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Abstract

We present an efficient technique to compute waiting time variances
in polling systems that use the exhaustive and gated service
disciplines. The polling systems can have a mix of service
disciplines, wherein some of the nodes can use the exhaustive
service discipline while the other nodes use the gated service
discipline. The technique allows the user to obtain the waiting time
variances at select nodes without having to obtain waiting times
variances at all nodes simultaneously. Once the waiting time
variances have been evaluated for a given configuration, then the IS
technique allows the user to rapidly evaluate several alternate
configurations having different switchover time parameters, with
just a few elementary arithmetic operations.
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1. Introduction

A polling system is a queueing system in which a single server services M nodes. The server
cycles around the system, visiting each node in turn, and attends to the waiting customers using
some prespecified service discipline. Real-world applications which are modeled and analyzed
using polling systems can be found, for example, in computer communication and material
handling systems, and there is a vast body of literature devoted to the analysis of polling systems.
An excellent survey of the research done on polling systems can be found in Takagi [10].

A number of service disciplines have been studied, which determine the service strategy
adopted by the server at a node. Two of the most commonly studied service disciplines are 1) the
exhaustive service discipline, where the server continues to serve all customers at the node until
there are no more customers at the node, ii) the gated service discipline, where the server only
serves those customers present at the node at the instant the node is polled.

A number of techniques that have been developed for computing the mean waiting times in
polling systems that use the exhaustive and gated service disciplines. However, there is very little
work on computing the variances of these waiting times. To our knowledge, there are two papers
by Aminetzah [1] and Ferguson [5] for computing waiting time variances. These algorithms are
based on solving a set of O(M3) equations. As observed in Takagi [10], these equations are quite
complicated and require the use of a symbolic formula manipulation language. No computational
results are presented.

In a recent paper [8], we developed a powerful technique, termed the Individual Station (IS)
technique, to compute mean waiting times for continuous-time polling systems using the
exhaustive and/or gated service disciplines. In this paper, we further develop the IS technique and
present an iterative algorithm to compute the waiting time variances for these systems. Although
the iterative algorithm apparently requires the computation of an infinite sequence of terms, we can
show that the number of iterations it requires is logarithmic in the accuracy required, using
arguments similar to those presented by Levy [7].

The IS technique allows us to analyze systems with mixed service disciplines, wherein some
nodes are served using the exhaustive service discipline while the other nodes are served using the
gated service discipline. The technique also allows the user to determine the waiting time variances
at one or more select nodes without having to obtain the waiting time variances at all the nodes,
simultaneously. Furthermore, once waiting time variances are evaluated for a configuration, then
the user can rapidly evaluate several alternate configurations that have different values for the
switchover time parameters, with just a few elementary arithmetic operations.



The notation involved in the intermediate stages during the development of the algorithm may
seem a little complex. However, the reader will find that very little notation in involved in the final
expressions for the mean and variance of waiting times, and that the resulting algorithm is very
simple and easily implemented. We provide computational results to demonstrate the efficiency of
the algorithm.

2. The Waiting Time Moments

The waiting time at node m is the time spent by an arbitrary customer, waiting for service, and
is denoted by the random variable Wy,. Customers are served according to the first-come-first-
served rule. In this section, we derive expressions for the first and second moments of W,
denoted by E(Wy) and E(W2). This paper is concerned with computing the second
moment/variance of the waiting time. Algorithms for computing the first moment of the waiting
time have already been presented in an earlier paper [8].

We first present the notation. Unless otherwise specified, it is implicit that the index for any
summation is over the range 1 through M. It is also implicit that the index is i) reset to 1 if it
becomes M+1, and ii) reset to M if it drops down to 0. We adopt the convention that an empty
product equals 1.

A single server serves requests from customers at the M nodes. Customers arrive at each node
according to independent Poisson processes with rate Ay, at node m. The service time, By, of a
customer at node m is an independent random variable, with its ith moment denoted by E(BI}‘).

The Laplace Stieltjes Transform (LST) of the service time distribution is denoted by Bm(.). The
busy period, Hy, induced by a single customer at node m has its it moment denoted by E(H}.),

and its LST denoted by Nm(.). The first three moments of Hy, are (Kleinrock [6]):

E(B,) E(B2) E(B3) Am(E(B2))?
EH,) = —, E(H2) = ., EMH3) = + 3 . (3.1
() 1-Ppm () (1-pm)? ) (1-pm)? (1-pm)’

The time taken by the server to switch from node m to node m+1 is an independent random
variable, Sy, with its if" moment denoted by E(S.}). The variance and LST of Sy, are denoted by

Var(Sy), and 6,(.), respectively. The traffic intensity at node m is denoted by pmy = AmE(Bm),
and p = Ym P denotes the server utilization. For the polling system to be stable, we require p to

be less than one. If the polling system is stable, then it can be shown that the cycle time, C, which
is the expected time between two successive visits by the server to a node is the same for all nodes,

and is given by C = Em E(Sm)/(1-p). We are interested in obtaining the waiting time variance,

Var(W,,), at node m, for m=1,...,M. Let E denote the set of nodes that is served using the



exhaustive service discipline, and let G denote the set of nodes that is served using the gated
service discipline.
Let W:;,(s) denote the LST of the waiting time distribution. Let Fy(z, ..., zy) denote the

probability generating function (p.g.f.) for the number of customers at each node at the instant the
server polls node m, and for notational ease, let F,(xm) = Fn(z1,. -, Zm-1, Xms Zm+1,- -, ZM)- For
polling systems that use the exhaustive or gated service discipline, W,’;,(s) is expressed in terms of

Fn(xm) as follows (see, for instance, Takagi [9]):
Cs- Am+ }\-mBm(s)’

1 Fu(B(5)) = Fn(1-5/Am)
C s- Am + AmPBm(s)

Win(s)

me E, (3.2a)

Win(s)

) me G. (3.2b)

Let f denote the i factorial moment of the number of customers present at node m when the

server polls node m. These terms are obtained as:

: 0'Fn(zm)
f) = —a—z:zi’Llpl. (3.3)

From equations (3.2a) and (3.2b), we obtain E(Wp,) = —BW,’;(S)/asIS=0 as (this requires two

applications of L'Hospital's rule)

D AE(B2)
+

E = , E, 34
(W) Dk 21 me G4

f%) 3.4b
EW = 51+ pu), meG. (3.4b)

We obtain E(W2) = 02W  (s)/0sls—g as (this requires three applications of L'Hospital's rule)

AmE(B2) f3) Am(B3)
+ +

EW2) = E(Wn : E, 3.5
(W5 (Wm) (opm 30215 3(pu) me (3.5a)
AmE(B2) f3)
EW2) = E(Wp) + (1+pm+p2), meG. (3.5b)

(14pm)  3A2fn

Therefore, if we can obtain the factorial moments, f(1), f2), and f3), then we can determine
E(Wp), and Var(Wp,) = E(W2) — (E(Wr,))2. However, obtaining these factorial moments is not

straightforward, since the generating function F,(.) is expressed, recursively, in terms of the



generating function Fy,;(.). It is well known (see for instance, Takagi [9]) that the generating
functions are related by the following expressions:

Fni(zis. . zM) = Fnm[Tkem Ae—Akzi)]) Om(Tk Ri-Akzi)), me E, (3.6a)
Frn(zis.-12M) = Fn(Bm[Tk Ae—Aizi)]) om(Sk —Axzy)), me G. (3.6b)

Equations (3.6a) and (3.6b) form the starting point for the IS technique, which obtains an
expression for Fy(.) solely in terms of functions of input parameters. We can now differentiate
the resulting expression for Fp,(.) three times to obtain the three factorial moments, and then use
equations (3.4a) through (3.5b) to obtain the first and second moments of the waiting times.

The technique we develop below computes E(W,) and E(Wzl). The first and second moments

of the waiting times at the other nodes are obtained in an identical manner. We first define a
recursive (nested) function, Yn,(j), as follows:

Ym(o) = Zm, m=1 yeee 7M, (373.)
YmG) = M Y adcnG-D1 + Y, achere®]), >0, me E, (3.7b)
k<m k>m
Vi) = Bu( Y DidcnG-D1 + Y [vhcw@]),  j>0, me G. (3.7¢)
k<m kK>m
Let
om® = Om( X [t + Y [MenG+D1), 20, m=1,., M. (3.8)

k<m k>m
Wé can now rewrite both equations (3.6a) and (3.6b) in the following general form:
Fi(110),....-;m(@) = Em(11(0),..., M- (0),ym(1)) om(0).

Recursively expressing Fy(.) in terms of Fyp_(.), and Fy,(.) in terms of Fy_,(.), and so on, we
obtain:

F(11(0),... ;M) =  Fy(na(1),....ym(D) ] om(0).
m

We now continue to recursively express F;(¥1()s...,ym(j)) in terms of F,(y(+1),.. m(+1)), for
j 21, and this results in the following expression for F,(y;(0),.. . ym(0)):

n-1
F.(11(0),...3M(0) = F,(1a(@),...;um) [ ] (H omo)). (3.9)
j=0 m



It can be shown (refer Cooper [2], and Eisenberg [4], for example), that limp—;e0Y1(n) = 1. Hence,
letting n — e in equation (3.9), we obtain:

F(n©),...m0) = ][] (H omo')). (3.10)
=0 \m
We now have an equation for F,(.) that is expressed only in terms of (complex) functions of
the O(j) values. Letz =(z, ..., zm), and 1 = (1,...,1). Differentiating equation (3.10) once,
twice, and thrice with respect to z;, and setting z = 1, we obtain the following expressions for the
factorial moments of Fy(.):

0z,

£ = Z 2 a"“‘(’) lo=1, (3.11a)
2
@ = £2 4 2 ¥ (a On() (a"é“z(lj)) JI o and (3.11b)
j=0 m

0 m
In the above equations, for the sake of clarity, we let f; denote the factorial moment, (1), and will

continue to do so henceforth. Equations (3.11a) through (3.11c) hold regardless of whether node
1 is served according to the exhaustive service discipline, or the gated service discipline.

4. Expressions for the Factorial Moments of Fp(zy)

From equation (3.8), we note that the derivatives in equations (3.11a) through (3.11c) can be
obtained in terms of d¥y,/dzyi, fori =1, ..., 3. Thus, if we define

viG = ?»mag;“(f)lz_b and (4.1)
XA = [ X v@G+ X w1, j=0, (4.2)
k<m k>m

then the derivatives in equations (3.11a) through (3.11c) are expressed, for j > 0, as:

acs,;l(i) l=1 = E@Sm) XVG), 9280:2(1') b1 = E(Sm) XQG) + EGS2) (XQG)2,  (43a)
& a<szm(1)| = EGR(XR0) +3ES) XQ0) XRG) +ESm) XRG). (4.3b)



Note that equations (4.3a) and (4.3b) are valid for bothm € E, and m € G. We can obtain a
recursive expression for yi)(j), i = 1, 2, 3, for j > 0, by differentiating equations (3.7b) and (3.7¢)

with respect to z; the appropriate number of times, and setting z equal to 1. The expressions for
these terms will depend on whetherme E, orm € G.

We will first obtain the recursive expressions forme E. Let

YOG = [ Y wi+ X vRi+D] = XQG)-vdG, 20 (4.4)

k<m k>m

Analogous to equations (4.3a) and (4.3b) for the derivatives of Om(j) evaluated at z = 1,
recursive expressions for y{)(j), m € E, and j > 0, are obtained as

VG = AmEHm) YOG-1), ¥ = An(EHYR(G-1) + BH2) (YOG-D)?), (4.52)

WG = Am(EM3) (YOG-1))3 +3 B(H2) YOG-1) YR(-1) + E(Hp) YG-1)). (4.5b)

Form e G, and j > 0, the corresponding expressions for yi)(j) are:

YOG = AEBm XBG-1),  v2() = An(EBnXR(-1) + EB2) (XVG-1)?), (4.62)

y3)G) = M(E(B?n) (XW(G-1))3 +3 E(B2) XD(G-1) X@(j-1) + E(Bm) X<,3,,)(i—1))- (4.6b)
Let
E(B2
8, = —Lm A, = DB and Oy = AmEB) @4.7)
1-pm 1+pm p2

We first account for all the unknowns, y3)(j), j > 0, using the following observation.

Observation 1: a) The term W(D(0) = kk-a-zz—k l,-1 = A, when k=1, it is equal to zero otherwise.
1
b) The term y{)(0) = 0,1 > 0, for all k. (Refer to equation 4.1.) |

Based on Observation 1, we obtain (Srinivasan [8]):

Y wdG = A 1—“91, le E, Y ) w) = ;‘—1, le G, and  (4.82)
m j=0 1-p m =0 1-p

o0 00 00 (1) )2
ST van - Y vao = Tond YRX (@.8)
m j=0 m j=I T



We obtain an expression for Zm 2;:1 v G)(j) using an approach similar to the approach

used to obtain the above equations, namely, (4.8a) and (4.8b). First, note that for m € E, from
equations (4.4) and (4.5a), YD(i-1) = yD()/AmE(Hm). We can use equations (3.1) and (4.7) to

rewrite this as

(3
YG-1) = ng, meE, j>0. (4.9)

Again, from equations (4.4) and (4.52), formeE, andj>0,

2)(3) — AE(H2) Y2(- 2(; E(H2
Yoy - YO MZ( DYRED uﬂ;o) h (alw 0 4

Hence, substituting these values in equation (4.5b), and expressing E(H2) and E(H_}) using

equation (3.1), we arrive at the following intermediate result after some elementary algebra:

_ DG) wAG) + 8 YO(-1). (4.11)
P2 (1-Pm) l—pm l—p Y VR md”

. .a [ MmE(B3) 02 13
Va0 = (w;zw[ w300,
From Observation 1, y3)(0) = 0, for all m, and hence, 2;1 YO)(-1) = ijl Zk;&m vG)
Therefore, if we add 8, YG)(j) to both sides of equation (4.11), and sum both sides of the
equation over j=1,...,%0, we obtain:

(=)

Y wOG) (1+3y)

1

< (w)i))? (AE(B3 <
_ z(wlmpo )) (Mpg "‘)—mrﬁ] e 2 VROVRO + & Z‘Z VRO
F1o 1-Pm m

m J- J_

We now sum both sides of the above equation over all m, and collect terms, to get (note that

(148m) = 1/(1-pm)):

g AnE(B3 1‘}2
TY wag =3 =2 “;) Y (ymg)R + 32 2 YOO wG). (4.12)
m j=1 m (l_p)pm 1-p P Ji=1 P

Following an identical approach, we can show that equation (4.12) holds even for me G.

From equations (3.11a), (4.2), and (4.3a), noting that \V< )(0) =0 for k > 1 we get:



2 E(Sm) Z [ Y vd@+ D yPG+n] = Z E(Sm) 2 2 v QG).

=0 k<m k>m

Therefore, from equation (4.8a), fj is obtained as:
fi = A (1-p1) C, leE, fi = M,C l1eG. (4.13)

In a similar manner, from equations (3.11b), (4.2), (4.3a), and (4.8b), we get:

@ = f2+CY On Z (yOGR + 2 Var(sm)Z (X D)2 (4.14)

m _]‘

From equations (3.11c), (4.2), (4.3b), and (4.12), the expression for t‘?) is obtained as:

) = 360263+ ): T(Sm) _2 (X Q) + 2 Var(Sm) Z X Q0 XQ0)

B3
Z[M( )—319212(\|f<1>(1>)3+30219 Z\v‘”0>\v<2’<l> (*.13)

Pm m =1

where T(S,) denotes the third central moment of the random variable Sy,. (Note that Var(Sp) is
the second central moment of Sp,.) Equations (4.14) and (4.15) are valid regardless of whether
node 1 is served using the exhaustive service discipline or using the gated service discipline.

Once we compute the three factorial moments, the mean waiting time and the second moment
of the waiting time at node 1 can be obtained using equations (3.4) and (3.5). While the first
factorial moment is directly computed, computing f?) and f$) apparently require the computation
of infinite sums. However, we can show, using arguments similar to those presented by Levy [7],
that the number of iterations required to compute these moments is logarithmic in the accuracy
required. Let pmin = ming(pm). Then the overall complexity of the algorithm to determine the
variance of the waiting time at one station can be shown to be O(M log,€), where € is the accuracy
required, and 1 = [(p — Pmin)/(1 — Pmin)]2 In section 5, we present the algorithm to compute the
three factorial moments, and thereby the variance of the waiting time. In section 6, we present a
number of computational results, and report on the execution time of the algorithm. In section 6,
we also present a closed form expression for £ and f@), for the special case of a pure exhaustive

service system with two nodes.



5. The Algorithm

In order to compute the factorial moments using equations (4.13) through (4.15), we must
evaluate the terms W)(), y2(), X)), and XB)(G), m =1, ..., M, iteratively, starting at j = 0.
It is convenient, at this stage, to define the terms, x(j) and X2, as follows:

. vR0) A 3Ym(i) . v2G)
m = = — ) d (2) = B 5.1
Xm() A, A, dz, an X200 ¥ (5.1)

Instead of computing W{1)(j) and y2Xj), we compute Ym(j) and x2)(j), starting with x1(0) = I,
Xm(0) = 0 for m = 1, and x@(j) = 0 for all m. From equations (4.1) through (4.6) we get:

@ = 8l X xG-D+ Y %l 1, me E, j>0, (5.2a)
k<m k>m

@ = pml X axG-D+ X k@) 1, me G, j>0. (5.2b)
k<m k>m

From equations (4.1) through (4.6), we also get

10D =8l D, 1P + Y, x QG+ + g“lx,%m], me E, j>0. (5.3a)
k<m k>m m

120 =pm[ Y, xDG-D+ >, xPG) + l(}‘nlx,%(i)], me G, j>0. (5.3b)
k<m k>m Pm

Equations (5.2) and (5.3) suggest that the computational effort to obtain ¥y, (j) and x%)(j) for a

given j requires O(M) operations. However, we can express these terms as functions of
neighboring terms with O(1) arithmetic operations, independent of M. The computational formula
we derive will, however, depend on the service discipline used for node m+1. We derive the
computational formula for ¥,(j), when m € E and m+1 € G. The expressions for the other cases
are obtained in a similar manner. We consider a node m # M. From equation (5.2a) applied at m
and equation (5.2b) applied at m+1, we obtain the following relationship between Xm(j) and
Ym+1() whenm e E and m+1 € G:

Sl X, xxG-D+ Y, %k + Xme1G) = XmG-1) = Xme1G-1)]

k<m+1 k>m+1

Xm(0)

Om [ Xm+1G)/Pm+1 + Xm+1G) — XmG-1) — Xm+1G-1)].

Om [Xm+1(i)/Am+1 - Xm(-1) - Xm+l(i—1)]-



The expressions for all the possible combinations are obtained in a similar manner, and presented
below as equations (5.5a) through (5.9). We use the convention Xm+1(k) = x1(k-1) if m =M.
Similarly, @) (k) = x@(k-1) if m = M. There is one special case to be considered; the case

m+1

where m =M, and j = 1. For this special case, we have:

)
() = du, xR = SMBMWD, Me E; (5.52)
M
2 O, ,
xm(1) = pm, xF) = PMp— x4, MeG. (5.5b)
M
In general, we have the following expressions. Let:
Xani® 9 L@ o 9
- m+1 Um+1 Um Um+1 . Um .
Ann() ot P m+1(J) x2(1) and Bnu() = At oot — 2,0+ . x20)-
Casei) meE,m+leE:
: —_— Xm+1(j) . (2) . - . (2) .
Xm@) = Om [ —xmG-D], 213G = dml[Ama() -XxQG-DI, (5.6)

Pm+1

Caseil) meE,m+leG:

Xm@ = Sm[xg‘—:f—)—xm(j—l)—xmn(j-l)], x2G) 8 [Bms1 () - xPG-1)-%2,G-D],  (5.7)

Caseiil) meG,m+leE:

Xni) = pm (21 ;‘“‘”] X2G0) = plAna()l, (58)
m+1
Caseiv) me G, m+le G:
Xm() = pm['xAﬂlgl‘Xm+l(]"‘1)]’ X(,%l)(]) = Pm[Bm+l(j) —X;ﬁ?&(i‘l)]. (5.9)
m+1

Once we compute Xp((+1) and ¥P(j+1), we quickly compute X(1)(j), and XZ)(j) as follows.
From equations (4.4), (4.9) and (5.1),

XOG) = Mxa@ +YDO = A [ +"m§‘m Ant1) meE, (5100
@DG+1
X2 = 12700+ YO) =12 [xQ0)+ 280 mynGi] meE. (5100

10



Similarly, from equations (4.2), (4.6a), and (5.1), we obtain

XWG) = 3, MGt meG,  (5.lla)
Pm
D(+1

XA = M [M——) - i}mx,%l(iﬂ)], me G. (5.11b)

The number of arithmetic operations required to compute these terms is thus independent of the
number of nodes in the system. Hence, for a given j, computing these terms for all m requires
O(M) operations. Let

Om = 2, %.20), Om = Y, 120), Om = Y, Xm()XD0), (5.12a)
il i1 i1
= (XWG) = (XDG) = (XDG)VXD(j)
m = e am = ’ Km = T (5'12b)
=[5 IS R o Gy
3
m = M. (5.13)
p3

The expressions for f‘%) and ) are now rewritten as:

£

£2 422 ((“:2 Om Om + Y, Var(Sp) gm} (5.14a)
m m

€9 = 3660263+ 23 Y (T(Sm) G+ 3Var(Sm) K+ € (T~ 302)8 + 30mhm) ). (5.14)
m

The iterative algorithm to compute the waiting time variances is given below as Algorithm 1.

Algorithm 1.

0. Initialize values: Set a)j=0, b)x1(G)=1,and ym()=0,m=2,..., M, c) x@) = 0, for
allm,and d) @ =06y =0y =&, = 0y, = Kk, =0 for all m. Choose a tolerance value €.

1. Setj=j+1, and for each m, a) compute Xm(j) and %)) using equations (5.5) through (5.10),
b) compute X))(j) and X@(j) using equations (5.10a) through (5.11b).

2. Update the values of @, 01, Om, Em, O, and K, form=1, ..., M, using equations (5.12a)
and (5.12b).

11



3. If xm(j) <&, for all m, go to step 4. Otherwise, go to step 1.

4. Compute @ and f3) using equations (5.14a) and (5.14b), and compute E(W;) and E(W?)
using equations (3.4a) through (3.5b). Obtain Var(W,) = E(W?2) — (E(W1))2.

Algorithm 1 is executed for each node whose waiting time variance is desired. Each time, a
new set of terms, Qm, Om, Om, Em, Am, and Ky, need to be computed, for m =1, ..., M. One
way to compute these terms would be to renumber the nodes. Therefore, if performance measures
are required for, say, node 2, then we can consider renumbering nodes so that node 2 is now node
1, node 3 is now node 2, and so on. However, note that in order to compute @, Om, Om, Em,
Olm, and Xy, the only data parameters involved are pp, Om, Om and Ay,. We use a temporary array
variable, say Pm, to store the permuted py, values for every other node whose performance
measures are desired. We use an offset to index the nodes and assign the appropriate pp, values to
the array P, m=1,...,M. We use the same offset to recompute new dp, 9y, and Ap, values and
proceed with Algorithm 1.

The Special Cases of Pure Exhaustive and Pure Gated Systems

If all the nodes are served using the same service discipline, then we can reduce the
computational effort almost by half. For the pure exhaustive service system, the terms X(1)(j) and

X()(j) are obtained from equations (5.6), (5.10a), and (5.10b) as:

j ) (j+1
X(IL)(J) =M X@.”M’ X(rzn)(]) - )\% Xm+10 )_ Om+t

Pm+1 Pm+1 Pm+1

xmil(jﬂ)] me E. (5.15)

Note that these terms are expressed solely as functions of Xm+1(+1) and x (2G+1).

Corresponding expressions for &, Oy, and K, are easily seen to be:

Emn = Qm/Prlips Om = Oma1/Poys meE, m#M, (5.16a)
Ev = oupi+ 1, am = 01/p3 +1, me E, (5.16b)
Km = (Om+1 — Ome1 Ome1)/p 2, me E. (5.16c¢)

Therefore, if we let
Tm = COp + Var(Sm_l)/p%, (5.17)

then the equations for t(%) and f(?) for the pure exhaustive service system can be written as:

12



f?)

2402 O Ty + A2 Var(Sy), me E, (5.182)
m

3

36, f@ 283 A3 {05, [ (‘:nm+T(—s‘;—1—) =30mTm] +30n Tn} +A3 T(Sm), m € E.(5.18b)
m Pm
Unlike the case of the pure exhaustive service system, for the pure gated service system X(1)(j)
and X@)(j) are expressed in terms of the parameters for node m only. The expressions for &, oty

and x,, in this case are:

En = Qm/p2, Om = Om/p3, Km = (Om—Om On)/p2, meG, (5.19)
and so, setting
Tm = COm+ Var(Sw)/p2, (5.20)

the equations for f) and %) are:

2 = 2+A23 o Tn me G, (5.21a)
m

3

3f1f<§>-21f‘i+x§z{em[énm+1(s3—m)—3ﬁmrm']+3mmrm'}, meG.  (521b)

m pm

Thus, for either the pure exhaustive service system or the pure gated service system, we only
evaluate Qm, 6y and ©y,. This reduces the number of computations almost by half, compared to
that needed for a system with a mix of the two service disciplines.

6. Computational Experience

We conducted a number of experiments to determine the efficiency and speed of convergence
of the algorithm, for various stopping tolerances, . (Recall that the algorithm terminates when the
largest value of m(j), for a given j, is less than or equal to €.) We found that a stopping tolerance
of 0.0001 gave very accurate results, with the mean waiting times and variances matching the exact
values up to about seven decimal places for the examples we report on below. (We did not check
for numerical accuracy beyond seven decimal places.) We first present several examples, to give
the reader a feel for actual numerical values. The program to run the experiments was coded in
Pascal. The experiments were conducted on an IBM 9021-720 running the MTS operating system.
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Example 1. The number of nodes = 5, with arrival rates 0.7, 0.8, 1.2, 0.1, and 0.2. The
service times for the 5 nodes are uniformly distributed over the following ranges: [0, 0.8], [0, 1],
[0, 0.2], [0.5, 1.5], and [0.2, 0.6]. The switchover times are exponentially distributed with
means 0.5, 0.5, 0.4, 1.0, and 1.2. The utilizations at the five nodes are 0.28, 0.40, 0.12, 0.10,
and 0.08 respectively, and p = 0.98. The mean waiting times and the waiting time variances are
presented below for the following cases: i) the pure exhaustive service system, ii) the pure gated
service system, iii) a system with a mix of service disciplines, where nodes 2, and 5 use the gated
service discipline, while nodes 1, 3 and 4 use the exhaustive service discipline.

Note that the uniform distribution with range [a,b] has 27d and 34 moments (b3 - a3)/3(b-a), and
(b* - a%)/4(b-a), respectively. The exponential distribution with parameter p has third moment
6/u3 and third central moment 2/u3.

i) The Pure Exhaustive Service System: The mean waiting times are E(W1) = 46.9850, E(W») =
39.0331, E(W3) = 57.3817, E(W4) = 58.6123, and E(Ws) = 59.9624. The waiting time
variances are Var(W;) = 1,640.6459, Var(W,) = 1,118.7125, Var(W3) = 2,458.9258,
Var(Wy) = 2,556.9872, Var(Ws) = 2,683.2556. The algorithm took 208 iterations to
converge, and required 93.03 millseconds of CPU time.

i) The Pure Gated Service System: The mean waiting times are E(W;) = 72.2632, E(W3) =
79.0607, E(W3) = 63.2353, E(W4) = 62.1746, and E(Ws) = 60.9668. The waiting time
variances are Var(W;) = 1,728.0505, Var(W,) = 1,741.9405, Var(W3) = 1,800.3384,
Var(W4) = 1,829.5007, Var(Ws) = 1,835.4479. The algorithm took 352 iterations to
converge, and required 157.97 millseconds of CPU time.

iii) The Mixed Service System: The mean waiting times are E(W;) = 42.2697, E(W,) = 82.1887,
E(W3) = 51.7842, E(W,) = 52.8793, and E(Ws) = 63.4502. The waiting time variances are
Var(W;) = 1,142.2205, Var(W,) = 2,100.5381, Var(W3) = 1,731.4286, Var(Wy) =
1,796.6408, Var(Ws) = 2,143.8311. The algorithm took 299 iterations to converge, and
required 192.66 millseconds of CPU time.

Example 2. The number of nodes = 5. The arrival rates are 0.20, 0.10, 0.16, 0.04, and 0.04.
The service times at the nodes are uniformly distributed over the following ranges: [0, 6], (0, 4],
[0, 1], [1, 2], and [0, 2]. The switchover times are exponentially distributed with means 1.0, 1.0,
0.8, 2.0, and 2.0. The utilizations at the five nodes are 0.60, 0.20, 0.08, 0.06, and 0.04
respectively and, as in the previous example, p = 0.98. The mean waiting times and the waiting

time variances are presented below for: i) the pure exhaustive service system, ii) the pure gated
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service system, iii) a system with a mix of service disciplines, where nodes 2, and 5 use the gated
service discipline, while nodes 1, 3 and 4 use the exhaustive service discipline.

i) The Pure Exhaustive Service System: The mean waiting times are E(W;) = 122.1462, E(W»)
= 245.0320, E(W3) = 282.8141, E(W4) = 289.7239, and E(Ws) = 296.4669. The waiting
time variances are Var(Wi;) = 13,245.9090, Var(W;) = 56,148.0645, Var(W3) =
75,071.5516, Var(W4) = 78,832.1916, Var(Ws) = 82,618.0849. The algorithm took 176
iterations to converge, and required 78.49 millseconds of CPU time.

i) The Pure Gated Service System: The mean waiting times are E(W;) = 361.2300, E(W,) =
270.6877, E(W3) = 243.5746, E(W4) = 239.2250, and E(Ws) = 234.7594. The waiting time
variances are Var(W;) = 36,125.1632, Var(W,) = 31,690.2523, Var(W3) = 32,496.2060,
Var(Wy4) = 32,824.0134, Var(Ws) = 33,115.3918. The algorithm took 403 iterations to
converge, and required 179.99 millseconds of CPU time.

iii) The Mixed Service System: The mean waiting times are E(W;) = 115.3107, E(W3) =
345.9230, E(W3) = 267.3364, E(W4) = 273.8346, and E(Ws) = 302.9340. The waiting time
variances are Var(W;) = 11,145.7619, Var(W,) = 75,274.2534, Var(W3) = 63,820.7406,
Var(Wy4) = 67,018.8124, Var(Ws) = 75,651.9396. The algorithm took 201 iterations to
converge, and required 121.91 millseconds of CPU time.

Example 3. The number of nodes = 10, with arrival rate equal to 0.8 at node 1, and equal to 0.1
at all the other nodes. The service times are exponentially distributed with means 0.5, 0.5, 0.4,
1.0, 0.4, 0.5, 0.5, 0.4, 1.0, and 0.4. The switchover times are uniformly distributed over the
following ranges: [0, 1], [0, 1], [0, 0.8], [0.5, 1.5], [0, 0.8], [0, 1], [0, 1], [0, 0.8], [0.5, 1.5],
and [0, 0.8].  The utilizations at the ten nodes are 0.40, 0.05, 0.04, 0.10, 0.04, 0.05, 0.05,
0.04, 0.10, and 0.04, respectively, and p = 0.91. The mean waiting times and the waiting time
variances are presented below for: i) the pure exhaustive service system, ii) the pure gated
service system, iii) a system with a mix of service disciplines, where nodes 1 through 5 use the
gated service discipline, while nodes 6 through 10 use the exhaustive service discipline.

i) The Pure Exhaustive Service System: The mean waiting times are E(W;) = 23.2652, E(W,) =
36.8740, E(W3) = 37.3111, E(W4) = 34.8626, and E(Ws) = 37.2287, E(Ws) = 36.8793,
E(W7) = 36.9212, E(W3) = 37.3629, E(Wy) = 34.9234, and E(W;0) = 37.2999. The waiting
time variances are Var(W1) = 313.1774, Var(W,) = 825.2952, Var(W3) = 847.6837, Var(Wy)
= 729.0181, Var(Ws) = 840.5882, Var(Ws) = 825.7207, Var(W) = 829.3474, Var(Ws) =
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852.1895, Var(Wq) = 734.0381, Var(Wyo) = 846.8985. The algorithm took 50 iterations to
converge, and required 90.73 millseconds of CPU time.

ii) The Pure Gated Service System: The mean waiting times are E(W1) = 50.4670, E(W») =
37.9978, E(W3) = 37.6446, E(W4) = 39.8357, and E(Ws) = 37.5621, E(Ws) = 37.9356,
E(W7) = 37.9392, E(Wg) = 37.5820, E(Wy) = 39.7653, and E(W1o) = 37.4834. The waiting
time variances are Var(W;) = 548.3302, Var(W5) = 658.8032, Var(W3) = 664.4823, Var(Ws)
= 640.3986, Var(Ws) = 658.1578, Var(We) = 654.1311, Var(W7) = 654.4568, Var(Wg) =
659.7992, Var(Wg) = 635.3322, Var(Wyg) = 652.2293. The algorithm took 75 iterations to
converge, and required 135.62 millseconds of CPU time.

iii) The Mixed Service System: The mean waiting times are E(W;) = 50.6987, E(W,) = 38.1981,
E(W3) = 37.8473, E(W,) = 40.0546, and E(Ws) = 37.7763, E(We) = 34.5286, E(W7) =
34.5329, E(Wg) = 34.9119, E(Wq) = 32.5897, and E(W}o) = 34.7659. The waiting time
variances are Var(W1) = 565.0151, Var(W,) = 674.7923, Var(W3) = 680.7920, Var(Wy) =
657.3561, Var(Ws) = 675.3881, Var(Wg) = 629.7939, Var(W7) = 630.2239, Var(Wsg) =
645.5318, Var(Wg) = 550.7752, Var(W1q) = 634.0304. The algorithm took 73 iterations to
converge, and required 187.40 millseconds of CPU time.

The IS technique we have developed is based on non-zero switchover times. However, the
technique can be used to obtain the mean and variance of the waiting time at a node for systems in
which the switchover times are arbitrarily close to zero as we show in example 4 below. The data
in example 4 is the same as in example 3, except that the mean switchover times are very close to

zero, and the variances are set equal to zero.

Computational Remark:! Note that the terms @, O, O, € m» O, and K, depend only on
the arrival rates and the service time parameters. These terms are independent of the switchover
time parameters. Hence, once these terms are computed for a given set of arrival rate and service
time parameters, we can obtain the mean and variance of waiting time distributions at the various
nodes, for different switchover time parameters, through just a few arithmetic operations. [

Example 4. The data parameters are exactly as in example 3, except that the mean switchover
time at each node are all equal to 0.000001, and the variance of the switchover time is equal to 0.
The mean waiting times and the waiting time variances are presented below for: i) the pure
exhaustive service system, ii) the pure gated service system, iii) a system with a mix of service

1 The author thanks Professor Robert Cooper for a very fruitful discussion on this feature of the IS Technique.
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disciplines, where nodes 1 through 5 use the gated service discipline, while nodes 6 through 10
use the exhaustive service discipline.

i) The Pure Exhaustive Service System: The mean waiting times are E(W1) = 4.5488, E(W») =
7.2406, E(W3) = 7.3670, E(W4) = 6.7888, and E(Ws) = 7.2846, E(W¢) = 7.2473, E(W7) =
7.2904, E(W3g) = 7.4216, E(Wy) = 6.8530, and E(W1g) = 7.3598. The waiting time variances
are Var(Wp) = 37.6933, Var(W,) = 102.7229, Var(W3) = 106.2822, Var(W4) = 89.3060,
Var(Ws) = 104.1149, Var(Wg) = 102.8147, Var(W7) = 103.9472, Var(Wg) = 107.6527,
Var(Wo) = 90.8709, Var(W o) = 106.1094.

i) The Pure Gated Service System: The mean waiting times are E(W1) = 6.8397, E(W3) =
5.2727, E(W3) = 5.2319, E(W4) = 5.5535, and E(Ws) = 5.1496, E(Wg) = 5.2119, E(W7) =
5.2164, E(Wg) = 5.1717, E(Wy) = 5.4857, and E(W1p) = 5.0740. The waiting time variances
are Var(W;) = 63.3489, Var(W;) = 49.2457, Var(W3) = 49.0801, Var(W,4) = 52.0203,
Var(Ws) = 47.7020, Var(Wg) = 48.2603, Var(W7) = 48.3642, Var(W3g) = 48.1301, Var(Wy)
= 50.9621, Var(W1g) = 46.4690.

iii) The Mixed Service System: The mean waiting times are E(W;) = 7.0694, E(W,) = 5.4712,
E(W3) = 5.4329, E(W,) = 5.7706, and E(W5) = 5.3621, E(W¢) = 4.9190, E(W7) = 4.9242,
E(Wg) = 4.9927, E(Wg) = 4.5401, and E(W;) = 4.8476. The waiting time variances are
Var(W;) = 68.0742, Var(W,) = 53.3218, Var(W3) = 53.2248, Var(W,) = 56.4554, Var(W5s)
= 52.0771, Var(Ws) = 46.0762, Var(W7) = 46.2455, Var(Wg) = 47.6637, Var(Wy) =
38.5235, Var(Wy) = 44.8867.

A few remarks are made based on the experiments. It may be observed that in all the
examples, the mean waiting times in the pure gated service system are higher at the nodes with
higher utilizations. For the pure exhaustive service system, however, the reverse holds: the mean
waiting times are higher at nodes with lower utilizations. (For the exhaustive service system, the
same pattern of behavior appears to hold even for the waiting time variances.)

It is observed that the waiting time variances at the nodes for the pure gated service system are
somewhat close to one another; we observed this behavior in all the experiments conducted. (In
fact, the closeness is even more pronounced if we compare the standard deviations of the waiting
time distributions, instead of the variances.) It may also be observed that for the mixed service
systems, the waiting time variances at the nodes served using the gated service discipline are fairly
close to one another. This suggests that while the gated service system results in higher mean
waiting times compared to the exhaustive service system, the waiting time variances are "smoothed
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out." This is a positive factor which has to be given due consideration in the design and operation
of a polling system.

The relative closeness of the waiting time variances certainly does not appear to hold for the
pure exhaustive service system. On the other hand, interestingly enough, we observe that the
standard deviation of the waiting time distribution tracks the mean of the distribution somewhat
closely, in the case of the pure exhaustive service system. Also, as remarked upon earlier, for pure
exhaustive service systems the standard deviation (at a node) is high relative to that at other nodes,
when the corresponding mean waiting time is high.

Computational Efficiency

In general, the computational results suggest that the algorithm requires roughly the same
number of iterations for a given value of p, for any number of nodes. A primary advantage of the
IS technique is that the user can obtain the waiting time variance at select nodes without having to
evaluate waiting time variances at all nodes simultaneously.

It would be of interest to compare the relative efficiency of the IS technique with the algorithm
of Ferguson [5]. We note that the algorithm of Ferguson involves the solution of O(M3) equations
(and, thereby, requires O(M?) operations). Since the IS technique is an iterative technique, it is
therefore difficult to make any immediate conclusions about the relative efficiency of either
algorithm. Also, since there are no computational results reported in the paper by Ferguson, we
are unable to make any comparisons on execution times. However, we can indirectly estimate the
efficiency of the IS technique as follows.

First, we observe, based on the expressions for f(f) and f(%), that the IS technique for

computing waiting time variances requires about three times the computational effort required to
just compute mean waiting times using the same approach. In an earlier paper (Srinivasan [8]), we
had published extensive results on the computational effort required to obtain the mean waiting
times. The numerical comparisons indicated that for p values of about 0.90 or less, the iterative
algorithm to compute mean waiting times compared very favorably with an O(M?) algorithm, even
when the iterative algorithm was used to obtain mean waiting times at all the nodes. It is,
therefore, not unreasonable to conclude that if the IS technique is used to compute waiting time
variances at all the nodes, it would still compare very favorably with any algorithm involving
O(M3) computations, at least for p values of about 0.90 or less. Note, in addition, that the IS
technique has a major advantage in that one can compute waiting time variances at select nodes,
without having to compute all the waiting time variances at all nodes simultaneously.
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The special case of the system with two nodes

In this case, we can obtain the waiting time variances at the nodes in closed form, for the case
of the pure exhaustive service system. It is also possible to obtain the waiting time variances for
either the pure gated service system or the mixed service system with two nodes, without having to
perform any iterations at all. However, the expression for the waiting time variances in these latter
cases is a little more complicated, and involves the solution of a system of upto three equations; we
do not present these cases here. Define

' = 88, and lm = é’“—m. (6.1)

Pm

For the pure exhaustive service system with two nodes, the terms 1(j) and (2(j) are obtained
very simply as:

viG) = T, i) = =, i2 1. (6.2)

The terms x2)(j) and x3)(j) are obtained, for j > 1, as:

1@ = Ty@G-1+(0) (mgz} @) = T3P 1>+(‘;)) (F 52-} 6.3)
1

The terms @, Om, and Oy, m = 1, 2, are thus evaluated in closed form:

2 2
= — = — (643.)
M T
r r3
9 = — 9, = —— (6.4b)
R TR
) ) r
o = §1+Cg 1 8, - Wy = C_l_l_J’C_ZZ_ez Sy YAST (6.4¢)
1-T (-

Substituting these values in equations (5.18a) and (5.18b), we obtain ) and ). The first and

second moments of the waiting time at node 1 are then obtained from equations (3.4a) and (3.5a).
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7. Summary and Conclusions

We have obtained the waiting time variances in a continuous-time polling system using a
powerful technique, which we term the Individual Station (IS) technique. The polling system can
adopt either the pure exhaustive service discipline, the pure gated service discipline, or a system
with a mix of both disciplines.

The IS technique allows the user to obtain the waiting time variances at one or more select
nodes in the polling system. Furthermore, the IS technique has the following additional
advantage. The resulting expression for the second moment (or the mean) of the waiting time at a
node is composed of two parts, one of which is independent of the switchover time parameters.
Therefore, once the means and second moments of the waiting times have been obtained for a
given set of service time and switchover time parameters, the user can compute means and second
moments of the waiting times for many alternate configurations involving different switchover time
parameters, with just a few elementary arithmetic operations.

The IS technique for computing waiting time variances requires about three times the
computational effort required to obtain the mean waiting times using the same iterative algorithm.
In a previous paper we had shown, empirically, that the IS technique using the iterative algorithm
computes the mean waiting times at all the nodes in a time comparable to an O(M3) algorithm, as
long as p is about 0.90 or less. Therefore, this suggests that the performance of the iterative
algorithm for computing waiting time variances at all nodes would also be comparable to an oM3)
algorithm, as long as p is about 0.90 or less.

There are a number of topics to be explored, on further applications of the IS technique.
Although we can obtain the performance measures for systems in which the switchover times are
arbitrarily close to zero, the technique is based on non-zero switchover times. It would be of
interest to develop the IS technique for systems in which the swithcover times are all equal to zero.
It would also be of interest to consider using the IS technique to analyze other polling systems.
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