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Non-Deterministic Polling Systems

Abstract

A non—deterministic polling system is considered in which a single server serves a
number of stations. The service discipline at each station is, consistently, either
non—exhaustive, semi—exhaustive, gated, or exhaustive. If the server polls a station
i which uses either the non—exhaustive or the semi-exhaustive service discipline,
then the next station polled is station j with probability p;; if there was service at
station i. The service time at station i is a random variable which may depend on
the station polled next. If no service is performed at station i, then the next station
polled is station j with probability e;;. The time to switch between stations i and j is
a random variable which may depend on whether service was performed at station i
or not.

If the server polls a station i that follows either the exhaustive service discipline or
the gated service discipline, then the next station polled is station j with probability
p;; regardless of whether there was service at station i or not.

Cycle times and stability conditions are derived for this system, and Conservation
Laws are obtained which express a weighted sum of the mean waiting times in
terms of known data parameters. For systems with a mix of exhaustive and gated
service stations, we show how the individual mean waiting times can be obtained.



1. Introduction

The single-server polling system is a queueing system in which a single server attends to M
stations. Each station receives requests for service according to independent arrival processes, and
the server polls these stations in some order, servicing the requests present there. The number of
requests served at a station depends on the service discipline at that station. The service disciplines
that are typically modeled and studied are: i) non—exhaustive service: wherein the server serves
exactly one request if the station is non-empty at the polling instant; ii) exhaustive service: wherein
the server continues to serve requests at the station until it is empty; iii) gated service: wherein the
server serves exactly those requests present at the station at the polling instant, and iv) semi-
exhaustive service: wherein the server continues to serve requests until the number of requests
waiting for service is one less than the number found by the server at the time the station was
polled. Polling systems have been extensively studied for the case where the order in which the
stations are visited is deterministically specified in advance. We refer to these systems as
"deterministic polling systems."

In this paper, we introduce the "non—deterministic polling system" where the order in which the
stations are polled is not deterministically specified. We consider a system with a mix of non-
exhaustive, semi—exhaustive, exhaustive, and gated service stations. The movement of the server
between the stations in the system is specified as follows.

Suppose that the server has just polled a station i which follows either the non—exhaustive or the
semi—exhaustive service discipline. If one or more requests are present at the polling instant, then
following the service at station i, the server next polls station j with probability p;; after a random
amount of time, L;;. The service time for a request at station i is a random variable, Byj, which may
depend on the station j that is polled next. If there are no requests present at station i when it is
polled, then the server next polls station j with probability e;; after a random amount of time, S;;.

If station i follows either the exhaustive service discipline or the gated service discipline, then
the server next polls station j with probability p;; regardless of whether service was provided at
station i or not. The service time for a request at station i a random variable Bjj, if the station j is
polled next. The switchover time from station i to station j is a random variable S;;.

This work has been motivated by a specific application in material handling systems studied by
Bozer and Srinivasan (1988). In this application, the material handling system is a unit-load
Automated Guided Vehicle (AGV) system in which a single vehicle serves a manufacturing "cell”
moving loads from one machining center in the cell to another. When the AGV delivers a load to a
center, it inspects (polls) the output buffer of that center to determine if there are any loads waiting



to be transported. If at least one load is present in the output buffer, then the AGV takes a certain
amount of time to pick up a load from this output buffer, and a certain amount of time to transport
the load and deliver it at its destination. Following this, the AGV polls the output buffer of the
center which receives the load. If there are no loads waiting at the center that is polled by the AGV,
it immediately switches to poll another center with some predetermined probability. The time taken
by the vehicle to travel loaded from i to j (L;;) could be quite different from the time it takes to travel
empty fromi to j (S;j). (For instance the empty vehicle may follow path different from the loaded
vehicle.) Note that in this application, all the stations use the non—exhaustive service discipline.

As another application for the non—deterministic polling system, consider a "messenger boy"
who serves a number of centers, picking up messages from one center and delivering them to
another. The messages that the messenger picks up from a center will dictate which center he next
visits. Upon arrival at, say, center i, if the messenger finds no waiting messages, then one policy
he may adopt could be to remain at this center periodically checking for messages to be delivered
from center i, until one arrives (this is a case with e;; = 1, S;; > 0); an alternate policy he may adopt
could be to immediately switch to poll another center j with some predetermined probability e;;.

An application in computer communication networks is presented in Kleinrock and Levy
(1988), where a random polling system is used to predict the expected delay in a Slotted ALOHA
system. In the random polling system proposed by Kleinrock and Levy, the server, after polling a
station i, next polls station j with probability ﬁj, whether or not a service was performed at station i.

In this paper, we obtain an expression for the cycle time which represents the expected time
between two successive polls at a specified station, and present the stability conditions for the
general system with an arbitrary number of stations. Following this we obtain a conservation law
which relates a weighted sum of the mean waiting time at each station in terms of the data
parameters for two special cases: i) the case where p;; = €;; for all i,j and ii) the system with two
stations and arbitrary p;;'s and e;j's at the non—exhaustive and semi-exhaustive service stations.
Finally, for systems with a mix of exhaustive and gated service stations, we obtain the individual
mean waiting times by solving O(M3) linear equations.

2. Previous Work
There is considerable literature on deterministic polling models. An excellent survey of work on
polling systems is presented by Takagi (1988). Some of the earliest work on polling systems with

an arbitrary number of stations can be attributed to Cooper and Murray (1969), and Cooper (1970).
Following this work, a number of papers have appeared on exact analysis of these systems with



non-zero switchover times for both the continuous—time and the discrete-time case (Eisenberg
1972, Ferguson and Aminetzah 1985, Konheim and Meister 1974, Swartz 1980).

The analysis of the non—exhaustive and semi—exhaustive service systems presents considerable
difficulties. Even obtaining the mean waiting times appears to be a challenging task in general.
Although mean waiting times for symmetric non-exhaustive service systems can be obtained exactly
(Fuhrmann 1985, Takagi 1985), such analysis for asymmetric systems is available only for the case
of M=2 (Boxma and Groenendijk 1987b). Indeed, while mean waiting times for gated and
exhaustive service systems can be computed with only the first two moments of service and

switchover times, this does not appear to be the case for non—exhaustive service systems in general
(Takagi 1988).

The development of conservation laws (Watson 1984, Boxma and Groenendijk 1987a,
Srinivasan and Lee 1987) for these systems has thus proved to be very useful in providing insight
on their behavior. These laws express a weighted sum of the mean waiting times at the stations in
terms of data parameters, and require only the first and second moments of the service and the
switchover times. In particular, Boxma and Groenendijk present an elegant analysis based on a
work decomposition approach, which also provides some intuition as to why these conservation
laws hold. For symmetric systems, the conservation laws obtain an expression for the mean
waiting times in a closed form. These laws also enable the development of approximate solutions
for asymmetric systems (Boxma and Meister 1986, Srinivasan 1988, Fuhrmann and Wang 1988).
Most of the work on deterministic polling systems is based on cyclic polling systems, although
there is some work on analyzing systems with a more general order of service (Baker and Rubin
1987, Mapp and Manfield 1986, Boxma et al. 1988).

All of the above work relates to deterministic polling systems in which the order of visits to the
stations by the server is fixed deterministically. A system in which the server visits the stations in a
probabilistic order (according to a "Bernoulli schedule") is considered by Keilson and Servi (1986)
wherein the server, on completion of a service at station i, next switches to station i+1 with
probability p; or polls station i with probability 1-p;. The cases where p; = 1 and p; = 0 reduce to
the deterministic non—exhaustive and the deterministic exhaustive service system respectively.

Kleinrock and Levy (1988) analyze a discrete—time random polling system, where the server
next polls station j with probability ﬁj. They obtain the mean waiting times in exhaustive and gated
service systems through the solution of O(M3) linear equations. For completely symmetric random
polling systems (in which all the stations adopt exactly one of three service disciplines, namely, the
exhaustive, gated, or the non—-exhaustive discipline), they obtain the mean waiting times explicitly.



Boxma and Weststrate (1989) have, independent of this paper, considered a polling system with
"Markovian server routing", and obtained the conservation law for a system with a mix of non—
exhaustive, exhaustive, and gated service stations in an elegant manner using the work
decomposition approach. Their analysis requires the identification of a time-reversed Markov chain
in order to obtain the conservation law. The system analyzed by Boxma and Weststrate is the
special case considered in our paper where p;; = ¢;; for all stations including the non—exhaustive
service stations.

It may be observed that many other well-known polling systems, including the random polling
system presented by Kleinrock and Levy, are special cases of the non—deterministic polling system.

3. The Model

A system with M stations is considered. Requests for service arrive at station i according to an
independent Poisson process at rate A;. It is assumed that there is an infinite capacity to hold these
requests until they can be served. Denote by N, S, E, and G, the set of non—exhaustive, semi—
exhaustive, exhaustive, and gated service stations respectively.

At a station i which uses either the non—exhaustive or the semi—exhaustive service discipline, the
switchover time L;; (which arises when there is service at station i) has mean and second moment ¥;;
and y(?j), respectively, and the switchover time S;; (which arises when there is no service at station 1)

has mean and second moment G;; and o(i?, respectively. We assume that y;; 2 oj; for all i,j. At

stations which adopt the exhaustive or the gated service disciplines the switchover time to station j is

Sij (regardless of whether service is performed at station i or not), with mean and second moment
o;; and 0%), respectively.

For ease of exposition we assume that for i € {S, E, G}, the service time is B;, independent of
the station that is polled next. (The analysis extends directly to the case where the service time could
depend on the station next visited.) The mean and second moment of B; are denoted by T; and T (?

respectively. For i € N, the service time Bj; has mean and second moment f;; and B(izj),

respectively.

To analyze the system, we consider the system state at each polling instant. Let (i; ny, ..., ny)
denote the state of the system at an arbitrary polling instant, where i denotes the station that is
currently being polled by the server, and np,, m = 1, ..., M, denotes the number of requests present
at station m at this instant. In the following discussion, unless otherwise specified, the index for
summation is implicitly assumed to range over 1, ..., M. (It is also implicit that station M+1 is just
station 1.) Since the arrivals at the stations follow independent Poisson processes, it is easily seen



that the state of the system at successive polling instants follows a Markov chain. We only consider
systems in which for each station k, Ay > 0, and there exists at least one station i # k for which

either pi > 0, or ey > 0. Then, if the system is stable, it can be seen that the set of all the possible
states observed at polling instants is irreducible.

Purely for ease of exposition, we first consider a system in which all the stations adopt the
non—exhaustive service discipline, and obtain the generating function of the number of customers
present at each station when the server polls station i. This will facilitate the subsequent derivation
of the corresponding generating function for the system with a mix of non—exhaustive, semi—
exhaustive, exhaustive, and gated service stations.

When all stations use the non—exhaustive service discipline, the transition probabilities for the
Markov chain are obtained as follows. Let Qy(k;t) denote the probability of k arrivals at station m
during an interval of length t, and for any random variable U, with distribution function Fy(.), we

o M
denote by A{a,,..., ay; U} 4 f [ IT Qm(am; t)] dFy(t), the probability that there are a; arrivals at
0

m=1
station i; i = 1,...,M, during a time U. Consider a transition from the state (k; xy,..., Xy) to the
state (i; ny, ..., ny), with ny, 2 x,, for m # k, and ny 2 x, — 1. When x; > 0, the probability of this
transition is py; A {n,—xy,...,n—Xg+1,..., ny—Xy; By + Lii}, and when x¢ = 0, the transition
probability is eg; A {n;—x,,..., Nk,..., My—Xp; Sii J-

Hence, if we let n(i; ny, n,, ..., ny) denote the equilibrium probability that the server polls
station i and the state is (i; n,, ..., ny) at the polling instant, then this probability is obtained as

M
7n(i; ny,...,ny) = Z [ Zn(k; XiseeesXkyeoor Xp) Pki A{0=X1p,e. DXkt 1, DXy Biit+ Lii)
k=1 X:Xk>0

£ 0K KXo X) € A (DX, oy Dy s Dy Xag S )], (BLD)
X:x, =0

where the above summations are taken over all feasible values of X=(x,, ..., Xw).

Let Pi(n,, n,, ..., ny) denote the equilibrium probability that there are np, customers at station
m, form =1, ..., M, when (i.e., given that) station i is polled, and let ; denote the unconditional

probability that station i is polled. Note that
Tt(l; ny, ..., nM) = Pi(nh soey nM) ;. (32)

Let z = (z,,...,2y), and consider the generating function



Fi(2)

Y .Y Py, on) Mz (3.3)
l'l1=0 nM=O

Substituting in equation (3.1), the expression for n(i; n,, ..., ny) given by equation (3.2), and
using equation (3.3), we obtain:
. Fr(z)-Fi (0 . *
mE@ = Y Im Ky By A 2LE(E G A z)
k m m

+ T Fi(0) exi Sf&(% (O — Am Zm)],

where Fy(0) = Fx(zy,...,Z41,0:Zea15-- - Za), and Byi(+), Ly(*) and Syi(*) denote the Laplace Stieltjes

transforms (LST) of the service / switchover times, By;, Li;, and Sy;, respectively. Note that
Fi(0)l ;_; is the probability that station k is empty at the instant it is polled. Let

Qi = FO)l,;

z=1"

and qk = 1 - gk (3.4)

For ease of expression, we denote the state (i; ny,...,ny) by (i; n). If the system is stable then,
for at least one station, there will be a non—zero probability that the system is empty at the instant
that the server polls this station. Without loss of generality, let station 1 be one such station. We
now consider the regeneration epochs at which the server polls station 1 and finds the system
empty. We shall refer to the time between two such epochs as a regeneration period and let C(1; 0)
denote its expected value. Note that C(1; 0) < o if the system is stable.

Between two visits to state (1; 0), the expected number of visits to state (i; n) is 7(i; n) / ®(1; 0).
Since m; = ¥, «(i; n), (the summation is taken over all possible values of m) the expected number of
visits to station i during a regeneration period is %; / ©(1; 0). The expected number of requests
arriving at station i during a regeneration period is A; C(1; 0), and clearly all these requests are
served during this same period of time. Since the server serves exactly one request per visit to
station i if it is non—empty at the polling instant, the probability of a service per visit, q;, is thus

% _ A; C(1; 0) =(1; 0)
i T .

(3.5)

Now consider systems in which all four types of service stations can be present. Let H;(‘),
fork e {S, E}, denote the LST of a busy period at station k, that is initiated by a single request.

For notational ease, let



B; 4 B‘:i(ﬁ Om=-2mzm), L 4 Li(Z Om-Amzw), and S5 4 S(S Om— A Zm).

Adopting the same approach as we used earlier for the system with only non—exhaustive service
stations, we obtain the following equation for x; Fi(z):

F F 0 * * *
m F(z) = > m L:k‘(_)l’ki By L + mi Fi(0) e Sy
keN

t 2 I m RO B (5 O z) L+ B0 eS¢

keS m#k

+ 2 nk pkl Fk(zl’- «osZk-1 ,H;( Z O"m - xm zm))azk+ly- . "ZM) Sl:1
ke E mzk

+ 2 Tk pki Fk(Zl,---,Zk-x,B:(z (Xm - szm))’zkd-l’--"ZM) Sl:i‘ (36)
m

keG
Setting z, = ... = zyy = 1 in equation (3.6), we get
mooo= Y Mm@Pu + %0 + Y, T P (3.7)
keN,S keEG

In the above equation, qy, for ke N, is defined by equation (3.5).

For a station k which uses the semi—exhaustive service discipline, qx is obtained in an
analogous manner as follows. Consider a standard M/G/1 queueing system in which the server is
always available to serve customers, and with the same arrival rate and service time distribution as
station k in the non—deterministic polling system. Then the busy period initiated by a single arrival
in the M/G/1 system has a mean Ty/(1-ATy). Now, in the non—deterministic polling system,

suppose the server finds station k non—empty at the instant it is polled. Since this station adopts
the semi—exhaustive service discipline, when the server subsequently leaves the station, the
number of requests present there will be exactly one less than the number present at the polling
instant. Hence it is easily seen that the expected number of requests served at station k is equal to 1
plus the expected number of requests served during a busy period in the corresponding standard
M/G/1 queueing system, i.e., equal to 1 + A Ti/(1-AxTx). Since the expected number of visits to

station k during a regeneration period is  / (1; 0), the expected number of requests served at

station k during a regeneration period is G ( 1 ) nk_ . This is just equal to Ax C(1; 0),
1-MT w(1; 0)

which is the expected number of arrivals at station k during the regeneration period. Hence we get



T = M €(1; 0) n(1; 0) (1 - MT), ke S. (3.8)
Tk

As in the non—exhaustive service case, gx =1 -qg, fork € S. Let

T = ), BwPuw ieN, ¢ = X Y«Piw i€(N,S}, (39.)
k k
and
0 = ;Gikeik, 0@ = goﬁ)cik; i=1,..M. (3.9.b)

Let T; denote the expected time from the instant that the server polls station i until the instant when
the next station is polled. For ie N, the server finds one or more requests waiting at station i with

probability g; and in this case the expected time until the next polling instant is given by T;+9;.

With probability q;, the server finds no requests waiting at station i at the polling instant, in which
case the expected time until the next polling instant is given by 6;. Hence,

T; = qi6; + q(Ti+¢); ieN. (3.10.a)

For ie S, the expected number of requests served per visit is 1/(1-A;T;) if station i is non—empty at
the polling instant. Hence the expected time until the next polling instant is T; /(1-A;T;) + @; with
probability q;, and is otherwise 0; with probability g;. So,

T;

Q6 + Gl +@;]; ieS. (3.10.b)

1-AT;

Forie {E, G}, the expected number of requests arriving at station i during a regeneration period is
A; C(1; 0), and the expected number of visits to i during this period is 7; / 7(1; 0). Hence it follows
that the expected amount of time the server spends at i per visit is just T; A; C(1; 0) n(1; 0) / ;. So,

TiC(l; 0) =(1; 0) N
T

T; = A

0. ie (E, G} (3.10.c)

Since the expected number of visits to any station i during a regeneration period is 7; / n(1; 0),

c;0) o= Y—HoT, (3.11)

i n(1;0)




Substituting in equation (3.11) the expression for T; given by equations (3.10.a) through (3.10.c),
setting g; = 1 - @; and using equations (3.5) and (3.8) to express g; fori € {N, S},

C0) = Y MTCEL0)+ ——8; + X C(L; 0) (9:-6;)]
ieN n(1; 0)
Y [MTOL0) + ——8; + A C(1; D) (1-MT) (91 -6;)]
€S n(1; 0)
+ 2 MT,C(1;0) + m_ 9; ].
ie (E,G} n(1; 0)
Collecting terms involving C(1; 0), and setting
Vi = Ai T+ A (0;-6;), ie N, (3.12.a)
= AT+ (1-MT) A (9;-6;), i€ S, (3.12.b)
= AT, ie {(E, G}, (3.12.¢)
and
s = Yo (3.12.d)
we obtain :

Z mei
1

-9

n(1; 0) C(1; 0) (3.13)

From equation (3.13) we observe that for C(1; 0) to be non—negative and bounded, we need ¥ <
1. (In addition, we obviously require that 0 <q < 1, k € {N, §}.) Let

Ci

n(1; 0) C(1; 0) / m;, (3.14)

and set

v %/ (3.15)

The term C; denotes the expected time between two successive visits by the server to station i. We
shall refer to C; as the "cycle time", and the vi's will be referred to as the "visit ratios". Note that
by definition, v, = 1. From equations (3.4), (3.5), (3.8), (3.14) and (3.15), we obtain alternate
expressions for qi , ke {N, S}, stated as



Pr ition 3.1:

Qx = 1 -2 Gk = 1-2 C, /vy, ke N, (3.16.a)
= -2 G (10T = 1 - A C; (1-AT)/ vy, ke S, (3.16.b)
|

From equations (3.13) through (3.15), an expression for C, is obtained from

p ition 3.2:
z, vifi
C, = — 3.17
: = (3.17)
|
The conditions for the stability of this system are obtained from the above development as:
0 < 1, (3.18.2)
AMCr < 1, ke N, (3.18.b)
MCr(1-ATy) < 1, ke S, (3.18.¢)

By suitably choosing the parameters p;; and e;;, we can consider several polling systems of
interest. For notational convenience, in the following we set

) = )) 9;. (3.19)

The deterministic service system

The corresponding deterministic service system is obtained by setting pj i+, = €i i+ = 1 forall i.
For this system the switchover time from station i (to station i+1) is the same regardless of whether
the server performed a service at station i or not. In other words, for i € {N, S}, Gii+1 =Yii+1s
and so 6; = ¢;. From equations (3.7) and (3.15), we have v; = v;_;. Hence the visit ratio is the
same for all stations and so from equation (3.17) the cycle time is the same for all stations. Since v,
= 1 by definition, the resulting cycle time is the well known expression

c = _© (3.20)

I—ZMTi.

The random polling system of Kleinrock and Levy

Consider the dispatching rule p;; = e;; = f)j. This rule has been studied by Kleinrock and Levy
(1988) and specifies that the station next polled by the server is station j with probability ﬁj

10



regardless of the station the server is currently at, and whether a service is performed there or not.
For this system, equations (3.7) and (3.15) give

vi o= 3 vj i,
and so :
vilbi = wib = Tv for all i.
Hence, from equation (3.17), :
iZ D 6;
¢C = =) (3.21)

The First-Encountered-First-Served Rule

The First-Encountered-First-Served (FEFS) rule has been used by Stone and Fuller (1973) to
model the retrieval of records from a rotating drum. This rule provides a natural application for the
non—deterministic polling system: consider a system where all the stations use the non—exhaustive
service discipline, and for all i, e;;+, = 1 and p;; = 0, with the other pjj's taking on arbitrary values.
Such a policy specifies that the server serves exactly one request at a station if the station is non-
empty at the polling instant; otherwise, the server polls the next station in some logical order. The
FEFS policy has been used in this manner by Bozer and Srinivasan (1988) to model the unit-load
AGV system as a polling system. For this policy we have, from equations (3.7) and (3.15),

Vi = 2 Vj Qj Pji + Viz1 Qic» 1=1,.,M. (3.22)
i
(Note that if we set p;i4, = 1, then this is just the deterministic non—exhaustive service system.)

Set Aj=Y A;pj. Using Proposition 3.1, equation (3.22) is rewritten as
j

Vi = Vi + (Ai - Xi_l) Cl. (3.23.3.)

Continuing to express vj in terms of v, ..., vy,

Vi

i
Z (Aj— )_1) Cl + Vl’ i=2,...,M. (3.23.b)
=

Hence, the cycle time C; is obtained from Proposition 3.2 and equations (3.22) and (3.23.b) as

C, = © (3.24)

M i ‘
1 -9 - 2 Z (Aj—xj-l) 9;
i=2 j=2

11



4. Conservation laws and mean waiting times:

In this section, we obtain the conservation law for two special cases of the non—deterministic
polling system: the case where p;; = ¢;; for all i € {N, §}, and the case with M=2 but pijzejforie
{N, S}. Following this, we obtain the individual mean waiting times in a system with a mix of
exhaustive and gated service stations, through the solution of O(M3) equations.

To obtain the conservation laws, we need the first and second partial derivatives of F;(z) with
respect to j, j = 1,...,M, evaluated at z=1. Let

oF@) |- - 0%F;(Z)

fij = aZ(JE IZ=1’ f(2)um = az.]azm IZ— and
dF;(0) |- -

&ij = *al;(jo—)lzﬂ

4.1. The conservation law when pj = e; for all stations

We first obtain the conservation law for the case where p;; = ¢;; for alli € {N, §}. Purely for
ease of exposition, for alli € {N, §}, we set L;;= Sj;, and fori € N, we set B;;j=B;, and E[B;] = T;.
(Note that with this we have A;T; = ¥9; for all i.) The extension to the case where L;; # S;;, and

where Bj; can depend on the next station visited, is straightforward.

In order to obtain the first and second partial derivatives of Fx(z) for this system, we need the
first and second partial derivatives of

Fi(z1,- .., Zk-1,Hg( T O = A Zm))sZkct1s--02M); k€ E,
m#k

ne

F(Hy)
and

F«BY 4  Fuz,. 2k 1.BU(E A — Amzm))sZisss--2m); ke G,
m

evaluated at z=1. Let 8(m,j) = 1, if m = j, and equal to 0 otherwise. Set S(m,j) =1 - d(m,j).
Then the first and second derivatives of Fk(H;) and Fk(B:), evaluated at Z=1, are obtained as

follows (also refer Takagi 1986). Fork € E,

oF (HY) | _ T \ 50

_lfz,fklm = (fiy+fa ) 1—_“—) 3(k.j),

02F(Hy) | _ % u’

Ta_z: k |z=1 = [f(z)kjm+(.f(2)kkj A'm*'f(z)kkmk) 5 + fik Jlm(l—ﬁk)
3(k.i) & k,

12



and fork € G,

OF(By) | — _

g(zj Y |75 = figdki) + fiaeAj Tio
92F(By) | — T < _
Bzfaz,: et - s Oiim 8(k.j) 8(k ) + (FPem Ajd(ksm) + fPug A (k) Tk

+ fkkk)»jl,n'tkz + fkklj)mek(z).

LetT ={N, S, E, G} and define the indicator function

AG,T) L, jeT;
= 0; jeT.
Differentiating equation (3.6) once with respect to j at Z=1, we get (note that Fi(0) | 7.7 =)

vifi = 2, viPki [fig+ Gk Aj (T + ) + Qe A 0] — vi G pji AGN)
keN

_ Tk ; _ .
+ O viepki [fi + G (——+0w) + qedj ol - (1+—5) vj G pii AGLS)
ke$ l—ﬁk 1—‘6]

keE J
+ ) vipki [fi + fuch T+ A 0]~ vi pi £ AG.G). (4.1)
keG

The term f;; represents the expected number of requests present at station j when the server polls
station j. This term is easily obtained for the exhaustive and gated service stations as (also refer
Watson 1984 and Takagi 1986):

ti
l—ﬁj
fi = AiCis je G. (4.2.b)

A Cis je E, (4.2.2)

From equations (3.16), (4.1) and (4.2), noting that A(j,N) + AG,S) + AG,E) + AG,G) =1, we

obtain the following expression for fjj stated as

Proposition 4.1
vify = Y viepifig + A (2 (A C, T + Vi Oki) pxi — G Pji)- (4.3)
k k

Observe that when p;; = ¢;j fori € {N, S}, then from equations (3.7) and (3.19),

13



Vi = %} Vk Pxis i=1,... M. (4.4)
It may also be observed, from equations (4.3) and (4.4), that we can express fijin terms of f;; as:

fi = 5+ Ny (4.5)
where the y;; s are constants which need to be determined. From equations (4.3) through (4.5),

vifij = z Vi (Fii + A Yi) Pa + A4 (2 (0x C, + vk 0i) pxi — G Pji)
K k

= vifj + A (Z Vk Ykj Pxi + 2 (0xCi + vk O) pi — G Pji)- (4.6)
k k
Hence, from equations (4.5) and (4.6), we get
Viyij = ZVkij P + O, 0 Cy + Vi 6) P — Ci Pjs i=1,... M, (4.7.a)
k k
with
Viyj = 0. (4.7.b)

For each j, equations (4.7.a) and (4.7.b) form a system of M linear equations in the M
unknowns yj;, i = 1,...,M, which can be solved to obtain the y;;'s. The resulting solution can now
be used in equation (4.6) to obtain the f;j's in terms of fj;. Note from equations (4.2.a) and (4.2.b)
that for exhaustive and gated stations, the f;; terms can be obtained explicitly in terms of the data
parameters. This observation will be seen to be key in determining the individual mean waiting
times for systems with a mix of exhaustive and gated service stations, in section 4.3.

We now differentiate equation (3.6) twice with respect to j and m, and obtain an expression for
f@im in terms of the unknowns f@y;m; k,j,m = 1,...,M, and the unknowns fi; and gxj, k € {N, S}
and j = 1,...,M. Following this, we eliminate all unknowns except for f;;, for j € {N, S}, and
@y, for j € {E,G}, to get one equation in M unknowns. The resulting expression is stated as
Proposition 4.2. A detailed derivation of Proposition 4.2 in presented in the Appendix.

-9 v, 0 1-9 Vm (1+9)
—_y om £ _ 1- @ 4 1-9 @, 1. —1
IS T s TN 0 SO 5 0 Tyt
8¢ @, 9 @)
= 2 %ljtj +2§V9 (1—13)219 C1+J213j§lvm9mymj
}‘ 1:(2)
+ X vifT E -“‘—"L+ -9 ¥ 7C -Q0-9 X —’—13 C,. 43
i€ {EG) Yi i€ (NS} jeis.E) 20-9)
[ |



Denote, by Wj, the mean waiting time at station j. Lemma 4.3 expresses the unknowns fj;: j e
{N,S}, and f@)y;:j e {E, G}, in terms of the mean waiting times at the stations. The proof of
Lemma 4.3 is straightforward and is omitted. (Refer Watson (1984) and Takagi (1986) for
analogous expressions in the case of deterministic polling systems.)

Lemma 4.3
fi = AW+, je N, (4.9.2)
Oy +1- 50
, = g w+1- , ie S, 49.b
T TNV oy IS (4.9.b)
@i A2 T ,
>f. = iWj - ——, E, 4.9.
2f; M T ey Je (4.9.c)
fDji AW ,
5. = ) je G. (4.9.d)
2fj (1+9)) .

Substituting the values given by Lemma 4.3 in equation (4.8), we obtain
Lemma 4.4

The conservation law for the non—deterministic polling system with non—exhaustive, semi-
exhaustive, exhaustive, and gated service stations, where p;; = €;; for all stations is:

Y, ow;(1-0- xzv"‘e’“) Y ow;(1-9-40 ﬁJ)Z "‘“‘)+(1 9) Y KW,

jeN Vi j€S JE{EG]
I VR AL TN ﬁzﬁ.e.,Lzﬁ.(zvmem 6)
‘2ij 2Cljv.lj+'.l.l _J v
ﬁx @)
D R R L R
je m

Lemma 4.4 can be used to obtain, explicitly, the mean waiting times in symmetric systems.
Implicitly, these are systems in which all the stations adopt only one of the four service disciplines
considered in this paper. Note, however, that symmetry here does not imply that the probabilities
pij need to be the same for all i,j, nor that B;; be the same for all i,j. The only requirement here is
that all stations have identical characteristics with respect to each other. This is illustrated in
example 4.1 below.
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Example 4.1 Consider a non—deterministic polling system with 4 stations, with all stations
adopting the non—exhaustive service discipline. The data parameters for this system are as follows:

0.10 0.40 0.30 0.
o 0.20 0.10 0.40 O.
Pij = & = 0.30 0.20 0.10 0

0.40 0.30 0.20 0

»  All Byj's exponentially distributed,

0
0.
Bi = | 0.
0

0.10 0.15 0.20 0.30
] 030 010 0.15 0.20
% =G5 = 1020 030 0.10 0.15
[ 0.15 0.20 0.30 0.10 .

[0.3125, 0.3125, 0.3125, 0.3125].

» Ljjand §;;i.i.d., exponentially distributed,

Ai

The derived data parameters for this system are T; = 0.45 , and 6; = ¢; = 0.26 for all i.

The visit ratio obtained from equation (4.4) is 1.0 for each station, and the cycle time, obtained
from equation (3.17) is 1.3639 for each station. The mean waiting time at a station, obtained from
equation (4.10) is 2.21124,

The random polling system

We now consider, as a special case of the conservation law, the random polling system

introduced by Kleinrock and Levy (1988). For this system, p;; = Bi for all j, and so the visit ratios
are obtained from equation (4.4) as v; = v ﬁi. In other words,
i

vilBi = Zvi = v/p;, forallij. (4.11)
J
Let

Ki 2 (¥ C, + vk 0k Bi - C, B (4.12)
k

So, from equations (4.7.a) and (4.7.b),

Yij ZVk yij Bi/vi + %/ vi
K

Y By + 6/ vi (4.13)
k

Since yjj = 0, we must have
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A
Dby = -y
k

and so from equations (4.11) and (4.12),

yij = Ki/ Vi = Xj/ v = (Bi/ vi )Z Vk(Oki — Ok;)-

Thus, it may be observed that the conservation law for the random polling system does not require
the solution of M sets of M linear equations in order to determine the y;;'s.

Remark: Kleinrock and Levy obtain the mean waiting times for the discrete—time, symmetric
system with constant service times. Note that the conservation law gives an explicit expression for

the mean waiting times for a symmetric random polling system in the continuous—time case, which
is very similar to the expression for the mean waiting times obtained by Kleinrock and Levy. W

4.2. The Conservation Law when pj # ey

We present the conservation law for a system with two stations, for the case where p;; # €;;. The
derivation of the conservation law for the system with more than two stations is a topic for further
research. We consider a system where both stations adopt the non—exhaustive service discipline,
since this appears to be one of the more complicated systems to analyze when there are only two
stations. The conservation law in this case is more difficult to obtain since the g;; terms now
constitute an additional M2 — M unknowns. (For the case pjj = €jj these terms vanished
simultaneously resulting in equation 4.1.) From equation (3.6) with M=2, we have

2

F(z,2) Fy(0 N
ViFizz) = 3 [v 22)' KO 5 BALY + veFa©) e Sy ] i=12.
k=1

LetV,; = B L. In the above equations, setting z)=z, and zy=1, we have two equations in the
three unknowns F,(z,1), Fy(z,1), and F;(z,0) (note that F,(0,1) = q;). We can now eliminate
Fy(z,0) from these two equations, and express F,(z,1) in terms of F,(z,1) as follows:

c
wE@D) = vEGEDES - va D .14
where
a(z) = z (Pzzvz,; —32252;)"‘1312])12 lev;; - anl: Pz:zv;z - plZv;; ezxszj + Puvl’: szs;;,,
b(z) = z(Puly - enSy + PuVyenSy— Paly xSy ),
c(z) = a(2)+ Z(Pzzv;z 51131*1 - szvz’: €12 S;; + c1251’; e2lsz‘ll - cllsl*l e'zzsz‘; - Pzzvz; + e’zzsz‘; ).
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An expression for v, F;(1,z) in terms of v, F,(1,z) can be obtained in a similar manner.
Differentiating equation (4.14) with respect to z, and evaluating it at z=1 gives an expression for f5,
in terms of f; and the data parameters. (This involves two applications of L'Hospital's rule.) In a
similar manner, we can express fi, in terms of f, and the data parameters. We now substitute
these expressions for f,, and fi, in equation (4.13) and then express f;; in terms of W;, i=1,2,
using Proposition 4.3. The resulting expression, obtained after considerable algebraic
manipulation, is stated as

Lemma 4.5

The conservation law for the non—deterministic polling system with two non—exhaustive service
stations and arbitrary p;; and ¢;; values is

2 2 2
McNke; —
Xz A Wivigin; = (kZ knzk “)2 VG +vig6 D) +
1=1 =1 1=1

2 2
Y Mnid; [Y vidipiB + vigiesoip], j=kmod2+1.  (4.15)
k=1

i=1

[ |
In equation (4.15), we have set
o} = 2 [BD+ D +2 By v pis
j
X = €n 6, + €,20,,
M . e (T, +¢1) - pi 6, and

€ (To+ @) —pxu 6.

N2

Since there are only two stations, it is possible to express the cycle time C, given by equation (3.17)
explicitly in terms of the data parameters as

C = X . (4.16)
a1 — M[(T1=0,)ea+(e1—p11)82] — Az M,

The terms v; q; = v;— AC,, i=1,2, are easily obtained using equations (3.7), (3.15) and (4.16).

Although equation (4.15) is valid for only two stations, it is the most general form of the non-
deterministic polling systems, and it may be verified that the conservation laws for the deterministic
and random polling systems with non—exhaustive service can be obtained as special cases of
equation (4.15), by a suitable choice of the data parameters. It is interesting to note that the
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conservation law for the deterministic and random polling systems with exhaustive service can also
be obtained from equation (4.15). The conservation law for the deterministic exhaustive service
system is obtained by setting p;; = €ji+1 = 1, Bii = Ti, Y5 = 0, Gij = 0;, ﬁ(izi) = ‘C(%), y(izi) =0, and

G%) = 6(?) to get, after some elementary algebra, the well known expression:
3 oW SHO ¢ L Sva®) + o S -0D. (@17
W, = —— — Y var — .
=R 2(1-13) i= 205 2(1-9) E

The conservation law for the random polling system with exhaustive service can be obtained

from equation (4.15) in a similar manner by setting p; =1, &ij =ﬁj, Bi=Ti, v:=0, ojj = 6;,
(2) =1® D @) - @
™, 12 =0, and o = 6P,

4.3. Mean Waiting Times: systems with Exhaustive and Gated Service Stations

In this section we indicate how the individual mean waiting times may be obtained for non-
deterministic polling systems consisting only of Exhaustive and Gated service stations.
Differentiating equation (3.6) twice with respect to j and m, setting z=1, and using equations (4.2)
and (4.5), we get

12
Vifim = Y Vi Pii {f P + P An + f e 7&,) —— + D Aj A 5}
keE 13 (1-9y)
+ 2 Vi Pii {FP%im + P A+ F P ) Tt FPiaae A Am T2
keG
—vipi A @y — vy P A(mE) 3 O
v; Pji (JE)( Lo, n,f i j)2) Vi Pmi A(m,E) (J,m)( vy +f o = ﬁm)z)
=V Pji AG.G) (FDjjm + FDjj AmT;) = Vi Pmi Am.G) (8G.m)f Py + f D A} Tm) + Digm,
(4.18)
where
2 (2) Vi AL (Ykj + Ykm)
Djm = A A G, {z pii [T + C - + 2040k + (— ) Oki Cl Oki)
201042 :
+ IEEP (l—ﬂk)z ki (Vj Vm)] i Pj P
- pi AGE) b —— —ppi . 4.19
Pii AGE) Jrw: Prmi Am,E)3(j;m) Am -ﬁm)2 (4.19)

In equation (4.18), the indices i,j, and m range over 1,...,M. Since f@jm = f@in;, it can be seen
that equation (4.18) thus provides M2(M+1)/2 equations in M2(M+1)/2 unknowns, which can be
solved, thereby obtaining the f@);; terms and hence the mean waiting times.
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5. Conclusions

In this paper we introduced the non—deterministic polling system. We obtained the cycle times
and the stability conditions for this system and developed conservation laws for two special cases:
i) where p;; = €;, and ii) for arbitrary p;; and e;; values (namely, p;; # e;) in the case of a system with
two stations, both using the non—exhaustive service discipline. The mean waiting times were
obtained for systems with arbitrary number of stations, where the stations could adopt either the
exhaustive or the gated service discipline.

The non—deterministic polling system finds application in many situations. It has been used in
analyzing material handling systems, and in computer communication networks. Special cases of
this system are the well-known deterministic exhaustive and non—exhaustive service systems, the
Bernoulli schedule system considered by Servi, and the random polling system analyzed by
Kleinrock and Levy.

There are several topics for future research which need to be addressed. The development of
the conservation law for non—deterministic polling systems should foster interest in obtaining
approximations for mean waiting times using these laws. The conservation law for arbitrary p;; and
&;; values still remains an open issue for systems with more than two stations.!

1 The author thanks Jhitti Chiarawongse for his valuable suggestions which considerably helped in the presentation of this
paper. The very useful comments and suggestions from the anonymous referees are much appreciated.
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! lix: Proof of Proposition 4.

Note: Purely for clarity, we present the derivation for a system with non—exhaustive, exhaustive,
and gated service stations. This will indicate how the derivation can, in fact, extend to consider
several other service disciplines. For this system, we rewrite proposition 4.2 as follows:

- VO T (1+9)
vi 1 [0 m) 4 (1-9) Y v f + (1-9) Yy fo. g LW
ngj Y % Yi Eg’ Y an(-0) jEZG’ )Y

3 C 9
= T‘ijrg?)+72vje<§>+ﬁ2ﬁjejcl+26j2vmemymj-2ﬁjejcl
7@
\%
‘3 vjfﬂrjzm—e"w(l-ﬁ)znc, (1- 13)25(—1—;-)—13 C AD
jeN jeE

Proof: Differentiating equation (3.6) twice with respect to j and m, and summing over all i, at z=1
we get

Z Vif(z)ijm = Z ka(z)kjm +Am Qj + )\,J Q.+ ij - V;j AGN) (fjm - gjm) — Vm A(mN) (fmj - gmj)

—vjAo,E)(f j;"‘+f<2> (ﬁ“g’z)—vm A ) Samy( ;‘:’ + oo (fg':)ﬂ

—Vj AG.G) ( f @ ijm + f (Z)iij A-m‘l:j ) = Vi A(m,G) (f(z)mmm lfj Tm+ S(J’m)f (2)mmj)a (A2)

where
T
Q = Y vilfig(Tt0) - g T) + X, vielfigBi + l—k FOu + Y vi(fie + Tf D), (A3)
keN keE —Ox keG
and

im =X Am [ T=Nim+ Y, vic fOuc + Y Vi fOua T2 + 2AGN) 8Gim) AC,, (A4)

keE (l_ﬂk) keG
with
8.2
T = ) [MCEEP+26:T0 + v 6D ] + ) 4Citd m—, (A.5)
k vk (1-05)2
and
2)
Njm = (Tj+6)) CL AGN) + (Tm + Om) C, A(mN) + ((T_Jﬁ? Aj +6;) Ci AGE)
—;
2)
+ (8(G,m) (1-1;,,1)2 Am +0m) C; AmE) + AGG) 8, C, + A@mG) 6, C,. (A.6)
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From equation (A.2) we get

0 = An+2Qn+Kjm— vy AGN) (Fim — gim) — Vi A@N) (Fmj — Emi)

v age) (T ek (lm’)z) - Vo ) B 2 ) (lk"t“‘)z)
- J m —Um

= Vj AGG) (f@ 'jm + f (2)jjj )"mTj ) = Vi Am,G) (fDpnmm )‘v] Tmt+ S(J,m)f (2)mmj)- (A7)

Consider the case where m = j. Note that for j € N, g;;=0. So, from equation (A.7),

2059 - & + K;; = 0, where (A.8)
& = 2vify je N, (A.9.a)
. if%, jeE, (A.9.b)
(1-9)?
= vif®Q0+1; jeG, (A9.c)

We see that Q; can be expressed, from equation (A.8) as Q; = &;/ 2A;— Kj;/ 2A;. Set

K..
3 = 2 Vi fi (T + 6) + 2 Vi fij Ok — é + =L (A.10)
keN keE,G 2}‘ 2%'
So, from equations (A.3), (A.8) and (A.10), we can write
g = D Vi Teg - 2, Vk f(z)kk_] - Y Vi f P T (A.11)
keN keE 1 ﬁk keG
Again, from equation (A.7), setting
b = ViAGN) fim + Vi AN fmj + ¥ AGE) O ATy + Vi AG) f O Ay T
AT - AT
+v; AG,E) @ +Vm A 3(,m) f@ “An Qi - A Qn-Kin,
Vj GE) f m(l—ﬁj)z Vm A(m,E) 0(,m) f mmm(l_‘t}m)2 j j jm
we can write
bn = VjAGN) gim + Vm AmN) gmj — Vj AGG) fPim
f(2) @) nmj
~ Vi A.6) 8m) fmj ~V; AGE) T = Vm AmE) 8m) T (A12)
) ~—Ym
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From equations (A.11) and (A.12), we observe that

2)...
Y = I Y Ttmba- LAl A Yoy, (A13)
j “r‘n>JJ j€E 1-9; j€G

So, from equation (A.13), after some elementary algebraic manipulation, we get

v fe ve £
%3 vnbaifog - -0 T S (1) 32y 3 B0

m j jeN M jeE 21 (1-9;) j€G j
+fﬁ +(1-9) X 1C + X 9TC - (1-6)2—1—11 ZZJ—E =0.  (Al4)
jeN jeN

Using equation (A.6), we can express

LI A.15
JZ ; {2199 +,§vM 15‘32(113)2 % }C, (A.15)
and
ZM = {19[2136+ZM+2 9 ]- 2———(?—62}c (A.16)
S ’ (IW lm L e &

J jEN j€E j€E

Substituting, in (A.14), the values for fn; in terms of f;;, as given by equation (4.5), and using

equations (A.5), (A.15) and (A.16), we get the desired result. .
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