRKURV Typical Ordinate Records in order of increasing abscissas.

Typical Recorded Curve Ordinate Entry (for XINC abscissa spacing)

Field	Column Range	Description
1	01 - 16	Ordinate Value Format (Gl6.7)

"GO CARD" DESCRIPTION

This "Go-Card" has no fields. It serves to let the output processor know that the input data is complete and start execution. This card must be present in the deck.

MVMA 2-D Model Card 1600

3.2 DETAILED DESCRIPTION OF INPUT DATA QUANTITIES

This section of the report includes material to supplement Table 7 of Section 3.1. Answers to many questions that will arise during preparation of input data sets will be found here. This section is necessarily relatively brief, however. If a user's question is not adequately answered in this section, it is suggested that reference be made to the 397-page Tutorial System Self-Study Guide [8]. The focus of the Tutorial System is preparation of input data sets. It provides the user with detailed information about all aspects of the simulation model and also gives general guidance in proper use of the model for predicting occupant dynamics. Tables 8 and 9, which follow, are an index to use of the Tutorial System Self-Study Guide.

DATA CARDS REFERENCED BY MODULES

Module	Data Cards Referenced
2	201-217, 303, 227-238
3	201-203, 205-217, 227, 228, 233, 235-242, 303
4	102, 103, 106, 219-226, 402, 412, 903, 907-909
5	102, 103, 106, 219, 401-412
6-1	103, 219, 221-226, 401, 403-408, 702-716
6-2	102, 103, 219, 222, 401, 402, 404, 409, 410, 412, 605, 606, 705
7	205, 206, 215, 216, 301-304, 409, 1501, 1502
8	601-606
9	102, 218, 501, 701-723
10	102, 411, 901-909
11	-
12	101, 102, 104, 105, 107-111, 218, 1000-1004, 1100-1107, 1200-1202, 1300, 1400, 1401, 1500-1502, 1600

Table 8. Data Cards Referenced By Tutorial System Modules.

DATA CARD FIELDS AND REFERENCING MODULES

Card		Field							
	1	2	3	4	5	6	7	8	9
101	12	12	12	12	12	12	12	12	12
102	9,12	10,12	12	4	4,5	4	6-2	12	12
103	6-2	6-2	6-1	6-1	6-2	5	5	4	4
104	12	12	12	12	12	12	12	12	12
105	12	12	12	12	12	12	12	12	12
106	4,5	4,5	4,5	4,5					
107	12	12	12	12	12	12	12	12	12
108	12	12	12	12	12	12	12	12	12
109	12	12	12	12	12	12	12	12	12
110	12	12	12	12	12	12	12	12	12
111	12	12	12	12					
201	2,3	2	2	2 .	2		2	3	3
202	2,3	2,3	2	2	2	2	2	2	3
203	2	2	2	2	2	2	2	2	2,3
204	2	2	2	2	2	2	2	2	
205	2,3	2,3	2,3	2,3	2,3	2,3	2,3	2,3,7	2,3
206	2,3	2,3	2,3	2,3	2,3	2,3	2,3	2,3,7	2,3
207	2	2	2	2	2	2	2	2	2
208	2	2	2	2	2	2	2	2	2
209	2	2	2	2	2	2	2	2	2
210	2	2	2	2	2	2	2	2	2
211	2,3	2,3	2,3	2,3	2,3	2,3	2,3	2,3	2,3
212	2	2	2	2	2	2	2	2	2

Table 9. Data Card Fields Referencing Modules (Page 1 of 6) (Jutorial System)

Card		Field							
	1	2	3	4	5	6	7	8	9
213	3	3	3	3					
214	3	3	3	3	-		3		3
215	2,3	2,3	2,3	2,3	2,3	2,3	2,3,7	2,3	2,3
216	2,3	2,3	2,3	2,3	2,3	2,3	2,3,7	2,3	2,3
217	2	2 .	2	2	2	2	2,3	2	
218	12	12	12	9	9	9	9	9	9
219	4	4	4,6-1	4,6-1	4	4,5,6-2			
220	4	4	4	4	4	4			
221	4,6-1	4,6-1	4,6-1	4,6-1	4,6-1	4,6-1	4,6-1	4,6-1	4,6-1
222	4,6-1	4,6-1	4,6-2				4,6-1	4,6-1	4,6-1
223	4,6-1	4,6-1	4,6-1						
224	4,6-1	4,6-1	4,6-1						
225	4,6-1	4,6-1	4,6-1	4,6-1	4,6-1	4,6-1	4,6-1	4,5-1	ŀ
226	4,6-1	4,6-1	4,6-1	4,6-1	4,6-1	4,6-1	4,6-1	4,6-1	
227	2,3	2,3	2,3	2,3	2,3				1
228	2,3	2,3	2,3	2,3	2,3			1	
229	2	2	2	2	2			-	
230	2	2	2	2	2				
231	2	2	2	2	2				
232	2	2	2	2	2	· · · · ·			
233	2,3	2,3	2,3	2,3	2,3				
234	2	2	2	2	2				
235	2,3	2,3	2,3	2,3	2,3				

Table 9. Data Card Fields Referencing Modules (page 2 of 6)

Card		Field							
	1	2	3	4	5	6	7	8	9
236	2,3	2,3	2,3	2,3	2,3				·
237	2,3	2,3	2,3	2,3	2,3				
238	2,3	2,3	2,3						
239	3	3							
240	3	3							
241	3	3							
242	3	3	3	3					
301	7	7	7	7	7	7	.7	7	7
302	7	7	7	7	7	7	7	7	7
303	7	7	7	7	2,3,7	3,7			
304	3,7	7	3,7	7	•				
401	5	5	5,6-1	5,6-1	5,6-2	5,6-2	5,6-2	5,6-2	
402	5	5	5	4,5,6-2	5,6-2 [.]	5	5		
403	5,6-1	5,6-1	5,6-1	5,6-1	5,6-1	5,6-1	5,6-1	5,6-1	5,6-1
404	5,6-1	5,6-1	5,6-2	6-2	6-2	6-2	5,6-1	5,6-1	5,6-1
405	6-1	6-1	6-1						
406	6-1	6-1	6-1						
407	6-1	6-1	6-1	6-1.	6-1	6-1	6-1	6-1	
408	6-1	6-1	6-1	6-1	6-1	6-1	6-1	6-1	
409	5	5	5	5	5,6-2,7	6-2	5	5	
410	5	5	5	6-2	6-2	6-2	6-2		
411	5	5	5	5,10	5,10	5	5	10	
412	4,5,6-2	4,5,6-2	4,5,6-2	5,6-2	5,6-2				

Table 9. Data Card Fields Referencing Modules (page 3 of 6)

Card		Field							
	1	2	3	4	5	6	7	8	9
501	9	9	. 9	9	9	9	9	9	
601	8	8	8.	8	8	8	8	8	
602	8	8	8						·
603	8	8	8						
604	8	8							
605	6-2,8	6-2,8	6-2,8	6-2,8	6-2,8				
606	6-2,8	6-2,8	6-2,8						
701	9	9	9	9	9	9	9		
702	6-1,9	6-1,9	9	9	9 -	9	9	9	
703	6-1,9	6-1,9	9	9	6-1,9	6-1,9	9	9	
704	6-1,9	6-1,9	6-1,9	6-1,9	6-1,9	6-1,9	6-1,9	6-1,9	6-1,9
705	6-1,9	6-1,9	6-2,9				6-1,9	6-1,9	6-1,9
706	6-1,9	6-1,9	6-1,9						
707	6-1,9	6-1,9	6-1,9						
708	6-1,9	6-1,9	6-1,9	6-1,9	6-1,9	6-1,9	6-1,9	6-1,9	
709	6-1,9	6-1,9	6-1,9	6-1,9	6-1,9	6-1,9	6-1,9	6-1,9	
710	9	9	9	9	9	6-1,9	6-1,9	9	9 .
711	9	9	9	9	9	6-1,9	6-1,9	9	9
712	9	9	9	9	9	6-1,9	6-1,9	9.	9
713	9	9	9	9	9	6-1,9	6-1,9	9	9
714	9	9	9	9	9	6-1,9	6-1,9	9	9
715	9	9	9	9	9	6-1,9	6-1,9	9	9
716	9	9	9	9	9	6-1,9	6-1,9	9	9

Table 9. Data Card Fields Referencing Modules (page 4 of 6)

•

Card		Field							
	1	2	3	4	5	6	7	8	9
717	9	9	9	9	9	9	9		
718		9	9						
719	9	9	9	9	9	9	9		
720	9	9	9	9	9	9	9	9	
721	9	9	9	9	9	9			
722	9	.9	9	9	9	9			
723	9	9	9	9	9	9			
901	10	10 .	10	10	10	10	10	10	10
902	10	10	10	10	10	10	10		10
903	10	10	10		10	10	4,10		
904	10								
905	10								
906	10								
907	4,10	4,10	4,10	4,10			4,10	4,10	
908			4,10	4,10	4,10	4,10	4,10	4,10	
909	4,10	4,10	4,10	4,10					
1000	12								
1001	12								
1002	12								
1003	12	12	12	12	12				
1004	12	12	12	12	12	12	12	12	
1100	12	12							
1101	12	12							

Table 9. Data Card Fields Referencing Modules (page 5 of 6)

Card	Field								
	1	2	3	4	5	6	7	8	9
1102	12	12							
1103	12	12							
1104	12	12							
1105	12	12							
1106	12	12							
1107	12	12							
·1200	12 .	12	12	12	12	12	12	12	12
1201	12	12	12	12	12	12	12	12	12
1202	12	12	12	12					
1300	12	12	12	12	12	12	12	12	
1400	12	12	12	12	12	12	12		
1401	12	12	12 ·	12	12	12	12		
1500	12	7,12	12	12	12	12	12	12	
1501	12	12	12	12	12	12	12	12	12
1502	12	12	12	12	12	12	12	12	12
1600	12	,							

Table 9. Data Card Fields Referencing Modules (page 6 of 6)

INPUT DATA CARDS

Card 100

This card contains the run title. It is used by the program in the automatic preparation of headings for each page of printed output.

Card 101

The switch MKSSWT instructs the program to interpret input data from all following cards in metric units or English units. The required units for all input values, whether metric or English, are indicated in Table 7. Input units are mixed, e.g., "in" (or "cm") might be required for one value while "ft" (or "m") will be required for another. Internal units, however, are in-lb-sec for a run made in English system units and m-N-sec for a metric system run. See Table 10 for conversion constants.

The integration option indicator, INTOP, should be set equal to 1. or 2. at present. The integration subroutine which has been supplied with this program uses a fixed-step Runge-Kutta integration if INTOP#2. and a fixed-step Adams-Moulton predictor-corrector integration if INTOP=2. Both integration methods are fourth order.

6/28/85

METRIC/ENGLISH SYSTEM CONVERSION CONSTANTS

PHYSICAL QUANTITY	CONVERSION RELATION
Length	l in. = 2.54 cm*
Length	1 ft. = .3048 m*
Length	39.370075 in. = 1 m
Force	1 1b. = 4.4482216 N
Mass	1 1bm = .45359237 kg*
Mass	1 lb-sec ² /in. = 175.12684 kg
Mass	1 slug = 14.593903 kg.
Moment of Inertia	1 1b-sec ² -in = 0.11298483 kg-m ²
Torque	1 1b-in = 0.11298483 N-m
Energy	1 in-1b = 0.11298483 N-m
Linear Spring Coefficient	1 1b/in. = 1.7512684 N/cm
Second Order Coefficient	1 1b/in ² = 0.68947573 N/cm ²
Third Order Coefficient	1 1b/in ³ = 0.27144714 N/cm ³
Fourth Order Coefficient	l lb/in ⁴ = 0.10686895 N/cm ⁴
Fifth Order Coefficient	1 1b/in ⁵ = 0.042074390 N/cm ⁵
Sixth Order Coefficient	l lb/in ⁶ = 0.016564721 N/cm ⁶
Pressure	$1 \ 1b/in^2 = 0.68947573 \ N/cm^2$
Pressure	1 atm. = 14.696 lb/in ² = 1.0132535 x 10 ⁵ N/m ²
Gas Constant	l ft-lb/(lbm °F) = 5.38032 Joules/(kg °C)
Specific Heat	l BTU/lb-°F = l kg-cal/kg-°C = 4.1868 Joules/gm-°C*
Earth Standard Gravity	<pre>1 E.S.G. = 9.80665 m/sec²* = 32.174049 ft/sec² = 386.08858 in/sec²</pre>

* Exact conversion

Table 10. Metric/English System Conversion Constants

...

Beginning time, TB, is usually chosen to be 0.0 msec unless the exercise is a restart. The final time, TF, usually ranges from 150-250 msec for vehicle occupant studies and up to 1 second for pedestrian studies.

ن

The numerical integration step size, DT, is usually selected as 0.001 sec. Smaller sizes have been used in particularly violent dynamic events.

The print time increment, PTINC, in Field 8 is sometimes set to 0.001 sec. For applications where the increment is not so critical, PTINC = 0.005 sec. will produce a complete record of an output subject on one sheet of printed paper for a 200-msec simulation.

Card 102

The first three fields of Card 102 indicate whether belt, airbag, and energy-absorbing steering assembly submodels are to be used. If an option is not desired, it is necessary only to enter a 0. here; the associated submodel parameter cards need not be removed from the data deck.

The fourth, fifth, and sixth fields of Card 102 control inhibitions of contact between body segments and the various regions describing the vehicle. Field 6, ILL, should be selected first. If it is set to 1., contact between body ellipses is not sensed in the program. If it is set to 0, then the setting of LHIB in field 4 controls ellipse contact inhibitions. Some of the Cards 106 contain two ellipse names. If LHIB = 0, these potential contacts are allowed; if LHIB \neq 0, these contacts are not considered. Field 5 controls the meaning of Cards 106 for region-ellipse contacts. It should be noted that only those contacts which are likely to be important should be included. The more contacts which must be tested, the more complex the algorithm and costly the computer run.

Field 7 contains FNU. This quantity attempts to soften the effect of a discontinuous frictional force. Assume that a normal force begins to move tangentially over a surface. Theory states that a friction force exists

the moment this tangential motion starts. FNU defines a velocity ramp. For zero velocity, tangential friction is zero. For the velocity, FNU, the friction force attains its full value. For tangential velocities between 0 and FNU, the tangential force behaves as a linear function of velocity. (See Section 2.6.6). Values from 1.0 to 10 in/sec are reasonable.

Field 8 contains EPSINV. This quantity is used to sense errors introduced during matrix inversion due to singularity conditions. The quantity is particularly tuned to matrix diagonal quantities which are very small compared with their neighbors. If the matrix tends to singularity, this check will register as a fatal error and execution will be terminated. This value which has been used successfully in HSRI crash victim simulators is 0.000001.

Field 9 contains MX, the execution CPU time limit. This quantity will depend on user experience with the particular simulation event which is being conducted. It is estimated that 2 min. should be sufficient for most purposes.
Card 103

The first, second, and fifth fields define DSTEPX, DSTEPN, and LIMCNT which are used when deflection is shared between a contact ellipse and a region (or other ellipse). The shared deflection problem can be stated as

 $F_1(\delta_1) = F_2(\delta_2)$ $\delta_1 + \delta_2 = \delta$

where

 F_1 , F_2 are the forces on the contacting elements,

 $\boldsymbol{\delta}$ is the total deflection

 δ_1 , δ_2 are the deflections of the individual elements.

Without including an elaborate formulation, the shared deflection algorithm can be described as follows. First, a non-zero δ is sensed. It is necessary to balance forces and solve the individual deflections, δ_1 and δ_2 . A function G is defined as follows:

 $G(\delta_1) = F_1 (\delta_1) - F_2 (\delta - \delta_1)$

and the algorithm attempts to find δ_1 in the range 0 to δ for which $G(\delta_1) = 0$.

For initial contact, two δ 's are estimated.

 $\delta_{11} = \frac{\delta}{2} \quad , \quad \delta_{12} = \frac{\delta}{4}$

The quantity G is computed for both. If both G's have the same sign, δ_1 does not lie between δ_{11} and δ_{12} and new δ_{1i} 's must be selected until δ_1 is trapped. When the two G's are of the same sign, then δ_1 is trapped and an interval halving procedure is used to isolate it.

For the case of continuing contact, the following information is available to the program: a new δ as well as δ_1 and δ_2 for the previous time step. In this case new δ_{1i} 's must be estimated until δ_1 is trapped as described above.

The quantities, δ_{12} , are estimated using a classical Newton's method.

DSTEPX and DSTEPN are the maximum and minimum allowed trial adjustments of the component deflection values at any iteration step. Values of .2 and .02 are virtually always suitable. The number of iterations allowed, LIMCNT, should be about 20. The zero of $G(\delta_1)$ is usually found in fewer than 10 iterations. LIMCNT is essentially the limit of the subscript i in δ_{1i} .

Fields 3 and 4 contain FORLIM and HARDCN which relate to the contact between two elements specified to be "rigid." In reality the model treats rigid members as extremely stiff elastic-plastic solids. The linear elastic constant, HARDCN, is usually chosen to be 15,000 lb/in while FORLIM often limits the value of the resulting contact force to 100,000 lb.

Fields 6 and 7 contain TPC and EPSFAC which are used when contact region line segments are specified to move as a function of time (See Figure 32). They are introduced to avoid abrupt changes in velocity at line segment corner points. The quantity EPSFAC is the number of integration time steps over which the maximum ramp length connecting the two velocity levels is specified. The quantity TPC defines the ramp length on the basis of a percentage of the time between t_1 and t_2 . The quantity, ε , shown in Figure 32 is defined as

 $\varepsilon = \min \left\{ \text{TPC x } (t_2 - t_1), \text{ EPSFAC x } \Delta t \right\}$

The usual value for TPC is 0.05 (5% of the ramp) and 10 for EPSFAC which allows a change of velocity to become complete within 5 msec if the integration time step is selected to be 0.5 msec.

Fields 8 and 9 contain the geometric quantities BETELP and GAMELP which relate to ellipse contact. Because the t_{rue} ellipse contact problem involves an extremely complex algorithm, HSRI has chosen to replace all ellipses by

special circles thus leading to an important reduction in computer exercise costs. If the ellipse is nearly a circle (if the ratio of the shorter to the longer semi- axis is nearly unity), the ellipse is simply replaced by a circle placed at the ellipse center. The ratio of axis lengths (the level of the desired approximation) is controlled by the input quantity BETELP. HSRI usually sets BETELP at least as large as 0.75, usually 1.0.

If the ratio of the semiaxes is less than BETELP, a circle with a radius equal to the shorter semimajor axis essentially sweeping out a rectangle capped with semi-circular ends. This geometric figure replaces the ellipse. In a way this is similar to the straight line techniques used in ROS but without the attendant analytical problems. The quantity GAMELP controls the extent of the excursion of the circle. When GAMELP = 1, the circle can travel to a point where it is tangent with the end of the ellipse. HSRI practice is to choose GAMELP = 0.9 or higher. See Section 2.6.7 for the analysis and Figure 35 for a schematic.

Cards 104-105

Auxiliary or debugging printout for this program is organized in terms of sixteen four-level switches. Each switch corresponds to a particular section of the program. The levels of a particular switch control the depth of detail of the debugging printout. Examples of hexadecimal debug words for use on the 104-105 cards as well as a complete description of the output available using this technique are included as Section 4.3.5 of this report. Because debug printout is specified as a function of time, it is possible to isolate very small time domains for detailed study. This is usually necessary because of the immense amount of printout which can be generated by the debug commands.

Debug printout can be obtained for all four evaluations of derivatives required by the Runge-Kutta integration or only at the final evaluation (at the full time step Δt). If debug printout for the intermediate evaluations is felt unlikely to be of value for a particular run, then the total amount of debug printout can be reduced to one fourth by setting Field 9 of Card 104 to 1. While it is generally true that intermediate evaluations are not important for uncovering a program bug, they can in some cases be of value. A value of 1. is recommended.

Field 9 of Card 105 contains KDICTP. The packing debug dictionary contains internal references to storage of contact force information and connects these references to external alphabetic titles of contact ellipses and regions. Although this material is not useful in the case of routine exercises, it should be obtained when new simulation problems are initiated or when debug printout is required. A value of 0. is recommended.

Card 106

Each of these cards contains the name of an ellipse attached to the body of the crash victim and either another ellipse or one of the contact regions describing the vehicle. Depending on the settings of KHIB, LHIB, and ILL on Card 102, they may refer to contacts which are allowed or which are disallowed. The most customary practice is to select desired or anticipated contacts and include them on these cards. The general operational philosophy is to use as few contacts as possible thus minimizing run costs.

Cards: 107-111

These cards contain switches controlling storage of potential program output quantities. The amount of storage should be kept at a minimum to reduce costs. The actual printout of these classes of variables is controlled by Card 1001 and 1002. Table 11 provides a listing of all output categories.

Category Number	
--------------------	--

Description

0	Formatted Printout of Input Quantities
1	Vehicle Response
2	Real Line Region Parameters
3	Real Line Region Individual Line Segment Movement
4	Contact Forces Including Occupant-Vehicle, Occupant-
	Belt, Occupant-Occupant
5	Neck Reaction Forces
6	Unfiltered Body Accelerations (Head, Chest, Pelvis)
7	Filtered Body Accelerations (Head, Chest, Pelvis)
8	Severity indices from unfiltered accelerations
9	Severity indices from filtered accelerations
10	Body Link Angles
11	Body Link Angular Velocities
12	Body Link Angular Accelerations
13	Body Joint Coordinates
14	Body Joint Velocities
15	Body Joint Torques
16	Body Joint Absorbed Energies
17	Body Kinetic Energies
18	Airbag Variables
19	Airbag Contact Forces
20	Airbag Center of Mass Forces and Moments
21	Neck Joint Coordinates
22	Shoulder Joint Coordinates
23	Joint Torque Elastic Components
24	Joint Torque Joint-Stop Components
25	Joint Torque Friction Components
26	Joint Torque Viscosity Components
27	Joint Absorbed Energy Joint Stop Components
28	Joint Absorbed Energy Friction Components
29	Joint Absorbed Energy Viscosity Components
30	Center of Mass X-Component Forces
31	Center of Mass Z-Component Forces

Table 11 List of Output Categories

Category Number	ry Description		
32	Center of Mass Resultant Moments		
33	Steering Column Coordinates		
34	Steering Column Generalized Coordinates		
35	Steering Column Forces and Moments		
36	Forces and Moments on Body Due to Steering Column		
37	Neck and Shoulder Forces		
38	Muscle Tension Forces		
39	Muscle Tension Energy Absorption		
40	Femur and Tibia Accelerations and Loads		
41	Joint Relative Angle Comparisons Against Upper and		
	Lower Test Values		
42	Standard List of Quantities to be Compared Against		
	Test Values		
43	Individual Type A Comparisons		
44	Individual Type B Comparisons		
45	Printer-Plots of Stick Figures		
46	Head Center-of-Gravity Motion		
47	Chest Center-of-Gravity Motion		
48	Hip Motion		
49	Joint Relative Angles		
50	Joint Relative Angle Velocities		
51	Advanced Airbag System Thermodynamic Variables		
52	Pressure Forces on Body (AAS*)		
53	Occupant-Plane Normal Flotation Forces (AAS)		
54	Occupant-Plane Tangential Flotation Forces (AAS)		
55	Off-Occupant-Plane Normal Flotation Forces (AAS)		
56	Off-Occupant-Plane Tangential Flotation Forces (AAS)		
57	Bag Slap Forces on Body (AAS)		
58	Airbag Equilibrium and Contact Conditions (AAS)		
59	Airbag-Deformable Segment Motions (AAS)		
60	Total Bag Forces on Body (AAS)		
61	Total Inertial X-Component Bag Forces (AAS)		
62	Total Inertial Z-Component Bag Forces (AAS)		
63	Non-body link motion		
64	Non-body link resistance forces and moments		

Table 11 List of Output Categories

352

6/28/85

.

SUMMARY PAGE FOR MAXIMUM LINE SEGMENT DEFLECTIONS

Standard Summary Page Output

An option that can be selected through field 8 of Card 1003 of the Output Processor data set provides for printout of a single page of summary data relating to ellipse-line interactions. This option serves the following purposes:

- 1) to identify the maximum line segment deflection, and associated quantities, for each ellipse-line interaction occurring in an MVMA 2-D CVS simulation
- 2) to identify specifically the maximum deflection of the windshield together with associated quantities
- 3) to identify specifically the maximum chest deflection occurring in any ellipse-line interaction, together with associated quantities

Special data set specifications are required if printouts for items 2 and/or 3 above are to be obtained. Program code identifies windshield and chest interactions on the basis of names specified by the user in the data set. Thus, some care must be taken in specification of pertinent names if there is intention to make use of established maximum deflection data. In particular:

- a) A windshield interaction is identified if either the region name or the segment name for an ellipse-line interaction begins with the four characters "WIND". It is best not to have more than one such segment or region in the data set.
- b) A chest interaction is identified if either the ellipse name or the ellipse material name for an ellipse-line interaction begins with the four characters "CHES". It is best not to have more than one such ellipse or material in the data set.

Special Uses of Related Output Processor Code

Standard Summary Page printout is obtained by using the 1003-Card. Users may, however, generate related output in whatever form they choose by making program modifications. Data pertinent to maximum ellipse-line deflections are found in common block /MAXDEF/, which is described below. These data may be referenced from any subroutine in the Output Processor to which the /MAXDEF/ common block is added. References to maximum deflection data and associated quantities should be made as follows:

Windshield — If IWIND is 0, there was no windshield interaction. If IWIND is not zero, then use it as an index to find desired values. (See Definitions below.) For example, the maximum windshield deflection is DELLMX(IWIND), occurring at time TIMEDL(IWIND). Chest -- If IACTC is 0, there was no chest interaction. If IACTC is not zero, then maximum chest deflection and associated quantities are DELCMX, DELLIN, TIMEDC, FORCDC, ELLC(1-4), and SEGC(1-4).

Line segments other than the windshield -- If NINTLE is 0, no ellipse-line interaction occurred. Otherwise, NINTLE is the number of occurring interactions and an interaction I of interest is identified by its INTACT() index, which is stored by CATG1 in IACTLE(I), and also by the ellipse and line segment names, which are stored in ELLPSE(1-4,I) and SEGMNT(1-4,I).

DEFINITIONS

The common block /MAXDEF/ is defined as follows in Subroutine CATG1:

COMMON/MAXDEF/DELLMX(100), DELELL(100), TIMEDL(100), FORCDL(100),

- 1 ELLPSE(4,100), SEGMNT(4,100), IACTLE(100), NINTLE, IWIND,
- 2 DELCMX, DELLIN, TIMEDC, FORCDC, ELLC(4), SEGC(4), IACTC

~----

Definitions of quantities in /MAXDEF/ are given in the table below. The index I ranges from 1 to the number of occurring ellipse-line interactions, NINTLE (100 maximum).

D. C.

Quantity	Definition	
DELLMX(I)	Maximum deflection of line for ellipse-line interaction I	
DELELL(I)	Ellipse deflection for interaction I at time of maximum line deflection	
TIMEDL(I)	Time of maximum deflection of line for interaction I	
FORCDL(I)	Force for interaction I at time of maximum line deflection	
ELLPSE(1-4,I)	Name of ellipse (4A4) in interaction I	
SEGMNT(1-4,I)	Name of line segment (4A4) in interaction I	
IACTLE(I)	Index for interaction I in INTACT array of common block /PREP/ (probably not needed for summary page printout application)	
NINTLE	Number of ellipse-line interactions occurring in the simulation	
IWIND	Index in /MAXDEF/-arrays for interaction data relating to maximum windshield deflection	
DELCMX	Maximum deflection of chest	

3/19/86

DELLIN Line segment deflection at time of maximum chest deflection

TIMEDC Time of maximum deflection of chest

FORCDC Chest force at time of maximum chest deflection

- ELLC(1-4) Name of chest ellipse (CHES..., 4A4) with maximum chest deflection
- SEGC(1-4) Name of line segment which produces maximum chest deflection (4A4)
- IACTC Index for chest interaction in INTACT array of common block /PREP/ (probably not needed for summary page printout application)

3/19/86

Card 200

This card contains the run subtitle for the occupant parameter input block. It is used by the program in the automatic preparation of headings for each page of printed output.

Cards 201-204

Useful schematics are included as Figures 66 and 67.

Cards 205-216 (plus Card 242)

There are a variety of quantities on these cards which define the geometry and torsional strength properties of the various joint structures. Joint geometry will be discussed followed by a discussion of joint torque generation.

Figure 68 is a sketch of a human in a standing position. His body links have been sketched in to show that they are not necessarily in alignment. This factor becomes important in auxiliary programs which compute body link dimensions on the basis of external anthropometric data.

Figure 69 is a schematic representation of the standing man represented by his links and contact circles. In this diagram the misalignment of the links is shown and the misalignment on angular displacement between the upper torso link and the neck link is labeled ZETA.

Figure 70 is a sketch of a human in a seated position. His body links as required for input to the program have been superimposed on the body outline to show their positions. The same considerations apply to sitting position as were discussed for the standing position in Figure 68.

Figure 71 is similar to Figure 69 except that the occupant is seated. It is apparent that the natural angular displacement of the links at the knee and hip are different for the seated position and the standing position. Distinction between seated and standing positions becomes necessary when the simulation is used to characterize vehicle occupants and pedestrians.

Lower neck joint

۰:

$$\vec{l}_{9 \rightarrow 7} = \mathbf{x}_{s}\mathbf{i}_{2} + \mathbf{z}_{s}\mathbf{k}_{2}$$

$$\theta_{c}$$
 = constant
L₂₇ = constant

Figure 67.

Shoulder Joint

Figure 68. Standing Position

Figure 69. Schematic Representation of Man

Figure 70. Sitting Position

Figure 71. Schematic Sitting Position

Figure 72 shows how natural link orientation might be obtained in the construction of a dummy which employs an assemblage of symmetrical jointed links. Namely, interconnecting flanges of appropriate angular sweep could be used between the links. This feature would allow the joint to be at rest in a natural position without exerting a torque. In actual dummy construction, the individual links might incorporate the angular characteristics required at each end. This figure is included only to point out that both dummies and the mathematical models of humans must accommodate the natural angular displacement of the links when the human is at rest.

On Cards 205-216, joint-stop angles and a "natural link angle" must be prescribed for each joint. All are prescribed as "relative angles."

Figure 73 defines, for the purposes of this discussion, the relative angular displacements between two adjacent links. Figure 74 illustrates the definitions of joint-stop angles and the "natural link angle." Consider the joint between body links " L_{α} " and " L_{β} ." Here, " α " shall designate the link nearer to the head and " β " the link nearer to the feet. The upper and lower joint-stop angles and the "natural link angle" are defined by counterclockwise (positive) rotation of L_{α} with respect to L_{β} , as shown in the Figures. Positions of L_{α} requiring clockwise rotation are described by negative angles.

Field 1 of Cards 205-212 and 215-216 contains KJI(I,1). If positive, this is the linear coefficient of an elastic torque generated when two links move away from their "natural" link orientation defined above. If negative, the magnitude is taken as a linear joint-stop spring stiffness. Quadratic and cubic joint-stop stiffnesses are in fields 2 and 3.

Figure 74. Definition of joint stop angles and natural link position

Field 4 on these cards contains a viscous damping constant. The damping torque generated at a joint is

$$T_i^{v} = C_i^{j} \theta_i^{v}$$
,

where T_i^V is the torque, C_i^j is the damping constant, and θ_i^V is the relative angular velocity between the two adjacent body elements.

Fields 5 and 6 define the joint constant friction properties of the crash victim as shown in Figure 7. When the relative angular velocity between the two adjacent body segments exceeds the threshold velocity V_i^J , the frictional torque, F_i^J , is applied to resist the motion.

Fields 7 and 8 on cards 205-212 and 215-216 define the location of upper and lower joint stops. Field 9 defines the ratio of conserved to stored energy in the stops. It is used in the computation of an unloading curve.

Cards 213, 214, and 242 contain similar quantities for elongation and compression of the neck and shoulder elements. Analogies with the quantities on Cards 205-212 and 215-216 do not always hold strictly. First, there is no "stop" for the neck element. It might be considered that there is a stop at zero elongation since the quadratic and cubic deflection coefficients take effect immediately with deviation from the initial neck length (Field 5 of Card 303), but no conserved-absorbed energy ratio (Field 9) is used. Energy can be dissipated through viscous damping for both the neck and shoulder element, but there is no constant friction. The shoulder element does have a stop (RSH), i.e., an elongation at which a conserved-absorbed energy ratio takes effect along with a stiffening of the deflection curve (the quadratic and cubic deflection coefficients). The neck element behaves differently in elongation and compression if the coefficients on Cards 213 and 242 differ.

Card 217

Fields 1-7 on Card 217 define the "natural" link displacements for the joints. When relative joint angles equal these "rest angles," the joint torques due to linear spring forces are zero. It should be noted that this natural angle does not have to correspond to the initial position of the crash victim. The "natural" angle is described in Figure 74.

Card 218

Self-contained. (See Figure 75.)

Card 219

This card and at least two following it should be included for each contact-sensing ellipse attached to the crash victim. This first contains an ellipse name used in output headings, the name of the material defining the force-deformation characteristics of the ellipse, the body element on which the ellipse is attached, and the friction class. A friction class number is assigned to each ellipse and each contact region. For each pair of friction class numbers, a friction constant is assigned (see Card 412).

Card 220

This card locates the ellipse with respect to the center of gravity of the particular body segment to which it is attached. Fields 3 and 4 locate the center of the ellipse while fields 4 and 6 determine the semi-axes of the ellipse which are located parallel to the moving coordinate system attached to each body element. Figure 76 illustrates the definition of these various parameters.

Example for a 'foot' ellipse

Cards 221-226

See Cards 403-408.

Cards 227-238

Cards 227-237 contain the muscle element coefficients a_1 , a_2 , a_3 , which, together with the tabular time-dependent muscle tensions |M| from 238-Cards, define the Maxwell coefficients of the composite musculature at a joint. This is discussed in Section 2.3.2.

The literature does not at present contain a great deal of experimental information relating to the values a_1 , a_2 , a_3 , and M(t). HSRI has successfully used values determined by Bowman [10] from certain published data for the knee and by scaling on the basis of available anthropometric data. The available values which are pertinent to the MVMA 2-D simulation are given below. $|M|_{max}$ in each instance is the maximum degree of muscle contraction by an average man. Figure 77 pertains to scaling of these data.*

Upper neck joint and lower neck:

$$a_1 = 1.476$$
 lb in/deg
 $a_2 = 0.153$ deg⁻¹
 $a_3 = 0.0129$ sec/deg
 $|M|_{max} = 210$ lb in
Shoulder-upper torso joint:
 $a_1 = 0.15$ lb in/deg
 $a_2 = 0.153$ deg⁻¹
 $a_3 = 0.0129$ sec/deg
 $|M|_{max} = 5$ lb in
Neck element elongation:
 $a_1 = 42.3$ lb/in
 $a_2 = 4.4$ in⁻¹

^{*}L is the effective moment arm at a joint for action of a muscle.

 $a_3 = 0.37 \text{ sec/in}$ $|M|_{max} = 210 \ lb$ *Shoulder-upper torso joint: $a_1 = 0.15$ lb in/deg $a_2 = 0.153 \text{ deg}^{-1}$ $a_3 = 0.0129 \text{ sec/deg}$ $|M|_{max} = 5$ lb in *Shoulder element elongation: $a_1 = 4.23 \ lb/in$ $a_2 = 4.4 \text{ in}^{-1}$ a₃ = 0.37 sec/in $|M|_{max} = 200$ lb Knee: $a_1 = 10.44$ lb in/deg $a_2 = 0.105 \text{ deg}^{-1}$ $a_3 = 0.0088 \text{ sec/deg}$ $|M|_{max}$ = 4320 lb in (two knees together)

Cards 239-241

Since shoulder flexibility may be more restricted in some directions than in others (See Section 2.3.1)allowance has been made for angular dependence of the stiffness coefficients for elongation of the shoulder element. Periodic tables may be entered by use of Cards 239-241.

<u>Card 242</u>

See the last paragraph of the section describing Cards 205-216.

This card contains the run subtitle for the occupant orientation input block. It is used by the program in the automatic preparation of headings for each page of printed output.

^{*} The shoulder muscle tension parameter values are little better than guesses.

Figure 77. Muscle at a joint

SCALING LAWS RELATING MUSCLE PARAMETERS

FOR JOINTS I AND II:

^a],II =
$$\left(\frac{L_{II}}{L_{I}}\right)^{2}$$
 ^a],I = $\frac{|F_{max,II}|}{|F_{max,I}|}$

^a2,II =
$$\left(\frac{L_{II}}{L_{I}}\right)$$
 ^a2,I

$$a_{3,II} = \left(\begin{array}{c} L_{II} \\ \hline L_{I} \end{array} \right) a_{3,I}$$

where
$$|F_{max,j}| = |M_{max,j}| / L_j$$
.

<u>NOTE</u>: I and II indicate either two joints for the same individual or the same joint for two individuals. M is the maximum static torque that can be voluntarily generated at joint j. $F_{max,j}$ is the maximum static tension that can be generated in the muscle element under the same conditions. For scaling from individual to individual for the same joint, $|F_{II}|/|F_{I}|$ can reasonably be taken as $(m_{II}/m_{I})^{\frac{2}{3}}$, where m is total body mass.

Card 301

This card contains the initial body link angles. They are computed relative to the null position shown in Figures 76 and 79. Two examples are also shown in Figure 79, an upright occupant position with arms extended and a representative seated position. The angles included in the tabular output use this same convention.

In auxiliary debug output, the angles are computed using a different convention. The null position is shown in Figure 80 as well as the values corresponding to the seated example of Figure 79.

Card 302

Self-contained (See Card 301)

Cards 303-304

Self-contained. (See Figure 67 for X_s and Z_s .) Card 400

This card contains the run subtitle for the input block used to describe the shape and physical properties of the vehicle interior. It is used by the program for the automatic preparation of headings for each page of printed output.

Cards 401-402

These two cards which must be supplied for each contact region contain the control switches which select the various contact force generation options available with the program.

Each contact region is given a region name and a name for the material properties as specified in Fields 1-4 of Card 401. The switch in Field 5 selects the force generation model to be used. The standard model (switch = 0) uses techniques similar to MODROS and older HSRI models. That is, line segments within a region deform independently for each impinging contact-sensing ellipse and continuity is not maintained between adjacent line segments within a region. The force-deformation curve may be tabular, polynomial or a combination. The standard force-deformation model does have the advantages of the real-line

 $\theta_1, \theta_2, \theta_3, \theta_4, \theta_5, \theta_6, \theta_7, \theta_8, \theta_n = 0$ (input or output)

Figure 78. Occupant Model Configuration with all Body Link Angles Equal to Zero, for INPUT or OUTPUT

Null	Posi	tion

interior model in the sense that resultant forces are computed in a direction perpendicular to the particular line segments of the region which are contacted.

If the switch = 1 in Field 5, a model of material response coupled with structural deformation is used. The force-deformation properties for the region are applicable for all line segments. However, continuity of the line segments is maintained and permanent deformation of one segment will result in permanent deformation for all. This permanent deformation also affects the location of the region for contacts involving additional ellipses. In addition, the use of this structural model allows variable stiffness within a contact region. A use of this is to simulate exactly the force-deformation curve of a region in the place where test data is available and to provide stiffer response near support structure for the region.

Field 6 of Card 401 supplements the contact model. If the switch = 0, multiple ellipses interacting with one line segment are not considered independently. Rather, the sum of their independent forces is required to equal the maximum of the forces generated if they are all considered independently. This effectively distributes the loading of several contact ellipses over the surface and improves the model of contact. If the switch = 1, the older technique is used where each contact-sensing ellipse interacts independently with the contact line segments. For this option to work the cavity analysis must be used as specified by the switch in Field 8 of Card 401.

The switch in Field 7 of card 401 considers the case where a large contact-sensing ellipse interacts with a curved area within a region including several line segments. When the switch = $_0$, the forces generated by all the involved line segments are combined to yield a resultant force acting in the appropriate direction. When the switch = 1, the forces act

independently on the ellipse as is the case with older HSRI models and MODROS.

The switch in Field 8 of Card 401 controls the use of a "cavity analysis" for line segments within a region. Individual contact ellipses yield a "dent" when they impinge on a surface. The shape of this dent is controlled by parameters on Card 404, the "cavity coefficients." The purpose of these dents is to control the phasing of contact ellipse interactions with a surface. If one ellipse interacts, a dent is formed with deformation of the surface existing away from the area of contact. If a second ellipse begins to impinge, it should see this dent rather than the original contact surface for proper phasing of contact forces. This refinement of the analysis is not included in MODROS or older HSRI models.

Field 3 of card 402 includes the number of individual line segments in the contact region. The location and properties of each of the line segments are included on 409-411 cards.

Field 4 of Card 402 identifies the friction class of the contact region. A friction class number is attached to each ellipse and each contact region. For each pair of friction class numbers, friction coefficients are assigned (see Card 412).

The switch in Field 5 of Card 402 controls use of the structural deformation model. If the switch is 0, structural deformation is allowed. If the switch is 1, it is not.

The switches in Fields 6 and 7 of Card 402 define the coordinate systems used in the input data and in the printed output. Vehicle coordinates will most often be selected for occupant protection studies while inertial coordinates will be mostly used in pedestrian studies.

Cards 403-408 (221-226) (704-709)(812-817)

These six cards are used to describe material properties for regions, contact ellipses, belts, and steering assembly components. A set must be included for each material property name included elsewhere in the input data. Card 403 (221, 704, 812)

The quantities included in Fields 3-9 determine key points on the force-deformation curve shown as Figures 12, 81, 82, 83, 84, and 85. Card 404 (222, 705, 813)

Field 3 contains the quantity FOREPS. When shared deflection is used, it is necessary to solve for a deflection in two elements such that the force is the same acting on both. Because exact solution is not possible, a range of error must be specified. This range of error is specified on the applied force. For most problems an error range of 5 lb. is felt to be adequate.

Fields 4, 5, and 6 contain cavity coefficients which are read if this option is selected. The quantity λ_1 controls the extent of the dent due to the deflection. The quantity λ_2 controls the extent of the dent due to the size of the impinging ellipse and λ_3 controls the shape of the dent under the contact ellipse. The action of these coefficients is shown in Figure 86. Their values should be selected based on the size of the dent due to the observed when a ball impinges into the contact surface during an experimental impact. The smallest possible cavity is given by $\lambda_1 = \lambda_2 = \lambda_3 = 0$.

Fields 7, 8, and 9 specify names for various material properties specified in detail on other cards.

Deflection, **b**

 δ_{c} = yield point (elastic limit) δ_{D} = breaking point δ_{F} = end of breakdown curve

Deflection, δ

 δ_{A} = deflection at peak of inertial spike curve δ_{B} = deflection at cutoff of inertial spike curve

Figure 82. Inertial Spike Curve

.

 $[\]delta_{max} > \delta_{C}$

Figure 84. Unloading With Permanent Deformation from Deflections Greater Than $\boldsymbol{\delta}_{c}$

Figure 85. Unloading with Energy Loss from Deflections Greater Than $\delta_{\rm C}$

Figure 86. Cavity Coefficients

•

.

Card 405 (223, 706, 814)

This card or cards defines the ratio of permanent deflection to maximum deflection used in computing material unloading force-deflection curves. Field 2 contains a deflection or a negative number. If a negative number is given, there is only one 405 card for this material and G is assumed to be constant. See Figure 84.

Card 406 (224, 707, 815)

This card or cards defines the ratio of conserved energy to total energy used in computing material unloading force-deflection curves. Field 2 contains a deflection or a negative number. If a negative number is given, there is only one 406 card for this material and R is assumed to be constant. See Figure 85.

Card 407 (225, 708, 816) (See Figures 81 through 85.)

This card defines the static force-deflection curve for a material (Field 1) either as a polynomial or as a table of force versus deflection. If Field 2 contains a negative number, then force is given by

$$F = C_1 \delta + C_2 \delta^2 + C_3 \delta^3 + C_4 \delta^4 + C_5 \delta^5 + C_6 \delta^6$$

If Field 2 contains a deflection and Field 3 contains a force, then multiple 407 cards must be included to build a force-deflection table. Card 408 (226, 709, 817)

The comments given for Card 407 apply except that the specified curve is the inertial spike shown in Figure 82 and discussed in Section 2.4.1. Cards 409 and 410

These two cards must be included for each line segment and contain several required and optional quantities. Fields 5, 6, and 7 of Card 409 refer to the penetration limit, edge constant, and direction factors which are

defined as in previous HSRI models. The penetration limit is needed to avoid force generation when a contact ellipse is legitimately under a contact surface. For example, the knee is often placed under the plane of the upper instrument panel. The value for this number should be selected larger than the amount of deflection which is expected of the surface in one time integration step.

The edge constant has been defined to handle cases where a contact ellipse interacts at the edge of a region or at a corner where two line segments meet. Its effect is shown in Figures 87 and 88. The force calculated based on a deflection, δ , is reduced from its full value where the ellipse is in full contact with the surface, to zero when the ellipse has slid to the side off the edge of the surface. The value for this constant should be chosen

$0 \leq \lambda \leq 0.5$

An example of the selection of a particular value is included in Section 2.6.2.

The direction factor indicates which side of a surface should be contacted. It is selected based on a determination of whether the time-zero inertial origin lies behind or in front of the contact surface. If the inertial origin is on the same side of the surface which should be contacted, l. should be entered. Otherwise -l. should be entered. * See Figure 89.

The third field of Card 410 determines whether the contact line segment is programmed to move as a predetermined function of time thus representing events such as vehicle collapse or motion of a deployable restraint system. If the region does not move, 1. should be entered.

^{*}No line segment defined by 411-Cards is allowed to pass through the inertial origin at t=0.

 $\mathbf{F}_{eff} = \mathbf{E} \mathbf{F}(\mathbf{\delta})$

.

,

Figure 87. Effectiveness Factor E as a Function of s, the Position of Contact Point with Respect to Line Segment, With Edge Constant λ as a Parameter

The fourth through seventh fields of Card 410 are used to simulate structural response of a contact region. The gamma (γ) quantities have the units of inverse mass and are therefore called "mass impedance." Their effect is to influence the amount a line segment can be pushed out of the way during the force action of a contact ellipse. When $\gamma = 0$, the end point of a line segment cannot be pushed out of the way. When γ is a very large number, the line segment can be pushed out of the way without generating a substantial force. Therefore, it is apparent that γ quantities must be selected while developing force-deformation curves and can probably be used to simulate the inertial spike.

The k's relate to the structural connection between the line segments within a region. When k = 0, the line segments within a region are connected, but only for the purpose of maintaining continuity. As k is increased, the coupling of line segments with respect to one another becomes more apparent. The effect of the k's is that of a torsional spring at the points where line segments meet. Hence, they are called "bending constants."

The main use of the k and γ quantities which is obvious at this early stage of their development is to allow variation of material properties within a region. Let us assume that a force-deformation curve is determined from a single test such as a pendulum test of an instrument panel. Most likely this test is conducted at a "soft" part of the instrument panel. Where the panel is more curved or where it is supported by substructure, it will be stiffer. The γ quantities should be chosen $\gamma > 0$ for the line segments where the "soft" test result is measured. For sharp corners and for substructure, values of $\gamma \simeq 0$ should be chosen. The effect of γ is governed by

 $\Delta \delta = \gamma F (\Delta t)^2 + \Delta \delta_{permanent}$

where $\Delta \delta$ is the total permanent motion of the line segment during a time integration step.

 ${}^{\Delta\delta}{}_{permanent}$ is the permanent motion of the line segment due to permanent deformation resulting from the force-deformation curve

F is the force at the beginning of the time integration step Δt is the size of the time integration step.

Therefore, the value of γ may be estimated on the basis of the relationship desired between the measured force-deformation curve, the expected applied force and the time duration during which the force acts.

Card 411

At least one 411 card must be included for each line segment of each region. The identification name is given in the first field. The remaining fields locate the line segment as a function of time.* Although the line segments will move with the vehicle to simulate a non-deforming occupant compartment or vehicle exterior surface, it is also possible to specify their location as a function of time with respect to the vehicular or inertial coordinate systems in order to model such physical events as predetermined vehicle collapse or deployment of a restraint system. This motion is then superimposed upon any of the types of structural deformation which may occur during occupant-vehicle contact. The third field specifies the point in time at which position is specified while the 4th through 7th fields specify location of the endpoints. If the location of the line segment is time independent, a negative number should be entered in Field 3.

^{*}It is not allowed for a line segment or its extension to pass exactly through the inertial origin at t=0.

Field 8 is used to define a point of a frontal interior outline for airbag contact. This usage is described completely in footnotes for Card 411. <u>Card 412</u>

Card 412 contains friction coefficients for ellipse-region contact. It should be recalled that a friction class has been assigned to each region and to each ellipse. These cards match regions and ellipses for which non-zero friction is desired in the first two fields while the last three fields contain the linear and nonlinear friction coefficients.

Card 500

This card contains the run subtitle for the vehicle interior configuration input block. It is used by the program for automatic preparation of headings for each page of printed output.

Card 501

This card contains anchor points for the belt restraint systems as defined in Figure 16, all relative to the vehicle-fixed coordinate frame. Card 600

This card contains the run subtitle for the vehicle impact specification input block. It is used by the program for the automatic preparation of headings for each page of printed output.

Card 601

Fields 1-6 give the vehicle x, y, and θ position and initial velocity with respect to the inertial coordinate system. Because it is possible to use accelerometer data from a test as input to this program, accelerometer location in vehicle coordinates is specified in Fields 7 and 8. If deceleration force is given instead of acceleration, vehicle or sled mass must be included in Field 9.

Cards 602, 603, 604, 605, 606

These sets of cards define vehicle horizontal, vertical, and angular accelerations as functions of time and also head-applied forces. Card content is self-explanatory.

Card 700

This card contains the run subtitle for the belt restraint system input block. It is used by the program for the automatic preparation of headings for each page of printed output.

<u>Card 701</u> (See Figure 75 for Simple Belt System schematic.)

Card 701 contains physical parameters relating to the lap belt and the upper torso belt attached to the upper spine body segment. Belt length and slack quantities are self-explanatory. The breaking force features available with the HSRI force-deformation routines are duplicated in the belt routine using Fields 5, 6, and 7 of this card. The time duration, DELTB, insures that the belt force will gradually be reduced to zero rather than undergo a step-function dropoff, a potential source of solution instability. This technique differs from that available with the force-deformation routines where force dropoff occurs over a small change in deformation. The technique used in preparing input data may well depend on the availability of experimental data. If a force-deformation curve of the belt material is available, that technique would probably be easiest. Where a dynamic break test is available the 701 Card would probably be best.

Card 702

Fields 1-4 represent an attempt to uncouple compliance of a lap belt structure with compliance of the vehicle occupant whether it be dummy, cadaver, or human. In otherwords, physical properties may be determined separately for the belt structure and for the occupant. The material names for occupant and belt materials are included in these four fields.

Fields 5-7 refer to the lower torso belt element. Field 7 allows the belt to be attached on any of the three torso elements.

Field 8 allows the user to supply either force-strain or force-deflection input data for the three belt segments. The two types of data may not be mixed.

Card 703

The eight fields of this card contain the material names for the torso belts. Belt material properties are again uncoupled from occupant deformation properties.

Cards 704-709

See Cards 403-408. Note: Belts B_1 and B_7 (see Figure 90) should have the same material unless they are made independent by the conditions at the upper ring (viz. RING(1) = 1; see Card 720). This holds in addition for belts B_2 and B_3 at the lower ring. It also applies for pairs $B_1 - B_2$ and $B_3 - B_4$ if the force equalization options are selected (Card 717). Whenever a belt pair must be treated as a common strap but the materials for the separate segments are different, the program arbitrarily uses the material for the first member of the pair.

Cards 710-716

Figures 90 and 91 illustrate the Advanced Belt System and the definition of attachment points on the occupant. (Note that while belt attachment points are measured from joints for input, the internal values are with respect to torso segment CG's.)

Card 717

Field 1 allows the user to specify and of three types of interbelt influence for the belt segments passing over the torso. If zero is entered, then the belt segments are considered independent (as in the MODROS belt option) and no adjustment of torso belt forces is made. Interbelt influence is discussed in Section 2.5.2.3.

Advanced Belt System

Figure 91. Belt Attachment Point Coordinates for Advanced Belt-Restraint Submodel

Field 2 allows the user to supply either force-strain or force deflection input data for the belt segments of the advanced belt system. The two types of data may not be mixed.

The value in Field 3 indicates which torso segment is attached to by the lower torso belt. Fields 4 and 5 define out-of-plane separations for the torso belt and lap belt attachment points. These values are needed only if the "free slipping" options are turned "on" by the values in Fields 6 and 7; in this case the out-of-plane length is used in order to determine total belt length.

Card 718

This card is needed whenever the rings of the defined belt system have the possibility of moving within the vehicle. The values in the two fields of this card are control parameters for the subroutine (RELAX) which determines the ring location for a force balance at any instant of time. The method of relaxation [19, 20, 21] is used to solve a system, in this case of order 2, of simultaneous, nonlinear algebraic equations. The general method is to systematically reduce to zero a set of functions of the unknowns in this case, cart-relative x and z ring coordinates—by adjusting the values of the unknowns. When the functions, called residuals, have been reduced to zero, the current values of the unknowns constitute the solution vector. Convergence is tested by examining the nearness to zero of the sum of the squares of the residuals.

Field 2 should contain an upper limit on the number of relaxation steps allowed per ring per evaluation. (This value should probably be at least 10.)

If convergence is not attained within this number of steps, then the calling program (BELT2) is returned to and the best solution vector obtained through this number of steps will be used. Execution is not terminated but a warning is printed out.

Field 3 contains a value for the maximum acceptable force imbalance at the ring for either the x or z direction (in the vehicle system).

Card 719

No more than three values will ever be needed on this card. All quantities relate to interbelt influence for the torso belts. A footnote on Card 719 summarizes which fields are required for the four possible INFLNC options.

Fields 1 and 2 contain friction coefficients for the normal-force friction option. Field 3 also is used for this option. The larger of the torso belt forces will always be reduced by a calculated adjustment (see Section 2.5.2.3

for analysis pertaining to all parameters on this card); the smaller force will be increased by any fraction of this amount depending on the value, from O. to l., entered in Field 3.

For the normal-force friction option, the belt subroutine chooses the influencer and influencee at each time evaluation on the basis of which torso belt force is larger or smaller. This is true also of the force difference saturation option. In contrast, if the percentage influence option is selected, the user must specify which of the torso belts is the influencer and influencee. Field 4 controls this. Fields 5-7 are used for these alternate options and the meanings of the parameters are fully explained in Section 2.5.2.3.

Card 720

The four vehicle anchors (see Figure 90) for the advanced belt system may be of several types. The first four fields of this card specify the anchor type for anchors 1 to 4, respectively. A zero means that the anchor is free. Normally, this would mean that either the anchor or the associated belt is absent or "pre-broken." If a 1. is entered, then belt 4, 5, 6, or 7 fastens securely to the anchor. If a 2. is entered, then belt 5, 6, or 7 leads to an inertia reel fixed at the anchor location. Only anchors 1-3 may be of this type. The reel may be of the webbing-sensitive or vehicle-sensitive type, as specified on Cards 721-723. A 3. means that belts 1, 2, or 3 leading to the anchor are either fixed to the frame or ring or instead pass through a ring which is fixed to the vehicle frame at the anchor location. Note that if the ring is <u>not</u> fixed to the vehicle frame, then it is of necessity fixed to one end of a "ring strap" belt segment (belt number 5 or 6), i.e., the associated ring strap must in such case be present.

There are two rings in the system. Lengths of webbing pass through the rings but may be considered: 1) to be fixed to the ring; 2) to slide with normal-force friction through the ring; or, 3) to slip freely. These options are controlled by Fields 5 and 6. Options 2 and 3 should give equivalent results if the friction coefficient for option 2 is zero. If the normal friction option has been selected for a ring, then the friction coefficient must be entered in Field 7 or 8.

Figures 92 and 93 illustrate all possible ANCHOR and RING specifications. Cards 721-723

If an inertia reel has been requested for anchor 1, 2, or 3, then properties of the inertia reel are entered on one of these cards. The reels may be either vehicle sensitive or webbing sensitive. If vehicle sensitive, then the "lock" condition can be specified either as a lock time or as a

SCHEMATIC	ANCHOR TYPE DESIGNATION	ALLOWED INDEX VALUES
////A'i////	ANCHOR _i = 0	i = 1, 2, 3, 4
no belt		
A _i B _i	ANCHOR _i = 1	i = 1, j = 6 i = 2, j = 5 i = 3, j = 7 i = 4, j = 4 (no ring)
A _i B _i	ANCHOR _i = 2	i = 1, j = 6 i = 2, j = 5 i = 3, j = 7
A_i or B_i B_i	ANCHOR _i = 3	i = 1 or 3, j = 1, RING ₁ = 1 i = 2, j = 2 and/or 3, RING ₂ = 1 i = 4, j = 4
B _k B _i	ANCHOR _i = 3	i = 1, j = 1, k = 7, RING ₁ = 2 or 3 i = 2, j = 2, k = 3, RING ₂ = 2 or 3

Figure 92. Belt Anchor Type Designation for Anchor "i"

SCHEMATIC	RING TYPE DESIGNATION	ALLOWED INDEX VALUES
R_i or R_i B_j B_j	RING _i = 1	i = 1, j = 1, ANCHOR ₁ = 3 i = 2, j = 2 or 3, ANCHOR ₂ = 3 i = 2, j = 2 and 3, ANCHOR ₂ = 3
\mathbf{R}_{i} \mathbf{R}_{i}	RING; = 1	$i = 1, j = 1, \ell = 6,$ ANCHOR ₁ = 1 or 2 $i = 1, j = 1, \ell = 7,$ ANCHOR ₃ = 1 or 2 $i = 1, j = 1, \ell = 6 \text{ and } 7,$ ANCHOR ₁ and ANCHOR ₃ = 1 or 2 $i = 2, j = 2, \ell = 5,$ ANCHOR ₂ = 1 or 2 $i = 2, j = 2, \ell = 3 \text{ and } 5,$ ANCHOR ₂ = 1 or 2
B _k B _j	RING _i = 2 or 3	i = 1, j = 1, k = 7, ANCHOR ₁ = 3 (or 0) i = 2, j = 2, k = 3, ANCHOR ₂ = 3
B ₁ R _i B _k B _j	RING _i = 2 or 3	i = 1, j = 1, k = 7, & = 6, ANCHOR ₁ = 1 or 2 i = 2, j = 2, k = 3, & = 5, ANCHOR ₂ = 1 or 2

....

Figure 93. Designation of Ring-Belt Relationship for Slip Point "i"

MVMA 2-D BELT SYSTEM: FRONT VIEW

Figure 93-A. Schematic for Out-of-Plane Eelt System Dimensions (Δy_i)

6/30/88

6/30/88

pair of values for maximum vehicle pitch and maximum resultant acceleration at the anchor location. If webbing sensitive, then the reel can be made to lock either on the basis of a limiting velocity or acceleration for belt feed-out.

Standard values for some of these lock-condition parameters are: vehicle sensitive resultant acceleration, 0.4 g, and pitch angle, 14°; webbing sensitive belt feed-out acceleration, 0.6 to 0.9 g's. (See References 15 through 18.)

Cards 800-817

The energy-absorbing steering assembly system cards are mostly selfcontained. But the analytical symbols used for all quantities in Section 2.8 are given on these cards so easy reference may be made if necessary to the figures and text for the analysis.

Cards 900-909

The airbag system cards are likewise mostly self-contained. References may be made to figures in the analysis section and to the one on Card 909. Reasonable values for all parameters on Cards 901-903 are indicated in the Defaults column. See Figure 94 for definition of occupant contact lines. Card 1000

This card marks the end of the input data deck which is supplied to the input processor and signifies that work on the input deck is to begin.

Card 1001, 1002

These two cards together with the other cards numbered greater than 1000 comprise the control information to the output processor. The function of the first two cards is to specify the output subjects or categories which are desired and the order in which these are to appear. This is accomplished by listing the categories desired in the order desired using a series of possibly mixed individual listings and group listings. An individual listing consists of a

one- or two-digit category number followed by a comma. Leading zeros may be present and blanks are ignored. As many of these listings as needed may be used. Numbered categories are listed in Table 11 following the description of Cards 107-111.

If there is a group of category numbers in either ascending or descending order which are contiguous, a group listing may be employed to streamline the specification of the string of numbers. The group listing consists of the category number of the end of the string which is to be printed first followed by a dash, hyphen, or negative sign (card 11 punch) followed by the category number which is to appear last. Again, leading zeros may be present and blanks are ignored wherever they appear. Card 1002 is treated as an extension of Card 1001 using only the first seventy-two columns of both cards. If these cards are omitted, all categories are requested in the default ordering indicated on the 1001-card layout in Table 7. If columns 1 and 2 contain "-1", the default ordering minus category 0 will result. The terminating comma on the final listing may optionally be omitted.

Card 1003

This card controls the auxiliary output from the output processor. The first field (IDB) controls auxiliary printout from the HIC routine concerning all the scans made in determining a HIC value. The second field (KO) doubles as a switch and a specification of the Fortran logical device number for a separate printout of peak and three-millisecond average acceleration calculation values. If zero, it is interpreted as a switch which is off. If non-zero, it is interpreted as a switch is on and its value used for the logical device number.

The third field controls a forced recomputation of filtered accelerations and special indices. Normally, these computations take place only in the first run of OUT after a run of GO.

The fourth and fifth fields describe the particulars of an accelerometer mounted on the upper leg centerline. (See Section 4.6.2.5.)

```
403
```

Card 1004

The first four fields of this card contain information governing the application of numerical filters to head, chest, and hip accelerations. A detailed explanation of the operation of the digital filter employed in this model is found in Section 4.6.2.3. The first three fields are filtering parameters used to control the filter operation. The fourth parameter controls the method of extension of the acceleration data beyond the run time span. The mirror image causes the completed data to be an even function around the end points. The polar image causes the completed data to be odd at each end point if the function value at the endpoint is considered zero. (See Figure 142.) The polar image is thought to be superior normally.

The last four fields of this card control the calculation of the HIC Index. An explanation of these parameters will be found in Section 4.6.2.4.

Cards 1100-1107

Specification of the test values used to determine violations of joint range of motion limitations. The high test value must not be less than the low test value algebraically. If both high and low values are zero, the test is not carried out.

Cards 1200-1201

Specification of the test values used to determine violations of a standard range of values for each individual quantity. A complete list of the quantities together with an explanation will be found in Section 4.6.2.1. The testing is carried out only if the test value is greater than zero.

<u>Cards 1202</u>

Specification of the names of the ellipses which will represent the face and chest for purposes of the standard tests.

Card 1300

A general explanation of the Type A Comparison together with a complete list of variables to which it may be applied will be found in Section 4.6.2.2. The first two fields are filled with the category and column numbers found in Table 114 in Section 4.6.2.2. The two identifiers are the names which are required to make unique a request for a contact variable. In the case that a category 2 or 3 variable has been requested, the first identifier must be the name of the region for which the particular variable is to be tested. In the case a category 4 variable has been requested, the identifiers must be set to the ellipse and line names, the two ellipse names, or the belt name and blanks for each case respectively. Belt names are assigned by the model and are listed in Table 115 found in Section 4.6.2.2. The high test value must be greater than or equal to the low test value. Negative values are allowed.

Cards 1400-1401

A general explanation of the Type B Comparison will be found in Section 4.6.2.2. The first six fields of each of these cards are filled in the same manner as the corresponding six fields on Card 1300 and all comments apply. The seventh field of each of these cards is used to match the 1400 Card to the 1401 Card. Each card specifies a variable for a Type B comparison, which tests one variable against another variable. Hence it is necessary to supply a matched Card 1400 and Card 1401 set in order to complete the specification of a Type B comparison. If Field seven in both cards is left blank, then the number used to match is assigned based on the number of occurrences of that type of card. All the instances of Card 1400 for which Field seven is blank are numbered in the order read and likewise with Card 1401, and the matching is done on the assigned occurrence number. The numbers for matching need not be consecutive, only the same.

Cards 1500-1501

These two cards contain the various switches and parameters which control the production of the stick figure printer plots. Figure 95 is an example of printer-plot output. Up to 27 such plots can be obtained for a simulation. These will be in a time sequence similar to frames of a motion-picture film.

Coordinate ranges for plot are X = 0.0 (at left) to 64.00 (at right) and Z = 2.24 (at bottom) to -41.24 (at top). Scale factor is (in) = 4.923 (in), X and Z point resolution errors equal respectively 0.246 and 0.410 (in) in scale.

Figure 95. Example of Printer Plot Output

6/30/88

The switch in Field one of Card 1500 causes horizontal and vertical lines to be plotted through the origin of the vehicle system. If field two is zero, and the input and output processors are run without "GO," the user will get a printer plot based on the input data alone. Fields three through six define the area in vehicle coordinates to be plotted.

On Card 1501, Fields one, seven, eight, and nine deserve special comment. The number of plots in Field one together with the values in Fields eight and nine are ignored if Field seven is left blank or zero. In this case only the times specifically listed on Card 1502 (of which there may be up to three in the deck) are plotted. If Field seven is non-zero, Field one contains the number of plots, Field eight contains the first time to be plotted and Field nine contains the time increment to be applied to obtain the plot time until the number of plots is reached.

Card 1502

This card is used to specify individual time points at which plots are to be produced. There may be up to three instances of this card containing a maximum of twenty-seven values. The values must be in ascending order in time. Card 1600

This card marks the end of the input data deck which is supplied to the output processor and signifies that work on the production of output is to begin.

3.2-A. MISCELLANEOUS MODEL USE CONSIDERATIONS

This section consists of copies of an assortment of memos and other documents that pertain to use of the MVMA 2-D CVS model, new features, interpretation of output, and other things. Thus, in various regards, the material in this section relates to both Section 3.2 and Section 3.3, which immediately precede and follow it; those sections describe input data quantities and normal output.

This section is divided into the following subsections:

- 3.2-A.1 General information3.2-A.2 Modeling approaches
- 3.2-A.3 Interpretation of output

6/30/88

3.2-A.1. <u>General Information</u>

MEMO TO: MVMA 2-D CVS Users

FROM: Bruce M. Bowman, UMTRI

SUBJECT: New Release of the MVMA 2-D Model: MVMA 2-D CVS, Version 6

DATE: June 30, 1988

This memo announces the release of Version 6 of the MVMA 2-D CVS model. It also describes features that are new in Version 6 and features that were new in Version 5. Version 5 of the MVMA 2-D CVS immediately followed Version 3. There was a "Version 4," but there were no releases of the Version 4 code even though titles on manuals from 1979 reference "Version 4"; those manuals were for use of Version 3.

VERSION 5

Version 5, released in August 1986, was the first major release of the model since June 1984. Users of Version 5 (and 6) will need MVMA 2-D manuals dated June 28, 1985 (not 1986) or later if they intend use features that are new in Version 5. Version 3 data sets are completely compatible with Version 5, however, so lack of new manuals will not prevent use of Version 5. (Note: Some users of the model have June 28, 1985, manuals that are identified as being for Version 3. Those manuals are, however, completely up-to-date with respect to use of Version 5 features.)

An important difference between Versions 3 and 5 is that calculations in Version 5 are made in double precision. ("GO" in Version 5 is in double precision; the input and output processors, "IN" and "OUT", remain in single precision.) Additionally, users should be aware of the primary features first available in Version 5. (See Cards 219, 220, 249-254, and 305.) They include the following:

- 1. internal organ elements
- independent masses, free or attached rigidly or non-rigidly to the vehicle or the inertial frame
- 3. curved vehicle interior contact surfaces
- 4. straight-line contact surfaces on the occupant
- 5. occupant profile ellipses attached with arbitrary orientation to their body links

Applications of the features above are illustrated in a demonstration data set (DEMODAT) that is included on the release tape. The demonstration run includes:

 a. a steering column that has mass characteristics and associated degrees of freedom

6/30/88

- b. a curved panel for knee interaction
- c. a knob ellipse on the dash
- d. straight-line contact surfaces on the occupant
- e. brain and heart masses
- f. body ellipses that are rotated with respect to their body segment link lines
- g. a free mass representing a package on the back seat

Varied applications of the new features are possible. One not represented in the demonstration data set, but easily accomplished, is simulation of a simple second occupant for interaction with the primary occupant. Such an occupant might be a rear-seat passenger, a child held on a parent's lap, or a second front-seat occupant (in a side impact simulation). Another application that will surely be useful but which is not represented in the demonstration data set is the modeling of front-seat seatbacks which can flex, i.e., pivot, about a point near the bottom of the seat.

In addition Version 5 includes a variety of general improvements relating to both format and content of output, recognition of data set errors, user conveniences, and accuracy of solution of the equations of motion. Significant improvements were made in the calculation and application of friction forces.

The latest releases of Version 5 (5.3 and 5.4) include additional new features and enhancements. Some of particular importance are:

- a H.I.C. monitor which flags possibly inaccurate H.I.C. values
- 2. a "link sharing" feature, which allows the model to use an averaged position and orientation for a contact ellipse near a joint (say, the hip) rather than the position and orientation for an ellipse fixed to one or the other of the rotating links (see Card 220); this feature should be used in all simulations
- 3. signed tangential force values in Category 4 output (to indicate direction)

VERSION 6

Version 6, the current release, differs from Version 5 primarily in that the code is now ANSI standard FORTRAN 77 rather than the FORTRAN 66 (Fortran IV) code in which the model was written and developed between 1971 and 1988. This conversion was important because increasingly more computer facilities are not supporting Fortran IV compilers. The new source code is greatly different from the Version 5 code, but differences will be transparent to users.
Manuals for Version 6 are dated June 30, 1988. Most differences between Version 5 and Version 6 manuals pertain to various features new in Version 6 rather than to changes in program structure or storage use associated with the conversion to FORTRAN 77. Some of the new features (described below) cannot be used without the new manuals, but Version 5 data sets are completely compatible with Version 6 code, so lack of new manuals will not prevent use of Version 6.

New features include the following:

- "true plowing," which provides for tangential forces that are (almost) independent of deflection; this is potentially most useful for head-windshield interactions (see Card 412)
- corrections and improvements in the MODROS passenger airbag model
- 3. automatic adjustment (migration) of the lap belt attachment point (see Card 718)
- 4. Input Processor testing of static loading curve and unloading data specifications for compatibility
- 5. automatic calculation (optional) of 217-Card values for initial zero elastic joint torques
- 6. automatic calculation (optional) of joint stop angles which bracket initial relative angles by +/- 0.001 deg
- 7. improved efficiency in some Output Processor functions
- 8. calculation of H.I.C. for a specifiable duration (e.g., 36 ms)
- 9. additional options for and improved form of printout of user-specified title card data
- 10. miscellaneous improvements in diagnostics
- 11. optional generation of a random access character file containing time histories of user-selected response variables for the purpose of plotting or other postprocessing; user specifiable conversion for different units, etc.

MVMA 2-D CVS MODEL

CONDITIONS OF USE

NEITHER MVMA 2-D CVS SOURCE CODE NOR OBJECT CODE MAY BE DISTRIBUTED EXCEPT BY UMTRI. TO OBTAIN THE MODEL CONTACT:

> DR. BRUCE M. BOWMAN UNIVERSITY OF MICHIGAN TRANSPORTATION RESEARCH INSTITUTE 2901 BAXTER ROAD ANN ARBOR, MI 48109-2150

PH.: 313-936-1106

MVMA 2-D CVS Tape Description

MVMA 2-D CVS, Ver. 6.0 Release Tape, June 30, 1988 -- UMTRI

9 Track, 6250 BPI, EBCDIC, Unlabeled, 45 Files

Files 1-41: RECFM=FB, LRECL=80, BLKSIZE=2400 Files 42-45: RECFM=FB, LRECL=133, BLKSIZE=2660

Table of Contents

FILE	CONTENTS	SEQ. I.D.	RECORDS	BLOCKS
1	Tape Description	-	68	3
2	Conditions of Use of MVMA 2-D CVS	-	21	ĩ
3	New Features in MVMA 2-D, Ver. 6	-	167	6
4	How to Install the MVMA 2-D CVS Mode:	1 -	155	6
5	How to Run the MVMA 2-D CVS Model	-	146	5
6	Methods for Minimizing Run Costs	-	131	5
7	Fortran Program to Strip Sequence I.I	D	14	ì
8	Information About System Subroutines	-	17	1
9	Information Re. OPEN and CLOSE Stater	ments -	18	1
10	Information Re. BLOCK DATA's	-	54	2
11	Information Re. Subroutines GETFLI and	nd GETFLO	19	1
12	Information Re. Subroutine DEBUG	-	20	1
13	Information/Code for Subroutine PROFI	LE –	16	1
14	Linking of Output Categories by Sub.	BRAKUP	12	1
15	Notes Regarding Adv. Airbag System	-	10	1
16	Notes Regarding MODROS Airbag System	-	13	l
17	Notes Regarding the E-A Column Submod	del -	10	1
18	Integration Monitor Notes	-	65	3
19	Info About Factors Pertinent to H.I.(c	20	1
20	Info Re. Modeling Belt Spoolout	-	47	2
21	Info Re. Modeling Head-Windshield For	rces -	102	4
22	Information About Friction Model	-	60	2
23	Friction and Ellipse-Sharing Between	Links-	81	3
24	Specifying Vehicle Pitching Motion	-	101	4
25	Femur/Tibia Load Interpretation	-	53	2
26	Info Re. Time History Data for Plott:	ing -	142	5
27	Summary Page Documentation	-	125	5
28	HELPER Notes: Initial Equilibrium	-	63	3
29	HELPER Fortran Source	HL	1845	62
30	MVMA IS Fortran (Input Processor)	IN	7404	247
31	MVMA GS Fortran (Execution Processor)) GO	23310	777
32	MVMA OPS Fortran (Output Pre-Processo	or) OP	253	9
33	MVMA OS Fortran (Output Processor)	OT	9486	317
34	Ver. 6 Demonstration Data Set (DEMOD)	AT6) -	779	26
35	MVMA Adv. Belt Data Set (6CM.SLACK)		259	9
36	MVMA "MODROS" Airbag Data Set (BAGDA'	T.CT) -	427	15
37	MVMA Tutorial #1 Data Set (ENGLISH.V)	60) -	335	12
38	MVMA Tutorial #1 Data Set (MKS.V60)	-	335	12
39	MVMA Motorcycle Demo Data Set (CYCLE)	DEM) -	427	15
40	MVMA Adv. Airbag Data Set #1 (AASTES'	T1) -	920	31
41	MVMA Adv. Airbag Data Set #2 (AASTES)	T2) -	519	18
42	Printer Output from File 34 MVMA 2-D	KUN -	18672	934
43	Printer Output from File 35 MVMA 2-D	Run -	5478	274
44	Printer Output from File 36 MVMA 2-D	Run -	10396	520
45	Printer Output from File 37 MVMA 2-D	Run -	15861	794

- Sequencing is either excluded or, for MVMA 2-D data sets, determined by data card format.

NOTE: Files 1-6 and 8-28 are documentation files. They should be listed and read before source code and data files from this tape are installed on your computer system.

.

MEMO TO: MVMA 2-D Model Users

FROM: Bruce M. Bowman, UMTRI University of Michigan

SUBJECT: The HELPER program: Initial Equilibrium Conditions and Vertical Hip and Foot Forces at Time = 0

DATE: June 6, 1988

The "HELPER" program is an interactive pre-processor program for MVMA 2-D which may be used optionally for assistance in establishing initial conditions for the occupant which will provide an approximate balance against gravity at time zero. The program has other functions as well that relate to preparation of a baseline input data set. Primary inputs are occupant dimension and weight data, the geometric profile and stiffness characteristics of the seat cushion, and initial head, hip, knee, and heel point position data as determined from film analysis or other methods.

The program contains default data for the Hybrid 3 dummy, and its use does not require a manual. Informal documentation is available, however, from UMTRI.

The information below does not provide any specifics regarding options available in HELPER or the way that HELPER calculations are made, but it is nonetheless relevant to HELPER and also to determination of initial equilibrium conditions without the use of HELPER.

.

In a study at UMTRI test measurements for the heel force for five adult males who were approximately the height and weight of a Hybrid 3 dummy were used to calculate an estimate for the ratio

(heel force) / (lower leg weight) .

Subjects were seated in a bucket seat and their feet and legs were positioned to represent normal driving position and posture. The average value of the ratio of heel force to lower leg weight (estimated from anatomical and anthropomorphic data) for the five test subjects was almost exactly 1.0. Therefore, in simulations and for HELPER program calculations a deflection of the floor at the heel point is needed which will produce a force to exactly balance the weight of the lower legs.

The seat position, leg angle, and foot circle attachment location determined by the HELPER program cause the vertical forces on the occupant at t=0 to have the distribution between hip and foot which satisfies the above experimental results. Whether or not HELPER is used for assisting the preparation of equilibrium conditions at t=0, the vertical foot force as calculated above is probably appropriate for the Hybrid 3 dummy as well as for humans. Initial vertical

seat force on the hip (and upper leg) should be equal to the total weight of the occupant minus the weight of the lower legs.

MEMO TO: MVMA 2-D CVS Users

FROM: Bruce M. Bowman, UMTRI

SUBJECT: Minimizing Computer Cost for MVMA 2-D Runs

DATE: June 6, 1988

Consideration should be given to several factors that affect run time for MVMA 2-D simulations. The cost of running the model on a mainframe computer (exclusive of any special post-processing costs) can be doubled if no attention is given to any of these factors.

1. CARDS 107-111: In some kinds of simulation studies, users may want to see output categories that would not interest them in other studies. However, in most simulations some specific set of output categories will be of interest. Often, users do not include Cards 107-111 in their data sets, which means that all categories are requested by default for storing at each print time on file 8 (even if they are not requested for printout on the 1001-Card). Write's to file 8 are all indexed I/O write's--which are relatively expensive.

A significant reduction in "GO" cost can be realized by reducing the "requested" output categories to only those actually desired. Develop a standard set of 107-111 cards and include it, with case by case modification, for all of your runs.

2. PRINT TIME STEP: Establish a standard value for the print time increment specified on Card 101 in field 8. If, for example, you feel that printout every 2 ms is adequate, then it is wasteful to obtain printout every 1 ms. A reduction from 2 to 1 will halve the cost of indexed I/O write's to file 8 (as well as halve the required size of the file). H.I.C. will not be less accurately calculated if the print interval is made larger. H.I.C. is always calculated from data in file 7, which contains the head acceleration data for all integration time steps regardless of the print interval.

3. INTEGRATION METHOD: A study has been made of integration with the two available methods--Runge-Kutta (4 evaluations per time step) and Adams-Moulton Predictor-Corrector (2 evaluations per time step). That study indicates that a cost savings can normally be realized by using the Adams-Moulton integration. For a given time step, the Adams-Moulton integration is almost always entirely as accurate as the Runge-Kutta integration. Since the Adams-Moulton integration requires only half as many evaluations of the equations of motions for each time step, this means that use of Adams-Moulton integration only occasionally becomes unstable and diverges from Runge-Kutta results. Normally, such instability makes itself very evident by causing the run to blow up completely ("FATAL ERROR DUE TO POSSIBLE LOSS OF SIGNIFICANCE AT ELIMINATION STEP nn"--from SMSOL inversion via DAUX).

When cost or run time considerations are important, it is recommended that the Adams-Moulton Predictor-Corrector integrator be used. Regarding time step, the following is suggested: in a simulation where .25 ms would be used for Runge-Kutta, use .2 ms for Adams-Moulton; where .5 ms would be used for Runge-Kutta, use .4 ms for Adams-Moulton if you decide on a standard print interval that is a multiple of .4 (e.g., 2 ms) or .5 ms if you decide on some other standard print interval (e.g., 1 ms, 3 ms, 5 ms). Use of a step size 20 per cent smaller than the Runge-Kutta step is a hedge against instability.

4. 106-CARDS: The 106-Cards included in your data set should be examined. If the data set includes "allowed" interactions that in fact can never take place, then cards should be removed. This could be done by users separately in their particular applications as well as in a "standard" 106-Card module. Most of the calculation cost involved in investigating an ellipse-line or ellipse-ellipse interaction is incurred only after interaction (geometric overlap) is found to exist, but it also costs something to determine whether there is an interaction.

Different sets of standard cards could be used for restrained and unrestrained occupant simulations.

5. OPTIMIZATION LEVEL: Most compiler programs have an input parameter by which optimization level can be selected. Development and applications work at UMTRI has always been done with optimization level zero (no optimization), and optimization has not been tested at UMTRI. Consequently, UMTRI is not able to state that MVMA 2-D will function properly in all regards when object code optimization is invoked. Nonetheless, since in the general case program execution costs can be reduced by using optimized object code, the user may want to test compilation and use of MVMA 2-D with non-zero optimization levels.

UMTRI takes the conservative view that the user should not consider use of highest level optimization for MVMA 2-D.

The following description of optimization describes IBM VS FORTRAN optimization but should apply generally for all, or most, other FORTRAN 77 compilers as well.

Through the techniques of optimization the compiler is capable of improving the object code that it generates in order to create a more efficient program, both with respect to execution time and storage space. The OPTIMIZE option indicates which of four levels of optimization is to be in force. The higher the level, the more efficient is the progam, and the slower and more expensive is the compilation.

OPTIMIZE(0): This level does no optimization at all. This level provides the fastest compile time but the least efficient programs. It is a good level to choose when a program is being debugged or for compilations that are intended only to check for correct program syntax.

OPTIMIZE(1): This level provides a moderate level of local register and branch optimization without considering program loops.

OPTIMIZE(2): This level provides full optimization of the whole program but refrains

from moving code outside of loops if there is any possibility of this causing program errors.

OPTIMIZE(3): This level provides full optimization. It is best suited to fully debugged programs ready for production use. This level is safe for most programs, but if problems should arise that do not appear at lower levels of optimization, it may be necessary to reduce the optimization level of some critical modules.

3.2-A.2. Modeling Approaches

MEMO TO: MVMA 2-D Model Users

FROM: Bruce M. Bowman, UMTRI University of Michigan

SUBJECT: Modeling Belt Spoolout and Anchor Deformation Effects

DATE: April 9, 1987

Loading and unloading "material" properties for combined belt spoolout and anchor deformation can be specified through use of fields 8 and 9 of Cards 710-716 and standard material cards. Belt spoolout/anchor deformation materials are defined independently from webbing material, i.e., no adjustment of webbing material properties is required in relation to adding the effects of spoolout and anchor deformation to your simulations. Webbing properties should still be specified in terms of strain, but spoolout/anchor deformation properties are specified in terms of deflection.

No new feature has been added to the model. The MVMA 2-D has, in fact, had the ability to model spoolout and anchor deformation since about 1974, but that ability was not recognized until recently. Representation of spoolout and anchor deformation is accomplished by using the feature normally used for representing body compliance in shared interaction with a belt. To represent spoolout and/or anchor deformation, the user may simply indicate a "belt reel" material name in fields 8 and 9 of the belt card and include data cards for that material in the data set. (Any series of material specifications cards may be used: 221-226, 403-408, 704-709, or 812-817).

If it is desired to represent body deformation also, then the separate force-deflection type materials for body and reel must be combined analytically, i.e., made into a composite material. It is noted here that in the case that the body material is much stiffer than the reel material (spoolout/anchor deformation), the body material can simply be ignored, i.e., it is not in that case important to combine the materials analytically.

In relation to the foregoing, pages 75, 87, and 288 of Volumes 1 and 2 have been updated.

MEMO TO: Users of the MVMA 2-D CVS Model

FROM: Bruce M. Bowman, UMTRI University of Michigan

SUBJECT: Specifying Vehicle Motion for Simulation of Barrier Tests

DATE: May 15, 1987

The MVMA 2-D user has several options in relation to specification of vehicle motion. [See pages 211, 211.1, 211.2, and 277 (Card 601).] I recommend that the "pivot point" option be used whenever it is desired to model vehicle pitch, which normally occurs in barrier crash tests.

This option is easy to use. Any point for which motion with respect to both the inertial and vehicle coordinate systems is known is suitable for a "pivot point." A point on the header might be used for barrier tests. Such a point is easily targeted for determination of motion in the inertial system, and its motion in the vehicle coordinate system is simple--it is fixed. Model input data specifications for this example would be: vehicle x-accelerometer data, location of the fixed point ("pivot") on the vehicle, z-displacement time history in the inertial frame for the fixed point, and the vehicle pitch angle displacement time history. (Note: It is not necessary to use a <u>fixed</u> point on the vehicle as the pivot, but it is easier than using a moving point, which requires specification of motion of the point in both the inertial and vehicle systems.)

To use a <u>fixed</u> point on the vehicle as the "pivot point" (or "constraint point")--say, a point on the header--follow these steps:

- Select the pivot point option by entering "-1." in field 9 of Card 601.
- 2. Specify x-accelerometer data by using Card 602 and associated unnumbered cards.
- 3. Specify pivot point option parameters on Card 603 as illustrated in the example below. The values on the card may be interpreted as follows:
 - field 1: 49. (example) -- the number of time points that will be given for the inertial z-displacement of the point on the header
 - field 2: 0. -- position data for the pivot point are in centimeters

- field 3: 2. -- two time points will be given for the (fixed) x position in the vehicle frame of the header point, viz., equal values for t=0 and t=240, the beginning and end times for the crash history
- field 4: 2. two time points will be given for the z position (fixed) in the vehicle frame of the header point
- field 5: .25 (example) typical value for control parameter, but see note 7 for Card 602 for method to calculate value

field 6: 12700. -- recommended control value, not critical field 7: 5080. -- recommended control value, not critical

- 4. Follow Card 603 with as many unnumbered cards as necessary (13 for this example) to specify the time history for inertial z-displacement of the header point. Follow these cards by one unnumbered card that has the two time point values for the fixed x-position of the header point and then a similar card for the z-position of the header point.
- 5. Specify vehicle pitch motion by using Card 604 and associated unnumbered cards. Motion may be given in terms of either angular accelerations or angular displacements. Displacement data is easier to obtain in most cases. The example 604-Card below is for displacement data.

EXAMPLE VEHICLE MOTION SPECIFICATION BY USE OF THE PIVOT POINT OPTION FOR A FIXED POINT ON THE VEHICLE

0.	13.72	ο.	0.	ο.	0.	-190.	-12.	-1.	601
241.	1.								602
(61 ι	innumbered	cards	with time	history	for x-ac	celerom	eter data	a)	
49.	ο.	2.	2.	.25	12700.	5080.			603
0.	-147.5	11.	-147.5	20.	-148.4	25.	-146.9		
32.	-146.4	•	•	•	•	•	•	•	
•	•	. (13 unnumb	ered car	ds for in	nertial	•	•	
•	•	•	z-displac	ement of	header p	point)	•	•	
•	•	•	•	•	•	•	٠	٠	
240.	-141.5								
0.	-282.	240.	-282.	(x positio	on in vei	hicle)		
0.	-147.5	240.	-147.5	· · · (z positio	on in vel	hicle)		
26.	2.	.13	5000.		_				604
(7 unnumbered cards with time history for pitch angle)								•	

MEMO TO: Users of the MVMA 2-D CVS Model

- FROM: Bruce M. Bowman, UMTRI University of Michigan
- SUBJECT: Link Sharing for Hip, Knee, and Elbow Ellipses: An Improvement in Modeling of Tangential Forces

DATE: June 6, 1988

Important new code pertains to a new feature in which "link-sharing" can be specified for ellipses at the hip, knee, or elbow. Use of this feature is optional but recommended. It is set "on" by specifications in field 8 of Card 220. There is a replacement page for Card 220 in Volume 2.

"Link-sharing" is important in making more realistic the way that an ellipse at (or near) a joint produces tangential (friction) forces with a line segment. [This is allowed ONLY for ellipses at the hip, knee, and elbow joints.] Card 219 is used to specify the link of attachment for each ellipse. When the link rotates, the ellipse rotates with it. Consider the case of a circle attached to the lower torso link and positioned with its center exactly at the hip joint. Consider, also, a similar data set in which the circle is attached instead to the upper leg link--and still positioned exactly at the hip joint. It seems reasonable that these two data sets should produce the same results, but they do not without the new feature since for one the hip circle rotates with the lower torso and for the other it rotates with the upper leg. This means that slip point velocities and therefore also tangential forces will be different. The new feature will cause the hip circle to rotate (in essence) as an average of lower torso and upper leg rotations. This is much more realistic than a rotation with either one or the other of the two links associated with the hip, knee, and elbow joints.

New code allows specification in field 8 (previously blank) of the 220-Cards (hip, knee, and elbow) of values for the link number of the adjoining link, i.e., the link which "shares" the ellipse with regard to calculation of rotational terms for the slip velocity and lever arms for ellipse-line contact. For the case described above, for example, where the 219-Card for the hip ellipse has a "4." in field 5, a "5." can be put in field 8 of the 220-Card to turn on link sharing. The new feature is most reasonably used when the ellipses are circles (or nearly) and are positioned at or near to the joint.

Sharing an ellipse near a joint will produce results that are in general intermediate between results obtained for attachment to one or the other of the two links meeting at the joint. For example, sharing the hip ellipse between the lower torso and upper leg links rather than assigning it solely to one or the other produced the following "averaged" results for H.I.C. in runs based on one typical baseline data set:

HIP	Ellipse	Attachment	H.I.C.	Value

lower t	torso	link	(normal	standard)	3166
upper 1	leg li	ink			2018
shared	attac	chment			2716

It is seen here that the manner in which the hip ellipse is defined can affect calculation of tangential forces sufficiently to have a significant effect on H.I.C.

To make a similar test with one of your own data sets, it would be necessary for you to prepare sets of 219- and 220-Card data for attaching the hip ellipse to the lower torso link and alternatively to the upper leg link. The resulting ellipse should have the identical locations and orientations in space at time zero for the two data sets. You will adjust values on Cards 219 and 220, making use of data on Cards 201, 202, and 301. Note that a value will be needed for field 7 of Card 220. In runs in which shared attachment is requested, you will also use field 8 of Card 220. MEMO TO: Users of the MVMA 2-D CVS Model

- FROM: Bruce M. Bowman, UMTRI University of Michigan
- SUBJECT: Modeling/Simulation of Head-Windshield Tangential Forces

DATE: June 6, 1988

An improvement has been made in Version 6 (and late Version 5) in the application of friction forces to the occupant. It will generally be of small benefit, but in some circumstances the differences in simulation results may be of significance, particularly in unrestrained occupant simulations.

The modification relates to calculation of lever arms through which friction forces act and it improves upon the method used in Version 3. Specifically, the friction force between an ellipse and a line is now applied to the occupant at the interface point of the deformed ellipse and deformed line rather than at the point of maximum geometric penetration of the ellipse. Note that the new code will have no new effect for any interaction for which the body ellipse is specified as rigid since in that case the interface point IS the point of maximum geometric penetration.

In relation to this new ability of the model, however, I make the following recommendation for modeling/simulation of the head-windshield interaction. [Note: This recommendation does not apply if the "true plowing" option is selected for head-windshield modeling.]

For HEAD-WINDSHIELD INTERACTIONS, the windshield should be defined as rigid (blank material name on Card 401) and the windshield material should be assigned to a head ellipse (use windshield material name on Card 219). A superimposed rigid head ellipse (with appropriate 106-Cards) should be used for non-windshield interactions.

[Example data may be seen in the DEMODAT data set.]

This will cause the friction force to be applied to the head at a more appropriate position. The reason this should be done is that tangential force for the head-windshield interaction is not a true friction force. Rather, this force, when large, results mostly from windshield glass breaking away as the head moves through it in a TANGENTIAL direction. That is, in a barrier test the force acts on the head MOSTLY IN THE PLANE OF THE WINDSHIELD, not at the point of maximum penetration of the head beyond the windshield line. That point, in fact, may actually be completely

through the windshield and not experiencing any force at all. While tangential plowing force MAGNITUDE may be modeled reasonably by use of deflection-dependent terms in the coefficient of friction (Card 412), it is not reasonable to apply the force at the "interface" between the rigid head ellipse and the deforming windshield, i.e., at the point of maximum penetration. If, instead, all deformation can be assigned to the head and none to the windshield, then the interface point on the head will be at the windshield line--which is where this particular tangential force SHOULD be applied. Thus, head (normally rigid) and windshield ("soft") materials should be exchanged in data set assignments. [If the "true plowing" option is used instead of normal friction (with deflection dependence), this assignment of materials is unnecessary because MVMA 2-D will apply the plowing force in the line of the windshield plane.]

This will normally reduce HIC's resulting from head-windshield impacts since the smaller lever arm for the friction force vector will reduce the magnitude of associated head angular accelerations and thus angular velocities and their contribution to translational acceleration of the head center of gravity.

Other tangential forces (friction), i.e., those that do not result from plowing away of material of a line element that has been partially broken away, are appropriately applied at the point of maximum penetration if the ellipse is rigid.

friction force on body

ellipse or line non-rigid, or both

rigid line, non-rigid ellipse

rigid ellipse, non-rigid line

VERSION 6

VERSION 3

3.2-A.3. Interpretation of Output

- MEMO TO: Users of the MVMA 2-D CVS Model
 - FROM: Bruce M. Bowman, UMTRI University of Michigan
- SUBJECT: Convention for Interpretation of Ellipse/Line Contact Output
 - DATE: June 6, 1988

Consistent, easily remembered, and easily applied conventions can be used in interpreting printouts from runs made with Version 6 and late Version 5 code. These conventions relate to ellipse/line tangential force, the position of the contact point on the line (nondimensional), the slip (tangential) velocity, and more generally, the definition of a positive direction around the vehicle interior enclosure. Specifically:

- * Tangential (friction) force is positive when the force vector is in the same direction as a right-handed rotation of the normal force vector; i.e., with your right thumb pointing toward you and your curled fingers pointing along the direction of the normal force vector, if you "turn" the normal force vector 90 degrees, it will align with the vector of a positive tangential force.
- * Position on the line and slip velocity are positive when in that same direction if the normal force vector is considered to be a force on the occupant (rather than the oppositely directed force on the line segment).
- * * Since the occupant is WITHIN the (disconnected) enclosure defined by the 411-Card line segments:
 - ** the above-defined positive direction is **
 ** always clockwise around the vehicle interior **

Users should be aware that the printed slip velocity is not proportional to the time rate of change of the (nondimensional) position of the contact point on the line. The reason is that the slip velocity is for a material point, not a geometric point, and therefore includes rotational terms.

The figures below illustrate the conventions described.

INTERPRETATION OF FEMUR AND TIBIA LOADS (CATEGORY 40)

The MVMA 2-D model determines and prints out five components of femur and tibia loads if Category 40 output is requested by the user on Card 111 and on Card 1001. In order that transducer response from anthropomorphic dummy tests may be simulated, the model requires input data for: a) the location along the femur of an axial force transducer, and b) the upper leg mass between the transducer and the knee. The mass is used in calculating a centrifugal force component of femur tension.

Force components printed out are (in order across the page): femur axial forces at transducer (sensor); femur axial force at knee; femur shear force at knee; tibia axial force at knee; tibia axial force at foot. Total leg loads are calculated, so if it is assumed that the loads are shared equally by two legs, the user must divide printout values by two to obtain the load for each leg.

The user should be aware that in order to insure proper calculation of tibia loads, any contact ellipse representing the knee should be attached to the upper leg (link 5) rather than to the lower leg (link 6). The calculation of the tibia axial force at the foot assumes that all external forces on the lower leg are against the foot. If contact ellipses attached to the lower leg other than foot ellipses develop substantial forces then printout for this component will not be accurate.

The equations used for the calculations are given in section 4.6.2.5 in Volume 3 of the MVMA 2-D manuals.

FEMUR LOAD COMPONENTS

AXIAL AT SENSOR (FEMURA) -- positive for compression; FEMUKA adjusted for weight and centrifugal force of upper leg mass between sensor and knee

AXIAL AT KNEE (FEMUKA) -- positive for compression; accounts for all lower leg effects (contacts, weight, centrifugal force) and all contact forces on the upper leg

SHEAR AT KNEE (FEMUKS) -- perpendicular to FEMUKA (i.e., to femur) and positive toward back side of femur, i.e., for "downward" acting lower leg force against the femur; accounts for all lower leg effects and all contact forces on the upper leg

TIBIA LOAD COMPONENTS

AXIAL AT KNEE (TIBIAK) -- positive for compression; TIBIAF adjusted for weight and centrifugal force from lower leg

AXIAL AT FOOT (TIBIAF) -- positive for compression; takes into account all contact forces on the lower leg and can therefore be interpreted as the tibia load AT FOOT only if the foot ellipse is the only ellipse attached to the lower leg that is in contact with the vehicle interior

HIGHWAY SAFETY RESEARCH INSTITUTE

Institute of Science and Technology Huron Parkway and Baxter Road Ann Arbor, Michigan 48109

THE UNIVERSITY OF MICHIGAN

MEMO TO: Users of the MVMA 2-D CVS Model

FROM: Bruce M. Bowman Biomathematics Department Highway Safety Research Institute University of Michigan

SUBJECT: MVMA 2-D CVS Integration Monitor

DATE: November 14, 1979

It has come to my attention that there has been a great deal of unnecessary concern regarding warning printouts from the integration monitor of the MVMA 2-D CVS model.* Example printout is shown in Figure 1. The purpose of this memo is to explain the proper manner for interpreting this printout.

There are several ways which an integration algorithm for a simulation model can be overstressed. With regard to crash victim simulation models, the most common causes are: 1) a loading curve for a deforming material which is too steep (For a linear force-deflection curve, this is just the material -- or "spring" -- stiffness, k); 2) a viscous damping coefficient which is too large; 3) a constant (Coulomb) friction which is too large; 4) a too-small velocity ramp for preventing sudden changes in frictional forces when relative velocity is near zero; 5) and, inversely to 1 through 4, an integration time step h which is insufficiently small (for the severity of the impact) for the material property values specified. The material properties mentioned above might be for either contact interactions (forces) or for joint activity (torques).

Experience has shown that when material stiffness or damping is too large, the integration is so unstable that geometric incompatibilities soon result and the run ends in an abort. Conversely, if the run does not abort, the integration is stable and consistent and stiffnesses and damping coefficients are therefore not too large. Thus, an integration monitor is not strictly needed for cases 1 and 2, i.e., the run abort serves the purpose. For cases 3 and 4, however, both of which concern constant friction, it has been found that an instability can result which does not call attention to itself and which should therefore be monitored. In particular, the fourth-order Runge-Kutta integrator used in the MVMA 2-D CVS model can produce large link accelerations which do not satisfy the equations of motion for small ranges of time if the integration time step or constant friction level is too large or if the friction ramp length is too small, and yet a run abort will not occur. Predicted occupant motions are still

*The code which monitors the integration is in Subroutine GOMVMA of the Execution Processor ("GO"). 6/30/88

CORDITION PROBABLY CAUSED BY CONSTANT ERICTION AT JULAT OF SURFACE OF BY LARGE STIFINGSS, VISCOUS DAMPING, CR DI. (SEE GRAVMA: 1=DIHID....) HULFGRATEON IS SUSPECT FOR GLASHAMIZED ACCELERATION. * * * WAR IN MG :

(

APPROXIPATE "3-PCINT" ESTINATE (V3-V1)/(T3-T1) FOP VARIABLES NDS.---APFKUXIPATE "3-PUINT" ESTIMATE (V3-VI)/(T3-TI) FUR VARIABLES NOS.--"3-PC]NT" ESTIMATE (V3-VL1/(T3-TL) FOR VARIABLES KOS.--APPROXIMATE "3-POINT" ESTIMATE (V3-VI)/(T3-TI) FOR VARIABLES NOS.--APFR(DX[MATE "3-PUINT" ESTIMATE (V3-V1)/(T3-T1) FOR VARIABLES ADS.---0 0 0 0 0 0 "3-PCINT" FSTIMATE (V3-VII/(T3-T1) FOR VARIABLES NOS.--APPRUXIPATE "3-PCINT" ESTIMATE (V3-V1)/(T3-T1) FOR VARIABLES NOS.---APFRUXIMATE "3-POINT" ESTIMATE (V3-V1)/(T3-T1) FOR VAPIAELES NOS.---APFKUXIPATF "3-PUINT" ESTIMATF (V3-VL)/(T3-TL) FOR VARIARLES NOS.--APFRAXIMATE "3-PIJINT" ESTIMATE [V3-VI]/(T3-TI) FOR VARIABLES AOS.--"3-PRINT" ESTIMATE (V3-VL)/(T3-TL) FOP VAPLABLES NDS.--APPRIXTMATE "3-POINT" ESTIMATE (V3-V1)/(T3-T1) FOR VARIADLES NOS.--APPROXIDATE "3-PDIMT" ESTIMATE (V3-VI)/(T3-T1) FOR VARIABLES ADS.--APFRUXIMATE "3-POINT" ESTIMATE (V3-V1)/(T3-T1) FOR VARIABLES NOS.---APFROXIMATE "3-PCINT" ESTIMATE (V3-VI)/(T3-T1) FOR VARIADLES NOS.---APFRIX[PATE "3-PCINT" ESTIMATE (V3-V1)/(T3-T1) FIR VARIABLES NOS.---C 0 c c 0 c 0 c C 0 20 21 C 0 21 c 0 c c c • c -0 0 10 0 c 0 c c c 0 c AP PROX I PATE AP PROX | VATE AP PR NX I MA TE 0 19 0 c 61 0 0 0 19 0 0 0 0 0 0 0 1 9 0 c c c 0 c 0 0 0 c 0 0 0 0 ¢ 5 0 0 c 0 0 c c ç c c 0 c c -• • 0 9 c ¢ ÷ 0 **I** J 0 I J 0 V V U I NC1 L UN 0 0 I ON 0128 522 0 c C INTEGRATICA ACCLLERATION DOES UNES 0 0 ACCELERATION DOES ACCELEPATION 00ES 9 C C 0 0 0 DOFS C ACCELERATION DUES ACCFLERATICN DUFS UDES C DUES 0.0E S ACCFLERATION DUES DOFS C DOLES C **POLES** c 0 0 с 0 с 0 UDES с С DOLES 0 DUES c с -0 с с ACCULERATION ACCFLERATION ACCELERATION U C LL U ACCELERATION ACCELERATION AC.C.E.L.E.R.A.11.0 N ACCELERATION ACCELERATION ACCFLERATION ACCFLERATICN ACCFLEPATION ہ ں 0 0 0 с С 0 0 0 ¢ 9 C c J J 0 0 ں ن c Ċ <u>ن</u> Ŀ c c 01 6 0 0 c c 0 0 c c 0 c 0 c 0 ~ 0 = -0 -0 0 c 0 0 c INTEGRATICN 0 0 0 0 **FULGGRATICN** INTEGRATIEN MILEGRATICA INTEGRATION с с с с C INTEGRATION IN TEGRATICN INTEGRATION 0 0 0 EGRATICA EGRATICA 0 INTEGRATICN INTEGRATICN Ç INTEGRATION INTEGRATICN 0 0 0 0 INTEGRATICN C 0 0 EGRATICA C о С 0 0 c c c 0 0 с с 0 c 0 s 9 c c 0 c С c c : INI E E c c 9 c • c 1.500 6.00.6 0.5.00 00.12 4.500 6-00**-** 2 A.300 000.6 29.510 31.500 0 с с ÷ • 0 0 c 0 9.590 21.500 CUN. 22 0 0 0 000.88 35.000 7 0 0 35.500 0 0 0 0 000 29.030 0 0 ¢ = ¢ 0 0 ۳ 0 c Ċ • c ~ c c T L 4E AT TIME AT TIME AT THE AT TIME A1 11.40 **JELT IA** AT TIME AT THE AT TIME TIME AT T1:46 AT TIME AT 11'4F AF FIME AT TIN IFT T 0 Ċ C ÷ c ¢ C C Ī 5 7

Figure 1. Example Printout from Integration Monitor

6/30/88

410.04

basically good, but HIC and SI injury indicators can be in error by five to ten per cent. (Errors in forces and torques are much less.)

The integration monitor warns against the possibility of this occurrence. It employs a relative error test to separate possible inconsistent integration results from consistent results.* At each time point (except t=0 and t=tfinal) and for each degree of freedom "i" in the system, it estimates the acceleration as $\Delta V(i)/\Delta t$, where V(i) is the difference between the predicted velocities one integration time step on either side of t and Δt is the corresponding time interval, i.e., two integration time steps. This is illustrated in Figure 2. The result is

Let $A^{(i)}$ be the acceleration for generalized coordinate "i" at time t2 resulting from the fourth-order Runge-Kutta integration. The integration monitor tests the inequality which follows:

 $|(A^{(i)} - A_2^{(i)})/A_2^{(i)}| \leq \varepsilon$, test is satisfied $\geq \varepsilon$, test is not satisfied

The test parameter, ε , is set within the program as 0.2. This may seem like a large value to allow for satisfaction of the relative error test, but it is not. It must be kept in mind that $A_2^{(i)}$, against which A(i) is compared, is <u>not</u> the true solution for the differential equations of motion -the true solution is unknown. Failure to satisfy the relative error test therefore does not necessarily indicate an integration difficulty but instead indicates only that the predicted motion around time t2 is not smooth, causing the fourth-order integration not to be in close approximation to the secant estimate, $A_2^{(i)}$. Indeed, the fourth-order result can normally be expected to be much more accurate than the simple estimate $A_2^{(i)}$. Thus, the relative error test can serve only to warn that integration difficulties <u>may</u> exist.

The general procedure which should be followed when examining integration monitor printout such as shown in Figure 1 is as follows.

1) Look for rows of numbers which have many non-zero elements (1 through 21). For example, if the numbers printed for, say, t = 113 ms are

1 2 3 0 0 0 7 0 9 10 11 0 0 0 0 0 0 19 0 21

then generalized accelerations 1, 2, 3, 7, 9, 10, 11, 19, and 21 fail the relative error test at time 113 ms and the possibility of inaccurate integration should be considered. In particular, the accelerations should be examined in the standard tabular time-history printouts. Reference should be made to Table 95 of Volume 3 of the MVMA 2-D CVS manuals (Error Messages 35 and 36) for definition of the correspondence between numbers and generalized accelerations. That page is included here as Figure 3. For the example given above, most of the coordinates which fail the test are near the head, neck, and upper torso, so one would be led to look closely at

*An absolute error test is first used to filter out close matches.

TABLE 95. ERROR MESSAGES FROM GO (Page 3 of 4)

C

.

.

ubroutine VAL VAL	/AL	AL	AL	RCE 1	AMVMA	МИМА	GO
Condition and Action RequiredSulNLOAD)Check Cards 221, 403, 704, and 812.EVIINLOAD)Program corrective measures areEVIIRVE.reasonable.No user action required.	ABOVE Warning, slope of unloading curve less EV/ ssage 33 than slope of loading curve at beginning VES of unloading. Reduce G-ratio and/or R-ratio, change static curve, or ignore,	CURVE WAS Reduce G-ratio and/or R-ratio, change EV/ NTAINS static curve, or ignore.	Warning, straight line unloading curve EVA used maintaining permanent deformation XXX.XXX but ignoring energy. XXXXXX.XX	D IN Same as 8. FOR	ENERALIZED 1 = DTHID, 2 = DTH2D,, 9 = DTH9D GOM BY CONSTANT 10 = DXHD, 11 = DZHD, 12 = DXVD, 13 = DZVD, STIFFNESS, 14 = DTHVD, 15 = DHLD, 16 = DHAL1D, DTHID,) 17 = DIHZD, 18 = DHHD, 19 = DELND, 20 = DXSD, 21 = DZSD (1-9 = 1ink angle accelerations, 10-11 = chest CG accelera- tions, 12-14 = vehicle accelerations, 15-18 = steer col. coordinates, 19 = neck length acceleration, 20-21 = shoulder coordinate accelerations.	OUES NOI A warning only. Often the 4th-order Runge- GOM Kutta integration should not approximate 3-point estimate. Is not of consequence unless most variables are bad or one variable is consistently bad. See message 35.	3: Error Messages from GO
Message DF DOES NOT EXCEED DE, RUN ABORTED AT TIME = XX.XXXX COMPUTED (RELOAD or UN CURVE NO GOOD, USE (UNLOAD or STATIC) CUF (11 values = DEL and PX(1,1) through PX(1 INTERACTION INVOLVES AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	AT TIME = XX.XXXXX UNLOADING CURVE LIES LOADING CURVE. (same variable list as mes plus DUM(12) and FOG) INTERACTION INVOLV AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	PERM. DEFORMATION, JEURE UF CALC'D UNLUAD C NEG. STRAIGHT-LINE UNLOADING USED. MAIN PERM. DEFORMATION, IGNORES ENERGY. INTERACTION INVOLVES AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	AI TIME = XX.XXXX BAD UNLOADING CURVE, IIP JJP 0G ENERGY NOT RIGHT XXXXX XXXXX XXXXX BOG FORCE CE DUM XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	FAIAL EKKUK INIEKACTION TABLES EXCEED	***WARNING: INTEGRATION IS SUSPECT FOR GE ACCELERATION. CONDITION PROBABLY CAUSED B FRICTION AT JOINT OR SURFACE OR BY LARGE VISCOUS DAMPING OR DT. (SEE GOMVMA:] = D AT TIME VV VVV INTEGRATION ACCELENCE	APPROXIMATE "3-POINT" ESTIMATE DV/DT FOR VARIABLES NOS XXXXXXXXXXXXXXXXXXXXXXXXXXXXX	Figure 3. Table 95 from Volume 3
Number 29 30		3 5	G 410.07	94	<u>ଟ</u> ୁ ୪.	6/30/88	

GO

material parameters for neck and shoulder joints.

2) Look for particular numbers which appear repeatedly in warning printouts for different times, especially for several successive integration time steps. Examine the tabular time-history printouts and also the values of material parameters for joints and contacts "near" the problem acceleration.

3) As an aid in estimating reasonable extreme sizes for material parameters, refer to Figures 2-11, 3-10, and 3-11 of the MVMA 2-D CVS Tu-torial System Self-Study Guide. Those figures are included here as Figures 4, 5 and 6.

FIGURE 2-11 Joint friction at joint "i"

NOTE: It is estimated for 50th-percentile-male values for mass, moment of inertia, and link lengths and an integration time step of one millisecond that a threshold velocity V_i of 300-400 deg/sec or greater should be used for a joint with a constant friction torque of 1000 in-1b or 113 N-m. For greater values of constant friction and time step, proportionately greater values of threshold velocity should be used. Minimum threshold velocities are in inverse proportion to masses and moments of inertia.

Figure 4. Figure 2-11 from Tutorial System Self-Study Guide

C-rule

For a relative error of less than ε introduced into \dot{x} at each time step,

FIGURE 3-10 Maximum stiffness and damping values for numerical stability with integration time step Δt

Figure 5. Figure 3-10 from Tutorial System Self Study Guide 6/30/88 410.10

FIGURE 3-11 Solution of $e^{-x} + (1+\epsilon)x - (1+\epsilon) = 0$ for x With ϵ As a Parameter

Figure 6. Figure 3-11 from Tutorial System Self-Study Guide

3.3 DESCRIPTION OF NORMAL OUTPUT **

Section 3.2 describes the use of Cards 107-111 for controlling the storage of potential program output quantities. Potential output is stored or disregarded on the basis of a switch setting for each of 45 normal output categories.* These are listed in Table 11. Section 3.2 also describes the use of Cards 1001 and 1002 for specifying which of the stored output categories are to be printed and in what order. Categories 0 and 41 to 45 constitute special output which is discussed in detail in Section 4.4.2. A brief summary of these options, however, is given in this section after the following discussion of the normal output category options.

Category 1 output consists of the acceleration profiles (input) and the integrated velocities and displacements. Note that x and z output is in a mixture of units—e.g. ,inches for displacements, mph for velocities, and g's for accelerations. X, Z, and velocities are for the vehicle origin motion with respect to the inertial frame regardless of whether input accelerations are accelerometer readings or absolute.

Category 2 output summarizes the "activity" at the defined regions of the vehicle interior. Forces against the region are resolved into special region coordinates (Figure 38) and summed over all segments. If structural deformation is allowed (Card 402), then the third and fourth output items summarize the overall deformation as an average over the segment endpoints. The columns labeled "Endpoint Movement" give the coordinates of the region endpoints in either the vehicle frame or inertial frame, depending on the value of Field 6 of the region 402-Card and as indicated in the Category 2 page heading.

A detailed description of line segment movement is given by Category 3 output. The endpoint coordinates of each of the first five line segments in the region are printed. As for Category 2, coordinates are with respect to the vehicle or inertial frame depending on Field 6 of the region 402-Card.

412

There are three types of Category 4 output. The first describes contact interaction between a line segment and a contact-sensing ellipse. The columns labeled "On Line" give the position (and velocity) of the point of contact measured along the line segment from its first endpoint. The last four columns give the coordinates of the point of maximum penetration by the ellipse in the vehicle and body segment frames. The second type describes contact between body ellipses. Deflections, rates, and force are printed in the first five columns. The remaining columns give the coordinates of the ellipse centers and of the contact point in the inertial and body segment systems, respectively. The third type describes belt forces. Columns one and two are always belt deflection and rate even though belt material properties may have been specified in terms of strain. Column three, with the heading "Ring Equilibrium Tension," is used only for the advanced belt system. This is the belt segment tension for force balance at a slip ring, whether or not the ring is anchored to the vehicle. This force includes the effect of friction at the ring. Column four is labeled "Unadjusted Tension." For the MODROS belt system, this is simply the belt segment tension. For the advanced belts, this is the tension determined from considering the ring positions as guasi-anchor points, without adjustment for friction between occupant and webbing. The positive or negative adjustment for this friction is in column five, labeled, "Tension Adjustment." (This column will contain all zeros for MODROS belts.) For the MODROS system the "Resultant Force" in the next column is the magnitude of the combined lap belt force vectors; it is identical to the belt tension of column four for the torso belts. For the advanced belt system, the resultant belt force is determined from columns 3, 4, and 5. "Resultant Heading" in the next column is the belt angle, measured counterclockwise rotation from the vehicle x-axis of a line from the anchor by point to the attachment point. For the MODROS lap belt combination, the heading is that of the resultant force vector. Advanced belt system tensions and deflections are in three-dimensional space, not merely projections onto the occupant plane.

412.1

Neck reaction forces are printed for Category 5. The signs of all shear forces will be consistent with positive shear <u>on the neck</u> for <u>head-neck</u> <u>flexion</u>. Non-zero neck mass causes compressive forces on the neck at the upper and lower neck joints to be different.

Filtered and unfiltered accelerations and injury criteria come from categories 6-9. These output pages are self-explanatory.

Categories 10-12 give body segment angles, velocities, and accelerations in vehicle or inertial frames. Angles are defined in accordance with Figure 78. Categories 13 and 14 give body joint coordinates and velocities relative to the vehicle system. Additional joint coordinates are printed in Categories 21 and 22.

Total torques at the joints are printed for Category 15. It is perhaps worth noting that "Shoulder at Torso" means joint 9 in Figures 1 and 4, and "Shoulder at Arm" means joint 7. The only torque contribution for joint 9 is from muscle tension. All torque components can contribute at joint 7 and the relative angle upon which the torques are based is between the upper arm and upper torso lines, not the shoulder element and upper torso. Absorbed energies for joints and also for the neck and shoulder lengths are printed for Category 16.

Category 17 output consists of body kinetic energies. It should be noted that neck element kinetic energy (if non-zero) is distributed between the head and torso in proportion to α (Card 202).

Categories 18 to 20 print airbag submodel results. Category 18 prints the thermodynamic variables which describe the state of the airbag; the headings are self-explanatory. The airbag generates forces on five body segments which act normal to the contact lines on the occupant (Figure 94). The total force has two components: a) pressure force; b) bag membrane force. These are printed for Category 19. The total force on each of the body elements is resolved into x and z components, relative to the vehicle, and moments about

6/30/88

412.2

the body element CG's. These are printed for Category 20.

Neck joint coordinates and velocities are printed for Category 21. The neck length is printed also. Similar quantities for the shoulder come from Category 22.

The contents of Categories 23 to 29 are joint torque and absorbed energy components. These pages are self-explanatory.

Categories 30 to 32 give the vehicle-relative x and z components of the total external (non-gravitational) force on each of the body elements. Occupant contact with the vehicle interior can contribute for all eight body elements. The belt restraint forces, whether from the simple or advanced system, contribute to the torso elements only. Airbag contributions are to the head, torso elements, and upper leg. The steering column forces contribute to the head and torso elements. Reaction forces at joints are not included.

The motion of the steering column subsystem is printed for Category 33 and 34. In particular the first six columns for Category 33 locate the points in the system which sense contact by the occupant. (See Figures 55 and 56.). Upper and lower column extensions and angles are printed for Category 34. Category 35 prints body contact forces against the steering wheel and reaction forces within the steering column system. The vehicle-relative force and moment components acting on the occupant result from Category 36.

Category 37 prints all components of internal force in the neck and shoulder length elements. This page is self-explanatory.

Muscle tension may act at nine joints and in both length elements (neck and shoulder). The dynamic muscle tension torques and forces are printed for Category 38. Associated dissipated energy is printed for category 30.

Category 40 output consists of femur and tibia axial and shear forces. These values are determined on the basis of analysis done by Danforth (Ref. 24).

6/30/88

412.3

(Also, see Ref. 25.) This analysis is included in Volume 3, Section 4.6.2.5.

Options 41 through 44 constitute an updated version of the parameter assessment capabilities used in earlier HSRI two- and three-dimensional crash victim simulators. Options 41 through 43 yield output which identifies the quantity, the peak value, the time at which the peak occurs, the time duration during which the quantity exceeds an inputted test value together with the points in time at which the quantity exceeds and then returns below the test value. Option 41 causes both a high and low test against upper and lower test values. If a zero test value is specified, the test is not made. Option 45 is for a printer-plot man and vehicle interior presented at specified time points at which regular printout occurs. Details of these options will be found in Section 4.4.2. Figure 95 shows example printer-plot output.

Options 46, 47, and 48 are for head center-of-gravity, chest center-of gravity, and hip-joint motions. x and z displacements, velocities, and accelerations are printed for each category, and rotational motion is also printed for the head and chest segments. Options 49 and 50 yield output of joint relative angles and relative angle velocities, respectively.

. .

3.4 SAMPLE INPUT AND OUTPUT

The purpose of this section is to give the engineer who is learning to use the MVMA 2-D model a "hands-on" feeling for input data sets required by the model. A complete and careful reading of Section 3.4 prior to a first attempt at developing a data set is highly recommended. A careful reading would probably benefit even users already familiar with the MVMA 2-D model.

This section has been reproduced virtually intact from Module 13 of the MVMA 2-D Tutorial System [8]. "Module" references in this section are for the Tutorial System. Data decks are described and assembled in this section for the following two simulations:

1. a 30-mph frontal barrier crash with vehicle interior deformation and a dummy passenger restrained only by a knee bar; and,

2. a crash with similar occupant and vehicle configurations except that the occupant is restrained additionally by a torso harness.

3.4.1 Introduction

It is normally convenient to construct a data set card by card, beginning with Card 100 and proceeding through Card 1600. However, a complete data set can also be viewed as a collection of subsets which may be dealt with individually. In this section, discussion of the construction of data sets is in terms of eighteen largely independent subsets. These are identified in Figure 96. Data subsets developed for one simulation can be assembled with subsets developed for other simulations to yield a complete data deck for a new simulation. As long as the user keeps in mind and takes account of the various dependencies between some of the subsets, a completely satisfactory composite data deck will result.

3.4.2 Input Data for Example 1

The first example to be considered is simulation of a 30-mph frontal barrier crash with a dummy passenger restrained only by a knee bar. The frontal portion of the vehicle interior displaces toward the occupant. Figure 97 is a schematic of the occupant and vehicle interior configuration at crash onset. The following sections (3.4.2.1 through 3.4.2.11) discuss the construction of the data set for Example 1, which is shown in its entirety in Figure 109.
Arbitrary Decomposition of MVMA 2-D Data Set Into Subsets

DATA SUBSET

CARD NUMBERS

Title Cards	100, 200,, 900
General Controls for IN and GO	101, 102, 103
Debugging Printout Controls	104, 105
Categories of Output Variables to be Stored	107 - 111
Vehicle Motion	601 - 604
Occupant Description	201 - 242
Occupant Position	217, 301-304
Vehicle Interior	401 - 411
Friction Characteristics	412
Allowed or Disallowed Contact Interactions	106
Belt Restraint System	218, 501, 701-723
Airbag Restraint System	901 - 909
End of Data Deck for IN	1000
Categories of Output Variables to be Printed	1001, 1002
HIC, Femur Loads, and Filtering	1003, 1004
Potential Injury Indicators	1100 - 1401
Printer-Plot Stick Figure Time Sequence	1500 - 1502
End of Data Deck for OUT	1600

FIGURE 96 Arbitrary Decomposition of MVMA 2-D Data Set Into Subsets

6/30/88

.

3.4.2.1 <u>Title Cards</u>. Each page of output for a simulation is headed by titles which may be supplied on Cards 100, 200, 300, ..., 900. These cards are discussed in Module 12. The 100-Card is for a "run title," which should be centered in the first 72 columns and which will appear on the first line of each page of printout. (See Figure 98). The second line of page heading consists of the concatenated content of Cards 200, 300, ..., 900. Each of these cards is normally used for description of a specific simulation characteristic. For example, as indicated in Volume 2 of the MVMA 2-D report, the 700-Card normally describes the type of belt restraint system used. However, there are no restrictions on the content of these cards. The 19-column subtitle fields of Cards 200, 300, ..., 700 plus the 17-column field of either Card 800 or Card 900 (only one may be used) can be used together for any 131-character description of the simulation.

The title cards for Example 1 have been grouped together at the beginning of the data set except for the 200- and 300-cards, which have both been used for occupant description and are placed with the occupant data cards (see Figure 102). It might be again noted, as explained in Module 1, that data cards can be positioned within the data deck in any order, without attention to card identification number. Exceptions to this are the 1000- and 1600-cards, which serve as "end-of-data-deck" markers and must be the last cards of the data decks for the Input and Output Pre-processors INP and OUTP.

3.4.2.2 <u>General Controls for IN and GO</u>. A number of general controls are required for the operation of the Input (IN) and Execution (GO) Processors. These are on Cards 101, 102, and 103, which are discussed in Modules 4, 5, 6, 9, 10, and 12.* Some of the most important of these controls specify: 1) the system of units (metric or English) for the simulation; 2) crash duration, integration time step, and time increment for printing of output; 3) use or non-use of the various restraint system options; 4) interpretation of "inhibition cards" for allowed or disallowed contact interactions; and 5) limits for the algorithm which

*The user is referred to Table 9 for aid in finding discussion in Modules 2 through 12 of the parameter in any data card field.

MVMA 2-D TUTORIAL EXAMPLE #1	
------------------------------	--

KNEE BAR DCC. COMP. DISPL. 30MPH FRONT BARRIER NO BELTS

FIGURE 98 Title Cards for Example 1

1.	1.	32.174	0.	0.	200.	1.	5.	10.	101
0.	0.	0.	0.	0.	0.	10.	.000001	5.	102
•2	.05	100000.	15000.	10.	.05	10.	1.	1.	103

.

FIGURE 99 General Controls for IN and GO for Example 1

determines shared-deflection force balance. Simulation Examples 1 and 2 of this section are both for 200 msec duration, one msec integration time step, and five msec printout interval. The simulations are made with English system data. Figure 99 shows Cards 101 through 103.

3.4.2.3 <u>Vehicle Motion</u>. The vehicle motion, or more precisely, occupant compartment motion, is described with Cards 601 through 604. This prescription of the "crash history" is the subject of Module 8. Cards for the 30-mph frontal barrier crash of Example 1 are shown in Figure 100. Initial position and velocity values for vehicle horizontal, vertical, and pitch coordinates are on Card 601, together with two coordinates for an accelerometer location. The remaining cards specify acceleration histories for the three vehicle degrees of freedom.

The horizontal motion for this example, illustrated by the acceleration profile in Figure 101, is defined by twenty-three time-acceleration points on cards following the 602-card. The crash represented is for an impact velocity of 30 mph, a ΔV of 32.83 mph, 33.9 g's peak acceleration, and a stopping distance (or "crush") of 21.8 inches.

3.4.2.4 Occupant Description. Most of the Cards 201 through 242 are used for prescribing occupant parameters. Cards 201 through 216 plus 227 through 242 describe mass and moment of inertia properties for the body links, link lengths, and joint properties. Cards 219 and 220 define ellipses which represent the contact-sensing profile of the body. Loading and unloading characteristics of body materials are prescribed on Cards 221 through 226.* The data in Figure 102 are preliminary data compiled by HSRI from several sources for a GM Hybrid II dumamy. Toe and heel ellipses have been positioned for a foot in a flexed configuration since the MVMA 2-D model does not include an articulation at the ankle joint.

Values pertinent to initial joint torques are on Card 217 (see Section 3.4.2.5). Head and chest accelerometers are located by values on the 218-Card (see Figure 122).

* See Modules 2, 3, 4, and 6 for discussion of occupant parameters.

0.	44.	0.	0.	0.	0.	0.	0.	501
23.	1.	1.						602
0.	-1.7	1.	-1.4	7.	-33.9	12.	2.8	
13.5	3.9	18.	-21.2	21.5	-12.4	28.	-9.2	
32.	-24.0	33.	-24.0	36.	-9.9	37.	-9.9	
42.	-26.9	47.	-31.8	50.	-25.9	54.	-27.2	
58.	-32.2	61.	-29.0	76.	-5.9	90.	-1.4	
100.	-1.4	120.	0.	300.	0.			
2.	1.	1.				•		603
0.	0.	300.	0.					
2.	1.		•					504
0.	0.	300.	0.					

FIGURE 100 Vehicle Motion Cards for Example 1

GM HYBR		ммү						20
(PREL TM	INARY DA	TA	•					30
1.1	13.44	3.4	5.	15.8		10.3	3.25	88 20
2.75	7.	1.7	4.2	8.2	9.3	5.	5.8	-5 20
0259	.0951	-0052	.0982	.0932	.0518	.022	0256	.007 20
198	1.97	.06	1.53	1.39	2 82	19	47	20
17 9	50	•••	52	17 4	2.02	•10	- 75	35 201
12.0	• 70	0.	• 7 2	17 6	1.		-23.	-55 20
12.7	• 7 0 1 C	0.	• 7 2	1000		•	-22.	• 35 20
102 5	17.	1044	• 7 0	1000.	1.	-8.	-22+2	•35 20
102.5	-1.024	•1944	•00	1000.	1.	-33.999	-34.001	•35 20
84.44	-4.410	-1053	0.	850.	1.	-49.999	-50.001	•5 20
0.	29.8	0.	0.	204.	1.	135.	0.	•5 21
0.	10.	0.	0.	222.	1.	28.	-197.	•5 21
0.	10.	0.	0.	64.	1.	0.	-165.	•5 21
751.	0.	757.	1.98					. 21
20.	230.	0.	0.		-	2.		•5 21
38.	.58	0.	•52	0.	1.	-1.		.16 21
38.	.59	0.	•52	0.	1.	2.		•16 210
751.	0.	757.	1.98	*	-	-		24
HEAD				1.	3.			210
THORAX		CHESTMA	TI.	2.	1.	÷		210
HTP		HTPMATI		4.	1.			21
THICH			-	5	1.			21
KNEE				5.	1			21
CUANY				5	1			21
JEANN				0 • 4	1.			21
715L				D •	<u>۲</u> • ~			21
105				5.	2.			210
ELHOW				7.	1.			219
HAND				8.	3.			219
HEAD		0.	•5	4.	4.			220
THORAX		5	68	5.52	4.44			220
HIP		12	0.	4.5	4.5			220
THIGH		5	1	7.	3.			220
KNEE		7.	4	2.25	2.25			220
SHANK		-7.54	0.	3.	2.4			220
HEEL		8.57	0.	1.2	1.2			221
TOE		5.61	-5.16	1.2	1.2			220
ELBOW		5.3	0.	1.5	1.5			22
HAND		5.6	4	2.72	1.52			220
CHESTMA	F1	0.	0.	0.	100.	101-	0.	0. 221
CHESTNA	r 1	5.	v .		1004	TATZ	TZERO	CGP 222
6.69	-1.	.1				03.41	I LENO	223
CC2	-1.	• 1	-					
665	0.1	[• 						22
	•01	• 0 4						22
CGR	• 3	•7						220
CGR	1.35	. 4 5						220
CSTAT	0.	0.	٠					22
CSTAT	.01	1125.						22
CSTAT	•05	1460.						22
CSTAT ;	•3	1350.						22
CSTAT	• 4	1260.			· ·			22
CSTAT	1.1	1260.						22
CSTAT	4.25	12600.	•					225
IZEPO	-1.	0.	•					220
HIPMATL		0.	0.	0.	100.	101.	0.	0. 22
HIPMATL		5.	•			CSTAT	IZERO	CGR 22

FIGURE 102 Occupant Parameter Cards for Example 1

3.4.2.5 Occupant Position. The seated occupant at "time zero" for Example 1 is shown in Figure 97. Data are required for initial positioning of the occupant. In addition, a value is needed for the initial velocity for each occupant degree of freedom (see Module 7). As the occupant for Example 1 is initially at rest within the occupant compartment, which is normally the case for crash simulations, these initial velocities -- fourteen fields of Cards 302, 303, and 304 -are all 0. in the data of Figure 103.

The initial position data are on Cards 217, 301, 303, and 304. First, initial position values are required for the fourteen occupant degrees of freedom. These are the initial link angles (301), neck length (303), shoulder position (304), and horizontal and vertical locations within the occupant compartment of the upper torso center of gravity (303). For the two example simulations, initial link angles and upper torso CG location were estimated from scale drawings of the "time zero" occupant and vehicle-interior configurations, so the values in Figure 103 produce only approximate initial occupant equilibrium. The resulting total initial upward force on the occupant, for example, is 207.1 lb, which does not equal the occupant weight, 163.7 lb. More exact initial z-force balance is recommended. (See "HELPER" information in Section 3.2-A.1.)

Values on Card 217 are for the so-called "joint equilibrium angles." The values in the example data have been selected to equal initial relative joint angles, which may be determined by subtracting link angles on Card 301. As explained in Module 2, this results in zero initial values for the linear components of joint torques.

3.4.2.6 <u>Vehicle Interior</u>. A vehicle interior with which the occupant is to interact must be prescribed by the user. Two types of data are required. The first of these describes the geometrical profile of the interior in the plane of occupant motion. (See Module 5.) The primary elements of this description are the endpoint coordinates of line segments which comprise so-called vehicle-interior "regions," a "region" being a set of connected straight-line segments having the same material properties. Figure 104 shows the vehicle interior profile defined for Example 1. Region and segment names are indicated,

6/30/88

-11. 78.5 0. 12.2 0.	-8. 97.5 0. 0. 0.	-18. 115.5 0. -21.4 0.	-34. 149.5 0. 0. 0.	-50. 19.5 0. 3.28	0. -45. 0. 0.	0. -41. 0.	0. 3. 0.	89•5 0•	217 301 302 303 304
----------------------------------	-------------------------------	------------------------------------	---------------------------------	----------------------------	------------------------	------------------	----------------	------------	---------------------------------

FIGURE 103 Occupant Position Cards for Example 1

.

segment names in parentheses. Solid lines indicate positions of line segments before frontal interior penetration into the occupant compartment, which begins at 40 ms. All penetration occurs between 40 and 80 ms, and the dashed lines represent the deformed vehicle interior. Note that the toeboard segment decreases considerably in length. There is no restriction that segment lengths be held constant while undergoing motion. Data for one of the penetrating regions of the vehicle interior, the INSTRUMENT PANEL region, are illustrated in Figure 105. The INSTRUMENT PANEL profile is defined entirely by Cards 401, 402, 409, 410, and 411.

The second type of data required for the vehicle interior describes material characteristics, i.e., loading and unloading properties of regions of the defined profile. Data are on Cards 403 through 408. With regard to material specifications in Figure 105 for the INSTRU-MENT PANEL, there are two points worthy of note. First, the use of the name IZERO on Card 404 for the inertial spike curve illustrates that curve names may be shared by materials; no inertial spike data (Card 408) appear here for material IPMAT since the inertial spike curve IZERO is defined elsewhere in the data set for a different material (see Card 226 in Figure 102). It is also allowable to specify the same material name for different regions or ellipses while defining the material properties only once within the data set. Second, the dependence of the R-ratio (for energy restitution) on maximum deformation is indicated on the 406-Cards and has been established to be compatible with the Gratio (for permanent deformation) on Cards 405 and the loading curve from Cards 407. This is important to guarantee proper unloading behavior for the material. Determination of G- and R-ratio compatibility is described in Module 6, Part 2.

3.4.2.7 <u>Friction Characteristics</u>. Frictional forces between the occupant and elements of the vehicle interior can be large enough to have a considerable effect on the magnitude and direction of the resultant force vector at the interaction interface. It is therefore important in simulations to account for frictional forces accurately. The user of the MVMA 2-D model assigns each body ellipse and each vehicle interior region to a "friction class;" this is done with entries on Cards 219 and 402. Coefficients of friction are specified

INSTRUMENT	PANELIPMAT		0.	1.	1.	1.	401
INSTRUMENT	PANEL2.	4.	1.	0.	0.		402
MID IP	INSTRU	MENT PAN	IEL5.	0.	1.	1.	409
MID IP	4.						410
MID IP	0.	44.9	-27.3	43.7	-15.9		411
VID IP	40.	44.9	-27.3	43.7	-15.9		411
MID IP	80.	45.6	-29.3	40.6	-18.9		411
MID IP	300.	45.6	-29.3	40.6	-18.9		411
LOWER IP	INSTRU	HENT PAN	NEL5.	• 5	1.	2.	409
LOWER IP	4.						410
LOWER TP	0.	43.7	-15.9	46.8	-12.8		411
LOWER IP	40.	43.7	-15.9	46.8	-12.8		411
LOWER IP	80.	40.6	-18.9	42.6	-14.9	•	411
LOWER IP	300.	40.5	-18.9	42.6	-14.9		411

IPMAT		0.	0.	0.	100.	101.	0.	0.	403
IPMAT		5.	0.	0.	0.	IPSTAT	IZERO	IPGR	404
IPGR	0.	0.							405
TPGR	2.	75	•••		-		•		405
IPGR	40.	.75			 				405
IPGR	0.	1.	•		•				405
TPGR	1.	.25	•						406
TPGR	2.	.1	• * * *					-	406
TPGR	8	-1	٠		· · · ,				406
TPGR	8.4	-15	2.						406
TPSTAT	0.	0.	•						407
TPSTAT	.165	80.	• -						407
IPSTAT	.375	480.	-		-			•	407
IPSTAT	. 665	750.	•						407
TPSTAT	.780	760.	•		· -				407
TPSTAT	1.25	500.	•						407
IPSTAT	1.75	580.	•		• •				407
TPSTAT	2.54	225.	•		•				407
IPSTAT	2.87	255	•		• ••				407
TPSTAT	3.64	300 -			•				407
IPSTAT	4.54	380.	. '						407
IPSTAT	4.63	250.	•						407
IPSTAT	R	250.	•		•				407
IPSTAT	12.	3850.	-				•		407

FIGURE 105

Data Cards for Definition of Geometrical Profile and Material Properties for a Typical Region on 412-Cards for combinations of ellipse and region friction classes. Figure 106 shows the 412-Cards in the data set for Example 1. There is one card for each pairing of friction classes represented in the set of contact interactions which can occur in this simulation. For any simulation, coefficients of friction will default to 0. for any pairing not represented by a 412-card. Note that the first data card in Figure 106 includes coefficients for tangential forces proportional to the first and second powers of deflection, as explained in Module 6-2. For this example, the values represent plowing resistance to relative motion between the SEAT CUSHION and SEAT BACK regions and contacting body ellipses.

3.4.2.8 <u>Interaction "Inhibition" Cards</u>. Modules 4 and 5 discuss the use of 106-Cards for specification of allowed or disallowed combinations of potentially-interacting body ellipses and vehicle interior regions. "Allowed" combinations are normally specified when the number of probable interactions is less than the number of improbable interactions. This is judged to be the case for the first simulation example, so twenty-one allowed interactions have been specified between the ten body ellipses and nine vehicle-interior regions. These are shown in Figure 107. One card has been included for an allowed interaction between body ellipses THIGH and THORAX.

3.4.2.9 <u>Belt Restraint System</u>. Example 1 is a simulation for an unrestrained occupant. As an illustration that it is unnecessary to remove restraint system data from the data deck for such a simulation, belt system data cards are included in the complete data deck for Example 1 shown in Figure 109. (These are Cards 218, 501 and 701 through 709). It is necessary only to set the belt system usage switch in field 1 of Card 102 to its "off" value, zero.

3.4.2.10 <u>End of Data Deck for IN</u>. The last card in the data deck for the Input Processor, IN , must be the 1000-Card. It is blank except for the card identification number in columns 77 through 80. (See Figure 109.)

1.	•25	.125	.125				412
2.	.5	•					412
3.	.5	·					412
4.	.4						412
2.	.8			•••			412
1.	.4			•			412
2.	.5						412
4.	.4						412
5.	.67						412
6.	.9						412
	-						
	1. 2. 3. 4. 2. 1. 2. 4. 5. 6.	1. .25 2. .5 3. .5 4. .4 2. .8 1. .4 2. .5 4. .4 5. .67 6. .9	1. .25 .125 2. .5 3. .5 4. .4 2. .8 1. .4 2. .5 4. .67 6. .9	1. .25 .125 .125 2. .5 .5 3. .5 .4 2. .8 .4 2. .5 .4 4. .4 .5 5. .67 .67 6. .9 .9	1. .25 .125 .125 2. .5	1. .25 .125 .125 2. .5	1. .25 .125 .125 2. .5

FIGURE 106 Data Cards for Coefficients of Friction for Example 1

HEAD	RODEHEADER	106
HEAD	WINDSHIELD	106
HFAD	INSTRUMENT PANEL	105
THORAX	SEAT BACK	106
THIRAX	SEAT CUSHION	106
THORAX	INSTRUMENT PANEL	106
HIP	SEAT BACK	106
HIP	SEAT CUSHION	105
HID	FLOOR	105
THIGH	SEAT CUSHION	106
KNEE	INSTRUMENT PANEL	106
KNEE	KNEF BAR	106
SHANK	INSTRUMENT PANEL	105
SHANK	KNEE BAR	106
HEEL	FLOOR	106
HEEL	DASH	105
TOF	DASH	105
HEEL	THEPAN	106
THE	TOEPAN	105
HAND	SEAT CUSHION	106
HAND	INSTRUMENT PANEL	106
THIGH	THORAX	106

FIGURE 107 Interaction "Inhibition" Cards for Example 1

3.4.2.11 <u>Output Processor Controls</u>. Cards 1001 through 1600 constitute a separate data deck from Cards 100 through 1000, described in the preceding sections and read by the Input Pre-Processor. Cards 1001 through 1600 are read by the Output Pre-Processor. These cards control post-processing and printout of data calculated and stored by the Dynamic Solution Processor (or "Execution Processor," GO). These data and data generated by the Input Processor are stored in four external files (see Module 12); as long as the files are maintained intact, they can be processed by the Output Processor any number of times, using different control Cards 1001 through 1600.

***** Output Categories for Printout. The entire Output Pre-Processor data deck for Example 1 consists of seven cards. These are shown in Figure 108 . The first two cards, 1001 and 1002, are used for specification of categories of calculated data for which printout is desired and the order of printout for these categories. The fifty

categories of results which may be printed are identified by Category Number in Table 11. The ordering for printout shown for Example 1 in Figure 108 is identical to the default ordering which would result if the 1001- and 1002-Cards were omitted from the data deck.* All categories are requested for Example 1. Requests for printout for categories for which no data are stored will be ignored by the Output Processor.

***** HIC, Femur Loads, and Filtering. Various data explained in Module 12 are required on Cards 1003 and 1004 for the postprocessor functions of filtering of occupant accelerations and determination of HIC and femur loads.

***** Potential Injury Indicators. In addition to HIC and femur loads, other potential injury indicators can be determined and printed by the Output Processor. These are also discussed in Module 12. They are requested by using Cards 1100 through 1401, none of which are included in the data deck for Example 1.

^{*} The default ordering minus printout of the input data summary, Category 0, can be obtained by using a 1001-Card which contains only "-1" in columns one and two.

0, 1, 46-48, 10-14, 21, 22, 37, 38, 49, 50, 15, 23-26, 2-5, 18-20, 33-36, 30-32, 16, 27-29, 39, 17, 40, 6-9, 45 0. 0. 0. 11.55 .025 ' 40. 500. 560. 0. .85 201. 5. 5. 1001 1002 1003 .85 1004 0. 21. -3. 0. 0. 62. 5. -44. 10. 0. 1500 0. 1. 0. 1. . 1. 0. 10. 1501 1600

.

FIGURE 108

Output Processor Data Deck for Example 1

....

•

.

***** Printer-Plot Stick Figures. As explained in Module 12, a time sequence of printer-plot pages can be produced which depict the occupant and all lines of the vehicle interior. A control for storing data required for production of this printout is on Card 101, read by the Input Pre-Processor and shown in Figure 99. Controls for producing the printout are read from Cards 1500 through 1502 by the Output Pre-Processor. The most important data on these cards are margin coordinates which frame the printer-plot image within the vehicle coordinate system and the simulation times to be included in the time sequence of printouts.

***** End of Data Deck for OUTP. As for the Input Pre-Processor data deck, a single card is required to mark the end of the Output Pre-Processor data deck. It is Card 1600, which is blank except for the card identification number.

3.4.3 Selected Output from Simulation Example 1

Selected pages of printout from the MVMA 2-D Crash Victim Simulator are shown as Figures 110 through 124. Figure 109 contains the data cards for Example 1 which generated the simulation results shown.

The MVMA 2-D model has undergone continuous development and improvement since its inception, and it is expected that it will continue to undergo change. Consequently, numerical results in Figures 110 through 124 should not be compared with results that MVMA 2-D users might obtain by using the data set for Example 1 for simulation with their own installations of the model. Rather, these figures are to be viewed as illustrative of the format of MVMA 2-D printout.*

3.4.3.1 <u>Data Set Echo</u>. Both the Input and Output Pre-Processors always produce "echoes" of their data decks. An example page from the Input Pre-Processor "echo" for Example 1 is shown as Figure 110. The eight-column data fields are separated by asterisks.

3.4.3.2 <u>Summary of Input Data</u>. Figure 111 is an example page of printout of a summary of the input data. The entire input data summary for Example 1 is 63 pages. This printout is produced whenever category 0 is requested on the 1001-Card.

^{*}Results in Figures 114, 115, 116, 120, and 121 are not consistent with other results since they were taken from a different simulation.

3.4.3.3 <u>Printer-Plot Stick Figure Sequence</u>. The data decks for Example 1 cause printer-plot stick figure output to be generated for each 10 ms of simulation time. Selected "frames" of the time sequence are shown as Figure 112.

3.4.3.4 <u>Printout of Numerical Results</u>. Nine example pages of printout of numerical results are shown in Figures 113 through 124. The definition of most output variables is clear. However, aid is provided for the user in interpreting output in Section 3.3.

Only two special notes will be made here regarding output variables. First, femur and tibia loads (Figure 122) must be interpreted as for two legs combined. That is, values for one leg are obtained by dividing by two. Second, GMR Severity Indices are calculated for head and chest in addition to values for the standard Gadd Severity Index. The GMR index is defined in a section of Volume 3 entitled, "Special Indices." It differs from Gadd index in that its calculation involves raising acceleration values to powers which vary with acceleration level rather than the constant power 2.5.

		MV	4A 2-D T	UTORIAL	EXAMPLE	#1			100
KNEE	BAR								400
000. CDM	4P. DISPI	L.							500
30MPH F	PONT BAR	RIER							500
NO'E	BELTS								700
1.	1.	32.174	0.	0.	200 -	1.	5.	17.	101
0.	0.	0.	0.	0.	0	10.	.000001	5.	102
.2	.05	100000.	15000-	10.	.05	10.	1.	1.	103
0.	44	0.	0.	0.	0.	0.	0.	•••	501
23.	1.	1.							602
0.	-1.7	1.	-1-4	7.	-33-9	12.	2-8		
13.5	3.9	18.	-21.2	21.5	-12.4	28	-9.2		
22	-24.0	33	-24.0	36.	-9.9	37.	-9.9		
52.0	-24.0	47	-31 8	50	-25.9	54	-27.2		
	-22 2		-79 0	76	-6.9	90	-1.6		
26.	- 1 6	120	~2 7 • 0	300	-J•7	708			
200.	-1.44	1200	U.	3000	V•-				607
2.	1	1.	0						005
0.	0. 1	500+	U•						694
2.	1.	200	•		·-				504
		300 •	0		-				200
GA HÅR A		 							200
(PRELIM	INARY UA		-	15 0			3.95	•••	300
1.1	13.44	3.4	5.	15.8		10.3	3.25	58	201
2.75	7.	1.7	4.2	8.2	9.3	5.	5.8	•5	202
.0259	.0951	•005Z	•099Z	•0932	.0518	• 0ZZ	•0256	.007	203
.108	1.07	•04	1.53	1.39	2.82	•18	•52		204
12.8	•58	0.	•52	17.4	1.		-25.	•35	205
12.9	.58	0.	•52	17.4	1.		-22.	•35:	205
72.	15.	0.	•66	1000.	1.	-8.	-25.5	.35	207
102.5	-7.624	.1944	•65	1000.	1.	-33.099	-34.001	.35	208
84.44	-4.910	.1053	0.	850.	1.	-49.999	-50.301	•5	209
0.	29.8	0.	0.	204.	1.	135.	0.	•5	210
0.	10.	0.	0.	222.	. 1.	29.	-197.	.5	211
0.	10.	0.	0.	64.	1.	0.	-165.	•5	212
751.	0.	757.	1.98						213
20.	230.	0.	0-			2.		•5	214
38.	.58	0.	.52	0.	1.	-1.		.16	215
38.	.59	0.	•52	0.	1.	2.		.16	216
751.	0.	757.	1.98		-	•			242
HEAD				1.	3.				219
THORAX		CHE STMA	TL.	2.	1.				219
HIP		HIPMATL		4.	1.				219
THIGH				5	1.				219
KNEE				5.	1				219
SHANK			•	6.	1		•		219
HEEI			•-	6-	2.				210
THE				6.	2.				210
FLBOW				7.	1.				210
HAND			•	8.	3				210
HEAD		0.	.5	4.	A .				217
THOPAY		- 5	68	5.52	4.66				220
		- 17		J. J. L.	4.5				220
THICH			1	7.	3.				220
KNEE			- 4	2.25	2.25				220
CHANK		(• _7 E/	···• ·· ·	2.067	2063.				220
JUCCI			0	5. 1. 7	2.7 1 7				220
TOC			-6 14	1.2	1 3				220
195		7.0L	-2010	1.5	1				220
ELSOW		2.5	U.,	L.7	1.2				220
HANU	· ·	7•D	4	2.12	24.1		-	•	220
CHESTMA		0.	U•	U.	100.	101.	0.	0.	ZZI

FIGURE 109 Complete Data Set for Simulation Example 1 (page 1 of 6)

· · · · · 437

		_						
CHESTMAI	rL	5.				CSTAT	IZERD	CGR 222
CGR	-1.	•1						223
CGR	0.	1.	**					224
CGR	-01	- 64	••					274
CCP .	. 2	.5						274
669	•							227
598 6 6 7 7 7	1.37	• 4 7						224
CSTAT	0.	0.						22
CSTAT	•01	1125.						225
CSTAT	•05	1460.						225
CSTAT	.3	1350.			•			225
CSTAT	- 4	1260.	•					229
TATZ	1.1	1260.	•					225
CCTAT	1. 75	12600	•		• .			
17590	4.20	12000.	- '		•	,		222
17680	-1.	0.	- ·					220
HIPMATL		0.	0.	0.	100.	101.	0.	0. 221
HIPMATL		5.				CSTAT	IZERD	CGR 222
-11.	-8.	-18.	-34.	-50.	0.	0.	0.	217
78.5	97.5	115.5	149.5	19.5	-45.	-41.	3.	89.5 301
0.	0.	0.	0-	0.	0.	0.	0.	0. 302
12.2	0	-21.4	0.	3,29	<u>0</u> .	•••	•••	301
12.02	0.	0	<u>.</u>	5.25				30/
0.	0.			•	•	•	•	30-
SEAT BAC	;K	SEAT MAT	FERIAL	0.	1.	1.	1.	401
SEAT BAC	CK .	1.	1.	1.	0	0.		402
SEAT MAT	FRIAL	0.	0.	1.6	3.5	4.	0.	0. 403
SEAT MAT	TERTAL	5.				SSEAT	IZERD	GRSEAT 404
GRSEAT	-1 -	.1	-					405
GRSEAT	-1.	5 .	• · · ·		•.			406
CCEAT	.	Ó						40
55241								401
55541	• 8	150.						40
SSEAT	1.6	400.	-					40
SSEAT	3.	2000.						40
SSEAT	3.5	4000.						407
SSEAT	4.	0.						407
BACK LIN	NE	SEAT BAC	C K	5.	0.	-1.	1.	409
BACK LIN	IF	1.	a					410
BACK IT	VE.	-1.	6.2	-25-8	15.44	-4.96		41
CEAT CH		CEAT MAT	FRIAL	0.	1.	1.	1.	401
SEAT CUS		30.4 C		, .	^*•	<u> </u>	* •	405
SEAT LUS			1.	1.				+02
CO2HION	LINE L	SEAT CU	SHIUN	>.	.104	1.	1.	40
CUSHION	LINE 1	1.						410
CUSHION	LINE 1	-1.	15.44	-4.96	28.	-9.92		411
CUSHION	LINE 2	SEAT CUS	SHLON	5.	• 5	-1.	2.	409
CUSHTON	ITNE 2	1.						41 (
CUSHTON	ITNE 2	-1.	28.	-9.92	32.24	-10.64		411
51 000		ENATI	200	0	1	1	1.	401
FLUGK		PHAIL 3	•		1.	1.	1.	-01
FLUUR		2.	2.	1.	0.	0.		404
SEAT BUT		FLUUK		2.	0.	-1.	1.	40
STAT BOI	TOM	1.			- -			410
SEAT BOT	TOM	-1.	31.2	-8.	31.2	84		411
FLOORBOA	1RD	FLOOR		5.	0.	-1.	2.	409
FLOOPBOA	ARD	1.			.4			410
FLOORBOA	RD	-1.	31.2	- 84	49.	84	•	411
TOCDAN		EMATI		0.	1.	1.	1.	401
TOCOAN		1	,		<u>.</u>	<u>.</u>	£ •	401
IUEPAN		1.	د• .	1.	U•	1		404
TOESDARD)	TUEPAN		D •	U•	1.	1.	409
THERDARD)	4.				_		410
THEBDARD)	0.	47.3	1.1	54.7	-5.5		41
TOFBOAR	,	40.	47.3	1.1	54.7	-5.6		411
TOFBOARD)	80.	47.3	1.1	47.9	-5.6		411
TOSBOARD)	300.	47.3	1.1	47.9	-5.6		411

FIGURE 109

Complete Data Set for Simulation Example 1 (page 2 of 6)

KNEE BAR	SHEET ME	TAL	0.	1.	1.	1.	40	1
KNEF BAR	1.	3.	1.	0.	0.	10000	40	2
SHEET METAL	0.	0.	• 7	8.	9.	10000.	10000. 40	3
SHEET METAL	2.				SSHEEL	IZERU	GRSHEET 40	-
GRSHERT U.	0.						40	7 e
GRSHEET C.S	0.						4U ()	7 e
	0.9						40	2
GRSHEET U.	1.						40 40	4
6854551 .D	1.7		•				40	2
CREMEET &	• '						40	n A
COCHEET 5 5	15						40	Â
CDCHEET 8.	• 1						40	16
GRSHEET 9	- 01						40	6
SSHEET 0.	0.	•					40	7
SSHEET 2.	1500.	•					40	17
SSHEET 4.	1500.					•	40	7
SSHEET 5.5	10000.						40	17
SSHEET S.	10000.	-					40	7
SSHEET 9.	0.						40	7
KNEEBAR LINE	KNEE BAR	2	5.	0.5	1.	1.	40	9
KNEEBAR LINE	4.						41	0
KNEEBAR LINE	0.	40.4	-13.2	38.9	-16.4		41	1
KNEEBAR LINE	60	40.4	-13.2	38.9	-16.4		41	1
KNEEBAR LINE	80.	38.9	-13.2	37.4	-16.4		41	1
KNEEBAR LINE	300.	38.9	-13.2	37.4	-16.4		41	1
RODEHEADER	RMATL		0.	1.	1.	1.	40	1
RODFHFADER	1.	6.	1.	0.	0.		40	2
LR	ROOFHEAD	ER	5.	0.	1.	1.	40	19
LR	1.						41	0
LR	-1.	18.2	-43.4	28.0	-41.7		41	1
WINDSHIELD	WINDSHIE	LD GLASS	5 0.	1.	1.	1.	40	1
WINDSHIELD	1.	5.	1.	0.	0.		40	2
LW	WINDSHIE	LD	5.	0	1.	1.	40	19
LW	1.				• • •		41	.0
FA	-1.	27.8	-41.3	51.6	-26.3		41	.1
INSTRUMENT PANEL	IPMAT		0.	1.	1.	1.	40	1
INSTRUMENT PANEL		4.	L.	0.	0.		40	12
M(0) [P	INSIKUME	INI PANEL	.7.	0.	1.	1.	40	19
	4.	46 0	- 77 7	47 7	-160		41	. U
	U •	44.7	-21.5	43.1	-15.0		41	. 1
	4 0.	45.6	-29.3	40 6	-19 9		71	1
MID IP	300.	45.6	-29.3	40.6	-18.9		. 41	1
INWER TP	TNSTRIME	NT PANEL	5.	-5	1.	2.	41	19
INVER TP	4.			• 2			41	ń
INVER TP	0.	43.7	-15.9	46.8	-12.8		41	ĭ
LOWER TP	40.	43.7	-15.9	46.8	-12.8		41	ī
LOWER IP	80.	40.6	-18.9	42.5	-14.9		41	ī
LOWER IP	300.	40.6	-18.9	42.6	-14.9		41	ī
DASH	DASHMATL		0.	1.	1.	1.	40	ī
DASH	1.	2.	1.	0.	0.	-	40	ž
DASHLINE	DASH		5.	0.	1.	1.	40	9
DASHLINE	4.			•			41	.0
DASHLINE	0.	54.7	-5.6	54.2	-20.1		41	.1
DASHLINE	40.	54.7	-5.6	54.2	-20.1		41	1
DASHLINE	80.	47.9	-5.6	47.4	-20.1		41	. 1
DASHLINE	300.	47.9	-5.6	47.4	-20.1		41	l
DASHMATL	0.	0.	0.	100.	101.	0.	0. 40) 3
DASHMATL	5.				DSTAT	IZERO .	DGR 40) 4

FIGURE 109

.

Complete Data Set for Simulation Example 1 (page 3 of 6)

DGR	0.	0.							405
Des	.001	.01							40
DGP	10.	.01	•						405
DGR	0.	1.							405
DGR	.001	.91							+00
DGR	.75	.8							408
DSR	1.5	.5							406
820	10	.3							- 406
DSTAT	0.	0	· · ·						405
TATO	0.75	2100							407
DSTAT	1 5	2100.							407
JOTAT	4.0	9000.					•		407
JS 4 1	40.	9000.	•	•					407
A MATL		0.	0.	0.	100.	101.	0.	0.	403
RMAIL		2.	0.	0.	0.	RSTAT	IZERD	DGR	404
RSIAI	-1.	1200.	-65.36	67.38	-29.36	4.78			407
HECHIN	IELD GLA	\$5.5	1.	0.	100.	101.	0.	0.	403
WINDSH	IELD GLA	555.	0.	0.	0.	. WSTAT	WI	WGR	404
WGR	0.	0.	2 +						405
WGR	•5	0.							405
WGR	• 51	.65							405
WGR	1.	.75							405
WGR	6.	•8			•				405
WGR	0.	1.	·						405
WGR	•5	1.	3			•			-00
WGR	.51	-1	•						406
WGR	1.	-05	10						408
WGR	6.	.01 .							405
WSTAT	-1.	108.8	50.0	-10.9	1				400
WT	-1.	3000	1000	-8000	4000				407
TONAT		0	1000.	-0000	4000.	101	•	-	408
TOMAT		5	0.	0.	100.	101.	0.	0.	403
TPCP	0	7 •	V.	0.	0.	IPSIA	IZERO	IPGR	~404
1-07	0. 2	U •			-				405
1202	<u>د</u> ، د	• / 5			-				405
IDGR	40.	.75			-				405
IPGR	0.	1.							406
IBCS	1.	•25							- 406
IPGR	2.	•1			· •				406
IPGR	8.	•1	·					~1	405
IPGR	8.4	.15	- el*						406
IPSTAT	0.	0.							407
IPSTAT	.165	80.	.*						407
IPSTAT	.375	480.			-				1 UF 6 A 7
IPSTAT	.665	750.	•	•					4U/ 407
IPSTAT	,780	760.	-						407
IPSTAT	1.25	500	•						407
TATZEL	1.75	580	•						407
TPSTAT	2.54	225	•		-				407
TATZAT	2.27	2620	•		•				407
IDCTAT	2 64	200							407
TDCTAT	2004 201	300	. '						407
IDCTAT	9079 2 2 4	380.	*						407
INCAL	4.05	250.		•					407
INSTAT	я. 	250.	•						407
INSTAT	12.	3850.							407
FMATL		0.	0.	0.	100.	101.	0.	0.	403
FMATL		5.	0.	0.	0.	FSTAT	IZERD	FGR	404
FGR	0.	0.						-	405
FGR	2.	.7	-		•				405
FGR									
	0.	1.							404
FGR	0. 2.	1. .2							406 404
FGR FSTAT	0. 2. 0.	1. .2 0.							406 406 407

•

FIGURE 109

Complete Data Set for Simulation Example 1 (page 4 of 6)

						١		
FSTAT	.25	100.						
FSTAT	•5	400.						
FSTAT	•75	1200.	-					
FSTAT	1.	2400.	-		·			
FSTAT	1.5	4000.	-					
FSTAT	2.	4600.	•					
FSTAT	3.	5000-	· ·					
FSTAT	4.	5200-	•					
FSTAT	6.	5400.	• •					
FSTAT	10.	5600	*					
FSTAT	16.	10000-	· •					
1.	1.	-25	.125	175				
1.	2	•2.) E	•125	•125	•			
1.	3	5	·• ·					
1.	4	۰ ۸	-					
2			-					
2.	2.0	•0	-					
2	2.							*
3.	2.	• 7	•					
J • 2	4. E	•						
J.	7.	•• *						
3.	5.	.9						
HEAD		РППЕЧЕА	AD ER					
HEAD		WINDSHI	ELD					
HFAD		INSTRUM	IENT PANE	Ľ				
THORAX		SEAT BA	ICK .					
THORAX		SEAT CL	ISHI ON					
THORAX		INSTRUM	IENT PANE	L				
HIP		SEAT BA	IC K					
HID		SEAT CL	ISHEON					
нгр		FLOOR						
THIGH		SEAT CU	ISHLON					
KNEE		INSTRUM	ENT PANE	L.				
KNEE		KNEE BA	R					
SHANK		INSTRUM	ENT PANE	L				
SHANK		KNEE BA	8	-				
HEEL		FLOOR						
HEEL		DASH	-			1		
TOF		DASH	•		•			
HEFL	,	THEPAN	•					
THE		THEDAN						
HAND		SEAT CH	SHITON					
HAND		TNCTDIM	ENT DAME	•				
THICH		THOPAY	THE FANE	L .				•
2.75	7.	O.	n.	0	1.0	-1 04		5 43
0.	0.	0	0.	0.	1.00	-1.95	14.12	-5.07
100	0	U.	U. - 00170		-33.52	17.	-1.2	
1000	NCTU	17.13	001/8	.0000	0000.	10.	_	
10 314C				14.04	00172	Ζ.	l.	
08 WENN	195 #1	•	•	DT WEBB	ING #2			
08 WENH	196 #L	U.	0.	U-16	14.36	15.04	0.	0.
DA WENB	TMC #1	2.				SBELT1	IZERO	GBELTI
GHELTI	0.	0.						
GBELTI	•16	σ.					•	
GBELTI	1.37	.56						
GBELTI	6.15	.95				· .		
GBELTI	40.	.95	•					
GBELT1	0.	1.	•					
GRELTI	1.37	.33		•				
GBELT1	2.06	-19	•					
GBELTI	6.15	.05						
GBELT1	40.	.05	•					

FIGURE 109

Complete Data Set for Simulation Example 1 (page 5 of 6)

SBELT1	0.	0.					•		708
SREL T1	.533	1500.							708
SBELT1	9.91	2000.							708
SBELTI	11.28	5300.							705
SBELT1	14.36	6600.	•						708
SBELTI	15.04	0.	•		•				708
6% WEBB	ING #2	0.	0.	.155	13.85	14.51	0.	0.	704
67 WEBB	ING #2	5.				SBELTZ	IZERD	GBELTI	705
SBELT2	0.	0.	· •						708
SBELT2	.396	1150.	•	•					708
SRELT2	9.56	1650.	•						708
SBELT2	10.9	5300.	•						708
SBELT2	13.85	6600.	•						708
SBELT2	14.51	0.	-						708
NO STRE	NGTH	0.	0.	0.	10-	11.	0.	0.	704
NO STRE	NGTH	5.				SNOSTR	IZERD	GNOSTR	705
GNDSTR	-1.	0.	- 1						706
GNDSTR	-1.	1.							707
SNOSTR	-1.	0.							708
	•								1000
0,1,46-	48, 10-14	. 21. 22.	37,38,49	,50,15,2	3-26, 2-5	,18-20,33	-36,30-1	32,16,	1001
27-29.3	9, 17, 40	6-9.45	• • • •	• • • -	•	•	-		1002
0.	0.	0.	11.55	.025					1003
40.	500.	560.	0.	.85	201-	5•'	5.		1004
0.	0.	-3.	62.	5.	-44.	10.	0.		1500
21.	0.	0.	1.	1.	0.	1.	0.	10.	1501
					•				1600

FIGURE 109 Complete Data Set for Simulation Example 1 (page 6 of 6)

1	100	* /	*	* MVM	*A 2-D TU	TORIAL P	*XAMPLE #	*1	* . 4	* *
2	400	* KNEE	*BAR	* 1	¥ 4	•	*	*	* 3	* , *
ĩ	500	*0CC _ COM	*P. DISPL	* _ :	• •	Þ	*	*	* 1	¥., *
ŭ	600	* 30MPH PR	FONT BARR	*IER *	* 3	ŧ	*	*	* 1	* *
Ś	700	* NO B	*ELTS	* , '	e 3	•	*	*	* , 1	* *
6	101	*1.	*1.	*32.174	*0. *	*O.	*200	*1_	*5 • '	*10- *
7	102	*0.	*0.	*0.	*0 - ¹	*0.	*0.	*10.	*.000001 ³	*5. *
8	103	*.2	*.05	+100000.	*15000 . 4	*10	*.05	* 10 .	*1. 1	*1. *
9	601	*0.	+44.	* 0.	*0. :	* 0.	*0.	*0.	*0 _ *	* *
10	602	* 23 .	*1.	*1.	* 1	\$	*	*	* 1	* *
11		* 0.0	+ -1.70	* 1.00	* -1_4 0*	* 7.0()* -33.90	12.00	* 2.80	* 0.0 *
12		* 13.50	* 3.90	* 18.00	* -21.20	* 21_50)* -12.40	* 28.00	* -9.20	* 0.0*
13		* 32.00	* -24.00	* 33_00	* -24.00	* 36.00	0* -9.90	* 37.00	* - 9.90 ³	* 0_0 *
14		* 42.00	* -26.90	* 47.00	* -31.80	* 50.00	0* -25.90	* 54.00	* -27.20	* 0.0 *
15		* 58.00	* -32.20	* 61.00	* -29.00	* 76_ 0	0* -6.90	* 90.00	* -1-40	* 0.0 *
16		* 100.00	* -1.40	* 120.00	* 0_0	* 300.00	0-0 *	* 0.0	* 0.0	* 0.0 *
17	603	*2.	*1.	*1.	* :	*	*	*	*	* *
18		* 0.0	* 0.0	* 300.00	* 0.0	* 0.0	* 0.0	* 0.0	* 0.0	* 0.0 *
19	604	*2.	*1.	*	* :	*	*	*	*	* *
20		* 0.0	* 0.0	* 300.00	* 0_0	* 0.0	* 0.0	* 0.0	* 0.0	* 0.0 *
21	200	*GM HYBRI	*D II DUM	* 4 7	*	*	*	*	*	* *
22	300	* (PRELIMI	*NARY DAT	'*A)	* :	*	* .	*	*	* *
23	201	*1_1	*13_44	*3_4	*5 .	*15.8	*	*10.3	*3.25	*88 *
24	202	*2.75	*7.	*1.7	*4.2	*8.2	*9.3	*5-	*5.8	*.5 *
25	203	*.0259	*.0951	*.0052	*.0982	*.0932	*.0518	*.022	*.0256	*.007 *
26	204	*.198	*1.97	*.04	*1.5 3	*1.38	*2.82	*.18	*.62	* *
27	205	*12. 8	*.58	*0.	*.52	*17_4	*1.	*	*-25.	*.35 *
28	206	*12.8	*.58	* 0.	*.52	*17.4	*1.	*	*-22.	*.35 *
29	207	*72.	* 15 .	* 0.	*. 66	*1000.	*1.	*-8.	*-25.5	*.35 *
30	203	*102.5	*-7.624	* 1944	*.66	*1000.	*1.	*-33.999	*-34.001	*.35 *
31	209	*94_44	*-4-810	*.1053	*0.	*850.	*1.	*-49.999	*-50.001	*.5 *
32	210	*0.	*29-8	*0.	*0.	*204.	*1.	*135.	*0.	*.5 *
33	211	*0.	*10	*0.	* 0.	*222.	*1.	*28.	*-197.	*.5 *
34	212	* 0_	* 10.	*0.	*0.	*64.	*1.	*0.	*-165.	*.5 *
35	213	*751.	*0.	*757.	*1.98	*	*	*	*	* *
36	214	* 20 _	*230-	*0.	*0.	*	*	*2.	*	*.5 *
37	215	*38.	*-58	* 0.	*.52	*0.	*1.	*-1.	*	*.16 *
38	216	*38.	*_58	*0.	*.52	≭0 .	*1.	*2.	*	* •10 ·* + +
39	242	+751.	*0.	*/57.	¥1.98	*	*	* *	÷	
40	219	*HEAD	* .	*	* .	* 1.	*3.	*	*	+ + - +
41	219	*THORAX	*	*CHESTRAT	*L .	≠2 <u>-</u>	*1.	*	* •	* *
42	219	*HIP	*	*HIPHATL	#	≠4. +r	₹ 1.	+	÷	- ·
43	219	#THIGH	*	*	* •	≠J. +5	+ 1 · · ·	+	*	 * *
44	219	+KNEE	- -	- -	- *	〒3。 またし		+ *	*	- • ± ±
40	219	*SHANA	-	+ •	*	+ 0 al * 6	+ 1. ± 7	*	* *	* *
40	219	THEEL	+ +	•	*	*0.	+ 2= # 7	*	* .	* *
47	219	TUL + PL DOM	•	*	*	+0. ±7	* <u>2</u> • ± 1	*	*	* *
40	217	+ LLDU #	•	*	*	* 2	* 7	*	*	* *
49	217	TUAND	*	÷ ±0	* 5	* U=	* Je 本仏_	*	*	* *
51	220	THEAD	*	*- 5	* 68	*5-52	*U_UU	*	*	* *
52	220	*HTP	*	*- - 12	*0	*4.5	*4.5	*	*	* *
52	220	• በኋር ቁጥዓፕሮዓ	*	* 5	*- 1	*7.	*3.	*	*	* *
5u	220	*KNEP	*	*7	* 4	*2.25	*2.25	*	*	* *
55	220	*2H7NK	*	*-7-54	*0.	*3.	*2.4	*	*	* *
56	220	*HEEL	*	*8.57	*0.	*1.2	*1.2	*	*	* *
57	220	*TOP	*	*5.61	*-5-16	*1.2	*1.2	*	*	* *
58	220	*ELBOW	*	*5.3	*0.	*1.5	*1.5	*	*	* *
59	220	*HAND	*	*5.6	* 4	*2.72	*1.52	*	*	* *
							· -			

.

. . .

FIGURE 110 Input Processor Data Deck Echo for Example 1 (example page)

ويعر معتر معر

•

	٠		BODY PARANKI	res s				
BODY SEGNENT LENGTHS HEAD LENGTH=	(IN) 1-10	RND OF L	LMK TO CENTER-OF-BA LNT-UEAD CH LENGTH=	ASS LENGTHS ((EN) 2.75	NASS OF Read Mass	BODY SEGNENTS	(LBS SEC++2 0.0
UPPEM TORSO LENGTH= NIDDLE TORSO LENGTH=	13.44 3.40	UPPER TORSO	H LENGTHS= JOLNT-MIDULE TORSU	CN LENGTH-	7.00	CHEST MAS	SS= BSO MASS=	0
LOYER TORSO LENGTH= Hearwer Irnsta-	5.00	LCHER TORSO	JOINT LOWER TORSO C	CH LENGTI=	4.20	LOVER TOR	SO MASS=	0.1
UPPER TORSO-SHOULDER-	0.0	NAEE-LOVEN LE	e ca lengina eg ca lengina		9.30	UPPER LEG	(BOTH LEGS) = (BOTH LEGS) =	0.0
SHOULDER-ELBON LENGTH= V DET DOTAT OF SHOULDER-	10.30	SHOULDER-UPP	EL ANN CA LENGTH-		5.00	UPPER ARM	(BOTH ARES) -	0.0
	-0.88			·	08.0	NEAD-NECK UPPER TOR	(UUTH AKED) = MASS= SO-NECK MASS=	
NOM	THANT OF INERT	TAN" AI	TUBAL" LINK ANGLES	INTTAL	BODY LIN	K ANGLES	INITIAL ANGU	LAR VELOCITI
1)	(ABOUT CA) LBS SEC++2 IN)		(FOR ZERO TORUUE) (DEG)	(RELA	TIVE TO V (DEG)	ENICLE)	(BELATIV) (DE(E TO VEHICLE 3/SEC)
HEAD	0.20		- 11.00		78.50			0.0
UPPER TURSO MIDDLE TORSO	0.04		- 18.00		97.50 115.50			0.0
LOUEA TORSO	1.53		- 34.00		149.50			0.0
UPPEN LEG Loura L2G	1. JU 2. B2		0.02-		-45.00			00
UPPEd ARB Loner Arg	0.18 0.62		0.0		-41.00			
H FCK	0.0				09.50			0.0
			OCCUPANT JOINT PA	I RAMBTERS				•
	ALLNEAR LINEAR	ANGULAR	QUADBATIC AND	JULAR	CUBIC A	NGULAR	CORSERVE	-ABSORBED
	(IN-LB	IS/DEG)	(IN-LBS/DEG+	.2)	(IN-LBS/D			
LEAD-NECK FONARD	12	. 80	0.58	1	0.0		ō	. 35
PECK-UPPER TOBSO FORMARD UPPER SPINE	12	00.	0.58		0.0		ōċ	35
LONER SPINE	102	- 50	-7.62		0	6	ō	. 35
HIP Kupp	÷0	+ + -	-4.81		0.1	-	o (50
UPPER ARM-UPPER TORSO			10.00					
ELBON	0	0	10.00		0.0			50
HEAD-NECK BEAD	96	.00	0.58		0.0		ō	. 16
MECK LEYTENSIBLEN ++	151	00	80.0		0.0		o T	. 10
SHOULDER (ZYTENSIBLE) ++	20	. 00	2 00				Ō	50
MECK (CONPRESSIBLE)	751	. 00	0-0		757.0	0		

m

HVMA 2-D TUTORIAL EXAMPLE 61

OCC. COMP. DISPL. 30MPH FRONT BARRIER

KNEE BAR

FIGURE 112f Printer-Plot Time Sequence for Example 1 (120 ms)

450

JUN 24, 197702:00:20 Gn Hybrid II Dunny (Preliminary Data) PIGE 142-45 HV8A 2-D, VER. 3

BO BELTS

PAGE 150-45 NV8A 2-D, VER. 3

NO BELTS

JUN 24, 19 Hybrid II	97702:00:20 Dunny (Prelini	NARY DATA)	NVNA KNEE BAR	2-D TUTORIAL OCC. COMP.	EXAMPLE #1 DISPL. 30MPH	PRONT BARRIBE	NO BELTS	PA HVHA	GE 64-01 2-d, VER. 3
-				VEHICLE RESP	ONSE				
	•	HORIZONTAL	•		VERTICAL	:		PITCH	
TINE	DISPL.	VELOCITY	ACCEL.	DISPL.	VELOCITY	ACCEL.	ANGLE	VELOCITY	ACCEL.
(HSEC)	(INCHES)	(898)	(G'S)	(INCHES)	(PT/SEC)	(G'S)	(DEGREES)	(RAD/SEC)	(BAD/SEC*+2
0.0	0.0	30.00	-1.70	0.0	0.0	0.0	0.0	0.0	0.0
5.00	2.01	28.89	-23.07	0.0	0.0	0.0	0.0	0.0	0.0
10.00	5.02	20.14	- 1 1. 88	0.0	0.0	. 0.0	0.0	0.0	0.0
15.00	7.31	20.04	-4.47	0.0	0.0	0.0	0.0	0-0	0.0
20.00	9.04	24-30	-10.17	0.0	0.0	0.0	0.0	0.0	0.0
20.00	11.02	23-02	- 10.00	0.0	0.0	0.0	0.0	0.0	. 0.0
30.00	15.00	10 54	- 10.00	0.0	0.0	0.0		0.0	
00 00	17 09	19.34	- 20 10	. 0.0	0.0	0.0	0.0	0.0	0.0
40.00	19 55	15 17	-20.10	0.0		0.0		0.0	0.0
50 00	19.73	11 92	-25.04	0.0	0.0	0.0	0.0	0.0	0.0
55 00	20 66	8 98	- 28.45	0.0	0.0	0.0	0.0	0.0	0_0
60.00	21.30	5.62	-30.07	. 0.0	0.0	0.0	0.0	0.0	0.0
65-00	21.66	2.68	-23, 11	0.0	0.0	0.0	0.0	0.0	. 0.0
70.00	21-79	0-55	- 15- 74	0.0	0.0	0_0	. 0.0	0.0	0.0
5 75.00	21.78	-0.77	-8.37	0.0	0_0	0_0	0.0	0.0	0.0
80.00	21-68	-1.47	-5.33	0.0	0.0	0.0	0.0	0.0	0.0
85.00	21.52	-1.95	- 3. 36	0.0	0.0	0.0	0.0	0.0	0.0
90.00	21.34	-2.21	-1.40	0.0	0.0	0.0	0.0	0.0	0_0
95-00	21.14	-2.37	-1.40	0.0	0.0	0.0	. 0.0	0.0	0.0
100.00	20.92	-2.52	-1.40	0.0	0.0	0.0	0.0	0.0	0.0
105.00	20.70	-2.65	-1.05	0.0	0_0	0.0	0.0	0.0	0.0
110.00	20.46	-2.75	-0.70	0.0	0.0	0.0	0.0	0.0	0.0
115.00	20.21	-2.81	-0.35	0.0	0.0	0.0	0.0	0_0	0.0
120.00	19.96	-2.83	-0.00	0.0	0.0	0.0	0.0	0.0	0.0
125.00	19.71	-2.83	0.0	0.0	0.0	0-0	0.0	0.0	0_0
130.00	19.47	-2.83	0.0	0.0	0.0	0.0	0.0	0.0	0.0
135.00	19.22	-2.83	0.0	0.0	0.0	0.0	0.0	0.0	0.0
140.00	18.9.7	-2.83	0.0	0.0	0.0	0.0	0.0	0.0	0.0
145.00	18.72	-2.83	0.0	0.0	0.0	0.0	. 0.0	0.0	0.0
150.00	18-47	-2.83	. 0.0	0.0	0.0	0-0	0.0	0.0	0.0
155.00	18.22	-2.83	. 0.0	0.0	0-0	0_0	0.0	0.0	0.0
160.00	17.97	-2.83	0.0	0.0	0.0	0.0	0.0	0.0	. 0.0
165.00	1/./2	-2.83	0.0	0.0	0.0	0.0	; 0.0	0.0	
170.00	17.47	-2.03	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1/5.00	17-23	-2.03	0.0	0.0	0.0	0.0	0.0	· 0 0	0.0
105.00	16.90	-2.0J _2.02 \							
105.00	104/J 16 ho	-2.03	-0-U		0.V A A	0 0 · ·	- 0.0	0.0	0.0
190.00	10+40 16 33	-2.03	· 0.0			0.0	0.0	0.0	0.0
175.00	10+43	-2-03					0.0	0.0	0.0
£00,00	13-30	-2.03	V-V	V • V	v• y	V • V	4• v	w e y	
			FIGURE 113	Vehicle M	otion for Exam	nple 1			

•

OCT 18, 1978 02:51:55 GM HYBRID II DUMMY (PRELIMINARY DATA)

HVMA 2-D TUTOPIAL EXAMPLE #1 KNEE EAR OCC. COMP. DISPL. 30MPH PRONT BARRIEB

65-

PAGE

(7-77) No BELTS

HEAD CENTER OF MASS MOTION

(POSITIONS AND VELOCITIES RELATIVE TO VEHICLE FRAME) (ACCELERATIONS RELATIVE TO INERTIAL PRAME)

			INCORTEN I	TINGAN CNATTN	1 E 10 THENTY	F FAALE)			
THR	×	X-VEL.	X-ACCTL.	2	Z-VEL.	Z-ACCEL.	HEAD ANGLE	ANG. VEL.	ANG. ACC.
(MS FC)	(N I)	(IN/SEC)	(6.2)	(NI)	(IN/SEC)	(6,2)	(DEC)	(DEG/SEC)	RAD/SEC++2
0.0	12.94	0.0	-0.000	- 34 . 19	0.0	1.000	78.50	0.0	-00-
5.00	12.97	20.29	-1.965	-34.09	16.0	0.476	78.49	6.59	-551-04
10.00	13.20	69.32	-1.904	-34.09	0.52	-0.148	78.42	-9.45	-556.95
15.00	13.56	71.71	-1.755	-34.09	-0.92	-0.533	78.27	-27.66	-566.14
23.00	13,98	101.85	-1.811	-34.10	-2.82	-0.652	78.02		-580.18
25.00	14.55	126.56	-1.837	-34.12	-4.85	-0.705	77.70	-59.41	-588.09
33.00	15.24	00.041	-1.733	-34.14	-7.08	-0.94J	77.30	-75.22	-596.04
35.00	16.08	190.11	-1.468	- 34.19	-9.96	-1.469	76.81	-94.22	-607.21
40.60	(1.1)	218.32	-0.517	-34.25	-14.53	-2.648	76.22	-116.07	-584.23
45.06	18.32	275 . 1j	1.907	-34.33	-20.74	-3,291	75.61	-109.48	-450.39
50.00	19.86	341.27	4.840	- 34.45	-27.26	-3, 151	74.98	- 122. 48	-243.80.
55.00	21.73	406.64	9.350	- 34.60	-33.10	-2.312	74.36	-139.87	133.93
60.00	23.95	482.77	9.613	-34.77	- 33. 12	3.540	73.60	-181.86	13.58
65.00	26.54	548.85	7.028	-34.91	-16.51	14.496	72.55	-249.73	-7.06
70.00	29.47	594.65	2.850	-34.90	22.52	26.240	71.18	-314.76	-88.51
75.39	32.36	541.53	-81.864	-34.61	111.70	61.654	69.79	-37.40	2854.46
80.00	34.96	520.33	-5.805	-33.90	159.05	13.709	69.99	-93.22	-1547.61
. 85.07	37.54	5:)6.22	- 19.047	-33.03	189.55	18.504	68.41	₹518.69	-1653.52
90.00	39.98	465.36	-28.412	-31.98	235.22	27.881	. 64.95	-837.46	-906.97
95.00	42.13	380.94	-62.636	- 30.70	259.38	-16.455	58.44	-2474.69	-11601.15
100.00	43.73	260.57	-51.994	-29.54	204.03	-26.712	43.26	-2840.28	3087.70
105.00	44.89	217.67	-10.903	-28.60	173.61	-15.327	30. 43	-2415.38	1035.27
110.00	45.90	177.36	-34.519	-27.81	143.79	-12.955	19.37	-1927.01	2419.62
115.00	46.62	107.90	-41.030	-27.12	132.74	-5.796	11.33	-1292.02	2166.93
127.03	46.97	33.86	-33.042	-26.49	117.15	-11.867	6.18	-309.57	817.05
125.00	47.01	-14.06	-16.823	-25.96	94.38	-11.908	2.65	-642.20	242.87
133.00	46.88	-31.99	-2.747	-25.54	73.75	-8.932	-0.45	-600.85	157.31
135.00	46.72	-29.89	3,321	-25.21	59.57	-6.156	-3.34	-558.16	127.29
143.93	46.58	-25.37	0.086	-24.94	48.29	-6.017	-6.04	+525.40	87.96
145.00	46.45	-31.47	-6.088	-24.73	34.14	-8,869	-8.65	-529.89	- 160 . 62
150.00	46.25 -	-46.01	-8-039	-24.61	15.35	-10.014	- 1 1 . 44	-590.87	-204.86
155.00	45.99	-59.82	-5.561	-24.58	-2.77	-9.321	-14.53	-642.69	-351.92
160.00	45.67	-66.41	-1.768	-24.63	-17.13	-6.700	-17.95	-708.80	-395.16
165.00	45.34	-66.85	0.717	-24.74	-24.29	-3.194	-21.67	-767.50	-519.80.
173.09	45.03	-65.20	0.127	-24.87	-26.84	1.409	-25.72	-846.31	312.56
175.00	44.68	-63.85	0.577	-25.01	-28.43	-1.145	-29.99	-860.65	64.55
183.03	44.36	-63.86	-1.876	-25.16	-32.09	-2.173	-34.16	-803.16	607.71
185.00	44.94	-67.47	-2.649	-25.33	-39.98	-2.702	-37.85	-692.96	792.72
193.03	43.69	-69.37	-0°408	-25.55	-47.34	-1.931	-41.02	-602.64	533.47
195.00	43.35	-66.82	2.711	-25.80	-50.61	-1,326	-43.86	-532.31	47.39
200.00	43.03	-61.20	3.030	-26.05	-49.86	1.500	-46.37	-465.61	327.76
(see	footnote, secti	on 3.4.3)	FIGHRF 11	4 Head Cent	ar of Macc M	htion for Eve	l alum		

.

FIGURE 114 Head Center of Mass Motion for Example 1

OCT 18, 1978 02:51:55 GM'HYBRID II DUMMY (PRELIMINAKY DATA)

MVMA 2-D TUTORIAL EXAMPLE #1 Knef bar OCC. Comp. Displ. 30MPH Front Barrier

•

CHEST CENTER OF MASS MOTION

(POSITIONS AND VELOCITIES RELATIVE TO VEHICLE PRAME) (ACCELERATIONS RELATIVE TO INERTIAL PEAME)

VEL. Z-ACCEL.		-1.30 4.549	.1.95 4.632	-3.06 4.429	-4.57 4.164	-6.64 3.799	-9.72 3.212	3.89 1.979	20.25 3.089	2.277 2.277	30.31 -0.821	10.69 -7.453	14.67 -1.530	13.57 -1.668	14.10 -1.040	19.96 4.063	23.55 8.101	-3. 24 8.065	13.40 4.402	32.59 -68.862	11.82 3.352	32.02 6.972	74.66 8.514	5.55 2.736	52.85 -12.330	57 . 94 -3 . 043	11.31 -1.000	74.03 -1.896	78.89 -3.327	37.39 -5.247	15.56 -4.495	0.26 -4.891	14.73 -5.143)8.54 -4.505	12.91 12.160	12.303	14.043	11.98 15.071	35.37 14.219	90.63 0.492	37.06 -0.180
-2 2	-21 NU (TN	- 21.40	-21.41 -	-21.42 -	-21.44 -	-21.46 -	-21.50 -	-21.56 -1	-21.64 -2	-21.75 -2	-21.88 -3	-22.06 -4	-22.28 -4	-22.50 -4	-22.72 -4	-22.93 -4	-23.10 -2	-23.17 -	-23.14 1	-23.25 -10	-23.78 -10	-24.27 -9	-24.68 -7	-25.03 -6	-25.35 -6	-25.68 -6	-26.03 -7	-26.39 -7	-26.17 -7	-27.19 -8	-27.65 -9	-28.14 -10	-28.65 -10	- 29.19 -13	-29.74 -11	-30.29 -10	-30.83 -10	-31.35 -10	-31.84 -9	-32.30 -9	-32.75 -8
X-ACCFL.	(6.5) -0 586	-13.974	- 14. 432	-14.642	-14.832	-15.116	-15.342	-16.552	-18.237	- 18.608	-22.085	-10.819	-8.731	-6.256	-2.967	-16.667	-23.955	-29.137	-29.820	-44.250	-16.108	- 17. 277	-17.384	-9.863	-13.138	-3.773	-6.468	-7.545	-5.782	-1.559	-0.202	0.278	0.378	1.073	3.600	3.627	4.986	5.411	4.618	-2.294	-1.778
X-VEL.	(TN/SEC)	19.09	66.20	65.93	92.93	114.00	132.00	167.34	185.66	218.25	252.02	271.06	297.95	321.35	336.52	344.JÜ	333.17	303.73	259.43	159.57	133.70	100.93	68.27	ц6 . 58	34.73	22.06	12.12	-1.77	-15.19	- 22. 32	-23.67	-24.J7	-24.79	-26.84	-28.67	-27.36	-25.74	-22.95	-20.27	-18.17	-20.58
X	(IN) 12 27	12.22	12.44	12.78	13.16	13.69	14.28	15.03	15.93	16.90	18.08	19.39	20.81	22.36	24.01	25.72	27.42	29.02	30.42	31.51	32.24	32.83	33.26	33,54	33.74	33.89	33.96	33.99	33,95	33.85	33,73	33.61	3.3.49	33• 36	33 . 23	33.09	32.95	32.83	32.73	32.63	32.54
TIME	(usec)	5.00	10.07	15.00	20.00	25.00	30.09	35.00	40.00	45.00	50.03	55.00	60.00	65.00	00.07	75.00	80.00	85.00	00°06	95.00	100.00	195.00	110.03	115.00	120.00	125.00	130.00	135.00	140.00	145.03	150.00	155.00	169.00	165.00	170.09	175.00	180.00	185.00	193.03	195.00	200.00

FIGURE 115 Chest Center of Mass Motion for Example 1

. :

(see footnote, section 3.4.3)

(7-77) No Belts

OCT 18, 1978 02:51:55 GM HYBRID II DUMMY (PRELIMINARY DATA)

NVMA 2-D TUTORIAL EXAMPLE #1 ? OCC. COMP. DISPL. 30MPH PRONT BARRIER KNEE BAR

(7-77) No Belts

HIP MOTION

(POSITIORS AND VELOCITIES RELATIVE TO VEHICLE FRAME) (ACCELERATIONS RELATIVE TO INFRIAL FRAME)

:1

۵ 0 đ ۵ 0

TIME	X	X-VEL.	X-ACCEL.	2	Z – VEL.	Z-ACCE
(MSRC)	(NI)	(IN/SEC)	(6,2)	(171)	(IN/SEC)	(6 . 5)
0.0	18.81	0.0	-0-538	-9.41	0.0	-1.62
5.00	18.84	17.57	4.470	1 t • 6 -	-1.88	1.38
10.00	19.06	63.13	4.151	-9.42	- 2. 67	1.48
15.00	19.38	61.15	3.734	n h • 6-	-2.96	1.31
20.00	19.74	85.58	3.225	-9.45	-3.57	1.13
25.00	20.22	104.15	2.502	-9.47	-4,66	0.89
30.00	20.77	118.39	1.376	-9.49	- 5. 74	0.46
35.00	21.44	147.38	-1.449	-9-53	-8.98	-0.81
40.03	22.23	151.32	-11.577	-9.58	-11.33	-2.46
45.00	22.97	157.04	-21.461	-9.63	-6.93	1.12
50.00	23.75	145.58	-36.379	-9.65	-1.55	-1.88
55.00	24.39	107.11	-54.473	-9.67	-6.03	0.20
60.00	24.82	67.82	-53.964	-9*69	-4.86	4.74
65.00	25.07	32.35	-44.454	-9.72	- 9. 86	-8.82
70.00	25.14	-2.29	-36.416	-9.83	-36.74	-18.82
75.00	25.96	-26.37	-10.904	-10.10	-70.61	-14.02
87.07	24.92	-26.54	0. 927	-10.52	-99.06	-12.09
85.90	24.80	- 19, 98	4.75)	-11.09	-130.53	-14.42
Cú°(6	24.73	-7.30	9.250	-11.83	-163.72	- 14. 74
95 . 00	24.75	13.50	8.292	-12.73	-199.64	-31.09
100.00	24.86	26.66	-7.308	-13.83	-219.61	2.22
105.00	24.91	-16.83	-36.866	-14.86	-199.57	13.97
110.00	24.67	-73.60	-18.051	-15.81	-182.16	2.96
115.00	24.28	-72.53	11-041	-16.73	-186.66	-1.41
120.00	23.97	-49.62	11.304	-17.66	-186.52	11.25
125.00	23.76	-36.83	2.687	-18.59	-187.14	1.92
130.00	23.59	-33.18	1.303	- 19.52	-183.81	1.86
135.00	23.43	-31.37	0.751	-20.42	-178.54	14.6
140.00	23.27	-30.51	-0.082	-21.30	-171.31	3.95
145.00	23.12	-31.06	-0.478	-22.13	-163.76	3.77
150.00	22.96	-32.39	-1.025	-22.94	-157.29	3.75
155.03	22.79	-33.75	-1.575	-23.71	-152.67	4.65
160.00	22.62	-35.57	-2.148	-24.46	-147.46	5.09
165.00	22.44	-36.35	-2.458	-25.18	-142.65	4.97
170.00	22.25	-38.29	0.932	-25.88	-136.53	-7.01
175.00	22.06	-38.82	1.003	-26.56	-134.51	-5.74
180.00	21.86	-39.12	1.243	-27.22	-130.59	-6.32
185.00	21.67	-39.33	1.419	-27.87	-127.06	-6.66
190.00	21.47	-39.16	1.387	-28.50	-124.67	-5-96
195.00	21.28	-39.55	1.453	-29.12	-121.55	2,39
200.00	21.09	-36.93	1.256	-29.72	-118.93	2.42

-

m ...

Hip Motion for Example 1

FIGURE 116

 \sim

67-PAGE •

œ

ŝ

in ~ 10

(see footnote, section 3.4.3)

JUN 2	4, 197702:0	0:20		NVHA	2-D TUTORIAL	EXAMPLE 61				PAGE 65-10
60 NI UKI	IDDA TT A	VUTUTTSNA)	NU (VIVA IN		orce coare	0AC •93617			61130	
				BODY 1	LINK ANGLES	(DEGREES)	(RELAT)	VE TO VEHIC	(27	
TIME	HEAD	NECK	UPPER TORSO	MID TORSO	LOW TORSO	UPPER LEG	LOWER LEG	SHOULDER	UPPER ARM	LOVER ARN
0-0	78.50	89.50	97-50	115.50	149.50	19.50	-45.00	9 1 1	-41.00	3.00
5.0	79.48	89.46	97-51	115.43	149.54	19.47	-45.00		-41.00	3.00
10.0	78.39	Eth*68.	91.46	115.42	149.58	19.38	-45.02	1	-41.02	3.01
15.0	78.24	89.32	97.36	115.43	149-61	19.26	-45.06	*	-41.05	3.02
20.0	78.02	89.15	97.20	115.39	149.61	19.13	-45.11	1	-41.08	3.02
25.0	77.72	00.92	96.97	115.27	149.60	18.99	-45.16	8	-41.12	3.02
0.05	77.36	88.61	96.65	115.04	149.56	18.83	-45.17	;;;	-41.23	2.99
35.0	76.90	86.18	96.19	114.65	149.50	18.63	-45.14		-41.48	2.90
40.0	76.29	07.68	95.47	114.09	149.39	10.45	-45.33	8	-41.93	- 2.75
45.0	75.61	87.05	94.18	112.98	149.15	19.29	-47.69		-42.62	2.53
50.0	74.94	86.10	91.87	110.09	148.49	22.12	-51.13		-43.77	2.28
55.0	74.28	94.58	08.20	107.34	147.20	25.64	-54.87		-45.34	1.97
60.0	73.52	82.27	82.97	102.11	145.06	20.03	-50.63	1 1	41.34	1.54
65.0	72.51	19.00	76.43	95.90	141.16	34.33	-63.13	1	-53.15	1.32
10.0	71.19	14.91	6A.79	87.91	135.61	35.73	-63.08		-61.29	0.86
15.0	69.89	10.71	60.40	79.37	120.60	J7.60	-72.74	1	-69.37	=0.27
80.0	70.18	07.90	52.00	70.76	120.02	90.0E	-11.94	*	-75.39	-2,03
85.U	60.06	63.23	43.87	62.19	113.17	31.29	- 82. 40	1	-82.65	-3.20
0.04	U5.21.	97.91	35.75	54.07	107.44	94 . 9B	80.69-	1	-94.60	-2.37
95.0	56.91	44.75	29.68	40.51	103.15	29.18	41°34		-105.00	-0-BU
100.0	40.47	34.64	25.42	44.61	100.95	19.60	-107.17	:	-112.47	0.60
105.0	27.24	27.16	21.32	40.80	99.68	10.56	-115.53		-117.05	1.98
110.0	16.17	20.32	17.67	36.45	93.01	3.65	-120.15	1	-120.35	3.13
115.0	8.62	15.00	14.27	32.64	87.24	0.49	-111.93	1 1 1	-122.74	4.06
120.0	4.10	10.96	10.74	28.93	U3. 56	- 1.08	-115.81	1	-123.92	4.73
125.0	1.24	7.92	7.10	25.45	81.21	-2.40	-114.72	8	-123.89	5.04
1 30.0	-1.05	5.47	. 3.50	22.02	79.85	-4.12	-113.19	ŧ 1 5	-123.29	4.88
135.0	- 3.25	3.25	0.04	19.18	79.01	- 6.05	-111.70	1 1	-122.83	.3.97
140.0	-5.39	0.96	- 3.27	17.17	78.61	-8.09	-110.28	1	-123.38	2.04
145.0	-7.50	-1.56	-6.31	15.95	78.41	-10.17	-108.88	8	-125.40	-0-95
150.0	-9.81	4.31	- 8 - 94	15.37	76.12	-12.27	-107.46	1	-128.05	-4.50
155.0	-12.67	-7.25	-10.96	14.57	77.76	-14.39	-105.99	1	-130.21	-0.16
160.0	-16.21	-10.21	-12.55	14.00	77.19	- 16.50	- 104.47	8	-131.81	-1.1.86
165.0	-20.29	-13.37	-13.80	13.54	76.60	- 18. 62	-102.90	*	-133.06	-15.61
170.0	-24.84	-16.81	-14.76	13.08	75.09	-20.72	-101.27	1	-133.99	-19.40
175.0	-29.55	-20.37	-15_52	12.54	74.98	-22.83	-99-60	1	-134.74	-23-22
180.0	-33.98	-23.68	+16.23	11.93	73.84	-24_94	-97.89	1	-135.35	-27.08
185.0	-37.96	-26.64	-16-91	11.10	72.48	-27.08	-96.14	1	-135.90	-30.96
190.0	-41.56	-29.22	-17.57	10.12	10.97	-29.22	-94.35	1	-136.44	-34-86
195.0	-44.72	-31.34	-18.35	9.21	69.59	-31.40	-92.55	8 1 1	-137.16	-38.77
200.0	-47.47	-33.24	-19.19	8-28	68.38	-33.60	-90.74	:	-137.96	-42.65

~ FIGURE 117

. :

Body Link Angles for Example 1

;

e.

PAGE 65-10

PAGE 67-12 NVMA 2-D, VER.	(34	LOWER ARM -0.00	13606.55	13556.36	13488.65	19-16-01	13262.19	90.996	261.85	-227.75	1011-97	-2294.53 55 : 35 :		24 986 • U	10°5°671-	-31443.95	-26885-63	14910-29	1 4 4 7 5 5 5 2	-22035.46	4476-54	-4169.37	-14371.46	-8421.68	-10198.30	-14588-93	-17491.39	-29606.40	99-66728-	-43318.28	1 C * C # 7 / 7	- 665.82 .	731.46	1711.29	1908.91	-4740.37	-3640.73	-2494.84	-1297.61	2.06	1470.21	
8 e l 1 e l	INCETIAL PRA	UPPER ARM -0.02	-38930.38	-39166.94	-39402.73	-34780.67		10.71661-	-20102.70	-19932.46	- 19197.52	- 16947.72	- 13 10 Z • 18	88°C6FChZ-	- 280 29 - 13	18040.09	c/ • / 0 h 9 0 l	-66920.06	-223432.44	35846.14	223792.94	71766.19	34124.68	34541.01	50151.01	50917.07	20514-27	-4410.66	-41123.02	-62486.91	1 6 1 98C+-	21059.45	29287.47	30517.90	31289.14	-19876.87	-19874.18	-20506.83	-21528.57	-22236.98	-21304.69	•
RRIER NO	RELATIVE TO	SHOULDER) 	1	* *	* *		1 1	1	11	1	ð 1 8 1		1 1 1	8 8	1	1	8	1	* * *	:		;;;;	1	. :)]] 	1	1	•	1	1 1	2 9 9			8	*	1	1	8		:	1 3 9 .	
APII FRONT BA	EC++2) (LOWER LEG -492.10	7348.74	5714.10	6171.09	6765.30	7717.36	9112.70	4634.26	-112498.75	-375308.94	-183277.44		48843.56	26113-83	23158.45	-1571.30	-22981.67	-34902.36	- 6 h ° 8 E 9 L h -	-8456.13	51409.51	141207.38	324180.50	-186156.88	-116811.44	40552.36	-5669.99	-2817.41	-567.86	56-988 50-50-5	0620 20	3133.62	3340.20	4993.33	6152.11	6615.40	6929.22	-719.20	-886.49	-5362.71	for Example
EXAMPLE #1 . DISPL. 30	5/020) S	UPPEH LEG - 3645.51	-13590.84	782.02	933.72	1007.69	613.75	- 1695.69	-4410.46	48445.60	91546.75	29565.52	ch.0701-	57256.60	19158.34	-80090.50	-49146.36	-42686.88	-54579.84	-60121.92	-86629.88	12510.36	84620.00	184807-06	56039.26	-4262.55	-27827.26	-8123.35	-4428.91	-1620.30	61 • 1 Z	00-675 98 6666	4961.23	5397.42	-12588.36	-14978.75	-15331.14	-15013.99	300.91	1325.42	20469.91	elerations
2-D TUTORIAL OCC. COMP.	K LINK ANGLE:	LOW TORSO 4793.00	144861.88	90787.13	91601.69	92156.88	92567.88	99429.0H	. 96750.88	-134661.63	-80942.63	-70707.81	- / 14 1. 34	-40286.15	-33563.59	-16945.75	-76379.06	-19376.71	41107.65	66169.88	246550.50	12974.57	-153452.50	6924.27	98450.81	61935.59	62059.53	21175.43	18337.61	8191.64		-11020-30	- 30481.41	-35436.34	53586.14	68659-88	70563.81	72637.19	-664.37	-3645.16	-106996.69	<pre>< Angle Acce</pre>
NVNA NEE BAR	ATION OF BOD	NID TORSO	-527872.88	-473227.00	-475440.25	-477046.81	-478322.31	-484735.19	-481020.38	460340.63	315852.69	244910.44	- 11/691.06	-306341.13	-271429.44	-275813.69	194833.13	234451.81	198039.13	172857.94	-564191.50	-13572.79	- 49897.39	30420-26	-3753.18	-85527.69	-83631.31	25533.01	34190.19	32448.52	23303.40	Z1133.92	11.500621	73574.13	-262697.88	-376787.00	-387197.56	-385713.50	52206.05	68026.94	438788.88	Body Linl
Y DATA) K	ACCELER	UPPER TORSO - 1248.21	127969.00	127888.50	127401.56	126878.81	125689.25	123251.13	116945.88	-141076.91	-130632.50	-136785.69	74 18.38	22284-50	28247.05	36042.57	-50444.42	-49430.32	-57992.48	-59382.70	32022.68	20808.85	01.LOEII	13517.83	-8628.77	26096.33	23278.25	5073.38	5569-14	10364.16	18933.00	CI .17781	75.71	- 1945-95	78437.54	110062-56	110553.00	111065-75	-19406.22	-23009.35	-109302.94	FIGURE 118
CO: 20 PRELIMINAR		NECK 2919.40	-223587.69	-233848.44	-233876.63	-237296.81	-237736.81	-233934.06	-229205.13	205130.31	158481.75	124060-08	-161231.31	-170728.31	-153355.75	-136127.00	205956.06	7449.24	57954.28	79.17866	803495.63	32120.41	73014.13	73777.63	60756.18	- 16942.42	-21004.46	9876.37	-3047.31	-9536.70	-13067.22	41.COLL	16094 AU	16916-27	-70955-06	-177129.69	-174374.88	-184915.63	34291.04	52111.74	151368.13	
24, 197702: RID II DUMNY		11 E A U - 0 - 0 H	25057.73	29682.09	284J2.93	30796.70	31065.69	29287.09	27216.75	-33603.26	-24479.03	-14550.74	16.0166	1737.15	1549.49		163792.25	-96307.94	-09125.44	-54890.81	-481964.38	191133.19	56210.35	157107.06	123203.38	72155.31	30949.06	2141.89	2242.21	2273.97	-9534.13	-21484.26		- 34013-80	-23751.43	32805.65	10.03666	40980.61	22463.36	8957.54	7900.23	
JUN GA HYB		TIME 0.0	5.0	10.0	15.0	20.0	25 . U	30-0	35.0	40.0	45.0	50.0	55.0	60.0	65.0	70.0	75.0	0.08	85.0	90.06	95.0	100.0	105.0	110-0	115.0	120-0	125.0	130.0	135.0	140-0	145.0	150.0		165.0	0-021	175.0	180.0	185.0	190.0	195.0	200-0	

•

E0-

m

459 ---

OCT 18, 1978 02:51:55 GM HYBRID II DUMMY (PRELIMINARY DATA)

AVMA 2-D TUTORIAL FXAMPLE #1 KNEE BAR OCC. COMP. DISPL. 30MPH FRONT BARRIER

(7-77) PAGE 104-04 No Belts

CONTACT INTERACTION BETHEEN

TITPSE HIP ANDE OF HIPATI

AND

MADE OF SEAT MATERIAL WHICH IS AN ELEMENT OF REGION SEAT CUSHION LINE CUSHION LINE 1

INITIAL LINE LENGTH = 13.50(IN) EDGE CONSTANT = 3.164

	1440	10 F 4 J 2	1444			a	CONTACT	LOCATION	CONTACT LO	OCATION ACF	CONTACT LO	CATION SPC
TIME	LINE	RLLIPSE	LINE	ELLI PSE	NORMAL	TANGNTL.	POSITION	RATE	10 ET X	2		2
(XSEC)	(14)	(KI)	(IN/SEC)	(IN/SEC)	(TB)	(1.9)	(NONDIM.)	(IN/SEC)	(N X) 19 67	(IN) - 5 53	(1K) , , ,	(XI) 22
5.03	0.68	0.00	• •	• •	176-2	80.6	515 O	17.	22.31			11.2
10.00	0.95	0.0	21.		198.0	95.5	0.328	59.	24.94	-5.70	3.43	2.77
15.03	1.06	00	20.	••	231.4	123.9	0.351	57.	27.54	-5.72	3.42	2.77
23.07	1.19	6.0.0	29.	•0	268.6	153.2	0.376	B1.	30.13	-5,73	3.42	2.78
25.00	1.33	0.03	34.	•0	318.4	274.1	0.410	98.	32.70	-5.75	3.42	2.77
30.00	1.51	0.00	38.	••	374.6	272.7	0.449	112.	35.23	-5.77	3.43	2.77
35.00	1.73	0.00	46.	•	544.8	458.3	0.496	141.	37.72	-5.81	3.43	2.77
40.09	1.95	0.01	45.	••	802.4	782.1	0.549	145.	40.13	-5.86	3.43	2.76
45.00	2.19	0.01	50.	-	1071.1	1203.0	0.604	150.	42.38	-5.91	3.45	2.74
50.69.	2.42	u.03	• 1 •	6.	1333.8	1747.8	0.659	138.	44.35	-5.94	3. 18	2.70
55.00	2,51	0.15	-5-	36.	1415.1	2975.7	0.705	106.	45.92	-5.98	3.54	2.62
63.07	2.49	0.29		18.	1356.4	2114.3	6.737	- 22	47.02	-6.04	3.64	2.48
65.03	2.48	U.33	-3.	-2.	1318.3	2)91.5	0.759	47.	47.66	-6.11	3.79	2.22
0.07	2.42	0.27	-22.	-21.	1146.5	1712.6	0.773	29.	47.93	-6.29	3.98	1.85
75.00	2.24	0.14	-20-	-32.	579.2	724.2	0.782	25.	47.91	-6.63	4.18	1.34
80.00	1.83	0.07	-104.	-2.	209.5	196.5	0.793	37.	47.78	-7.13	4.32	C.74
85.00	1.26	0.06	-127.		133.5	84.2	0.809	51.	47.61	-7.75	4.38	0.15
90.00	0.57	0.04	-151.	;	41.3	15.4	0.832	69.	47.45	-8.52	4.37	-0.32
95.00	0.0	0.0	. 0	••	0.0	0.0	0.0	••	0-0	0.0	0"0	0.0
109.00	0.0	 	• •	•	0.0	0.0	0.0	•••	0.0	0.0	0.0	0-0
105.00	0.0	0.0	• •	•	0.0	0.0	0.0	•	0.0	0.0	0.0	0-0
110.00	0.0	0.0	•0	•	0.0	0.0	0.0	•	0.0	0.0	0°0	0-0
115.03	0.0	ر . ن ،	0.	• c	0.0	0.0	0.0	•••	0.0	0.0	0.0	0.0
120.00	0.0	0.0	•0	٠. •	0.0	0.0	0:0	••	6.0	0.0	6. 0	0.0
125.00	0.0	0.0	°°'	•	0.0	0.0	c•0	•••	0.0	0.0	0.0	0.0
130.00	0.0	0.0	•	•	0.0	0.0	0.0	•	0.0	0.0	C •0	0.0
125.00	0.0	0.0	•	•0	0.0	0.0	0.00	•	0.0	0.0	0.0	0.0
140.67	0.0	0.0	•0	•	0.0	0.0	0.0	•	0.0	0.0	0.0	0.0
145.00	0.0	0.0	0.	• •	0.0	0.0	0-0	•	0.0	0.0	0.0	0.0
150.09	C • Ú	0.0	د	<u></u> .	0.0	0°0	0.0	••	0.0	0.0	0.0	0-0
155. 10	0°C	0.0	ໍ່	<u>ې</u> .	0.0	0°0	0.0	• •	0.0	0.0	0.0	0.0
160.00	0.0	0.0	°.	.	0.0	0.0	o.o	•	0.0	0.0	0.0	0.0
165.00	0.0	0.0	0°	•	0.0	~ ~~	C.O	م	0.0	C •0	0.0	0.0
170.00	0.0	0.0	•	••	0.0	0.0	0.0	••	¢-0	0.0	0,0	0-0
175.00	0.0	0.0	••	••	0.0	0.0	0.0	•	0.0	0.0	0.0	0.0
183.03	0.0	 .)	FIGURE 12	20 Example	(A) Elli	pse-Line Co	ntact Inte	raction	from Example	_	0.0	0.0
(see f	ootnote,	section :	3.4.3)									•

. .

-:-

LIPE HAD ASSURPTO DE RIGE MA NICH 13 AR ELERER O REGION TIDUNITLA AND VICULIA ARCOLOGICAL ACCURATION CONTECTION CONTECTION CONTECTION NICH 13 AR ELERER O REGION TIDUNITLA NICH 13 AR ELERER O REGION TIDUNITLA AND VICULIA NICH 13 AR ELERER O REGION TIDUNITLA CONTACT 0.0 NICH 13 AR ELERER O REGION TIDUNITLA AND VICULIA NICH 13 AR ELERER O REGION TIDUNITLA CONTACT 0.0 NICH 13 AR ELERER O REGION TIDUNITLA CONTACT 0.0 NOTE CONTACT 0.0 NOTE CONTACT 0.0 TIDUNITA TIDUNITA NOTE CONTACT 0.0 NOTE CONTACT 0.0 TIDUNITA TIDUNITA TIDUNITA CONTACT 0.0 TIDUNITA CONTACT 0.0 TIDUNITA CONTACT 0.0 TIDUNITA CONTACT 0.0 TIDUNITA CO	ITTI I TABLE ISO ISO IS NICLO IS NICLO IN LICID IN TAULO ILLING	DCT 18, 19 HYBRID II	78 02:51: DUNNY (PRI	55 Eliminary	DATA)	KNEE DAN	HVHA 2-D TU DCC CONTACT	TORIAL EXAMP • COMP. DISP INTERACTION	LF & 1 L. 30MPH BETHERN	FRONT DABRI	NON NO	(7-77) Belts	1 29Yd	t 0 - 0 t
MIS MIS <th>IJB MICL IS M LEMENT OF RECION VITABILIELD AND VITABILIE AND VITABILIE AND VITABILIE <</th> <th></th> <th></th> <th></th> <th></th> <th>ELLIPSE </th> <th>HEAD</th> <th>ASSUKE</th> <th>D TO BE RIC</th> <th>GID</th> <th></th> <th></th> <th></th> <th></th>	IJB MICL IS M LEMENT OF RECION VITABILIELD AND VITABILIE AND VITABILIE AND VITABILIE <					ELLIPSE	HEAD	ASSUKE	D TO BE RIC	GID				
$\label{eq:relation} IIIR IBNTH $ 21-13 (3) EAST INCL $ NETHERF OF RECUTION $ 100 OF TIGGATION $ 100 $	$\label{eq:relation} \matrix harmonic limit of matrix of matrix for find the final matrix of ma$							AN D						
HITLI LIE LENTY = 2.13[13] EDE CONSTANT = 0.0 THE LENTY = 2.13[13] EDE CONSTANT = 0.0 THE LETTON DEFL ANTY INCLUS CONTACT LOCATION CONTACT LOCATION THE LETTON DEFT ANTY INCLUS CONTACT LOCATION CONTACT LOCATION THE LETTON DEFT ANTY INCLUS CONTACT LOCATION CONTACT LOCATION TO DEFT ANTY INCLUS CONTACT LOCATION CONTACT LOCATION THE LETTON DEFT ANTY INCLUS CONTACT LOCATION CONTACT LOCATION TO DEFT ANTY INCLUS CONTACT LOCATION CONTACT LOCATION CONTACT LOCATION TO DEFT ANTY INCLUS CONTACT LOCATION CONTACT LOCATION	NTILL LIPE LENTIN - 21.11(13) Dest CONTANT = 0.0 CONTACT LOCATION CO				111	NE LU		WHICH IS AN	ELEMENT OP	REGION WIN	072 IHSO	MADE OI	ALNOSALE	D GLASS
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	DEFLECTION DEFLECTION DEFLECTION CONTECT IGCATTON C	NITIAL L	INE TENGTH	= 28.13	(IN) EDGE	E CONSTANT	r = 0.0							
	IIII LLIFE LLIFE <thl< td=""><td></td><td>Dataau</td><td>CTION</td><td>DEFL</td><td>RATE</td><td>04</td><td>20 20 20</td><td>CONTACT</td><td>LOCATION</td><td>CONTACT</td><td>LOCATION</td><td>CONTACT 1</td><td>OCATION</td></thl<>		Dataau	CTION	DEFL	RATE	04	20 20 20	CONTACT	LOCATION	CONTACT	LOCATION	CONTACT 1	OCATION
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	aw	LINE	Z SJI 773	LINE	ELLIPSE	TVK4 ON	TANGHTL.	POSTION	RATE		2	TOG NO	-52C I
100 1	(1) (1) <td>.0</td> <td>(IK)</td> <td>(NI)</td> <td>(IN/SEC)</td> <td>(IN/SEC)</td> <td>(11)</td> <td>(1.8)</td> <td>(NONDIM.)</td> <td>(IN/SRC)</td> <td>(11)</td> <td>(HI)</td> <td>(NI)</td> <td>(II)</td>	.0	(IK)	(NI)	(IN/SEC)	(IN/SEC)	(11)	(1.8)	(NONDIM.)	(IN/SRC)	(11)	(HI)	(NI)	(II)
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	101 0.0 0	00.00	0.0	0.0			0.0	0.0	0.0		0.0	0.0	0.0	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Constraint Constra			0.0	•		C • 0	0.0	0.0	0.	0.0	0.0	0.0	0.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	000 000 <td>00</td> <td></td> <td>0.0</td> <td>•••</td> <td>•••</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>•••</td> <td></td> <td>0.0</td> <td>0.0</td> <td>0.0</td>	00		0.0	•••	•••	0.0	0.0	0.0	•••		0.0	0.0	0.0
Figure 100 Figure 10	0.0 0.0 <td>.00</td> <td>0.0</td> <td>0.0</td> <td></td> <td></td> <td></td> <td>0.0</td> <td></td> <td>•••</td> <td>•••</td> <td></td> <td>0.0</td> <td>0.0</td>	.00	0.0	0.0				0.0		•••	•••		0.0	0.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	70 0.0	.00	0.0	0.0	••	••	0.0	0.0	0.0	•	0-0			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	(1) (60°	0.0	0.0	••	••	0.0	0.0	0-0	•••	0.0	0.0	0.0	0.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Constraint Constraint <td></td> <td>00</td> <td>0.0</td> <td>• •</td> <td>•••</td> <td>0°0</td> <td>0.0</td> <td>0.0</td> <td>••</td> <td>0-0</td> <td>0.0</td> <td>0.0</td> <td>0.0</td>		00	0.0	• •	•••	0°0	0.0	0.0	••	0-0	0.0	0.0	0.0
0.0 0.0 <td>00 0.0</td> <td>6.</td> <td>0.0</td> <td></td> <td>•••</td> <td></td> <td>0.0</td> <td>0 • • •</td> <td>0.0</td> <td>•</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>0.0</td>	00 0.0	6.	0.0		•••		0.0	0 • • •	0.0	•	0.0	0.0	0.0	0.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.0 0.0 <td>.00</td> <td>0.0</td> <td>0.0</td> <td></td> <td>•••</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>•••</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>0.0</td>	.00	0.0	0.0		•••	0.0	0.0	0.0	•••	0.0	0.0	0.0	0.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	(1) (00				•	•••		0.0	•••	0.0	0.0	0°0	0.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	9.9 9.67 9.0 99.5 95.68 0.247 516.8 55.00 -35.7 -37.7	00	0.0	0.0		::	0.0	0.0			0.0	0.0		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	7) 1.45 5.0 144. 5.23 53.73 -51.74 -51.7	0.0	0.67	0.0	195.	••	950.5	636.8	0.247	518.	55.60	- 38.17	-3.91	-0.33
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	(7) 2.55 2.31 3.55 2.31 3.55 2.31 3.55 2.31 3.55 2.31 3.55 2.31 3.55 2.31 3.55 2.31 3.55 2.31 3.55 2.31 3.55 2.31 3.55 2.31 3.55 2.31 3.55 2.31 3.55 2.31 3.55 2.31 3.55 3.55 3.51 <th< td=""><td>6</td><td>1.45</td><td>0.0</td><td>144.</td><td>•••</td><td>234.9</td><td>157.4</td><td>0.338</td><td>525.</td><td>58.30</td><td>-37.46</td><td>-3.91</td><td>-0.35</td></th<>	6	1.45	0.0	144.	•••	234.9	157.4	0.338	525.	58.30	-37.46	-3.91	-0.35
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0) 2.67 0.0 490.6 326.1 0.614 450.6 440.0 0.440.6 0.400.6 0.440.6 0.400.6 0.440.6 0.400.6 0.440.6 0.400.6 0.440.6 0.400.6 0.400.6 0.400.6 0.400.6 0.400.6 0.400.6 0.400.6 0.400.6 0.400.6 0.400.6 0.400.6 0.400.6 0.400.6 0.400.6 0.400.6 0.400.6 0.400.6	5	2.55		56.		463.2	310.3	0.525	518.	61.00	- 35, 57	66°5-	-0.24
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	(0)	2.67	0.J	• •	.0	489.6	328.1	0.614	467.	64.98	121.34	-4.00	0.45
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	7.7 6.7.7 6.7.7 6.7.7 7.7.7 6.7.7 7	00.	2.67	0.0		•••	449.8	301.4	0.685	335.	66.44	-33.29	-3.87	1.50
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	00 2.49 0.0 -47 0. 46.4 31.1 0.022 170 68.87 -30.99 -2776 31.40 00 2.09 0.0 -47 0. 0.0 68.01 -30.99 -2776 31.40 01 1.67 0.0 -44 3.0 0.066 97 68.01 -30.99 -2776 3.40 01 0.0 0.0 0.0 0.0 0.0 0.06 97 68.01 -30.99 -2776 3.40 01 0.0 0.0 0.0 0.0 0.0 0.06 0.06 97 -29.48 -27.16 3.40 01 0.92 0.0 0.0 0.0 0.0 0.0 0.0 -22.16 3.40 01 0.92 0.0 0.0 0.0 0.0 0.0 0.0 -22.17 2.21 3.40 01 0.19 0.0 0.0 0.0 0.0 0.0 0.0 -1.12 4.00 01 0.19 0.0 0.0 0.0 0.0 0.0	60	2.55	0.0	- 14.		65.8	1.1.1	0.796	286.	61.45 68 37	-32.42	-3.55	2.34
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	00 2.09 0.0 -77. 0.0 -77. 0.0 -77. -20.44 0.0 -20.45 -22.49 3.76 01 1.67 0.0 -77. 0.0 0.06 0.055 0.0 68.03 -22.49 3.79 01 1.67 0.0 0.0 0.055 0.0 68.03 -22.49 3.79 01 1.27 0.0 0.0 0.055 0.0 68.10 -22.43 -22.11 3.90 01 0.0 0.0 0.0 0.0 0.055 0.0 68.10 -22.11 3.90 01 0.19 0.0 0.0 0.0 0.066 0.066 4.00 01 0.19 0.0 0.0 0.0 0.066 0.0 65.17 -28.44 -11.42 01 0.0 0.0 0.066 0.0 66.17 -28.44 -11.42 4.09 01 0.0 0.0 0.0 0.06 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	00.	2.40	0.0	-47.	.0	46. 4	31.1	0.022	170.	68.87	-30.99	-2.76	3.40
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	77 0.0 0.	00	2.03	0.0	- 77-	• •	= °	0.0	0.846	97.	69.01	- 30. 37	-2.48	3.63
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	77 7.7 4.7 7.7 7.7 7.7 4.7 7.7 7.7 4.7 7.7 4.7 7.7 7.2 4.7 7.7 7.2 4.7 7.7 7.2 4.7 7.7 7.2 4.7 7.7 7.2 4.7 7.2 4.7 7.2 4.7 7.2 4.7 7.2 4.7 7.2 4.7 7.2 4.7 7.2 4.7 7.2 4.7 7.2 4.7 7.2 4.7 7.2 4.7 7.2 4.3 7.2 4.3 7.2 4.2 7.2 4.2 7.2 4.2 7.2 4.					5.		0.0	0.878	•••	68.83	-29.85	-2.29	3.70
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	97 5.63 5.73 -52. 0.0 0.0 67.74 -28.62 -1.76 4.07 00 0.19 0.0 -36. 0.0 0.0669 0.65.96 -28.61 -1.75 4.17 00 0.19 0.0 -36. 0.0 0.0669 0.65.96 -28.48 -1.42 4.17 00 0.0 -36. 0.0 0.0 0.0669 0.65.96 -28.48 -1.42 4.17 00 0.0		0.92		- 119 -	•••			0.863	• c	68.48 68 10	-29.43 -29.10	-2.11	3.90
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.0 6.39 9.0 -44. 0. 6.0 0.0568 0. 67.37 -28.61 -1.63 4.17 0.0 0.19 0.0 -36. 0. 0.0 0.66.96 -28.48 -1.42 4.24 0.0 0.19 0.0 -36. 0. 0.0 0.05 0.05 0.0		6.63	0.0	-52.	0.	0.0	0.0	0.867		67.74	-28.82	-1.76	60 . 4
00 0.0 -30. 0.0 0	0.0 0	0.0	6°39	0.0	• = = = = =	• •	C•0	0.0	0.069	•••	67.37	-28.61	-1.63	4.17
000 0.0 0.0 0.0 0.0 0.0 0.0 0.0 000 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 000 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 000 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 000 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 000 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 000 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 000 0.0 0.0 0.0 0.0 0.0 0.0 0.0 000 0.0 0.0 0.0 0.0 0.0 0.0 000 0.0 0.0 0.0 0.0 0.0 000 0.0 0.0 0.0 0.0 0.0 000 0.0 0.0 0.0 0.0 0.0 000 0.0 0.0 0.0 0.0 0.0 000 0.0 0.0 0.0 0.0 000	00 0.								0.865	 	66.96	-28.48	-1.42	4.24
0.0 0.0 <td>00 0.</td> <td>00</td> <td>0.0</td> <td>0.0</td> <td>.0.</td> <td></td> <td></td> <td></td> <td>0.0</td> <td></td> <td>66.4 /</td> <td>Ch.92-</td> <td>-1.22</td> <td>1.0.0</td>	00 0.	00	0.0	0.0	.0.				0.0		66.4 /	Ch.92-	-1.22	1.0.0
00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 01 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 01 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 01 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 01 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 01 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 01 0.0 0.0 0.0 0.0 0.0 0.0 0.0 01 0.0 0.0 0.0 0.0 0.0 0.0	00 0.0 0.0 0.0 0.0 0. 0. 0.0 0.0 0.0 0.	66	0.0	0.0	0.	.0	0.0	0.0	0.0	•••	0.0	0-0	0-0	0.0
0) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	00	0.0	0.0	•••	•••	0.0	0.0	0.0	••	0.0	0.0	0.0	0.0
	(car funtuate cartinu 2 A 2)	6.0	0 • • 0 • • 0	0.0	U. FTGHRF	т 121 Ех	0.0 amnle (R)	0.0 Fllinsa_lin	0.0 Pontact	0. Interactic	0.0 Jn from E	0.0 Lolamev	0.0	0.0

PAGE 124-40 BA 2-D, VER.

07791 , 42 NUL	2:00:20		HVHA 2-D TUTORIAL EXAMPLE	#1 30455 BECNE BIDDIDD	04148 ON	
GA NYBALL IL DUA	DI (PRELIGINARI DATA)	ANGE BA	LK UCC. CODY. ULSKI. Stand and Tigia I Alas	JURY FRONT BABALEN	C1770 08	
;		NITH PEAUR	SENSOR LOCATED 11.55 (IN)	PROM HIP		
		FEAUR			TIBIN	
	AXIAL AT	AXIAL	SUEAR	AXIAL AT		AXIAL At
TIME	SENSOR	KNEE	K N E E	XNEE		FOOT
0.0	8.1	4.6	-34.6	2.5		0-0
5.00	-92.2	-40.3	-66.6	7.3		0-0
10.00	-131.2	-68.8	14.8	-85.1		8.5
15.00	-131.0	-64.8	5.5	-82.3		22.9
20.00	-131-9	-61.1	-2-2	-77.6		39.4
25-00	-137.2	-60.0	-6.6	-72.2		55.2
30-00	- 138.2	-52.9	- 3 3 - 8	- 19 - C		67.1
35.00	-168.6	-59.5	56. 9	-69-5	·	84 - 6
40.00	321.6	420.3	-498-8	470-8.		1232.9
45.00	655.0	864.9	-1091-0	C • C • C • C • C • C • C • C • C • C •		2-104-2
00.00	3 - 1 2 7 - 5	4-5851 1 0 3 1 C		4 "075 '	•	1600 0
	1517.9	5100	-1065.1	1130.8		2543-9
65.00	670.8	1048-9	-871.8	718.6		1662.8
70.00	26.2	221.0	- 190. 2	104.9		-228-6
75.00	106.1	0.66	- 151.4	107.4		-60.3
00.00	159-5	71.6	-182.7	133.8		0-0
85.00	212.7	h-06	-255.7	175.7	,	0-0
90 . 00	233.2	102.3	- 201.3	8°C/1		
00-66		4 • 7 • • 7		0 407-		, , , , , , , , , , , , , , , , , , ,
100.00	8 · / 7 / 7 · · ·	1021.2 5849 4	- 101	0.4201	,	- 1462.1
	1062.3	1406-7	-1605.8	1367-9		3261.2
115-00	-577-4	-750.1	-763.1	1028-1		2049.2
120.00	-178.9	-259.7	-332.6	410.7		519.7
125.00	1.19	62.6	-168.7	132.3		-96-6
00.061	-15.7	-26.7	-101-9	105.1		0-0
135.00	- 32.4	-31.7	-87.0	5.7.et		
	0 • 1 - 1			0.17 C 12		
150.00				1 • 6 E		0.0
155.00	-58-7	-36-3	- 15. 5	16.5		0-0
160.00	-63.6	-38.4	- 3 - 5	21		0.0
165.00	-66.9	101-	. 6.0	-10.0		0.0
170.00	. 6-11-	8-64-	191.4	23.8	-	0-0
175.00	-89.1	-48.8	-30-6	18. /	-	
180.00 185.00	0 - 46 -	-54-8	-20-1			0.0
190.00	-23-0	-23.9	. 8.5	-17.8		0-0
195.00	-25.4	-26.5	12.4	-23-7		0 0
200.00	E • 6 -	+-02-	2.2.4	0 + 0 n l		>
		311RF 122	Femur and Tibia Loads f	or Example l		

---- 462

-

JUN 24, 1977(HYBRID II DUN)2:00:20 14Y (PRELIMINARY	DATA)	NVMA KNBE BAR	2-D TUTURIAL EXAMPLE OCC. COMP. DISPL.	#1 30MPH P	RONT BARRIER	NO BELTS	PAGE BVRA 2-	125-06 .D, VER.
			UNPIL	TERED ACCELERATIONS	(6 9)				
TIAR	A - F	HEAD S-T	RESULTANT	d-T	CH EST S-I	RESULTANT	X	2 2	RESULTA
	-0.199	0.980	1_000	0.485	-0-667	0.825	-0-543	-1-605	1.6
5,00		0.877	2.548	- 11-023	-3-607	13.513	-7. a11	- 3.560	
10.00	-2-663	0-351	2-686	- 12.607	-5-371	13.703	-6.601	1.691	9 9
15.00	-2-617	0-011	2.617	-12.485	-5-667	13.711	-7-084	1.495	7.
00.00	- 2 - 750	E00 - 0 -	2.750	-12.269	-6.024	13.668	-7.651	1-286	7
25.00	- 2 - B 1 3	-0.073	2.814	- 12-001	-6-445	13-623	-8.456	166.0	
00°01	- 2.74.8	-0.390	2.776	-11.642	-6.751	13.458	-9-708	-0-115	6
35,00	-7.781	-1,101	199.5	-10.557	-8.369	174-61	-12-670	-1-231	12.
40.00	1.134	-4-373	4.518	18-622	-0-935	18-646	-10-521	1.756	10.0
45.00	- 1-060	-5-353	5-457	19 - 145	0.700	19.158	-21.853	0.728	21-1
50.00	- 1.815	- 5- 419	6-627	22-113	-1-332	22-173	-35-665	-1.752	
55-00	50 m - 50 -	- 4 - 341	9.481	10.842	-6-295	12-537	-56.717	3.199	56.0
60.00	-10-226	1 000	10.275	8-828	-0-296	8.833	-54-579	5.142	54.
65.00	-11-206	12-104	16.445	6.004	0-950	6.073	-45.198	-6.229	45.4
70.00	-11-306	160.00	26.739	2.150	-0-393	2-196	-36.477	-19.870	4 1 -
75.00	56.073	906 . 46	110.235	12-636	12.000	17.426	-10.007	- 14.942	18.
00.08 4	0.875	416 6	10-012	13.738	21.066	25.824	0.685	-12.808	12.
85.00	9-834	20-242	22.530	14 - 280	27.413	30.910	4.391	-15.541	16.
90.00	11.299	35.806	38.196	14.253	27.616	31.077	9.313	-15.512	18.
95.00	44-284	-4.257	094-44	- 11- 873	9.229	35.108	5.461	-32.311	32.
100.00	45.479	33.763	56.642	4 549	13.903	14.628	-5.946	2.218	9
105.00	14.325	- 5.420	15.316	-4.470	28.843	29.187	-59.711	12.448	60.
110.00	21.388	41.426	46.621	-4.260	16.458	17.001	-5.284	7.818	- 6
115.00	12.403	44.020	45.733	+ 10 = 34 H	6.051	7.623	19.113	-1.738	- 61
120.00	11.993	29.90B	J2.22J	-0.530	3.982	4.026	9-071	-3.636	• 6
125.00	9.871	13.695	16.182	1.392	8.206	8.402	4.707	-4.425	9.1
130.00	8.464	. 2.364	8.787	3.746	7.309	8.213	2.324	1.906	.
135.00	6.523	-0-424	6.537	3.885	7.597	8.532	1.156	3.230	 m
140.00	6.020	3.664	7.054	3.959	5.553	6.820	0.143	3 B06	•
145-00	6.681	1.831	10.294	4.691	2.200	5.181	-0-540	3.972	। य
150.00	6.463	7.646	10.012	4.534	0.244	4.540	-0.951	3.459	
155.00	5.137	3.769	6.372	5.612	0.349	5.622	-1.703	4.906	5.
160.00	066.6	-0-649	3.451	5.076	-0.164	5.078	-2.191	5.009	5.1
165.00	1-762	-2.546	3-097	4.155 -	-1.329	4.362	-2-460	4.858	-• s
170-00	0.819	-1-543	1.747	-10.363	-7-022	12.518	11110	-5.550	5°
175.00	-0-	6.008	6.058	- 12.334	10.253	16.039	0-620	-7.161	1.
180.00	0 111	102 ° L.	7.205	- 13. 245	10.712	17.035	0_844	-7.429	
00 361	DEE U	197	010 11	- 010 11-	10-063	16-450	0.952	-1.211	
190.00	1.342	-0-110	1.346	-0.765	1.817	1-972	1.318	2.332	2.0
195.00	1.970	- 2. 370	· 3_082	-0.101	2.115	2.338	1.097	2-826	
200.00	2.001	-2.148	2.936	13.684	6.315	15.071	-3.436	12.620	13.(
	FIG	110F 123	llnfiltarad	Haad Chact and H	lin Arra	loratione for	Evamnle l		
	J 4			ו וובמתי הוביני מות ו	ווף אווי	וכו מרוסווי וייי			

PAGE 127-08 VHA 2-D, VER. 3				DIFIED S.I.	S-I BESULTANT	0.0 0.0	h0*0, 00*0	0.00 0.12	0.01 0.19	0.01 0.27	0-01 0-34					0-04 2-24	0-04 2-25	0.05 2.25	0-06 2-26	0.07 2.29	0.55 3.56	2-80 7-94	6-59 14-69	6.70 490.30	6.74 490.38	7.95 491.63	9. 37 193. 17	71.1424 95.4 7. 5.4 95.0	02"[64 81"6	9.30 493.20	9.38 493.21	9.38 493.21	9.39 493.21	9.39 493.21		12 °C 6 H 2 H 6 H 0	CC - L D T E T - D	9-161 hh-6	9.46 493.57	9-47 493-78	9.47 493.84	7°*' 177'
8 2		HEST	92.00	GAR HO	A-P	0-0	E0.0	0.08	0.13	0.18	0.22	0.25	17 0		1.74	1.94	1.95	1.95	1.95	1.96	2.02	2.11	2.22	467.56	467.57	467.57	467.57	10-104	467.60	467.60	467.60	467.61	467.61	467.61	401.01	10.104	467.61	467-64	467.69	467.74	467.76	 401-11
LTAG ON		υ	AT TIME=		ULTANT	0.0	1.76	5.15	0.59	12.03	15.45	10.84	11.22	21.02	uu. 0u	49.68	51.57	52-36	52.58	53.03	64.32	86.37	114.70	764.71	170.33	780.20	793-91	80.061	191.25	790.02	799.09	40.007	000.36	800.62	800.97	801.55	801-92	806.10	811.44	816.83	819.13	819.18
IT BARRIER	SN		133.633	ILTY INDEX	S-I BES	0-0	0.10	0.34	0.61	0.96	1.39	1.95	7/ ·7		110	3.89	4.03	4.04	4.04	4.23	11.00	26.57	47.67	50.99	53.20	62.91	76.10		78.37	70.95	79.76	80.36	80.53	80.54			80.62	01.93	83.65	05.26	85.91	06.08
8 81 . 308PH PRON	D ACCELERATIC	135 00	MSEC AVER=	SEVEB	A-P	0-0	1.54	***	7.31	10.08	12.70	12.11	77-11	20.52	10.26	42.69	06.44	45.08	45.29	45.46	48.37	52.13	56.17	44.683	692.16	692.24	692.41	hC•760	691.18	693.27	693.42	693.57	693.76	693.99	46°469	10.400 10.407	695.14	TE.193	700.18	103.14	704.44	101-44
REAL EXAMPLI Comp. DISPL.	A UNFILTERE	#3H14 UN3		i. I.	IES ULTANT	0-0	00.00	0.01	0.01	0.01	0.01	0-02		0-02	0.02	0.03	0.04	0.12	1.46	250.77	312.54	312.91	320.41	377.27	493.44	504.84	516.82	75-000	578.68	570.72	57 8.7 2	570.72	570.73	578.74	C/ 9/C	57875	578-75	578.76	578.76	578.76	578.76	578.76
HA 2-D TUTC OCC.	INDICES FC	65 00	74-00	NODIFIED 5	I-S	0.0	0.01	0.01	0.05	0.18	0-25	0.27		0, 20	0 - 24	0.20	0.29	0.30	0.90	202.04	239.40	238.61	243.69	245.32	250.31	251.32	257.68	2011.04	305-82	305.83	102°83	305.04	305.84	J05.85	C0.CUL	305 A6	305,86	305-06	305-07	305.07	305.87	305.88
NN KNEE BAR	SEVERITY	AD THES	AT TIME=	GMR GMR	A-P	0.0	0.01	0-01	0-01	0.01	0.02	0-02		0.02	0.04	0-04	0.05	0.07	0.09	42.98	96.44	44.39	44.44	92.19	161.54	165.44	165.86	100.13	166-18	166.19	166.19	166.19	166.20	166.20	12.001	166 20	166.21	166.21	166-23	166-23	166.24	 166.24
DATA)		3N 0 1 C 1 D M	107-979	EX.	BESULTANT	0.0	0-02	0.08	0.14	0-20	0.26	66-0			1.22	2.15	3.69	6.65	60.71	332.96	417.04	422.13	60-614	535.66	666.76	694.96	720.22	86.208 051 20	869.95	072.77	873.54	874.06	075.22	877.00	01.01.0	878 US	878-51	878.67	16.979	47.910	879-80	8/9 . UD
20 Belini nart			C AVER= Peak=	VERITY IND	S-1	0.0	0.00	0.00	0.00	00-00	0.00	00.00		0.15	12.0	0.99	1.06	1.79	14-6	232.11	292.79	296-62	318.40	320.43	347.77	356.92	375.09	96.764 90.204	197.65	498.60	498.66	4 18.69	1.99.47	500.12	50.000 500	005-005	500.63	500.77	501.40	501.02	501.86	80.10c
197702:00: I DUBAY (P			3 RSE	30	A - P	0-0	0.02	0.09	0.13	0.19	0.26	0-32		0.40	0-45	0.96	2.35	4.22	0.35	60.00	73.35	06.67	76.66	147.65	244.74	261.00	269.47	00 1 2 5	279.20	280.60	201.35	281.83	232.32	232.Ed	08-682	19 186	201.67	281.68	283.68	203.68	203.70	203-12
JUN 24, 34 NYBRID I					TINE	0-0	5.00	10.00	15.00	20.00	25.00	10.00		15.00	50.00	55.00	60.00	65.00	70.00	75.00	80.00	00°50 4	00 . 00	4 95.00	100.00	105.00	110.00		125.00	130.00	115.00	140.00	145.00	150.00	00.001	165 00	170.00	175.00	100.00	105.00	190.00	 00.661

3.4.4 Input Data for Example 2

The second example data set includes the same 30-mph frontal barrier crash acceleration profile as used for Example 1. Simulation Example 2 is similar to Example 1 in other ways also. It uses the same occupant description data subset and the occupant is positioned within the vehicle in an identical manner. The vehicle interior used is basically the same. The primary difference between Examples 1 and 2 is that while both occupants are restrained by a knee bar, the occupant in Example 2 is additionally restrained by a torso harness. There are a number of other differences in the data sets. None of these should affect the crash dynamics; they have been included to illustrate various program options.

3.4.4.1 <u>Belt Restraint System</u>. The three-belt submodel described in Module 9 is used for this simulation. Since simulation Example 1 was for an occupant unrestrained by belts, the belt system usage switch in field 1 of Card 102 was set to 0. For Example 2, however, Card 102 in Figure 128 is seen to have a 2. in field 1. This indicates usage of the three-belt submodel with both lap and torso restraints. Since it is desired for this simulation to have only the torso harness and the knee bar as restraints, and not a lap belt, the belt system data subset shown in Figure 125 includes some specifications worthy of note.

While any of the seven belt segments of the Advanced Belt-Restraint Submodel may be included or omitted from a belt system design, the Three-Belt Submodel is not as flexible. It must include either both lap belt and torso harness or the lap belt alone. Therefore, in the data subset shown, in order to effectively eliminate the lap belt, a belt material named NO STRENGTH is defined by 704- and 705-Cards and is prescribed a zero stiffness with a 708-Card. This belt material is assigned to the lap belt on Card 702.

The torso belts are each pre-tensioned to 5 lb. This is done by assigning negative values for initial slack on Cards 701 and 702. Belt anchor locations and attachment points on the occupant are prescribed on Cards 501 and 218.

2.75	7.	0.	0.	0.	1.8	-1.96	14.12	-5.07	218
0.	0.	0.	0.	0.	-33.52	17.	-1.2		501
100.	0.	15.13	001/8	5600.	6600.	10.			701
NO STREN	IGTH	·	-	14.04	00172	Ζ.	1.		702
6% WERRI	NG #1	•	. .	6% WEBB	ING #2			-	703
6% W-991	NG 41	0.	0.	0.16	14.36	15.04	0.	0.	704
6% WEBBI	NG #1	5.				SBELT1	IZERD	GBELTI	705
GBELTI	0.	0.							708
GBELTI	•16	0.							706
GBEL T1	1.37	• 56							708
GBELT1	6.15	.95							708
GBELT1	40.	•95			1.				705
GBELTI	0.	1.							707
GBELT1	1.37	•33							707
GBELTI	2.06	•19							707
GRELT1	6.15	.05			۰.				707
GBELT1	40.	•05	-		•				707
SRELTI	0.	0.			.				708
SBELT1	.533	1500.	·	•	2			•	708
SBELTI	9.91	2000.							708
SBELTI	11.28	5300.				•			708
SBELT1	14.36	6600.		•					709
SRELT1	15.04	0.	•						705
5% WEBBI	NG #2	0.	0.	.155	13.85	14.51	0.	0.	704
6% WEBBI	NG #2	5.		2		SBELT2	TZERD	GB FL T 1	70
SBELT2	0.	0.	**	=					708
SBELT2	.396	1150.	a 1						708
SBELT2	9.56	1650-		1					708
SREIT2	10.9	5300			-				709
SBELT2	13.85	6600		. •			1		704
SBELT2	14.51	0.		-	<u>.</u>				709
NO STREN	ICTH	0.	0.	0.	10.	11.	0.	0.	704
NO STREN	GTH	5.	V .		7.2.4	SNOSTP	17590	CNOST2	704
CNOSTR	-1.	0.	••			3110318	IZERU	ALCONO	703
GNOSTR	-1.	1.	0						705
CNICTP	_1	0.	•		•				70
240217	-1.	U 6							108

FIGURE 125 Belt Restraint System Cards for Example 2

•

3.4.4.2 Auxiliary Debugging Printout. Module 12 explains the use of 104- and 105-Cards for obtaining "debugging" printout of intermediate results from the Execution Processor. Time-dependent, multi-level switches may be set for sixteen divisions of program variables. Figure 126 illustrates specifications for debugging printout for Example 2 from 0 to 3 ms and from 198 to 200 ms inclusive. Printout beginning at times zero will be for switches 1, 7, 9, 10, 11, and 16 at levels 3, 1, 3, 3, 2, and 2, respectively. At 1.1 ms, switches 7 and 16 are set to 0, and at 3.1 ms all debugging printout is suppressed. At 198 ms, all sixteen switches are set at level 1; debugging printout continues through the end of the simulation (200 ms for Example 2) since the switches are not reset to 0. Field 9 of Card 104 is set to 1. in order to limit debugging printout to each final evaluation for the four-step Runge-Kutta integration. A "packing dictionary," which is often useful in interpreting debugging printout, is requested by defaulting the ninth field of Card 105 to 0. by omission of the card from the data deck.

3.4.4.3 <u>Output Variable Storage</u>. Section 3.4.2.11 has explained the use of Cards 1001 and 1002 for specifying categories of calculated data for which printout is desired. It should be kept in mind that in order for the Output Processor to print out variables in response to specifications on Cards 1001 and 1002, those variables must first be stored in an external file. Specification of categories which are to be stored during execution of the "GO" processor for possible later printout is made separately through use of Cards 107 through 111. For Example 1, these cards were omitted from the data deck and thus, by default, all categories were stored for printout. However, the data deck for Example 2 includes the cards shown in Figure 127. Only variables for categories for which a "O." is specified will be written to the external file for possible printout. Use of Cards 107 through 111 is explained in Module 12.

3.4.4.4 Other "Example 2" Modifications. Additional differences between the data decks for Example 1 and Example 2 include the following. (These can be seen in comparing the appropriate sections of their complete data decks, which are shown in Figures 109 and 128.) First, the vehicle interior for Example 2 does not include the ROOFHEADER,

0.	C004F8021.1	C000F8003.1	0000000198.	55555551.	104
----	-------------	-------------	-------------	-----------	-----

FIGURE 126 Debugging Printout Specifications for Example 2

0.	1.	1.	0.	0.	0.	1.	0.	1.	107
0.	0.	0.	0.	0.	0.	1.	1.	1.	108
1.	1.	0.	0.	0.	0.	0.	0.	1.	109
1.	1.	0.	0.	0.	1.	1.	1.	1.	110
0.	1.	1.	0.	0.	0.	Ο.	0.	0.	111

FIGURE 127 Specifications for Storage of Output Categories for Example 2

WINDSHIELD, and INSTRUMENT PANEL regions. Second, the 106-Cards are absent from the data deck, and interaction "inhibition" controls on Card 102 are redefined so that all potential ellipse-line interactions are investigated. Third, the THORAX and HIP ellipses have been made rigid since materials were defined for them for Example 1 only because of the possibility of THORAX-INSTRUMENT PANEL and HIP-FLOOR interactions. Finally, printout of the summary of the input data is often not desired; it is suppressed for Example 2 by removing Category 0 from the string on Card 1001. Alternatively, a 1001-Card containing only "-1" in columns one and two could have been used. This requests the default ordering for Categories 1 through 40 and 46 through 50 with omission of printout of the input data summary, Category 0.

3.4.5 Selected Output from Simulation Example 2

Selected pages of printout produced by the complete Example 2 data deck in Figure 128 are shown as Figures 129 through 134. These are: a printer-plot stick figure sequence; example debugging printout; belt system data; body link angle accelerations; head, chest, and hip accelerations; and HIC and Severity Indices.

		MVI	4A 2-D TI	UTORIAL	EXAMPLE A	12			100
KNEE	BAR				:		,		400
000. Ch	IP. DISPI	L •							500
30MPH F	RONT BARR	RIER							600
FORCE-t	IN. HARP	NESS							700
NO LAP	BELT						1		800
1.	1.	32.174	0.	0.	200.	1.	5.	10.	101
2.	0.	0.	0.	1.	1.	10.	.000001	5.	102
.2	.05	100000.	15000.	10.	.05	10.	1.	1.	103
0.	C004F80	21.1	C000F80	03.1	00000000	198.	55555555	51.	104
0.	1.	1.	0.	0.	0.	1.	0.	l. •	107
0.	0.	0.	0.	0.	0.	1.	1.	1.	108
1.	1.	0.	0-	0.	0.	0.	0.	1.	109
1.	1.	0.	0.	0.	1.	1.	1.	1.	110
0.	1.	1.	0.	0.	0.	0.	0.	0.	111
0.	44	0.	0.	0.	0.	0.	0.	•••	601
23.	1.	1.	••						602
0.	-1.7	1.	-1.4	7.	-33.9	12.	2.8		
13.5	3.9	18.	-21.2	21.5	-12.4	28.	-9.2		
22	-24 0	33.	-24-0	36.	-9.9	37.	-9.9		
	-24.0	47.	-31.9	50.	-25.9	54.	-27.2		
729	-23.97	<u> </u>	-79 0	76	-6.9	90.	-1.4		
100	-72.02	120	-29•0 n	300.		200			
2000	-1	1200	0.	5000	••				603
2.	1.	1.	0					.e	003
0.		500.	Ue						606
2.	1.	200.	• •						90 4
0.		300-	0.						200
GM HYHRI		4 M Y	-						200
(PRELIM)	INGRY DAI		-						300
1.1	13.44	3.4	2.	17.5	• •	10.3	3.27	00	201
2.75	7.	1.7	4.2	8.2	9.3	>.	5.8	• 7	202
•0259	.0951	•005Z	-099Z	•0 <u>9</u> 32	.0518	.022	.0250	.007	203
-198	1.97	• 04	1.53	1.39	Z.82	-18	•62		204
12.9	•59	0.	•52	17.4	1.		-25.	•35	205
12.8	• 5 5	0.	•52	17.4	1.	-	-22.	•35	206
72.	15.	0.	•66	1000.	1.	-8.	-25.5	•35	207
102.5	-7.624	.1944	•66	1000.	1.	-33.999	-34.001	•35	208
84.44	-4.910	.1053	0.	850.	1.	-49.999	-50.001	•5	209
0.	29.8	0.	0.	204.	1.	135.	0.	•5	210
0.	10.	0.	0.	222.	1.	28.	-197.	•5	211
0.	10.	0.	0.	64.	1.	0.	-165.	•5	212
751.	0.	757.	1.98		_				213
20.	230.	0.	0.			2.		•5	214
38.	• 5 8	0.	•25	0.	1.	-1.		•16	215
38.	•59	0.	•52	0.	1.	2.		.16	216
751.	0.	757.	1.98						242
HEAD				1.	3				219
THORAX				2.	1_				219
HIP				4.	1.				219
THIGH				5.	1.				219
KNEE				5.	1.				219
SHANK				6.	1.				219
HEEL				6 . ·	2.				219
TOF				6.	2.				219
ELBOW				7.	1.				219
HAND				8.	3				219
HEAD		0.	•5	4.	4.				220
THORAX		5	68	5.52	4.44				220
HTP		12	0.	4.5	4.5				220
THIGH		5	1	7.	3.				220

Complete Data Set for Simulation. Example 2 (page 1 of 5)

KNEE		7.	4	2.25	2.25			220
SHANK		-7.54	0.	3.	2.4			220
UEEL		0 67	0	1 2	1 2			220
HEEL		0.77	U.	1.2	L•4			220
TOE		5.61	-5.16	1.2	1.2			220
FL SOM		5.3	0.	1.5	1.5			220
UAND		F (- /	2 72	1 57			220
HANU		2+2		2012	1.76 -			220
CHESTMA	rL	0.	0.	0.	100.	101.	0.	0. 221
THESTMAT	T1	F	•			CSTAT	TZERO	CCR 222
0.00	· -					03141	ILLING	
CGR	-1.	• L						223
CGR	0.	1.						224
C C 2	.01	64	· · ·					276
001	•01	•0+			••			227
CGR	•3	• 5						224
CGR	1.35	.45	-					224
COTAT	0	<u>n</u>			•			226
63.41	•				••			223
CSTAT	-01	1125.				•		225
CSTAT	-05	1460.						225
COTAT	2	1350						225
0.3 * 41	• •	13.00						225
CSTAT	•4	1260.						225
CSTAT	1-1	1260-						225
COTAT	1 75	17600						115
CSIAI	4.27	12000-						223
IZERO	-1.	0.						226
HTOWATT		0.	0.	٥.	100.	101.	٥.	0. 221
		-		V•	1000			
HIPMAIL		2.				CSIAI	12583	LGR 222
-11.	-9.	-19.	-34.	-50.	0.	0.	0.	217
70 E	07 5	776 E	140 5	10 5	-45	-41	2	80 E 201
10.0	4103	11203	147.5	1745	-+)•		3.	67•3 3UL
0.	0.	0.	0 .	0.	0.	0.	0.	0. 302
12.2	0.	-71-4	0.	3-28	0	_		303
			0		•••	-		200
0.	0.	0.	U.					. 304
SEAT BAI	CK	SEAT MA	TERIAL	0.	1.	1.	1.	401
SEAT BA	CK .	1.	1_	1.	0.	0-		402
	***		~				•	
SEAT MA	TERIAL	0.	0.	1.6	3.5	4.	0.	0. 403
SEAT MA	TERTAL	0. 5.	0.	1.6	3.5	4. SSEAT	0. IZERO	0. 403 GRSEAT 404
SEAT MA	TERIAL	0. 5.	0.	1.6	3.5	4. SSEAT	0. IZERO	0. 403 GRSEAT 404
SEAT MA	TERIAL TERIAL	0. 5. .1	0.	1.6	3.5	4. SSEAT	0. IZERO	0. 403 GRSEAT 404 405
SEAT MA SEAT MA GRSEAT GRSEAT	TERIAL TERIAL -1- -1-	0. 5. .1	0.	1.6	3.5	4. SSEAT	0. IZERO	0. 403 GRSEAT 404 405 406
SEAT MA SEAT MA GRSEAT GRSEAT SSEAT	TERIAL TERIAL -1. -1. 0.	0. 5. .1 .5	0.	1.6	3.5	4. SSEAT	0. IZERD	0. 403 GRSEAT 404 405 406 407
SEAT MA SEAT MA GRSEAT GRSEAT SSEAT	TERIAL TERIAL -1. -1. 0.	0. 5. .1 .5 0.	0.	1.6	3.5	4. SSEAT	0. IZERD	0. 403 GRSEAT 404 405 406 407
SEAT MA SEAT MA GRSEAT GRSEAT SSEAT SSEAT	TERIAL TERIAL -1. 0. .8	0. 5. .1 .5 0. 150-	0.	1.6	3.5	4. SSEAT	0. IZERD	0. 403 GRSEAT 404 405 406 407 407
SEAT MA SEAT MA GRSEAT GRSEAT SSEAT SSEAT SSEAT	TERIAL -1. -1. 0. .8 1.6	0. 5. .1 .5 0. 150. 400.	0.	1.6	3.5	4. SSEAT	0. IZERO	0. 403 GRSEAT 404 405 406 407 407 407
SEAT MA SEAT MA GRSEAT GRSEAT SSEAT SSEAT SSEAT SSEAT	TERIAL -1. -1. 0. .8 1.6 3.	0. 5. .1 .5 0. 150. 2000.	0.	1.6	3.5	4. SSEAT	0. IZERD	0. 403 GRSEAT 404 405 406 407 407 407 407
SEAT MA SEAT MA GRSEAT GRSEAT SSEAT SSEAT SSEAT SSEAT	TERIAL TERIAL -1. 0. .8 1.6 3.	0. 5. .1 .5 0. 150. 2000.	0.	1.6	3.5	4. SSEAT	0. IZERO	0. 403 GRSEAT 404 405 406 407 407 407 407
SEAT MA SEAT MA GRSEAT GRSEAT SSEAT SSEAT SSEAT SSEAT SSEAT	TERTAL TERTAL -1. 0. .8 1.6 3. 3.5	0. 5. .1 .5 0. 150- 400- 2000- 4000-	0.	1.5	3.5	4. SSEAT	0. IZERD	0. 403 GRSEAT 404 405 406 407 407 407 407 407
SEAT MA SEAT MA GRSEAT SSEAT SSEAT SSEAT SSEAT SSEAT SSEAT SSEAT	TERIAL TERIAL -1. 0. .8 1.6 3. 3.5 4.	0. 5. .1 .5 0. 150- 400- 2000- 4000- 0.	0.	1.6	3.5	4. SSEAT	0. IZERD	0. 403 GRSEAT 404 405 406 407 407 407 407 407 407
SEAT MA SEAT MA GRSEAT GRSEAT SSEAT SSEAT SSEAT SSEAT SSEAT SSEAT SSEAT	TERIAL -I. -I. 0. .8 1.6 3.5 4. NE	0. 5. .1 .5 0. 150. 2000. 2000. 4000. 0. 55AT BAG	0. 	1.6	3.5	4. SSEAT	O. IZERO	0. 403 GRSEAT 404 405 406 407 407 407 407 407 407
SEAT MA SEAT MA GRSEAT SRSEAT SSEAT SSEAT SSEAT SSEAT SSEAT SSEAT SSEAT SSEAT	TERTAL TERTAL -1. 0. .8 1.6 3.5 4. NE	0. 5. .1 .5 0. 150- 400- 2000- 4000- 0. SEAT BAD	О. 	1.6	0.	4. SSEAT	O. IZERO	0. 403 GRSEAT 404 405 406 407 407 407 407 407 407 407 407
SEAT MA SEAT MA GRSEAT SSEAT SSEAT SSEAT SSEAT SSEAT SSEAT SSEAT SSEAT SSEAT SSEAT SSEAT SSEAT	TERIAL TERIAL -1. 0. .8 1.6 3. 3.5 4. NE	0. 5. .1 .5 0. 150- 400- 2000- 4000- 0. SEAT BAG	0.	1.6	0.	-1.	O. IZERD	0. 403 GRSEAT 404 405 406 407 407 407 407 407 407 407 407 409
SEAT MA SEAT MA GRSEAT SSEAT SSEAT SSEAT SSEAT SSEAT SSEAT SSEAT SSEAT SSEAT BACK LT BACK LT	TERIAL -I. -I. 0. .8 1.6 3.5 4. NE NE	0. 5. .1 .5 0. 150- 400- 2000- 4000- 0. SEAT BAN 1. -1.	0.	1.6 5. -25.8	3.5 	-1- -4.96	0. IZERD	0. 403 GRSEAT 404 405 406 407 407 407 407 407 407 407 407 407 407
SEAT MA SEAT MA GRSEAT GRSEAT SSEAT SSEAT SSEAT SSEAT SSEAT SSEAT BACK LI BACK LI SEAT LI	TERIAL TERIAL -1. 0. .8 1.6 3.5 4. NE NE	0. 5. .1 .5 0. 150- 400- 2000. 4000- 0. SEAT BAG	0. 	1.6 5. -25.8	3.5 	-1. -4.96	O. IZERO	0. 403 GRSEAT 404 405 406 407 407 407 407 407 407 407 409 410 411
SEAT MA SEAT MA GRSEAT SSEAT SSEAT SSEAT SSEAT SSEAT SSEAT SSEAT BACK LI BACK LI SEAT CU	TERIAL TERIAL -1. 0. .8 1.6 3. 3.5 4. NE NE NE SHION	0. 5. .1 .5 0. 150- 400- 2000. 4000- 0. SEAT BAG 1. -1. SEAT MA	0. 	1.6 5. -25.8 0.	3.5 	-1. -4.96	0. IZERD 1.	0. 403 GRSEAT 404 405 406 407 407 407 407 407 407 407 409 410 411 401
SEAT MA SEAT MA GRSEAT S	TERIAL TERIAL -1. 0. .8 1.6 3. 3.5 4. NE NE NE NE SHION SHION	0. 5. 1. 50. 150. 400. 2000. 4000. 0. 5EAT BAU 1. -1. 5EAT MA	0. CK 6.2 TERIAL 1.	1.6 5. -25.8 0. 1.	3.5 	-1. -4.96 1. 0.	0. IZERD 1.	0. 403 GRSEAT 404 405 406 407 407 407 407 407 407 407 407 407 409 410 411 401
SEAT MA SEAT MA GRSEAT SSEAT SSEAT SSEAT SSEAT SSEAT SSEAT SSEAT BACK LI BACK LI SEAT CU SEAT CU SEAT CU	TERIAL TERIAL -1. 0. .8 1.6 3.5 4. NE NE SHION SHION LINE I	0. 5. .1 .5 0. 150- 2000	0. CK 6.2 TERIAL 1. SHION	1.6 5. -25.8 0. 1. 5.	3.5 3.5 0. 15.44 1. 0. .164	-1. -4.96 1. 0.	0. IZERD	0. 403 GRSEAT 404 405 406 407 407 407 407 407 407 407 407 407 407
SEAT MA SEAT MA GRSEAT SSEAT SSEAT SSEAT SSEAT SSEAT SSEAT SSEAT BACK LI BACK LI SEAT CU SEAT CU SEAT CU	TERIAL TERIAL -1. -1. 0. .8 1.6 3.5 4. NE NE SHION SHION LINE I	0. 5. .1 .5 0. 150- 400- 2000. 4000- 2000. 4000. 0. SEAT BAG 1. -1. SEAT MA ² 2. SEAT CUS	0. CK 6.2 TERIAL 1. SHION	1.6 5. -25.8 0. 1. 5.	3.5 3.5 0. 15.44 1. 0. .164	-1. -4.96 1. 0.	0. IZERD 1. 1.	0. 403 GRSEAT 404 405 406 407 407 407 407 407 407 407 407 407 407
SEAT MA SEAT MA GRSEAT SSSEAT SSEAT SSEAT SSEAT SSEAT SSEAT SSEAT SSEAT SSEAT	TERIAL TERIAL -1. -1. 0. .8 1.6 3.5 4. NE NE NE NE NE NE NE NE NE NE	0. 5. .1 .5 0. 150- 400- 2000- 4000- 0. 5EAT BAG 1. -1. 5EAT MA 2. 5EAT CUS	0. CK 6.2 TERIAL 1. SHION	1.6 5. -25.8 0. 1. 5.	3.5 3.5 0. 15.44 1. 0. .164	-1. -4.96 1. 0. 1.	0. IZERD 1. 1.	0. 403 GRSEAT 404 405 406 407 407 407 407 407 407 407 407 409 410 411 401 402 409 410
SEAT MA SEAT MA GRSEAT SSEAT SSEAT SSEAT SSEAT SSEAT SSEAT SSEAT SSEAT SSEAT SSEAT SSEAT SSEAT SSEAT SSEAT SSEAT CUSHION CUSHION CUSHION	TERIAL -I. -I. 0. 8 1.6 3.5 4. NE NE SHION SHION SHION LINE I LINE I LINE I	0. 5. .1 .5 0. 150- 400- 2000- 4000- 0. SEAT BAN 1. -1. SEAT MA 2. SEAT CUS 1. -1.	0. CK 6.2 TERIAL 1. SHION 15.44	1.6 5. -25.8 0. 1. 5. -4.96	3.5 3.5 0. 15.44 1. 0. .164 28.	-1. -4.96 1. 0. 1. -9.92	0. IZERD 1. 1.	0. 403 GRSEAT 404 405 406 407 407 407 407 407 407 407 407
SEAT MA SEAT MA GRSEAT SSEAT SSEAT SSEAT SSEAT SSEAT SSEAT SSEAT BACK LII BACK LII SEAT CU SEAT CU CUSHION CUSHION CUSHION CUSHION	TERIAL TERIAL -1. 0. .8 1.6 3.5 4. NE NE SHION SHION LINE I LINE I LINE 1 LINE 2	0. 5. .1 .5 0. 150- 400- 2000. 4000- 2000. 4000- 0. SEAT BAG 1. SEAT CUS 1. SEAT CUS 1. SEAT CUS	0. CK 6.2 TERIAL 1. SHION 15.44 SHION	1.6 5. -25.8 0. 1. 5. -4.96	3.5 3.5 0. 15.44 1. 0. .164 28.	-1. -4.96 1. 0. 1. -9.92	0. IZERD 1. 1.	0. 403 GRSEAT 404 405 406 407 407 407 407 407 407 407 407 407 409 410 411 402 409 410 411 402 409 410
SEAT MA SEAT MA GRSEAT SSEAT SSEAT SSEAT SSEAT SSEAT SSEAT SSEAT SSEAT BACK LI BACK LI BACK LI SEAT CU SEAT CU SEAT CU SEAT CU SEAT CU SEAT CU SEAT CU	TERIAL TERIAL -1. 0. .8 1.6 3.5 4. NE NE SHION LINE I LINE I LINE 2 I INE 2	0. 5. 1. 50. 150. 400. 2000. 4000. 0. 5EAT BAG 1. -1. SEAT CUS	0. CK 6.2 TERIAL 1. SHION 15.44 SHION	1.6 -25.8 0. 1. 5. -4.96 5.	3.5 3.5 0. 15.44 1. 0. .164 28. .5	-1. -4.96 1. 0. 1. -9.92 -1.	0. IZERD 1. 1. 1.	0. 403 GRSEAT 404 405 406 407 407 407 407 407 407 407 407 409 410 411 402 409 410 411 402 409 410 411
SEAT MA SEAT MA GRSEAT SSSEAT SSEAT SSEAT SSEAT SSEAT SSEAT SSEAT SSEAT SSEAT	TERIAL TERIAL -1. -1. 0. .8 1.6 3. 3.5 4. NE NE SHION SHION LINE I LINE I LINE 1 LINE 2 LINE 2	0. 5. 1. 50. 150- 400- 2000- 4000- 0. 5EAT BAG 1. -1. 5EAT CUS 1. -1. 5EAT CUS 1.	0. CK 6.2 TERIAL 1. SHION 15.44 SHION	1.6 5. -25.8 0. 1. 5. -4.96 5.	3.5 3.5 0. 15.44 1. 0. .164 28. .5	-1. -SSEAT -4.96 1. 0. 1. -9.92 -1.	0. IZERD 1. 1. 2.	0. 403 GRSEAT 404 405 406 407 407 407 407 407 407 407 407
SEAT MA SEAT MA GRSEAT SSEAT SSEAT SSEAT SSEAT SSEAT SSEAT BACK LII BACK LII BACK LII SEAT CU SEAT CU CUSHION CUSHION CUSHION CUSHION CUSHION	TERIAL TERIAL -1. -1. 0. .8 1.6 3.5 4. NE NE SHION LINE I LINE I LINE 1 LINE 2 LINE 2 LINE 2	0. 5. 1. 50. 150. 400. 2000. 4000. 0. 5EAT BAN 1. -1. SEAT CUS 1. -1. SEAT CUS 1. -1.	0. 0. CK 6.2 TERIAL 1. SHION 15.44 SHION 29.	1.6 5. -25.8 0. 1. 5. -4.96 5. -9.92	3.5 3.5 0. 15.44 1. 0. .164 28. .5 32.24	-1- -4.96 1. 0- 1. -9.92 -1. -10.64	0. IZERD 1. 1. 1. 2.	0. 403 GRSEAT 404 405 406 407 407 407 407 407 407 407 407
SEAT MA SEAT MA GRSEAT GRSEAT SSEAT SSEAT SSEAT SSEAT SSEAT SSEAT SSEAT BACK LII BACK LII BACK LII SEAT CU SEAT CU SUSHION CUSHION CUSHION CUSHION CUSHION CUSHION	TERIAL TERIAL -1. -1. 0. .8 1.6 3.5 4. NE NE SHION SHION LINE LINE LINE LINE LINE LINE LINE 2	0. 5. 1. 50. 150. 400. 2000. 4000. 0. 5EAT BAG 1. 5EAT MA 2. 5EAT CUS 1. -1. 5EAT CUS 1. -1. 5EAT CUS	0. CK 6.2 TERIAL 1. SHION 15.44 SHION 29.	1.6 5. -25.8 0. 1. 5. -4.96 5. -9.92 0.	3.5 3.5 0. 15.44 1. 0. .164 28. .5 32.24 1.	-1. -4.96 1. 0. 1. -9.92 -1. -10.64	0. IZERD 1. 1. 1. 2.	0. 403 GRSEAT 404 405 406 407 407 407 407 407 407 407 407 407 409 410 411 402 409 410 411 409 410 411 409 410 411
SEAT MA SEAT MA GRSEAT SSSEAT SSEAT SSEAT SSEAT SSEAT SSEAT SSEAT SSEAT SSEAT	TERIAL TERIAL -1. -1. 0. .8 1.6 3.5 4. NE SHION SHION SHION LINE I LINE 2 LINE 2 LINE 2	0. 5. 1. 50. 150. 400. 2000. 4000. 0. 5EAT BAG 1. -1. 5EAT CUS 1. -1. 5EAT CUS 1. -1. 5EAT CUS	0. CK 6.2 FERIAL 1. SHION 15.44 SHION 29.	1.6 -25.8 0.1. 5. -4.96 5. -9.92 0.	3.5 3.5 0. 15.44 1. 0. .164 28. .5 32.24 1.	-1. -4.96 1. 0. 1. -9.92 -1. -10.64	0. IZERD 1. 1. 2. 1.	0. 403 GRSEAT 404 405 406 407 407 407 407 407 407 407 407
SEAT MA SEAT MA GRSEAT GRSEAT SSEAT SSEAT SSEAT SSEAT SSEAT BACK LII BACK LII BACK LII SEAT CU SEAT CU CUSHION CUSHION CUSHION CUSHION CUSHION CUSHION CUSHION CUSHION CUSHION	TERIAL TERIAL -1. -1. 0. 8 1.6 3.5 4. NE NE SHION SHION LINE I LINE I LINE 1 LINE 2 LINE 2 LINE 2	0. 5. 1. 50. 150- 400- 2000- 4000- 0. 5EAT BAC 1. -1. 5EAT CUS 1. -1. 5EAT CUS 1. -1. 5EAT CUS 1. -1. 5EAT CUS	0. CK 6.2 TERIAL 1. SHION 15.44 SHION 29. 2.	1.6 5. -25.8 0. 1. 5. -4.96 5. -9.92 0. 1.	3.5 3.5 0. 15.44 1. 0. .164 28. .5 32.24 1. 0.	-1. -4.96 1. 0. 1. -9.92 -1. -10.64 1. 0.	0. IZERD 1. 1. 2. 1.	0. 403 GRSEAT 404 405 406 407 407 407 407 407 407 407 407
SEAT MA SEAT MA GRSEAT SSEAT SSEAT SSEAT SSEAT SSEAT SSEAT SSEAT SSEAT SSEAT BACK LII BACK LII BACK LII SEAT CU SEAT CU CUSHION	TERIAL TERIAL -1. -1. 0. .8 1.6 3.5 4. NE SHION SHION LINE I LINE I LINE 2 LINE 2 LINE 2 TTOM	0. 5. 1. 50. 150. 200. 2000. 2000. 2000. 200. 2000. 20. 2	0. CK 6.2 TERIAL 1. SHION 15.44 SHION 29. 2.	1.6 5. -25.8 0. 1. 5. -4.96 5. -9.92 0. 1. 5.	3.5 3.5 0. 15.44 1. 0. .164 28. .5 32.24 1. 0. 0.	-1. -4.96 1. 0. 1. -9.92 -1. -10.64 1. 0. -1.	0. IZERD 1. 1. 1. 2. 1.	0. 403 GRSEAT 404 405 406 407 407 407 407 407 407 407 407
SEAT MA SEAT MA GRSEAT SSEAT SSEAT SSEAT SSEAT SSEAT SSEAT SSEAT SSEAT SSEAT SSEAT SSEAT SSEAT SSEAT CUSHION CUSHION CUSHION CUSHION CUSHION CUSHION CUSHION CUSHION CUSHION CUSHION CUSHION CUSHION SEAT BO SSEAT BO	TERIAL TERIAL -1. -1. 0. .8 1.6 3.5 4. NE NE SHION SHION LINE I LINE 2 LINE 2 LINE 2 LINE 2 TTOM	0. 5. 1. 50. 150. 400. 2000. 4000. 0. 5EAT BAG 1. -1. SEAT CUS 1. -1. SEAT CUS 1. -1. FMATL 2. FLOOR 1.	0. CK 6.2 TERIAL 1. SHION 15.44 SHION 29. 2.	1.6 -25.8 0.1. 5. -4.96 5. -9.92 0. 1. 5.	3.5 3.5 0. 15.44 1. 0. .164 28. .5 32.24 1. 0. 0.	-1. -4.96 1. 0. 1. -9.92 -1. -10.64 1. 0. -1.	0. IZERD 1. 1. 1. 2. 1. 1.	0. 403 GRSEAT 404 405 406 407 407 407 407 407 407 407 407
SEAT MA SEAT MA GRSEAT SSEAT SSEAT SSEAT SSEAT SSEAT SSEAT SSEAT SSEAT SSEAT SSEAT SSEAT SSEAT SSEAT SSEAT SSEAT SSEAT SSEAT CUSHION CUSHION CUSHION CUSHION CUSHION CUSHION CUSHION CUSHION CUSHION SEAT BO SEAT BO	TERIAL TERIAL TERIAL -1. -1. 0. .8 1.6 3.5 4. NE NE SHION SHION LINE I LINE I LINE 2 LINE 2 LINE 2 LINE 2 TTOM	0. 5. 1. 50. 150. 200. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 200. 2000. 20. 2	0. CK 6.2 TERIAL 1. SHION 15.44 SHION 29. 2. 2.	1.6 -25.8 0. 1. 5. -4.96 5. -9.92 0. 1. 5.	3.5 3.5 0. 15.44 1. 0. .164 28. .5 32.24 1. 0. 0.	-1. -4.96 1. 0. 1. -9.92 -1. -10.64 1. 0. -1.	0. IZERD 1. 1. 2. 1. 1.	0. 403 GRSEAT 404 405 406 407 407 407 407 407 407 407 407
SEAT MA SEAT MA GRSEAT SSEAT SSEAT SSEAT SSEAT SSEAT SSEAT SSEAT SSEAT BACK LII BACK LII BACK LII BACK LII SEAT CU CUSHION CUSHION CUSHION CUSHION CUSHION CUSHION CUSHION CUSHION CUSHION CUSHION SEAT BO SEAT BO	TERIAL TERIAL -1. -1. 0. .8 1.6 3.5 4. NE SHION SHION SHION LINE I LINE I LINE I LINE 2 LINE 2 LINE 2 TTOM TTOM	0. 5. 1. 5. 0. 150- 400- 2000. 4000- 0. SEAT BAG 1. -1. SEAT CUS 1. -1. SEAT CUS 1. -1. FMATL 2. FLOOR 1. -1.	0. CK 6.2 TERIAL 1. SHION 15.44 SHION 29. 2. 31.2	1.6 5. -25.8 0. 1. 5. -4.96 5. -9.92 0. 1. 5. -8.	3.5 3.5 0. 15.44 1. 0. .164 28. .5 32.24 1. 0. 0. 31.2	-1. -4.96 1. 0. 1. -9.92 -1. -10.64 1. 0. -1. 	0. IZERD 1. 1. 1. 2. 1. 1.	0. 403 GRSEAT 404 405 406 407 407 407 407 407 407 407 407
SEAT MA SEAT MA GRSEAT GRSEAT SSEAT SSEAT SSEAT SSEAT SSEAT SSEAT SSEAT SSEAT BACK LII BACK LII BACK LII BACK LII BACK LII BACK LII SEAT CU SEAT SEAT SEAT SEAT SEAT SEAT SEAT SEAT	TERIAL TERIAL -1. -1. 0. .8 1.6 3.5 4. NE SHION SHION SHION LINE 1 LINE 2 LINE 2 LINE 2 TTOM TTOM TTOM	0. 5. 1. 5. 0. 150- 400- 2000. 4000- 0. SEAT BAG 1. -1. SEAT MA 2. SEAT CUS 1. -1. SEAT CUS 1. -1. FMATL 2. FLOOR 1. FLOOR	0. CK 6.2 FERIAL 1. SHION 15.44 SHION 29. 2. 31.2	1.6 -25.8 0.1 1. 5. -4.96 5. -9.92 0. 1. 5. -8. 5.	3.5 3.5 0. 15.44 1. 0. .164 28. .5 32.24 1. 0. 31.2 0.	-1. -4.96 1. 0. 1. -9.92 -1. -10.64 1. 0. -1. 	0. IZERD 1. 1. 1. 2. 1. 1. 2.	0. 403 GRSEAT 404 405 406 407 407 407 407 407 407 407 407
SEAT MA SEAT MA GRSEAT SSEAT SSEAT SSEAT SSEAT SSEAT SSEAT SSEAT SSEAT SSEAT SSEAT SSEAT SSEAT SSEAT SSEAT CUSHION CUS	TERIAL TERIAL -1. -1. 0. .8 1.6 3.5 4. NE NE SHION SHION LINE I LINE I LINE 2 LINE 2 LINE 2 TTOM TTOM TTOM	0. 5. 1. 50. 150. 400. 2000. 4000. 0. SEAT BAG 1. -1. SEAT CUS 1. -1. SEAT CUS 1. -1. FLOOR 1. FLOOR 1.	0. CK 6.2 FERIAL 1. SHION 15.44 SHION 29. 2. 31.2	1.6 -25.8 0.1. 5. -4.96 5. -9.92 0. 1. 5. -8. 5.	3.5 3.5 0. 15.44 1. 0. .164 28. .5 32.24 1. 0. 0. 31.2 0.	-1. -4.96 1. 0. 1. -9.92 -1. -10.64 1. 0. -1. 84 -1.	0. IZERD 1. 1. 2. 1. 1. 2.	0. 403 GRSEAT 404 405 406 407 407 407 407 407 407 407 407
SEAT MA SEAT MA GRSEAT GRSEAT SSEAT SSEAT SSEAT SSEAT SSEAT SSEAT BACK LII BACK LII BACK LII BACK LII SEAT CU CUSHION	TERIAL TERIAL -1. -1. 0. .8 1.6 3.5 4. NE SHION SHION LINE I LINE I LINE I LINE 2 LINE 2 TTOM TTOM TTOM ARD ARD	0. 5. 1. 5. 0. 150- 400- 2000- 2000- 4000- 0. SEAT BAN 1. -1. SEAT CUS 1. -1. SEAT CUS 1. -1. FLOOR 1. -1. FLOOR 1.	0. CK 6.2 TERIAL 1. SHION 15.44 SHION 29. 2. 31.2	1.6 5. -25.8 0. 1. 5. -4.96 5. -9.92 0. 1. 5. -8. 5.	3.5 3.5 0. 15.44 1. 0. .164 28. .5 32.24 1. 0. 0. 31.2 0.	-1. -4.96 1. 0. 1. -9.92 -1. -10.64 1. 0. -1. 84 -1.	0. IZERD 1. 1. 2. 1. 1. 2.	0. 403 GRSEAT 404 405 406 407 407 407 407 407 407 407 407
SEAT MA SEAT MA GRSEAT GRSEAT SSEAT SSEAT SSEAT SSEAT SSEAT SSEAT SSEAT SSEAT BACK LII BACK LII BACK LII BACK LII BACK LII SEAT CU SEAT CU CUSHION SEAT BO	TERIAL TERIAL -1. -1. 0. .8 1.6 3.5 4. NE SHION SHION LINE LINE LINE LINE LINE LINE LINE LINE ARD ARD ARD	0. 5. 1. 5. 0. 150- 400- 2000- 4000- 0. SEAT BAG 1. -1. SEAT CUS 1. -1. SEAT CUS 1. -1. SEAT CUS 1. -1. FLOOR 1. -1. FLOOR 1. -1.	0. CK 6.2 TERIAL 1. SHION 15.44 SHION 29. 2. 31.2 31.2	1.6 5. -25.8 0. 1. 5. -4.96 5. -9.92 0. 1. 5. -8. 5. 84	3.5 3.5 0. 15.44 1. 0. .164 28. .5 32.24 1. 0. 31.2 0. 49.	-1. -4.96 1. 0. 1. -9.92 -1. -10.64 1. 0. -1. 84 -1. 84	0. IZERD 1. 1. 1. 2. 1. 1. 2.	0. 403 GRSEAT 404 405 406 407 407 407 407 407 407 407 407

Complete Data Set for Simulation Example 2 (page 2 of 5)

TOEDAN		1	2	1	Ω.	0	,		402
TOEPDAD	`	TOEDAN	2.	5	a	,	7		402
TOFOURS		100-44		2.	Ve	r •	7.0		410
TUPHITARI)	4.							410
TJEBŪARI	כ	0.	47.3	1.1	54+7	-2.5			411
TÜEBÜARI	D	40•	47.3	1.1	54.7	-5.6			411
THEBHAR)	80.	47.3	1.1	47.9	-5.6.			411
TOSBOAR	7	300.	47.3	1.1	47.9	-5.6			411
KNEE BAL	2	SHEET M	FTAI	0.	1	1.	1.		401
WHEE BA		1	3	1	0	~			402
ANTE DAI	< 	1.	3.	1.0	U .	0.		10000	402
SHEET M	ETAL	0.	U.	• 5	8.	9.	10000.	10000.	403
SHEET M	ETAL	5.				SSHEET	IZERO	GRSHEET	404
GRSHEET	0.	0.	-						405
GRSHEET	0.5	0.							405
GRSHEET	5.5	0.9	•	,	•				405
GRSHEET	0.	1.							406
CREWEET	5	,							406
05 35 ET	• 7								400
GR SHET	2.	• /							400
GRSHEET	4.	•2							406
GR SHEET	5.5	•15							406
GRSHEFT	8.	•1							406
GRSHEET	۹.	.01							406
SSHEET	0.	0.							407
CCHEET	2.	1500.							407
COUPET		1500							407
2245E1	* •	1500.							407
SSHEET	5.5	10000.							401
SSHEET	5.	10000-							407
SSHEET	۹,	0.			•				407
KNEEBAR	LINE	KNEE BA	R	5.	0.5	1.	1-		409
KNEERAD	LINE	4.							410
KNEERAR	ITNE	0.	40 - 4	-13-2	38-9	-16.4			411
VNEERAD	ITNE	60.	40.4	-13.2	39.9	-16-4			411
- KNEEDAD		80.	78 0	-13 7	37 6	-16 4			411
KNEERAR			30.7	-13.2	37.4	14 4			413
KNEEBAP	LINE	300.	37.9	-13-2	5/-4	-10++	•		411
DASH		DASHMAT	L	0.	1.	1-	1.		401
DASH		1.	2.	1.	0.	0.			40Z
DASHLIN	E	DASH		5.	0.	1.	1.		409
DASHLIN	F	4.							410
DASHI TN	F	0.	54.7	-5-6	54-2	-20-1			411
DACHETN		60	54 7	-5.6	54.7	-20-1			411
		-0.	17 O	-5 6	17 L	-20 1			411
DASHLIN	5	90.	4/ . 7	-3.0	***	-20.1			-LL
DASHLIN	Ę	300.	47.9	-5.5	4/ . 4	-20-1	_		411
DASHMATI	L	0.	0.	0.	100.	101.	0.	0.	403
DASHMATI	L	5.				DSTAT	IZERO	DGR	404
DGR	0.	0.		•					405
DGR	-001	.01	•						405
DGR	10.	-01	•						405
	0	1.	• -	14					406
005	001								606
064	.001	• 71			-				400
DGR	• 12	•8							400
DGR	1.5	• 5	•.		л.				400
DGR	10.	•3							405
DSTAT	0.	0.							407
DSTAT	0.75	2100.						8	407
DSTAT	1.5	9000							407
DETAT	40	9000-	• •	•					407
CHAT	4 0•		0	0.	100	101-	0.	0.	402
		0. E	0.	0	100.0-	ESTAT	17527	500	404
FMAIL	•	5.	0.	U • .	U.e.	F3141	14473	107	
FSR	0.	0 <u>.</u>		*.					405
FGR	Z.	•7		÷					405
FGR	0.	1.							406

Complete Data Set for Simulation Example 2 (page 3 of 5)

FGR	2.	•2						ŧ
FSTAT	0.	0.						
CCTAT	25	100						•
PSIAI	• 27	100.						4
FSTAT	•5	400.						6
FSTAT	.75	1200.						1
FSTAT	1.	2400.						1
ESTAT	1 5	4000	•		1			
CCTAT	2.07	4000.						-
PSIAI	2.	4600						
FSTAT	3.	5000.						6
FSTAT	4.	5200.	•.					
FSTAT	6.	5400.	•		·			1
ESTAT	10.	5500.	••					1
ECTAT	14	10000						
- 3141	10.	10000.						2
L •,	1.	•27	•125	•125	••	•		4
1.	Z.	• 5	•					
1.	3.	•5						1
1.	4.	.4			•			1
2.	2.		·			4.1.1.1		1
2.	1	• •						
3.	1.	•						4
3.	Z• -	• 5						4
3.	4.	.4						1
3.	5.	.67	••					,
3.	6.	. 0	•					1
7 75	7	• /	•	•	· •	1 0/		
2.17		0.	0.	0.	. 1.0	-1.90	14.12	-5.07 2
0.	0.	0.	0.	0.	-33.52	17.	-1.2	1
100.	0.	15.13	00178	6600.	6600.	10.		-
NO STRE	NGTH	•		14.04	00172	2.	1.	-
AT WERR	ING #1		-	62 WE	BRING #2			-
47 11200	TAIC 41	0	0	0 14	16 26	15 04	•	
	140 -1	5	0.	0.10	14030	17.04	0.	0.
0% WHMH	ING #1	5.				SBELT1	IZERJ	GBELT1 7
GBELTI	0.	0.						-
GBFLTI	.16	0.			•			-
GBEL T1	1.37	.56						-
CRELT1	6 15	95				•		-
COLLII	0.10	• • • •						
GBELII	40.	• 77			-			. 7
GBELTI	0.	1.						7
GBELT1	1.37	•33			-			. 7
GBELT1	2.05	.19	•		•			-
GRELTT	6.15	.05	••					-
COELTI	40	05	-		• •			
005111	40.	•07			· •			
242611	0.	0.						7
SBELT1	.533	1500.			• •			7
SBEL T1	9,91	2000.						-
SRELT1	11.28	5300.			·	•		-
CRELTI	16 24	££00	÷		9 			-
30511	L 7 + 2 0		-					1
SHELII	15.04	0.						7
5% WEBB	140 49	~	n .	.155	13.85	14.51	0.	0. 7
67 WE88	1115 #2	0.	V•					
	ING #2	5.	V.		-	SBELT2	IZERO	GBELT1 7
SBELT2	ING #2	5. 0.				SBELT2	IZERO	GBELT1
SBELT2	ING #2 ING #2 0.	5. 0.		:		SBELT2	IZERO	GBELT1 7
SBELT2 SBELT2	ING #2 ING #2 0. .396	5. 0. 1150.		:		SBELT2	IZERO	GBELT1 7 7
SBELT2 SBELT2 SBELT2 SBELT2	ING #2 ING #2 0. .396 9.56	5. 0. 1150. 1650.		:		SBELT2	IZERO	GB EL T 1 7 7 7 7
SBELT2 SBELT2 SBELT2 SBELT2 SBELT2	ING #2 ING #2 0. .396 9.56 10.9	5. 0. 1150. 1650. 5300.		:		SBELT2	IZERO	GBELT1 7 7 7 7
SBELT2 SBELT2 SBELT2 SBELT2 SBELT2 SBELT2	ING #2 ING #2 0. .396 9.56 10.9 13.85	5. 0. 1150. 1650. 5300. 6600.		:		SBELT2	IZERO	GB EL T 1 7 7 7 7 7 7 7 7 7 7
SBELT2 SBELT2 SBELT2 SBELT2 SBELT2 SBELT2 SBELT2	ING #2 ING #2 0. .396 9.56 10.9 13.85 14.51	5. 0. 1150. 1650. 5300. 6600. 0.	· · · · · · · · · · · · · · · · · · ·	:		SBELT2	IZERO	GB EL T 1 7 7 7 7 7 7 7
SBELT2 SBELT2 SBELT2 SBELT2 SBELT2 SBELT2 SBELT2 NO STRE	ING #2 ING #2 0. .396 9.56 10.9 13.85 14.51 NGTH	5. 0. 1150. 1650. 5300. 6600. 0.	0.	0.		SBELT2	IZERO	GB EL T 1 7
SBELT2 SBELT2 SBELT2 SBELT2 SBELT2 SBELT2 SBELT2 ND STRE	ING #2 ING #2 0. .396 9.56 10.9 13.85 14.51 NGTH	5. 0. 1150. 1650. 5300. 6600. 0.	0.	0.	10.	SBELT2	IZER0	GBELT1 7 7 7 0. 7 0. 7
SBELT2 SBELT2 SBELT2 SBELT2 SBELT2 SBELT2 SBELT2 SBELT2 ND STRE ND STRE	ING #2 ING #2 0. .396 9.56 10.9 13.85 14.51 NGTH NGTH	5. 0. 1150. 1650. 5300. 6600. 0. 0. 5.	0.	0.	10.	SBELT2	IZERO O. IZERO	GBELT1 7 7 0. 7 7 0. 7 7 7 7 7 7 7 7 7 7 7 7 7
SBELT2 SBELT2 SBELT2 SBELT2 SBELT2 SBELT2 ND STRE GNDSTR	ING #2 ING #2 0. .396 9.56 10.9 13.85 14.51 NGTH NGTH -1.	5. 0. 1150. 1650. 5300. 6600. 0. 0. 5. 0.	0.	0.	10.	SBELT2	IZERO O. IZERO	GB EL T 1 7 7 7 0. 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
SBELT2 SBELT2 SBELT2 SBELT2 SBELT2 SBELT2 NO STRE GNOSTR GNOSTR	ING #2 0. .396 9.56 10.9 13.85 14.51 NGTH NGTH -1. -1.	5. 0. 1150. 1650. 5300. 6600. 0. 5. 0. 1.	0.	0.	10.	SBELT2 11. SNOSTR	IZERO O. IZERO	GB EL T 1 7 7 7 0 0 7 7 7 7 7 7 7 7 7 7 7 7 7 7
SBELT2 SBELT2 SBELT2 SBELT2 SBELT2 SBELT2 SBELT2 NO STRE GNOSTR GNOSTR SNOSTR	ING #2 ING #2 0. 396 9.56 10.9 13.85 14.51 NGTH NGTH NGTH -1. -1. -1.	5. 0. 1150. 1650. 5300. 6600. 0. 5. 0. 1. 0.	0.	0.	10.	SBELT2	IZERO O. IZERO	GBELT1 7 7 7 0. 7 7 7 7 7 7 7 7 7 7 7 7 7
SBELT2 SBELT2 SBELT2 SBELT2 SBELT2 SBELT2 SBELT2 ND STRE GNDSTR GNDSTR SNDSTR	ING #2 ING #2 0. .396 9.56 10.9 13.85 14.51 NGTH -1. -1. -1.	5. 0. 1150. 1650. 5300. 6600. 0. 0. 5. 0. 1. 0.	0.	0.	10.	SBELT2	IZERO O. IZERO	GBELT1

Complete Data Set for Simulation Example 2 (page 4 of 5)

1,4	6-48,10-1	4,21,22,	,37,38,49	,50,15,2	23-26,2-5	, 18-20,	33-36,30	- 32, 16,	1001
27-29	, 37, 17, 40	0,0-9,45							1002
0.	0.	0.	11.55	•025					1003
40.	500.	560.	0.	.85	201.	5.	5.		1004
0.	• 0•	-3.	62.	5.	-44.	10.	0.		1500
21.	0.	0.	1.	1.	0.	1.	0.	10.	1501
									1600

Complete Data Set for Simulation Example 2 (page 5 of 5)

MVHA 2-0 TUTORIAL EXAMPLE #2 JUN 24, 197702102115 GM HYRRID II DUMMY (PRELIMINARY DATA) PAGE 41-45 NCC. COVP. DISPL. JONPH FRONT BARRIER FORCE-LIN. HARNESS NO LAP BELT KNEF MAR

:

1.1

STICK FIGURE PRINTER PLOT FRAME FOR TIME# 40.00 MSEC.

5.547 (IN) . X AND 2 POINT RESOLUTION FRORS FOULL RESPECTIVELY 0.277 AND ' Printer-Plot Time Sequence for Example 2 (80 ms) FIGURE 129d

0.0 0.0 0.0 0.0 0.0 11000006104 11000006104		•	0.0 0.8436361 0.0 0.0 0.0	0.0 20.100004104 0.0 0.0 0.0 0.0 0.00 0.0		0.0 -0.3210570 -0.0 0.0	5.009305954
0.0 0.0 0.0 0.0 95.950439453 95.950439453 95.950439453 0.0	. •	0.0	0.0 0.0 0.0 0.0 11.00000000	95.950439453 95.950439453 100000000000000000 0.0 100000000000000	0°0	0.0 6.6 8.2 0.0 0.0 0.0	15.039999962
00000 1 0024 -7 11111111111111111111111111111111111		o	0°0 0°0 0°0 0°0 0°00	7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7	C	9063 0.0049 0.00455	октт 0024 Xample 2
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0		. 420	0.0 0.0 0.0 0.0 1.0.00000	0.0 6.0 5.199990 100000000000000 0.0 100000000000	1 463	2814.25878. 0.0 0.0 0.0 0.0	14.359990 0.35000 tout from E
0.0 0.0 0.0 -9.00000000 -9.00000000 1.00000000 5.600000391 -14.566440780 5.456440780		0 3570	0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.00000000	1.00000000 0.0 5.600000381 -14.50000572200000000 0.0 0.0 0.0 0.0 0.6 0.6	165 3441 -1	7.516055107 0.0 0.0 0.0	0.140000026 -14.000000000 -15 le Debugging Prin
0.0 0.0 0.0 0.0 1 0.0 0.0 0.0 0.0 0.0 0.	0.0 0 1768 558 0 0 0 0	0 1916 546 0 0 -1916	0 0 0 0.453636146 0.0 0.0 0.0 0.0 0.0 0.0	1 662 640 0.0 0.0 0.0 0.0 0.0 0.0 0.9536 0.0 0.0 0.100000€+03	0 1790 602 0 0 1780	0 0 -0.321057022 0.0 0.0 0.0	0.0 0.0 1 -15 3URE 130 Examp
1 00000000 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1	0.0 3.757 R56 3.3198 - R96 755 906 0 -005	0.100005-02 0 902 545 1 3570 -045 - 002 646	0.001000 644 5 1 03051758 0.0 000 0.0	1 0 1 0.0000000 0.0000000 1.1111111111111	0 775 927 1 3441 -927 775 602	0.001000 419 3 1 02677705 000 0.0	11 1 1
0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.	68 757 52 191 30 52 379 10 53 379 1	- D ^c quig AT T= 52 - 0 53 -9 - 53 -9 -	DFRIGATT = 16 1 662 0.00 17 0.0010 17 0.0010 16 0.0	0 0.0 5.0 0.0 5.0 5.0 -0.5 -0.5 -0.100000000000000000000000000000000000	52 -11 - 53 -11 -	DFNIG AT T = 16 1 -15 17 0.00100 17 0.00100 18 0.0	-13.0
· · ·		1136	14 2 2 2	, , , ,		I "' "' "' "' Z L' L'	

.

JUN 24. 19770 DYARIN II NIW	12:02:15 My (Pqeliminary	NATA) KNFF	MVMA 2-D TU 9AR - DCC	ITORIAL EXAMPL	Е #2 • 30мрн FR()	VT BARPJER FO	IPCE-LIM. HARN	PAGE 1. ESS NO LAP RI	5-04 FLT
	CONTACT FOPC	adall bud So	TOPSO RELT 4ADF	: DF 6% WEARIN	1 #1 AS.	JPPER TORSO L	JNK MADF OF		
371 I	neflertinu	DFFLECTION PATE	RING FOUTL. TENSION	UNAD JUSTED TENSION	TENSION ADJUSTMENT	RESULTANT FORCE	RESULTANT HEADING	AR SORRED Energy	
(MSEC	(NI) ((TN/SFC)	(14)	(18)	(81).	(14)	(DEGREFS)	(FT-LBS)	
•0	0.002	-0.0	0.0	5 ° 003	0.0	F .009	-26.485	0.0	
۰ ۲	00 0.027	13.419	0.0	74.543	0.0	74.643	-26.436	0.0	
10.	00 0.185	34.525	0.0	523.294	0.0	523.294	-26.087	0.0	
15.	00 0.302	8.115	0.0	869.557	0.0	86°.567	-25.743	0.0	
20.	076.0 00	12.849	0.0	957.791	0.0	057.781	-25.671	0.0	•
25.	00 0.411	15.907	0.0	1157.509	0.0	1157.507	-25.816	0.0	
30.	00 0.467	11.172	0.0	1315.537	0.0	1315.537	-26.313	0.0	
35.	00 0.522	12.541	0.0	1449.501	0.0	1469.500	-27.084	0.0	
40.	00 0.547	2.651	0.0	1 500.744	0.0	1500.743	-29.119	0.0	
45.	00 0.618	40°872	0.0	1505.512	0.0	1505.511	-29.259	0.0	
50.	00 0° cF4	A1.3P5	0.0	1522.442	0.0	1522.442	-30.136	0.0	
55.	00 1:407	002.00	0.0	1546.596	0.0	1546.586	-30.713	0.0	
• 0 •	0.0 1.947	116.695	0•0	1575.393	0.0	1575.303	-30.916	0.0	
• 2 ¥	00 2.479	97.409	0.0	1603.780	0.0	1603.779	-30.774	0.0	
-0-	00 2.810	40°0°4	0.0	1621.412	0.0	1621.411	-30.419	0.0	
	100 2.891	-5-706	0.0	161º.09R	0.0	1619.927	-20.749	3429.47	
С в	728.200	-10.305.	0.0	1514.239	0.0	1519.209	-28.483	0.0	
, а5,	00 2.751	-27.943	0.0	1300.570	0.0	1300.579	-27.187	0.0	
•0•	00 2.544	-34.975	0.0	404.146	0.0	941.803	-26.258	0.0	
. 35	00 2.400	-19.016	0.0	613.058	0.0	613.058	-25.720	0.0	
1001	00 2.102	-45.534	0.0	281.315	0.0	281.315	-25.470	0.0	
105.	00 1.950	610°67-	0.0	0.0	0.0	0.0	0.0	0.0	
110.	00 1.763	-36.056	0.0	0.0	0.0	0.0	0.0	0.0	
115.	00 1.592	-34.579	0.0	0.0	0.0	0.0	0.0	0.0	
120.	00 I .304	-47,994	0.0	0.0	0.0	0.0	0.0	0.0	
125.	00 1.148	-50.707	0.0	0.0	0.0	0.0	0.0	0.0	
.0rl	00 0.447	-55.345	0.0	0.0	0.0	0.0	0.0	0.0	
135.	00 0.621	-53.877	0.0	0.0	0.0	0.0	0.0	0.0	
1 40.	00 0.352	-55.047	0.0	0.0	0.0	0.0	0.0	0.0	
. 145.	00 0.045	420.64-	0.0	0.0		C•0		· • • •	
150.	0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0		
155.		0.0	0.0				0.0	0.0	
	00 0.0	0.0	0.0			0.0			
155.	0.0 0.0	0.0	0.0	0.0	0•0	0.0	0.0	0-0	
170.	00 00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
175.	00 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
190.	0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
1 2 5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
1 90.		0.0	0.0						
	0.0 0.0	0.0	0.0	0.0		(,•) (
200.	00 U.O	0.0	0.0	0.0	0•0	0.0	0.0	0.0	
				ć	, L	c			
		FIGURE 131	Belt Syst	em kesponse	for Example	2			

•

484

PAGE 4-12 NN LAP BELT		LOWER ARM	-13613.07	-1235.52	-1яз4.06	-2991.26	-4512.86	9083.46	6P61.75	-20218.74	-80275.25		24445.43	-178778 KD	-180250.44	349000.56	227261.44	2004 . 71	1001.19	5430°42	2179.29	4 898. 86	19636 .95	34260.45	37102.25	1104.51	- 13871.89	-31594.70	-301/96.24	85°07177-		-65264.53	-18096.44	-12194.30	-£744 5 8	2578.55	9343.79	14715.38	16257.81	-444.33
LIM. HARNESS	VEH [CLE]	UPPER ARY	30936.98	19355.12	19495.30	23100.53	27693.31	-23744.03	-15507.76	74262.50	233944.31	1101	-321010.00	10 30 50	-72213-63	10.019.44-	-32427.76	°2000.56	19735.95	11785.10	17503.61	18358°71	3042.96	-FPL72.13	-124729.00	-110490.31	-45340.96	217P4.67	14°04516	06.00014	20917.60	217110.56	22507.65	-30.00.79	-33910.54	-53852.91	-64534.RO	-80515.63	-75039.69	- 4 2 6 1 • 8 8
ARPIER FURCF-	RELATIVE TO		-122974.75	-5854771.00	-638059.00	-64139.02	-195636.75	123920.00	50785.32	-127553.39	-354468.25	-96550.50	647556.48 520040 00	-4046 24	-72172.50	-417572.00	-79471.75	-197095.25	-294780.56	-1004787.63	-2801550.00	2085407.00	339520.56	105292.50	35314.27	79377.PA	234224.41	522193.00	4 4 4 4 2 2 • 6 1 • • • • • • • • • • • • • • • • • • •	-519046 38	RE SARE-	-249063.94	-296225.31	-135756.13	238426.13	204336.63	144288.13	85436.06	127607.25	06*996611
MPH FRONT A	[€C++2]	LOWFR LEG	01.9946-	-9162.04	46.16	a790.20	10.7F.01	11 260.36	11730.34	-42745.56	-323136.19	-352492.50	25915 . 59 50277 30		30.02.006	E0.0PF -	-1158.93	7997.40	12310.14	11.294.11	15246.59	17275.59	41120.36	296038.63	-5852.54	-A294.20	11.0120-	-9010.35	05.3020-	96.010P-	EO BEITE-	-134172.44	-26592.93	-15006.77	-6803.27	-R519.39	-0782.53	-12222.36	-13167.94	-13551-
EXAMPLE #2 • DISPL • 30	s/95ul s	UPPER LEG	62.2405- 9192.16	5840.45	-3808.85	-3819.76	-5304.7A	-5863.14	-0044.09	12370.45	107922.25	R0246.49	10140.67		-45118-31	-51734.41	-25690.53	- 3490°30	-7999.20	5434.A6	15353.62	20499.11	-5057.A3	43992.23	-2714.30	-4571.51	-4070.96	-5035.92	-4572.51	20110		51.152 14853.13	5576.13	5490.44	3945.74	4750.A7	3093.68	3247.14	1551.25	632.03
2-0 דוודהגואן חרר, נחיים	Y I. TNK ANGLE	LOW TORSO	-136217-05	-144715.25	5539.62	99105.56	99105°94	05.00050	94182.56	-6301065-	73345.88	2248.92	71.607r5	10 LL77L-	-45751.32	-22868.02	-44494.70	35007.38	47409.44	-34962.05	-5462.32	-5318.95	-27117.95	-30095.58	-50737.55	-52474.27	-77755.98	-64529.69	-72497.3H	- 1-221-7 - 1-221-7		69°76672-	-60709-91	-71708.38	-50704.55	-60390.52	-53119.63	-63474.78	-63156.43	-68741.13
MVMA Nef 9Ar	יאחד אחד אחח	MIN TORSO	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	535445.75	114147.81	-271422.94	-219963.56	-261257.63	-251464.05	242943.19	-313123.06	-44456.77	-269315.31	011001	216786.13	-26392.96	205201.13	-13465.64	-131764.44	117933.13	40°60678-	-103914.53	123817.69	95904.75	140056.50	20P307.A1	270749.13	233929.06	250533.63	271 '88.88 275165 50		286656.69	212280.00	262192.06	171726.38	195275.44	159204.56	259318.50	295954.69	365517.19
Y NATA) K	עניבר בּש	JSaúl asaali	-122950.74	-101421.34	9062.9081-	76780.38	5997A.74	A1464.56	RK2R2.39	-42421.32	4 30 14.52	-3637.09	31527.12	11000 00 12		-0315-07	01.11.12-	14781.25	32527.42	-21763.40	21.29205	21721.50	-43924.30	-7973.95	-27225.04	-494 05 . 37	40.0001-	-50928.29	-64621.43	-70735.00	45°10207-	16.649.9-	-60432.50	- 02739.56	-52696.13	-61733.41	PP.021E1-	-68733.63	-69308.75	-83737.00
: 02: 15 / {P3FL]4TMAF		X L H Z	51.57.45	147145.50	24220.45	E7"F0E5E1-	-102145.25	-130537.19	-105202.44	01887.40	-22120.69	- JL 4 4 4	-107745.40		55510 05	75.37012	0] 34A . 75	45627.31	29730.05	54570.52	-7696 . 69	13532.64	10.23.01	11490.43	7 28 30 . 13	77625.00	135331.00	90.502.90	EJ. 208101	10-540.06		141274.44	85047 FO	1 + 56 35 . 56	70241.00	104029.04	36994.07	90°63666	77816.75	91082.38
24. 107702: 1507701 . 15		HEAD	40.0- 00.77638-	-60937.50	-50702.54	4092.30	64°06711	9467.41	-13472.41	-14924.40	39499.34	7940.15	00°68011-			- 4010.25	101101	94420.19	11.000111	115031.94	51579.57	31452.58	29895.16	27.5COF1	-13290.49	11307.13	-11356.54	60.4550-	-1759].50	-17372.78		-1-01-25-	-4237.43	-28062.77	1360.27	-15310.77	-11496.09	-44 145.99	-54832.52	-57433.13
NUL MA		TIME	0.0	10.0	15.0	20.0	25.0	30.0	35.0	40.0	45.0	50°0	5 ° 0	0.00		75.0	9.0.0	R5.0	0.00	95.0	100.0	10.0	110.0	115.0	120.0	125.0	0.061	135.0	140.0	145.0	0.001	0.041	165.0	170.0	175.0	190.0	195.0	190.0	195.0	\$00.0

.

Body Link Angle Accelerations for Example 2

FIGURE 132

HUMA 2-D TUTATAL FXAMPLE #2 JUN 24, 197702:02:15 54 Hyarin II ------

PAGE 38-06 Vess no lap belt

HARN
FURCE-LIM.
AAARICA
TVCPR
HamOE
· ldSlu
COMP.
ຳມາດ
5 V 6
ΕE

ď
HanDE
. IdSin
COMP.
ຳມີນ
942
K NFF
(ATA)
VUNN

JUCA3 HamOE	(5.5)
JCC. COMP. UTSPL.	TITERED ACCELERATIONS
KNFF 942	11116
(DREI TWINAPY NATA)	
Ammino 11	
I UI ARYH	

	RESUNTANT	1 - 704	4.672	3.788	5.104	9.682	11.063	12.532	13.556	11.269	25.756	23.423	41.296	47.932	47.647	51.363	25 . 627	10.419	0 T52	10.797	7.798	11.546	13.040	4.195	110.3	3.461	2.859	3.339	3.108	3.654	4.243	. 4.752	5.334	121.7	5.774	7.03R	7.119	8.541	R.597	10.179	10.215	10.255
		-1-623	1.181	0.245	-3.39A	-1.047	-1.655	-2.116	-2.890	0.107	0.367	3.678	8.136	10.164	-7.787	-20.374	-19.126	-4.7AR	-1.165	2.424	6.653	11.312	13.022	3.424	4.389	2.56я	1.035	0.242	0.242	0.009	-0.071	B70°0-	0.335	1.624	0.781	0.559	0.023	-0.357	-1.314	-2.202	-3.027	-3.220
	×	-0.518	4.520	3.780	-3.80A	-9.625	-10.939	-12.352	-13.244	-11.269	-23.992	-23.133	-40.477	-45.842	£04°97-	-47.150	-17.057	-7.904	-3-6A2	-10.522	-4.068	116-2-	-0°693	-2.424	4.106	2.321	2.665	3.330	000°E	3.654	4.242	4.752	5.324	6.95 L	5.721	. 7.015	7.119	9.533	907°d	. 9.937	9.756	9.737
	R FSIII TANT	0.966	15.787	24.938	1 K. A97	6.57R	10.512	10.708	11.807	72.9R4	2.404	15.564	22.405	29.190	46.420	47.304	29.401	20.096	14.348	R.531	14.280	2.711	4.255	10.511	7.305	7.A3A	960°0	10.972	-30£.º	10.849	10.550	0. AFO	8.917	9.209	5.21K	5.698	1.716	3.140	2.284	3.481	R.2A1	14.259
NS (G.S.		-0.625	2.216	0.574	2.630	2.497	3.024	212.1	-1.415	5.479	-0.956	-4.940	-16.943	-23.002	-26.318	-30.749	-20.776	-4.248	3.114	709.1	P.349	2.119	2.149	0.36B	5.273	4.361	270 23	7.040	5.466	6.274	6.518	6.534	6.751	R.053	4.352	5.510	0.412	1.598	-0.754	2.710	3.451	5.634
FD ACCELERATIO	A - P	0.500	15.631	24. 032	16.501	6.0Ah	9.752	10.614	11.406	22.950	2.205	14.756	14.637	17.071	38.481	35.913	1.211	19.642	14.027	6.0a5	11.571	1.64.1	-3.673	4.767	5.195	6.513	7.051	8.300	7.529	8.A52	Р. 307	7.383	5.825	4.447	2.875	1.409	-1.666	-2.749	-2.155	2.174	7.527	13.099
UNFILTER	DE CIII TANT		2.418	6. A O 4	9×9.4	13.553	10.393	251.52	25.255	26.456	20.702	13.847	13.053	15.245	576.55	30.551	35.502	196.25	26.597	23.395	16.252	9.236	6.023	2.740	2.559	9.387	10.472	0,525	5.350	7.22A	1.359	2.178	3.346	2.544	5 , 0A9	3.765	7.597	a. f 2 1	12.24A	10.757	9.061	7.114
	5-1		- 0. 696	-1.005	3.715	11.979	17.971	21.209	21.904	21.056	17.527	6.441	-0.401	-2.433	5.634	18.616	26.130	15.624	1 A. A() A	10.748	864.21	A.195	5.133	2.30R	2.418	7.092	10.471	167°0	r.343	2.130	1.001	0.903	0. 902	1.092	1.425	-0.016	-1.646	-4.779	-5.492	ACT.4-	-1.540	1.556
	Q - V		2.316	4.57	0 S O S O	1079	7.432	0,025	12.569	14°0/04	11.017	12.242	275 21	15.017	23.143	24.724	24.035	21.907	190.01	12.544	7.346	4.77A	3.151	1.475	75 a 70	2.672	-0.165	0.RN4	-0.411	775.0-	010.0-	-1.0A7	901-8-	-2.302	780°7-	-3.765	-7.414	-9.234	-10.94A	-9.678	- 9, o20	-4.942
	1 1 4 C			10.00	15.00	20.00	24.00	30.00	35.00	40.00	45.00	50°07	55,00	50 . 00	65.00	70.00	75.00	00°0	· 00° - 8 4	80 . 00	95.00	100.00	1 0× ° 0 0	00.011	115.00	120.00	125.00	130.00	135.00	140.00	145.00	150.00	155,00	150.00	165.00	170.00	175.00	190.00	195.00	1 70.00	195.00	200.00

Unfiltered Head, Chest, and Hip Accelerations for Example 2

FIGURE 133

JIIN 24. 197702:02:15 64 Hyapin 11 nimmy (preliminary nata)

•

.

.

.

WVWA Z-N TUITORIAL EXAMPLE #2 Kwff aar ncc. Cowp. Displ. Jomph Front Rarpier Force-Lim. Hapness no lap belt

ŝ

.

Ň			LANT	0.0	111.0	7.96	3.42	3.55	3.56	3.59	J. Kl	4.95	5.42	×.49	5.23	9.34		3.95	0.78	1.87	2.47	5.4G		2.52	- 2 S		- - -			57		:.61	. 62	:.63	. 63	:.63	.63	• 64	- 64 			
		5.1.	RESULT	5		1	,.,	•1	~··	•••	•	•		-,	ب ج	-	4 E E	5 C	5 9(6	, 9,	2 02	0	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0					. 0	26	4	36 5	5 92	36 5	5 92	50					
		MODIFIEL	S-1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	ò•o	0-14		3.41	9.71	17.0'	18.01	18.0	19.03	1 a 0	1 A. 0.	18.02	C • • •				1 . 07	14.04	1 A. 04	1 A. O'	1 A. O ^c	18.05	1R.05	18.0	18.05	19.91	1 H • 0		
HEST	69.00 69.00	245	A-P	0.0	0.10	0.95	9.39	3.50	3.50	3.53	3.55	4.87	5.30	5.36	5.5l	5.69	15.11	25.56	27.63	27.70	28.29	24.31	29.31	29.32	24.92	28.92	26.12 CC 02	2 C - 2 Z	L.C	29.33	20.34	29.34	28.34	28.35	29.35	28.35	2P.35	28.36	24.36	16.42		00.007
	05 AT TIME= 14 AT TIME=		FSULTANT	0.0	3.49	12.46	28.53	31.74	32.09	35.29	37.40	6 4 ° 4 3	5°,08	57.27	66.01	AO.73	134.55	20A.92	255.08	266.91	274.23	274.46	277.23	278.61	278.72	219.05	07.042	CD.19C	283.86	295.43	295.A6	299.76	290.43	291.78	292.81	293.50	293. P.9	243.96	20.402	b()•957	744°13	1 7 0 / / 7
	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	RITY INDE	S-T	0.0	0.04	90-06	0.07	0.16	62°0	0.38	0.39	0.42	0.48	0.54	3.4.8	11.21	29.79	55.46	85.02	04 ° 60	94.83	10.79	95.32	95.72	95.77	18.45	14.04	68.90	77.04	10.76	99.25	9a.7A	99.32	99 . P7	100.49	100.97	101.23	06.101		26.101	12 101	
9 E , 00	MCEC AVER=		A - D	0.0	3°34	12.28	28.2 °	31.25	32 • 2E	34°34	62.26	47.33	53.AO	5 . 9 0	60.31	55.0K	o3 . 32	129.02	140.88	141.76	144.09	150.051	151.17	151.94	151.99	51.241	20.51	153.60	154.77	155,59	155.45	157.55	159.41	150.03	150.27	159.39	159.45	159.45	04.641		160.25	
FND TIME=		.1.	ESIN TANT	0.0	0.00	0.01	0.01	0.05	0.35	1.4.1	3.27	5.92	7.72	7.94	P.02	A.13	P . 95	12.10	21.17	27.12	29.97	32.15	32.92	32.95	79.25	19.75	15°26 70 76		00.05	32 . 90	32.91	32.91	32.01	32.02	32.92	32.92	32.92	32.92	32.93	100 CE		
20.00.	5.00 5.00	MUDIFIED S	S-1-2	0.0	0.01	0.02	0.02	r0.0	0.21	0.86	5 d • 1	2.90	3.50	3.65	3.65	3.65	3.46	1.79	5.45	6.42	6.6A	7.32	7 - 5 3	5 × • 1	7.65	••••		7.67	7.68	7.59	2.69	- 0 J * L	7.70	7.70	7.71	17.7	7.72	1.73			() • · ·	• • •
. TIMF=		AMC.	A-P	0.0	00.00	0.01	0.01	0.02	0.02	n.03	0.06	0.15	0.23	0.25	0.33	0.42	1.10	2.59	4.27	5.45	6.22	6.39	6.40	5.40	5.41			5 - 7 - 7 7 - 7 - 7	5 7 7 Y		6.44	6.45	5.46	6.45	5.46	6 - 45	5.46	6.47		0.4H	7 T T	11.0
HFAN 183.27. 9FG	35.055 AT		FSULTANT	0.0	0.02	0.23	1.39	3.55	0 * 6	20.31	6c • 7E	52.44	67.75	13.00	76.54	PO.39	PA . KK	107.12	139.45	165.51	1 P4 . 92	201.15	210.41	213.30	214.72	216.37	216.45 216 20	216.25	718.01	219.92	20.015	018.70	210.01	219.08	219.10	210.34	219.61	220.05	51.122	223-11	17 LCC	
H15=		PITY INCE	1	0.0	00.0	10.0	0.02	0.00	٤,41	14.07	16.25	34 . 18	46.54	4.9.50	4°×2	4 P.KS	17.95	51.91	60.23	770	я1.36	90.14	96.68	94.42	14.00	14.60				01.03.99	104.04	104.05	104.05	104.05	104.07	104.09	104.09	· 10**01	104.19	104°-73	102 02	11.121
	J NSEC	SF,VF	A-P	0.0	0.02	0.22	5F.I	2.39	3.04	4.22	f. JA	10.19	13.56	15.52	14.90	22.54	30.62	f 7. a 7	5,7。74	ac.o.)	79.96	84.04	84.52	A6.04	A7.10	F1•14	41°/4	97 17	87.17 87	87,17	а7.19	07.19	e1.19	. A7.75	97.35	97.52	A7.74	P. 17	40°04	00°40	21•23 00 00	
			TIME	0.0	5.00	10.00	15.00	20.00	25.00	30.00	JC - 10	40°00	45.00	50.3D	55.00	A 000	. 65.70	00.07	12.00	00.08	P < ,00	00.00	95 . 00	100.00	105.00	00.011				135.00	140.00	1 4 5 • 00	150.00	155.03	160.03	165.00	170.00	175.00	1 - 0.00	185.00	106.00	140.00