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Chapter 1
Background
Allergic airway disease is a chronic inflammatory condition characterized by
airway hyperresponsiveness and reversible airway obstruction in response to repeated
antigenic stimulation (1). The literature cites numerous sources and possible sources of
disease: viruses (2, 3), allergens (4), and occupational compounds (5) have been
implicated as potential sources, while a wide variety of factors from viruses, to common
bacteria (6), to sex hormones (7) have been shown to help drive the initial allergic
response. Of particular interest is hypersensitivity to fungi (8), as 20-25% of asthmatics
are skin-test positive towards fungal allergens (9, 10), and there is a strong correlation
between sensitivity to fungal allergens and disease severity (11).

Askdhaksdh

Fungi and Disease

Aspergillus fumigatus, an airborne fungus, is the focus of extensive research due
to its ubiquitous nature. A. fumigatus disseminates itself via conidia — hydrophobic (12,
13) spores which are readily and frequently inhaled into airways (14) — and large doses
are not uncommon (15). Once the conidia reach a warm, moist environment such as the
lungs, they lose their hydrophobic properties (16) and begin to germinate, express genes,
and generate structural components (17). The conidia first swell, then extend germ tubes,

and finally develop invasive hyphae (18). Even relatively large doses of conidia pose



little threat to immunocompetent individuals, however, as macrophages and neutrophils
efficiently neutralize germinating conidia in the lung (19, 20), and resting conidia are
cleared from the lung by macrophages without the induction of an inflammatory response
(21, 22).

Therefore 4. fumigatus typically causes disease in one of two ways: by infecting
immunocompromised individuals or by inducing a hypersensitivity reaction in healthy
individuals through repeated exposures or colonization. In individuals with compromised
immune systems — from organ transplantation (23, 24), HIV infection (25), or steroid
therapy (19), for example — a lack of immune response leads to incomplete A. fumigatus
killing (26) and can facilitate fungal invasion of the tissue (27). On the other hand,
hypersensitivity can occur when the immune system is primed towards A. fumigatus
antigens and mounts an inappropriate response. Hypersensitivity pneumonitis (28, 29)
and allergic asthma (9, 10, 30) resulting from repeated 4. fumigatus exposure are both
examples of this phenomenon.

There are a number of anti-fungal treatments used to counter 4. fumigatus and
other invasive fungi by enhancing or augmenting the host immune system or by killing
the fungus outright. Examples include Voriconazole (31-33), Amphotericin B (33, 34),
Pentraxin 3 (35), and new lipopeptides (36). However, such therapies often have
unwanted side-effects and are geared primarily at countering invasive fungal disease
rather than hypersensitivity. In the end, pulmonary hypersensitivity is not a fungal disease
but an immune disease, and adequate clinical treatment will require a more thorough

understanding of the immune response to A. fumigatus.

Model of Hypersensitivity



Our laboratory has designed a model of Aspergillus fumigatus-induced pulmonary
hypersensitivity based on previous observations by Mairi Noverr, Tobias Rodriguez, and
Andrew Shreiner. Repeated exposure to 4. fumigatus conidia in wild-type C57BL/6 mice
generates a hypersensitivity response that is CD4 T cell-dependent (37). This response is
characterized by the production of Ty2-type cytokines, eosinophilia, mucus hyper-
secretion, and tissue remodeling.

The standard model of Ty2-type pulmonary hypersensitivity involves
sensitization and challenge of mice with ovalbumin (OVA). Variations of this model
involve sensitization with adjuvants (38, 39), immunization routes (39-41), and genetic
background (42-47) which result in a wide and inconsistent spectrum of immune
responses (48). In addition, the OVA model, while informative, is not necessarily
physiologically relevant as it does not mimic environmental conditions that result in
pulmonary hypersensitivity. Our A. fumigatus model, on the other hand, is both

physiologically relevant and provides a consistent response among genetic backgrounds.

Innate Immune Response to Aspergillus Fumigatus

The immune response to A. fumigatus is characterized by complex interactions
between the innate immune response and the adaptive immune response, both of which
are quickly activated by the presence of fungi (24, 27). The reaction must be complex,
because Af'is not an inert particle but a dynamic organism capable of reacting to its
environment and even the host immune system (49). The innate immune system acts as
the first line of defense against pathogens and encounters an exceptionally wide array of
microbes and particles (50-52). In the case of Aspergillus fumigatus, a complex collection

of cells types, pathways, and cytokines compromise the initial reaction to germinating



conidia and developing hyphae. Macrophages (53), neutrophils (54), dendritic cells (55),
monocytes (56), eosinophils (57), natural killer cells (58) all play a role in host defense,
as do aspects of the complement system (59) such as mannan-binding lectin (60) and
Pentraxin 3 (35).

Macrophages are the primary cells responsible for clearing A. fumigatus conidia
from the lung. Macrophages bind the conidia with DC-SIGN, a lectin-like attachment site
(53, 61) and engulf A. fumigatus in an oxidase-dependant manner (14). When low
numbers of conidia enter the lungs, alveolar macrophages quickly and efficiently
phagocytize and kill conidia before the spores can germinate, neutralizing any potential
threat without triggering an inflammatory response (21, 22). Greater numbers of conidia
may necessitate an aggressive inflammatory response, but macrophages are still an
essential factor in host defense. Both macrophages and dendritic cells bind 4. fumigatus
in the early stages of infection (53); inhibition of macrophage function allows conidia to
germinate and hyphae to form (19, 62). Moreover, alveolar macrophages can activate and
produce cytokines independently of toll-like receptor (TLR) signaling (63, 64), perhaps
in response to the ability of A. fumigatus to dampen TLR2 and TLR4 signaling (65). This
independence is restricted to alveolar macrophages, however, and macrophages from
other sites are typically TLR- and MyD88-dependent (66, 67).

Similar to macrophages, dendritic cells bind 4. fumigatus in the early stages of
infection but can also initiate an adaptive immune response by trafficking to the
mediastinal lymph node to induce T cell activation (55). Dendritic cells can consume
fungi through several mechanisms and even discriminate between fungal stages, with
distinct subpopulations showing different roles in fungal defense (68). Dendritic cells

seem to act as a central fulcrum for the adaptive immune response, dictating which T



helper (Ty) responses will be used. Dendritic cells can balance Tyl and Ty2 via IL-12
and IL-13 (69), and dendritic cells activated through dectin-1 — a pathogen-associated
molecular pattern (PAMP) receptor — can induce a Ty17 response (70) and even
convert regulatory T cells into Ty17 effector cells (71). In addition, monocytes, often
overlooked in inflammatory responses, have a significant role in the clearance of
Aspergillus from the lung by facilitating a T cell response (56). They respond to a number
a different pathogens (72), and like dendritic cells they are not homogenous (73, 74), with
different subgroups producing TNF or inhibiting germination of 4. fumigatus (75).

Once an inflammatory response has been initiated, neutrophils become the
primary defense against invasive aspergillosis. Neutrophils are essential during an acute
response to A. fumigatus (54) and are even more essential than macrophages during early
infection (76). Neutrophils restrict hyphal invasion of local tissue, and poor activation or
influx of neutrophils is associated with invasive aspergillosis (62, 77). Neutrophils help
control Aspergillus infection via traditional phagocytosis and cytokine release, but they
are also capable of releasing Pentraxin 3 lectin (78). In addition, they can form neutrophil
extracellular traps in response to both conidia and hyphae (79), though the signaling
mechanism for this process is not well understood. Both the activity and total numbers of
neutrophils are tightly regulated by multiple mechanisms, as neutrophils have the
capacity to cause significant amounts of damage to inflamed tissue (80, 81).

Eosinophils also respond to Aspergillus fumigatus-induced inflammation, and
like neutrophils they are tightly regulated due to their potential for tissue damage. They
have been implicated in a number of inflammatory defense processes towards helminths,
bacteria, viruses, fungi, injured tissue, and tumors, but have also been implicated in

several forms of immune dysregulation such as allergies and pulmonary remodeling (82).



Eosinophils are multi-functional; they express TLRs (83), act as antigen presenting cells
(84), and secrete over thirty different inflammatory and regulatory cytokines (85, 86),
including Ty1-associated cytokines (87-89). Unlike T cells, eosinophils store cytokines in
granules and release them at inflammatory sites rather than generating them de novo (90).
This allows a rapid response against potential pathogens, though the release of cytokines
stored in granulocytes is regulated by the local milieu. Against A. fumigatus, eosinophils
react to the B-glucan subunits expressed in germinating conidia (57), but their primary
role seems to be combating invasive fungal hyphae that have already established a
foothold within the host tissue.

A key component of the innate response is the expression of indoleamine-2,3-
dioxygenase (IDO) (91). IDO is a metabolic enzyme that catabolizes L-tryptophan to N-
formylkynurenine, the process of which can suppress the proliferation and activity of
immune cells as well as microbes. Its expression is highly responsive to the immune
system (92), and it exerts a significant, corresponding effect on the immune system,
particularly neutrophils (93). IDO plays a complex role in the control of both the innate
and adaptive immune responses; IDO is upregulated by proinflammatory cytokines and
IFN-y (94), but it simultaneously drives the generation of regulatory T cells (Trg) (95).
Moreover, lack of IDO abrogates Ty2 hypersensitivity in the lung (96), and allergy — via
IDO production — can be controlled through glucocorticoid-induced tumor necrosis factor
receptor (GITR) (97), a surface receptor frequently associated with regulatory T cell
function. Eosinophils constitutively express IDO, and it is possible that they use IDO-
mediated suppression of the Tyl to maintain a Ty2-type immune response (98). To

further complicate matters, Ti17 cells also inhibit IDO expression through IL-17 and IL-



23 (94) and can negatively affect clearance os A. fumigatus from the lung by altering the
inflammatory program of neutrophils (99).
The major method of by which the immune system is activated is the use of
PAMP receptors such as toll-like receptors (TLRs) and dectin-1 (100). Aspergillus
Sfumigatus expresses a number of ligands for PAMP receptors including chitin, B-glucans,
and galactomannan (101). Moreover, TLR polymorphisms affect susceptibility to
invasive fungal disease (102), highlighting the central role of TLRs in fungal defense.
Mice deficient in TLR and MyD88 — the primary adapter protein for TLR signaling — can
survive inhaled 4. fumigatus conidia but at a lower rate than wild-type mice (103), and
MyDS88 signaling is particularly important in the early pulmonary response to Aspergillus
(104) due to its control of neutrophil activity (54). PAMP receptors can have a
pathogenic role in disease, however, as TLR signaling has been implicated in chronic
inflammation (105), and dectin-1 can drive a potentially autoimmune-inducing Ty17
response (106). On the other hand, repeated TLR signaling can lead to
hyporesponsiveness as has been found with TLR2 (107), TLRS (108), TLR7, TLRS
(109), and TLRO (110).
In response to Aspergillus fumigatus, TLR2 and TLR4 play a central role (111,

112). There is a synergistic effect between both receptors (113), and a blockade of the
TLRs reduces TNF-a levels during 4. fumigatus infection (114). Both are capable of
activating macrophages during infection (115), though macrophages can also be activated
in a TLR-independent manner (64). TLR2 can stimulate both Ty2 responses (116, 117) as
well as the induction and expansion of regulatory T cell populations (118, 119). TLR2 is
involved in the immune response to both conidia and hyphae (115) while TLR4 induces

the response to conidia only (120). It’s therefore likely that TLR4 plays a more prominent



role in early A4. fumigatus infection while TLR2 acts during late fungal invasion. TLR9
may also be activated by Pentraxin 3 (35), and various references have shown that 4.
fumigatus can with TLRs 1, 3, 6, and 10 on neutrophils as well (54).

Also playing a key role in innate and adaptive immunity to A. fumigatus is dectin-
1, a PAMP receptor which has been shown to play an essential role in the control of
fungal infections (121). Originally dectin-1 was thought to be expressed primarily by
monocytes, macrophages, and neutrophils (122), but one recent study has shown a
significant role for dectin-1 signaling in dendritic cells in response to A. fumigatus (123).

The primary role of dectin-1 is the binding of B-glucan, an essential component of
germinating conidia (124, 125), and like other PAMP receptors it is capable of triggering
phagocytosis, inflammation, and cytokine release (126-128). One notable characteristic
of dectin-1 is its ability to enhance TLR signaling (129). In fact, dectin-1 is dependent on
TLR signaling, as dectin-1/TLR collaboration via the Syk kinase is required for proper
signaling (130), and in monocytes and macrophages dectin-1 works with TLR2 and
TLR4 to induce cytokine production (131). Dectin-1 signaling results in a myriad of
different cytokines and adaptive immune pathways: dectin-1 can activate the cytotoxic T
cell response (132), can regulate downregulate IL-12 and upregulate 1L-23 (133), can
generate IL-2 and IL-10 production (106), can induce regulatory T cell differentiation
and tolerance (118), can promote a Ty17-type response via IL-6 and IL-23 production

(106, 134), and can induce dendritic cells to convert Ty, to Ty17 cells (71).

The Adaptive Immune Response
Though the innate immune response plays a central role in immunity to

Aspergillus fumigatus, equally important is the adaptive immune response. Similar to



the innate immune response, the adaptive immune response is activated quickly by A.
fumigatus (24, 27). Traditionally, the adaptive immune response was viewed as a balance
between the response to intracellular pathogens (Ty1) (135) and the response to parasites
(Tu2) (136). In the last few years the regulatory and Ty17 responses have added an
additional layer of complexity to our understanding of the adaptive immune response
(Fig. 1-1). During the response to A. fumigatus, all four of the major arms of the adaptive
response can be engaged depending on the viability of the conidia (137), which fungal
components are present (138), or, as we will see shortly, how long the host has been
exposed to the organism.

The Tl adaptive immune response has been repeatedly shown to be of great
importance in defense against invasive 4. fumigatus. Progressive invasion of infected
tissue has been associated with decreased IFN-y production and poor T cell proliferation
(139), and inhibition of IFN-y and TNF-a enhance fungal invasion (140, 141). In reaction
to inhalation, the Ty1 response peaks one week after initial infection (137) and IFN-y
production is capable of inhibiting early T2 hypersensitivity (142). Dendritic cells in
particular appear to play a major role in driving the Ty1 defense against A. fumigatus
(143). Conidia inhalation results in the expression of TNF-a, IFN-y, IL-12, and IL-18
(144). These cytokines play a variety of roles in this anti-fungal response: TNF-a drives
neutrophil recruitment (145), IFN-y and GM-CSF enhances the fungal killing by
neutrophils (146, 147), IL-12 helps fight fungal invasion (148, 149), and IL-18 sustains
the Tyl anti-fungal response (150). In addition, IL-6 and IL-15 have been shown to play
roles in the Ty 1 defense against A. fumigatus, both by enhancing the neutrophil response

to the infection (151-153).



Antagonistic to the Tyl pathway (154) is the Ty2 pathway, which provides host
defense against parasites and extracellular pathogens (155). 4. fumigatus antigens are
capable of inducing a Ty2 type response, though it is hyphal extracts and not conidia that
do so (156). This supports the observation that the Ty2 response is dependent on high
levels of fungal growth (157) though, oddly, killed fungal spores result in more IL-4 and
IL-13 production than live conidia (137). The presence of a Ty2 response is most likely
useful in combating late-stage fungal invasion, but its presence can have a number of
unwanted effects. IL-4, IL-5, and IL-13 made in response to fungi can result in asthma
(158, 159), and eosinophils, like neutrophils, can cause damage to tissue at the site of
inflammation (80, 81). Moreover, early Ty2 cytokines such as IL-4 can dampen the Tyl
response and increase susceptibility to Aspergillus (160). Aside from the classic Ty2
cytokines, IL-25 is also emerging as a major player in the Ty2 pathway: IL-25 can
control T2 memory cells (161), as it can drive (162), regulate (163), and amplify the
Tu2 response (164, 165).

A third factor in the adaptive immune response to Aspergillus fumigatus is the
recently discovered Ty17 response. Though the signature cytokine of Ty17, IL-17A (also
known simply as IL-17), was first discovered in 1995 (166), it wasn’t until 2005 that
researchers recognized that Ty17 was a wholly separate branch of adaptive immunity
(167, 168). Since then Ty17 has become the focus of intense study, with many
speculating that it serves as a bridge between the innate and adaptive immune responses
(169). A wide array of microbes induces Ty17, and in response Ty17 T cells can produce
and induce a wide array of cytokines (170). Similar to T2, Ty17 and Tyl are
reciprocally regulated (167, 171); also similar to T2, Ti17 has been linked to a number

of immune diseases. In particular, Tiy17 has been implicated in forms of autoimmunity
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that were once considered Tyl disorders (172). Likewise, many disorders that were once
considered to be Ty2 mediated are now being reassessed. It has been found that IL-17
levels correlate with allergy severity (173) and are increased in human asthma (174, 175).
In particular, IL-17 affects neutrophil recruitment during asthma and other inflammatory
diseases (176), though it has also been shown that IL-17 can be a negative regulator of
asthma in mice (39). In general, Ty17 may worsen inflammation by downregulating IDO
and the T\, response (177). That being said, the Ty17 response has demonstrated a
number of protective effects (178) including defense against systemic candidiasis (179),
and in the absence of a Ty1 response the Ty17 is often the most viable alternative (99). In
particular, IL-17 can upregulate the expression of TLRs (180), and IL-22 — another Ty17
cytokine — is capable of upregulating the innate immune response (181-183).

Against A. fumigatus Tyl7 plays a major role in deciding the composition of the
immune response. Though it play a role in driving some anti-fungal components of the
immune system (184-187), the Ty17 response’s major role seems to be inhibiting Ty1
and Ty, function and preventing proper clearance of germinating conidia. IL-23 and IL-
17 have both been shown to promote inflammation while simultaneously inhibiting
fungal resistance (99, 188). Structural components of the 4. fumigatus cell are largely
responsible for this process: dectin-1 binding of these ligands induces a Ty17 — but not a
Tul — response in dendritic cells (70, 134).

Finally, regulatory T cells (T.¢) play a central role in controlling the immune
response to foreign microbes such Af. T, — which are maintained by the Foxp3
transcription factor (189, 190) — are capable of dampening inflammation caused by Tyl
(191, 192), Tu2 (193, 194), and Ty17 (190, 195, 196) CD4 T cells. Interestingly, Treq

have been shown to play a role in limiting inflammation during the immune response to

11



Aspergillus fumigatus. The regulatory response towards Af occurs early in the infection
(94) and is most likely induced by components of the fungal cell wall binding TLR2 and
dectin-1 (118). The reason for the induction of the regulatory response is not entirely
clear, though at least one report suggests that limiting inflammation may aid in fungal
clearance (197).

Recent reports have added extra depth to our understanding of Ti,, particularly
the similar manner in which Ty, and Ty17 CD4 T cells arise and are regulated. The two
cell types reciprocally develop (198) and Foxp3 and ROR-yt — the primary transcription
factor for Tgl7 CD4 T cells — are mutually antagonistic (199, 200). In mice both cell
types arise from naive CD4 T cells exposed to TGF-f, though the presence of IL-10
skews differentiation towards T; while IL-6 drives the generation of Ty17 (201).
Surprisingly, it has been recently demonstrated that regulatory T cells are capable of
converting to Ty17 T cells under certain conditions (202, 203). The Tr,/T117 balance
appears to be controlled by retinoic acid (204) which induces Treg formation (205) as

well as IDO which blocks the conversion of Tyeg to Ti17 (206, 207).
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Th17

IL-17

IL-17F

IL-22 \
Naive =
T Cell
Figure 1-1. Development and regulation of the CD4 T cells. Ty1, Tu2, Tyl7, and Ty,
develop from naive T cells (black arrows). Treg can further develop into Ty 17 which can
develop into Ty1. Ty can inhibit the activity of all three effector cells types, and Tyl and
Ty2 are reciprocally regulated. Ti17 has been shown to inhibit Ty1 activity, and Tyl and
Tu2 CDA4 T cells are capable of hindering Ty 17 development but not activity. Also listed

are major cytokines of each Ty type.
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Hypothesis

We hypothesize that IL-17 plays a role in driving chronic allergic inflammation in
the lung during repeated exposure to Aspergillus fumigatus. Thus, we believe that
removal of IL-17 will abrogate inflammation after the initial Ty2-driven hypersensitivity

response.

Study Objectives

1. To characterize the immune response to Aspergillus fumigatus conidia during the
acute and chronic phases of inflammation

2. To determine the role of IL-17 during the hypersensitivity response to Af conidia.

3. To determine the role of IL-17 in pulmonary eosinophilia during the

hypersensitivity response.
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Chapter 2

Methods
Mice. Wild-type (C57BL/6J) mice were obtained from the Jackson Laboratories (Bar
Harbor, ME). IL-17"" mice were a generous gift from Kate Eaton at the University of
Michigan and have been described previously (1). Mice were housed under pathogen-free
conditions in enclosed filter-topped cages. Clean food and water were given ad libitum.
The mice were handled and maintained using microisolator techniques, with daily
veterinarian monitoring. All studies involving mice were approved by the University

Committee on Use and Care of Animals at the University of Michigan.

Aspergillus fumigatus. Strain ATCC 13073 was grown on Sabouraud dextrose agar
(SDA) (Difco) for 14 days. Conidia were harvested by washing plates with sterile
phosphate-buffered saline (pH 7.4) with 0.1% Tween 80 (PBS-Tween), followed by
filtration of the suspension through two layers of sterile gauze to remove hyphae. Conidia
were washed in PBS-Tween, counted with a hemacytometer, diluted to 10°* spores/ml in

sterile PBS-Tween, and stored at 4°C for up to 4 months.
Intranasal Challenge. Mice were injected intraperitoneally with anesthetic (.4 mg/ml

Xylazine (Lloyd Laboratories, Shenandoah, IA) + 10 mg/ml ketamine (Fort Dodge, Fort

Dodge, IA) in sterile saline (Hospira Inc., Lake Forest, IL)) based on weight. Following
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sedation, 20 pl of Aspergillus fumigatus suspension was applied intranasally for a total of

2 x 10° conidia per mouse per challenge.

Lung Histology. Lungs were fixed by inflation with 10% neutral buffered formalin
(Sigma). After paraffin embedding, 5-um sections were cut and stained with hematoxylin
and eosin or periodic acid-Schiff (PAS) to detect mucus (McClinchey Histology Lab,

Stockbridge, MI).

Lung Digest for Whole Lung Leukocyte Enrichment. Lungs from each mouse were
excised, washed in PBS, minced, and digested enzymatically for 30 minutes in 15
ml/lung of digestion buffer (RPMI, 5% fetal calf serum, 1 mg/ml collagenase (Boehringer
Mannheim Biochemical, Chicago, IL), and 30 pg/ml DNase (Sigma Chemical Co., St.
Louis, MO)) as previously described (2). After erythrocyte lysis using NH4Cl buffer, cells
were washed, resuspended in complete media, and centrifuged for 30 minutes at 2000 x g
in presence of 20% Percoll (Sigma) to separate leukocytes from cell debris and epithelial
cells. Total lung leukocyte numbers were assessed in the presence of trypan blue using a

hemocytometer.

Lymph Nodes. The draining mediastinal lymph node was excised from the thoracic
cavity, placed in 1ml of RPMI (5% fetal calf serum) in a six-well plate (Corning
Incorporated, Corning, NY), and ground with the flat edge of a 1ml syringe. The cell
suspension was then transferred through a 100 micron screen and washed with 2 ml of
RPMI. After erythrocyte lysis using NH4ClI buffer, cells were washed, resuspended in

complete media, and counted with a hemocytometer prior to analysis.
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Blood Collection and Serum Separation. Blood was collected by retro-orbital vein
bleed at the time of harvest. Serum was collected after centrifugation for 2 min at 6000
rpm in Microtainer tubes (BD Pharmingen). Remaining blood was collected in K2E tubes
(BD PharMingen), measured for volume and centrifuged for 10 min at 10,000 RPM.
After erythrocyte lysis using NH4Cl buffer, cells were washed, resuspended in complete

media, and counted with a hemocytometer prior to analysis.

Bone Marrow Collection. During harvest, leg shanks were removed from mice and
stripped of tissue using a standard razor. Marrow was flushed from femurs and tibias

using complete media in a 10cc syringe (BD Pharmingen) tipped with a 257®

g needle
(BD Pharmingen). Cells were drawn into a 10cc syringe and expressed through a 21g

needle to disperse the cells. After erythrocyte lysis using NH4Cl buffer, cells were washed

and resuspended in complete media prior to analysis.

Viable Conidia. Following digestion of the lung, a 100 pl aliquot was taken for analysis.
The sample was serially diluted and 10 pl of undiluted, 1:10, and 1:100 diluted digest
was plated on SDA media in duplicate. Hyphal foci were counted to determine the
number of colony forming units, and the number from each duplicate was averaged to

yield a total number of viable conidia per 10 pl of digest per mouse.

Flow Cytometry for Cell Surface Molecules. Cells were washed and resuspended at a
concentration of 10° cells/25 ul FA buffer (Difco) + 0.1% NaNj3, Fc receptors were

blocked by the addition of unlabeled anti-CD16/32 (Fc block; BD Pharmingen, San
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Diego, CA). After Fc receptor blocking, 0.5-1x10° cells were stained in a final volume of
50 pl in 96-well round-bottom plates (Corning Incorporated, Corning, NY) for 30
minutes at 4°C. Cells were washed twice with FA buffer, resuspended in 120 pl of 4%
formalin (Sigma), and transferred to 12 x 75-mm? polystyrene tubes (Becton Dickinson,
Franklin Lakes, NJ). A minimum of 100,000 events were acquired on a FACSCanto flow
cytometer (BD PharMingen) using Cell-Quest software (BD Pharmingen). Acquired

data was analyzed with FlowJo software (Tree Star, Stanford, CA).

Flow Cytometric Leukocyte Differential Analysis. Lymphocytes, neutrophils, and
eosinophils were distinguished by virtue of unique combinations of FSC and SSC profiles
and CD11c and Gr1 surface expression, as previously described (3). Mature eosinophils
were separated from background cells by gating for siglec F* forward-scatter'"
populations. Non-granulocytic myeloid cells were separated into distinct groups by first
gating out eosinophils and leukocytes using forward and side scatter, then removing
neutrophils and immature eosinophils by gating out GR1"€" CD11¢"" cells. The
remaining cell populations were then divided into four subgroups for further analysis.
Alternatively activated macrophages (AAM®) staining consisted of IL-5R and CD206
cross staining (4). Basophils were identified as FSC'*™ SSC'*™ Gr1- CD11c— CD3-
CD19- CD49b+ FceRI+ cells as described previously (5). For eosinophil maturation,
lung leukocytes were stained and FSC'®™ SSC™4™M&" cells were examined for IL-5R and
CCR3 expression. IL-5R™€" eosinophils were considered naive while IL-5R"

eosinophils were considered mature (6). Graphs were made from multiple pooled

experiments where n > 6.
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Intracellular Flow Cytometry. Cells were first stimulated for six hours with PMA
(50ng/ml) and Ionomycin (1ug/ml) then stained for CD4 and CD45 (cytokines) or were
stained for CD4, CD45, and CD25 (for T,) without prior stimulation. Cells were first
stained for surface markers and washed twice with FA buffer as described above. Cells
were then resuspended for 30 minutes in 50 pl of Cytofix/Cytoperm™ (BD PharMingen)
for cytokine staining or Fixation/Permeablization solution (eBioscience) for Foxp3
staining. Cells were then washed twice with permeablization solution and stained with
fluorescently labeled antibodies for IFN-y, IL-4, IL-10, IL-17 (BD PharMingen) or Foxp3
(eBioscience). Cells were washed twice more with permeablization solution,
resuspended in 125 pl of FA buffer, and transferred to 12 x 75-mm” polystyrene tubes for

analysis.

Morphological Leukocyte Differential Analysis. Macrophages, neutrophils,
lymphocytes, and eosinophils were visualized by standard morphological criteria in
Wright-Giemsa-stained samples of lung cell suspensions cytospun onto glass slides
(Shandon Cytospin, Pittsburgh, PA). For Wright-Giemsa staining, the slides were fixed
for 2 min with a one-step, methanol-based Wright-Giemsa stain (Harleco; EM
Diagnostics, Gibbstown, NJ) followed by steps 2 and 3 of the Diff-Quik whole-blood
stain kit (Diff-Quik, Baxter Scientific, Miami, FL). A total of 200 to 300 cells were

counted from randomly chosen high-power microscope fields for each sample.

RNA Isolation and cDNA Generation. Following lung leukocyte enrichment or bone
marrow isolation, cells were resuspended in 2 ml of Trizol (Invitrogen). Cells were

incubated for 5 min at room temperature then combined with 600pl of chloroform and
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shaken for one minute. Following a 3 min incubation at room temperature, samples were
spun for 15 min at 13,000 RPM at 4° C and the resultant supernatant transferred to
DNAse/RNase free tubes (Corning). Equal volumes of isopropanol were added, and the
samples mixed gently prior to a 20 min incubation at RT. Samples were spun for 15 min
at 13,000 RPM at 4° C, the supernatant decanted, 1 ml of 80% ethanol added, and spun
again for 10 minutes at 13,000 RPM at 4° C. The supernatant was again decanted and the
pellet allowed to air dry. 100-600ul DEPC water was added to each pellet depending on
the size of the pellet and contains 1ul/ml RNAasin. A primer cocktail (Promega
AccessRT kit) was then added to10ul of RNA samples at 0.1ug/ul (total RNA
lug/reaction) and run on a thermocycler (Applied Biosystems) as per the manufacturers

instructions.

qPCR. cDNA was mixed with SYBR (Applied Biosystems) and GATA-1 primers
(Integrated DNA Technologies) as per the manufacturers instructions. GATA-1 primers:
FWD 5’-GCCTGCCATTGGCCCCTTGT-3’ and REV 5°-
CCTGTCCTGTCCCTCCGCCA-3’. Samples were run on a 7300 Real Time System
(Applied Biosystems) and analyzed using 7300 system SDS Software (Applied

Biosystems). Quantitation was via 24T,

CD4" T Cell Enrichment. CD4" T cells were enriched from splenocyte populations and
from combined lung and LDLN populations via magnetic-activated cell sorting (MACS).
For MACS, cell suspensions were stained with CD4 (L3T4) Microbeads (Miltenyi
Biotec, Auburn, CA) and enriched via positive selection on a MidiMACS separator

Miltenyi Biotec). Enriched populations were >85% pure as assessed by flow cytometry.
y pop
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Adoptive Transfer. Enriched CD4" T cells were suspended in PBS at 0.8-1x10"/ml and

Iml of cell suspension was adoptively transferred to naive recipient mice via lateral tail

vein injection.

Statistical Analyses. All values are reported as mean + standard error of the mean unless
otherwise noted. 3-6 independent experiments were pooled to generate the mean unless
otherwise noted. Differences between two groups were evaluated with a two-tailed
Student’s ¢ test; p<0.05 were considered statistically significant. Correlation between cell
types and conidia clearance was determined using Ordinary Least Squares Regression
analysis. Slope, y-intercept, R* value, and p-value were determined for each data set.

p<0.05 were considered statistically significant.
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Chapter 3
Characterizing the Hypersensitivity Response
Introduction

Aspergillus fumigatus is a common mold and the focus of extensive research due
to its ubiquitous nature. A. fumigatus disseminates via conidia — hydrophobic spores —
which bud off fungal hyphae and are distribute through the air. Once the conidia reach a
warm, moist environment such as the lungs, they lose their hydrophobic properties and
begin to germinate (1). Following conidial swelling and germ tube extension, the fungus
develops invasive hyphae (2) and the cycle repeats itself.

Conidia are readily and frequently inhaled into airways at a rate of several
thousand a day (3), and pulmonary exposure to large doses is not uncommon (4). Though
A. fumigatus can pose a serious threat to immunocompromised individuals, even
relatively large doses of conidia pose little danger to immunocompetent hosts as the
immune system is capable of clearing conidia from the lungs before the fungus can take
hold. The immune response to inhaled Aspergillus fumigatus is characterized by a
complex interaction between the innate and adaptive immune response, both of which are
quickly activated by the presence of fungi (5, 6). Macrophages and neutrophils efficiently
neutralize low doses of germinating conidia in the lung (7, 8), and resting conidia are
cleared from the lung by macrophages without the induction of an inflammatory response
(9, 10). However, exposure to large numbers of viable conidia results in a complex

collection of cell types, pathways, and cytokines in response to the fungus. Macrophages
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(11), neutrophils (12), dendritic cells (13), monocytes (14), eosinophils (15), and natural
killer cells (16) all play a role in host defense, as do aspects of the complement system
(17).

No less important is the adaptive immune response. The Th1 adaptive immune
response is important in defense against invasive A. fumigatus, with progressive invasion
of infected tissue associated with decreased IFN-y production and poor T cell
proliferation in individuals with compromised immune systems (18). In addition,
inhibition of IFN-y or TNF-a enhances fungal invasion (19, 20). The Tyl response is the
primary reaction to large doses of inhaled conidia: following a thirty second inhalation of
aerosolized Af spores, the Th1 response in mice peaks one week after initial infection
resulting in the expression of TNF-a, [FN-y, [L-12, and IL-18 (21).

Chronic exposure to A. fumigatus conidia is common but little is known about the
host response under such conditions. Much of the host response literature for 4.
fumigatus has focused on the response to acute conidia exposure, usually in
immunocompromised animals, due to the clinical impact of invasive aspergillosis. Other
studies have examined the hypersensitivity response to conidia or Aspergillus antigen
extracts in mice previously sensitized systemically to Aspergillus (22-24). Our laboratory
has previously reported that two intranasal exposures to A. fumigatus conidia without a
sensitizing event do not result in an adaptive immune response (25, 26). However,
repeated pulmonary exposure to A. fumigatus conidia results in a strong Ty2-mediated
hypersensitivity response consisting of eosinophilia, mucus hyper-secretion, IgE
secretion, and cytokine production (27).

Our initial objective was to determine if additional challenges — four challenges

and eight challenges — would stimulate an adaptive response and, if so, analyze the
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development of the response in the lungs, including pulmonary inflammation, CD4 T cell
polarization and conidial clearance. Here we show that the reaction to repeated
pulmonary exposure is a dynamic adaptive immune response characterized not only by a
Tu2 hypersensitivity response, but early regulatory T cell activity and a mounting Ty17
reaction. Moreover, repeated exposure does not result in increased mortality, and

hypersensitivity does not significantly enhance clearance of 4. fumigatus from the lung.

Aims

1. Determine the cellular composition during acute and chronic Af conidia-driven
inflammation

2. Determine the adaptive response to chronic pulmonary exposure to Af conidia

3. Determine whether hypersensitivity hinders the immune system’s capacity to clear

conidia from the lungs

Results
Chronic pulmonary exposure to Aspergillus fumigatus conidia results in pulmonary
inflammation.

To determine the host response to chronic Af conidia challenge, mice were
challenged with zero, two, four, or eight weekly inoculums of 2 x 10° live Aspergillus
fumigatus conidia and harvested 24 hours after final challenge. The survival rate over the
course of 8 weeks was 100% (Fig. 3-1A). Lungs of challenged mice were excised,
minced, and digested to quantify both the pulmonary inflammatory response and levels of
viable conidia. Small aliquots were plated on SDA in a ten fold dilution series and mold

colonies counted. We found that 24 hours after intranasal challenge low numbers of
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viable conidia could still be detected in the lung (approximately 1%, Fig. 1B) and
potentially serve as a source of continued antigen or inflammatory stimulus. Two
challenges stimulated the influx of a small number of leukocytes into the lungs, the most
numerous of which were neutrophils (Fig. 3-3B). Repeated challenges gradually
augmented pulmonary inflammation but did not significantly alter the efficacy of
clearance, as mice exposed eight times to conidia still had levels in the lungs similar to
those that had been challenged two or four times with conidia (Figs. 3-3A & 3-1,
respectively). Repeated challenge also caused an expansion of the lymphocyte
populations in the draining lymph node (mediastinal lymph node), most notably between
the second and fourth challenge (Fig. 3-3A). Thus, chronic exposure promoted
development of an inflammatory response but did not enhance or impede conidial
clearance.

We next examined the composition of the inflammatory response during chronic
Af exposure. Whole lungs from mice challenged zero, two, four, and eight times were
examined histologically in H&E and PAS stained sections. Following two challenges,
granulocytic infiltrates were evident around the airways, with minimal changes in goblet
cells (PAS+, Fig. 3-2A). After four challenges, the inflammatory infiltrate had markedly
increased, including large numbers of eosinophils, and goblet cell metaplasia was evident
(as indicated by large numbers of PAS+ cells in the airway epithelium). In addition, at
this time point, there were a large number of multinucleated giant cells in the leukocyte
infiltrates (Fig. 3-2B). By eight challenges, the inflammatory response had decreased,
including fewer multinucleated giant and metaplastic goblet cells. Thus, chronic exposure

to Af conidia induced an increasingly stronger pulmonary inflammatory response through
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four conidia challenges that leveled off or began to resolve even in the face of continued
Af challenges.

To further analyze the kinetics of the pulmonary inflammatory response,
leukocytes were isolated from enzymatically dispersed lungs of challenged mice.
Consistent with our histological analysis, we observed a significant difference between
the number of cells found in untreated mice and those challenged twice (Fig. 3-3A). The
influx of cells in the lung was almost exclusively granulocytes (Fig. 3-3B), indicative of
primarily an innate response. However, mice challenged four times with conidia had a six
fold increase in the number of recruited leukocytes in the lungs compared to two
challenges. The inflammatory infiltrate was comprised of various myeloid cells and
lymphocytes, with eosinophils being the dominant cell type. CD4 numbers did not
increase significantly following two challenges, but four challenges yielded a five-fold
increase in the total number of CD4 T cells (Fig. 3-3B). There was a similar influx of B
cells into the lungs; however, CD8 T cell numbers remained relatively low. After eight
challenges, the total number of myeloid cells was lower while CD4 T and B cells
remained elevated. In the draining lymph nodes, there was an expansion of the CD4 T
and B cell populations between two and four challenges that persisted through eight
challenges (Fig. 3-3B). Thus, the influx of eosinophils, together with increased numbers
of CD4 T cells and B cells in the lungs and mediastinal nodes, suggested the potential
development of a Th2 response to Af conidia challenge during repeated exposure that

wanes as the number of exposures continues.

Precursor cells, macrophages, and dendritic cell populations expand in response to

conidia challenge.
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Our next objective was to analyze the kinetics of the non-granulocyte myeloid
populations during chronic Af conidia exposure. This heterogeneous population includes
antigen-presenting cells, effector cells and regulatory myeloid cells. CD45" cells isolated
from the lung were stained with anti-Grl and anti-CD11c, and lymphocytes and mature
eosinophils were removed from the cell pool by excluding cells with a low side-scatter
profile (Fig. 3-4A). Cells expressing high levels of Grl but low levels of CD11c were
gated out to remove neutrophils and immature eosinophils. The remaining cell population
clustered into four distinct subpopulations, which we called Groups I-1V (Fig. A2-2).

Each of these subpopulations was analyzed for expression of CD16/32, Ly6C,
CD80, as well as its autofluorescence and forward scatter/side scatter profile. CD16/32
(FcR) expression was found on all groups, indicating all groups are of myeloid lineage.
Ly6C, a marker of late myeloid precursors, was highest in Group III. This, along with the
large size-distribution of the subpopulation and lack of autofluorescence indicated
differentiating precursor cells (Fig. 3-4B). Likewise, the lack of Ly6C expression, high
autofluorescence, and expression of CD80 — a marker of maturity — indicated that Group
IT was composed of macrophages. Group I was composed of dendritic cells, as supported
by the CD80 expression, lack of autofluorescence, and moderate Ly6C expression. We
could not specifically define Group IV by cell sub-type, only by surface phenotype.
Group IV cells expressed relatively high levels of Ly6C, expressed no CD80 and were
moderately autofluorescent. These cells are most likely macrophage precursors based on
their scatter profile as well as their moderate autofluorescence. None of the populations
contained alternatively activated macrophages: all stained negative for IL-5Ra and

CD206 (Fig. 3-5). Likewise, all of the subgroups stained negative for pan NK markers.
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There was a nearly five-fold increase in dendritic cell (Group I) numbers between
two challenges and four challenges, with total numbers dropping significantly by eight
challenges (Fig. 3-6). Group III numbers showed a similar pattern, while macrophage
(Group II) numbers doubled between two and four challenges and stayed high over the
course of exposure. Levels of Group IV cells remained unchanged over time. Following
exposure to conidia, the dendritic cells increased expression of CD11b, indicating that
new cells were coming in to the lung (28). Similarly, the macrophage population had
increased CD11b and decreased siglec F expression over time, again indicating an influx
of new cells. Group IV non-granulocytic myeloid cells (NGMC), whose numbers did not
change over time, increased CD11b expression concurrent with the development of peak
inflammation. This reinforces the idea that Group IV is composed of precursor cells
transitioning into a more mature cell type. Since the ‘newness’ of the cell population
changes but total levels remain the same, the Group IV is likely a transitory population

for monocytes on their way to becoming more mature myeloid cells.

Chronic Af challenges result in an influx of antigen presenting cells into the lungs.

The numbers of antigen presenting cells frequently increases during
inflammation, so we wished to see if this was true in our model. The generation of Th2
responses has recently been linked to basophils (29), so we asked whether the number of
basophils in the lungs increased concomitant with the development of the Th2 response.
Basophils were identified using antibodies against CD49b and FceRI as described
previously (30) (Fig. 3-7A). Consistent with their potential role in the development of the
Th2 component of the response to Af conidia, the numbers of basophils in the lungs

increased at two challenges (prior to the appearance of IL-4+ CD4 T cells, Fig. 3-7B) and
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continued to increase between two and four challenges, the period when the Th2 response

fully developed.

CD4 T cells in the lung and lymph nodes show different activation and function
after two, four, and eight challenges.

T cells are essential to inflammatory response resulting from four intranasal
challenges; depletion of CD4 T cells completely abrogates hypersensitivity and
eosinophil influx (27). We wished to determine whether repeated exposure resulted in
CD4 T cell activation. CD4 T cells were identified in both the lung and lymph node by
CD45 and CD4 staining. Cells were additionally stained with fluorescently labeled
antibodies specific for CD44 and CD69, both of which are markers of T cell activation.
CD4 T cells that were CD44"¢" and CD69” were counted as activated. In the lung, just
two exposures to conidia resulted in an increase in the percentage of CD4 T cells that
were activated (Fig. 3-8A). The percentage of activated CD4 T cells did not significantly
increase between two and four challenges, but the increase in total numbers of activated
cells was significant (Fig. 3-8B). Between the four-challenge and eight-challenge time
points the percentage and total number of activated CD4 T cells increased slightly but not
significantly, supporting the idea of a sustained adaptive immune response over the
course of exposure. In the lymph node, the percentage of activated T cells remains
constant throughout the course of exposure. This is consistent with previous reports that
have found that CD4 T cells activate in the lungs but not the lymph nodes in response to
fungi (31). Therefore, pulmonary exposure to A. fumigatus results in T cell activation in

the lungs but not the lymph node. However, it is unlikely that activation alone results in
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hypersensitivity as CD4 T cell activation can be observed after two challenges when
there is no hypersensitivity response.

To determine whether a lack of regulatory cells is responsible for hypersensitivity
we determined the percentage of Treg within the pool of CD4 T cells. Similarly to T cell
activation, the percentage of CD4 T cells with a regulatory phenotype (CD25" Foxp3")
was constant in the lung-associated lymph nodes but dynamic in the lungs. In the lungs,
the percentage of cells expressing a Treg phenotype increases significantly in mice
challenged twice and then receded during hypersensitivity (Fig. 3-9). The sudden
increase in regulatory T cells during the initial exposure may explain the relative lack of
an inflammatory response seen after two challenges. Interestingly, the total number of
CD4 T cells does not increase significantly in mice challenged twice versus untreated
mice, while the percentage of Trgg in the lung increases nearly 50%. This indicates that
the small number of CD4 T cells entering the lungs during the first two challenges (Fig.
3-9) are almost exclusively Trgg or that some of the endogenous T cells in the lungs are
being converted to regulatory function in response to low doses of 4. fumigatus conidia.
Thus, the initial exposure to the fungus induces tolerance rather than inflammation, but
this response is eventually replaced by an aggressive inflammatory reaction. Though the
total number of regulatory T cells increases during hypersensitivity as has been reported
previously (32), the Effector:Treg ratio begins to grow as expansion of the effector T cell
pool outpaces that of regulatory T cells.

These observations logically led us to examine the cytokine production over the
course of exposure. We examined CD4 T cells cytokine production by flow cytometry to

determine which cytokines were being expressed during each phase of the response.
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During the initial response to conidia challenge there is a burst of IL-10 production,
supporting the conclusion that early inoculums of A. fumigatus drive tolerance (Fig. 3-
10A). Predictably, production of IL-4 spikes after four challenges when there is acute
hypersensitivity and a significant influx of eosinophils, and there is a corresponding drop
in the percentage of IL-10-producing CD4 T cells. However, we were surprised by the
relative lack of change in IFN-y production at all time points as well as the significant
increase in IL-17 production that accompanied hypersensitivity. While the total number
of IFN-y producing cells did increase, the percentage expressing the cytokine stayed
almost constant through four challenges. It is not until 8 challenges that a significant
increase in the percentage of CD4 T cells expressing IFN-y is seen. In sharp contrast to
this, there is constant increase in the percentage of CD4 T cells expressing IL-17 over the
course of exposure, and between two challenges and four challenges there is a ten-fold
jump in the number of these cells (Fig. 3-10A). Production of IL-17 is high after four
challenges and remains high at the late time point suggesting that IL-17 and the Tx17
response may play a role in driving chronic inflammation. This is reinforced by the
presence of IFN-y/IL-17 double-producing CD4 T cells. While the number of IFN-y/IL-
10 and IL-10/IL-17 producers rises slightly with multiple challenges, there is a striking
and significant increase in the number of IFN-y/IL-17 producers between two and four
challenges (Fig. 3-10B). IFN-y/IL-17 double-positive CD4 T cells are associated with
inflammation in a number of autoimmune models (33-35), and their presence suggests a

role for I[L-17 in maintaining an inflammatory response to A. fumigatus.

Precursor levels are associated with decreased fungal clearance during the

hypersensitivity response.
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When measuring the number of viable conidia in the lung, we noticed that the
number measured in each lung following four challenges was highly variable. While
other time points had relatively tight clustering of data points, the counts following four
challenges varied from no detectable conidia to 1.5 x 10° viable spores. Given the wide
distribution of still-viable conidia, we wondered if there was a positive correlation
between a lack of fungal clearance and a particular cell type. We therefore generated an
XY scatter plot for each cell type showing both the number of conidia detectable in each
lung versus the number of that cell. Each mouse is represented as a single point within
the graph. Regression analysis was then used to determine whether there was a positive
or negative correlation between each cell type and the number of detectable conidia and
whether that correlation was significant (Fig. 3-11).

Most cell types showed little correlation with a lack of clearance. Neutrophil,
dendritic cell, macrophage, and CD4 T cell numbers had virtually no relation to the
number of conidia that could be isolated from the lung, while CD8 T cells and B cells
showed a negative correlation that did not quite reach statistical significance. Similarly,
there was a modest correlation between conidia and eosinophils that also did not reach
statistical significance (p = .063). However, there was a strong correlation between Group
III myeloid precursors and fungal levels (p =.036), which is unsurprising given the
central role of monocytes in the CD4 T cell response during fungal infection (14). Most
surprising though was Group IV, which maintained a relatively constant number of cells
over the course of exposure (Fig. 3-11) and had an extremely high correlation with the
number of viable conidia (p = .002). Like the number of conidia, the number of Group IV
cells varied dramatically at the four challenge time point. It is unclear though if the

correlation is causative. It is plausible that a cell population would be increased in
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response to lingering conidia rather than being the source of poor clearance. However,
these data do indicate which cell types are most likely playing a central role — either

positive or negative — in defense and clearance.
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Figure 3-1. Conidia introduced via weekly intranasal challenge do not induce death
and can be detected twenty-four hours after exposure. (A) Mice were challenged
intranasally with 2 x10° live conidia once a week for eight weeks. Shown is the survival
of all mice in the cohort over the course of eight weeks. (B) Following digestion of the
lungs and aliquot of digest was serially diluted and plated on SDA media and hyphal foci
were counted. The graph shows the average viable conidia per lung detected 24 hours
after zero, two, four, and eight challenges. Starred bars indicate p < .05.
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Figure 3-2. Hypersensitivity in the lung is accompanied by cellular infiltrate around
the airways and mucus hyper-secretion. Lungs from mice challenged zero, two, four,
or eight times were fixed in formalin and embedded in paraffin blocks. Histological slices
were then stained with H&E or PAS. (A) Slides were examined at 40X magnification.
Arrows indicate eosinophil and neutrophil infiltrate. In PAS staining, bright purple cells
indicate mucus secretion. (B) In mice challenged four times with conidia, multinucleated
macrophages were observed in the lungs.
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Figure 3-3. Repeated intranasal exposure to Aspergillus fumigatus conidia generates
a hypersensitivity response in C57BL/6 mice. (A) Total cells in both lungs and lymph
node was calculated by counting total live cells in both tissue types using trypan
exclusion and multiplying by the percentage of cells that were CD45". (B) Cell
populations were identified as described in Figure A-1. The non-granulocytic myeloid
cell (NGMC) population consists of the total numbers pooled from Groups I, 11, III, and
IV. All bars represent the average of at least four separate experiments.

54



ok J62.7 ‘ 50K 1054 10°-
00K - ‘ 200K
| 1084 10° -
| 5
© "] | o e e
| b -
[ | [2] aw a
@ ook o) ook o o
50K 50K 1024 102
] 04 0
i | .
! 4 L T T T ey T T v
3 0 50K 2 s
0 A 10, i 10 0 102 10° 104 10° 0 107 10° 10* 108
Progressive Gating
o
I 0k 100 i o 100
200k 80 @] 50
400+
150K
60 60
100K
0 40
2004
50K
20 20
0
0 T T T [ e T oy T O ey ST T 0 e T T T
0 10? 10 10! 10° 0 10 108 10 10° 0 102 103 10t 108 0 10? 10 10t 10°
I I ok 100 100
200K 80 600 80
150K 60 60
400
100K 40 40
200
50K 20 20
o " _— 0~ T ™ " 0 v —rrrrm s Samat
4 0 10% 108 10¢ 106 0 10 10* 10t 10 0 10? 10° 10! 10° 0 107 10° 10* 108
I" 250K 100 100
500
200K 80 804
400
150K - 60 5
300
100K 40 ]
200 0
50K .
20 100 20
0 T T T T 0
5 18 R T T Tt i i {5 0; Ao b T T 0 L T T T
0 SOK 100K 150K 200K 250K 2 3 "
0 1 10* 10* 10° 01 10 10 e 0 10 10* 10 10° 0 10 10° 10 10°
IV o %
200 sl
200K 80 i
150 &
150K 60 60
100
100K 40 40
50K 204 0 20
3 — . o - — 0 : e
0 T s ey O e T 2 3 " 5 2 3 " 5
501 SOK 200K 25 s 1 1 1 10° 0 10 10 1 10
0 0K 100K 150K 200K 250K & w02 10 o 4 o wid e 10t ' 0 10 0 o o

Figure 3-4. Subsets of myeloid cells within the lung have distinct expression
patterns of cell surface markers. (A) Live cells from the lung were stained with a
spectrum of fluorescently labeled antibodies and analyzed using FLOW cytometry.
CD45" cells were first gated, and forward-scatter/side-scatter analysis was used to
separate myeloid cells from lymphocytes (FSC'Y SSC'°") and eosinophils (FSC""
SSCMidhieh Neutrophils (CD11¢"°Y GR1™€") were then removed. The remaining cell
population clusters into four distinct subpopulations labeled as Group I, 11, III, and I'V.
(B) Subpopulations were identified by examining FSC/SSC profile, surface marker
expression, and autofluorescence. Black lines indicate expression; gray peaks indicate
IgG controls.
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Figure 3-5. Subpopulations do not consist of alternatively activated macrophages or
natural Killer cells. Each subpopulation was examined for expression of IL-5Ra and

CD206 or expression of pan NK surface markers. Black lines indicate expression; gray
peaks indicate IgG controls.
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Figure 3-6. New cells are recruited to the lung during peak inflammation. Each
subpopulation was analyzed for total cell number after each challenge as well as
expression of CD11b, MHCII, and siglec F at each time point (Untreated = gray

background, 2 Challenges = gray dashed line, 4 Challenges = black dashed line, 8
Challenges = solid black line).
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Fig. 3-7. Basophil numbers significantly increase during the hypersensitivity
response. (A) Basophils were identified by gating for FSC®” SSC°™ Grl- CD1lc- cells,
then gating out T cells and B cells (CD3+ and CD19+ cells). The remaining cells that
were CD49b+ FceRI+ were classified as basophils. (B) The mean number of basophils
following zero, two, four, and eight challenges is shown. Starred bars indicate p <.05.
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Figure 3-8. CD4 T cells are activated in response to A. fumigatus conidia in the lung
but not the lymph node. (A) Lung cells were stained antibodies for CD45, CD4, CD44,
and CD69. CD4 T cells were isolated via gating and those that were CD44™¢" CD69"
(FLOW gate) were counted as activated. Each time point is a representative
concatenation of three samples. (B) Both the percentage and total number of activated
CD4 T cells in the lung and lymph nodes was calculated for each mouse and averaged for
each time point. n > 6 for each time point.
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Fig. 3-9. The percentage of CD4 T cells displaying a regulatory phenotype increases
during the early immune response, but total numbers increase over the course of
exposure. Cells taken from both lung and mediastinal lymph node were stained for
CD45, CD4, and CD25. Following permeablization cells were then stained for
intracellular Foxp3 expression. Effector:Treg ratio was determined by comparing the
percentage of CD4 T cells that were double-positive for CD25 and Foxp3 to those that
were double-negative. Bars represent the mean of each mouse at each time point. n > 6
for each time point.
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Figure 3-10. Each stage of the immune response to A. fumigatus displays a distinct
CD4 cytokine profile in the lung. (A) Cells taken from lung were stimulated for six
hours with PMA and Ionomycin and then stained with fluorescently labeled antibodies
specific for CD45 and CD4. Following permeablization cells were then stained for
intracellular IFN-a, IL-4, IL-10, and IL-17 expression. The mean percentage and mean
total number of CD4 T cells expressing each cytokine is shown. (B) The mean number of
CD4 T cells expressing multiple cytokines is shown. n > 6 for each time point.
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Figure 3-11. Poor clearance of conidia is positively associated with specific cell
populations during peak inflammation. Following 4 conidia challenges, the number of
viable conidia per mouse was compared to individual cell populations in each lung. Each
point represents the number of viable conidia vs. the number of cells in an individual
mouse. Slope, y-intercept, R value, and p-value were determined using regression

analysis.
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Figure 3-12. Repeated exposure to low levels of pulmonary exposure conidia results
in hypersensitivity and a dynamic immune response. The rise and fall of the four main
branches of the adaptive immune response as well as various cell populations is shown.
Both graphs are in arbitrary units.
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Discussion

We have demonstrated in this study that chronic exposure of an immunologically
intact host to Af conidia does not result in invasive aspergillosis or fatal disease but does
result in the development of chronic pulmonary inflammation and a CD4 T cell response
that is dynamic in its polarization, switching from an innate response and high
regulatory:effector CD4 T cell ratio to a low regulatory:effector ratio and an adaptive
response that shifts in its ratio of Ty 1:Ty2:Ti17cells as the number of conidia challenges
increases (Fig. 3-12). However, it should be noted that all three types of CD4 T cell
responses are present in the lungs at some level at four and eight challenges. While the
number of [FN-y/IL-10 and IL-10/IL-17 producing CD4 T cells rises slightly with
multiple challenges, there is a striking increase in the number of IFN-y/IL-17 producing
CD4 T cells between two and four challenges (Fig. 3-10B). IFN-y/IL-17 double-positive
T cells are associated with inflammation in several models of autoimmunity and graft
rejection (33-36) and their presence suggests a role for IL-17 in maintaining the
inflammatory response to A. fumigatus.

Viable conidia could be detected 24 hrs after introduction following each
challenge, providing a sustained and repeating source of antigen or inflammatory stimuli
during the evolving CD4 T cell response. Neutrophils, a major cell type during the early
phases of the response, are well-known to play a central role in host defense against
Aspergillus (12, 37-40) and were seen at all stages of the response, particularly early
stages prior to engagement of the adaptive response. Eosinophils, the dominant cell type
during hypersensitivity, have been repeatedly found in T2 responses. The chronic

inflammatory response included the recruitment of antigen-presenting cells such as
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basophils, dendritic cells, macrophages, CD4 T cells, and B cells, all of which are
capable of driving Ty2, Tul, Tul7 and T, responses. In addition, exposure to 4.
fumigatus conidia or fungal glucan can induce regulatory responses via TLR2 and dectin-
1 (41, 42). This then raises an interesting question: why is there a marked transition from
tolerance and mild inflammation to induction of Ty2, Tyl and Ty17 responses?
Expansion of the regulatory T cell population is important for limiting disease because
Tre cells ultimately aid in the clearance of fungi by limiting Th1 inflammation (43) or
dampening Ty2 hypersensitivity reactions (44, 45). In aspergillosis studies using high
doses of conidia (10® spores per mouse) there is a strong Ty1 response that occurs one
week after the initial exposure (46) rather than the Ty2 and Ty 1/Ty17 responses that we
have reported here during chronic Af conidia exposure.

There are several possible explanations then for the transition from tolerance to
hypersensitivity that we observed during chronic Af conidia exposure. One possibility is
that the accumulation of innate cells eventually overwhelms the regulatory response.
Chitin — which is generated following conidial germination — can drive an accumulation
of innate cells, stimulating inflammation and ultimately leading to an allergic response
(47). We show here that viable conidia are still present twenty-four hours after challenge,
and we have previously shown that germinating fungi can be detected in the lungs even
when low concentrations of conidia are used. Thus, it is possible that chitin production
results in an innate response that outpaces the tolerance response and eventually results in
the engagement of T2 adaptive immunity. Another possibility is that control of the Tyl
response is what ultimately drives the development of the Ty2 response. The Tyl
response has repeatedly been shown to cause tissue damage (48), so it is reasonable to

suspect that the immune system would dampen the Tyl response to a dose of conidia that
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can easily be cleared by the innate immune system. Such Tyl suppression could in turn
allow the expansion of a T2 response in reaction to multiple challenges, as Tyl and Ty2
responses are often reciprocally regulated. Moreover, Tyl and Ty17 are also reciprocally
regulated (49) which could explain the increased number of IL-17 producing CD4 T
cells.

Similar to the development of the Ty2 response, the Ty17 adaptive immune
response during chronic Af conidia exposure may be a result of a combination of factors.
The initial Ty17 adaptive immune response may be triggered simply by the presence of
conidia. Like regulatory T cells, Ti17 is promoted by fungal cell wall components via
dectin-1 (50, 51). In addition, Ty, can facilitate the differentiation of Ty17 cells (52, 53),
and regulatory T cells themselves can be converted to Ty17 cells (54), a process that is
facilitated by DC (55). Moreover, IL-10 inhibits production of IFN-y but not IL-17 (56).
Thus, the initial Ty17 response seen following two challenges may be driven by
regulatory T cell conversion to Ty17. This process would be aided by the dampened Tyl
response, as the development of Ty17 cells is inhibited by Tyl and Ty2 cytokines. On
the other hand, CD4 T cells already committed to the Ty17 lineage are resistant to Ty 1-
or Ty2-mediated suppression (57) which could explain why we observed that IL.-17
producing CD4 T cells continue to expand even during the Ty2-driven inflammatory
response that follows four challenges.

The Ty17 T cells in our study are also likely playing an active role in shaping the
reaction to conidia. Not only does the Ty17 arm of the adaptive response regulate Ty1
differentiation (58, 59), but it can dampen production of indoleamine-2,3-dioxygenase
(IDO) which enhances fungal clearance by inhibiting inflammation. This could explain

why after eight challenges the adaptive response is still not capable of efficiently clearing
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conidia (60). There have been no reports to our knowledge suggesting that the Ty17
response regulates T2 responses, so the presence of Ty17 does not explain the
dampening of the hypersensitivity response between four and eight challenges. In
contrast, previous studies have indicated that T2 airway inflammation is enhanced by
Tul7 (61). How then, does the Ty17 response ultimately replace the T2 reaction seen
earlier during chronic Af conidia exposure? Rather than suppressing T2, it may be that
Tul7 becomes the dominant adaptive response through attrition. Repeated exposure to
an antigen leads to restimulation-induced cell death of CD4 T cells, but it has been
reported that in autoimmune disease models T17 cells are resistant to this form of
apoptosis (62).

Thus, the emergent Ty17 response may arise as an imperfect immune compromise
when dealing with low levels of repeated conidia. While a Ty2 response does little to aid
in the clearance of non-hyphal 4. fumigatus and hinders function of the lungs, a
persistent Ty 1 response could result in severe damage to the tissue. Ty17 hinders Tyl-
mediated clearance of fungi (60), but on its own the Ty17 response has anti-fungal
properties (63-66). Therefore it is quite possible that repeated pulmonary exposure to Af
conidia eventually leads to an immune homeostasis where the ultimate response creates

the least damage while still controlling microbial load (conidia germination).
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Chapter 4
The Role of IL-17 in Hypersensitivity
Introduction

In the previous chapter we showed that repeated pulmonary exposure to
Aspergillus fumigatus conidia led C57BL/6 mice to develop pulmonary hypersensitivity
with increased production of IL-17 over the course of infection. IL-17 and the Ty17
response have an unclear relationship with allergy and hypersensitivity, and given the
robust IL-17 response seen in mice challenged multiple times we wished to elucidate the
relationship between IL-17 and hypersensitivity response to Aspergillus fumigatus
conidia. To do this we used an identical challenge protocol to the one used in Chapter 3,
only in addition to wild-type mice we used a previously characterized IL-17 knockout
strain on a C57BL/6 background (1).

IL-17 was discovered over fifteen years ago (2), but it was not until 2005 that the
scientific community realized that it is part of an adaptive response wholly separate from
the classic Tyl and Ty2 branches previously characterized (3, 4). Until that time
researchers had labored under the belief that the Tyl and T2 responses balanced one
another and constituted the sum total of the adaptive response (5). Which of these two
branches was dominant depended on the pathogen of interest: Ty1 dealt with intracellular
pathogens (6), and Ty2 dealt with extracellular pathogens (7). However, with the
discovery of Ty17 it became clear that old paradigm was obsolete, and new research has

endeavored to determine the role of Ty17 in the newly emerging model.
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The role of the Ty17 response has been viewed in a number of ways. It is
sometimes seen as a bridge between innate and adaptive immunity (8, 9), as a protective
mechanism for mucosal surfaces (10, 11), and as the source of many chronic
inflammatory diseases once thought to be mediated by the Ty1 response (12). Of
particular interest is the emerging role of Ty17 in diseases that were once thought to be
mediated by the T2 adaptive response. Ty17 and IL-17 have been shown in numerous
studies to play a significant role — both positive and negative — in both airway
hypersensitivity as well as fungal disease.

In response to fungus and other pathogens, Ty17’s role is highly varied, as Ty17
cytokines have been repeatedly shown to possess a wide variety of anti-microbial
activity. IL-17 and IL-22 have been shown to work together to enhance the expression of
anti-microbial peptides (13-15), and IL-17 and IFN-y together can induce the production
of defensins in humans (16). IL-17 is necessary for defense against systemic candiasis
(17) and has been previously shown to have a variety of anti-fungal properties (18-21).
Unfortunately, the Ty17 response tends to be inferior to Tyl when it comes to fungal
defense and can hamper the Tyl response (21). It has even been speculated that microbes
such as fungi — which promote Ty17 differentiation via dectin-1 signaling — may
preferentially activate the Ti17 response over Tyl as a form of immune evasion (22).

The involvement of Ty 17 in hypersensitivity appears to be a double-edged sword
as well. IL-17 is increased in human asthma (23), and IL-17 levels correlate with the
severity of asthma as well as other allergies (24, 25). Moreover, IL-17 has been shown to
directly affect neutrophil recruitment during OV A-induced asthma in mice (26).
However, it has also been shown that IL-17 can be a negative regulator of asthma in mice

(27), and IL-17 depletion can exacerbate eosinophilia in lungs (26). Based on these
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observations, the role of IL-17 in airway hypersensitivity seems to be time-dependent. At
some stages of inflammation T17 is a detriment and at others it is a benefit. This
concept meshes nicely with the dynamic cytokine response we demonstrated in the last
chapter, and as such, we wished to see what effect a lack of IL-17 production would have

on the hypersensitivity response.

Aims

1. Determine if IL-17 drives accumulation of leukocytes in the lung during
hypersensitivity

2. Determine if IL-17 alters the adaptive immune response to Af

3. Determine if IL-17 inhibits clearance of conidia from the lung

Results
IL-17 exacerbates hypersensitivity but is not responsible for mucus hyper-secretion.
IL-17 has shown to be a hindrance to fungal clearance, but it has also been shown
to be essential to defense against several pathogens. More importantly, the Ty17 response
has been shown to play a minor role in fungal defense under some circumstances. To see
whether a lack of IL-17 increased the mortality rate of C57BL/6 mice, mice that were to
be challenged eight times were checked daily for fatalities. Over the course of five
separate runs of at least three mice, not a single death in either the wild-type or IL-17
knockout mice was observed (Fig. 4-1). Moreover, there were no signs of mouse
morbidity (data not shown).
Using flow cytometry, cell populations were identified using a battery of

fluorescently labeled antibodies specific for cell surface markers as previously described
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in Chapter 3. In the lung, there was no significant difference in the total leukocyte
number following zero, two, and eight challenges in wild-type and IL-17"" mice (Figure
4-2A). However, there was a thirty-three percent reduction in the total leukocyte number
in IL-17"" mice following four challenges. The extra cells present at this time point
consisted of neutrophils, eosinophils, macrophages, dendritic cells, CD4 T cells, and B
cells (Fig. 4-2B). There was no difference between CD8 T cells nor, surprisingly,
myeloid precursors at this time point (Group III). Interestingly, the only population that
showed a significant difference after eight challenges was the macrophage populations,
which remains high over the course of exposure in wild-type mice. Conversely, more
differences were observed in the lymph node following eight challenges as opposed to
four. Though there was a significant difference in total lymphocyte number between
wild-type and IL-17" mice following four challenges, the difference in cell number was
due entirely to an expansion of the B cell population (Figure 4-2B). In contrast, there are
significantly fewer CD4 T cells present in the mediastinal lymph node of IL-17" mice
following eight challenges along with fewer B cells and CD8 T cells.

Basophils have been recently shown to play a central role in driving the Ty2
response (28). We wished to compare the levels in WT and IL-17"" mice to determine if
altered basophil levels accounted for the disparity in cell numbers seen during peak
inflammation. To our surprise, basophil levels were nearly identical in the WT and IL-17
" strains at every time point (Fig. 4-3).

H & E staining confirmed what flow cytometry had already told us, namely that
lack of IL-17 attenuates cellular infiltration into the lungs. Cellular infiltrate could still be
observed around the airways, particularly after four challenges, but the intensity of

cellular infiltrate was greatly reduced in mice lacking IL-17 (Fig. 4-4A). Interestingly,
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PAS staining revealed that IL-17"" mice still showed mucus hyper-secretion in the
airways, though its prevalence and intensity were slightly reduced (data not shown).
Likewise, the lungs of IL-17"" mice also contained multi-nucleated macrophages, though
again, they were less frequent than in their wild-type counterparts (Fig. 4-4B). Finally, as
a simple visual confirmation of our observations, we stained leukocytes from digested
lung with a Wright-Giemsa stain and compared cellular composition. As seen with
FLOW cytometry, both mouse strains contained similar ratios of cell types, though WT
mice had a higher percentage of eosinophils during the hypersensitivity response

following four challenges (Fig. 4-5).

IL-17 does not drive T cell activation or production of IL-4, but may play a role in
the regulatory response.

Given the central role of CD4 T cells in hypersensitivity, we wished to see
whether a lack of IL-17 production affected CD4 T cell activation or the presence of
regulatory T cells in either lung or mediastinal lymph node. We found that there was no
significant difference in percentage of CD4 T cell activation following four challenges in
either the lung or lymph node (Figure 4-6A). There was a small but significant difference
in the lungs following eight challenges, but at no time point in the lymph node was the
difference significant. In contrast, there was a significant difference in the percentage of
CDA4 T cells expressing the CD25+ Foxp3+ regulatory phenotype in the lungs during the
initial immune response. Unlike wild-type mice where a greater percentage of CD4 T
cells expressed CD25 and Foxp3 in response to conidia, IL-17"" mice did not see an

increase in the percentage of Ty, within the pool of CD4 T cells (Figure 4-6B). However,
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within the lymph node there were no statistically significant differences between wild-
type and IL-17"" mice at any time point.

Similarly, there was very little difference in CD4 T cell cytokine expression
between wild-type and IL-17"" mice. The percentage of CD4 T cells expressing IFN-y or
IL-4 showed no significant differences at any time point (Figure 4-7). Predictably, there
were no detectable IL-17-producing CD4 T cells in the IL-17"" mice. Given the disparity
in Ty, percentage, it is perhaps unsurprising that there was a difference in IL-10
production following two challenges. The discrepancy between the two strains may help
explain the presence of hypersensitivity and eosinophilia in WT and not IL-17"", as we
have previously shown that IL-10"" mice have a dampened inflammatory response to

repeated Af conidia challenge (29).

IL-17 hinders clearance of viable conidia from the lung, but clearance is not
associated with a particular cell type.

One of the biggest differences seen between wild-type and IL-17"" mice is the
ability to clear fungi (21). Therefore we wished to determine if IL-17 was a hindrance or
benefit to clearance of conidia in the lung. Whereas wild-type mice were unable to
efficiently clear conidia after even eight challenges, we found that after four challenges
IL-17"" mice were significantly better at clearing conidia than their wild-type
counterparts (Fig. 4-8). After two challenges — and before the adaptive immune system
has been activated — both mouse strains had identical clearance of 4. fumigatus from the
lung. However, by four challenges the IL-17"" mice had significantly lower numbers of
viable conidia in the lung. Moreover, while there is a significant difference between the

two mouse strains during hypersensitivity, the IL-17"" mice are significantly better at
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clearing conidia after four challenges than they are following two challenges. This
enhanced clearance is maintained throughout the course of the exposure.

Given the enhanced clearance in IL-17"" mice, we wanted to see if there was the
same correlation between viable conidia and cell types as in wild-type mice. As before,
XY scatter plots were generated from mice that had been challenged four times and
regression analysis was used to determine if there is any relationship between cellular
levels and viable conidia. Unlike wild-type mice, there is no significant correlation
between any cell type and the number of viable conidia in the lung (Fig. 4-9). As with
wild-type mice there is a strong but not statistically significant negative correlation
between the number of B cells and viable conidia. Similarly, there was a positive
correlation between the number of viable conidia and the number of Group III and Group
IV cells. These relationships did not reach significance, however, though the trends were

similar to the relationship seen in WT mice following four challenges.
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Figure 4-1. IL-17" do not have increased susceptibility to lethal fungal infection.
Mice were challenged intranasally with 2 x10° live conidia once a week for eight weeks.
Shown is the survival of all mice in the cohort over the course of eight weeks. Solid line
indicates WT; dashed line indicates IL177".
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Figure 4-2. Lack of IL-17 attenuates hypersensitivity response but does not dampen
the chronic inflammatory response. (A) Total cells in the lungs node were calculated
by counting total live cells in both tissue types and multiplying by the percentage of cells
that were CD45". Cell populations were identified as described in Figure A-1. All
columns represent the average of at least four separate experiments. Black columns = WT
mice; white columns = IL-17"" mice. Starred bars indicate p < .05.

(B) Lymphocyte numbers in the mediastinal lymph node.
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Basophils (104)

Figure 4-3. Basophil levels are unaffected by the lack of IL-17 during acute and
chronic inflammation. Basophils were identified by gating for FSC'*™ SSC"" Grl-
CDl1c- cells, then gating out T cells and B cells (CD3+ and CD19+ cells). The
remaining cells that were CD49b+ FceRI+ were classified as basophils. The mean
number of basophils following zero, two, four, and eight challenges is shown. Black
columns = WT mice; white columns = IL-17"" mice. Starred bars indicate p < .05.
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Figure 4-4. IL-17"" mice show reduced cellular infiltrate but are still capable of
mucus-hyper-secretion and multi-nucleated macrophage formation. Lungs from
mice challenged zero, two, four, or eight times were fixed in formalin and embedded in
paraffin blocks. Histological slices were then stained with H&E or PAS. (A) Slides were
examined at 40X magnification. Arrows indicate eosinophil and neutrophil infiltrate. In
PAS staining, bright purple cells indicate mucus secretion. (B) In mice challenged four
times with conidia, multinucleated macrophages were observed in the lungs.
Magnification is 100X.

84



Wildtype

'S

Figure 4-5. Reduced eosinophil infiltrate can be observed in IL-17" mice following
four challenges with Af conidia. Aliquots of leukocytes from WT and IL-17"" mice
challenged zero, two, four, and eight challenges were stained with a Wright-Giemsa stain
set and observed at 40X magnification.
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Figure 4-6. T cell activation is unaffected in IL-17"" mice, but there is a decrease in

the CD4 regulatory phenotype following two challenges. (A) Lung cells were stained
antibodies for CD45, CD4, CD44, and CD69. CD4 T cells were isolated via gating and
those that were CD44™#" CD69" (FLOW gate) were counted as activated. Each time
point is a representative concatenation of three samples. Both the percentage and total
number of activated CD4 T cells in the lung and lymph nodes was calculated for each
mouse and averaged for each time point. n > 6 for each time point. (B) Cells taken from
both lung and mediastinal lymph node were stained for CD45, CD4, and CD25.
Following permeablization cells were then stained for intracellular Foxp3 expression.
Effector:Treg ratio was determined by comparing the percentage of CD4 T cells that
were double-positive for CD25 and Foxp3 to those that were double-negative. Bars
represent the mean of each mouse at each time point. n > 6 for each time point. Black
columns = WT mice; white columns = IL-17"" mice. Starred bars indicate p < .05.
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Figure 4-7. IL-17"" mice do not produce IL-10 in response to initial conidia
challenges. Cells taken from lung were stimulated for six hours with PMA and
Ionomycin and then stained with fluorescently labeled antibodies specific for CD45 and
CDA4. Following permeablization cells were then stained for intracellular IFN-a, IL-4, IL-
10, and IL-17 expression. The mean percentage and mean total number of CD4 T cells
expressing each cytokine is shown. Black columns = WT mice; white columns = IL-17"
mice. Starred bars indicate p < .05.
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Figure 4-8. IL-17"" mice have enhanced clearance of conidia following four and
eight challenges. Following digestion of the lungs an aliquot of digest was serially
diluted and plated on SDA media and hyphal foci were counted. The graph shows the
average viable conidia per lung detected 24 hours after zero, two, four, and eight
challenges. Black columns = WT mice; white columns = IL-17" mice. Starred bars
indicate p <.05.
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Figure 4-9. Cell numbers do not correlate with conidia clearance in IL-17"" mice
during peak inflammation. Following 4 conidia challenges, the number of viable
conidia per IL-17"" mouse was compared to individual cell populations in each lung.
Each point represents the number of viable conidia vs. the number of cells in an
individual mouse. Slope, y-intercept, R* value, and p-value were determines using
regression analysis.
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Discussion

We show here that IL-17 plays a significant role in exacerbating hypersensitivity
to Aspergillus fumigatus conidia. Whereas wild-type mice have a burst of cellular
infiltration after four challenges that recedes over the next several weeks, cellular levels
in IL-17"" mice plateau after four challenges and stay relatively constant with the
exception of the neutrophil population. In the lymph node, CD4 and CD8 numbers are
almost identical. Differences are due almost entirely to B cell levels which is not
unexpected given the role of IL-17 in driving germinal center B cell differentiation (30).

What is surprising is the abrogation of eosinophilia in the lung following four
challenges. Several previous studies have examined the role of IL-17 in pulmonary
hypersensitivity models using modified protocols of the traditional OV A-asthma model.
In almost every case it was found that IL.-17 knockout mice had similar (1, 26, 31) or
increased (27) levels of eosinophils in the bronchoalveolar lavage fluid. The only time
eosinophil abrogation has been observed is in mice unable to produce the IL-17 receptor
(IL-17R). However, IL-17 and IL-25 share the IL-17RA (32), and the knockout strain
used was IL-17RA™". IL-25 plays a central role in Ty2 allergic inflammation (33-36), so it
is unsurprising that knocking out the IL-25 receptor would reduce eosinophilia in the
lung. Thus, the attenuation of eosinophilia in response to A. fumigatus conidia represents
a novel observation within the scientific field.

Despite the importance of an IL-17 role in eosinophilia, there are other
differences between the wild-type and IL-17"" mice that provide tantalizing clues as to
the role of Ty17 in the pulmonary hypersensitivity response. First, and least surprising,
lack of IL-17 results in a significantly reduced number of 000.neutrophils. This is to be

expected as several previous studies of IL-17 and asthma have found that IL-17 knockout
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or depletion abrogates neutrophilia (26). Puzzlingly though, there was no difference in
precursor levels at any time point despite a proven role for IL-17 as a monocyte
chemotactic agent (37), yet there were significant differences in numbers of dendritic
cells after four challenges and macrophages after four and eight challenges. Since
precursors are required for both dendritic cells and macrophages, why then are the
numbers between the two mouse strains virtually identical? These data suggest the
intriguing possibility that IL-17 may play a role in cellular differentiation.

Of course, it is also possible that differences in total cell numbers and cellular
composition directly affect differentiation and that IL-17 is merely an upstream mediator
not a direct effector of the process. Certainly, the role of IL-17 in cellular trafficking and
signal induction is not disputed. IL-17 is capable of upregulating production of a number
of CXCR3 agonists including CXCL9, CXCL10, and CXCLI11 (8). It can enhance
epithelial release of B-defensins, -CAM-1, IL6, IL-8, CXCL1, CCL20, G-CSF, MUCS5B,
and MUCS5AC (38), induce GM-CSF production (39) (which in turn enhances Ty17
development (40)), and can even enhance chemokine gene expression by stabilizing
mRNA transcripts (41). It is therefore possible that IL-17 is affecting differentiation and
cytokine production by altering the quantity of cells as well as their function. Indeed, it
has been previously shown that IL-17, IL-23, and IL-25 can all alter eosinophil cytokine
production and release (42), and GM-CSF can alter the function and survival of both
eosinophils and neutrophils (43).

The same logic can be applied towards the clearance of conidia. We show that
after repeated exposure IL-17"" mice are significantly more efficient at clearing conidia
from the lungs. Again, this is most likely due to a downstream consequence of IL-17

production rather than a direct effect on local cells. Previous reports have shown that IL-
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17 can dampen the killing efficacy of neutrophils by altering IDO production (21).
Likewise, IL-17 can worsen inflammation and downregulate regulatory T cells (44), Trea
in particular having been shown to play a role in fungal clearance (45). However,
differences in Treg levels are only seen after two challenges when there is no difference
in fungal clearance but are identical after four and eight challenges when fewer viable
conidia can be detected in IL-17" mice. Thus, differences in clearance are most likely
due to IDO levels or some other mechanism that is controlling the efficacy of fungal
clearance.

Additionally, there is the role of IL-17 and the Ty17 response in cytokine
production and the transition from a tolerant response to a hypersensitivity reaction.
While the hypersensitivity response seen in wild-type mice was absent following four
challenges, mice showed an inflammatory response and greater cellular infiltrate than
was found following two challenges. In IL-17"" mice the response following four
challenges was remarkably similar to the eight-challenge response, suggesting that while
IL-17 drives the hypersensitivity response it is not responsible for the induction of the
adaptive immune response. It is also possible that it plays no role in the resolution of the
Tu2 response, though without being able to generate hypersensitivity it is impossible to
know for sure.

This isn’t to say that the Ty17 response may not be playing a role in driving
and/or resolving the hypersensitivity response to Af conidia. IL-23, which is responsible
for the maintenance of Ty17 T cells (46) — and whose receptor is expressed on a number
of different cell types — is perfectly viable in IL-17"" mice and acts upstream of IL-17 (47,
48). Moreover, IL-23 has been repeatedly linked to autoimmune diseases and injurious

inflammation: brain inflammation (49), autoimmunity (50), and inflammatory bowel
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disease (51) have all been linked to IL-23. IL-23 levels also correlate with severity in
several diseases (10, 18, 52) and the Ty 17 response may worsen inflammation by
regulating IDO, kynurenines, and Ty levels (44). Thus it is possible that IL-23 may be
responsible for initiating or resolving hypersensitivity and IL-17 serves to exacerbate the

response.
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Chapter 5
The Role of IL-17 in Eosinophil Development, Maturation, and Trafficking
Introduction
Eosinophils have been associated for years with defense against parasitic
infections (1). More recently, details of their role in combating various pathogens has
become more apparent. Not only can they combat vegetative fungi (2), but eosinophils
express TLRs (3) and can act as APCs (4). However, it has also long been known that
eosinophils play a central role in several pulmonary hypersensitivity responses (5-7) as
well as tissue remodeling (8). Moreover, the cellular components that make eosinophils
so effective against parasites can also result in damage to host tissue and impair function.
Major Basic Protein (MBP) is a prime example. MBP is crystallized in eosinophil
granules (9) and is toxic to parasites (10) and bacteria (11). Unfortunately, it is also
cytotoxic to airway epithelium (12, 13) and activates remodeling factors (14). Other
granulocyte factors such as eosinophil peroxidase, eosinophil cationic protein, and
eosinophil-derived neurotoxin (15, 16) have anti-pathogenic effects (17) at the expense of
tissue damage and mutagenesis (18-20). Thus, the presence of eosinophils in the lungs is
necessary during parasitic or hyphal infection, but the hypersensitivity response provides
little tangible benefits to individuals experiencing chronic exposure to conidia. The lack
of eosinophilia in IL-17"" mice in response to chronic Af exposure therefore makes IL-17

a tantalizing target for clinical therapy.
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However, in order to provide a more tangible benefit, the underlying mechanism
must be elucidated. Three primary possibilities exist for [L-17’s role in driving
eosinophilia: IL-17 enhances bone marrow development of eosinophils, IL-17 directly or
indirectly alters eosinophil maturation and activation at the inflammatory site, or IL-17
plays a central role in eosinophil trafficking to the lungs. Another possibility not
examined here is that IL-17 prolongs the eosinophil lifespan in the lung.

Several previous studies have delved into the development of eosinophils from
bone marrow precursors. A 1997 study by Murali et al. showed that bone marrow
eosinophilia could be detected in mice with allergic bronchopulmonary aspergillosis (21),
and since then the mechanism of development has been elucidated. Eosinophils arise
from eosinophil-basophil precursors (22) with transcription factor composition and order
affecting development (23). Actual development is controlled by the GATA-1 (24), PU.1
(25), and c/EBP (26) transcription factors, with GATA-1 being the most important (27).
Surface marker expression is also distinct from other progenitor groups allowing for
identification via flow cytometry (28). IL-17 has been shown to induce production of
GM-CSF — a potent stimulator of granulocyte differentiation — in a dose-dependent
manner (29), though conversely it has been found that IL-17 may combat GM-CSF
signaling (30). Along similar lines, it has been previously shown that IL-17 depletion can
enhance eosinophil production in the bone marrow during OV A-induced asthma (31).
Either way, a substantial link has already been established between IL-17 and eosinophil
production in the bone marrow.

Though there is no direct evidence that IL-17 affects eosinophil maturation or
activation to our knowledge, several reports show a role for IL-17 in controlling the

eosinophil response. IL-17, along with IL-23 and IL-25, can affect eosinophil cytokine
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production and release (32). In addition, chemokines can promote the activation and
function of eosinophils (33), and IL-17 has been found to enhance chemokine expression
by stabilizing cellular mRNA (34). Thus it is possible that IL-17 may affect eosinophils
indirectly through the release of chemokines, or we may observe a direct IL-17 role in
eosinophil activation.

Probably the most logical possibility, however, is that IL-17 affects eosinophil
trafficking to the lungs. Leukocyte trafficking to specific tissue is controlled by
chemokines and integrins (35), and eosinophils are no exception. Eosinophils
constitutively express CCR1 and CCR3 (36, 37), and knockout of CCR3 or eotaxin-1 or -
2 dampens pulmonary eosinophilia (38). At least one group has concluded that the three
necessary factors for eosinophilia are primed CD4 T cells, IL-5, and eotaxin-1 (39),
though there is still some debate as to the role and importance of eotaxin-1 versus
eotaxin-2 (40). This reliance on chemotactic agents suggests a possible role for IL-17 in
eosinophil chemotaxis, as the cytokine has previously been shown to induce epithelial
release of a number of molecular signals including I-CAM-1, IL-8, IL-6, CXCL-1,
CCL20, and G-CSF (41). IL-17 is a direct chemotactic agent for monocytes (42) and
upregulates production of CXCL 9, 10, and 11 (43). IL-17 has also been shown to play a
role driving granulocytic influx during allergic responses (31), though to date only
neutrophil levels have been altered by IL-17 knockout or depletion (41). It is therefore
reasonable to think that IL-17 may be playing a role in controlling eosinophil trafficking

to the lung.

Aims
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1. Determine the effect, if any, of IL-17 on eosinophil development from bone marrow
cells during the pulmonary hypersensitivity response.

2. Determine the effect, if any, of IL-17 on eosinophil maturation and activation during
the pulmonary hypersensitivity response.

3. Determine the effect, if any, of IL-17 on eosinophil trafficking during the pulmonary

hypersensitivity response.

Results
IL-17" mice are capable of generating eosinophils in the bone marrow in response
to Aspergillus fumigatus conidia.

There are several possible explanations for the differences seen between wild-type
and IL-17"" mice during the hypersensitivity response; our final goal was to determine the
source of these differences. In particular, we wished to explore the novel observation that
IL-17"" mice lacked the eosinophilia found in their wild-type counterparts. To do this, we
first examined bone marrow development in both mouse strains during the
hypersensitivity response and prior to conidia challenge. Previous reports have shown
that the composition of bone marrow can be analyzed by examining surface expression of
CD31 and Ly6C (44, 45). Cells in the resulting flow plot are dispersed into six distinct
gates (Fig. 5-1). Cellular distribution is slightly different in wild-type and IL-17"" mice
that are untreated; however during peak hypersensitivity the cellular populations
converge and are nearly indistinguishable. By pooling several experiments we were able
to statistically compare the composition of each group following four conidia challenges.
We found that there was no significant difference in the bone marrow between WT and

knockout mice during the hypersensitivity response (Fig. 5-2). To further verify similar
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production of eosinophils in both mouse strains we generated cytospin stains from bone
marrow cells with a Wright-Giemsa stain. Eosinophils were observable in low quantities
in both mouse strains regardless of Af exposure, and there was no obvious increase in the
percentage of eosinophils in the bone marrow cells (Figure 5-3).

Interestingly, we saw something different when looking at GATA-1 mRNA
production in the bone marrow. mRNA expression of GATA-1 — the primary
transcription factor for eosinophil development — was unchanged in WT mice during the
hypersensitivity response, indicating that the hypersensitivity response is not driving
excess production of eosinophils. However, IL-17"" mice showed a significant drop in
GATA-1 mRNA production relative to wild-type mice during the same time period (Fig.
5-4). It is therefore possible that IL-17 is playing a role in driving, or at least maintaining,
eosinophil differentiation during the hypersensitivity response. In either case, the
reduction of GATA-1 expression in IL-17"" mice has a rather mild effect on eosinophil
production, as eosinophils are still observable in IL-17"" in the bone marrow and blood

(Figs. 5-3 & 5-9).

Lack of IL-17 does not alter the maturation or the activation of eosinophils in
the lung during hypersensitivity.

A second possibility is that the lack of IL-17 is somehow affecting the potential in
the lung for immature eosinophils to fully develop or for mature eosinophils to become
activated. To test this, we stained cells from digested lungs with a specific set of
antibodies to examine changes in eosinophil development. Of particular interest were
CCR3 - a trafficking receptor for a number of chemokines including eotaxin — and the

IL-5 receptor (IL-5R). CD45+ cells were first separated from the pool of total lung cells,
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and then eosinophils were further isolated from the leukocyte population by gating for
FSC"Y cells with a SSC™™E" profile (Fig. 5-5A). The eosinophil population was then
analyzed by looking at expression of IL-5R and CCR3. We found that eosinophils in the
lung could be subdivided into three distinct subgroups based on their IL-5R expression.
These groups were labeled as IL-5R™€" TL-5R™¢ and IL-5R"". Expression of siglec F
(sigF) in each group showed that cells with high IL-5R expression had almost no sigF

low

expression, while those that were IL-5R™" almost universally expressed sigF (Fig. 5-7).
We then compared the cellular distribution of cells within these three gates in
wild-type and IL-17" mice during the hypersensitivity response. As a positive control we
performed an identical stain set on wild-type C57BL/6 mice that had previously been
infected with Cryptococcus neoformans, which results in a strong T2 response and
extreme eosinophilia. There were no obvious differences between WT and IL-17"" mice
that had been untreated, and there were no obvious differences between strains following
four challenges (Fig. 5-5 B). However, differences could be seen between mice that were
untreated, had been challenged four times, or had been infected with C. neoformans. In
agreement with previous data suggesting that Jow IL-5R expression is associated with

high cells, while

activation, mice that were untreated had the highest percentage of IL-5R
those infected with C. neoformans had nearly ninety percent of their eosinophils in the
IL-5R"™ gate (Fig. 5-6 B). Using exclusively forward- and side-scatter analysis, there
was a significant increase in the percentage of leukocytes that were eosinophils between
untreated mice and those challenged four times (Fig. 5-6 A). Additionally, there was a
significant decrease in percentage in IL-17"" mice following four challenges compared to

WT mice, an observation consistent with other data. The distribution of eosinophil IL-5R

expression between time points was significantly different for both strains of mice, but

104



there was no difference between the strains (Fig. 5-6 B). Moreover, within each of the
three gates there was no difference in surface expression of siglec F between wild-type
and IL-17"" mice following four challenges (Fig. 5-7). Thus, IL-17 does not play a direct

role in driving eosinophil activation or maturation.

IL-17 drives cellular recruitment to the lung during acute hypersensitivity to
Aspergillus fumigatus conidia.

The most logical remaining explanation for the reduced numbers of eosinophils in
the lungs is trafficking. Previous reports have shown that IL-17 is responsible for
inducing the release of a number of chemokines from epithelial cells, and it possible that
a lack of IL-17 prevents cells from reaching the lung during infection (42, 43). Cell
surface expression of trafficking markers on non-granulocytic myeloid cells in the lung
supports this. In the lungs, CD11b expression shows that the percentage of new cells is
much greater in WT mice than in IL-17" mice (Fig. 5-8). This is particularly true in
macrophages and Group IV cells. Moreover, siglec F — which is expressed on resident
macrophages — is reduced in wild-type mice, further supporting this observation. There
are also small differences in dendritic cell expression, but these are not nearly as
pronounced. Similarly to eosinophils, differences in NGMC between the two mouse
strains seems to be limited to cellular levels and not activation. CD80 and CD86
expression is identical to that seen in untreated mice and is the same in both WT and IL-
17" mice following four challenges (Fig. 5-8).

To see if inhibited trafficking to the lung was responsible for the dearth of
eosinophils observed during the inflammatory response in IL-17", we took whole blood

from mice challenged four times and analyzed the number of leukocytes and the cellular
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composition. Following isolation from the blood, cells were gated for CD45 expression
and then isolated via CD11b surface expression. CD11b" cells were then broken down
into two groups: eosinophils — SSC™¢" — and small myeloid cells — FSC'*" SSC'*™ —
consisting of neutrophils and monocytes (Fig. 5-9 A). In uninfected mice, there was no
significant difference seen between WT and IL-17" with regards to total leukocytes,
eosinophils, or small monocytes. However, there was a striking and significant difference
between cell levels in WT and IL-17"" mice that had been challenged four times (Fig. 5-9
B). Moreover, while there was a significant difference between untreated and four-
challenge IL-17"" cell levels for all cell types, there was a much more modest — and not
statistically significant — difference between untreated and four-challenge wild-type mice.
The data therefore show a buildup of leukocytes in the blood of IL-17"" mice that is not
present in WT mice during hypersensitivity. This suggests then that the lack of IL-17 is
altering pulmonary levels of leukocytes by preventing extravasation from the blood to the

tissue at the site of infection.

106



1654
|
10t 4
= -
o 10’ 3
O
1024
04
B L S L SN LA A L B
0 10? 10° 10 10°
Ly6C
Untreated WT Untreated 17
10°4 971 104 6.36
10t 296
102 4
LE
:la \éz wéa 171‘3“ 1&5 ‘t‘) 1(‘)2 ‘11;3 u;" 14‘35
10°+ 7.21 107 745
10t 2 104|203
3.49 q33
102 4 1024
i 63 04 151
B T T T B T T T
0 102 10° 10 108 0 10? 10° 104 10°
4 Challenge WT 4 Challenge 17+

Figure 5-1. WT and IL-17" mice show identical bone marrow differentiation in
response to repeated pulmonary conidia challenge. Bone marrow isolated from WT
and IL-17"" mice challenged zero and four was stained with Ly6C and CD31. Cells
segregated into six distinct populations designated I-VI.
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Figure 5-2. Bone marrow differentiation is unchanged in IL-17" mice during peak
inflammation. The total percentage of cells within each gate was averaged for each
mouse strain following zero or four challenges. For untreated mice, n = 3; for mice
challenged four times n > 11.
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Figure 5-3. WT and IL-17" mice bone marrow shows no obvious phenotypic
differences following chronic exposure to conidia. Aliquots of leukocytes from WT
and IL-17"" mice challenged zero, two, four, and eight challenges were stained with a
Wright-Giemsa stain set and observed at 40X magnification.
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Figure 5-4. Bone marrow from IL-17"" mice shows a significant reduction in
production of GATA-1 mRNA. RNA from WT and IL-17"" bone marrow was isolated
after zero and four challenges. Following conversion to cDNA, GATA-1 levels were
measured for each individual mouse. For untreated mice, n = 3; for mice challenged four
times n > 6. Black columns = WT mice; white columns = IL-17"" mice. Starred bars
indicate p <.05.
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Figure 5-5. Lung eosinophils show increased maturity in response to antigen
challenge. (A) Eosinophils were separated from the cellular background by selecting
CD45+ cells that were FSC'®™ SSC™™" The enriched population was then analyzed for
IL-5R and CCR3 surface expression. The eosinophil population was then divided into
three distinct gates: High, Mid, and Low. (B) The FSC/SSC profile and IL-5R/CCR3
expression of lung eosinophils in WT and IL-17"" mice was compared following zero and
four challenges. The expression profile of lung eosinophils from C57BL/6 mice infected
with C. neoformans is also shown and serves as a positive control.
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Figure 5-6. Lung eosinophils maturity is unaffected by a lack of IL-17. (A) Using
FSC/SSC profiles, the percentage of lung CD45+ cells that were eosinophils was plotted.
(B) Within the eosinophil population, the percentage of cells that fell within the High,
Mid, and Low gates was plotted for WT and IL-17"" mice following zero and four
challenges, as were eosinophils from C. neoformans-infected mice. For untreated mice, n
= 3; for mice challenged four times n > 11. Black columns = WT mice; white columns =
IL-17" mice. Starred bars indicate p < .05.
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Figure 5-7. Expression of siglec F on eosinophils is governed by cell maturity and is
unaffected by fungal exposure or the presence of IL-17. Cells within the High, Mid,
and Low gates were analyzed using histograms for their expression of siglec F. Solid
black lines = WT mice; dashed gray lines = IL-17"" mice, gray peaks = IgG controls.
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Figure 5-9. IL-17"" mice show increased numbers of eosinophils and other myeloid
cells in the blood during peak inflammation. Blood was collected from WT and IL-17
" mice following zero and four conidia challenges. (A) Following cell counting, cells
were stained for flow cytometry. CD45+ CD11b+ CD11c¢™ cells were gated and their
FFSC/SSC profile analyzed. (B) The total number of CD45+ cells was measured in the
blood of WT and IL-17"" mice. Additionally, the number of eosinophils and small
myeloid cells was plotted. For untreated mice, n = 3; for mice challenged four times n >
11. Black columns = WT mice; white columns = IL-17"" mice. Starred bars indicate p<
.05.
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Figure 5-10. IL-17" mice are predicted to have less IL-S in the lungs during peak
inflammation. Red triangles indicate IL-5, black forks indicate IL-5R. Immature
eosinophils are represented expressing I[L-5R, while mature eosinophils have shed the
receptor into a soluble form.

116



Discussion

We show here that IL-17 plays several roles in regulating eosinophil levels in the
lung during the hypersensitivity response. Firstly, IL-17 has a modest role in driving, or
at least maintaining, eosinophil differentiation in the bone marrow. Secondly, IL-17 has a
direct role in cellular recruitment, and during conidia-induced pulmonary hypersensitivity
it plays a role in eosinophil trafficking from the blood to the lungs. Thirdly, IL-17
appears to not play a role in the maturation of eosinophils, though there is a distinct
possibility that it may indirectly play a role in shaping the eosinophil population in the
lungs.

The data regarding bone marrow differentiation are somewhat conflicting. Based
on the flow and cytospin data, one would conclude that eosinophil production from the
bone marrow is unchanged in IL-17"" mice. However, GATA-1 mRNA is reduced in the
bone marrow. A reduction in eosinophil production makes sense of course, as eosinophils
express the GM-CSF receptor (46) and GM-CSF plays a big role in eosinophil
development along with IL-3 and IL-5 (46-49). How does one then reconcile the data?
The most likely answer is that IL-17 does play a small role in BM eosinophil
development, but the effects are not obvious due to the relatively modest eosinophil
response. First, IL-17"" mice are still plainly capable of generating eosinophils as
evidenced by the cytospin data, the low levels in the lung during hypersensitivity, and the
buildup of CD11b+ cells in the blood. Moreover, the change in GATA-1 levels seen in
wild-type mice is negligible during hypersensitivity, and visual inspection does not show
differences between either mouse strains at either time point. Thus, the hypersensitivity

response does not result in the generation of many new eosinophils even in wild-type
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mice, and it is likely that even reduced eosinophil production in IL-17"" mice is enough to
maintain levels in the blood.

This concept is bolstered by the method in which eosinophils are kept in reserve
in mice. Unlike other myeloid cell types, eosinophils first traffic to the peritoneum where
they pool to form a cellular reservoir (50). Even during parasitic infection it was found
that the majority of eosinophils at the site of infection had come not from the bone
marrow, but from the peritoneum. This then could explain why there were still
eosinophils in the blood, even if production was reduced in the bone marrow: the
eosinophils had been generated prior to infection and had come from the cellular
reservoir. This might help explain why previous IL-17 depletion studies using OVA-
sensitization have not noticed differences in eosinophil levels (41). These studies focus
almost entirely on acute eosinophilia shortly after the allergic response is triggered. Since
the eosinophils are coming from the peritoneum rather than the bone marrow, it’s likely
that cellular levels are being measured before the cellular reserve is depleted.

This of course does not entirely explain the unchanged eosinophil levels seen in
IL-17"" mice using OVA protocols, as we also show that IL-17 plays a role in cellular
trafficking to the lung. There are several ways in which IL-17 might be affecting
eosinophil trafficking. Aside from chemokine production, IL-17 might conceivably be
altering expression of integrins that are used for rolling, tethering, adhesion, and
transendothelial migration (51). However, given the similar integrin use of eosinophils
and basophils, it is more likely that eosinophil-specific chemokines are altering
recruitment as basophil levels are unchanged in IL-17"" mice.

It is likely then, that IL-17 affects eosinophil trafficking by altering chemokine

expression, probably eotaxin. Whereas dendritic cells have been shown to be responsible
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for driving Tyl chemokine production in response to Aspergillus fumigatus (52), the
main recruiter of airway eosinophils is suspected to be eotaxin-2 produced by
macrophages (53). Since we have shown that a lack of IL-17 results in diminished
macrophage recruitment, it is possible that IL-17 drives the accumulation of macrophages
which in turn drives the accumulation of eosinophils. Certainly it has been shown that
monocytes — the precursors to macrophages — express the IL-17 receptor and use [L-17 as
a chemotactic agent (42). However, it is clear, not only from our observations but from
the literature, that some mechanistic redundancy must exist or eosinophils would not be
able to reach the lungs at all. Eosinophils have been shown to upregulate expression of
other chemokine receptors in response to IL-5, and IL-5 itself can as a chemoattractant,
though it is less effective than the eotaxins (54). Thus, even if IL-17 does drive one
aspect of eosinophil recruitment, there are likely other paths that allow some trafficking
of eosinophils to the lungs. This idea is supported by the previous allergic studies that
found no drop in eosinophil levels in response to OVA hypersensitivity in IL-17"" and IL-
17 depleted mice. It is likely that these models induced eosinophil migration through a
number of different pathways so that IL-17 knockout or depletion had little effect. In
response to low doses of conidia, however, IL-17 probably plays a much more central
role in recruitment.

A final, more remote possibility relates to the methods used by previous
researchers. Previous studies have measured eosinophils levels by visualization, relying
on cytospin counts to determine eosinophil composition. Upon activation, eosinophils
degranulate, releasing stored anti-microbial compounds and cytokines at the site of

inflammation. It is possible that previous studies have simply been unable to differentiate
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between eosinophils and neutrophils using a Wright-Giemsa stain because, without
granules, the two cell types look nearly identical.

It is also possible, though, that IL-17 is affecting IL-5 levels in the lung, and this
is affecting not only trafficking, but development. IL-5 plays a significant role in
eosinophil development (47-49), and it is essential for expansion of the population in the
bone marrow (55). One might ask then, if there is altered IL-5 production, why is the
maturation of eosinophils during hypersensitivity the same in both wild-type and IL-17"
mice? In order to answer that question, one must remember that the eosinophil population
in IL-17"" mice is one third that of WT during peak inflammation. Therefore there are
three times as many eosinophils binding IL-5 in WT mice, and there are three times as
many mature eosinophils releasing secreted IL-5 receptor into the milieu (56). This
implies that more IL-5 is present to maintain the larger population of eosinophils in WT
mice (Fig. 05-10). When we measured total cytokine production in the lung using micro
array analysis, we indeed found higher levels of IL-5 in WT mice than IL-17"" mice
during the hypersensitivity response, though the difference did not reach statistical
significance (p > .05) (Fig. A2-5). Taken together, it is highly possible that IL-17 affects
IL-5 expression, either directly or through an intermediary. This would explain not only
the difference in trafficking, but also developmental differences and differences in
maturation. Given the difference in numbers for all cell types, it is likely that IL-17 acts
as a global regulator of inflammation during the hypersensitivity response and
downstream components of the immune system ultimately govern eosinophil recruitment

and development.
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Chapter 6
Summary, Interpretation, Critical Review, and Future Directions
Summary and Interpretation

The studies in this dissertation can be broken down into three broad, yet distinct,
categories: the characterization of the immune response to repeated pulmonary exposure
to Aspergillus fumigatus conidia, the role of IL-17 in the hypersensitivity response to
chronic conidia challenge, and the role of IL-17 in driving eosinophilia during
hypersensitivity. In all three cases, the data presented here provides both novel insights
into the mechanisms of the hypersensitivity response towards Af.

First and foremost, our research has elucidated a number of possible adaptive
mechanisms during the immune response to Aspergillus fumigatus. Unlike previous
studies which have shown the immune response to be purely adaptive (1-4) or Tyl in
nature (5-7), we find that chronic exposure to conidia results in a dynamic response
characterized by early tolerance, subsequent T2 hypersensitivity, and, ultimately,
moderate Ty17 inflammation. The hypersensitivity response is characterized by an influx
of nearly all cells types; macrophages, dendritic cells, neutrophils, basophils, CD4 T
cells, B cells, and the most dominant new population, eosinophils, all are significantly
increased in the lung between two and four challenges. This hypersensitivity is
accompanied by mucus hyper-secretion in the airways as well as formation of
multinucleated macrophages. Moreover, repeated challenges did not improve the ability

of the immune system to clear viable conidia from the lung, and the levels of several cells
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types — myeloid precursors in particular — were significantly correlated to fungal levels.
Perhaps most importantly, we observed IL-17 production that was increased following

two challenges and continued to increase over the course of exposure. In particular, the
expression of IL-17 and the poor clearance of conidia represent novel observations that
lead to new lines of inquiry.

This led to our next series of experiments where we showed that IL-17 played a
role in driving the hypersensitivity response. To our surprise, cellular levels were almost
identical at all other time points in both mouse strains, but following four challenges IL-
17" mice were unable to generate the same level of inflammation as wild-type mice. In
particular, IL-17" mice showed a significant reduction in the number of eosinophils in
the lungs following four challenges. To our knowledge such an observation has never
been reported, as previous studies using OVA models of pulmonary inflammation similar
eosinophil levels in the lungs in IL-17" and IL-17-depleted mice.

However, aside from a reduction in IL-10 and Foxp3 production following two
challenges, IL-17"" mice mounted a nearly identical, albeit dampened, inflammatory
response to repeated conidia challenge. IL-4 was still produced following four
challenges, epithelial cells still secreted mucus, and even basophil levels were unaffected.
The only other difference we observed was a more effective clearance of conidia from the
lung in the IL-17"" mice.

The observation that eosinophilia was dampened in IL-17"" mice led us to
examine the mechanism behind the eosinophil accumulation in the lungs of WT mice
during hypersensitivity. To do so we examined bone marrow differentiation, eosinophil
maturation in the lungs, and cellular trafficking. The data regarding bone marrow

differentiation was conflicting, as flow cytometric analysis and cell staining showed no
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obvious differences in eosinophil development. However, expression of GATA-1 mRNA
— the primary transcription factor for the eosinophil lineage (8, 9) — was reduced in IL-17
" mice during peak inflammation. This is in opposition to our initial data, as well as a
previous report showing that IL-17 depletion enhances GATA-1 expression (10). The
most likely explanation is that IL-17 does play a role in bone marrow differentiation of
eosinophils but one that is relatively minor. Though Hellings et al. found an increase in
BM eosinophil differentiation when IL-17 depleted, the difference — while statistically
significant — was relatively minor. In our model of inflammation the eosinophil infiltrate
is relatively mild compared to other models that exhibit an intense T2 response. Thus, it
is likely that differences in GATA-1 expression are not due to lower total transcript
expression but increased expression of other transcripts that dampen the GATA-1 signal.
Analysis of eosinophil maturation indicated that IL-17 played no role in eosinophil
maturation, but our results predicted a decrease in IL-5 production. This hypothesis was
supported, though not proven, by preliminary data from cytokine arrays. Analysis using
ELISA or western blot will be needed to confirm these initial findings.

Finally, we showed that IL-17 drove the accumulation of new myeloid cells in the
lung, and IL-17"" mice had a buildup of eosinophils and other small myeloid cells in the
blood during the inflammatory response. This indicated that the dearth of eosinophils in
the lungs in IL-17"" mice during the hypersensitivity response was due mainly to poor
trafficking, though the data suggests IL-17 may play a smaller role in bone marrow
differentiation as well as IL-5 production. It is currently known that IL-17 can affect the
production of a number of chemotactic signals; IL-17 can drive IL-5 and GM-CSF
production, and IL-17 itself is used as trafficking signal by monocytes. To our

knowledge, however, IL-17 has not been shown to play a role in driving eotaxin
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production or integrin expression. Therefore the data presented here generate new
avenues of research with regards to IL-17 and cellular trafficking.

The study provided in these pages introduces several novel observations and adds
to our understanding of mechanisms that have been previously shown by other
researchers. Using the hypersensitivity mechanism initially developed by Mairi Noverr
and Andrew Shreiner, we expand upon their initial findings about the adaptive response
during hypersensitivity, particularly the role of IL-17 in driving inflammation and
eosinophilia. What’s more, our data are consistent with the findings of Zelante et al.,
namely that IL-17 negatively affects the immune system’s ability to clear conidia from
the lung (11). These studies also add several novel scientific methods to the field of
immunology, particularly to the role of flow cytometry and cellular identification in the
lungs. Not only did we identify several myeloid precursors, but we were able to
independently confirm IL-5R shedding as previously reported by Liu et al. (12). Unlike
previous in vitro methods, our use of flow cytometry allows in vivo tracking of cellular
movement as well as characterization of eosinophil maturity in the bone marrow, blood,
and peripheral tissue. Together, with CD11b and siglec F expression, this approach
provides an exciting new method of examining the maturity of eosinophils in response to

stimuli.

Critical Review

The data presented here provides insights into the immune system during an
allergic reaction in the lungs in response to chronic allergen exposure. There are three
primary human pulmonary diseases associated with Aspergillus fumigatus exposure in

immunocompetent individuals: hypersensitivity pneumonitis (HP), allergic
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bronchopulmonary aspergillosis (ABPA), and allergic asthma. The model used in these
studies shares certain features with these diseases, particularly asthma, though with any
mouse model there will be limitatations due to differences between mice and humans in
terms of genetics, immune reactions, and basic physiology.

The mouse model of disease here has very little in common with hypersensitivty
pneumonitis (also refered to as ‘extrinsic allergic alveolitis’). HP is an inappropriate
inflammatory response against chronic exposure to small particles, particularly organic
dust. However, microorganisms such as Af have also been shown to be a source of
disease (13-15). In terms of both physiological reaction as well as immune reaction, HP
bears little resemblance to our model of disease. Inflammation with HP results in a
thickening of the alveolar wall and ultimately interstitial fibrosis, neither of which are
observed in our model of allergy. Moreover, other features typically associated with HP
are absent as well. While CD4 T cells play a role in our model as well as HP, in HP the
CD4 response is primarily Tyl and there is a low CD4/CD8 ratio (16), whereas our
model shows negligible CD8 T cell involvement.

Allergic bronchopulmonary aspergillosis is a hypersensitivity disease resulting
from colonization of the airway with Aspergillus fumigatus (17). This occurs primarily in
individuals with asthma or cytic fibrosis, most likely due to the elevated levels of mucus
secretion in the lung. Our model shares some traits with ABPA, particularly an influx of
innate cells into the airway as well as increased serum IgE levels. However, there are
some key differences. First, we fail to see fibrosis of the lung, though we have previously
shown arterial remodeling, a characteristic of ABPA (18). Second, repeated conidia
challenge does not result in a colonization of the lung in our mouse model. Silver staining

lung sections twenty-four hours after challenge shows that the few conidia left in the lung

130



are beginning to germinate but have not colonize the lung. However, it is possible that
repeated exposure to germinating conidia could mimic the allergens produced by
colonizing fungi. Unfotunately, ABPA is a condition which requires a previous disease —
in this case asthma — in order to manifest itself. Thus the lack of a hypersensitivity
reponse prior to four challenges suggests the allergic response in C57BL/6 mice is not
ABPA.

Thus, allergic asthma bears the strongest relationship with our mouse model.
Though Af has not been shown to be a cause of asthma, per se, 20-25% of individuals
with asthma are skin-test positive against fungal allergens (19, 20), and previous reports
have linked asthma severity to sensitivity to fungal allergens (21, 22). Asthma itself, a
reversible narrowing of the airways which obstructs airflow, has a number of
immunologic features consistent with what we have shown. There is peribronchial and
peribronchiolar cellular infiltrate, airway eosinophilia, metaplasia and mucus
hypersecretion, and an increase in Ty2 cells and cytokines in both the disease and the
mouse model (23). There are some key differences, however, between our mouse model
and asthma. Most importantly, mice challenged repeatedly with 4f'do not exhibit many of
the physiologic changes that characterize the asthmatic response. Histological
examination does not reveal a narrowing of the airways nor any remodeling. Moreover,
previous studies in the laboratory using this model have shown that mice challenged
multiple times with Af conidia do not exhibit airway resistance using methacoline
challenge, though C57BL/6 mice have been shown to be poor responders during this
assay (24-26). As such, we cannot say that we are modeling asthma, however mice
challenged repeated with conidia develop an allergic airway disease with most of the

immunologic characeristics of asthma. This is important because while asthma is defined
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by physiologic responses, it is ultimately driven by by the host immune system (not
always — sometimes asthma can be triggered by physical stimuli) and an understanding of
the host immune response is central to any treatment. Both asthma and HP can arise from
nearly identical environmental factors (27, 28), highlighting the importance of host
immunity in driving disease as well as skewing the response towards a Tyl or Ty2
reaction.

Several previous models of murine allergic airway disease have been generated
by different groups in an attempt to elucidate immune pathways during pulmonary
allergic reactions. The three primary methods of generating a response are repeated
conidia exposure (29, 30), [P OVA sensitization and subsequent challenge (31, 32), and
Af antigen bound to inert particles (33). The main benefit of our model is that it simulates
the method by which an individual would be chronically exposed to Af, namely though
repeated inhalation of fungal spores (34), albeit with a more strictly regimented timeline.
In addition, the dose used is physiologically relevant, consistent with one found in a
damp, musty environment or even a construction site (35). Thus, as compared to
previously used models of pulmonary sensitization, our model more closely resembles
environmental conditions encountered outside of a laboratory environment.

Our results provide several novel observations that may further aid in the study of
allergic airway disease. First and foremost, we show that IL-17" mice have decreased
eosinophilia during a Ty2-type response, something not seen before with knockout mice
or [L-17-depleting antibodies (36) This new observation is most likely due to the method
of sensitization: unlike previous studies viable conididia was used rather than fungal
antigen, thereby creating a more complex and nuanced immune response. It is also

possible, however, that the use of flow cytometry rather than simple cytospin allowed a
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more nuanced analysis of the cellular population during inflammation. This lack of
eosinophilia was accompanied by a buildup of eosinophils and total leukocytes in the
blood, implying a possible role for IL-17 in extravasation. Moreover, we observed an
initial regulatory response to low levels of inhaled conidia that is consistent with previous
reports (37, 38) as well as observations previously made with our mouse model (39),
suggesting that the regulatory response somehow plays a role in initiating or even driving
the inflammatory response. Similarly, IL-17 plays a role in the hypersensitivity response
by exacerbating the cellular infiltrate following four challenges, conistent with previous
reports (10, 40-42). Finally, we observed a decrease in the Ty2 response following
chronic exposure to conidia that correlates with an increase in the Ty17 response. This
suggests a possible role for Ty17 in regulation of T2, something that has not been
previously demonstrated in the literature. Taken together, our results show or suggest
new roles for several cytokines including IL-17 and IL-10, as well as role for Ty17 and
Tre In initiating — and in the case of Ty17 resolving — the hyeprsensitivity response

during allergic airway disease.

Future Directions

The data presented here opens up a wide range of possible future directions.
Along with a continued examination of trafficking signals during inflammation, many
intriguing lines of inquiry arise from observations made during the hypersensitivity
response to Aspergillus fumigatus. Possible future directions range from hypersensitivity
induction to eosinophil maturation.

The first and most obvious project involves elucidating the mechanism by which

hypersensitivity is induced in the first place. Andrew Shreiner previously demonstrated
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that a lack of IL-10 abrogated eosinophilia (39), and in Chapter 3 we demonstrated that
the early response to conidia involved increased IL-10 production as well as an increase
in the percentage and number of regulatory T cells. This suggests that the regulatory
response has an early role in activating the adaptive immune response somehow. This is
counterintuitive, however, as the hypersensitivity response is characterized by Ty2
cytokines and regulatory T cells have been shown to attenuate Ty2 allergic
hypersensitivity (43). In fact, T,g and the T2 responses are mutually antagonistic, as IL-
4 inhibits induced-T,., formation (44, 45). How then are IL-10 and regulatory T cells
responsible for driving a T2 hypersensitivity response? Given the suppression of IFN-y
seen over the course of exposure, one possible explanation is that suppression of Ty1
creates a sort of vacuum that the Ty2 response moves in to fill. Many of these ideas could
be tested using antibody depletion models or by the addition of specific cytokines during
inflammation. The addition of IL-17 during the early response might accelerate or
exacerbate the inflammation following four challenges. Likewise, addition of IL-17
during the hypersensitivity response may accelerate the rate at which the inflammatory
response is resolved. Similarly, T, depletion prior to sensitization may attenuate
inflammation given the early regulatory response in reaction to a low number of conidia
challenges.

What’s more, we know that IL-4 is produced during the hypersensitivity response,
but we don’t know how strong that expression is relative to other models such as C.
neoformans infection. It has been previously shown that T, dampen the Ty2
inflammatory response but do so by controlling IL-4 and not IL-5, which is controlled by
IFN-y (46). This data concept is supported in our model by microarray data (Fig. A2-5)

where IL-5 is shown to be upregulated in WT mice during hypersensitivity. Thus, there
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are several experiments that could be introduced to try to alter the hypersensitivity
response. The first, and simplest, is to use IL-5"" mice and determine whether a lack of
IL-5 significantly affects inflammation and subsequently use IL-5 depletion. Certainly it
will reduce or abrogate eosinophilia (47, 48), but it is also possible that IL-5 plays a role
in hypersensitivity given its role in chemotaxis (49, 50) and IL-13 production (51).

A similar possibility mentioned in Chapter 4 is that IL-23 plays a role in driving
hypersensitivity since it functions upstream of IL-17 (52, 53). Given its links to other
forms of inflammation, it would be interesting to see if it also played a role in allergy.
Once again, IL-23 depletion or IL-23"" mice would be useful, the latter already available
as p197 mice (11). Also intriguing is the resolution of the hypersensitivity response.
Between four and eight challenges the hypersensitivity response is dampened and
eosinophilia is reduced. While several reports have indicated that IL-17 exacerbates Ty2
inflammation (40, 41), the addition of IL-17 at specific times can attenuate a T2 allergic
response (10, 54). Moreover, our studies show that during chronic exposure to conidia the
number of IL-17-producing CD4 T cells continues to climb, even as the hypersensitivity
response is resolved. Could then IL-17 play a role in regulating Ty2? If so, this could
explain why asthma is frequently ‘outgrown’: the Ty 17 response eventually suppresses
and replaces Ty2. This could be tested by depleting IL-17 once the hypersensitivity
response has been induced, or by adding IL-17 prior to inflammation to try to abrogate
the response.

Interestingly, we found that viable conidia seemed to be more important in
priming of the hypersensitivity response than in actually triggering it. Unintentionally, we
administered conidia with lower viability to two mice to examine four-challenge

hypersensitivity but did this after using normal, fully viable conidia for the first two
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challenges. Under these circumstances mice were still able to generate a robust
hypersensitivity response. However, when one viable challenge was followed by three
semi-viable challenges the response was significantly dampened. This suggests that
multiple challenges of viable conidia are needed to prime the immune system for a
hypersensitivity response, while a small dose is capable of initiating it. Possible future
studies could examine the role of viable versus semi-viable conidia in the allergic
response by alternating exposures and timing.

Also interesting is the timing of hypersensitivity. We have found that cohorts of
mice display variable hypersensitivity over the course of conidia exposure which is most
likely due to the viability of the conidia (55). In a recent exposure regimen we observed
that mice challenged eight times had a similar pattern of expression as those exposed four
times in previous assays, something we had never seen before. This anomaly occurred
when we used a conidia stock that were subsequently shown to have lower viability than
primary stock. Therefore it is entirely possible that the viability of the conidia determines
not only the strength but also the kinetics of the hypersensitivity response. If this were the
case then repeated low doses of an allergen would ultimately result in an allergic
response similar to higher doses, but over a prolonged period of time and with a longer
buildup. The kinetics of this process would be an interesting focus of research, especially
as it pertains to asthma in the general populace. Since non-viable — or simply old —
conidia are presumably responsible for the delayed reaction, one could measure kinetics
of the response by mixing fresh and aged/non-viable conidia together in distinct ratios
and observing the rate at which hypersensitivity is generated.

Looking at eosinophils, there are several signaling pathways to examine in

regards to trafficking. Though our data suggests a decrease in IL-5 due to lack of IL-17
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production, it is possible that other signals are affected. Eosinophil trafficking involves
IL-4, IL-5, and IL-13 (56), and both Eotaxin-1 and -2 play central roles in eosinophil
recruitment (57, 58). Moreover, now that microarrays have been used to survey of the
molecular signal landscape — including leukotriene expression — (Fig. A2-5), a more
thorough analysis using ELISA or western blotting might shed light onto the role of IL-
17 in allergic hypersensitivity. Finally, an examination of eosinophil survival could add a

final piece to the puzzle in elucidating the role of IL-17 in this model.
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Appendix 1
CD4 T Cells Are Not the Sole Contributors of IL-17

Introduction

Based on the central role of CD4 T cells in generating the hypersensitivity
response, we treated — to some extent — CD4 T cells as the primary producers of IL-17.
However, there are several other sources of IL-17. Lymphoid tissue inducer-like cells
have been shown to be innate sources of IL-17 (1) as have yo T cells (2). Moreover,
several myeloid cell lines express [L-23R and are capable of generating IL-17 (3), and
IL-17-producing macrophages have been shown to mediate allergic lung disease (4).

We therefore wished to examine whether CD4 T cells were truly the primary
source of IL-17 or whether other cell types may be playing a role in production. To do
this, we isolated CD4 T cells from the spleen of WT and IL-17"" mice challenged four
times with Af conidia. Cells were enriched using MACS and adoptively transferred into
naive wild-type mice. Twenty-four hours after injection mice containing transferred T
cells were challenged with conidia following the standard protocol, then challenged seven
days later and harvested. Cell numbers were compared between mice receiving WT 4X

CD4 T cells and IL-17"" 4X CD4 T cells.

Aims
1. To determine the source of IL-17 during pulmonary hypersensitivity to Aspergillus

fumigatus conidia.
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Figure A1-1. CD4 T cells for adoptive transfer are > 80% pure. Leukocytes were
isolated from the spleens of WT and IL-17"" mice challenged four times with Af. CD4 T
cells were enriched using the MACS system and then stained for CD3 and CD4 to verify
purity.
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Figure A1-2. CD4 T cells from both WT and IL-17"" elicit a similar early
hypersensitivity response to conidia challenge. Following adoptive transfer of CD4 cells
harvested from WT and IL-17"" mice challenged four times with conidia, naive WT
C57BL/6 mice were challenged twice with Af conidia. Twenty-four hours after final
challenge lungs were enzymatically dispersed, and cells were counted and analyzed by
FLOW cytometry. Mice challenged twice with no adoptive transfer were used as
controls. For two-challenge mice n = 3, for adoptively transferred mice n = 8. Black
columns = WT mice; white columns = IL-17"" 2-challenge mice and WT mice receiving
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IL-17" CD4 T cells and challenged twice.
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Discussion

We wished to see if CD4 T cell production of IL-17 was solely responsible for the
hypersensitivity response seen following four challenges. The data provided here suggest
that while CD4 T cells play a role in producing IL-17, other sources may be involved as
well.

Adoptively transferring CD4 T cells to naive mice accelerated the rate at which
certain cell types began to appear in the lung. In particular, dendritic cells, basophils, and
eosinophils all showed a significant increase when mice were primed with transferred
CD4 T cells. However, there was no significant different seen between mice that had
received T cells from WT mice or IL-17"" mice. This suggests that other IL-17 producing
cells are responsible for the additional cells levels, while the CD4 T cells are merely
accelerating the process.

One potential problem with this assay was the lag time between mouse harvest
and subsequent adoptive transfer. Spleens were collected during the flow of a mouse
harvest, and CD4 T cells were not purified until several hours after that. Following
purification, there was another wait before the cells could be adoptively transferred.
Given the long lag time and relatively short life of a CD4 T cell away from a source of
stimulation, it is possible that greater differences would be seen if the cells had been

enriched and transferred in a more hurried fashion.
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Appendix 2
Protocols and Odds and Ends

Introduction

The following figures contain exposure timelines, gating strategies, and other
random data that did not fit directly into the narrative of this dissertation.

In the case of the microarray data, n values were too low and error bars too high
for me to place the data alongside observations that were much more concrete.
Nonetheless, I find the data supports assertations made in Chapters 3, 4, and 5 and could

serve as a valuable jumping-off point for future studies.
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Intranasal Challenge (2x10¢ Aspergillus
fumigatus conidia) to C57BL/6 Mice

Day 0 7 14 21 28 35 42 49
[ | | | | | | L
Day 13 l 22 [50
Week 2 Harvest ~ Week 4 Harvest Week 8 Harvest
(2 Challenges) (4 Challenges) (8 Challenges)

Figure A2-1. Timeline for pulmonary Af conidia challenge. Naive WT and IL-17"" mice
were challenged weekly with 2 x 10° live Af conidia. Mice were harvest twenty-four
hours after two, four, and eight challenges.
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Figure A2-2. Gating strategy for enzymatically dispersed lung leukocytes. Following
enzymatic digestion, purification, and counting, cells were stained with fluorescently
labeled antibodies and analyzed using FLOW cytometry. All leukocyte populations were
first separated from epithelial cells by CD45 gating. Eosinophils and neutrophils were
identified by CD11c Grl gating: eosinophils are CD11¢™? Gr1™ siglec F+ and
neutrophils are CD11¢"™ Gr1"", Lymphocytes were identified by gating on cells with a
low forward- and side-scatter profile then observing CD4, CDS, or CD19 expression. B
cells (CD19) is not pictured. Non-granulocytic myeloid cells were examined by removing
low forward-scatter cells and neutrophils. The remaining cells fell into four distinct
groups labeled I-IV.
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Figure A2-3. CD4 T cells stimulated with PMA and Ionomycin are activated. Cells were
isolated from a naive, unchallenged mouse. Following stimulation, cells were stained for
CD4, CD44, and CD69. The change in expression indicates that (a) stimulation was
successful and (b) that the activation gating strategy is viable.
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Figure A2-4. Eosinophils start Grl+ CD11c"" but change their surface expression
pattern as they mature. Lung eosinophils were stained with IL-5R, CCR3, CDl1c, and
GRI1. As cells matured from IL-5R™" expression cells to IL-5R'Y they migrated within
the CD11c Grl plot. There was, however, no particular correlation between size and
activation.
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Figure A2-5. Hypersensitivity differentially alters the cytokine make-up of WT and IL-
17" mice. WT and IL-17"" mice challenged zero or four times were harvested and lung
leukocytes isolated. Following RNA isolation and cDNA conversion, samples were run
on a microarray plate containing primers for a battery of transcripts. Black columns =
WT untreated, white columns = IL-17" untreated, dark cross-hatched columns = WT 4x
challenges, light dotted columns = IL-17"" 4x challenge. Stars indicate significant
differences between untreated and 4X challenges; starred bars indicate significant
differences between mouse strains (p < .05). n = 3 for untreated mice, = 5 for 4X
challenge WT mice, and = 4 for IL-17"" 4 X challenge mice.
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