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CHAPTER I

Introduction

1.1 Background

An omnipresent issue in real-world statistical analysis problems is that obtaining

accurate measurements may be difficult or impractical. Clinical and epidemiological

studies are subject to measurement error from imprecise assays, inaccurate instru-

ments, misreported questionnaires, biological variations, high cost of gold standard

methods, and other sources (Racine-Poon et al., 1991; Hebert et al., 2002; Subar

et al., 2003). As a specific example, to assess the relationship between diet and

disease risk, it is important to quantify dietary intake of particular nutrients. The

self-administered food frequency questionnaire (FFQ) is often used to assess a per-

son’s usual dietary intake of common foods. It has been recognized for decades that

while dietary intake levels reported from FFQs are correlated with true values, they

are usually measured with error, given that the assessment depends on the partici-

pant’s ability to recall accurately usual frequency of each food consumed over a time

period (Willett, 1989; Carroll et al., 1998; Spiegelman et al., 2005). As another ex-

ample, in the investigation of the development of coronary heart disease, the primary

predictor is systolic blood pressure. Since it is in general impractical to continuously

track long-term systolic blood pressure, the blood pressure measured during a clinic

1
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visit is often used as a surrogate. Kannel et al. (1989) point out that this simplified

measurement is subject to biological variation since the long-term blood pressure

and the single-visit blood pressure are likely to be different (i.e., the blood pressure

has major daily, and plausibly seasonal variation).

Similar measurement error problems can be observed in a wide variety of other

research fields. Sociology often needs to take into account human characteristics,

such as students’ motivation to study, personality and self-confidence, which cannot

be directly measured but depend on investigators’ personal experience. In surveys,

participants’ responses to interview questions may not accurately reflect the truth

due to their subjective judgement (e.g., many people tend to misreport their health

conditions if they have not seen a doctor for a long period of time).

The detection limit (DL) of an experimental instrument can also cause mea-

surement error problems. The detection limit is a certain threshold below which

measurements are considered unreliably quantified. Laboratory assays to measure

biomarkers are commonly subject to DLs if a laboratory instrument cannot detect

low levels. For example, a common design for estimating concentrations of biomark-

ers in biological samples is the serial dilution assay, in which measurements are taken

at several different dilutions of a sample (Gelman et al., 2004). In serial dilution as-

says, the concentration of each sample is quantified by an automated optical reading

of a color change and there is a certain limited range of concentrations for which

the color change is informative. In particular, at low values, the color change is

imperceptible and a standard computer program for analyzing such data may not

give a close estimate and may simply indicate “below the detection limit”. In many

studies, the values below the DL are discarded with the consideration that these

values are measured with significant errors. However, there are also numerous ob-
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servational studies, such as human health risk and environmental impact studies

carried out in environmental epidemiology, where measurements below the DL are

required to evaluate potential effects of exposure on risk of disease. For example, in

a study to evaluate the effect of exposure to “environmental estrogens” in pesticides

and industrial chemicals on breast cancer, Cooper et al. (2002) find up to 99% of

study participants have levels below the DL for some toxicants such as 1, 1-dichloro-

2, 2-bis(p-chlorophenyl)ethylene. Commonly used strategies are to substitute values

below the DL with a simple constant value, e.g., DL/2, or use a random “fill-in”

value selected from a predefined distribution. It is clear that, unless the proportion of

observations below the DL is small, these substitution methods are prone to provide

biased estimates of parameters in a regression analysis (Newman et al., 2007; Lubin

et al., 2004).

Since statistical analysis that takes into account measurement error is often much

more complicated than ordinary regression analysis, and major statistical analysis

packages do not provide standard programs for correcting the effect of measurement

error, a widely used approach is to ignore any observational error, implicitly assuming

that the values are measured precisely. Statistical analysis ignoring such inherent

error is commonly referred to “näıve analysis” in research literature.

The covariate measurement error problem has generated major research interest

since the late 1970s (Prentice, 1982; Carroll and Spiegelman, 1986; Fuller, 1987; Wil-

lett, 1989; Dafni and Tsiatis, 1998; Carroll et al., 1999, 2006). It is well known that

measurement error in covariates can cause bias in parameter estimation for regression

models. Particularly, it attenuates the regression coefficient towards the null in com-

parison with the result computed from a regression on the same variable measured

without error. Also, the estimates of regression coefficients of other covariates are
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biased, even if these covariates are measured without error (Richardson and Gilks,

1993). Therefore, it is important to evaluate the magnitude of measurement error

and consider appropriate procedures to correct for the effect of measurement error.

1.2 Measurement Error Model

The fundamental prerequisite to adjust for measurement error is to clearly define

the structure of the error. We start by introducing a basic type of measurement

error, classical measurement error, where the true value is measured with additive

error. A typical example of the classic measurement error can be found in nutritional

studies where investigators use a protein biomarker, namely urinary nitrogen, as a

surrogate measurement of unobserved dietary protein intake.

In detail, let X denote the true variable that are not observed, and let W de-

note the observed measurement of X (which is sometimes also named the surrogate

variable). The classical measurement error model states that

W = X + ξ

where the measurement error ξ is an independent variable with mean zero and usually

constant variance.

Sometimes it may even be necessary to allow for more complex association be-

tween W and X. For example, if W is not an unbiased measure of X, the classical

measurement error model clearly does not hold, and a more general model, such as,

W = β0 + β1X + ξ

is needed. The above model is one variant of the classical measurement error model.

If β0 = 0 and β1 = 1, then it is exactly the same to the classical model.
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1.3 Calibration and Main Study Data

Considerable efforts have been devoted to developing methods to adjust for the

adverse effect of the error on the statistical analysis. Many proposed methods to

correct for measurement error require supplemental information available on the re-

lationship between the error-free variable X and mismeasured variable W , which can

then be used to correct the response-covariate association. Such extra information

is often called calibration data, which can be replicate measurements on a subset of

the study subjects (replication data), or a collection of error-free data in a validation

sample (validation data). Examples of calibration data include 24-hour recalls to

examine food frequency questionnaires as a measure of usual food intake, medical

record review to validate self-report health conditions, home measurements of fine

particles to verify cigarette use as a measure of air pollution, and concentrations of

standard hormone samples to calibrate instrument readings.

It should be clarified that a distinction is often drawn between calibration data

and main study data in measurement error studies. The main study data is used to

investigate the association between the explanatory variables (covariates) and the re-

sponse variable (disease) through a suitable regression model. Such main/calibration

study designs have given rise to a large literature on methods to handle measurement

error. Fuller (1987) and Carroll et al. (2006) summary methodologies for dealing with

measurement error in linear regression and nonlinear regression, respectively.

The main/calibration design is also referred to two-stage or two-phase study de-

sign by some researchers, if the calibration data is a subset of the main study data

(Breslow and Cain, 1988; Zhao and Lipsitz, 1992; Dahm et al., 1995). In their studies,

the response, and some surrogate for primary covariate of interest are collected for
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all subjects (stage-1), and then information about covariate of interest is collected

from a subset of subjects (stage-2). Thereafter, the information gathered in both

stages of measurements is combined for the entire analysis.

1.4 Measurement Error Correction

In general, existing methods for dealing with measurement error can be catego-

rized as functional approach and structural approach, depending on whether or not

a parametric distribution is assumed for the unobserved covariate.

1.4.1 Functional Approach

Regression calibration (RC) and simulation extrapolation (SIMEX) are common

functional approaches (Carroll and Stefanski, 1990; Cook and Stefanski, 1994; Carroll

et al., 1996; Spiegelman et al., 1997; Lin and Carroll, 1999). Functional approaches

are often favored because no assumptions need to be made regarding the distribu-

tion for the unobserved covariate (and so it consequently avoids the risk of making

incorrect assumptions). On the other hand, functional approaches may be limited in

complicated problems with longitudinal studies and nonlinear models.

The RC method is implemented by substituting the unobserved X with its expec-

tation given the surrogate W and then performing standard analysis. This approach

is simple, but it has some inherent limitations. Carroll and Stefanski (1990) show

that regression calibration produces unbiased estimates in the case of a simple linear

regression, but its estimate is only approximately unbiased for a nonlinear regression.

Ko and Davidian (2000) argue that regression calibration may eliminate bias in fixed

effects but not in covariance parameters for nonlinear mixed effect models.

SIMEX is a simulation-based method aimed at estimating and reducing bias

caused by measurement error. This method is originally presented by Cook and
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Stefanski (1994) and further improved by Carroll et al. (1996). The key procedure

of the SIMEX method is to add artificial measurement error to the original data,

create a simple bivariate plot (error induced-bias versus the variance of artificially

generated errors) via a simulation study, and extrapolate the plot to the error-free

case. Since SIMEX is a self-contained simulation method, its computational cost is

high. In addition, the error variance has to be known or estimated from replication

or validation data a priori, and the choice of extrapolation methods is often not

obvious.

1.4.2 Structural Approach

The structural approaches excel in their extensive applicability in more complex

models and may improve the precision of parameter estimates (at the cost of compu-

tational complexity) (Schafer and Purdy, 1996). Two of the most common structural

approaches are the maximum likelihood (ML) approach and the Bayesian method

(Richardson and Gilks, 1993; Lyles et al., 1999; Spiegelman et al., 2000; Kulathinal

et al., 2002; Ferrari et al., 2008; Hossain and Gustafson, 2009). A general concern

about those structural approaches is the potential misspecification of the distribution

of covariates. Since the true covariate is unknown due to measurement error, it is

generally difficult to check whether the assumed model is a reasonable match for the

unobserved values.

Imputation (IM) and multiple imputation (MI) methods have been well estab-

lished for dealing with missing data, and have been gaining increasing attention

for handling measurement error. Some of MI methods originate from the Bayesian

approach, with missing values sampled from their posterior predictive distributions

given the observed data. There are many ways to draw from the posterior distribu-

tion. In some situations, it can be relatively simple (e.g., continuous variables under
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the assumption of multivariate normality). In more complex situations, iterative

algorithms such as the Markov Chain Monte Carlo (MCMC) method or the Gibbs’

sampler may be needed. More detailed information can be found in Schafer (1997).

In MI, multiple completed data sets are created by filling in values for the unob-

served data. Each imputed data set is then analyzed as if it were a complete data set,

and the inferences are drawn by combining the results from imputed data sets using

combining rules suggested by Rubin (1987), Meng and Rubin (1992), and Little and

Rubin (2002).

Thoresen and Laake (2000) compare the behavior of RC and ML in a simple,

additive measurement error model, and indicate that the RC method has very good

results regarding bias. Messer and Natarajan (2008) present a study comparing the

ML, RC to MI methods via simulations in both realistic and extreme measurement

error settings. Their results show that the behavior of each method depends on

numerical approximation to the likelihood. Specifically, in the simulation scenarios

where main study and validation sample sizes are large enough, ML works better

than its competitor methods. Guolo and Brazzale (2008) evaluate the performance

of the likelihood method in comparison with the RC and SIMEX methods under

different structures of measurement error. They suggest that the choice of correction

technique should be based on the measurement error structure. Cole et al. (2006)

examine the MI and RC methods, and find that the MI correction works better in

their simulation settings.

Most of the measurement error correction methods mentioned above are designed

for situations where the variance is constant. However, in many situations, this

assumption may not hold. In practice, heteroscedasticity can arise when the ob-

servations are obtained in nonhomogeneous conditions. That is, the data might
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have been obtained from several studies where the populations are heterogeneous or

from study designs where different measurement technologies are used (Walter, 1998;

Strauss et al., 2001). Fuller (1987) points out that the measurement process might

be subjective and different among all individuals, e.g., smoker/nonsmoker might be

subject to a different contamination process. Another source of heteroscedastic data

is biochemical assays in the clinical and biological sciences. Sadler and Smith (1985)

and Gelman et al. (2004) show that assay data are commonly prone to heteroscedas-

tic measurement error. Staudenmayer et al. (2008) find that measurement error may

be heteroscedastic across individuals due to unequal sampling effort in a nutritional

epidemiological study.

1.5 Overview

The primary objective of this dissertation is the development of statistical tech-

niques to improve statistical inference in regression analysis by correcting for mea-

surement error. Toward this end, several error-correction methods are designed,

analyzed and empirically evaluated in this work.

Chapter 2 considers methods to deal with values below the detection limit.

In many real world applications, raw data on the relationship between known and

measured values of an analyte is collected and analyzed to determine the limit of

quantification (LOQ) of an assay. Usually, researchers are given an observed value

for the interested marker if this value is greater than the LOQ, and a missing value

otherwise. From a statistical perspective, the implicit assumption is that there is no

measurement error for values above the LOQ, and unacceptable measurement error

for values under the LOQ. A more plausible assumption is that there is measure-

ment error throughout the measure’s support. To better represent characteristics
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of measurement error, we describe a Bayesian measurement error model that yields

prediction intervals for the true assay value throughout the range of analyte values,

and allows for heteroscedasticity of the measurement errors. We illustrate our model

on calibration data for fat-soluble vitamins, focusing particularly on Beta Cryptox-

anthin. Our results show that prediction intervals for values above the LOQ are

wide, and the width increases with the measured value. Prediction intervals below

the LOQ provide more information than the statement that the value is less than

the LOQ. Our findings solidify our argument that the current existing approach to

transmit data from calibration assays is flawed, since it provides a distorted pic-

ture of the actual measurement error. Implications for subsequent analysis of assay

measurements are discussed.

Chapter 3 considers the problem in regression analysis where covariate has het-

eroscedastic measurement error. A calibration sample that measures pairs of values

of X and W is available; we consider calibration samples where Y is measured (in-

ternal calibration) and not measured (external calibration). One common approach

for measurement error correction is Regression Calibration (RC), which substitutes

the unknown values of X by predictions from the calibration curve of X on W . An

alternative approach is to multiply impute the missing values of X given Y and W

based on an imputation model, and then use multiple imputation (MI) combining

rules for inferences. Recent work by Freedman et al. (2008) compares these two ap-

proaches, suggesting that RC is more efficient under plausible assumptions. However,

their work assumes the measurement error of W has a constant variance, whereas in

many situations, the variance varies as a function of X. We consider modifications

of the RC method and the MI method that allow for heteroscedastic measurement

error, and compare them by simulation. As will be shown in Section 3.5, the MI
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method provides better inferences in this setting, in terms of small empirical bias,

good precision, and confidence coverage.

Chapter 4 considers another aspect of measurement error correction for the sit-

uation that current information about the error gathered from calibration samples

is insufficient to provide valid adjusted inferences. We consider the problem of esti-

mating the regression of an outcome Y on covariates X and Z, where Y and Z are

observed, X is unobserved, but a proxy variable W that measures X with error is

observed. Data on the joint distribution of X and W (but not Y and Z) are recorded

in a calibration experiment. In many situations, the data from the calibration ex-

periment may not be directly available to public users, but summary statistics for

the joint distribution of X and W can be provided. To exploit such properties, we

describe a method that implement multiple imputations of the missing values of X

in the regression sample, so that the regression coefficients of the regression Y on X

and Z as well as associated standard errors can be estimated correctly using mul-

tiple imputation (MI) combining rules, under normal assumptions. The proposed

method is demonstrated via a simulation study to have superior performance to

existing methods, namely the näıve regression, classical calibration, and regression

prediction.

Chapter 5 concludes this dissertation with a summary of contributions of this

work, and a discussion of questions that remain open together with possible future

research directions.



CHAPTER II

How Well Quantified is the Limit of Quantification?

2.1 Introduction

In epidemiological or other empirical studies that involve measurements of an an-

alyte, the values supplied by a measuring instrument or assay are typically estimates

and hence subject to measurement error. When the measurement error is a sub-

stantial fraction of the determined value, the measurement is considered to be too

unreliable to report, and the information provided to the user is that the value is

less than the detection limit. The limit of quantification (LOQ) and limit of detec-

tion (LOD) are two common types of the detection limit. The LOQ is the lowest

concentration of the analyte in a sample that can be quantitatively determined with

suitable precision and accuracy (Shah et al., 1992). A typical rule for determining

the LOQ is to use the value at which the coefficient of variation (standard devia-

tion/mean) of the measurement is greater than some threshold, such as 20%. The

LOD is defined as the lowest concentration of the analyte that can be distinguished

with reasonable confidence from background noise (Currie, 1968). The LOQ is dif-

ferent to (and usually higher than) the LOD, and measurements above the LOQ can

be reported with a high degree of confidence (Armbruster et al., 1994).

Interest in this special issue concerns how to analyze data when some values are

12
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below the LOQ. Strategies commonly applied to handle this type of data include

deletion or replacement of values below the LOQ with the value of LOQ or some

other imputed values (Hopke et al., 2001; Richardson and Ciampi, 2003; Schisterman

et al., 2006). Our interest is the more basic question of the statistical properties of the

LOQ method for communicating analyte values to users. The measured values are

based on data that involves measurements for a calibration sample, where measured

values and the underlying true values of the analyte are both recorded. We view

the supplied values as summaries of the results of these calibration experiments.

Intuitively, it seems that these summaries are to some degree distorted, in that the

values above the LOQ are subject to measurement error that is effectively being

ignored.

In this chapter, we describe a Bayesian model for the calibration data set, which

provides a posterior distribution for the true values of future recordings from the

measuring instrument. We show that this measurement error is substantial; indeed

the prediction intervals for the values above the LOQ in our application are wider

than the prediction intervals of values below the LOQ, arguably casting doubt on

the practice of treating the error for cases above the LOQ as absent. On the other

hand, the prediction intervals for values below the LOQ are considerably more in-

formative about the true value than that provided by treating them simply as below

the LOQ. Some implications of these distortions for subsequent analyses of the data

are discussed.

Our approach draws on a considerable statistical literature devoted to calibration

methods (Schwenke and Milliken, 1991; Giltinan and Davidian, 1994; Belanger et al.,

1996; Higgins et al., 1998). In much of this work, the concentration estimates for

the unknown samples are obtained by inverting a parametric regression of the fitted
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concentration-response; and nonconstant variability is usually modeled as a function

of the mean response. Beyond point estimation of unknown concentrations, the preci-

sion of calibration is also investigated by some authors. Giltinan and Davidian (1994)

present a delta-method approximate variance to construct a confidence interval for

the unknown concentration. Belanger et al. (1996) discuss large-sample confidence

intervals, based on a model that allows for nonconstant variance. Dunsmore (1968)

describes Bayesian approaches to the linear calibration problem. Racine-Poon (1988)

implements a Bayesian approach to obtain the posterior distribution for unknown

concentrations of interest in nonlinear calibration inference, but does not address the

issue of nonconstant variance.

To our knowledge, little work has been done relating this prior work to the LOQ

issue. Gelman et al. (2004) jointly estimate the calibration curve and the unknown

concentrations using a Bayesian method and provide estimates for measurements

below the detection limit, but they do not explicitly discuss the precision of the

estimates.

The chapter is organized as follows. Section 2.2 describes the data used in this

study, and provides definitions of the LOD and the LOQ. In Section 2.3, we de-

scribe a Bayesian measurement error model. Measurement error is constructed to

be heteroscedastic. We consider both parametric (e.g., linear) regression and non-

parametric regression (e.g., spline) for modeling the relationship between X and W .

Section 2.4 contains results for estimates of the model parameters and predictive val-

ues for measurements below the LOQ. In Section 2.5, some implication is illustrated.

In Section 2.6, conclusions are made and a discussion of our findings are presented.

Some technical details of our methods are provided in Appendix 2.7.
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2.2 Data Description

The data for this study is from calibration experiments for human serum fat

soluble vitamins, measured by high performance liquid chromatography (HPLC).

Three replicate calibration experiments were performed between May and November

of 2005. Each experiment consists of eight samples with known concentrations of

the analyte, from standard reference materials (SRMs) obtained from the National

Institute of Standards and Technology (NIST). The eight samples have decreasing

concentrations generated by performing a two-fold serial dilution. For each of the

three replicate experiments, each of eight samples is analyzed 10 times by HPLC,

yielding a total of 30 replicate measures for each dilution value. Let xi denote the

true concentration of the ith sample, and let wij be the HPLC measured value for

replicate j of dilution i where i = 1, ..., 8 and j = 1, ..., 10. For simplicity we pool

the replicates for each of the three experiments, which is justified here since the

between-experiment error is comparable to the within-experiment variation of the

replicates. This approach is supported by Analysis of Variance tests of the null

hypothesis that the experiment means are equal – the P values are all greater than

0.8 for the eight vitamins that we investigate in this study. We mainly present data

on one of the fat-soluble vitamins, Beta Cryptoxanthin, although we obtain similar

results when we apply our methods to the other vitamins, namely Lutein, Retinol,

Carotene, Lycopene, Gamma tocopherol, Delta tocopherol and Alpha tocopherol.

The LOD is here defined as 3 × SD, where SD is the standard deviation of the

30 replicate measurements at the lowest level of concentration of the analyte. The

LOQ is defined by estimating the coefficient of variation (CV) of the replicates for

each concentration, plotting these coefficients of variation against the concentration
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values, and then fitting a nonlinear regression line to the data. The LOQ is the

concentration corresponding to a predicted mean CV of 20%.

2.3 Models

We now consider a measurement w∗ of the analyte from a subsequent data col-

lection. Assuming a linear relationship between the true and measured values, the

estimate of the true value of the analyte under the usual procedure is reported as:

(2.1) x̂(w∗) =

⎧⎪⎨
⎪⎩

(w∗ − b0)/b1 if x̂(z) ≥ LOQ

< LOQ if x̂(z) < LOQ

where b0 and b1 are least squares estimates of the intercept and slope from the

regression W on X fitted to the calibration data. In Eq.2.1, the estimated value

is obtained from the calibration curve, providing that it is above the LOQ. The

calibration curve assumes a linear relationship, which is empirically justified in this

case, although nonlinear relationships can be fitted if necessary.

We now develop prediction intervals for the true value of x corresponding to w

based on a Bayesian model fitted to the calibration data.

We assume

(2.2) (wij|xi, θ) ∼ind N(μ(xi; β), σ2xα
i )

where θ = (β, log σ2, α), N(a, b) denotes the normal distribution with mean a, vari-

ance b, and μ() denotes the mean function. We show results for a linear mean

function

(2.3) β = (β0, β1), μ(x) = β0 + β1x
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which corresponds to the assumption applied in the usual method of Eq.2.1. To

assess the linearity, we also fit the model (2.2), assuming a quadratic relationship

between the measured and true values:

(2.4) β = (β0, β1, β2), μ(x) = β0 + β1x+ β2x
2

as well as a more flexible curve using penalized splines:

(2.5) μ(x) = β0 + β1x+ · · ·+ βpx
p +

K∑
k=1

bk(x−Kk)
p
+

where p is the degree of the spline, β = (β0, β1, ..., βp) are regression coefficients,

K1 < K2 < ...Kp are K fixed knots, and {b1, ..., bK} are random effects, assumed

normal with mean zero and variance τ 2. Here x+ is equal to x if x is positive and

zero otherwise.

The determination of a Bayesian predictive distribution for future values of X

requires a prior distribution for these values. To study sensitivity of answers to the

choice of this prior distribution, we present results for a dispersed lognormal prior

distribution and a uniform prior distribution, as discussed below. For known θ, the

posterior predictive distribution of x∗ given w∗ is given by Bayes’ Theorem:

(2.6) p(x∗|w∗, θ) ∝ p(x∗)p(w∗|x∗, θ)

where p(w∗|x∗, θ) is given by Eq.2.2. We consider two approaches to deal with the

fact that in practice θ is not known. One approach is to assume a prior distribution

for θ and replace Eq.2.6 by



18

(2.7) p(x∗|w∗, C) ∝
∫
p(w∗|x∗, θ)p(θ|C)dθ

where p(θ|C) is the posterior distribution of θ given the calibration sample data C.

We apply this approach with the non-informative prior distribution

p(β, logσ, α) = const., −2 < α < 2

for the parameters. The prior of α is assumed uniform in a finite range (−2, 2) to

assure a proper posterior distribution – in fact, preliminary analysis shows the value

of α is clearly in the narrower range (0, 1) for all eight vitamins analyzed. Draws

from the posterior predictive distribution can be obtained by the Metropolis within

Gibbs sampler, as discussed in Appendix 2.7.

We also provide prediction intervals where estimates θ̂ of the parameters θ are

substituted in Eq.2.6, rather than integrating over their posterior distribution as in

Eq.2.7. We call this approach empirical Bayes; it is inferior to full Bayes since it

does not propagate uncertainty in θ, but it may be preferred by those seeking a more

frequentist formulation of the problem. For known α, maximum likelihood (ML)

estimates of the other parameters are easily computed by weighted least squares. The

ML estimate of α can be computed using an iterated conditional modes algorithm

(Besag, 1986). We present results for a simpler regression approach where α is

estimated as the slope of a regression on the logarithm of X of the logarithm of the

squared residuals of the regression of W on X. This approach is straightforward,

and yields estimates of α close to the ML estimates when applied to our data.
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Figure 2.1: Calibration data for eight analytes
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Table 2.1: Estimates of α for eight analytes by various methods

Analytes Regression ML Bayes
Post. Mean 95%HPD.

Beta Cryptoxanthin 0.65 0.64 0.64 (0.58, 0.71)
Carotene 0.77 0.72 0.72 (0.67, 0.77)
Lutein 0.61 0.63 0.63 (0.58, 0.68)
Lycopene 0.70 0.72 0.71 (0.67, 0.76)
Retinol 0.71 0.68 0.67 (0.63, 0.72)
Alpha tocopherol 0.62 0.62 0.62 (0.57, 0.67)
Delta tocopherol 0.63 0.65 0.65 (0.53, 0.77)
Gamma tocopherol 0.56 0.56 0.56 (0.51, 0.61)

2.4 Results

An important feature of the model in Eq.2.2 is that the variance of wij is not

assumed constant, but allowed to vary as a function of xi, with the exponent α being

treated as a parameter to be estimated. Figure 2.1 shows the concentration-response

data for calibration samples of four analytes. These data exhibit heterogeneity of

variance: variation in the response systematically increases with concentration level.

It is thus important for the model to account for nonconstant variance, when fitting

a concentration-response model to calibration sample (Belanger et al., 1996; Carroll

and Ruppert, 1988). The assumption of constant variance (α = 0) is not supported

for the Beta Cryptoxanthin data and other analytes in our application, and we

suspect the same holds in many other settings. The value of α has considerable

influence on the width of the prediction interval for different measured values of W .

Table 2.1 presents estimates of α from ML, from our simple regression method,

and the posterior mean and standard deviation of α from the Bayesian analysis,

for the eight analytes for which we have calibration data. The ML and regression

estimates are similar, and range from about 0.56 to 0.72. Uncertainty about α,

reflected in the posterior variance from the Bayesian analysis, is surprisingly small.
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Table 2.2: ML and Bayes parameter estimates, linear model, using Beta Cryptoxanthin 986 C1
calibration data

Parameters ML Bayes
Mean 95%HPD.

β0 -0.003 -0.003 (-0.012, 0.006)

β1 0.706 0.705 (0.689, 0.722)

σ2 0.014 0.015 (0.012, 0.018)

α 0.642 0.643 (0.578, 0.707)

These results suggest that estimating α is clearly superior to an analysis based on

the constant variance assumption α = 0.

Parameter estimates for the linear model are shown in Table 2.2. The linear curve

fits these data well, and accordingly results for the quadratic model and the spline

model are similar and not presented. Summaries of the predicted distribution of

the true values for the Beta Cryptoxanthin data are shown in Tables 2.3 and 2.4, for

both the empirical Bayes and full Bayes methods. These prediction intervals indicate

a range within which the true values are likely to occur, with 95% probability. To

assess sensitivity to the choice of prior distribution of X∗, Table 2.3 presents results

for the uniform prior distribution p(x∗) = const., and Table 2.4 presents results for

the dispersed lognormal prior distribution log x∗ ∼ N(0, 1000). In Tables 2.3 and 2.4,

X∗ = x̂(w∗) is the prediction for the standard calibration procedure, with predictions

on the curve presented even if they are below the LOQ. Some conclusions from these

results follow:

1. Results in Tables 2.3 and 2.4 are similar, indicating lack of sensitivity to the

two choices of prior distribution of X∗.

2. The empirical Bayes and full Bayes procedures yield generally similar results,

with the Bayesian prediction intervals being slightly wider since they propagate
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error in the parameter estimates.

3. Prediction intervals are similar for the linear and quadratic models, suggesting

that the linear model is reasonable. The predictive means of predictive distri-

bution are generally quite close to the predictions using the classical procedure,

although those predictive means are slightly higher.

4. The width of the prediction intervals increases with the value of X∗, reflecting

the nonconstant variance – the estimate of the exponent of the variance is 0.64

with a standard error of 0.03.

5. There is substantial uncertainty in the predictions above the LOQ, which is

0.0062. For example, when X∗ = 0.0142, a value more than the twice of the

LOQ, the HPD prediction interval for the linear model with uniform prior is

(0.0101, 0.0203).

6. There is considerable information concerning the values of X below the LOQ.

For example, when X∗ = 0.00286, a value less than half the LOQ, the HPD

prediction interval for the linear model with uniform prior is (0.00168, 0.00523),

which conveys considerably more information than the statement that the value

is less than 0.0062 .

2.5 Analysis Implication

The Bayesian model presented before provides prediction intervals for the true

values of the analyte X, which allow for the analysis of the data that can properly

account for measurement error. Clearly, the marginal distribution of the estimated

analyte values W is over-dispersed as an estimate of the distribution of X, and

distorted by the heteroscedasticity of the prediction errors as a function of X.
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Table 2.3: Prediction of the true values of X , from Bayes and empirical Bayes versions of the pre-
diction model, with the assumption of linear relationship between W and X , using Beta
Cryptoxanthin 986 C1 calibration data (LOQ = 0.00619, LOD = 0.00131). The prior
distribution of X is uniform on the raw scale. CA: conventional approach, predicting the
true values of X by inverting the fitted concentration-response calibration curve. HPD
interval: the highest probability density interval.

CA Empirical Bayes Bayes

X∗ Mean SD CV(%) 95%HPD Mean SD CV(%) 95%HPD

283.80 288.76 33.45 11.58 (221.00, 357.00) 288.07 35.78 12.42 (218.00, 367.00)

142.03 146.49 22.85 15.60 (103.00, 201.00) 146.23 22.63 15.48 (101.00, 203.00)

56.96 60.17 12.61 20.96 (37.50, 86.50) 60.29 12.85 21.31 (36.55, 88.75)

42.79 45.65 10.62 23.26 (26.25, 68.75) 46.62 10.92 23.42 (27.20, 69.50)

28.62 31.55 8.67 27.48 (15.75, 49.75) 31.58 8.84 27.99 (16.75, 52.25)

10.19 12.79 5.09 39.81 (4.75, 25.75) 12.47 5.10 40.86 (4.75, 25.25)

Table 2.4: Prediction of the true values of X , from Bayes and empirical Bayes versions of the
prediction model, with the assumption of linear relationship between W and X , using
Beta Cryptoxanthin 986 C1 calibration data (LOQ = 0.00619, LOD = 0.00131). The
prior distribution of X is lognormal with mean 0 and variance 1000. CA: conventional
approach, predicting the true values of X by inverting the fitted concentration-response
calibration curve. HPD interval: the highest probability density interval.

CA Empirical Bayes Bayes

X∗ Mean SD CV(%) 95%HPD Mean SD CV(%) 95%HPD

283.80 285.94 33.23 11.62 (221.00, 359.00) 286.05 33.72 11.79 (219.00, 361.00)

142.03 144.26 22.07 15.29 (105.00, 199.00) 144.98 22.13 15.26 (102.50, 197.50)

56.96 58.66 12.70 21.65 (36.50, 85.50) 59.20 12.85 21.71 (36.50, 86.55)

42.79 44.21 10.25 23.18 (26.50, 68.25) 44.85 10.29 22.94 (26.75, 67.25)

28.62 30.24 8.49 28.07 (15.25, 47.50) 30.69 8.65 28.19 (15.75, 49.25)

10.19 11.27 4.55 40.37 (4.25, 22.75) 11.68 4.69 40.15 (4.80, 23.62)
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Consider inference for the linear regression of an outcome Y , with the analyte X

treated as a covariate. In this case, the impact of measurement error with constant

variance is well known (Fuller, 1987; Fox, 1997; Carroll et al., 2006), but the impact

when the measurement error depends on X, as is the case here, has received little

attention. For simplicity, we consider the simple regression of a dependent variable

Y on the true analyte values, of the form

(2.8) (Yi|Xi) ∼ind N(γ0 + γ1Xi, τ
2), i = 1, ..., n

where (γ0, γ1) are the parameters of interest, and n represents the number of subjects

in the sample. We do not observe the actual values of X, but instead observe

(2.9) (Wi|Xi) ∼ind N(β0 + β1Xi, σ
2Xα

i ), i = 1, ..., n

as in Eq.2.2. Here, Wi and Yi are conditionally independent given Xi, since Wi

deviates from Xi by random measurement error. Finally, suppose the distribution of

X is

(2.10) Xi ∼ind N(μx, σ
2
x), i = 1, ..., n

Consistent estimation of γ0 and γ1 requires fitting the model defined by Eq.2.8–2.10 to

the data. The standard approach is to estimate the values ofX by X̂i = (Wi−b0)/b1,

on the calibration curve Eq.2.1, and then regress Y on X̂. When α = 0, Eq.2.8–2.10

imply that the regression of Y on X̂ is linear with mean

(2.11) E(Yi|Xi) = γ∗0 + γ∗1Xi
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where γ∗0 = γ0 + (1− δ)γ1μx + δγ1(b0 − β0)/β1, γ
∗
1 = δb1γ1/β1 and δ = β2

1σ
2
x(β

2
1σ

2
x +

σ2)−1. Since (b0, b1) are unbiased for (β0, β1),

E(γ∗0) = γ0 + (1− δ)γ1μx

E(γ∗1) = δγ1

(2.12)

Thus, the standard approach of regressing Y on X̂ leads to an attenuation of the

regression coefficient γ1 by the factor δ, and a bias in the intercept of (1 − δ)γ1μx.

When α �= 0 (the more realistic case for our data), the regression of Y on X̂ is no

longer even linear under Eq.2.8–2.10, because of the nonconstant variance in Eq.2.9.

Approximating the intercept and slope from the covariance matrix of Y and D leads

to Eq.2.12 with δ = β2
1σ

2
x(β

2
1σ

2
x +σ2κ(α))−1, where κ(α) = E(Xα). Thus expressions

for the bias of the intercept and the slope are as before, with this modified form for

δ.

2.6 Conclusion and Discussion

The logic of the current approach to report analyte values is based on the idea that

the coefficient of variation of the measurement error of the regression ofW onX is the

deciding factor – when the coefficient of variation is above the cutoff, uncertainty

is ignored, and when the coefficient of variation is below the cutoff, uncertainty

results in a value not being reported. There are two problems with this, from a

statistical perspective. Firstly, the standard approach bases the prediction of X on

the regression curve for the conditional distribution of W given X, but the correct

predictive distribution for determining uncertainty about X is the distribution of X

given W , not the distribution of W given X. The Bayesian paradigm followed here

allows uncertainty to be focused on the right conditional distribution. This approach
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has the difficulty of requiring a specification of the prior distribution of X. However,

for the data set discussed here results are not very sensitive to two choices of this

prior distribution. We note that the posterior means of X from our model in Table

2.3 are consistently lower than the standard predictions on the calibration curve,

reflecting a bias in the standard method arising from the wrong choice of conditional

distribution.

The second problem is that the standard deviation of the predictive distribution

of X is more directly pertinent to distortion in statistical analysis than the coefficient

of variation. In particular the former quantity directly determines the distortion of

the marginal distribution of X when predictions X∗ are used as proxies for the true

values. Also measurement error models in statistics involve the standard deviation

of the measurement error, not the coefficient of variation. From this perspective,

the logic underlying the LOQ seems flawed, since the standard deviation of the

predictive distribution increases with the value of X. Uncertainty is the rationale

for not reporting values below the LOQ, but in absolute terms, the uncertainty in

the reported values above the LOQ is actually greater than the uncertainty in the

values below the LOQ.

Some implications of these findings for analysis are discussed in Section 2.5. In

future work we plan to develop these ideas more fully, by providing techniques for

correcting for measurement error as reflected in the posterior distribution of the true

analyte values.

2.7 Appendix

Gibbs sampler is used to take draws of the parameter θ = (β, σ2, α) from its

posterior predictive distribution. The loglikelihood function of θ is given observed
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data (xi, wi) is given by

l = P (β, σ2, α|X,W )

=
(
∏n

i=1 φi)
1/2

(2πσ2)n/2
exp{− 1

2σ2

n∑
i=1

φi(wi − β0 − β1xi)
2}

where φ = 1/xα
i . Assuming a prior distribution for the parameters is p(β, σ2, α) ∝

σ−1 , by Baye’s theorem, the joint posterior density is written as

P (β, σ2, α|X,W )

=
p(β, σ2, α)× l∫ ∫ ∫

θ
p(β, σ2, α)× ldαdβdσ

∝ (
∏n

i=1 φi)
1/2

(2π)n/2σn+1
exp{− 1

2σ2

n∑
i=1

φi(wi − β0 − β1xi)
2}

Then the posterior distribution of α given all the other parameters and the data

can be

P (α|β, σ2, X,W ) ∝ (
n∏

i=1

φi)
1/2exp{− 1

2σ2

n∑
i=1

φi(wi − β0 − β1xi)
2}

Since this distribution does not appear to have a closed-form solution, we generate

α from it using Metropolis algorithm.

Given α, the model is reduced to weighted linear regression. Applying Bayesian

theory, draws β(d) and σ2(d), can readily obtained from their posterior density as

follows:

1. Draw a chi-square random variable, p , with (n − p) degree of freedom, and

define

σ2(d) =

n∏
i=1

φi(wi − β0 − β1xi)
2/q



28

2. Draw p standard normal deviates, z = (z1, ..., zp), zi N(0, 1), i = 1, ..., p and

define

β(d) = β̂ + A′zσd

where A is the Cholesky factor of (XφX), X is an n × p matrix with elements

xij, i = 1, ..., n and j = 1, ..., p, and W is an n× n matrix with diagonal elements φi

and zero off-diagonal elements. β̂ is weighted least square estimators:

β̂ = (XφX)−1XφW

Thus, we can use Metropolis within Gibbs sampler to generate values form the

joint posterior distribution in the order of α , σ2 and β.



CHAPTER III

Regression Analysis on the Covariate with Heteroscedastic

Measurement Error

3.1 Introduction

Measurement error is common in many empirical studies, arising from assay or

instrumental error, biological variation, or errors in questionnaire-based self-report

data. It is well known that in a regression analysis the estimated effect of a predictor

variable may be attenuated when it is measured with error. In particular, Kipnis

et al. (2003) find that measurement error in dietary intake assessment by using the

Food Frequency Questionnaires leads to severe attenuation in the estimate of disease

relative risk in a biomarker study. Cotton et al. (2005) show that measurement error

can reduce the chance of accurate diagnosis of appropriate educational placement

for children with reading difficulties. Wannemuehler et al. (2009) indicate that the

impact of measurement error can be substantial in the assessment of the association

between pollutant exposure and a health outcome, using surrogates for unobserved

measurements of ambient concentrations.

Most of the research on measurement error in covariates assumes the variance of

measurement error is constant. However, the variance of measurement error often

increases with the true underlying value, as evidenced by the fact that the limit

of quantification in assays is often defined in terms of the coefficient of variation

29
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rather than the standard deviation. We consider here methods for correcting for

heteroscedastic covariate measurement error. Our motivating example is provided

by the BioCycle study, a study where one of the primary goals is to investigate

the association between fat-soluble vitamins (e.g. β-carotene) and progesterone in

human serum (Wactawski-Wende et al., 2009). The fat-soluble vitamins are mea-

sured with error using high performance liquid chromatography (HPLC). Guo et al.

(2010) model calibration data on eight fat-soluble vitamin analytes with measure-

ment variance σ2X2α, whereX is the true value. They find that the constant variance

assumption (α = 0) is clearly violated, with estimates of α ranging from 0.5 to 0.8.

We consider data in the form displayed in Figure 3.1, where Y denotes a response

variable, X denotes the covariate of interest, W denotes the error-prone measurement

of X, and question marks denote unobserved values. The main study data consist

of a sample of independent and identically distributed observations on (Y , W ). The

calibration data consist of a sample of independent and identically distributed ob-

servations on (X, W ). Information about the measurement error is contained in

calibration data with measured and true values of the covariate both recorded. We

call the calibration data internal when they are a random sample from the main

study, so they also contain observations of Y , as in Figure 3.1(a). We call the cali-

bration data external when they are from another source, so information of Y is not

available, as in Figure 3.1(b). We consider inference for the parameters of the regres-

sion of Y on X. The common case where there are additional error-free covariates

is discussed in Section 3.7.

Comprehensive reviews of statistical methods for adjusting for measurement error

include Fuller (1987) for linear models and Carroll et al. (2006) for nonlinear models.

One commonly used and simple method is regression calibration (RC) (Carroll and
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Figure 3.1: Validation calibration/main study design

Stefanski, 1990). The unobserved value X is imputed by the expected value of X

given W , with coefficients estimated from the calibration data, and the regression

of Y on X is then estimated using the filled-in data in the main study. A related

method is moment reconstruction (MR), where imputed values are constructed to

match the first two moments of Y and X (Freedman et al., 2004). This method is

equivalent to RC in the linear regression case. For the case of internal calibration

data, the estimate from RC can be combined with the estimate of the regression

of Y and X computed directly from the calibration data, weighting the estimates

from two sources according to their precisions. This method is known as efficient

regression calibration (ERC); see Spiegelman et al. (2001).

An alternative approach is to use imputation or multiple imputation (MI) meth-

ods from the missing data literature to fill in the true values. Cole et al. (2006)
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consider the MI method to remove the bias in the estimation of the hazard ratio

for chronic kidney disease due to mismeasured covariates in a prospective cohort

study. Schenker et al. (2009) describe MI to correct for measurement error of self-

report data on health conditions in large-scale population surveys. Other Bayesian

approaches for covariate measurement error are given in Clayton (1992); Richard-

son and Gilks (1993); Richardson and Green (1997); Hossian and Gustafson (2009);

Yucel and Zaslavsky (2005).

Freedman et al. (2008) evaluate the performance of a number of these methods

by simulation, for the case of internal calibration data. Several different scenarios

are considered, including different choices of the measurement error variance and the

strength of the response-covariate relationship. Data are simulated assuming non-

differential measurement error (NDME), meaning that Y and W are independent

given X. Their findings suggest that ERC is the preferred method. However, we

note that unlike ERC, the version of MI used in this simulation does not exploit the

NDME assumption. The MI methods described in this chapter are more efficient

since they are based on an imputation model that makes the NDME assumption.

In addition, Freedman et al. (2008) assume that the variance of measurement error

is constant, and do not assess methods when the measurement error is heteroscedas-

tic. In that situation, existing error correction methods yield biased estimates, as

our simulations demonstrate. We propose extensions of the methods compared in

Freedman et al. (2008) to correct for heteroscedastic measurement error. We com-

pare these methods through a simulation study, concluding that MI is the best of

the methods compared in this setting.

The outline of the rest of this chapter is as follows. In Section 3.2, we specify

models for the calibration data and main study data. In Section 3.3, we describe
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various measurement error correction methods. We propose a simple extension of

standard RC to deal with nonconstant variance. We also propose MI methods under

both constant and nonconstant measurement variance, with and without the NDME

assumption. MI methods are developed for both internal and external calibration

designs. Our MI methods are Bayesian. The unobserved values of covariate X are

replaced by draws generated using data augmentation (Tanner and Wong, 1987), and

(in the nonconstant variance case) a Metropolis-Hastings (MH) algorithm (Hastings,

1970). A simplified approximate method that avoids the MH step is also developed.

In Section 3.4, a simulation study is described, considering both constant and non-

constant measurement error variances, and both internal and external calibration

study designs. Results from simulations are reported in Section 3.5. In Section 3.6,

we illustrate the use of proposed methods on a real data example from the BioCycle

study, where the effect of oxidative stress on female fecundity and fertility is inves-

tigated. In Section 3.7, we conclude with a discussion of the results and extensions

of the proposed methods.

3.2 Models

Measurement error adjustments require an error model linking the true variable

X to the surrogate measure W , which requires careful consideration in the context of

the specific application (Heid et al., 2004; Guolo and Brazzale, 2008). The classical

measurement error model assumes that

(3.1) W = X + ξ

where ξ is random error with mean zero and constant variance (Dellaportas and

Stephens, 1995; Hyslop and Imbens, 2001; Kuha and Temple, 2003). In our work we
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consider a linear mean function and heteroscedastic measurement error, specifically:

(3.2) p(W |X, θ) ∼ N(β0 + β1X, σ
2X2α)

where θ = (β0, β1, α, σ
2), and the parameter α models heteroscedasticity. The mea-

surement error variance is constant when α = 0. In the main study, we assume a

linear regression model of Y on X:

(3.3) p(Y |X,ψ) ∼ N(γ0 + γXX, τ
2)

where ψ = (γ0, γX , τ), although more generally nonlinear relationships between Y

and X can be modeled.

We assume that (Y,W ) given X are bivariate normal with constant correlation

ρ. Under the NDME assumption that Y and W are independent given X, ρ =

0 (Freedman et al., 2008). This assumption is common, and may be reasonable

when measurement errors depend on bioassay techniques or laboratory experiments.

NDME is less reasonable in retrospective case-control studies, where the disease

status of subjects is known and the data about their exposure to risk factors are

collected retrospectively, since recall error of past exposures is often thought to be

more likely for cases than for controls (e.g., mothers of babies with a deformity may,

on the average, have a different recall error about their early pregnancy drug intake

than mothers of normal infants).

Further, we assume that the error model of W given X, and the regression model

of Y given X hold with the same parameter values in both the main study sample and

the calibration sample, when using external calibration data to assess measurement

error. This assumption naturally holds for the internal calibration sample since it is
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a subsample of the main study sample. Therefore, the final analysis can be applied

to the completed data including both samples. The problem that models in the

external calibration study may differ from those in the main study is discussed later

in this chapter.

3.3 Measurement Error Correction Methods

3.3.1 Conventional Approach

The conventional approach (CA) fits an appropriate regression curve of W on X

to the calibration data and estimates the true value of X using the value on the

predicted calibration curve (Rodbard and Frazier, 1975; Finney, 1976; Higgins et al.,

1998). For example, assuming a linear relationship between the true and measured

values, the estimate of the true value is formed by inverting the calibration curve.

That is, X̂CA = (W − β̂0)/β̂1, where β̂0 and β̂1 are the estimates of the intercept

and slope obtained from the regression of W on X using the calibration data. The

estimate X̂CA is then substituted for the unknown X in the main study data, and

the regression model (3.3) is fitted to the data, yielding the CA estimate γ̂X,CA. The

CA approach is biased for the regression coefficients but is nevertheless widely used

in practice.

3.3.2 Regression Calibration

Regression calibration (RC) estimates the regression of X on W using the cali-

bration data, and then substitutes the unknown values X in the main study with

predictions X̂RC = E(X|W ) from this regression. The RC estimate γ̂X,RC is then

obtained by regressing Y on X̂RC . The RC method implicitly makes the NDME

assumption.

The standard error of the RC estimate can be estimated using asymptotic cal-
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culations (Spiegelman et al., 2001), or by bootstrapping the main and calibration

samples. We create bootstrap samples from the calibration data and the main study

data separately, and then combine them to compute RC estimates of the regression

parameters. This procedure is repeated B = 200 times. The sample variance of the

resulting B estimates is used to estimate the variance.

When the calibration data are internal, two estimates of the regression coefficient

are available, the RC estimate γ̂X,RC , and the least squares estimate γ̂X,LSCalib from

fitting the linear regression model (3.3) to the calibration sample data on (Y , X).

The ERC estimate is the inverse-variance weighted average of these two estimates,

γ̂X,ERC = wRC γ̂X,RC + (1− wRC)γ̂X,LSCalib

with weight

wRC = v̂ar(γ̂X,RC)−1[v̂ar(γ̂X,RC)−1 + v̂ar(γ̂X,LSCalib)
−1]−1

where v̂ar(γ̂X,RC) and v̂ar(γ̂X,LSCalib) are the estimated variances of γ̂X,RC and γ̂X,LSCalib,

respectively. The variance of γ̂X,ERC is computed approximately as v̂ar(γ̂X,ERC) =

[v̂ar(γ̂X,RC)−1 + v̂ar(γ̂X,calib)
−1]−1. ERC is more efficient than RC, particularly when

the calibration data set is large.

We propose a modified version of RC, weighted RC (WRC), for situations where

measurement error is heteroscedastic. This method estimates parameters of the

regression model of X on W by weighted least squares. Specifically, we assume the

regression of X on W can be approximated by the weighted regression model

(3.4) p(X|W, η, π, λ) ∼ N(η0 + η1W,π
2W 2λ)

The estimate γ̂X,WRC is obtained by
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• Estimating λ as the slope of a simple regression of logarithm of squared residuals

of the regression ofX on W on the logarithm of squared W using the calibration

data.

• Estimating η̂0 and η̂1 by weighted least squares.

• Substituting unknown values X in the main study with the prediction, i.e.,

X̂WRC = η̂0 + η̂1W .

• Estimating the coefficient γ̂X,WRC of the regression of Y on X̂WRC from the

main study data.

The associated standard error of the WRC estimate can be estimated using the

bootstrapping approach mentioned above.

We can also modify the ERC estimate to account for heteroscedastic measurement

error by replacing γ̂X,RC with γ̂X,WRC. We call this the weighted ERC (WERC)

estimate.

3.3.3 Multiple Imputation

We now develop MI methods based on a fully Bayesian model for the joint dis-

tribution of X,W and Y , which we write as p(X,W, Y ). These methods all cre-

ate multiple imputations of the missing values – for the internal calibration design

(Figure 3.1(a)), the missing values of X in the main sample, and for the external

calibration design (Figure 3.1(b)), the missing values of X in the main sample and

the missing values of Y in the calibration sample. In the work described in this chap-

ter, we combine both the calibration sample and the main study sample in the final

(post-imputation) analysis to provide inferences for the regression of Y on X. The

MI estimates and associated standard errors are then obtained by applying standard
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MI combining rules to the completed data including both samples (Rubin, 1987).

Specifically, the MI estimate of γX is

γ̂X,MI =
1

m

M∑
m=1

γ̂
(m)
X,MI

and

V ar(γ̂X,MI) = W̄ +B × (M + 1)/M

where B is the between-imputation variance, calculated as B =
∑M

m=1(γ̂
(m)
X,MI −

γ̂X,MI)
2/(M − 1); W̄ is the average of the within-imputation variance, calculated

as W̄ =
∑M

m=1 var(γ̂
(m)
X,MI)/M , and var(γ̂

(m)
X,MI) is the standard variance estimator

obtained from the mth completed data. We apply this method to 16 completed data

sets.

The form of the multiple imputations depends on the assumption made about α

and ρ. When α = 0, that is, the measurement error variance is constant, MI can be

performed easily using standard Bayesian techniques for normal data described by

Little and Rubin (2002). We assume uniform priors for the location parameters and

log variances. The methods are labeled with a “0” to indicate the assumed value of

α. For internal calibration data (Figure 3.1(a)), the imputation of X can be created

assuming NDME (ρ = 0) – we label this method MIND0 – or not assuming NDME

(ρ �= 0) – we label this method MI0. The MI0 method is assessed in the simulation

study of Freedman et al. (2008), but we also consider MIND0 to assess the gain

of efficiency from basing imputations on the NDME assumption. For the external

calibration design, the parameter ρ is not identified, so we only consider the MIND0

method that assumes NDME (ρ = 0).

For the cases where α �= 0 (i.e., the measurement error variance is not con-
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stant), we consider two approaches for the case where α is unknown. One approach

is to generate draws of this parameter from its posterior distribution, through a

Metropolis-Hastings step. We describe here MI under the NDME assumption, where

the joint distribution of W and Y given X can be factored as:

p(W,Y |X, γ, τ, β, σ, α) = p(W |X, β, σ, α)p(Y |X, γ, τ)

We add prior distributions for the marginal distribution of X and the param-

eters (γ, τ, β, σ, α) to complete the fully Bayesian specification; Specifically, in the

simulations we assume

p(X, γ, τ, β, σ, α) = p(X)p(γ, τ, β, σ, α)

where the prior distribution of X is a normal distribution with mean μx and variance

σ2
x, and the prior distribution of parameters (γ, τ, β, σ, α) is a noninformative prior

p(γ, log τ, β, logσ, α) = const., −2 < α < 2

where the range (−2, 2) for α includes values of that parameter thought likely to

be of interest; the proper prior distribution for α is to ensure a proper posterior

distribution (Guo et al., 2010). In this chapter, we consider a hierarchical normal

structure for X, and assume a noninformative prior distribution for hyperparameters

μx and σ2
x, with p(μx, log σx) = const., letting the posterior inferences be dominated

by the observed data. Other choices of the prior distribution for X are discussed in

the concluding section.

Draws can be conveniently computed using the data augmentation algorithm,

which iteratively imputes missing values given observed data and draws of the pa-

rameters (the imputation step), and then draws parameters of the model from their

posterior distribution given imputed values and observed data (the posterior step).
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A Metropolis-Hastings step is required to generate draws of X. Details are given in

Appendix 3.8. We label MI inferences from this algorithm MINDα.

We also develop a simpler version of MI that does not require the MH step, and

can be viewed as a MI analog of the WRC method. The measurement error model is

reformulated as the model (3.4), and the estimate λ̂ of the parameter λ is substituted.

For known λ, MI can be performed easily using standard Bayesian approaches for

normal data. The estimate of λ can be computed using a simple regression approach,

where λ is estimated as the slope of a regression of logarithm of squared residuals

of the regression of X on W on the logarithm of squared W using the calibration

data. We take into account the uncertainty of the estimation of λ by bootstrapping

the calibration data to assure that MI is proper. We label this simplified MI method

SMINDα.

3.4 Simulation Study

We assess the performance of the above methods by a simulation study. We con-

sider both internal and external calibration data designs, vary the strength of the as-

sociation of Y andX, the size of measurement error, and consider both homoscedastic

and heteroscedastic measurement error. Simulation scenarios are generated by the

following combinations of parameters:

Main study data: γ0 = 0; γx = 0.3 or 0.6, τ 2 = 1.

Measurement error data: β0 = 0; β1 = 0.5, 1 or 2; σ2 = 0.25, 0.5 or 1; α = 0

(homoscedastic measurement error) or 0.4 (heteroscedastic measurement error). The

cases of σ2 = 0.5 and 1 are investigated only for β1 = 0.5, which results in five

combinations.

To clarify the notation, “calib” and “main” will be attached to subscript to de-
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note the calibration study and main study respectively. We simulate ncalib = 100

observations in the calibration sample and nmain = 400 observations in the main

sample. For each scenario, 500 simulated data sets are generated.

The true X is first generated from a standard normal distribution with mean

0 and variance 1. Each main study data set is simulated by randomly generating

the values for the response variable Yi and the observed error-prone variable Wi for

i = 1, ..., nmain, based on the models (3.2) and (3.3) respectively. For the external

calibration data design, we randomly generate values of Wi from the measurement

error model (3.2), for i = 1, ..., ncalib. For the internal calibration data design, we also

generate responses Yi, i = 1, ..., ncalib, using the model (3.3) with the same values of

γ and τ 2 used to simulate the corresponding main study data.

For each of the 500 simulations across each of the simulation scenarios, we estimate

the parameter of interest γX for each of the measurement error correction methods

described above. All methods are compared with respect to bias, root mean squared

error (RMSE) of the estimates and empirical non-coverage of confidence intervals.

The empirical non-coverage is calculated as the proportion of simulated data sets

for which the 95% confidence interval does not include the true value of γX . The

proportions are multiplied by 1000 to avoid decimal points, and hence a nominal

level of non-coverage is equal to 50.

3.5 Results

In Tables 3.1 - 3.3, we examine the performance of the näıve regression of Y on

W (i.e., ignoring measurement error), and measurement error correction techniques

CA, RC, and MI. We focus on the performance of various methods on inferences for

the regression coefficient γX . We compare the results under the situations where the
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Y - X association is week (small γx = 0.3) and strong (large γx = 0.6), where the

magnitude of measurement error is small (minor error variance σ2 = 0.25), moderate

(fair error variance σ2 = 0.5) and large (big error variance σ2 = 1). Table 3.1

compares Näıve, CA, RC, ERC, LSCalib, MI0 and MIND0 for the case of internal

calibration data with homoscedastic measurement error. Table 3.2 compares Näıve,

CA, RC, MI0, MIND0, WRC, WERC, LSCalib, MINDα, and SMINDα for internal

calibration data with heteroscedastic measurement error. Table 3.3 compares Näıve,

CA, RC, MIND0, WRC, MINDα, and SMINDα for external calibration data with

heteroscedastic measurement error; we do not evaluate the LSCalib, ERC and WERC

methods since they are not applicable for this data structure.

Table 3.1 presents the results for the case of homoscedastic measurement error.

As theory predicts, the estimates from the näıve analysis (using W in place of X)

are attenuated towards 0, with the degree of attenuation varying with the magnitude

of measurement error and the response-covariate association. In addition, the non-

coverage rate of the näıve estimate is much higher than the nominal level of 50 in

most of simulation scenarios. The CA method also performs poorly, with substantial

bias and poor confidence interval coverage, particularly when the measurement error

is large. The RC estimate is much less biased and has much better coverage than

Näıve and CA, but has very large RMSE when the measurement error variance is

large, suggesting that it is not very efficient. The estimates of ERC, LSCalib, MI0

and MIND0 methods have no bias or little bias. When measurement error is small

or moderate (e.g. σ2 = 0.25 or 0.5), the RMSE of the ERC estimate is generally

smaller than that of the RC, LSCalib and MI0 estimates. This finding is consistent

with the simulation results in Freedman et al. (2008). It is worth pointing out that

the RMSE of the ERC estimate is better than that of the MI0 estimate but not for
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Table 3.1: Empirical bias, RMSE and non-coverage of 95% confidence interval (nominal = 50) of
estimates of γx with the internal calibration data based on 500 simulations, when the
variance of measurement error is constant. All values are multiplied by 1000.

γx β σ2 Estimation Näıve CA RC LSCalib ERC MI0 MIND0

0.3 2 0.25 Bias 159 19 1 0 1 2 1

RMSE 160 51 52 98 46 50 45

Non-coverage 1000 82 68 58 52 42 50

0.3 1 0.25 Bias 61 62 1 1 2 3 2

RMSE 77 77 60 101 50 61 49

Non-coverage 268 266 68 58 52 44 52

0.3 0.5 0.25 Bias 2 152 6 0 3 3 1

RMSE 73 157 82 99 67 71 61

Non-coverage 58 952 52 58 44 42 44

0.3 0.5 0.5 Bias 101 202 16 1 5 3 2

RMSE 118 204 110 100 70 73 66

Non-coverage 398 998 48 58 38 58 44

0.3 0.5 1 Bias 181 241 23 1 4 4 3

RMSE 187 243 315 99 79 76 70

Non-coverage 970 1000 40 58 46 52 40

0.6 2 0.25 Bias 318 38 1 0 0 3 1

RMSE 319 63 54 98 45 51 45

Non-coverage 1000 110 64 58 48 40 48

0.6 1 0.25 Bias 122 124 2 0 2 3 2

RMSE 130 134 66 98 54 62 54

Non-coverage 742 652 64 58 40 46 48

0.6 0.5 0.25 Bias 4 303 18 1 3 3 3

RMSE 71 307 105 96 69 75 66

Non-coverage 50 1000 52 58 42 48 42

0.6 0.5 0.5 Bias 201 401 40 0 4 4 3

RMSE 209 404 151 98 77 79 69

Non-coverage 894 1000 42 58 40 52 38

0.6 0.5 1 Bias 359 480 54 1 5 4 3

RMSE 362 481 531 101 86 80 71

Non-coverage 1000 1000 40 58 57 50 42

Näıve: näıve linear regression of Y on W ; CA: conventional approach; RC: regression calibration; LSCalib: linear
regression of Y on X using calibration data only; ERC: efficient regression calibration; MI0: multiple imputation
without the NDME assumption; MIND0: multiple imputation with the NDME assumption.
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MIND0 in small measurement error settings. As an example, when γx = 0.3, β = 1

and σ2 = 0.25, the RMSE of the ERC, MI0 and MIND0 estimates are 50, 61, and 49,

respectively. For large measurement error and strong response-covariate association,

the performance of the ERC method becomes less impressive; MI0 and MIND0 both

outperform ERC. Overall, the inferences from the MIND0 approach are superior to

other methods, with small empirical bias, low RMSE and close to nominal levels of

non-coverage.

Table 3.2 concerns heteroscedastic measurement error for the internal calibration

data design, so the ERC, WERC and LSCalib methods are available for compari-

son. The MI methods taking into account heteroscedastic measurement error per-

form best among compared methods for all simulation scenarios considered, with

respect to bias, RMSE and non-coverage of confidence interval. The simplified ver-

sion SMINDα (i.e., estimating α using a simple regression) is comparable to MINDα

(i.e., estimating α using a MH algorithm). Näıve and CA both yield seriously biased

estimates of γx with high non-coverage. The RC estimate becomes badly biased with

inflated RMSE, particularly when measurement error and the response-covariate ef-

fect increase. WRC has less empirical bias than RC, but some bias remains, and

it becomes unstable with large RMSE when the magnitude of measurement error is

large. The WERC estimate has smaller empirical bias and lower RMSE than WRC,

especially for large measurement error. For example, when γ1 = 0.6, β1 = 0.5 and

σ2 = 1, the RMSE of the WERC estimate is 0.102, compared with 1.655 for the

WRC estimate. The possible reason for the gain of WERC over WRC is that the

inflated standard error of WRC reduces its effect on WERC, and the LSCalib esti-

mate stabilizes the estimation. When there is little measurement error (σ2 = 0.25),

the WERC estimates are comparable to the MINDα estimates, with small bias and
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low RMSE. When measurement error is large and the response-covariate association

is strong, the RMSE of the WERC estimate is larger than that of MINDα. The

MI methods that fail to model the nonconstant measurement error variance (MI0

and MIND0) have larger RMSE and higher non-converge than the MI methods that

allow for nonconstant variances.

Results of the external calibration design are presented in Table 3.3. We observe

similar trends to those seen in Table 3.2. The Näıve and CA estimate are both subject

to large bias, and the corresponding non-coverage is high. RC performs poorly with

large bias and RMSE when the measurement error variance is large. The WRC

method has reduced empirical bias, but is inefficient for large measurement error.

The RMSE of the MIND0 estimate is generally greater than that of the MINDα

estimate. Overall, the MINDα method and its simplified version SMINDα dominate

all other correction methods.

3.6 Application

In this section, we perform an analysis of the dataset from the BioCycle study.

This study was designed to assess the relationship between endogenous hormones and

biomarkers of oxidative stress during the menstrual cycle. Two hundred and fifty

nine regularly menstruating pre-menopausal women were followed for two menstrual

cycles. A goal of the study was to investigate the association between carotenoids

(β-carotene) and progesterone.

The calibration data were obtained from calibration experiments for human serum

fat-soluble vitamins, measured by high performance liquid chromatography (HPLC).

Three replicate calibration experiments were performed, with each experiment ana-

lyzing eight samples with known concentrations of the analyte carotene, from stan-
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Table 3.3: Empirical bias, RMSE and non-coverage of 95% confidence interval (nominal = 50) of
estimates of γx with the external calibration data based on 500 simulations, when the
variance of measurement error is heteroscedastic. All values are multiplied by 1000.

γx β σ2 Estimation Näıve CA RC MIND0 WRC MINDα SMINDα

0.3 2 0.25 Bias 172 46 3 5 2 0 0

RMSE 174 66 57 61 57 52 58

Non-coverage 1000 180 64 88 60 54 52

0.3 1 0.25 Bias 129 125 4 13 3 2 6

RMSE 134 132 80 81 78 74 79

Non-coverage 910 836 60 100 56 46 52

0.3 0.5 0.25 Bias 148 223 28 55 23 7 11

RMSE 156 224 157 177 150 129 135

Non-coverage 822 1000 40 128 52 56 46

0.3 0.5 0.5 Bias 212 255 72 86 58 8 14

RMSE 216 256 389 246 378 162 171

Non-coverage 1000 1000 44 196 42 48 42

0.3 0.5 1 Bias 250 274 251 68 109 10 12

RMSE 252 274 1951 306 888 213 239

Non-coverage 1000 1000 40 212 40 56 38

0.6 2 0.25 Bias 346 92 5 8 3 2 2

RMSE 347 106 63 68 62 61 65

Non-coverage 1000 422 66 106 64 58 54

0.6 1 0.25 Bias 255 253 5 27 4 6 7

RMSE 259 258 98 107 97 92 100

Non-coverage 1000 998 58 120 56 54 50

0.6 0.5 0.25 Bias 299 447 51 82 42 8 13

RMSE 304 449 252 210 234 145 166

Non-coverage 1000 1000 40 228 48 52 46

0.6 0.5 0.5 Bias 427 513 197 99 91 18 23

RMSE 429 513 1211 241 1016 171 194

Non-coverage 1000 1000 42 268 40 56 58

0.6 0.5 1 Bias 510 556 314 93 166 21 28

RMSE 511 556 2526 306 1774 236 251

Non-coverage 1000 1000 48 274 52 58 54

Näıve: näıve linear regression of Y on W ; CA: conventional approach; RC: regression calibration; WRC: weighted
regression calibration; MIND0: multiple imputation with the NDME assumption. MINDα: multiple imputation with
the NDME and α �= 0 assumptions; SMINDα: simplified version of MINDα.
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Figure 3.2: Calibration data of carotene from the BioCycle study

dard reference materials (SRMs) obtained from the National Institute of Standards

and Technology (NIST). For each of three replicate experiments, each of eight sam-

ples were analyzed 10 times by HPLC, yielding a total of 30 replicate measures for

each sample. In the calibration data, the true concentrations of carotene X are

known, and HPLC measurements can be viewed as error-contaminated versions of

X, denoted by W . This calibration data is external, since it only includes the infor-

mation of W and X.

The main study consisted of 211 individual samples with complete information

on both progesterone and carotene. Each individual sample had one measurement of

outcome progesterone Y and one HPLC measurement of carotene W , but the true

concentration of carotene X was unknown. We use the data collected at the visiting

time F1.
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Table 3.4: BioCycle data: estimated regression coefficients in a linear regression model with
carotene as the covariate and progesterone as the dependent variable using data col-
lected at visiting time F1. The calibration data of carotene, which is generated from
standard reference materials (SRMs) 968 C1, is external. Standard error is shown in
parentheses.

Parameters Näıve CA RC WRC MINDα

intercept 0.5089(0.0238) 0.5089(0.0238) 0.5095(0.0244) 0.5099(0.0242) 0.5089(0.0239)

carotene -0.0065(0.0024) -0.0281(0.0104) -0.0289(0.0107) -0.0286(0.0106) -0.0282(0.0107)

Figure 3.2(a) shows the original calibration data for carotene. It is clear that the

variance of HPLC measurements increases as the true concentration of carotene in-

creases, suggesting that the measurement error variance is not constant. To estimate

the linear regression of progesterone Y on carotene X, we apply the näıve regression

of Y on W , and four different measurement error correction methods (i.e., CA, RC,

WRC and MI) to the data. Standard errors of the CA, RC and WRC methods are

calculated using the bootstrapping method. Note that these methods are applied to

correct only for measurement error from the assay, but not from other sources such

as biological variation.

Table 3.4 presents the estimates and associated standard errors for regression

coefficients. The näıve estimate indicates a weak association between progesterone

and carotene – the change of progesterone is 0.0065 when carotene changes one

unit. Adjusting for measurement error by the CA, RC, WRC and MI methods, we

find a stronger association between carotene and progesterone. The error-corrected

estimates are all four-fold greater than the uncorrected estimates. Specially, the CA

method estimates a change of progesterone of 0.0281 for one unit change in carotene.

The estimates obtained from the RC, WRC and MI methods are similar, and slightly

larger than the CA estimate.

Differences between the correction methods are minor in this example. We be-
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Table 3.5: Modified BioCycle data: estimated regression coefficients in a linear regression model
with carotene as the covariate and progesterone as the dependent variable using data
collected at visiting time F1. The calibration data is external. Standard error is shown
in parentheses.

Parameters Näıve CA RC WRC MINDα

intercept 0.5068(0.0238) 0.5066(0.0238) 0.5110(0.0242) 0.5085(0.0231) 0.5128(0.0253)

carotene -0.0061(0.0024) -0.0255(0.0099) -0.0339(0.0123) -0.0297(0.0113) -0.0285(0.0105)

lieve this is because the magnitude of measurement error is not large relative to the

size of the effect being estimated. To provide some empirical evidence, we analyze

the calibration data of carotene and calculate the maximum likelihood estimator of

the measurement error variance σ̂2. We find that σ̂2 = 0.117, which indicate the

magnitude of measurement error is quite small. The simulation studies suggest that

the performance of CA, RC and MI is more differentiated when the magnitude of

measurement error is large.

To better illustrate our proposed approaches, we create a modified BioCycle data

set, where carotene is measured with more error. Specifically, some random noise

is added to HPLC measurements to increase the magnitude of measurement error.

Figure 3.2(b) shows the modified calibration data, which maintain the same pattern

as the original calibration data but are more dispersed, with σ̂2 = 2.496. We analyze

the modified data with our proposed methods, and results are summarized in Table

3.5.

As shown in Table 3.5, the näıve analysis attenuates the association between

carotene and progesterone toward to the null, as expected. Noticeably, when ap-

plying our proposed error correction methods to the modified BioCycle data, there

is appreciable difference in the estimates of regression coefficient of carotene. In

particular, the estimates of the CA, RC, WRC and MINDα methods are −0.0255,
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−0.0339, −0.0298 and −0.0280, respectively. We also observe that the RC estimate

has a larger standard error than the WRC or MI estimate.

3.7 Conclusion and Discussion

The simulations in Freedman et al. (2008) show that ERC outperforms MI for

the case of homoscedastic measurement error. The reason is that ERC exploits the

NDME assumption, whereas the version of multiple imputation (MI0) considered

by these authors does not. The simulations reported in Table 3.1 indicate that a

version of MI that exploits the NDME assumption (MIND0) is similar or superior to

ERC for the simulation conditions compared. This finding is to be expected, given

the asymptotic efficiency of MI under a correctly specified model, as the number of

imputations tends to infinity. Our simulation results also show the efficiency gains

of MIND0 over MI0, demonstrating the utility of taking into account the NDME

assumption when it is substantively reasonable. It may be seen that the RMSE of

the MIND0 estimate is generally 10%-15% smaller than that of the MI0 estimate in

our simulation settings.

The main focus of this chapter is on extending methods to the case of heteroscedas-

tic measurement error, a situation where existing methods are biased. In particular,

the RC method, which imputes a conditional mean of X given W , does not yield

consistent estimates when the measurement error variance is not constant. Our

modification WRC of RC, based on estimating the conditional means by weighted

least squares, reduces but does not solve this problem. In contrast, the MI methods,

which impute draws rather than means, can readily allow for nonconstant measure-

ment variance by simply modifying the imputation model to reflect this feature.

The RC method and its extensions rely on the assumption that measurement error
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is non-differential, and in this chapter we focus on the performance of MI methods

based on the NDME assumption. However, we note that the MI methods can also

handle differential measurement error, provided that internal calibration data are

available to identify the model parameters. In detail, the MINDα method designed

under the NDME assumption can be easily extended to work in the case where the

assumption may not hold, i.e., allowing for differential measurement error by mod-

ifying the imputation model in the following way — remodeling the measurement

error as p(W |X, Y ), instead of p(W |X).

Although the MINDα method performs well in the simulation studies, it is com-

paratively complex computationally, given its use of MCMC with a MH step. We

provide an alternative. SMINDα is much simpler computationally since it avoids the

MH step. It is based on an approximate model similar to WRC, so it lacks statistical

rigor. However, SMINDα performs well and similarly to MINDα in the simulations,

and it takes much less time to compute.

Our Bayesian MI methods require specification of prior distributions for the pa-

rameters, and also for p(X). We chose a simple noninformative normal prior dis-

tribution for p(X), and resulting estimates had good frequentist properties in the

simulations. However, other choices may be worth considering. For example, mix-

tures of normal distributions for p(X) have been proposed with a prespecified (Carroll

et al., 1999) or unknown (Richardson et al., 1999) number of components for linear

measurement error models. These methods could be adapted to our heteroscedastic

setting. We assume the measurement error variance model is σ2X2, indicating that

the variance increases as the true value of X increases. This chosen nonconstant

variance model is common (though others are possible). It is of interested, although

more complex, to extend the proposed MI methods to allow for a more general form



53

of the nonconstant variance, like σ2g2(β, α,X) with an unknown parameter vector

(β, α).

We have restricted attention here to the case where a simple regression of Y on

X is of interest. It is relatively straightforward to extend our MI methods to allow

for other covariates Z, recorded without measurement error, since values of these

variables can be conditioned in the MCMC analysis. Extensions to non-normal

outcomes, as when Y is binary and follows a probit model, could also be developed

without too much difficulty.

We assume that the same measurement error model holds for the calibration

and main data sets. In some epidemiologic study designs, the calibration data are

supplied by an external source, such as a pure standard sample, and the relationship

of the true and measured variables might be different for the calibration and main

study data, because the sample from each subject of the main study might have

impurities that change the measurement error properties. In these situations where

the assumption of the same models in both the calibration and main study samples is

clearly violated, using external data to adjust for measurement error may introduce

bias. Hence methods that allow a different measurement model are worthwhile in

future research.

In applications, the choice of method should be considered based on the measure-

ment error structure. In particular, the application to the BioCycle data suggests

that the CA method may yield reasonable estimates, since the measurement error is

small. The discrepancy between CA and the other various methods becomes more

substantial as the measurement error increases, as demonstrated by the modified

BioCycle data. The developed MI methods can be expected to have much apprecia-

ble impact when the response-covariate association is strong and the measurement
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error is large.

3.8 Appendix

In this chapter, we apply the MI approach via data augmentation using a Markov

Chain Monte Carlo (MCMC) algorithm. We consider measurement error problems

in a missing data context where the true value of X is unoberved. The data aug-

mentation method is a two-step iterative algorithm. The key idea is to iteratively

generate draws for missing values given observed data and a set of parameters (I-

step) and generate draws of the model parameters from their posterior distribution

given complete data (P-step). These two steps are iterated long enough to the con-

vergence, and then the results are reliable to be treated as multiply imputed data

sets (Schafer, 1997).

Suppose we have data collected from the main study containing nmain observa-

tions (Wi, Yi) and from the external calibration study containing ncalib observations

(Xi,Wi). The observations are assumed to be independently and identically dis-

tributed. We let n denote the number of all observations, n = ncalib + nmain.

The posterior predictive distribution of X given W , Y and the parameters cannot

be expressed in a closed form, however, by Bayes’ Theorem, it can be factorized as

p(X|Y,W, β, σ, α, γ, τ, μx, σx) ∝ p(W |X, Y, β, σ, α)p(Y |X, γ, τ)p(X|μx, σx)

∝ p(W |X, β, σ, α)p(Y |X, γ, τ)p(X|μx, σx)

This factorization represents three models: the measurement error model which links

the true variable X and the observed variable W , the main study model which spec-

ifies the relationship between the response variable Y and the unobserved covariate

X, and the prior distribution for X.

Assuming that the parameter vectors θ = (β, σ, α), ψ = (γ, τ) and π = (μx, σx)
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are distinct and priori independent, the likelihood function can be factorized, and

the joint posterior for the parameters given the complete data can be expressed as

p(β, σ, α, γ, τ, μx, σx|Y,X,W ) ∝ p(Y,X,W |β, σ, α, γ, τ)p(β, σ, α, γ, τ, μx, σx)

∝ p(W |X, β, σ, α)p(β, σ, α)p(Y |X, γ, τ)p(γ, τ)p(X|μx, σx)p(μx, σx)

Hence θ, ψ and π can be sampled separately.

For the external calibration/main design, we also need impute missing values for

Y . The posterior distribution of Y is given straightforwardly as a normal distribution

with mean (γ0 + γXX) and variance τ 2.

Having obtained the complete-data posteriors for the model parameters, and the

condition predictive distribution for X and Y , our imputation procedure for the

external calibration/main study composes of the following steps:

I-1 step: Generate imputed values of Yi for i corresponding to the ith observation

in the calibration study, i = 1, ..., ncalib, from the posterior density

p(Yi|Xi, ψ) ∼ N(γ0 + γXXi, τ
2)

I-2 step: Generate imputed values of Xi for i corresponding to the ith observation

in the main study, i = 1, ..., nmain, from the posterior density specified by

p(Xi|Yi,Wi, β, σ, α, γ, τ) ∝ τ−2exp(− 1

2τ 2
(Yi − γ0 − γXXi)

2)

× σ−2X−α
i exp(− 1

2σ2X2α
i

(Wi − β0 − β1Xi)
2)

× σ−2
x exp(− 1

2σ2
x

(Xi − μx)
2)

P-1 step: Draw ψ from the posterior density p(ψ|X, Y ).

P-2 step: Draw θ from the posterior density p(θ|W,X).

P-3 step: Draw π from the posterior density p(π|X).
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For the internal calibration/main study design, we observe (Y,X,W ) in the cali-

bration study. Therefore, ML estimates for the regression parameters γ0, γX and τ 2,

as well as the measurement error model parameters β0, β1 and σ2 can be computed

using the calibration data by standard analysis (e.g., least squares methods), and

used as initial values for the data augmentation algorithm. The sample mean and

variance of X can also be calculated from the calibration data, and used as initial

values for μx and σ2
x. The initial value of α is estimated as the slope of regression

of logarithm of squared residuals of the regression of X on W on the logarithm

of squared W . For the external calibration/main study design, we still can obtain

estimates of the measurement error parameters β0, β1, σ
2 and α, using the same

approach for the internal calibration design. However, the initial values of γ0, γX

and τ 2 can not be computed straightforwardly because X and Y are not observed

together in the whole data set. We apply the regression calibration method to obtain

initial values. In detail, we first substitute unobserved values of X in the main study

by the expectation E(X|W ), and then regress Y on the substituted values to obtain

initial estimates for γ and τ 2.

The data augmentation method iterates between the P-step and the I-step for a

large number of times until the algorithm converges. We use the method proposed

by Gelman and Rubin (1992) for convergence diagnosis of the model parameters.

Initial values of model parameters are chosen to be reasonably overdispersed by

bootstrapping the original data set. For each of the bootstrap samples, estimates

of model parameters are obtained using the method described above, and used as

the initial points for the MCMC chains. After the algorithm converges, We discard

data from the initial burn-in period before saving the values. The imputed complete

data set is generated by using every dth iteration after an adequate burn-in period,
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to avoid possible autocorrelation between successive sets of imputed values, so that

the imputed data sets can be treated as independent. For all the model parameters,

we observe reasonable mixing and convergence after 2000 iterations of the MCMC

chains. Hence we decide to discard the first 2000 iterations, and choose d = 100. We

generate 16 imputed data sets, which can be analyzed by standard complete data

inference.

The imputation procedure for the internal calibration/main study is similar to

that of the external calibration/main study, except that the I-1 step can be omitted

since Y is observed in this design.

The I-1 step can be performed easily by generating a random draw from a normal

distribution. The I-2 step is not straightforward, since we don’t have an analytical

expression for the posterior density of X. We use a Metropolis-Hastings algorithm

for this step to generate values of Xi. It consists of the following two steps:

• Generate a value Xi
′ from an appropriate candidate generating density qi(Xi,Xi

′),

where Xi denote the current value

• Set

Xi
(j+1) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Xi
′ with probability κ = min[1, π(Xi

′)q(Xi
′,Xi

(j))

π(Xi
(j))q(Xi

(j),Xi
′)
],

Xi
(j) otherwise.

where π(Xi) is the target density from which we want to simulate X.

The choice of candidate generating density is arbitrary, but a correctly speci-

fied density can improve the efficiency of this algorithm. In our work, we generate

a candidate Xi
′ from a Gaussian model centered on the current value Xi

(j) and

variance σ2
∗, equal to a scaled sampling variance of the target density. That is,
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q(Xi
′,Xi

(j)) = N(Xi
(j), σ2

∗). The algorithm with the normal generating density is

also called “a random walk Metropolis” algorithm.

The P-step requires generating the draws of the parameters from the complete-

data posterior distribution. In P-1 step, by Bayes’s rule, the posterior for ψ = (γ, τ)

given the data (X, Y ) can be factored as a multivariate normal distribution and a

scaled inverted χ2 -distribution, which make it easy to draw the values. In practice,

we first draw τ 2 from τ 2 ∼ inv − χ2(υ, S2); and then draw γ from multivariate

normal distribution N(γ̂, τ 2(X ′X)−1), where γ̂ = (X ′X)−1X ′Y is the ordinary least

squares estimate from the regression of all data, S2 = (Y − Xγ̂)′(Y − Xγ̂) is the

corresponding sample variance, and υ = n− 2 is the degree of freedom.

Drawing parameter θ from the posterior density p(θ|X,W ) is a little complicated

due to presence of the unknown parameter α. For known α, draws of β, σ2 can be

readily obtained from their posterior density using an approach similar to the P-1

step, with the least squares estimate replaced by the weighted least squares estimate.

In detail, let ωi = 1/Xα
i , we first generate values of α from its posterior distribution,

p(α|β0, β1, σ
2, X,W ) ∝ (

n∏
i=1

ωi)exp{− 1

2σ2

n∑
i=1

ω2
i (Wi − β0 − β1Xi)

2}, i = 1, ..., n

using a random walk Metropolis step. Given α, we draw σ2 from σ2 ∼ inv−χ2(υ, S2
w);

and then draw β from multivariate normal distribution N(β̂, σ2(X ′ωX)−1), where

β̂ = (X ′ωX)−1X ′ωW is the weighted least squares estimate from the regression of

all data, ω is a n × n weighted matrix with the diagonal element ωi and the other

elements equal to zero, S2
w = (W −Xβ̂)′ω(W −Xβ̂) is the corresponding weighted

sample variance, and υ = n− 2.



CHAPTER IV

Multiple Imputation for Covariate Measurement Error

Correction based on Summary Statistics from External

Calibration Data

4.1 Description of the Problem

Many studies in epidemiology involve biomarkers that are recorded with mea-

surement error, and measurement error is known to distort inferences when these

biomarkers are included as predictors in regression analysis. Specifically, it is well

known that regression coefficients of variables subject to measurement error are atten-

uated, and when the variables subject to measurement error are covariates, treatment

effects are potentially estimated with bias (Morgan and Elashoff, 1987; Richardson

and Gilks, 1993; Zidek et al., 1996; Fung and Krewsk, 1999; Sarkar and Qu, 2007).

Despite these facts, quantitative adjustments are rarely applied in epidemiological

studies (Jurek et al., 2004).

Often information about measurement error is contained in a calibration experi-

ment such as a bioassay, where samples with known values of the variable are analyzed

by a measuring instrument, and the regression of the measured values on the true

values is estimated, often in the form of a linear calibration curve (Higgins et al.,

1998). The true values of future measurements are then simply estimated from the

calibration curve, and these values are treated as the true values in the main anal-

59
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ysis. Values that have high measurement error relative to the true values are often

reported as below the limit of detection (LD). Browne et al. (2010) provide a review

of methods for determining the LDs and related quantities. Simulations have shown

that this approach, which we call classical calibration (CA), yields biased estimates

when the measurement error is substantial (Guo et al., 2010). They note that this

usual way of providing information from calibration experiments to users does not

allow valid statistical inferences involving the true values of the biomarker, and hence

better methods are needed.

We consider data from a main study and a calibration sample in the form of Figure

4.1. The main analysis concerns the regression of Y on X and Z, where, Y is the

outcome of interest, X is the true value of the biomarker of interest, and Z denotes

a set of other covariates, assumed to be measured without error. The data in the

main study are a random sample on Y , Z and W , where W is the measured version

of the biomarker, which we assume to be the true value X measured with error.

Information relating W and X is gained from a calibration sample, which includes

measurements on W and X. The question marks in Figure 4.1 denote unobserved

values.

Figure 4.1 contrasts two calibration sample designs, which we call “internal cali-

bration” and “external calibration”. In internal calibration, Figure 4.1(a), values of

X and W are available for a subsample of the main study participants, and hence

values of Y and Z are also recorded for this subsample. External calibration is car-

ried out independently of the main study, for example by an assay manufacturer,

so values of Y and Z are not recorded for the calibration sample, yielding the more

sparse missing data pattern of Figure 4.1(b).

External calibration is the harder problem, but the literature on measurement er-
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Figure 4.1: Internal and external calibration/main study design

ror adjustments has largely concerned the internal calibration design, with or without

outcome Y . Regression calibration (RC) is one method for adjusting for measure-

ment error using the internal calibration data. The method substitutes the estimated

conditional expectation of the true biomarker given the observed surrogate and the

other covariates into the primary regression model (Carroll and Stefanski, 1990).

This method yields consistent estimates of the main regression parameters under the

non-differential measurement error assumption that Y is independent of W given

Z and X, which we denote NDME(Y |Z,X). The standard errors of the estimates

are calculated using either bootstrap or sandwich methods. Rosner et al. (1989,

1990) propose a related method, which they also call RC, and Thurston et al. (2003)

demonstrate that this method yields identical estimated coefficients and asymptotic

variances to those proposed by Carroll and Stefanski (1990), under fairly broad con-

ditions. When values of Y are available in the calibration data, as shown in Figure
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4.1(a), a refinement of RC is efficient regression calibration (ERC), which combines

the RC estimates with direct estimates of the regression of Y on (X,Z) from the

calibration sample (Spiegelman et al., 2001).

An alternative approach for dealing with measurement error problems with in-

ternal calibration data is multiple imputation (MI), a method developed to draw

inferences from data sets with missing values (Little and Rubin, 2002). The true

values of the biomarker X are imputed as draws from the conditional distribution

of X given W ,Z and Y , estimated from the calibration subsample. This imputa-

tion step is repeated multiple times to create multiple completed data sets. Each

completed data set is then analyzed using standard complete-data procedures, and

estimates and standard errors from each complete-data analysis combined using MI

combining rules given in Rubin (1987). Multiple imputation is increasingly available

in widely-available statistical software (SAS PROC MI, IVEware, MICE), making

the approach attractive practically. Cole et al. (2006) propose this approach with

a survival outcome model when one covariate is measured with error. Messer and

Natarajan (2008) present using MI for measurement error adjustment in logistic re-

gression analysis. Raghunathan (2006) indicates self-reported values of health condi-

tions collected in a large survey may be inaccurate, and proposes to multiply impute

clinical (true) values of health conditions, based on the National Health and Nutri-

tion Examination Survey which includes both self-reported values and clinical values

from physical examinations. He and Zaslavsky (2009) show that cancer therapies for

patients are likely underreported in registry systems, and propose to impute correct

treatment status by using information from medical records collected in a calibration

sample to improve analysis. Freedman et al. (2008) compare RC, ERC and multi-

ple imputation under the multivariate normal model (MI-IC) for a single continuous
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explanatory variable measured with error, for the internal calibration design. They

show in simulations that RC is biased, and ERC can be more efficient than MI-IC

because it exploits the NDME assumption. Guo and Little (2010) show that effi-

cient versions of MI-IC are available that exploit the NDME assumption, and they

extend MI-IC to handle the situation where the measurement error has nonconstant

variance, a case that RC and ERC are not well equipped to handle.

Our focus in this chapter is on the external calibration design as shown in Figure

4.1(b). Since biomarkers are commonly calibrated by assay producers independently

of the main study, this situation is much more common than that of the internal

calibration, but methods for correctly adjusting for measurement error have not to

our knowledge been developed. The classical CA method is biased as we already

know from previous studies (in Chapter II), and there are two serious problems

with RC, ERC and MI-IC in this external calibration setting. First, the calibration

data may not be available to multiple researchers with various scientific purposes.

Second, RC, ERC and MI-IC both require information in the calibration sample that

is not available in the case of external calibration: for RC the values of Z, and for

ERC and MI-IC the values of both Y and Z. If multiple imputation or regression

calibration are based on the distribution of X given W , which can be estimated from

the calibration data, they both yield biased inferences for the regression of Y on X

and Z, as we demonstrate in simulations.

We propose a new MI method, multiple imputation for external calibration (MI-

EC), which addresses these problems. First, it only requires summary statistics from

the calibration sample. Second, it yields valid MI inferences for the regression of Y on

X and Z, despite the fact that values of Y and Z are not measured in the calibration

sample. Like MI-IC, it is based on a multivariate normal model, but it is not the
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standard multivariate normal version of MI, as implemented in PROC MI in SAS;

that method is actually not feasible for the missing-data pattern in Figure 4.1(b),

since there is no information to estimate some imputation model parameters. Rather,

estimates of model parameters for MI-EC can be obtained based on a multivariate

normal model, and parameter restrictions under a NDME assumption that is very

plausible in many settings. The algorithm for creating the MI-EC imputations, which

is provided as an R package (details are given in Appendix 4.7), is remarkably simple,

since it is a direct simulation method that does not require iterative Markov-chain

Monte Carlo methods like the Gibbs sampler.

The remainder of this chapter is organized as follows. In Section 4.2, we describe

the model that underlies MI-EC, and outline the algorithm for creating multiple

imputations. A simulation study showing the superior performance of MI-EC over

competing methods is reported in Section 4.3. Sensitivity analysis to examine the

robustness of MI-EC is presented in Section 4.4. In Section 4.5, we analyze data

from our motivating example. Discussion and future research is provided in Section

4.6.

4.2 Proposed Multiple Imputation Method

We write U = (Y, Z), a vector of p variables, for the set of outcomes Y and

covariates Z other than X, where Y has dimension q, Z has dimension r, and p =

q+ r. Since q and r may be greater than one, we allow for more than one dependent

variable and/or covariate, so multivariate regression is included in our formulation.

For simplicity we assume here that X and W are scalar, although our method can

be extended to handle more than one variable X subject to measurement error.

We assume that in the main sample and the calibration sample, (U,X|W ) has
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a joint (p + 1)-variate normal distribution with a mean that is linear in W and a

constant covariance matrix. Thus, the distribution of (U,X|W ) is assumed the same

in the main study sample and the calibration sample, although we do not need to

assume the same distribution of U in the two samples. This assumption is related

to the “transportability across studies” assumption in Carroll et al. (2006). Further,

we make the following non-differential measurement error assumption:

NDME(U): the distribution of U given W and X does not depend on W .

(*)

This is assumption is stronger than the assumption NDME(Y |Z,X) underlying

RC for internal calibration, since a stronger assumption is needed, given the sparser

information available from external calibration data. Nevertheless, it is reasonable if

the measurement error is unrelated to values of U = (Y, Z), as is plausible in many

bioassays (Guolo and Brazzale, 2008). For MI, we need imputations of X from the

conditional distribution of X given the observed variables in the main study sample,

namely Y ,Z and W ; let φ = (λ, σx·yzu) denote the vector of regression coefficients λ

for the regression of X on (Y, Z,W ), and corresponding residual variance for that re-

gression. We describe two multiple imputation approaches, one of which is improper

(Rubin, 1987) and based on the the maximum likelihood estimates φ̂ of φ, and the

other is proper and based on a draw φ(d) from the Bayesian posterior distribution of

φ, assuming a noninformative prior distribution of the parameters. In both cases, a

set of D imputed data sets are created by filling in the missing values of X in the

main study sample. For data set d, the improper method imputes the missing value

xi of X for the ith observation in the study sample by

(4.1) x̂
(d)
i = E(xi|yi, zi, wi, φ̂) + ε

(d)
i
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where (yi, zi, wi) are the values of (Y, Z,W ) for observation i, E(xi|yi, zi, ui, λ̂) is the

regression prediction with regression coefficients replaced by the ML estimate λ̂, and

ε
(d)
i is an independent normal deviate with mean zero and variance given by the ML

estimate of the residual variance σ̂x·yzu of the regression. The proper method imputes

the missing value xi by

(4.2) x̂
(d)
i = E(xi|yi, zi, wi, φ

(d)) + ε
(d)
i

where φ̂ is replaced by a draw φ(d) from the posterior distribution of φ. The proper

method is better than the improper method because it takes into account uncertainty

in estimating φ (Rubin, 1987), and it is actually not much harder computationally

than the improper method. We now outline how φ̂ and φ(d) are computed, and why

the algorithms work. Readers not interested in these statistical details can skip to

the beginning of the next section.

The ML estimates φ̂ are computed as follows:

Step (1) Let θ = (θ1, θ2, σux·w), where θ1 represents parameters of the normal

distribution of X given W , θ2 represents parameters of the normal distribution of

U given W , and σux·w represents the set of p partial covariances between U and X

given W . Estimate θ1 by θ̂1, the ML estimates based on the calibration sample on

(X,W ), and θ2 by θ̂2, the ML estimates based on the main study sample on (U,W ).

These are the standard normal linear regression ML estimates for complete data,

and the calculations involve standard least squares methods. Also note that θ̂1 can

be computed from summary statistics on the calibration sample, namely the sample

size, sample mean and sum of squares and cross products matrix of X and W .

Step (2) Estimate

σ̂ux·w = β̂uw·wσ̂xx·w/β̂xw·w,
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where β̂uw·w is the (p × 1) vector of regression coefficients of U on W , estimated

from the main sample, and β̂xw·w and σ̂xx·w is the regression coefficient of W and

residual variance from regression of X on W , estimated from the calibration sample.

This expression follows since, from properties of the multivariate normal distribution,

βuw·w−σux·wβxw·w/σxx·w equals the set of regression coefficients ofW in the regression

of U on W and X, which are zero because of the NDME assumption (*).

Step (3) The ML estimates of the parameters of the distribution of (U,X) =

(Y, Z,X) given W are fully specified by the estimates in Steps (1) and (2). In fact,

since the number of parameter restrictions from the NDME assumption, namely

p, is the same as the number of parameters in σux·w that are not estimable from

the main and calibration samples – the model is technically “just identified”. The

parameter φ of the regression of X on Y , Z and W is a vector function of the

parameters (θ1, θ2, σux·w), that is, φ = φ(θ1, θ2, σux·w). The ML estimate of φ is

then φ̂ = φ(θ̂1, θ̂2, σ̂ux·w), obtained by substituting ML estimates of (θ1, θ2, σux·w) in

this function. The details of this transformation are discussed in Little and Rubin

(2002). Computation is straightforward using the SWEEP operator, which facilitates

switching between parameters of different regressions derived from the multivariate

normal distribution.

This completes the description of the ML algorithm, except for one minor caveat.

The estimate of the residual variance of X given (Y, Z,W ) could be negative, given

the fact that estimates are being combined from two samples. If this happens, the

residual variance should be set to zero. The resulting estimate of the covariance

matrix lies in the parameter space. In particular, it is positive definite. This is

always the case in our simulation studies, and in real applications this is likely to be

the case unless the measurement error is very large.
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As noted above, the imputations based on this procedure have the limitation that

they do not reflect uncertainty in the ML estimates of φ. Fortunately, it is relatively

easy to overcome this limitation, by replacing ML estimates φ̂ of the parameters φ

for the dth imputed data set by a draw φ(d) from the posterior distribution of φ. A

noninformative Jeffrey’s prior is assumed for the parameter (θ1, θ2). Then the ML es-

timates (θ̂1, θ̂2) in Step (1) are replaced by draws (θ
(d)
1 , θ

(d)
2 ) from their complete-data

posterior distributions based on the calibration and main study samples, respectively.

Draws from these posterior distributions are easily computed using chi-squared and

normal deviates, as described in Little and Rubin (2002). Steps (2) and (3) are then

as above, except that draws of σ
(d)
ux·w, φ(d) for σux·w and φ are created using the draws

(θ
(d)
1 , θ

(d)
2 ) rather than (θ̂1, θ̂2).

For biomarker data, since the calibration data are not a subset of the main study

data, they are not included in the post-imputation analysis. Reiter (2008) shows

that when the calibration data used to create the imputation models for imput-

ing missing values of the covariate are not included for analysis, the usual multi-

ple imputation variance estimator obtained from the MI combining rules outlined

by Rubin (1987) is positively biased and confidence interval coverage exceeds 95%.

He proposes a two-stage imputation procedure to generate imputations that enable

unbiased estimation of variances. Here, we follow Reiter’s procedure to impute un-

observed true values of the covariate X. In detail, first, we draw the dth values of

model parameters φ(d) by following Steps (1)-(3); second, for each φ(d), d = 1, ..., m,

we construct n imputed data sets by generating n sets of draws of X from the

model (4.2). Finally, this procedure yields a collection of m×n imputed data sets,

D = D(d,i) : d = 1, ..., m; i = 1, ..., n, which can be analyzed by standard complete

data inference. The results from each imputed data set are then combined to obtain
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valid inferences using the combining rules suggested by Reiter.

For d = 1, ..., m and i = 1, ..., n, let γ̂(d,i) and var(γ̂(d,i)) be the estimate of

parameters of interest and the corresponding estimated variance computed withD(d,i)

data set, respectively. The MI estimate of γ, γ̂MI , and associated variance TMI are

calculate as

γ̂MI =
m∑

d=1

n∑
i=1

γ̂(d,i)/(mn) =
m∑

d=1

γ(d)
n /m

TMI = U −W + (1 + 1/m)B −W/n

with

W =
m∑

d=1

n∑
i=1

(γ̂(d,i) − γ(d)
n )2/(m(n− 1))

B =
m∑

d=1

(γ(d)
n − γ̂MI)

2/(m− 1)

U =

m∑
d=1

n∑
i=1

var(γ̂(d,i))/mn

The 95% confidence intervals for the MI estimate are calculated as γ̂MI±t0.975,υ

√
TMI ,

with degree of freedom υ = [ ((1+1/m)B)2

(m−1)TMI
+ ((1+1/n)W )2

(m(n−1))TMI
]−1. When TMI < 0, the variance

estimator is recalculated as (1 +1/m)B, and inferences are based on a t-distribution

with (m− 1) degrees of freedom.

In this study, we choosem = 12 and n = 3. When n = 1, the two-stage imputation

is the normal multiple imputation method for handing missing data.

4.3 Simulation Study

Simulation studies are performed to investigate the performance of the proposed

MI-EC method under an external/main study design with other existing methods,
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including the näıve (ignoring measurement error), classical calibration (CA) and

regression prediction (RP) methods.

4.3.1 Simulation Design and Setting

We consider a linear regression model for outcome Y on covariate X measured

with error, and covariate Z measured without error,

(4.3) f(Y |X,Z, ψ) ∼ N(γ0 + γXX + γZZ, τ
2)

where ψ = (γ0, γX, γZ , τ
2) denotes the vector of regression coefficients and residual

variance for the model. The parameters γX and γZ correspond to the covariate

measured with and without error, respectively. We distinguish between different

estimators of γ by a subscript. Our study aim is to estimate the parameters γX and

γZ .

In the main study, the true value of X is not observed, instead we observe the

surrogate measure W . The surrogate W is related to covariate X by a measurement

error model. We consider a case of linear biased and non-differential measurement

error process given as

(4.4) f(W |Y,X, Z, ) ∼ N(β0 + β1X, σ
2)

The performances of various methods are summarized using the absolute value

of bias, the root mean square error (RMSE), and empirical non-coverage rate. The

empirical non-coverage rate is calculated as the percentage of simulated data sets for

which the 95% confidence intervals (CI) do not contain the true parameter values,

γX , or γZ . The percentage is multiplied by 1000 to eliminate the decimal points, and

hence a nominal value of non-coverage of 95% confidence interval is equal to 50.
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To facilitate comparison of different simulated scenarios, the covariates X and Z

are standardized to have mean 0 and variance 1. X and Z are constructed to be

correlated with the correlation ρ. For simplicity, we fix β0 = 0 and β1 = 1.1, so that

W is a linear biased surrogate for X. In the main study model, we also fix γ0 = 0,

γZ = 0.4, and τ 2 = 1. We assess the performance of the estimator under different

simulation scenarios by varying the remaining model parameters: γX , the regression

coefficient of the covariate X, which is measured with error; σ2, the variance of the

measurement error model; and ρ, the correlation between X and Z. Specially, ρ is

set to 0.3 for low correlation between X and Z, and 0.6 for high correlation. σ2 is

chosen to be 0.25, 0.5 and 0.75 to represent small, moderate and large measurement

errors, respectively. γX is set to 0.4 and 1.2, which correspond to a small covariate

effect and a large covariate effect respectively.

We generate 1000 simulations for each of the combinations of parameter values.

For each of the simulations, a calibration sample and main study sample are gener-

ated. To generate the calibration study, ncalib observations of (X,Z) are first sampled

from a bivariate normal distribution with zero mean, unit variance and correlation

coefficient ρ, and then W is generated from the measurement error model as in Eq.4.4

conditioning on X, given the values of β0, β1, σ
2.

To generate the main study sample, we first sample nmain observations of (X,Z)

from a bivariate normal distribution with zero mean, unit variance and correlation

coefficient ρ. Next, W is generated from the model as in Eq.4.4 conditioning on X

given values of β0, β1, σ
2, and Y is generated from the model as in Eq.4.3 conditioning

on X and Z given γ0, γX , γZ , τ 2, respectively.

Under each simulation setting, the sample size of the main study nmain is set to

400. The sample size of the calibration study ncalib is chosen as 100.
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4.3.2 Existing Methods

• Classical Calibration

The classical calibration approach (CA) is a widely used error-correction method

in practice, especially when dealing with laboratory-related data. This method

first fits a linear regression curve of W on X based on the calibration data, and

then estimates the unknown value of X by X̂CA = (W − β̂0)/β̂1, where β̂0 and

β̂1 are the estimates of the intercept and slope obtained from the regression of

W on X. The estimate X̂CA is then substituted into the regression model (4.3)

in place of the unknown X in the main study data, to yield the CA estimate of

γ.

• Regression Prediction

In this method, the unknown value of X in the main study data is substituted

with E[X|W ]. We first estimate the linear regression E[X|W ] = α0 + α1W in

the calibration study to get estimates α̂0 and α̂1, and then replace unknown

values of X in the regression model (4.3) with the expectation of X given W ,

that is, X̂RP = α̂0 + α̂1W , to estimate γ. Standard errors for the estimate of γ

can be easily found by bootstrap methods.

The RP method is known as the usual regression calibration method when there

is no covaraite Z.

4.3.3 Results

The results of the simulation studies are shown in Table 4.1. We examine and

compare the näıve regression of Y on W and Z, and various measurement error

correction techniques, including aforementioned CA, RP, and MI-EC. We focus on

the performance of various methods on inferences for the estimates of γX and γZ , with
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respect to the bias, RMSE and empirical non-coverage of 95% confidence intervals.

We investigate the estimate for the inaccurately measured covariate X first. As

expected, the näıve estimate γX obtained without adjustment for measurement error

is attenuated toward the null value (zero) due to measurement error in X, and

corresponding empirical non-coverage rate of 95% confidence intervals exceeds the

nominal levels in all examined simulation scenarios. Similar to the naive method,

the implementation of CA performs very poorly, with substantial bias and high non-

coverage rate, particularly when the measurement error is large. RP has small bias

when the correlation between X and Z is low. For high correlation, there is a large

bias in RP, with the difference between RP and MI-EC increasing with large covariate

effect and large measurement error. The poor results for the RP method may occur

because imputing the missing X from the conditional distribution X|W (ignoring

Y and Z completely) has introduced extra noise. The non-coverage of confidence

intervals for RP becomes substantial when the magnitude of measurement error and

the correlation between X and Z increase. Under all simulation scenarios considered

here, MI-EC has little or mild bias, and nominal level non-coverage of confidence

intervals. The RMSE of MI-EC is comparable to or a little larger than that of RP

in some situations. We believe that the loss of precision for MI-EC is because this

method takes into account the correlation between X and Z. As demonstrated by

the simulation study, under the same simulation settings, the modified version of

MI-EC (ignoring the correlation between X and Z) is more efficient than RP. As the

covariate effect and the X − Z correlation become large, MI-EC has smaller RMSE

than RP.

The estimate of the regression coefficient for Z, the covariate measured without

error, is also shown in Table 4.1. The estimates of γZ obtained by the näıve method
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Table 4.1: Empirical bias, RMSE, and non-coverage rate (noncov.) for the estimates of γX and γZ

based on 1000 simulations. The calibration study sample size = 100 and the main study
sample size = 400. The true value of γX is 0.4 or 1.2; the true value of γZ is 0.4. All
values are multiplied by 1000.

Simulation parameters X Z

γX γZ β σ2 ρ Näıve CA RP MI-EC Näıve CA RP MI-EC

0.4 0.4 1 0.25 0.3 Bias 105 75 7 1 23 23 23 0

RMSE 113 90 60 61 57 57 57 54

Noncov. 664 347 44 28 66 66 61 32

0.4 0.4 1 0.5 0.3 Bias 151 126 10 3 38 38 38 1

RMSE 156 134 68 71 65 65 65 56

Noncov. 961 784 48 42 111 111 117 41

0.4 0.4 1 0.75 0.3 Bias 185 163 13 5 49 49 49 3

RMSE 189 169 75 80 72 72 72 59

Noncov. 998 952 53 45 153 153 151 36

0.4 0.4 1 0.25 0.6 Bias 27 99 36 2 60 60 60 1

RMSE 135 113 76 76 85 85 85 69

Noncov. 710 416 83 36 159 159 165 50

0.4 0.4 1 0.5 0.6 Bias 181 158 56 9 95 95 95 6

RMSE 186 166 92 95 112 112 112 79

Noncov. 981 868 124 47 350 350 354 48

0.4 0.4 1 0.75 0.6 Bias 217 198 70 18 119 119 119 15

RMSE 221 204 105 122 133 133 133 100

Noncov. 1000 975 145 49 499 499 506 34

1.2 0.4 1 0.25 0.3 Bias 312 223 18 5 67 67 67 10

RMSE 316 233 85 88 88 88 88 61

Noncov. 1000 949 63 37 210 210 217 59

1.2 0.4 1 0.5 0.3 Bias 451 375 29 12 113 113 113 5

RMSE 453 383 111 119 128 128 128 73

Noncov. 1000 999 72 38 418 418 428 53

1.2 0.4 1 0.75 0.3 Bias 552 487 36 17 147 147 147 9

RMSE 554 493 132 144 159 159 159 86

Noncov. 1000 1000 77 34 621 621 621 53

1.2 0.4 1 0.25 0.6 Bias 377 294 104 9 177 177 177 6

RMSE 381 303 137 111 188 188 188 85

Noncov. 1000 988 248 37 766 766 760 47

1.2 0.4 1 0.5 0.6 Bias 539 472 166 25 284 284 284 20

RMSE 541 478 197 166 291 291 291 124

Noncov. 1000 1000 392 34 987 987 987 45

1.2 0.4 1 0.75 0.6 Bias 647 591 206 44 355 355 355 37

RMSE 649 596 239 213 362 362 362 166

Noncov. 1000 1000 466 37 999 999 1000 47

Näıve: näıve linear regression of Y on W ; CA: classical calibration; RP: regression prediction; MI-EC: multiple
imputation.
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are considerately biased, with bias increasing with large measurement error, large

covariate effect and high correlation between X and Z. The similar phenomenons

are also observed for the CA and RP methods with large bias, poor precisian and

high non-coverage rate. In contrast, our MI-EC method shows good performance in

all scenarios used in our simulation study.

The results presented in Table 4.1 are based upon the two-stage imputation pa-

rameter setting (m,n) = (12, 3). For a comprehensive evaluation, we also examine

the performance of our MI-EC method under several other combinations of m and n

settings, including (20, 3) and (12, 5). The results from the simulation study under

those settings are close to those we present in Table 4.1, although the combination

of (20, 3) results in a slightly lower non-coverage rate.

We conclude that MI-EC is considerably superior to other existing methods for

adjusting for covariate measurement error, mainly in eliminating measurement er-

ror bias and providing adequate coverage of confidence intervals. Its performance

becomes more pronounced as the covariates X and Z are highly correlated, the

covariate effect is large, or the measurement error is large.

4.4 Sensitivity Analysis to Multivariate Normal Assumption

As shown in previous results, the MI-EC method provides promising results to

correct for covariate measurement error in regression analysis, for the situation where

the calibration data is not directly available, and only summary statistics of the joint

distribution of (X,W ) can be collected and used. Recall that one key limitation of

this method is that it is based upon certain model assumptions, including multivari-

ate normality assumption and NDME assumption. The combination of these two

assumptions allows us to impute X condition on all observed variables, and then
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provide valid inference. The NDME assumption is common and reasonable, as pre-

sented and discussed in the measurement error literature (Spiegelman et al., 2001;

Freedman et al., 2008; Guolo and Brazzale, 2008). Therefore, we focus on a sensi-

tivity analysis to evaluate the robustness of the proposed method to the violation of

the normality assumption in the following discussion.

We investigate the performance of our proposed method under two different co-

variate distribution misspecification: the case where the binary covariate Z is mis-

specified as normal, and the case where the log-normal covariate X is misspecified

as normal.

4.4.1 Misspecification of Binary Covariate

In the simulation setting discussed in this subsection, we model Z as a binary

covariate, which intentionally deviates our assumption that Z should be normal. We

then apply our MI-EC method, which is originally designed for multivariate normal

distribution, in this setting in order to examine and evaluate the robustness of the

MI-EC method when its assumption does not hold.

For the evaluation completeness, we examine the performance of MI-EC under

different simulation settings by varying the measurement error variance (σ2), the

correlation between X and Z (ρ), and the covariate effect of X (γX). The simulation

parameter settings are similar to those presented in our previous simulation study

as discussed in Section 4.3.

For simulation results present in Table 4.2, we first generate (X,Z∗) from a bi-

variate normal distribution with mean 0, variance 1, and correlation ρ. The binary

variable Z is then generated being equal to 1 if Z∗ >= 0.8, and equal to 0 other-

wise; this setting results in an extreme (and rare) binary case where the probability

Pr.(Z = 1) equals to a low value 0.2. Besides the presented cut point 0.8, we have
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Table 4.2: Sensitivity to multivariate normality assumption in the binary case. The table shows em-
pirical bias, RMSE, and non-coverage rate (noncov.) for the estimates of the regression
parameters (γX ,γZ). All values are multiplied by 1000.

Simulation parameters X Z

γX γZ β σ2 ρ Näıve CA RP MI-EC Näıve CA RP MI-EC

0.4 0.4 1 0.25 0.3 Bias 84 84 4 1 45 45 45 0

RMSE 95 97 61 62 136 136 136 131

Noncov. 439 452 49 31 64 64 65 30

0.4 0.4 1 0.5 0.3 Bias 139 138 5 3 74 74 74 2

RMSE 145 146 70 73 149 149 149 137

Noncov. 903 857 45 42 80 80 87 36

0.4 0.4 1 0.25 0.6 Bias 95 95 17 2 100 100 100 1

RMSE 106 108 67 69 169 169 169 147

Noncov. 487 504 59 43 109 109 111 38

0.4 0.4 1 0.5 0.6 Bias 153 153 27 5 161 161 161 7

RMSE 159 160 77 81 210 210 211 160

Noncov. 930 886 69 52 212 212 212 40

1.2 0.4 1 0.25 0.3 Bias 250 250 9 5 133 133 134 1

RMSE 255 260 89 93 195 195 196 153

Noncov. 996 976 60 39 145 145 148 71

1.2 0.4 1 0.5 0.3 Bias 414 413 13 12 220 220 220 7

RMSE 417 420 120 125 267 267 267 182

Noncov. 1000 1000 61 39 309 309 308 73

1.2 0.4 1 0.25 0.6 Bias 282 282 49 7 298 298 298 7

RMSE 287 291 103 103 332 332 332 176

Noncov. 998 986 100 37 499 499 509 52

1.2 0.4 1 0.5 0.6 Bias 457 456 77 18 480 480 480 25

RMSE 460 462 139 141 504 504 504 234

Noncov. 1000 1000 143 28 860 860 856 44

Näıve: näıve linear regression of Y on W ; CA: classical calibration; RP: regression prediction; MI-EC: multiple
imputation.



78

also examined several other cut points, such as 0.5, 0.6, and 0.7, and their results

are analogous to those presented below. The surrogate W is generated from a simple

unbiased measurement error model given as W |X, Y, Z ∼ N(X, σ2). The outcome

Y is generated to be related with covariates X and Z by a linear regression model,

as given in model (4.3). To be consistent with previous setup, the sample size of

the main study is chosen to be 400, and the sample size of the calibration study is

chosen as 100. Under each simulation setting, the size of the simulated data sets is

set to 1000.

Table 4.2 summarizes the results of the sensitivity analysis in the aforementioned

binary case. We report the empirical bias, RMSE of the estimates for the regression

parameters (γX , γZ), and the non-coverage rate of 95% confidence interval. The

results presented in Table 4.2 clearly illustrate that in all the simulation settings the

MI-EC method yields estimates with small empirical bias, and the non-coverage rate

close to the 50 nominal level. From such promising performance, we can see that the

MI-EC method is quite robust for the case of misspecified binary distribution.

4.4.2 Misspecification of Log-normal Covariate

The subsection follows a similar pattern of Section 4.4.1. We consider the simple

case of unbiased measurement error process with β0 = 0 and β1 = 1. The ratios of

measurement error variance, σ2, to the variance of X is set to be equal to 0.25 and

0.5 to represent small and substantial measurement error, respectively. The outcome

Y is generated from a linear regression model with regression parameters γ0 = 0,

γ0 = 0.4, γZ = 0.4, and τ 2 = 1. The true covariate X is generated from a log-normal

distribution given as X ∼ LN(0, φ2), and Z is generated from a standard normal

distribution with zero correlation between X and Z. We consider different degrees

of skewness and heavy tails of the distribution of X by varying the parameter φ.
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We set φ equal to 0.25, 0.5 and 1 to represent low, moderate and high skewness,

respectively.

Table 4.3 presents results corresponding to the case of misspecification of log-

normal covariate. As shown, unless in the scenario where the distribution of X is

highly skewed and has very heavy tail (which mean that the actual distribution is

extremely deviated from our normality assumption), the MI-EC method performs

better than (or at least close to) the other methods in the aspects of reducing the

measurement error bias and providing nominal coverage of confidence interval. This

finding further consolidates our argument that MI-EC is a robust method.

4.5 Application to the Michigan Bone Health and Metabolism Study

The proposed method is illustrated in this section with a real-world data exam-

ple from the Michigan Bone Health and Metabolism Study (MBHMS). One of the

purposes of the MBHMS study is to assess the association between serum repro-

ductive hormone concentrations and bone mineral density (BMD) loss in mid-life

women. The primary explanatory variable we focus on in this application is regard-

ing to sex hormone-binding globulin (SHBG) concentrations, which is the primary

plasma transport protein for sex hormones. Due to a variety of reasons (e.g., as-

say imprecision), the measurements of the SHBG concentrations is found to contain

substantial measurement error, which means that SHBG can be interpreted as X in

the notation we defined before. In this analysis, main study data was collected in 81

white women, aged 44− 64 years, from the Michigan Bone Health Study cohort in

2008. In these data, the true SHBG concentration for each participant could not be

directly observed, instead that an assay measure W was collected and used, which

can be viewed as error-contaminated versions of true concentrations X. Besides the
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Table 4.3: Sensitivity to multivariate normality assumption in the skew case. The table shows em-
pirical bias, RMSE, and non-coverage rate (noncov.) for the estimates of the regression
parameters (γX ,γZ). All values are multiplied by 1000.

Simulation parameters X Z

φ ratio Näıve CA RP MI-EC Näıve CA RP MI-EC

0.25 0.25 Bias 82 82 0 0 0 0 0 0

RMSE 188 190 218 214 49 49 50 49

Noncov. 70 72 56 49 55 55 52 18

0.5 Bias 135 135 3 2 0 0 0 0

RMSE 204 207 239 238 49 49 50 49

Noncov. 131 143 49 60 54 54 51 18

0.5 0.25 Bias 81 81 8 3 0 0 0 0

RMSE 110 111 100 98 49 49 50 49

Noncov. 187 200 51 48 52 52 58 19

0.5 Bias 134 134 15 9 0 0 0 0

RMSE 150 152 116 115 49 49 50 50

Noncov. 509 527 43 58 52 52 57 22

1 0.25 Bias 86 86 35 25 1 1 1 1

RMSE 92 93 81 78 52 52 52 53

Noncov. 937 877 56 200 49 49 51 42

0.5 Bias 141 140 69 45 1 1 1 1

RMSE 145 146 131 126 54 54 54 59

Noncov. 998 986 45 256 44 50 50 49

Näıve: näıve linear regression of Y on W ; CA: classical calibration; RP: regression prediction; MI-EC: multiple
imputation.
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Figure 4.2: Calibration data of SHBG

measurement of W , several other covariates, which were measured at the same time

when W was collected, may be related to the BMD too. In our study, we incorporate

two of these variables in our model, including age and body mass index (BMI) vari-

ables, since they are potential risk factors of BMD as shown in other research work.

We assume that age and BMI are measured without error. In our notation these

variables are indicated by covariate Z. We are interested in examining the effect of

SHBG concentrations on BMD after adjustment for age and BMI.

The calibration study of serum SHBG was constructed on the Bayer Diagnostic

ACS-180 automated analyzer using the chemiluminescent technique (Bayer Corp.,
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Table 4.4: Application to the MBHMS study. Parameter estimates in the linear regression of BMD
on the logarithm of SHBG concentration, after adjustment for age and BMI.

SHBG

Methods Est. SE P value

Naive 0.0052 0.0027 0.058

CA -0.0995 0.0518 0.058

RP1 -0.1085 0.0610 0.086

RP2 -0.1054 0.0549 0.059

MI-EC 0.1062 0.0583 0.072

Norwood, MA) (Randolph et al., 2003). The SHBG assay is a competitive chemilu-

minescent immunoassay. This assay was developed de novo and used a commercially

available rabbit anti-SHBG antibody, SHBG labeled with dimethylacridinium ester

(DMAE), and a solid phase of goat anti-rabbit Immunoglobulin G (IgG) conjugated

to paramagnetic particles (PMP). 40μL of serum was required for the assay in addi-

tion to sufficient dead volume for aspiration and repeat. The expected values were

from 20 to 130nM . The reporting range for the SHBG assay was 10 to 150nM

(actual assay range: 1.95 to 250nM). The assay was standardized against SHBG

obtained from Wein Industries (Succasunna, NJ). The inter-assay and intra-assay co-

efficients of variation for SHBG were 17.9% and 9.3%, respectively. The calibration

study recorded the true concentrations of SHBG for four samples, and corresponding

assay measures. Figure 4.2 shows the scatter plot of the calibration data for SHBG.

It is clear that the assay measures are with noise, suggesting that the measurement

error exists.

In our analysis, we estimate the linear regression of BMD on the logarithm of

SHBG concentration, age and BMI. We compare five different methods: the “näıve”

analysis (where SHBG concentrations are represented by assay measures), and the
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other four error correction methods including CA, RP1 (with adjusted standard error

by use of the bootstrap method), RP2 (with “näıve” standard error without using

the bootstrap method), and MI-EC. Table 4.4 presents the estimates, associated

standard errors for the regression coefficient of SHBG, as well as corresponding P

values. The näıve analysis provides an estimate of the influence of SHBG on BMD

equal to 0.0052 (SE = 0.0027), controlling for age and BMI. This estimate indicates

a positive association between SHBG on BMD. This association is marginally sta-

tistically significant. After adjustment for measurement error by various correction

methods, we observe a negative association between SHBG and BMD. CA, RP1,

RP2 and MI-EC result in estimates of the regression coefficient of SHBG equal to

−0.0995(0.0518), −0.1085(0.0610), −0.1054(0.0549), and −0.1062(0.0583), respec-

tively. These estimates indicates an even stronger association between SHBG and

BMD than the näıve estimates. For example, the proposed MI-EC method estimate

is approximately twenty times as great as the one provided by the näıve method.

Recall that MI-EC is our proposed method and CA is commonly used in data anal-

ysis in epidemiology; we thus focus on the comparison between the CA method and

MI-EC method in the following discussion. As shown in the table, the CA method

provides an estimate approximately 7% smaller than that of MI-EC, and indicates a

marginal significant effect of SHBG on BMD. In contrast, the MI-EC method esti-

mate has standard error that is almost 1.3 times larger than that of the CA method,

and consequently marginal statistical significance is no longer observed in MI-EC.

Finally, in this MBHMS study, we do not observe significant difference between the

performance of RP2 and MI-EC, though it may be worth pointing out that the RP1

estimate has smaller standard error than the RP2 estimate, which is not surprised

since RP2 takes into account the uncertainty due to measurement error.
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4.6 Conclusion and Discussion

In this chapter, we propose a novel multiple imputation method to correct for

covariate measurement error in regression analysis, when the calibration data only

provide information about X and W . As demonstrated in simulation studies, the

MI-EC method performs well with small bias and accurate coverage.

Compared to other existing methods, our proposed method has some additional

advantages. First, it is a simple and fast method, and doesn’t need any iterative

procedure. Second, MI-EC reduces the requirement for the internal calibration data,

where information of (Y,X,W,Z) is available, or the external calibration data, where

information of (X,W ) is available. It requires only some simple summary statistics

from the calibration sample to create the multiple imputations, hence its viability as

a useful alternative to other simple methods such as RC has improved.

Although we make the multivariate normality assumption to allow conditional

distributions characterized by linear regression relationships, the sensitivity analysis

shows that our method is quite robust to the model misspecifications. We assume

here that X and W are scalar; in the future we are interested to extend the proposed

method to handle more than one covariate subject to measurement error.

4.7 Appendix

This section presents the R source Code to the MIEC algorithm introduced in

Section 4.2.

#Calculate the summary statistics\\

calsummstat <-function(inputdata){

x=inputdata[,1]

w=inputdata[,2]
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n=nrow(inputdata)

xbar=mean(x)

wbar=mean(w)

xx=sum(x^2)/n

ww=sum(w^2)/n

xy=sum(x*w)/n

sxx=xx-xbar*xbar

sww=ww-wbar*wbar

sxy=xy-xbar*wbar

b0=xbar-(sxy/sww)*wbar

b1=sxy/sww

sigmasq=sxx-sxy*sxy/sww

param=c(b0,b1,sigmasq,sxx,sww,sxy,xbar,wbar)

return(param)

}

#Draw parameters from their predictive distribution based on the

calibration data \\

generateRandomdDrawofMEMParam <- function(calibdata,n) {

ndraw=1

#Calculate the summary statistics of X and W

iniparam=calsummstat(calibdata)

betahat0=iniparam[1]

betahat1=iniparam[2]

rss=n*iniparam[3]

sxx=iniparam[4]

sigmasq=rss/rchisq(ndraw,(n-2))
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tmp0=rnorm(1)

beta0=betahat0 + sqrt(sigmasq/n)*tmp0

tmp1=rnorm(1)

beta1=betahat1 + sqrt(sigmasq/(n*sxx))*tmp1

param=c(beta0, beta1, sigmasq)

return(param)

}

#Draw parameters from their predictive distribution based on the

main study data. \\

generateRandomMultivarRegreParam <- function(maindata,n,p) {

ndraw=1

w=maindata[,1]

wmat=mat.or.vec(n,2)

wmat[,1]=1

wmat[,2]=w

umat=maindata[,2:(p+1)]

ww=solve(t(wmat)%*%wmat)

coeffhat=ww%*%(t(wmat)%*%umat)

residual=umat-wmat%*%coeffhat

rss=t(residual)%*%residual

a=t(chol(ww))

invrss=solve(rss) #calculate inverse covariance matrix

#Draw covariance of U given W from inverse

#wishart distribution with df = (n-(k+p)+1)

#where k is dimension of wmat and p is dimension of umat

df=n-(p+2)+1

covmatrix=riwish(df, rss)

covmatrix=as.matrix(covmatrix)
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betavar= kronecker(covmatrix, ww)

vec.coeffhat=as.vector(coeffhat)

beta = mvrnorm(ndraw, vec.coeffhat, betavar)

#regression coefficients of U on W

multivarRegrecoeff=matrix(beta,2,p)

#residual covariance matrix of U given W

multivarResidcov=covmatrix

param=rbind(multivarRegrecoeff,multivarResidcov)

return(param)

}

#generate parameter of the distribution of surrogate W from the

posterior distribution \\

generateErrorvarParam <- function(calibdata,maindata,NCALIB,NSAMPLE)

{

#combine the information about W from calibration data

#and main study data

w=c(calibdata[,2],maindata[,1])

n=NCALIB+NSAMPLE

ndraw = 1

#Draw sigmaxsq from inverse chi-square distribution

#with df = (n-2)

muw = mean(w)

rss = sum((w-muw)^2)

sigmaxsq = rss/rchisq(ndraw,(n-1))

#Draw mux from normal distribution

tmp = rnorm(1)

mu = muw + sqrt(sigmaxsq/n)*tmp
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param = c(mu, sigmaxsq) # two parameters: mean and variance

return(param)

}

#create the initinal mean and covariance matrix \\

createMatrixonW <- function(memParam, dmParam,wParam, P){

m = P+2+1

matrixonW=matrix(NA, nrow = m, ncol = m)

matrixonW[1,1] = -(1 + wParam[1]^2/wParam[2])

matrixonW[1,2] = wParam[1]/wParam[2]

matrixonW[2,2] = - 1/wParam[2]

matrixonW[1:(m-1),3:(m-1)]=dmParam

matrixonW[1:2,m] = memParam[1:2]

matrixonW[m,m] = memParam[3]

matrixonW[3:(m-1),m] = dmParam[2,] * memParam[3] / memParam[2]

return(matrixonW)

}

#complete initinal mean and covariance matrix \\

completeGmatrix <- function(G){

size = nrow(G)

for (i in 1:size){

for (j in 1:size){

if ( is.na(G[i,j]) ) {

if ( is.na(G[j,i]) == FALSE ) {

G[i,j] = G[j,i]

} else {

print(sprintf("ERROR: both elements at [%d,%d]

and [%d,%d] are null", i, j, j, i));
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}

}

}

}

if (isSymmetric(G)) {

return(G)

} else {

return(NULL)

}

}

#check the symmetry of the matrix created by the sweep operator

isSymmetric <- function(G){

size = nrow(G)

for (i in 1:size){

for (j in 1:size){

if ( abs(G[i, j] - G[j, i]) > 1e-10) {

print(sprintf("ERROR: elements not matched at [%d,%d]

and [%d,%d]", i, j, j, i));

return(FALSE);

}

}

}

return(TRUE);

}

#perform the sweep operator \\

sweep <- function(matrixonW){

size = nrow(matrixonW)

curH = completeGmatrix(matrixonW)

newH= matrix(NA, nrow=size, ncol=size)

for (k in 3:(size-1)){
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for (i in 1:size){

for (j in 1:size){

if (i==k && j==k) {

newH[i,j] = -1/curH[k,k]

} else if (i==k || j==k) {

newH[i,j] = curH[i,j]/curH[k,k]

} else {

newH[i,j] = curH[i,j]

- curH[i,k]*curH[k,j]/curH[k,k]

}

}

}

curH = newH;

newH= matrix(NA, nrow=size, ncol=size)

}

param=curH[,size]

return(param)

}

#Create imputed values for unobserved covariate X

generateMissingvalue <- function(param, maindata){

nsample=nrow(maindata)

nparam=length(param)

#test whether the estimate of the residual variance is negative,

#and print a warning message

if (param[nparam] < 0) {

print(sprintf("%s", "Warning: The estimate of the

residual variance of mismeaured covariate given

the observed data is negative."))

}
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mux = param[1]

for (i in 2:(nparam-1)){

mux = mux + param[i]*maindata[,i-1]

}

#Generate X from its posterior distribution with mean mux

#and variance sigmasqxx_wzy

imputedX = mux + sqrt(param[nparam])*rnorm(nsample, mean=0, sd=1)

return(imputedX)

}

#title function \\

printTitle <-function(){

print(sprintf("%s", "#######################################"))

print(sprintf("%s", "## Loading required package: MIEC ####"))

print(sprintf("%s", "#######################################"))

}

#main function \\

MIEC <- function(maindata,calibdata,NCALIB,NSAMPLE,M,N,K,S) {

printTitle()

MIimputedXbasedoncalib=c()

multipleImputedX=c()

twostageMIimputedX=c()

P=K+S

count = 0
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while (count < M) {

#Step-1: draw parameters by regressing X on W based on

#measurement error model

memParam=generateRandomdDrawofMEMParam(calibdata,NCALIB)

#Step-2: draw parameters by regressing (Y, Z) on W based on main

#interested "disease" model

dmParam=generateRandomMultivarRegreParam(maindata,NSAMPLE,P)

#Step-3: generate draws of mean and variance of W

wParam=generateErrorvarParam(calibdata,maindata,NCALIB,NSAMPLE)

#Step-4: creating sweeping matrix on W by using parameters

#obtained from step 1-3 and filling estimated covariance

#parameter between U and X given W

sweepMatrixonW=createMatrixonW(memParam, dmParam,wParam, P)

#Step-5: calculate parameters of the imputation model for X

#given (W,Y,Z) by the sweep operator

impmodelParam = sweep(sweepMatrixonW)

#Step-6: generate random draw for unknown X from its posterior

#distribution, given W and Y

varIndicator=length(impmodelParam)

if (impmodelParam[varIndicator] >= 0){

for (n in 1:N){

secondStageDrawX = generateMissingvalue(impmodelParam,

maindata)

twostageMIimputedX=cbind(twostageMIimputedX,

secondStageDrawX)

}

count=count+1
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}

}

#Output data with Y, Z, and multiply imputed X,

#where maindata[,P+1] = U(Y,Z)

twoStageMIimputeddata=cbind(maindata[,2:(P+1)], twostageMIimputedX)

return(twoStageMIimputeddata)

}



CHAPTER V

Conclusion

In many epidemiological and clinical applications, accurate measurment is expen-

sive or even impossible. Reasons include limitations of measurement instruments,

biological variation, and recall bias. Consequently, observations are measured with

error. Statistical models that fail to account for the measurement error yield dis-

torted conclusions.

The work in this dissertation develops and evaluates Bayesian multiple imputa-

tion approaches for adjusting for measurement error based on information from a

calibration sample. This concluding chapter summaries the main contributions of

this work and describes promising future research directions.

5.1 Summary of Contributions

This work consider two important aspects of measurement error: the limit of

detection and covariate measurement error.

5.1.1 Detection Limits

In Chapter II, the correction for measurement error below the limit of detec-

tion for the biomarker data is discussed. We develop a Bayesian measurement error

model that yields prediction intervals for the true assay value throughout the range

94
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of analyte values, and allows for heteroscedasticity of the measurement error. We

illustrate the Bayesian model on calibration data for fat-soluble vitamins, focusing

particularly on Beta Cryptoxanthin. The results confirm our hypothesis that predic-

tion intervals for values above the LOQ are wide, and the width increases with the

measured value; prediction intervals below the LOQ provide more information than

the statement that the value is less than the LOQ. That is to say, our findings imply

that the current approach to transmitting data from calibration assays is flawed,

since it provides a distorted picture of the actual measurement error. Moreover, our

proposed Bayesian MI method provides a general and fundamental framework, which

can be extended to other generalized linear models without much difficulty.

5.1.2 Covariate Measurement Error

In Chapters III and IV, we develop new multiple imputation methods to deal with

two aspects of covariate measurement error problems.

• Heteroscedastic Measurement Error Correction

Chapter III presents our correction methods for heteroscedastic covariate mea-

surement error in a linear regression analysis. This work develops an extended

version of regression calibration, termed ’weighted regression calibration’, and

a novel multiple imputation approach computed using Bayesian Markov Chain

Monte Carlo (MCMC) algorithms. The proposed methods are compared, in a

simulation study, with the naive method that ignores measurement error, and

several other existing error-correction methods, namely conventional approach,

regression calibration, and efficient regression calibration.

Simulation study and real-data analysis have shown that our first proposed

method (weighted regression calibration) performs at least as well as existing
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approaches in a wide variety of parameter settings, and significantly outperform

others in the cases where the measurement error is substantial or the response-

covariate association is strong. More importantly, the simulation studies present

evidence that our second proposed approach (MI method) is superior to all other

methods, with respect to empirical bias and precision of estimates of regression

coefficients, and yields confidence intervals with close to nominal coverage.

• Covariate Measurement Error Correction Based on Summary Statis-

tics from External Calibration Data

In Chapter IV, we also consider the situation where interest concerns regression

of outcomes on a variable subject to measurement error and other covariates,

and information about measurement error is provided in the form of summary

statistics from a bivariate calibration sample. We develop and evaluate a new

correction method, named ‘Multiple Imputation for External Calibration (MI-

EC)’, to tackle such situations, which yields valid inferences for the regression

model parameters, using multiple imputation combining rules proposed by Re-

iter.

The novelty of our approaches comes from two aspects. First, it is not built

upon costly iterative sampling procedures like the MCMC techniques. Second,

it only relies on summary statistics from the calibration data. The simulation

evaluation has demonstrated that the MI-EC method works better than other

existing methods to account for measurement error, in terms of correction for

bias and achieving nominal confidence levels.

The method is based on normal assumptions, and hence robustness to lack of

normality is also assessed. More interestingly, the sensitivity study shows that



97

MI-EC still performs relatively well even when the multivariate normality as-

sumptions upon which it is derived do not hold. We will analyze the underlying

implication in the future.

5.2 Future Work

Although this dissertation presents a suite of strategies to improve statistical

inference by taking into account measurement error in regression models, there is

still much interesting work left in the research areas of this dissertation. Several

promising future research directions are outlined below.

5.2.1 Extensions of Bayesian MI Method

For heteroscedastic measurement error settings in Chapter III, the attention has

been restricted to the case where a linear regression of the outcome variable Y on

the covariate X is of interest. Extensions to non-normal outcomes, such as when

Y is binary and follows a probit model, could also be developed without too much

difficulty. We will make further investigation in this field in the future.

Also, the Bayesian MI methods developed in Chapter III require specification of

prior distributions for the unobserved true covariate, p(X). A simple normal prior

distribution for p(X) is considered in this work. However, other choices may be

worth considering too. As an example, the latent covariate distribution belongs to

a flexible class of continuous distributions, like mixtures of the normal distributions.

It may be possible to adapt it into our heteroscedastic measurement error setting,

to achieve robustness of the inference of regression parameters against the model

misspecification.
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5.2.2 Extensions to Complex Covariate Data Structure

The work in Chapter IV has proposed a MI-EC method to deal with covari-

ate measurement error for multivariate normal data, particularly for the case where

the detailed calibration data is not directly available (e.g., due to information se-

curity reason), but only summary statistics of the joint distribution of (X,W ) can

be provided. Although the approach designed in this work is fairly robust to the

misspeciation of model distributions, in the future, it is worth finding an exact solu-

tion for a regression model with mixtures of continuous and ordinal variables, where

continuous variables are measured with error.

5.2.3 Further Extensions of MI Methods

A simplifying assumption made in this work is that there is only one covariate

measured with error in the analysis model. It is worthwhile to take into account the

situations where there may be more than one error-prone covariate in the subsequent

research.

Also, in the future, we will study the problems with regard to the measurement

error where a variable is measured multiple times and may be subject to measurement

error. For example, in a longitudinal study, some risk factors are measured at each

visiting time, and they are likely measured with error. Not surprisingly, it is a

much more difficult task when incorporating repeated measure of covariate subject

to measurement errors in the analysis. This requires a more complex model, which

accounts for the distribution of the unobserved covariate, the correlation structure of

the unobserved covariate and, of course, measurement error. We will systematically

investigate this extension in the future.
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5.3 Closing Remarks

While there are still many open questions (some of which were discussed in the

previous section), this dissertation showed that the multiple imputation is an effective

way for accounting for measurement error in regression analysis, and helped pave the

way for future work on measurement error problems.
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