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Abstract

In this paper we present a general—-purpose analytical model to compute the
approximate throughput capacity of a trip—based material handling system
used in a manufacturing setting. A wide variety of handling systems,
including freight elevators, cranes, microload automated storage/retrieval
(AS/R) systems, industrial lift trucks, and automated guided vehicle (AGV)
systems can be modeled as trip—based handling systems. To our knowledge,
this model is the first analytical model to explicitly consider an empty device
dispatching rule. The model is first developed for a single—device system
(such as a crane) and subsequently, with a simple modification, it is
extended to multiple-device systems (such as lift trucks and AGVs). Using
this model one can rapidly evaluate a wide range of handling and layout
alternatives for given flow data. Hence, the model would be most effective
when used early in the design phase to narrow down the set of alternative
handling systems and configurations prior to simulation.



1. Introduction

In most manufacturing systems, the material handling system plays a critical role since it is
primarily responsible for providing the right material at the right place, and at the right time. (See
Tompkins and White [14] for a full definition of material handling.) A poorly designed material
handling system interferes with the efficient operation of a manufacturing concern and in the long—
term it may lead to a substantial loss in productivity.

The significance and role of the material handling system are understood better today and, both
in research and practice, more time is being devoted to the design and analysis of handling
systems. However, primarily due to a lack of general-purpose analytical design models, many
handling systems used today are designed through simulation models.

Although simulation is a powerful analysis tool, without the right direction provided by pre-
simulation analytical models such as the one presented here, simulation becomes an expensive and
time consuming undertaking. This is true especially early in the design phase where the analyst is
usually faced with a wide array of fairly diverse handling alternatives that appear to "do the same
job." Furthermore, the successful use of simulation requires the right combination of hardware,
software, and technical expertise.

In this paper we present an analytical model that one can use to rapidly determine the
throughput capacity of a wide range of handling and layout alternatives (for given flow data)
without necessarily investing in simulation hardware and software. We do not, however, view
this model as a substitute for simulation since it is an approximate model and simulation is still
required to "fine tune" the system and/or further analyze specific dynamic interactions in preferred
systems identified by the analytical model.

The remainder of the paper is organized as follows: after a brief literature review, in section 3
we will describe the problem setting along with relevant definitions (including that of "trip-based"
handling systems) and assumptions. In section 4, we will develop the model for a single-device
system. This model represents the bulk of the analytical work since its extension to a multiple-
device system is performed through a straightforward modification presented in section 5. In
section 6, we present several numerical examples and use simulation to evaluate the performance of
the analytical model. Lastly, in section 7, we summarize the results of the study and identify some
areas for future research.



2. Literature Review

An increasing number of papers concerned with material handling systems continues to appear
in the literature. Given the wide range of interests represented by these papers, we will limit the
following review to those studies related to throughput capacity estimation in a manufacturing
environment. We will assume that the reader is familiar with basic material handling terminology
and equipment types. (For an excellent review of material handling equipment, along with sample
illustrations, the reader may refer to Tompkins and White, Chapter 6 [14].)

To the best of our knowledge, in the manufacturing arena, there is no general-purpose
analytical model which can be used to determine the throughput capacity of a wide-range of
material handling systems. Those that are reported in the literature are developed for specific types
of material handling equipment, primarily microload automated storage/retrieval (AS/R) systems
and (pick-and—drop) automated guided vehicle (AGV) systems.

Consider first AGV systems. A deterministic analytical model to obtain a lower bound on the
number of AGVs required is presented by Maxwell and Muckstadt [11] who study a system with
unit load carriers operating on a unidirectional guidepath. After computing the "net flow" for each
workstation, the authors model the empty vehicle flow as a transportation problem where the
supply (demand) nodes correspond to workstations where empty vehicles are generated (needed).
Leung et al. [10] extend the above model to the case where different types of vehicles are used
within the same system.

For a similar AGV system, Egbelu [6] presents four relatively simple analytical models to
estimate the number of vehicles required. We will focus on only three of them here since the
fourth model (due to Koff [9]) requires an user—supplied estimate on the fraction of time a vehicle
is blocked or idle. Two of the models, say, model 1 and model 2, are due to Beisteiner [1] while
the third one, say, model 3, is due to Egbelu [6]. The three models differ primarily in the approach
used for approximating empty vehicle travel. Model 1 simply assumes that the fraction of time a
vehicle travels empty is equal to the fraction of time it travels loaded. (For given flow data and
travel times, the latter is straightforward to compute.)

Model 2 is similar to the one proposed by Maxwell and Muckstadt [11] in that the net flow is
computed for each workstation and the empty vehicles are assumed to flow from "supply" nodes to
"demand" nodes as described earlier. However, rather than solving a transportation problem, in
model 2 an empty vehicle traveling from any supply node to any demand node is assumed to travel
a distance equal to the average distance traveled by a loaded vehicle. (The reader may refer to (1]
or [6] for details.) In model 3, the expected number of empty vehicle trips per unit time from
station i to station j is assumed to be given by E(# of deliveries to station 1) E(# of pick—ups from
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station j) / E(total # of pick-ups in the system). Once the number of empty trips between all pairs
of stations is estimated, one can compute the fraction of time the vehicle would travel empty,
provided there is no congestion in the system and the empty travel time from i to j is known.

None of the above four models explicitly considers an empty vehicle dispatching rule. That is,
empty vehicle travel is computed independent of the empty vehicle dispatching rule used in the
system. Therefore, using a fixed layout, Egbelu presents simulation results for each model to
characterize the adequacy of these models for various dispatching rules (which are presented in an
earlier study by Egbelu and Tanchoco [7]). The author observes that the estimated number of
vehicles obtained from model 1 agrees with the value obtained via simulation under the shortest—
travel-time (or distance)-first (STTF) rule, where an empty vehicle is dispatched to the closest (in
time or distance) unassigned move request. Since model 1 assumes that the fraction of time a
vehicle travels empty is equal to the fraction of time that it travels loaded, one has to conclude that
the above result observed for model 1 is mostly coincidental; that is, the layout and the pattern of
move requests have, in all likelihood, created a situation where the travel time required for the
empty vehicle to travel to the nearest move request was equal, on the average, to the travel time
required for the loaded vehicle to deliver that move request to its destination.

It is observed in [6] that the number of AGVs required under the STTF rule is at least 30% less
than the number of AGVs required under other dispatching rules tested, including the modified
first—come—first—served (MFCFS) rule.! However, as discussed in [7], the performance of the
STTF rule is quite sensitive to the location of the stations. If a particular pick—up point is not close
to any of the deposit points, it is likely that it will not receive an empty vehicle for an extended
period of time. This may also explain the fact that, for a different layout with six vehicles, Egbelu
and Tanchoco [7] empirically observed the opposite: that is, given infinite or finite buffer sizes at
each station, the MFCFS rule outperformed the STTF rule. (The STTF rule also leads to "shop
locking"; please refer to [6] or [7].)

The estimated number of AGVs obtained from model 3, on the other hand, is close to that
obtained from simulation provided that the STTF or the MOQS (maximum-outgoing—queue-size
first) dispatching rules are not used. Lastly, model 2 underestimates the vehicle requirements tor
all dispatching rules tested.

In general, Egbelu [6] concludes that the performance of the analytical models depend on the
vehicle dispatching rule adopted for the system. While this observation certainly seems valid, it is

1 Under the MFCFS rule, a station places its move requests only one at-a-time. That is, even if a station has two
or more loads waiting to be moved, it can have at most one "active” move request. If necessary, the next move
request at a station is made "active" when the oldest request at that station is served.. All "active” move requests are
served on a FCFS basis.



difficult to generalize it since the simulation experiment is based on a single layout with no
replications. Hence, for arbitrary layouts, no consistent relationship has been established between
model performance and dispatching rules. This is perhaps one of the drawbacks of "quick-and-
dirty" analytical models that do not explicitly take into account a specific dispatching rule.

Consider next, microload AS/R systems. Chow [2] presents an approximate analytical model
to predict the utilization of the S/R machine (and the mean waiting time for move requests) by
modeling the system as an M/G/1/FCFS queue. That is, the arrival of the move requests (from the
workstations) are assumed to follow the Poisson distribution while the S/R machine has a general
service time distribution. Assuming that the S/R machine never finds the destination buffer full,
approximate values for the first and second moments of the service time are obtained from the flow
matrix by a simple probabilistic argument. Once the approximate service time distribution is
defined, however, the S/R machine is assumed to serve each move request according to this
distribution regardless of the actual origin and destination of a move request (and the current
position of the S/R machine).

Although the performance of the approximate model is not fully explored in the paper, the
FCFS dispatching rule leads to unnecessary empty travel for the S/R machine. In a subsequent
paper, Chow [3] uses a simulation model to evaluate the impact of alternative dispatching rules for
the S/R machine.

Toro-Ramos and McGinnis ([15], [16]), study the performance of a microload AS/R system
with finite input and output buffers. In [15] the authors assume that the S/R machine gets blocked
if the input buffer of the destination station is full. In [16] they treat the case where each station
has an alternate storage area. If the input buffer of the receiving station is full, then the S/R
machine temporarily stores the container in the alternate storage area. Empty S/R machine travel is
estimated as in model 3 described earlier. (Recall that the empty device dispatching rule is not
explicitly considered in model 3.) The authors model the system as a network of queues with a
central server station.

Tanchoco et al. [13] and Wysk et al. [17] use CAN-Q (see Solberg [12]) to estimate the
number of AGVs required. Tanchoco et al. test the performance of the CAN-Q based model by
comparing the results to those obtained from a simulation model. In the analytical model empty
vehicle travel time is not explicitly considered while in the simulation model an empty vehicle is
dispatched to the closest non-empty move request queue. For systems with only four stations, the
authors observe that the CAN-Q based model generally underestimates the number of AGV's
required. Consequently, they suggest that this model be used only as an approximate tool to obtain
a lower bound on the number of AGV's required prior to an extensive simulation study.



On the other hand, Wysk et al. [17] consider empty vehicle travel time in their model.
However, the performance of the CAN-Q based model for estimating vehicle requirements is not
evaluated via simulation. It is important to stress that, in CAN-Q based models, no empty vehicle
dispatching rule is explicitly taken into account and the travel time between each pair of stations is
assumed to be the same.

Yao and Buzacott [18], and [19] model a flexible manufacturing system as a network of queues
with a central server station which represents the material handling system. (Loads traveling from
one processor station to another go through the central server station.) In both papers, it is difficult
to capture the performance of the material handling system with sufficient accuracy since delivery
times between all stations are assumed to be the same regardless of where a load is picked up and
where it needs to be delivered next. Furthermore, it is assumed that a load is (next) delivered to
station j with probability p; which is independent of the station where it was last processed.

In short, although there are several studies concerned with the design of microload AS/R
systems and AGV systems, none of the models reported in the literature explicitly capture the
empty vehicle dispatching rule. Hence, the results are difficult to generalize and no consistency in
model performance has been established. Furthermore, some of them (such as those based on
CAN-Q or a central server) oversimplify the material handling system in terms of delivery times
and routing probabilities.

In the next section we will define trip-based material handling systems and the problem setting
for the proposed analytical model. We must stress that our objective is to develop an analytic
model based on an efficient empty vehicle dispatching rule. As shown in section 6, the dispatching
rule in question is not only easy to implement but it is comparable in throughput performance to
other dispatching rules discussed earlier in this section.

3. Problem Setting: Definitions and Assumptions

3.1. Trip-Based Material Handling Systems

A trip-based material handling system consists of one or several self-powered “devices" that
are capable of operating independently in an asynchronous fashion. Each move request in the
system is served by one of the devices. In order to serve a move request, a device has to perform a
trip. Each trip is composed of empty travel followed by loaded travel. The former accounts for the
time it takes for the empty device to travel from its current location to the station which placed the
move request while the latter represents the time it takes the loaded device to deliver the load to the
next station. The loaded travel time also includes the load handling time which consists of a pick-



up and deposit operation. On each trip the device is assumed to handle only one load (which
represents one move request).

A device becomes empty as soon as it deposits the load at its destination station. At this point,
if there are other move requests in the system, the empty device is assigned to one of them
according to the empty device dispatching rule described in section 3.3. Otherwise, the device
remains idle at its last delivery point until it is assigned to another move request.

Note that, at certain times, there may be one or more idle devices in the system (which implies
that there are no move requests awaiting service). When a move request eventually arrives and
finds two or more devices idle, it will select (or "call") one of the idle devices according to the idle
device selection rule which is also described in section 3.3.

Note that many handling systems used in the fabrication or assembly of discrete parts can be
modeled as a trip—based handling system. Examples of single—device systems include freight
elevators, bridge or gantry cranes, and microload AS/R systems. (In the case of microload AS/R
systems, the model will not work well if the S/R machine finds the input buffer full a non-
negligible portion of the time.) Examples of multiple-device systems include a fleet of industrial
lift trucks, a fleet of unit load (pick-and—drop) AGVs, and manual systems (where people move
material by, say, pushing carts or hand trucks).

Programmable "smart" monorails (inverted or otherwise), on the other hand, satisfy most of
the properties of trip-based handling systems. That is, each carrier is self-propelled and any
carrier can be programmed to pick up any load in the system. However, in a trip-based material
handling system a device should be able to "pass or overtake" other devices when necessary. In a
monorail, a carrier cannot pass another carrier that is traveling on the same segment of the track.

One may argue that the above assumption significantly limits the applicability of the proposed
model. This is not the case. Inan AGV system, it is possible for a vehicle to temporarily leave the
guidepath to pass another vehicle. Furthermore, progress made in self-guided vehicles (that
operate with no guidepath) supports the "independent operation” assumption. Operator driven lift
trucks (or people pushing carts) have always had the capability to pass each other as long as
sufficient aisle space is provided. Whenever two—way traffic is anticipated in an aisle, it must be
wide enough to allow two devices (traveling in the same or opposite direction) to pass each other.
(See, for example, Tompkins and White [14], p. 93.)

3.2. , The Manufacturing System

The manufacturing system is assumed to consist of a set of stations (or nodes). There is a
pick-up/deposit (P/D) point associated with each station. For each station, the deposit point is
represented by an input buffer, and the pick-up point by an output buffer. (Refer to Figure Al in

6



Appendix [II.) The device delivers loads at the input buffers and picks them up from the output
buffers. Each pick-up point immediately follows the corresponding deposit point. If the distance
from the deposit point to the pick—up point of a station is non—negligible, then the model can still
be used after a simple change. (Refer to the last paragraph in Appendix III.) The device is
assumed to take the shortest path from its origin to destination. However, as seen later, the
analytical model will work with any user—defined empty and loaded travel time matrix.

Note that a move request (which represents one load) is defined by two variables: the point of
origin (which corresponds to the output buffer where the load is waiting) and the point of
destination (which corresponds to the input buffer of the next station). Recall that the device
moves only one move request (or load) at a time.

There are two types of stations: input/output (I/O) stations and processor stations. Loads from
outside the system enter through one of the I/O stations and — when all the operations have been
completed — they exit through one of the I/O stations. Incoming loads arrive at the output buffer of
an 1/O station while outgoing loads are deposited at the input buffer of an I/O station where they
instantly leave the system. That is, no processing takes place at an I/O station.

A processor station, on the other hand, represents either one machine, or a group of machines
(a cell), or a department. Loads to be processed are removed from the corresponding input buffer;
later, when processing is complete, they are placed in the corresponding output buffer. (Material
handling needs within a station is beyond the scope of our study.) Although load characteristics
may change after processing, for ease of exposition we assume that, as far as the material handling
system is concerned, flow is conserved at each processor station. It is straightforward to extend
the model to handle situations where flow is not conserved at each processor station.

Given that each load must be processed through certain stations in the above system, the
required throughput is usually defined as the number of loads that the devices must move per unit
time. The throughput capacity of the system, however, is defined only for a given number of
devices and it is expressed as the maximum number of loads that the devices are capable of moving
per unit time.

3.3. Device Dispatching

The empty device dispatching rule we developed for this study is a simple modification of the
FCFS rule. Upon delivering a load at station i, an empty device first inspects the output buffer of
statior; i. If one or more move requests are found, the device is assigned to one of them.
Otherwise, the device serves the oldest move request in the system (regardless of its location). We
will refer to this rule as the modified FCFS (or MOD FCFS) rule which is different than another
modification suggested by Egbelu and Tanchoco [7]. (See MFCFS described earlier in section 2.)



Note that the MOD FCFS rule attempts to reduce unnecessary empty travel by allowing the
device to override the FCFS rule whenever it finds another move request at the destination point.
At the same time, it attempts to evenly distribute device time among the stations since an empty

device is assigned to the oldest move request in the system whenever an empty trip is inevitable.

Recall that an empty device will become idle if no move requests are present. Hence, when a
load eventually arrives at the output buffer of a station, it may find one or more devices idle. In the
simulation model, if two or more idle devices are found, we assume that the new move request is
assigned to the device which has been idle for the longest time period. This rule, namely, the
longest idle vehicle (LIV) rule is one of the rules proposed by Egbelu and Tanchoco [7] who also
considered the NV (nearest vehicle) rule and the RV (random vehicle) rule.

Although the NV rule may seem to be more appealing than the LIV rule, as shown empirically
in [6] and [7], the idle device selection rule generally has little or no impact on the throughput
capacity of the system since it is usually invoked very seldom. In other words, when the minimum
or near-minimum required number of devices are used, the probability of finding two or more idle
devices in the system diminishes quite rapidly. On the other hand, if more than the minimum
required number of devices are used, then the idle device selection rule will be invoked more often;
however, since excess capacity is present, using the "most efficient" selection rule for idle devices
is not essential.

Note that the MOD FCEFS rule is a centralized rule in the sense that a device must be told where
the oldest move request in the system is located. In trip-based handling systems, one way to
achieve this is to use radio dispatched devices. Generally speaking, radio dispatched devices
improve productivity, response times, and inventory accuracy. The benefits of radio dispatching
and examples of successful applications have been reported in [4], [20], [21], and [22].

4. The Single-Device Model

We consider a system with M stations. Let & denote the set of processor stations, and let Q
denote the set of I/O stations in the system. (Recall that every station in the system is assumed to
have both an input and an output buffer.) The rate at which loads arrive at the output buffer of
station i is denoted by A;, and these rates are assumed to be given. To perform a trip, the device
picks up a load from the output buffer of a station and delivers it to the input buffer of some other
station. Let A; denote the rate at which the device delivers loads to the input buffer of station i.
Recall that we assume A; equals A; in steady state at the processor stations. (This implies that a
processor station may never be a bottleneck in the system.) For /O stations, A; need not equal A,

in general. However, from conservation of flow, provided that the device is able to meet the



demand placed on it , we must have Yica A;=Yiea . When a load is delivered at the input buffer

of an [/O station, it is assumed to immediately exit from the system.

In the following discussion, unless specified otherwise, the index for any summation is
assumed to be over the range 1 through M. Let p;; denote the probability that a load, which is
picked up by the device from the output buffer of station i, is destined for station j. The p;; terms
can be easily computed from the given flow data for the stations. (It is implicit that p;; = 0.) The
values for A; are obtained as the unique solution to the system of equations:

A o= XApp ieQ, ad A = A, ie®. (4.1)
j

Let A; denote the total arrival rate at the output buffers of all stations. Note that
Moo= XM = Y A (4.2)
i i

Whenever an empty device checks the output buffer of a station, we say that the device
“inspects" station i. The time taken by the device to pick up a load from the output buffer of station
i, transport it from station i to station j, unload it at station j, and then inspect station j, is
collectively assumed to be a random variable with a known mean T;;. The empty device travel ume
between stations i and j, on the other hand, is a random variable with a known mean G;;, which
includes the time taken to "inspect" station j. (Strictly speaking, when an empty device arrives at a
station empty it knows that there is a load waiting at the station; however, we still use the term
inspect for ease of exposition.) We assume that each station has ample input and output buffers,
so that no blocking of any form can occur.

Let o and 0. denote the proportion of time that the device is traveling with a load and traveling
empty, respectively. Let p = o + 0, denote the utilization of the device. If the device is to meet
the required throughput, we must have p < 1, which in turn implies that both ofand 0., as well as
their sum, must be less than 1. The term o is easily computed as

of = 27\., Z PijTij- (4.3)
i

Note that, if the value of o computed from equation (4.3) is greater than or equal to 1, the device
will not meet throughput, and o can no longer be defined as a proportion. Also, if p < 1, we let
oy = 1 — p denote the proportion of time that the device is idle.

Ou‘r objective is to determine the expected device utilization for a given set of input parameters
expressed by the A; values (which drive the throughput requirement) and the travel times. In the
process, we derive a necessary and sufficient condition for the device to meet the required
throughpur. If desired, one can also evaluate the throughput capacity of the device by



systematically increasing the A; values and/or the travel times until the above condition is violated.
Note that, if the A; values are kept constant, one can also rapidly evaluate the material handling

impact of alternative layouts by changing the corresponding travel times.

The movement of the device among the stations is described by the transition matrix R. In this
matrix we explicitly need to distinguish between instances where the device arrived at station i with
a load (the state if), and instances where it is dispatched (empty) to pick up a load at station i (the
state i). In addition, state I denotes the idle state; although the idle state does not identify the
station at which the device became idle, we shall see, subsequently, that no information is lost by
this representation. Let @ = {1, 1y, ..., M, Mg, I} denote the set of possible states for the device.
Each element rjy, j,k € @, of the transition matrix R is obtained as follows.

Consider first, the movement of the device from state i, to the state next visited by it. Clearly,
the device arrived at station i to pick up a load. Hence, the only possible states the device can visit
next are the states j¢ (j#1), with probability py;.

Consider next, the case where the device has just delivered a load at the input buffer of station
i. In other words, we are considering the movement of the device from state if to the next state

visited by it. Following the MOD FCES rule, on delivering a load at station 1, the device
immediately inspects the output buffer of station i. Let g, denote the probability that the device

finds the output buffer of station i empty upon inspection, given that it just delivered a load at

station i. We assume that the instant at which a load is delivered at any station is a random point
in time. With this assumption, the term g;, represents the probability that the output buffer of

station 1 is empty at an arbitrary instant in time. This assumption also implies that the product

I1 q;, gives the probability that all the output buffers are empty at an arbitrary instant in time.
1

Since the device becomes idle if all the output buffers are empty, we obtain the following
expression for p:

p = 1- H qif' (44)
i
Thus the device moves from state it to state [ with probability 1-p.

Let ﬁif =1- G denote the probability that the output buffer of station i is non-empty when the

device inspects it, given that it just delivered a load at station i. In this case, the load that is picked
up from the output buffer is destined for station j with probability p;;, and therefore the device
moves from state if to state jr with probability ﬁifpij.

Suppose that the device, upon delivering a load at station i, finds its output buffer empty, but
that there is at least one other load elsewhere in the system. The probability of this occurrence is
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justq; (1-ITq;,) = P—q;. In this case we assume that the oldest waiting load is at station j, j # i,
J#

with probability A;/(At — X;); in other words, this probability is assumed to be proportional to the
rate at which jobs arrive at the output buffer of station j (accounting, of course, for the fact that

station 1 cannot be the station that is visited next). Hence, the device moves from state if to state j,
(j # 1) with probability (p—ﬁif)lj/(h -\

Finally, if the device is idle, the probability that the next load to be moved originates at station i
is approximated by Ai/At. In other words, the probability that the device moves from state I to
state ir is assumed to be proportional to the rate at which loads arrive at the output buffer of station
i. Hence, the transition matrix R is given by

I, 1, 2, TR M, M, I
le 0 0 0 Py 0 py O
1 0 0 (4 ;L q,Pp (P ,)A q I-p
1 )VT‘XI 1¢12 1 )‘T“)\'l lfle
2. 0 P, 0 0 0 P,y O
- )\,1 - - }‘M —
% 08y P 0 0 Pay T G I-p
R = : 4.5)
M. 0 Pui 0 Py 0 0 0
N N
M (&qm QP (P-qu)m QP 0 0 1-p
A N My
I . 0 " 0 " 0 0

For ease of exposition, we will assume, without loss of generality, that station 1 is one of the
I/O stations. We define a cycle as the time between two successive inspections at station 1, and let
C, denote its expected value. We will refer to C, as the cycle time.

Let v, i=1,...,M, denote the expected number of times the device inspects the output buffer

of station i during a cycle. (Note that, by this definition, v, = 1.) Among these visits, the device
arrives at station i either empty (Vie) or loaded (Vir)’ i€, vi=v; +v;. Letv, denote the expected

number of times the device becomes idle during a cycle. Withv = [(Vie"’if)’ vi], these terms are

obtained from the unique solution to the system of equations:

VR = v; with Vie + Vi =V = 1. (4.6)

1

From equations (4.5) and (4.6), we get
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A A

Vie T DV (P -G+ vii— (4.7.a)
joi T T
Vi = 2 (Vi V5, Q7 Piis (4.7.b)
J#!
Vi = (1 - p) z ij. (47C)
j

Note that the expected number of loads delivered at station i during a cycle is exactly equal to the
expected number of times the device arrives loaded at station i in the same period; that is

Vi = Alcl (48)

If
Substituting the value for Vi, given by equation (4.8) in equation (4.7.a) and (4.7.c), and using

equation (4.2), we obtain:

Vi = (1-p)ArC,, (4.9.2)
N
Vie€ T ZAJ-Q (p- er)— + (I1-p)AC,. (4.9.b)
J#i X'r - }\-j

During a cycle, the device makes Vi, empty visits and Vi, loaded visits to station i, on the

average. Every time the device visits a station empty, a load is picked up with probability 1.
(Recall that under the MOD FCEFS rule, the empty device is not dispatched to a station unless that
station contains the oldest move request.) In contrast, when the device arrives loaded at station i,
a load is picked up from the output buffer of this station with probability qif. Hence, during a
cycle, the expected number of loads picked up by the device equals Vi ¥ Vi, qif. For the system to

be stable, this must eqhal AiC,, which is the expected number of jobs that arrive at the output

buffer of station i during a cycle. Thus, for a stable system we must have
}.icl = Vie + Vif q]f (4 10)
From equations (4.8) and (4.10), we obtain

Lemma 4.1
Vif—(}‘.icl —Vie) vi—licl
qif = v = a——

if Aicl

(4.11)

We now develop an expression for C, by considering the expected transition time for the device
to move from one state to the next. Let Tif (Tie ) denote the expected time from the instant at which

the device arrives loaded (empty) at station i until the instant it visits the next state. Let T;denote

12



the expected amount of time that the device remains in the idle state each time it becomes idle.
Then C, is obtained as:

C, = Y vi Tk (4.12)
ke®
The terms Ty, k € @, are determined as follows. Consider first, the instant when an empry device

arrives at station i. The possible next states are jg, j#1. Hence,

T, = 2 Bifl. (4.13.2)

j#i
Consider next, the instant when a loaded device arrives at station i. The state visited at the next
transition instant is either js, j. (j # i) or I, with probability g pjj, (P~Q;)Aj/(Ar — i), and 1-p,
respectively. If the next state visited is j¢ (je), then the expected transition time to this state is

simply T;; (0;;). Although it takes no time for the device to enter the idle state I (from the state i),
once the device enters the idle state then the next state it enters is state je, j=1,...,M, with

probability lj/?w; in this case the time to move to station j from station i is just ;. Therefore,

_ _ Aj A
T, = ) 9; PijTlij + > (P-g) — 0y + Y (1-pyoy; . (4.13.b)
J#i j#i T = Aj i Ar
Lastly, the expected time in the idle state until a load arrives at any output buffer is approximated as
L= (4.13.)
A
Let
6; = 2 leij, (4.14.9)
J
= 26, and 1= A6, (4.14.b)
i i
and set
X A
G = - (4.15)
‘ Mo i

From equations (4.8) through (4.15) we obtain the following expression for G, stated as:

Proposition 4.2:

)\i 7Li
qj, T(M—M) (p-of—@;) + X;(l—p). (4.16)

iX
\ ]
A proof of Proposition 4.2 is provided in Appendix L.

We now determine the proportion of time the device travels empty. Note that the device travels
empty only if it arrives loaded at a station, and finds no job waiting there. In the expression for T,

13



given by equation (4.13.b), the second and the third summations, taken together, yields the

expected time the device travels empty to pick up another load, for every loaded visit to station i.
In a cycle of expected length C,, the device makes Vi, = A;C, loaded visits to station i on the
average, and so the expected empty travel generated by station i per cycle is given by E;, where

A; A Aib; A
Ei = ACGQ, (p-g)——o0y+ ), (1-pyHoy) = ———(q.-1-p)—) C.
| lljépql‘) . ; PMu) KT—li(qlf plT) |
In arriving at the above expression, we used equation (4.14.a) and the fact that 6; = 0. Hence, the

proportion of the time the device travels empty out of station i is obtained as e; = E;/C,.
Substituting for g, using proposition 4.2, ¢; is given by

AB; A Ai0;
i — ________11 _l )\’ —ll _a —_ l = —L‘l —_ - 1 417
e M—Ki/\ix( T-A) (p -0 =) Y (p—of—9y) 4.17)

Since e; is non-negative by definition, we must have p — of — @; > 0. Hence, to have a stable
system with p <1, we require o + ¢; < 1, i=1,...,M. Let station k be such that ¢y = ™2* ¢;. In
particular, we must have ¢ + @ < 1. This is expressed as Proposition 4.3. (It can be easily

shown that @y 2 0, and so we must have o+ @x > 0.)

Proposition 4.3; A necessary condition for the stability of the system is

o+ QP < 1.
|
If the above condition is met, then we can compute p using the following iterative algorithm:

Algorithm to compute p:

i) Setn=0. Start with an initial value of p", (say, ph=0t).
ii) Compute q{‘ P i=1,...,M, using equation (4.16).

iii) Using these qﬁ values, compute p from equation (4.4).

iv) Compute p™*! = p + A(p — p"), where A is a sufficiently small step size. Set n=n+1.

v) Iterate over steps ii) through iv) until two successive values of p" are reasonably close.

Note, from equations (4.4) and (4.16), that in the above algorithm, we obtain p as the solution to
the following fixed point problem:

A; A
1-p =H{E()\T'}\i)(p“af*@i)+;(l_p)}- (4.18)

i i

Proposition 4.4: For the fixed point problem defined by equation (4.18), the above algonthm

returns a unique solution for p if o + @y < 1. This value of p lies between o + @ and 1.
]
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A proof of Proposition 4.4 is provided in Appendix II.

Using Lemma 4.1, the cycle time is now obtained as follows. Since

i AC, AC

collecting terms involving C, and using Proposition 4.2 to express qyp We obtain :

X
A (Ar = A
c, = (Ar = A) — (4.19)
X 1
- of - + 1+ (1-p)—
p-ar-9 M—M[ ( p)M]

The terms v; can now be easily computed using Lemma 4.1. Once C, and the v; values are
computed, then we can determine C;, i = 2,...,M, using the relationship v;C; = v,C,. Note that the
C; and v; values are provided only as additional information; that is, we do not need to explicitly
compute their values in order to test the system for stability.

5. Extension to Multiple Devices

One possible way to extend the single device model to multiple-device systems is to use a
"single faster device." That is, in order to model a system with K devices, we assume that there is
a single device which travels K times faster (Kleinrock [8]). Using a proportionally faster single
server to represent multiple servers has also been proposed by Dukhovnyy [4] who studied urban
transportation systems using this approximation.

The single faster device is modeled simply by dividing all the o;; and Tj; values by K. We

realize that this approach is not likely to yield satisfactory results for expected waiting times.
However, as shown in section 6, such an approximation seems to yield reasonably accurate results
for device statistics and cycle times.

6. Model Evaluation and Numerical Experiments

In this section we will present numerical examples to study two fundamental issues. First, we
will evaluate the performance of the MOD FCFS dispatching rule relative to those rules studied
earlier in the AGV context. Second, we will evaluate the performance of the analytical model for
single-device and multiple-device systems and compare the results obtained from it with those
obtained from the three analytical models described in section 2. In making the above comparisons
we will also use results obtained from a simulation model. Three different layouts, namely, L1,
L2, and L3 were developed for the experiment. Each layout was analyzed with various data sets
designated by DAT1, DAT2, etc. A fourth layout, which is identical to the one presented by



Egbelu [6], was also included in the study. The above layouts and the flow and travel time data
associated with each are shown in Appendix III.

Consider first the performance of MOD FCFS. The results of a simulation experiment are
shown in Table | where ay, ., and a, denote the fraction of time that a device is traveling
loaded, traveling empty, and waiting in an idle state, respectively. (All the simulation runs are
based on 5,000 loaded trips per device per replication, and 10 replications.) For given flow data
and travel time data it is straightforward to compute the of value which is shown as the third
column in Table 1. The four dispatching rules of interest are listed across the Table as: FCFS,
MECES, STTF, and MOD FCFS. For each rule, we present the values of o and o as well as the

overall mean waiting time (in minutes) for any move request in the system.

The results shown in Table 1 indicate that FCFS and MFCFS do not yield satisfactory results.
This is primarily due to the fact that neither rule attempts to reduce empty device travel. On the
other hand, STTF and MOD FCEFS yield comparable results. Recall that, under STTF, certain
stations may not receive empty devices for long periods of time. This accounts for the unstable
system encountered for layout 2 with a high throughput level under STTF. Shop locking issues
aside, past results have established that STTF is an efficient rule. Since MOD FCEFS yields results
that are very close to those obtained with STTF, and since shop locking is less likely to occur with
MOD FCES (this may require further investigation), we conclude that MOD FCES is a viable
dispatching rule.

Consider next, the performance of our analytical model relative to other analytical models and
simulation. Comparing the results presented under the two columns labeled MOD FCEFS and our
analytical model in Table 2, we observe that our model slightly (but consistently) overestimates the
minimum number of devices required. On the other hand, comparing the results presented under
STTF and the other three analytical models, we observe that model 2 shows the overall best
performance although it slightly (but consistently) underestimates the minimum number of devices
required under STTF.  Note that determining the minimum number of devices required via
simulation is not straightforward because this number, to some extent, depends on how one
defines a "stable" system. Table 2 is based on three alternative measures for "stability”, labeled A,
B, and C. Such definitions of stability mostly reflect what is "acceptable performance” from a
practical viewpoint rather than a theoretical viewpoint.

It is interesting to note that model 2 also yields fairly good estimates on the number of devices
required under the MOD FCFS rule. However, studying the number of devices required alone can
be misleading. A more accurate measure of model performance is the fraction of time that a device
travels empty, that is, a.. (Recall that, with no blocking or congestion delays, computing @y is
straightforward and that oy = 1.0 — of — @t..) Hence, not considering blocking, the accuracy of a
model depends on how well it can estimate o for a given dispatching rule.
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Table 2. Minimum number of devices required to meet the given throughput.

Layout and Simulation The Model 1 Model 2 Model 3
throughput STTF MOD FCFS MOD FCFS || (Beisteiner) | (Beisteiner) | (Egbelu)
level AJ|] B C A|] B C | analytic model
L1.DAT3 1 1 1 1 1 1 1 1 1 1
L1.DAT4 1 1 1 1 1 1 1 2 1 2
L1.DATS 1 2 2 1 1 2 2 2 1 2
L2.DAT3 3 3 3 3 3 3 3 4 3 4
L2.DAT4 4 4 4 4 4 4 5 5 4 5
L2.DATS 5 5 5 4 4 5 5 6 4 6
L3.DAT3 5 5 5 4 5 5 6 6 4 7
L3.DAT4 8 8 8 7 7 8 9 10 7 12
L3.DATS5 8 9 9 8 8 9 10 11 7 13
Layout 4 8 9 9 8 9 9 10 9 9 13

A : System is assumed to be stable if Max q; is less than 500, where g; is the length of the output buffer i.
B : System is assumed to be stable if Max q; is less than 500 and Max E[q;] is less than 10.
C: System is assumed to be stable if Max g; is less than 500 and Max E[g;] is less than 5.

Table 3. Detailed evaluation of Model 2 and the MOD FCFS analytical model.

Layout and The
throughput Model 2 Simulation (MOD FCFS) MOD FCFS
level analyt. model
Estimated | Required No. of
devices | devices | ogdev |ao/dev |[oy/dev |l devices | ag/dev | op/dev | oy/dev ae/dev
L1.DAT3 0.477 1 0443 | 0.033 | 0.524 1 0.433 | 0.270 | 0.297 0.287
L1.DAT4 0.715 1 0.665 | 0.050 | 0.285 1 0.650 | 0.290 | 0.060 0.316
L1.DATS 0.893 1 0.831 | 0.062 | 0.107 1 0.814 | 0.182 | 0.004 Unstable
2 0.407 | 0.260 | 0.333 0.273
L2.DAT3 2.148 3 0.674 | 0.042 | 0.284 3 0.658 | 0305 | 0.037 0.323
4 0492 | 0.306 | 0.202 0.320
L2.DAT4 3.069 4 0.722 | 0.045 | 0.233 4 0.706 | 0.279 | 0.015 Unstable
5 0.564 | 0324 | 0.112 0.345
L2.DATS 3.580 4 0.843 | 0.052 | 0.105 4 0.827 | 0.173 | 0.000 Unstable
5 0.659 | 0.307 | 0.034 0.323
6 0.549 | 0.323 | 0.128 0.341
L3.DAT3 3.789 4 0915 | 0.032 | 0.053 4 0.894 | 0.105 | 0.001 Unsuable
" 5 0.714 | 0.285 | 0.001 Unstable
6 0.594 | 0.381 0.025 0.389
7 0.514 | 0.396 | 0.090 0415
L3.DAT4 6.316 7 0.872 | 0.030 | 0.098 7 0.855 | 0.145 | 0.000 Unstable
8 0.748 | 0.252 | 0.000 Unswble
10 0.598 | 0.380 | 0.022 0.389
12 0498 | 0392 | 0.110 0.409
L3.DATS || 6.890 7 0951 | 0.033 | 0.016 8 0.818 | 0.182 | 0.000 Unsuable
9 0.726 | 0.273 | 0.001 Unsuable
11 0.594 | 0.381 | 0.025 0.394
13 0.503 ] 0.393 | 0.104 0.410
Layout 4 8.003 9 0.530 | 0359 | 0.111 9 0.531 | 0457 | 0.012 Unsuable
10 0.478 | 0.487 | 0.035 0.524
11 0434 | 0.500 | 0.066 0.556

b




According to the results obtained from the simulation model, model 2 also generates reasonably
good estimates on the number of devices required. However, as shown in Table 3, model 2
severely underestimates the value of o (resulting in a severe overestimation of ay). That is, model
2 mostly generates misleading results in terms of device statistics. On the other hand, as shown in
Table 3, our model generates reasonably good estimates for o for all the layout and throughput

level combinations tested.

We further evaluated the performance of our model by comparing the analytical cycle times
obtained for each station with those obtained from simulation. The results for layout 1 are shown
in Table 4 which indicates that the model performs reasonably well from a cycle time viewpoint as
well. Note that the fifth column in Table 4 (i.e., simulation results obtained for a single faster
device) enables us to evaluate the impact of approximating several devices by a single faster device.
The results indicate that such an approximation seems to generate satisfactory results.

Obviously, the larger the number of devices in the actual system, the more error we would
expect from the above approximation. However, as shown in Table A10 in Appendix III (where
we present cycle time results for layout 2 and layout 3), even with 10 devices, a single faster
device yields reasonably accurate results.

7. Conclusions

In this study, we derived a necessary and sufficient condition for stability in trip-based matenal
handling systems. To our knowledge the model we present is the first analytical model which
explicitly incorporates a dispatching rule in the context of trip-based material handling systems.
Unlike existing models, our model also gives the cycle time for each station. Moreover, one could
run our model with different number of devices and obtain device statistics and station cycle times
quite rapidly. This would not be possible with existing models since they only give a single
estimate on the number of devices required. Furthermore, their performance is unpredictable since
their accuracy mostly depends on the layout and (other than FCFS), they do not explicitly capture
the empty device dispatching rule.

We also empirically observed that a single fast device serves as a useful approximation to
model multiple-device trip-based material handling systems as far as the expected device utlization
is concerned. Lastly, the dispatching rule we used in the study, namely, MOD FCEFS, is simple,
efficient, and was not analyzed before. This rule was empirically shown to be nearly as good as
the Shortest-Travel-Time-First (STTF) rule. It is instructive to note that, assuming the pick-up
point immediately follows the deposit point of each station, as the throughput requirement 1s
increased, the MOD FCFS rule will approach the STTF rule since a device is very likely to find a
load at a pick-up point after it delivers a load at the corresponding deposit point.
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Table 4. Cycle times obtained from the simulation model and the MOD FCFS analytical model.

(Layout 1)
Layout and MOD FCFS
throughput | No.of | Station | Multiple devices | Single faster device | analytical
level devices No. simulation simulation model
1 21.146 £ 0.240 20.822
2 76.538 + 1.715 76.672
3 18.519 + 0.240 18.058
L1.DAT3 1 4 26.714 + 0.624 Same as Multiple 26.300
5 25.541 £ 0.426 device case 25.154
6 23.852 + 0.570 23.649
7 75.163 + 3.490 75.603
1 16.451 £ 0.141 16.594
2 51.000 + 1.157 51.115
3 15.016 £ 0.166 14.103
L1.DAT4 1 4 21.086 + 0.296 Same as Multiple 20.455
5 20.251 + 0.241 device case 19.572
6 19.077 £ 0.251 18.411
7 54911 + 1.990 58.502
1 10.897 + 0.138 11.037 £ 0.140 10.980
2 40.789 + 0.921 40.788 £ 0.916 40.892
3 9.500 + 0.124 9.665 + 0.149 9.524
L1.DATS 2 4 13.806 + 0.348 13.998 + 0.340 13.891
5 13.240 + 0.211 13.357 £ 0.228 13.284
6 12.337 £ 0.290 12477 + 0.284 12.486
7 39.494 + 1.803 39.662 + 1.860 40.005
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Appendix I: Proof of Proposition 4.2

Pr i
g, = ‘k‘i“(xT—k')(P—af-z Sl i(1—0) (L1)
lf Ay 1 At AiAp Ar ' ‘
Proof:  From equations (4.8) and (4.9.b),
A A
= AC, (p-1+q; — + (I-p)AC, +AC, - AC, (p-1+q. — 1.2
jz iC (p qj[)xT Y (1-pAC, 1 (e qlm (L.2)

From equations (4.11) and (1.2), we obtain

A, = z/\ (p- 1+q,,>

+(1-p)A; +(A; = N) - A (p-1+q; L
Aj e ( )= N qlf)lr—li

and so this gives

_Z—AJ—]+(A x)+xz Mg (13)

Al At = L(1-p)[1+ :
“ A1 -\, AT A,

AT = Aj AT — A

From equations (4.8), (4.9), (4.10), (4.12), (4.13) and (4.14.a), noting that p;; and o;; are both
equal to zero, we obtain:

_ A A
Z (Vi * Vi, @) Z pifTij + Z Z vi o5 [(p-1+ g, o AP ]+a-pc,

11q1
ozfc,+<1—p)C[ZZA<ru(—L e E ZZ 4,05
i A Ar— A

A O Agq;
1 1- LS Bhd Thd SN f ei ,
G+ (1pC[1- Y = =l Y e

and so, cancelling out the term C, on both sides of the above expression, we get:

Aiq;,
0; = -p) Lol +p - af. (1.4)
inT—xi zmu—x) P

Multiplying equation (1.3) by 0;, and summing over all i, we get:

Aj Ajg;
XTE—-—-‘—G -(l—p)[x+2 - 1Y — ]+ -1+ XY —. (19
i T — Aj 7\.]‘ )» J XT_)\.J i )'T_)‘j
Comparing equations (I.4) and (1.5), we obtain
Ag; A
> —L- = XT—+(1—)2—1—+p— x (1.6)
i At - A X Ar_A; X
From equations (1.3) and (I.6), after some elementary algebra, we obtain the desired result. ]
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Appendix II: Proof of Proposition 4.4

Proposition 4.4: For the fixed point problem defined by
A; Ai
1-p = [T {==n-W(p-or—) +=1-p)}, (LD
i A At
there exists a unique solution for p, if o + @ < 1, where k is the index of the station with the
maximum value of ¢;. This value of p lies between o + @ and 1.
A Ai
Proof: Let f(p) = 1-p; and gp) = [[ {=—(r-A)(p-or )+ = (1-p)}.
i Aix Ar
We are seeking a fixed point solution to the equation:
flp) = gp); s+ <p<l. (I1.2)
Note that at p, = 0t + @k, f(Po) > g(Po). To see this, observe that
A Ai Ai
g0) = i-po| [T {2 -1) (o-0r-00 + 2 (1-py} ] (113)
Ar Y Ar

Since f(py) = 1 - po, and /AT < 1, we observe that in order to show f(po) > g(po), it is
enough to show that [T h(1) < 1, where

izk
, Ai A Ai Al A x A
he) = — (A (@ —0) + 2 (1-py) = — -y (R X D)
k(1) A, (A1 = N) (ox — ¢1) 7LT( Po) AiX(T )(>Li ?»k)lr x( Do)
A A A A AT = A4
= 1M, Sy  RMATZA L
™ T A .

Note, also, that as p — 1, g(p) > f(p). To see this, observe that
Ai
g > ]I {/—\——(M—Ko (p-0r ) J.
i i
Hence, g(p)lp— >0. However, f(p)lo,; =0. Thatis, g(p)lp1 > f(Plpoi -

It is thus clear that there is at least one value of p, in the region between o + @y and 1, where
f(p) = g(p). This demonstrates the existence of a fixed point. To show that this point is unique.
we first rewrite g(p) as

g = [IBa-p+e-a-o)),
where | l
Ai Aix
i = —— (Ar-%); and N = —— (11.4)
P Aix Ar(Ar - A5)

We now differentiate f(p) and g(p) with respect to p. This gives f(p)=-1, and
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£ = YT sn-p+o-ar-e0)] pn;+ 1)
b i
. P
= 2 [H Bi(ni1-p) + (p - e —9) ) Bi(1 =1
7 Bi(nj(1-p)+p-0it-9;)
1 - T]j
= g(p) = g(p)(a(p) +b(p)),
JZ ,(1-p)+p-0-9; PP
where
1 - n 1 _ n
ap) = X J - i
jms Nj(1-p)+p-oe—¢; jl?%l p(I-Mjp+n—0o—;
and
1 -=n. -n.
bp) = Y N - v (1-mp

im Ni(1-P) 400 (1-p)(M;-11+1-0-¢;

jmpt
We now prove, by contradiction, that there is only one solution for p, in the region [0+, 1).
Suppose, on the contrary, that there are multiple solutions in this region. Since f(p) > g(p) at
p=0+@y, and f(p)ly_; < g(P)lp , this implies that the functions cross exactly an odd number of
times in the region [o+@y,1). Let these points be designated p,,...,Pz.1, With p; <...< pa,. . for
some n > 0, and consider the first three points, p;, p, and ps.

Note that we must have g'(pl) > f'(pl), g'(pz) < f'(pz), and g'(p3) > f'(p3). Since f'(pi) =-]
for all i, in particular this implies that g'(pz) < g'(p3). Clearly, at these points of intersection,
g(p)=f(p), and so we also have:

gy = (1-pp) (alp) + b(py), i=1,..3.

Observe that as p; increases in value, the terms a(p;), b(pi) and (1-p;) all decrease in value. Hence
we have g'(pl) > g'(pz) > g'(pg). This immediately contradicts the earlier claim that g'(p:) <
g'(P3). |
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Appendix III: Input data for the numerical experiments

The numerical experiment is based on three layouts labeled L1, L2, and L3. For all three
layouts, it is assumed that the device travels at a speed of 15 distance units per minute (except for
L3 where it travels at 30 distance units per minute) and that the load or unload time is equal to 1/3
minutes. The first layout, namely, L1, is shown in Figure A1 where stations 1 and 2 are the I/O
stations. (Note that no jobs are received through station 2.) The routing matrix and the distance
matrix are presented in Table Al and Table A2. The interarrival time for jobs received through
station 1 is shown in Table A3 for low, medium, and high throughput levels. Lastly, for L1, it is
assumed that the processing times are exponentially distributed and the travel times (loaded or
empty) are constant.

Similar data for L2 (shown in Figure A2) are presented in Table A4, Table A5, and Table A6.
For L2, the processing times are assumed to be exponentially distributed while the empty travel
times are assumed to be uniformly distributed between 0.8z and 1.2z, where z reflects the mean
empty travel time obtained by dividing each entry in Table A5 by the device speed. The loaded
travel time is obtained by simply adding the (constant) load and unload times to uniformly
distributed empty travel times.

Lastly, the data associated with L3 (shown in Figure A3) are presented in Table A7, Table A8,
and Table A9. For L3, the processing times are exponentially distributed and the travel times
(loaded or empty) are constant.

A fourth layout we included in the study is presented by Egbelu [6]. The reader may refer to
his paper to view the layout, the distance/travel time matrix and other data. We used the same data
except for the routing matrix: the last station for product types 4 and 5 is station 1 in our
experiment, rather than station 8. This minor change in the routing matrix was made since our
model, in its current form, does not allow [/O stations to operate as input—only stations. Note that
Eiif is not defined for these stations because the device never delivers a load at an input—only station.

However, the model can be modified to accommodate such stations with relative ease.

Also, in the fourth layout, the pick-up and deposit points of each station are separated by a
non-negligible distance. Nevertheless, following the MOD FCEFS rule, we forced the device to
always first inspect the corresponding pick—up point after it deposits a load at a deposit point.
(Adjusting our model to capture the additional distance traveled is straightforward.) Although this
may crl:ate some unnecessary empty device travel from a deposit point to the corresponding pick-
up point, simulation results showed that it has a small impact on the throughput capacity of the
system, especially since the device is likely to find a load waiting at the pick-up point as one
increases the throughput level.
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Table Al. Routing matrix of jobs in Layout 1.

Station No. 1 2 3 4 5 6 7
1 0.0 0.0 0.5 0.5 0.0 0.0 0.0
2 0.0 0.0 0.0 0.0 0.0 0.0 0.0
3 0.5 0.0 0.0 0.0 0.5 0.0 0.0
4 0.0 0.0 0.0 0.0 0.3 0.7 0.0
5 0.0 0.5 0.1 0.0 0.0 04 0.0
6 0.2 0.0 0.5 0.0 0.0 0.0 0.3
7 0.0 0.3 0.1 0.6 0.0 0.0 0.0

Table A2. Vehicle travel distance between stations in Layout 1, distance units.

Station No. 1 2 3 4 5 6 7
1 0 62 16 42 36 28 48
2 58 0 38 64 44 36 16
3 64 46 0 26 50 42 62
4 38 50 18 0 24 16 36
5 50 26 30 56 0 28 42
6 22 84 38 64 58 0 70
7 42 54 58 84 28 56 0

Table A3. Mean interarrival time of jobs at the input station in Layout 1, mins/job.

Input station

Throughput level

DATI

DAT2

DAT3

DAT4

DATS

1

60

40

30

20

16

14
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Table A4. Routing matrix of jobs in Layout 2.

Station No. 1 2 3 4 5 6 7 8 9 10 11
1 0.0 0.0 0.0 0.0 0.2 0.2 0.0 0.2 0.2 0.0 0.2
2 0.0 0.0 0.0 0.0 0.2 0.1 0.1 0.2 0.1 0.1 0.2
3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
4 0.0 0.0 0.0 0.0 0.2 0.4 0.0 0.1 0.1 0.1 0.1
5 0.1 0.1 0.1 0.2 0.0 0.1 0.0 0.1 0.1 0.1 0.1
6 0.0 0.0 0.1 0.1 0.1 0.0 0.2 0.1 0.2 0.2 0.0
7 0.0 0.1 0.2 0.1 0.0 0.2 0.0 0.1 0.2 0.0 0.1
8 0.2 0.0 0.0 0.0 0.2 0.1 0.1 0.0 0.2 0.1 0.1
9 0.0 0.2 0.1 0.0 0.1 0.2 0.1 0.2 0.0 0.1 0.0
10 0.0 0.2 0.2 0.1 0.0 0.1 0.0 0.1 0.1 0.0 0.2
11 0.2 0.0 0.1 0.1 0.2 0.0 0.1 0.0 0.1 0.2 0.0

Table AS. Vehicle travel distance between stations in Layout 2, distance units.

Station No. 1 2 3 4 5 6 7 8 9 10 11
1 0 22 47 30 14 32 46 8 27 31 17
2 22 0 36 29 23 24 38 14 16 20 14
3 47 36 0 33 37 19 12 39 27 16 41
4 30 29 33 0 16 14 21 25 13 28 27
5 14 23 37 16 0 18 32 16 17 32 18
6 32 24 19 14 18 0 14 27 8 23 29
7 46 38 12 21 32 14 0 41 22 18 43
8 8 14 39 25 16 27 41 0 19 23 9
9 27 16 27 13 17 8 22 19 0 15 21
10 31 20 16 28 32 23 18 23 15 0 25
11 17 14 41 27 18 29 43 9 21 25 0

Table A6. Mean interarrival time of jobs at the input stations in Layout 2, mins/job.

Throughput level DATI1 DAT?2 DAT3 DAT4 DATS
Input station
1 14 10 7 4.9 4.2
2 28 20 14 9.8 8.4
4 42 40 21 14.7 12.6
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Table A7. Routing matrix of jobs in Layout 3.

Station | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
No.
1 00 00 00 0.0 00 00 00 0.0 02 00 02 00 00 02 0.2 0.0 0.2 0.0 0.0 0.0
2 0.0 00 00 0.0 00 00 0.0 0.0 0.0 0.0 0.2 00 00 0.2 0.2 0.0 0.2 0.0 0.2 0.0
3 00 00 00 0.0 00 02 0.0 00 0.0 00 02 02 02 0.0 0.0 0.0 0.0 0.0 0.2 0.0
4 0.0 00 00 00 00 00 0.0 0.2 00 02 00 00 02 00 0.0 0.2 0.0 0.2 0.0 0.0
5 0.0 00 00 00 00 0.2 0.2 02 02 02 00 00 00 00 0.0 0.0 0.0 0.0 0.0 0.0
6 0.15 0.0 0.2 00 0.0 00 0.0 0.2 0.0 0.0 0.2 0.05 0.1 0.0 0.0 0.0 0.0 0.0 0.1 0.0
7 0.0 00 02 0.1 0.0 0.1 0.0 0.2 00 0.1 0.0 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.1
8 0.0 00 00 0.1 0.2 00 0.1 00 0.0 00 0.1 00 0.1 0.0 0.0 0.1 0.0 0.1 0.0 0.2
9 0.2 0.05 00 0.0 0.0 0.0 0.0 00 0.0 0.0 0.2 0.1 0.15 0.0 0.1 0.0 0.1 0.0 0.1 0.0
10 0.0 00 01 02 00 00 0.1 0.1t 00 00 00 0.1 0.1 00 0.0 0.1 0.0 0.1 0.0 01
11 0.0 0.1 01 0.0 0.0 0.1 00 00 00 00 0.0 02 0.0 0.2 0.1 00 0.0 00 02 0.0
12 0.0 0.0 0.15 0.15 0.0 0.05 0.0 0.1 0.0 0.1 0.0 0.0 0.1 0.05 0.0 0.1 0.0 0.1 0.0 0.1
13 0.0 0.0 0.0 005 0.2 00 0.1 0.1 0.1 0.1 0.0 00 0.0 0.05 0.0 0.0 0.0 0.2 0.0 0.1
14 0.2 0.0 00 0.0 0.1 0.1 0.1 00 0.1 00 0.1 01 0.0 00 0.0 0.0 0.1 0.0 0.1 0.0
15 0.1 0.05 0.05 0.0 0.0 0.1 0.1 00 0.1 00 00 00 00 0.2 0.0 00 0.2 0.0 0.1 0.0
16 0.0 00 00 02 0.1 00 00 0.1 0.0 0.1 00 00 0.1 00 0.0 0.0 0.0 0.2 0.0 0.2
17 0.1 0.1 00 0.0 0.0 0.05 0.0 0.0 0.0 0.0 0.15 0.0 0.0 0.2 0.2 0.0 0.0 0.0 0.2 0.0
18 0.0 0.0 02 01 0.0 00 0.1t 0.0 00 0.1 00 00 0.1 00 0.0 0.1 0.0 0.0 0.0 0.3
19 02 0.1 00 00 00 00 0.0 00 0.0 025 0.1 0.1 0.0 0.05 0.1 0.0 0.1 0.0 0.0 0.0
20 0.0 0.0 00 0.14 00 00 0.0 00 00 02 00 00 02 0.06 0.0 0.2 0.0 0.2 0.0 0.0

Table A8. Vehicle travel distance between stations in Layout 3, distance units.

station | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

0 46 52 60 28 42 36 61 20 S5 28 38 91 54 26 87 35 91 40
14 0 46 54 42 36 S50 55 34 49 22 32 85 8 20 81 9 85 14
48 34 0 38 26 20 34 39 28 33 36 16 69 42 34 65 43 69 28
90 76 42 0 68 62 76 41 70 35 78 58 31 84 76 27 85 31 70
72 58 24 32 0 24 8 33 32 27 40 40 63 66 38 59 47 63 52
48 34 40 48 36 0 44 49 8 43 16 26 79 42 14 75 23 719 28
64 50 16 24 22 16 0 25 24 19 32 32 55 58 30 51 39 55 44
69 55 21 29 27 21 35 0 29 24 37 37 60 63 35 56 44 60 49
40 26 32 40 28 22 36 41 0 35 8 18 71 34 6 67 15 71 20
75 61 27 25 33 27 41 6 35 0 43 43 56 69 41 52 50 56 55
62 48 24 32 20 14 28 33 22 27 0 10 63 56 28 59 37 63 42
48 23 42 17 50 0 53 56 48 49 57 53 42
79 65 31 9 37 31 45 10 39 4 47 47 0 73 45 36 54 40 59
6 32 38 46 34 28 42 47 26 41 14 24 77 0 12 73 21 77 26
34 20 66 74 62 56 70 75 54 69 42 52 105 28 0 101 9 105 14
83 69 35 13 41 35 49 14 43 8 51 351 4 77 49 0 58 44 63
35 21 67 715 63 57 71 76 55 70 43 53 106 29 41 102 0 106 15
89 75 41 19 47 41 55 20 49 14 57 57 10 83 55 6 64 0 69
20 6 52 60 48 42 56 61 40 S5 28 38 91 14 26 87 15 91 0
76 62 28 26 54 48 62 27 56 21 64 44 17 70 62 13 71 17 56
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Table A9. Mean interarrival time of jobs at the input stations in Layout 3, mins/job.

Throughput level DAT1 DAT2 DAT3 DAT4 DATS
Input station N

1 10 7 5 3 2.75

2 20 14 10 6 5.5

3 30 21 15 9 8.25

4 40 28 20 12 11.0

5 50 35 25 15 13.75
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Table A10. Cycle times obtained from simulation and the MOD FCFS analytical model.

(Layout 2)
Layout and
throughput level No. of Stauon No. Multiple devices simulation Single faster device MOD FCFS
devices Simulaton analytical model

1 5.347 £ 0.058 5.417 £ 0.095 5.496
2 781410.114 8.059 £ 0.263 7.865
3 12.441 £ 0.203 12.675 £ 0.385 12.469
4 9.457 £ 0.146 9.811 £ 0.326 9.558
S 4.485 £ 0.063 4591 1 0.146 4.500

L2.DAT3 4 6 4.266 £ 0.052 4490 £ 0.176 4.265
7 7.958 £ 0.138 7.949 £ 0.236 7.915
8 4717 £ 0.073 4.847 £ 0.219 4.708
9 4.099 £ 0.064 4.306 £ 0.107 4.091
10 5.785 £ 0.084 59141 0.144 5.738
11 5.555+0.110 5.634+£0.117 5.573
1 3.880 + 0.048 3.944 £ 0.074 4.007
2 5.664 + 0.068 5.822+0.153 5.683
3 87321 0.116 887110274 8.728
4 6.829 £ 0.082 7.096 £ 0.180 6.867
5 33121 0.033 3.391£0.113 3.254

L2.DAT4 5 6 3.156 £ 0.042 332410116 3.085
7 5.760 + 0.089 5.778 £ 0.160 5.711
8 3.504 £ 0.056 3.58210.141 3.403
9 3.046 £ 0.045 3.205 £ 0.081 2959
10 4.218 £ 0.062 43521 0.116 4.144
11 4.062 £ 0.080 4.13_9. 1 0.086 4.025
1 3.590 £ 0.044 3.667 £ 0.060 3952
2 5.328 + 0.082 5.467 £ 0.176 5416
3 7.482 £ 0.099 7.603 £ 0.244 7.481
4 6.350 £ 0.092 6.514 £ 0.166 6.419
5 3.214 £ 0.052 3.271 £ 0.078 3.081

L2.DATS 5 6 3.072 £ 0.046 32010113 2.921
7 5.430 £ 0.072 5.485 1 0.141 5414
8 3.390 t 0.069 342110122 3223
9 2.966 + 0.037 3.081 £ 0.077 2.802
10 4.050 £ 0.059 41131 0.094 3.927
11 3.892 + 0.080 3.951+0.116 3814
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Table A10 (Contd.). Cycle times obtained from simulation and the MOD FCFS analytical model.

(Layout 3)
Layout and
throughput level No. of Stauon No. | Multiple devices simulation Single faster device MOD FCFS
devices Si:ﬁlaﬁon analytical model

1 3.291 £ 0.035 3.377 £ 0.079 3.329
2 6.714 £ 0.101 6.872 £ 0.399 6.782
3 5.843 1 0.058 5.893 + 0.266 5.925
4 6.441 £ 0.103 6.563 + 0.289 6.518
b 9213+ 0.124 9.527 £ 0.556 9.389
6 5.878 £ 0.135 5.83510.357 5.935
7 6.203 £ 0.129 6.593 £ 0.361 6.262
8 5.358£0.133 5.623 £ 0.366 5410
9 5.640 1 0.098 5.886 ¢ 0.279 57712

L3.DAT3 8 10 4.121 £ 0.062 4231£0.194 4.172
11 3.123£0.031 3200+ 0.101 3.143
12 4.610 £ 0.090 4.668 £ 0.179 4.665
13 4.065 £ 0.100 4.287 £ 0.239 4.100
14 3119+ 0.041 3.242 1 0.069 3124
15 4.158 £ 0.055 4.397+0.222 4.202
16 6.807 £ 0.146 6.993 £ 0.353 6.803
17 4.160 £ 0.071 4.265 £ 0.180 4.199
18 4878 £ 0.083 5.077 £ 0312 4.902
19 3.794 £ 0.050 3.881 £ 0.208 3
20 4.635 £ 0.115 4.698 + 0.264 4.694
1 2.504 £ 0.034 2.502 £ 0.047 2.679
2 4735 £ 0.072 4.752£0.237 5.563
3 4.202 + 0.070 4.182 £ 0.161 4234
4 4.503 £ 0.082 4.481 £0.145 4512
5 6.339 £ 0.065 6.379 £ 0.250 6.654
6 4.301 £ 0.061 4.191 £0.182 4.499
7 4.541 £ 0.100 4.686 1 0.193 4.747
8 3.986 + 0.090 4.043 £ 0.214 4.100
9 4.171 £ 0.073 4222+0.162 4376

L3.DAT4 9 10 3.151 £ 0.082 3.130 £ 0.082 3159
1 2.481 £ 0.036 2458 £ 0.079 2378
12 3.480 £ 0.058 34701 0.138 3.534
13 3.131£0.078 3.190£0.136 3.105
14 2.481 1 0.045 24801 0.072 2.363
15 3.176 1 0.046 32181 0.135 3.182
16 4926+ 0.118 4942 £ 0.212 5.159
17 3.179 1 0.044 3.153£0.130 3.180
18 3.670 £ 0.060 3709 £ 0.181 3Ns
19 2.940 £ 0.039 288410116 2.860
20 3.496 + 0.089 3.455 £ 0.176 3.556
1 2.261 £ 0.034 22351 0.043 2394
2 4.288 + 0.053 4.292 £ 0.256 4.959
3 3.794 £ 0.071 3.746 £ 0.158 3.826
4 4.083 £ 0.073 4.048 £ 0.147 4.089
5 5.744 £ 0.0 5.770 £ 0.246 6.016
6 3.874 £ 0.053 3.794 £ 0.175 4.043
7 4.081 £ 0.074 4.240 £ 0.141 4.266
8 3.603 £ 0.071 3.653 £ 0.211 3.685
9 3.766 £ 0.068 3.785+0.133 3932

L3.DATS 10 10 2.845 1+ 0.069 2.829 £ 0.098 2.840
11 2.229 £ 0.036 221110072 2138
12 3.136 £ 0.055 3101 £0.113 3.176
13 2.825 1 0.066 2865+ 0.126 2791
14 2.232 1 0.035 2.230 £ 0.058 2125
15 2.857 £ 0.041 2.907 £ 0.100 2.860
16 4.446 1 0.096 4.437 £ 0.203 4.635
17 2.863 1 0.033 2.83910.103 2.858
18 3.311 £ 0.051 3.314£0.157 3.338
19 2.644 £ 0.034 2.569 £ 0.100 25T
20 3.143+ 0.074 3.082 £ 0.153 3.196
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