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CHAPTER 1 

INTRODUCTION   

1.1 Motivation 

Driver behavior and man/machine interactions are important topics for transportation and 

ground vehicle research.  The way drivers respond to the surrounding traffic influences 

roadway design, traffic rules and the human-vehicle interface.  For example, driver’s 

inattention or distraction is responsible for 25%-30% of police-reported crashes [1].  

Inattentive drivers were found to have three to six times higher near-crash/crash risk than 

drivers who are attentive [2].  Over the past decade, Active Safety Technology (AST) 

was developed to assist human drivers in avoiding or mitigating accidents.  They are 

helpful when the driver is either making a wrong move or is not able to handle the 

situation.  To evaluate the effectiveness of AST, driver models that achieve driving tasks 

normally are not very useful.  A new kind of driver model is needed to emulate 

anomalous driving behaviors.  This type of driver model will be developed based on the 

concept that a driver model that normally achieves driving tasks could be perturbed to 

emulate anomalous behaviors like human drivers by considering human’s inherent 

limitations or by incorporating error mechanisms.  If driver limitations or error 

mechanisms are properly designed, the driver model can generate accident or near-

accident behaviors that are of interest to engineers who are developing AST.   

Driver limitations can be physical and/or mental.  Physically, drivers have 

crossover frequencies less than 1.5 rad/sec [3], due to neuromuscular delay and 

perceptual limitation.  These physical constraints limit driver’s performance in some 

maneuvers, e.g. lane changing, disturbance rejection, etc.  Physical limitations are usually 

included in conventional driver models.  However, physical limitations alone are not 

enough to explain driving accidents that may be due to mental limitations.  For example, 

a driver may panic during certain circumstances or fail to understand and handle the 
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vehicle characteristic at extreme maneuvers.  Those limitations may cause driving 

accidents and need to be considered in the model.  Another major contributor of driving 

accidents is driving error.  Driving errors may arise from driver’s distraction, delay in 

response, or in the recognition of information needed for the driving task.  Modeling 

driving error is different from modeling driver limitations because error is generally a 

stochastic event.  For example, driver distraction is sometimes caused by the use of 

cellular phones [4] or other in-vehicle devices [5], the presence of other passengers or 

simply being ―lost in thought‖ [6].  Unlike driver limitations, driving errors usually 

happened in a routine and long driving task without any hard constraints, e.g. speed 

regulating or car-following.  Most existing models focus on describing driver behavior 

under those tasks, and few of them include driving errors.  The main contribution of this 

study is to partially fulfill the missing link between modeling normal driving tasks and 

modeling driving accidents.  The development of architecture and modeling process for 

driver models that emulate anomalous behaviors will be provided.  Despite our best 

effort, no research on such driver models was found in the literature.   

The model architecture and modeling process will be demonstrated by two 

examples.  Lateral disturbance rejection for a lane-keeping task will be used to illustrate 

driver behavior under lateral disturbance.  Another example studies the effect of driving 

errors during longitudinal car-following.  Lateral disturbances may come from road 

superelevation or un-aligned suspensions for a mild disturbance, and impact with other 

vehicle or strong crosswinds for a larger disturbance.  The phenomenon and modeling 

process related to impact with other vehicles can be found in [7].  In this study, driving 

accidents under strong crosswind will be discussed.  In the US, highways in certain areas 

have seasonal and year-round crosswinds strong enough to cause traffic accidents.  In 

addition, vehicles driving on long span bridges and bridges with high piers could 

experience structure induced winds that pose severe threats.  Vehicles with large side 

cross-section area such as buses and semi-trucks are especially vulnerable.  Active safety 

systems such as differential braking and/or active steering can be used to address this 

problem.  However, the effectiveness of those active safety systems interacting with 

human driver’s intervention needs to be studied.  A lateral driver model that can 

reproduce human behaviors, both normally and anomalously, will be helpful.  The goal of 
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this example is to analyze crosswind induced vehicle stability problems and the driving 

accident induced by human driver limitations.  Both numerical simulations and driving 

simulator experiments will be conducted to collect lateral driving behaviors.  Lateral 

normal driving behaviors and accident inducing behaviors will be studied.  The lateral 

driver model with accidents will be developed and used to evaluate vehicle crosswind 

stability and active safety system design. 

In the second example, we will focus on longitudinal car-following behavior, 

which is important because rear-end collisions account for about 30% of all crashes [8].  

Rear-end collision warning/collision avoidance (CW/CA) systems were developed to 

avoid or mitigate these type of accident.  The effectiveness of CW/CA system working 

with a human driver or other human controlled vehicle needs to be evaluated 

exhaustively to ensure safety.  A very large percentage of longitudinal driving accidents 

are caused by driving errors.  An errable driver model constructed and used properly, can 

capture human/control interaction and thus accelerate the CW/CA system development 

process.  To make a model errable, mechanisms of driving errors and their effects on 

driving must be understood.  Driver errors can be viewed as a recurring event which, 

when combined with events from surrounding vehicles, could result in an accident.  For 

example, a driver may be distracted or engaged in alter-control tasks and thus fail to 

adjust vehicle speed properly.  If the leading vehicle happens to decelerate at the wrong 

moment, a rear-end collision could happen.  Human behavior (e.g. distraction) and lead 

vehicle deceleration can both be described by stochastic processes.  If proper human 

cognition/error mechanisms are included and proper probability distribution functions are 

used to introduce human errors, it is possible to reproduce accident/incident behavior that 

is statistically similar to field testing results. 

1.2 Literature Review 

1.2.1 Lateral Driver Model Review 

Different philosophy and structure are proposed in the literature to develop lateral driver 

models.  The simplest way to model lateral driving behaviors is by a feedback control 
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model (Fig. 2.1). A feedback control model assums that the driver has a desired trajectory 

(yd). A feedback controller is used to drive output y to track yd. 

Plant
FB

Controller
t

Time (τ)

yd(τ)

y(t)u(t)

 

Fig. 2.1 Feedback driver model structure 

One of the earliest feedback driver models was proposed by McRuer [9].  A 

transfer function with lead, lag time constants and time delay was used to characterize a 

driver’s behaviors. And those constants can be determined by satisfying the ―crossover 

frequency‖ assumption and by fitting test data.  A more complex transfer function model 

was presented by Hess [10].  Different transfer functions were used to describe driver’s 

behavior at low and high frequencies.  Transfer function type feedback models generally 

deal with single-input systems.  A multi-input example was suggested by Horiuchi [11].  

In his model, an outer-loop with lead compensator was used for predicting yaw angle and 

an inner-loop of lead/lag compensator for regulating yaw motions.  Another multi-input 

example was provided by Wallentowitz [12].  In this model, vehicle states are lateral 

position, yaw angle, yaw angle rate, and steering torque. The desired output is zero and 

steering dynamics and time delays are included. 

When the desired output yd is not zero, a feed-forward preview control can be 

added to model a driver’s look-ahead behavior (Fig. 2.2).  In a feed-forward preview 

architecture, a previewed desired trajectory (    lad tty ,0,   ) are needed.  One of the 

earliest concepts was introduced by Sheridan [13]. Sheridan described this concept as an 

―extended convolution‖ model which has a feedback controller and feed-forward preview 

controller. 
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Plant
FB

Controller

FF

Controller

y(t)

t

Time (τ)

yd(τ)

t+tla

u(t)

 

Fig. 2.2 Feedback and feed-forward preview driver model 

A simpler one point preview feedback/feed-forward control model was proposed 

in [14]. In this model, the yaw angle at a near point is used for feedback correction and 

the previewed yaw angle at a far future point is used for the feed-forward control.  Only 

one future point (  lad tty  ) is needed rather than a future trajectory (    lad tty ,0,   ).  

Other than feed-forward control, the future desired trajectory can be used to compare 

with the estimated future vehicle states for feedback control (Fig. 2.3).  A prediction 

estimator was used to predict vehicle future states (    latty ,0,   ) based on current 

states.  Then, the predicted error can be used as input to the feedback controller. 

Plant
FB

Controller

Prediction

Estimator

t
Time (τ)

yd(τ)

t+tla

y(t)u(t)

 latty ,0 ),(  
 

Fig. 2.3 Feedback and prediction estimator driver model 

An example of a prediction estimator can be found in Yip and Crolla [15].  The 

vehicle future lateral displacement was calculated from linear extrapolation of the current 

yaw angle.  More accurate prediction estimation can be done by utilizing current input.  

The resulting model can be depicted by the diagram shown in Fig. 2.4. 
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Plant
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Controller
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Fig. 2.4 Feedback and prediction estimator with current input 

The approach in Fig. 2.4 can be found in Maruyama [16] as a single-point 

preview with a kinematic prediction estimator. A kinematic relationship was used to 

estimate vehicle future states and a feedback control was used to correct the prediction 

error.  Furthermore, a dynamic prediction estimator can be used for better accuracy.  In 

Sharp [17], vehicle states were predicted by a vehicle dynamic model and full state 

feedback was used to achieve the desired yaw angle and lateral displacement.  A 

remaining design question is on the selection of full state feedback gains. 

The well-known MacAdam’s model was first presented in [18]. Starting with the 

preview control concept, the MacAdam’s model provides an optimal solution for 

selecting state feedback gains in Fig. 2.4.  The original MacAdam’s model performs very 

well for normal lateral driving behaviors.  For near/at limit vehicle handling problems, 

MacAdam proposed a more comprehensive driver model in [18].  This model included 

more vehicle states such as steering angle, side slip, and roll angle in the cost function.  

The optimal control input was calculated through an optimization scheme.  Finally, a 

more complicated concept for driver modeling was shown in Fig. 2.5. Instead of 

assuming input as a constant over the preview horizon, a variable input sequence was 

introduced.  Possible iterations would be needed for obtaining the optimal solution.  No 

current driver model has the structure in Fig. 2.5.  However, a simpler form of which was 

proposed in Ungoren’s work [20].  Assuming the driver can update steering input over 

the preview horizon, this model replaced the constant input in MacAdam’s model by a 

input sequence.  

 



 

 7 
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Controller

Prediction

Estimator
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Fig. 2.5 Prediction estimator with current and iterated future input 

  To model driving accidents under strong crosswind, we need a driver model that 

can work under normal situations and can generate accidents when the driving task goes 

beyond the driver’s capability.  A feedback driver model is good for modeling different 

drivers’ behavior but it is not clear how a feedback mechanism might change when a 

driver’s capability is exceeded.  Parameters of the feedback driver model were found to 

vary with driver states and time [21].  However, why and how those parameters changed 

is unclear.  A new lateral driver model that account for both normal and accident 

behaviors will be developed.  This model will be used to demonstrate the effect of driver 

inability on the lateral driving and will be used to evaluate vehicle crosswind stability. 

1.2.2 Crosswind Driver/Vehicle Stability Evaluation Method  

A new lateral driver model will be used to evaluate vehicle crosswind stability.  However, 

the concept of crosswind stability is not clearly defined or accepted in the literature. Most 

research defined crosswind stability based on driver’s subjective assessments.  To do that, 

a new vehicle design was test-driven by a human driver and subjective ratings were 

collected.  Comparing with other design candidates, the most preferred design was 

considered as having the best crosswind stability.  This procedure is time-consuming and 

costly.  An alternative is to obtain the vehicle crosswind sensitivities by experiments or 

by simulations.  Crosswind sensitivity is often used to refer vehicle ―open-loop‖ 

responses under crosswind.  The correlations between ―crosswind sensitivity‖ and 

―subjective rating‖ can be drawn.  If particular crosswind sensitivity has high correlation 

with subjecting assessment, this crosswind sensitivity would be used to infer crosswind 

stability (Fig. 2.6). However, the results are usually unsatisfactory except for yaw-rate 

([23], [24]).  Nevertheless, the crosswind sensitivity analysis is still the most popular 

method for assessing crosswind stability.  In this section, several prior works regarding 
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the crosswind sensitivity will be reviewed and some other alternative methods for directly 

assessing crosswind stability will be discussed. 

Vehicle
Design

Vehicle
Prototype

Field 
Tests 

Subjective
Rating

Crosswind 
Sensitivity

Good 
Correlation?

 

Fig. 2.6 Concept for correlating crosswind sensitivity and subjective rating 

One of the earliest crosswind sensitivity analyses was done by Uffelmann [22]. 

The vehicle design parameters were divided into two categories: body (aerodynamic, 

dimensions) and chassis (suspension and roll stiffness).  Vehicle response under 

crosswind was described by wind-sensitivity which is a combined formula of those two 

parameter categories.  In his research, peak yaw response time was found to have the 

highest correlation with driver subjective rating.  Another crosswind sensitivity analysis 

was done by Willumeit [23].  Six blowers were installed on a proving ground and a fixed 

open-loop steering vehicle was driving by.  Closed-loop tests with drivers under the same 

crosswind were also conducted and driver subjective assessments were collected.  The 

analysis shows yaw-rate, lateral acceleration, steering wheel angle, and yaw angle have 

good correlations with the driver subjective rating.  A similar experiment was done in 

[24].  Yaw-rate, again, has the highest correlation with the driver subjective rating.  An 

equation for calculating crosswind sensitivity was also provided for evaluating 

preliminary designs.  Aerodynamic effects on the vehicle are another research focus for 

evaluating the vehicle crosswind behavior.  In [25], an aerodynamic attachment was used 

to change vehicle characteristics.  The result shows that roll rate is the most related 

measurement to the subjective feeling assessment under high vehicle speed and mild 

crosswind. 

All of the above research tries to find the correlation between open-loop 

crosswind sensitivity and closed-loop driver subjective rating.  A direct approach for 
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quantifying the closed-loop crosswind behavior was proposed by Wallentowitz [12].  An 

equipped vehicle was driven on the road to measure the crosswind and the driver vehicle 

behavior.  Measured steering angle was used to calculate the yaw-rate due to steering 

through a bicycle model.  The calculated yaw-rate was subtracted from measured yaw-

rate.  Therefore, the driver’s steering influence could be removed and the open-loop 

vehicle yaw-rate due to only crosswind was obtained.   Frequency response of the 

crosswind force to the yaw-rate and frequency response of both the crosswind force and 

the steering to yaw-rate were calculated.  In [26], the intensification factor was 

introduced to quantify the driver’s interaction with vehicle under crosswind.  The 

intensification factor was defined as the peak magnitude of the closed-loop frequency 

response over the peak of the open-loop frequency response.  Intensification factor larger 

than unity means that the driver amplifies vehicle responses under the crosswind.  A 

higher intensification factor may suggest a higher ―crosswind sensitivity‖ by the driver’s 

subjective evaluation.  This analysis method is easy to calculate, by experimental results 

on a track or from driving simulator; but may not have high correlation to the driver 

subjective assessment.  Furthermore, real drivers will be involved for the evaluation of 

different vehicle designs, which will increase time and cost.  Another closed-loop 

evaluation of crosswind driver-vehicle behavior was done by [27].  A driver model was 

used to derive the driver vehicle transfer function.  A closed-loop performance index is 

defined to evaluate the vehicle behavior under crosswind.  Compared with crosswind 

sensitivity, closed-loop performance index shows a better correlation with the driver 

subjective rating. 

To obtain open-loop crosswind sensitivity, an experiment or simulation is needed.  

Experiments can be conducted either on test facilities or on the open road.  In a test 

facility, like a wind tunnel or a proving ground, a series of wind blowers are usually used 

to generate a step crosswind input ([12], [22], [24], [28]).  Test vehicle drives through the 

step crosswind at different vehicle speeds and wind speeds.  Vehicle responses are 

measured and their sensitivities to the crosswind input can be calculated. This step 

crosswind input can also be found in simulations.  Another commonly used input type is 

random or natural crosswind input [22].  This input type is usually used in simulations.  
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Power spectral density of natural wind is measured and modeled in simulations. 

Frequency response is usually used for analyzing crosswind sensitivity. 

Closed-loop tests are also used for obtaining the driver subjective rating.  The 

simplest way to conduct a closed-loop test is to use the same crosswind input as in the 

open-loop experiment.  There is also a kind of crosswind inputs designed specifically for 

closed-loop [24].  This so-called ―gauntlet‖ input provides a stronger vehicle driver 

response for the driver subject rating.  The gauntlet input uses eight fan units located in 

an alternating manner on the opposite side of the road.  Similar scenarios for closed-loop 

simulations can also be found in [24].  Other than conducting the closed-loop test at a test 

facility, open road tests were also conducted in [12] and [26].  An equipped vehicle with 

real drivers was used.  The driving behavior and crosswind data were both measured and 

used for evaluating the vehicle crosswind stability.  Several crosswind 

experiment/simulation conditions were summarized in Table 2.1.  The test vehicles are 

generally running at high speed between 100 to 200 km/h.  The crosswind speed is about 

40 to 100 km/h and constant crosswind is the most common type of input because it is 

easy to produce in a test facility. 

Table 2.1 Crosswind experiment/simulation setup summary 

 
Test 

Facility  
Driver  

Vehicle 

Speed  

Wind 

duration  
Crosswind  

Crosswind 

Speed  

Crosswind 

Angle  

MacAdam 

[24]  

wind 

tunnel  
yes  

160 km/h  

(100 mph)  
0.68s (100 ft)  constant  

40 km/h  

(25 mph)  
90  

wind 

tunnel  
yes  

160 km/h  

(100 mph)  
2.39s (350 ft)  gauntlet  

40 km/h  

(25 mph)  
90  

Uffelmann 
[22] 

simulation  no  100 km/h  -  constant  70 km/h  35  

simulation  model  100 km/h  -  random  natural  
 

Willumeit 
[23] 

wind 

tunnel  
no  130 km/h  

0.46s (16.6 

m)  
constant  

75.6 km/h 

(21m/s)  
60  

wind 

tunnel  
yes  130 km/h  

0.46s (16.6 

m)  
constant  

75.6 km/h 

(21m/s)  
60  

motorway  yes  140 km/h  -  natural  (max 45km/h)  
 

Wallentowitz 

[12]  
wind 

tunnel  
no  

100 km/h  

(27.7 m/s)  
-  constant  

72 km/h 

(20m/s)  
90  

Yip [15]  simulation  no  
162 km/h  

(45 m/s)  
-  constant  

36 km/h 

(10m/s)  
125  
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simulation  model  
162 km/h  

(45 m/s)  
-  random  

  

Maeda [25] Test track  yes  200 km/h  -  natural  
  

Orady [29] simulation  model  100 km/h  -  random  (mean 5m/s)  
 

Maruyama 

[30]   

simulation  no  40 - 100 km/h  1s  constant  
90 km/h 

(25m/s)  
90  

simulator  yes  90 km/h  0.6s (15 m)  constant  
81 km/h 

(22.5m/s)  
90  

simulator  yes  
80,100,120 

km/h  
2s  constant  

81 km/h 

(22.5m/s)  
90  

Hanke [28] simulation  no  100 - 180 km/h  
0.72s - 0.4s 

(20m)  
constant  100km/h  90 

 

Designing a vehicle with good crosswind stability is non-trivial, mainly because 

the definition of crosswind stability is not clear.  Perhaps the most trustworthy assessment 

is the driver subjective rating.  However, conducting a driving test to obtain the driver 

subjective rating for every new vehicle design is not practical.  A faster and easier 

method is needed.  Measuring crosswind sensitivity is easy by experiments or simulations.  

If there is a good correlation with subjective rating, crosswind sensitivity can be used to 

infer crosswind stability.   In this research, we propose a new method to assess crosswind 

stability.  A vehicle and driver model is developed for crosswind maneuvers.  And, the 

closed-loop vehicle response is obtained through simulations.  Finally, the simulated 

closed-loop response is used to predict the driver subjective rating (Fig. 2.7).  Once the 

vehicle and driver model are developed, this method can evaluate vehicle crosswind 

stability almost as easy as using the crosswind sensitivity approach. 
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Fig. 2.7 Proposed method diagram for assessing crosswind stability  

1.2.3 Longitudinal Driver Model Review 

Car-following driver models have been developed to evaluate traffic capacity and 

congestion. A linear follow-the-leader model was first suggested by Pipes [31]. Car-

following was modeled as a process where the driver follows the lead vehicle speed by 

controlling the acceleration with a linear proportional gain.  Gazis [32] modified the 

linear follow-the-leader model with a nonlinear gain.  The proportional gain of 

acceleration in Pipes’ model was replaced by a function of m
th

 power of range and l
th

 

power of the following vehicle speed.  The parameters m and l were estimated by several 

researchers [33]-[35].  Newell [36] proposed another nonlinear model where the desired 

speed is a function of range error and is achieved in an exponential fashion.  All the 

models above describe driver behavior as regulating either zero range error or zero range-

rate.  Intuitively, drivers are likely to do both.  This hypothesis was first discussed by 

Helly [37].  In Helly’s model, the acceleration is a function of both range error and range-

rate.  Furthermore, the desired range was represented by following vehicle speed and 

acceleration.  Tyler [38] used the linear optimal control approach and derived a similar 

conclusion.  A quadratic function of range error and range-rate was optimized and the 
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resulting model has the same form as Helly’s except that the desired range is only a 

function of the following vehicle speed.    Other than following the leader, a safe distance 

strategy was proposed by Gipps [39].   By estimating a kinematic relationship between 

the lead vehicles, the following vehicles, and road conditions, a safety distance was 

maintained in congested traffic flow.  A second mode was added in the Gipps’ model to 

describe free flow condition by fitting the vehicle dynamics.  By switching between the 

two modes, this model can capture driver behavior under different driving situations.  

Bando [40] adopted a hyperbolic tangent function to mimic the switch mechanism.  By 

doing so, a single equation model can be used to describe both free and congested traffic 

flow. 

Other than measuring dynamic variables and modeling driver decisions as a 

continuous dynamic process, psychophysical studies provided an alternative for modeling 

car-following behaviors.  Michaels [41] argued that drivers would perceive the change of 

range through the change of lead vehicle size.  Once the change exceeded a threshold, the 

driver would adjust vehicle acceleration until a proper perceptual size was regained.  

Driver behavior was modeled as a sequential control. The driver responds to an event 

(exceeding threshold) and resets the action when a new event is triggered.  Some basic 

concepts and criteria were provided in Michaels work but no specific model was 

presented.  Lee [42] claimed that drivers use time-to-collision as a threshold for braking 

and used τ (angular separation over separation rate) to estimate time-to-collision.  In 

Lee’s hypothesis, the driver initiates brake action based on a τ threshold and controls the 

brake force based on the time rate of change of τ.  The hypothesis was verified by Yilmaz 

[43].  Reiter [44] used range as the perceptual threshold and provided experimental 

results to obtain model parameters.  Brackstone [45] conducted experiments based on a 

similar approach, but he used range-rate instead of τ.  All driver models above try to 

model or explain normal driving behavior.  Good fitting results and ―crash-free‖ are 

generally considered as good model performance.  In our study, the goal is to develop a 

driver model that fits both normal and anomalous driving behaviors.   In other words, 

―crash-free‖ is no longer a requirement.  Instead, a model that generates crash or near-

crash behavior, which has not been previously studied in the literature, is our main 

interest. 
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1.2.4 CW/CA Algorithms 

Collision Warning Device/Algorithms were developed for aviation applications as early 

as 1957 [46], [47].  Simple devices were developed to provide warning for conflicting air 

traffic.  Vehicle safety and related issues were first discussed by Gibson [48].  In his 

paper, Gibson described the concept of collision and safe travel.  But the concept of 

CW/CA has not been studied until the late 80’s.  The Ministry of Construction in Japan 

organized a committee to focus on the study of several advanced vehicle technologies, 

including obstacle detecting and collision avoidance [49]; an early collision warning 

algorithm was introduced in [50], [51].  In the early 90s, the NHTSA’s Intelligent 

Vehicle Highway System (IVHS) program initiated a study on collision 

warning/avoidance [52]-[54]. 

In the 1990’s, Burgett et al. [55] proposed a rear-end collision warning algorithm.  

The collision situations were divided into three zones based on initial conditions.  The 

boundary conditions and warning criteria were defined accordingly.   Kiefer et al. [56] 

reported minimum elements required for the development of  forward collision warning 

system.  Crash alert timing requirements were studied by conducting human factor 

analysis.   Doi et al. [57] developed an algorithm based on kinematic relationships 

between two vehicles and addressed the collision problem in both straight and curved 

roads.  Brunson et al. [58] refined the algorithm developed by Burgett and others at 

NHTSA.  Their algorithm used current vehicle states and assumed driver reaction time to 

calculate a predicted range; they called it ―miss-distance‖.  When the miss-distance is 

smaller than a threshold, an alert would be issued.  Zhang et al. [59] gave another 

interpretation of Brunson and NHTSA’s algorithm. Instead of calculating the miss-

distance, they used the vehicle range to calculate a reaction time and called it the ―Time 

to last second braking‖.  They claimed this new approach has better agreement with 

human judgment and directly quantifies the threat level of the driving situation.  All the 

algorithms above are based on assumed kinematic equations.  By measuring engineering 

variables such as range, speed, and acceleration, the severity of collision threats can be 

assessed. 

An alternative approach was to use time to collision as the warning criteria.  As 

discussed by Gibson [60] and Lee [42], time to collision seems to be used by human for 
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collision judgment rather than range or time headway.  Lee et al. [61] provided a 

systematic method for evaluating collision warning algorithms and they claimed that 

using time to collision (TTC) as a metric for collision threat is better compared with other 

kinematic algorithms.  Using TTC and lead vehicle acceleration would further improve 

the performance in terms of warning precision and true positive rate.  Hirst et al. [62] 

suggested a TTC algorithm with speed penalty.  Miller et al. [63] added an extra term for 

TTC algorithm. This extra term includes human reaction time, reduced speed, and 

estimated road coefficient. The reaction time modeled a human’s ability of reaction and 

the reduced speed and the estimated road coefficient can be adjusted depending on the 

severity of the situation. 

1.2.5 CW/CA Algorithm Design and Evaluation Methods 

CW/CA algorithms have been studied for more than fifty years.  Corresponding 

parameter design and evaluation methods were also developed.  Most of them are 

scenario-based methods.  In this approach, test scenarios or test matrices were first 

defined. Then, CW/CA algorithms can be simulated under the test matrix with Monte 

Carlo method and their performance can be evaluated.  Engineering tuning processes 

were often required and field operation tests would be conducted afterwards.  The whole 

procedure can be illustrated by the diagram shown in Fig. 2.8. 

Initial 
Design

Parameters

Test
Matrix  

Simulations

Design
Iteration

Performance FOT

 

Fig. 2.8 Scenario-test approach diagram for CW/CA algorithm design 

A series of experimental studies supported by NHTSA is a representative work of 

this evaluation approach.  The ACAS FOT report [64] summarized the final results and 

the definition of the test matrix can be found in [65], [66].  However, this approach 

required numerous design iterations, and the performance of the algorithm was not 

guaranteed.  Therefore, an alternative scenario-test approach was proposed by Yang [67].  
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They proposed a performance-base approach for designing and evaluating CW/CA 

algorithm (Fig. 2.9).  A so-called performance boundary was first defined, and then the 

test matrix was used to search for the parameters of CW/CA algorithm that can satisfy the 

performance boundary.  A stochastic driver model and a test matrix were adopted from 

the ACAS FOT.  Yang claimed that the resulting CW/CA algorithm guarantees the 

performance without hand tuning iterations. 

Performance
Boundary

Test
Matrix  

Simulations

Design
Iteration

Obtained
Parameters

Automatically

Computed

 

Fig. 2.9 Performance-base scenario-test approach for CW/CA algorithm design 

However, this approach still needs prescribed test scenarios which might not 

represent real human behaviors leading to crashes.  A human centered approach was 

developed to compensate for this disadvantage [61].  A significant amount of naturalistic 

human driving data were analyzed and the threatening situations were defined and 

identified.  Then, the threatening scenarios were used to evaluate CW/CA algorithms.  

This human centered approach benchmarks CW/CA algorithm performance by realistic 

human driving behaviors and provides an optimization method for obtaining algorithm 

parameters.  Nevertheless, the evaluating data was collected from a human driving 

database without any real crash.  In other words, the defined threatening situations may 

not be as severe as real crashes.  An errable driver model could further improve this 

deficiency.  By introducing proper human cognition/error mechanisms, it is possible to 

reproduce accident/incident behavior.  Therefore, a more rigorous human-centered 

evaluation can be achieved. 
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1.3 Contributions 

A new closed-loop crosswind stability evaluation method will be proposed to 

demonstrate the effect of driver limitations.  This method can evaluate vehicle crosswind 

stability almost as easy as using the crosswind sensitivity approach.  Unlike the 

traditional method of obtaining open-loop sensitivity, this closed-loop method can 

provide more detailed information for vehicle design.  Meanwhile, a new way to analyze 

driving data and categorize driving style will be demonstrated throughout the 

development process.  Finally, a lateral driver model that emulates anomaly behaviors for 

crosswind maneuver will be proposed.  This driver model is a combination of 

MacAdam’s driver model and an instantaneous feedback correction for strong crosswind 

disturbances.  This model can capture the driving behavior better than MacAdam’s driver 

model alone.  The ability of reproducing yaw-rate responses will make this model 

suitable for evaluating the vehicle crosswind stability. 

A longitudinal errable driver model is developed for understanding anomalous 

behaviors due to driving errors.  This model will normally achieve car-following task and 

will be made to make mistakes due to driving errors.  Those mistakes will be induced 

based on the same mechanisms that could cause accidents in actual driving.  The accident 

or error behaviors will emulate real human behaviors, and the error rate, ideally, will 

match the real driving error rates statistically.  This model will be used for the evaluation 

and development of a humanized CW/CA algorithm.  Because of the difference among 

human drivers, and the difference within a single driver temporally, it is difficult for a 

conventional CW/CA algorithm to decide on the timing for issuing warnings.  To achieve 

high precision, it is necessary to issue warnings for all potential threatening events; 

however, this may cause a high false alarm rate as well.  Well studied and modeled 

human near-crash behaviors will be the key to lower false alarm rates while maintaining 

high accuracy.  A major contribution of this dissertation is to answer this challenge.  The 

developed errable driver model could become an important tool for active safety 

research, useful for driving simulators, evaluation of CW/CA systems, etc. 
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CHAPTER 2  

LATERAL DRIVING BEHAVIOR STUDY 

2.1 Motivation 

The goal of this study is to analyze vehicle stability problems under crosswind and 

driving accidents induced by human driver limitations.  The potential of using widely 

available active safety technology (AST) such as active front steering to improve 

crosswind stability is also investigated.  The most challenging issues are to simulate a 

wide array of wind excitations and to accurately capture human behaviors.  Both 

numerical simulations and driving simulator experiments were conducted to collect 

lateral driving behaviors.  A 5-DOF wind-steer model developed at the University of 

Michigan Transportation Research Institute ([68], [69]) was used for the purpose of 

driver dynamic analysis and control design.  A target vehicle is also modeled in CarSim 

software for the driving simulator test.  Lateral normal driving behaviors and accident 

inducing behaviors is studied.  A lateral driver model with accidents is developed and 

used to evaluate vehicle crosswind stability and active safety system design. 

2.2 Vehicle Model Development and Simulator Test 

An analytical model was developed for the purpose of driver dynamic analysis and 

control design.  The wind induced vehicle motion is the focus of the model development. 

A CarSim model is also built for a fixed base driving simulator test.  Twenty-four test 

participants were recruited and successfully completed the simulator test.  Test results are 

presented in section 2.3 and are  used to develop a lateral crosswind driver model in 

Chapter 3. 
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2.2.1 UMTRI Wind-Steer Model 

The UMTRI 5-DOF wind-steer vehicle model was developed ([68], [69]) to calculate 

vehicle steering response under crosswind disturbances.  It is meant to be accurate up to 

0.3g of lateral acceleration and frequencies below 2Hz.  The Wind-Steer vehicle model is 

an extension of Segal’s 3DOF (lateral/yaw/roll) model [70] and has five DOF (lateral, 

vertical, pitch, yaw, roll) plus suspension kinematics, where the longitudinal speed is 

assumed to be constant.  The suspension is purely kinematic (use quasi-static force 

balance, i.e., force is calculated from sprung mass motion only).  The MacAdam’s driver 

model is included as an option of the wind-steer model, so that driver’s response under 

crosswind disturbance can be analyzed. 

The block diagram of this wind-steer model is shown in Fig. 2.1. If the driver 

model is used, the input will be a desired path (fpath) that the driver tries to follow.  If 

there is no driver model, the input will be steering wheel angle (δH).  An additional input 

is crosswind disturbance (Vwind) which needs to be defined by wind speed and wind 

direction. 

 

Fig. 2.1 Block diagram of UMTRI wind-steer model [68] 

The UMTRI wind-steer vehicle model was calibrated by using a set of road test 

data.   The open-loop test set up to obtain the test data is shown in Fig. 2.2.  The vehicle 

speed is 100 km/h and the vehicle parameters are for a mid-size Sports Utility Vehicle. 
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Fig. 2.2 Open-loop test setup for obtaining road test data 

The crosswind disturbance was approximated as Fig. 2.3. The crosswind angle is 

assumed to be 90⁰ fixed perpendicular to the vehicle x-axis.  The simulation generated by 

this crosswind speed profile is the closest one to the road test result. 
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Fig. 2.3 Estimated crosswind disturbance of open-loop test setup in Fig. 2.2 

It can be seen in Fig. 2.4 that the vehicle model response under approximated 

crosswind is similar to the road test result. 
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Fig. 2.4 UMTRI wind-steer model simulation compared with road test result 
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The goal of this study is to analyze driver-vehicle crosswind stability.  First, the 

term ―crosswind stability‖ needs to be explicitly defined, as it seems from literatures that 

this term was only vaguely referred and not rigorously defined.  Frequently, performance 

evaluation for crosswind stability was based on driver subjective assessments.  Subjective 

assessment is used to categorize driver preference of vehicle response under crosswind.  

Meanwhile, many papers in the literature reported that vehicles developing smaller yaw-

rate and/or lateral acceleration under crosswind in an open-loop fashion (i.e., no driver 

feedback compensation) generally received higher ranking.  In other words, it seems 

crosswind stability can be quantitatively defined by vehicle open-loop  

―crosswind sensitivity‖ of yaw-rate and/or lateral acceleration.  Crosswind sensitivity 

obviously is affected by vehicle parameters.  Our goal here is to analyze crosswind 

sensitivity of different vehicle configurations or parameters.  The vehicle configurations 

that are found to be most sensitive (to the crosswind input) will be evaluated in the 

driving simulator test and their crosswind stability will be analyzed. 

A sensitivity analysis was done by using the UMTRI wind-steer model.  Fifteen 

vehicle design parameters were selected (see Table 2.2) and the vehicle open-loop 

response under impulse crosswind was used to represent the vehicle performance.  The 

impulse crosswind input is similar to the road test condition (Fig. 2.3).  Maximum and 

RMS values of yaw-rate and lateral acceleration were used to evaluate crosswind 

sensitivity.  The vehicle response (both peak value and RMS of yaw-rate and lateral 

acceleration) under the three most sensitive design parameters are shown in Fig. 2.5-Fig. 

2.7.  The x-axis shows the normalized parameter value and ―1‖ indicates the nominal 

(unperturbed) condition.  Similarly, the vehicle response shown in the y-axis is also 

normalized and a value ―1‖ indicates the nominal vehicle response.  It can be seen that 

these three vehicle parameters are perturbed by 30%  and the vehicle response changes 

by as large as 80%. 
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(a) Lateral acceleration (b) Yaw-rate 

Fig. 2.5 C.G. position sensitivity to crosswind disturbance 
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(a) Lateral acceleration (b) Yaw-rate 

Fig. 2.6 Yaw moment coefficient sensitivity to crosswind disturbance 
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(a) Lateral acceleration (b) Yaw-rate 

Fig. 2.7 Spoiler sensitivity to crosswind disturbance 

C.G Position was found to be the most effective variable for influencing the 

lateral acc. and yaw-rate responses (see Table 2.1).  Therefore, adding cargo weight, 

which changes the C.G position fore/aft, is an important perturbation that needs to be 

evaluated in the driving simulator test.  Aerodynamic yaw moment coefficient is the 

second most effective and the presence of spoiler also has a significant effect of reducing 

vehicle motions under crosswind and comes in third in importance.  Other vehicle 
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parameters such as the front wheel tire cornering stiffness, also has non-negligible effect 

on vehicle responses.  The rest of the parameters are much less effective. 

Table 2.1 Crosswind sensitivities of vehicle design parameters   

   Lateral. acc Yaw-Rate 

C.G to Front Axle  1.5169 2.1776 

Aerodynamic Yaw Moment 0.8854 1.5448 

Rear Spoiler 0.6152 1.0498 

Cornering Stiffness (Front)  -0.5751 -0.9868 

Aerodynamic Roll Moment 0.3260 0.6384 

Aerodynamic Lift Force 0.3715 0.5361 

Aerodynamic Pitch Moment 0.2363 0.5007 

Cornering Stiffness (Rear)  0.2445 0.4148 

Aligning Torque Compliance  0.1946 0.3492 

Lateral Force Compliance  -0.1261 -0.2201 

Aerodynamic Side Force -0.2314 0.1607 

Suspension Stiffness (Rear) -0.0319 -0.0189 

Suspension Stiffness (Front) 0.0151 0.0103 

Suspension Compliance Steer -0.0035 0.0008 

Aerodynamic Drag Force 0 0 

2.2.2 CarSim Model 

CarSim is a commercial software widely used for automotive dynamic simulations.  It 

uses a nonlinear lookup table for suspension and tire models and is quite suitable for 

simulating vehicle response with significant roll motions (+- 10 degrees of roll angle).  A 

CarSim model was constructed and used in the CarSim simulator for the crosswind 

experiment.  The CarSim model is also calibrated by road test data.  The crosswind input 

is the same as Fig. 2.3.  The calibration result is shown in Fig. 2.8. 
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Fig. 2.8 CarSim vehicle model simulation compared with road test result 

In the next section, a fixed-base driving simulator test is presented.  The CarSim 

vehicle model is implemented in this driving simulator with crosswind inputs.  Five 

vehicle configurations are test-driven and evaluated.  The collected data is used for the 

development of a lateral driver model under crosswind. 

2.2.3 Driving Simulator Test 

A driving simulator test is conducted to collect data for analyzing driver-vehicle 

behaviors under crosswind.  The goals of this driving simulator test are (i) to develop a 

lateral driver model under crosswind; and (ii) to assess the vehicle crosswind stability.  

The target vehicle for the driving simulator test is a mid-size sports utility vehicle and 

five different vehicle configurations are implemented.  Two types of crosswind 

disturbance input are used to excite the driver-vehicle system to generate results for the 

driver model identification as well as the vehicle stability analysis. 

The driving simulator test is built in CarSim DS with five different vehicle 

configurations and two different crosswind input scenarios.  The driving simulator test is 

set up in the standard CarSim environment, under the following conditions: 

 Clear weather. 

 Standard two lanes highway with pave mark. 

 Straight road with no surrounding traffic. 

 Two test speeds (100 km/h 160 km/h). 

 Cruise control is used to help the participants to maintain constant vehicle speed.   
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Based on the sensitivity analysis results, five vehicle configurations are selected: 

 Baseline vehicle 

o Mid-size SUV 

 Baseline vehicle with added cargo weight 

o 150 kg at 50 cm behind rear axle: C.G. position to front axle +15%, total 

mass +8%, yaw moment of inertia +12%, pitch moment of inertia +13% 

 Baseline vehicle with rear spoiler 

o Aerodynamic lift and pitch moment coefficients -50% 

 Baseline vehicle with increased aerodynamic yaw moment 

o Aerodynamic yaw moment coefficients +30% 

 Baseline vehicle with reduced aerodynamic yaw moment 

o Aerodynamic yaw moment coefficients -30% 

Two different crosswind inputs are used to excite the vehicle dynamics.  The first 

type is impulse input motivated by sweeping sinusoidal and the second type is natural 

crosswind input adapted from measured data.  In system identification, a sweeping 

sinusoidal signal (Fig. 2.9) is commonly used.  Since the frequency of this signal sweeps 

through a range, it provides rich and wide-spectrum excitation that is suitable for 

identification of dynamic model of the vehicle.  
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Fig. 2.9 Sweeping sinusoidal signal 

In the simulator test, the sweeping sinusoidal input is not used in its original form, 

because the continuous wind input is not representative of wind disturbances commonly 

experienced in the real world.  Instead, a modified series of impulse signals are used (Fig. 

2.10).  The series of impulse with an increasing rate of occurrence is used.  The first few 

impulses are separated enough that the driver-vehicle response would have settled before 
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the next impulse.  Therefore, they provide some repetition to be used for developing 

driver model with a higher statistical confidence.  
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Fig. 2.10 Impulse crosswind disturbance input for simulator test 

In this crosswind input, each impulse (except the first one) has identical strength 

to the impulse disturbance used in the road test (Fig. 2.3).  The vehicle and driver 

response from the impulses 2-5 will be used for driver model identification.  The next 

four impulses will be used for driver model verification.  Furthermore, because all 

impulses are identical to the road test condition, we can compare the driving simulator 

test results with the road test result for the benchmarking.  In addition, the crosswind 

input is designed to maintain the open-loop vehicle stability and similar magnitude in 

yaw-rate and lateral acc (Fig. 2.11).  This is because that yaw-rate and lateral acceleration 

are the two most relevant variables for the driver subjective ranking.  By setting the yaw-

rate and lateral acceleration as controlled variables, we can analyze the effect of driver 

vehicle stability under high crosswind input frequency. 
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Fig. 2.11 Vehicle open-loop simulation under the impulse input 
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Besides impulse crosswind disturbance, random or natural crosswind disturbance 

is also implemented.  Natural crosswind input, with a wider spectrum of input frequency 

content, can be used to study the driver behavior in a more natural setting.  Furthermore, 

it can also be used to verify the driver model and for the frequency analysis of driver 

behavior.  The natural wind profile is measured from a road test and adapted for the 

driving simulator test.  The crosswind speed and orientation are shown in Fig. 2.12.  The 

simulator wind speed input is started from zero because the test vehicle speed starts from 

zero.  After the vehicle reaches a constant speed (~20 sec), the wind speed converged to 

road test profile with a hyperbolic tangent scaling function. 
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Fig. 2.12 Natural crosswind disturbance input for simulator test 

Before the driving simulator test, open-loop simulations were done in the CarSim 

to understand the dynamic response of different vehicle configurations.  The baseline 

vehicle response has already been shown in Fig. 2.11.  Responses under the other four 

configurations are shown in the plots below (Fig. 2.13-Fig. 2.16).  The responses of the 

first impulse is highlighted and compared with the baseline vehicle. 
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Fig. 2.13 Vehicle response with added Cargo weight  
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Fig. 2.14 Vehicle response with reduced yaw moment coefficient 
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Fig. 2.15 Vehicle response with increased yaw moment coefficient 
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Fig. 2.16 Vehicle response with added spoiler 

From the simulation results, it can be seen that the vehicle with increased yaw 

moment coefficient developed the highest vehicle dynamic response (yaw-rate and lateral 

acceleration) under the impulse crosswind input and the vehicle with decreased yaw 

moment coefficient has the smallest response.  Since yaw-rate and lateral acceleration are 

the most dominant vehicle responses for the driver subjective rating, the vehicle with 

increased yaw moment coefficient can be expected to have the worst crosswind stability 

assessment. 

Twenty-four test subjects were recruited to participate in the driving simulator test.  

They were asked to perform lane keeping task at their best.  Before the test starts, each 

driver was given ten minutes of introduction and twenty minutes of practice to become 

familiar with the driving simulator.  Each of them then received twelve test runs (five 

vehicle configurations with impulse crosswind input at two different vehicle speeds, plus 

baseline and cargo configurations with natural crosswind input).  Each run was conducted 

for two minutes and a three minutes break/setup time was given.  Therefore, the total 

active test time was roughly ninety minutes for each driver, which amounts to thirty-six 

hours for the whole test.  On average, four participants participated in the test each day 

for a total of six days.  Including orientation, CarSim software setup, shipping, setting up 

and tear-down, the actual test period was about twelve days.  A subjective assessment 

was conducted during the test to obtain subjective evaluation of vehicle stability under 

different configurations.  The questionnaire is shown in Appendix A.  The basic 

information is summarized below: 
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 Participant information sheet 

o Participants background information. 

 Crosswind stability assessment sheet 

o Driving simulator performance assessment 

o Subject vehicle stability assessment 

2.2.4 Summary 

Both an analytical vehicle model (UMTRI wind-steer model) and a complex commercial 

software (CarSim) model are used.  Both models are calibrated against the road test data.  

The analytical model is implemented in MATLAB/Simulink and is suitable for driver 

vehicle dynamic response analysis.  The CarSim model is used for simulator test and 

potential AST design.  The analytical model (UMTRI wind-steer model) is used to 

analyze the vehicle crosswind sensitivity.  Based on the sensitivity analysis, variation in 

C.G. position is found to have the highest sensitivity to the crosswind input.  Along with 

four other highest design parameters, five vehicle configurations are implemented for 

fixed base driving simulator test.  Twenty four test participants are recruited and 

successfully complete the simulator test. 

2.3 Simulator Test Analysis 

Twenty-four test participants completed the driving simulator test.  Each of them finished 

all designed test runs except participant twenty-one.  Due to the temporary steering wheel 

malfunction, participant twenty-one did not finish the natural crosswind input of the extra 

-cargo configuration.  The steering wheel malfunction was resolved immediately and the 

remaining participants finished all tests without further difficulty.  The participant driving 

experience information is shown in Appendix B. 

2.3.1 Simulator Test Result 

The test results of twenty-four participants are shown in Fig. 2.17 - Fig. 2.19.  Vehicle 

CG positions are plotted with pave-mark to illustrate the lane-keeping task performance.  
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At 100 km/h (Fig. 2.17), most participants can control their vehicle such that the C.G. 

positions stay in the right lane throughout the test. 
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Fig. 2.17 Simulator test data under impulse input (100 km/h) 

At higher speed (160 km/h), participants have difficulty maintaining the course 

and some participants even spin out (Fig. 2.18).  The spin-out cases are summarized in 

Appendix C. 
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Fig. 2.18 Simulator test data under impulse input (160 km/h) 

The natural cross-wind input test results are shown in Fig. 2.19.  Only two vehicle 

configurations are employed in the simulator test.  Because the natural crosswind input 
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magnitude is smaller than the impulse input, participants show better lane-keeping 

performance.  Test results from the baseline vehicle driving at 160 km/h under impulse 

input will be used to develop a lateral driver model in the next chapter.  Test results from 

other speed and configurations will be used for the verification. 
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Fig. 2.19 Lateral position of simulation results from natural crosswind input (160 km/h) 

 

2.3.2 Driving Style Identification 

The driving simulator test results will be used for driver model identification.  A driver 

model structure will be developed and the impulse input crosswind test result will be used 

to fit the parameters.  The impulse crosswind test is selected because identical impulses 

provide enough excitation and repetition.  The impulses 2-5 are used for identification 

because they are separated enough that the driver-vehicle response would have settled 

before the next impulse.  Fig. 2.20 shows twenty-four participants’ yaw-rate responses of 

impulses 2-5.  The four impulses are shifted and plotted on top of each other.  It is shown 

that different driving styles exiting between drivers and even for the same drivers.  If 

driving styles can be categorized, the basis of lateral driving may be able to be identified.  

And a lateral driving model structure can be developed based on that basis. 
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Fig. 2.20 Yaw-rate responses of the first four impulses from all test participants 

To help indentifying driving styles and reducing uncertainties, averages of 

impulses 2-5 response are taken.  An example from driver 1 is shown in Fig. 2.21.  The 

four impulse responses are from 35 sec to 70 sec in the original data.  They are divided 

into 8 sec segment and sign conventions of the second and the fourth are modified based 

on the crosswind direction. 
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Fig. 2.21 The yaw-rate responses of driver 1 under the first four impulses  

The average of driver 1 is calculated and the steering wheel angle and yaw-rate 

plot is shown in Fig. 2.22. 
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Fig. 2.22 Example plot of steering wheel angle and yaw-rate after averaged 

Averages of the twenty-four drivers are calculated and the results are shown in 

Fig. 2.23.  The difference within drivers is reduced and their driving styles can be easier 

to categorize. 
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Fig. 2.23 Averaged yaw-rate responses of the first four impulses from test participants 

To validate this procedure, the average of the next four impulses are also 

calculated and compared with the first four (Fig. 2.24).  Behaviors in the first four and the 
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second four impulses responses are very similar, which confirm that the average can 

better highlight the individual driving style. 
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Fig. 2.24 Averaged yaw-rate responses of the first four and the second four impulses 

The individual driving styles are categorized into four groups, smooth, rough, 

precise and over-reacting (Fig. 2.25).  Smooth drivers have less oscillations and slower 

responses; rough drivers have more oscillations but faster responses.  The precise drivers 

have the fewest oscillations and the fastest response.  Finally, the over-reacting drivers 

have the largest overshot.  In the next chapter, a lateral driver model will be developed 

based on the analysis of these four driving styles.  A lateral driver model structure will be 

developed and the model performance will be evaluated using the fitting results of four 

driving styles. 
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Fig. 2.25 Driving style categorized from averaged impulse responses 

2.4 Summary 

An analytical vehicle model (UMTRI wind-steer model) is developed for driver vehicle 

dynamic response analysis and CarSim model is used for the driving simulator test and 

potential AST design.  Both models are calibrated against the road test data.  The 

analytical model is used to analyze vehicle crosswind sensitivity.  Based on the 

sensitivity analysis, variation in C.G. position is found to have the highest sensitivity to 

the crosswind input.  Along with the next four highest design parameters, total five 

vehicle configurations are selected for the fixed-base driving simulator test.  Twenty four 

test participants are recruited and successfully complete the simulator test.  The simulator 

test results are presented and four driving styles are identified in the impulse crosswind 

input test.  The four driving styles will be used for developing a lateral driver model 

under crosswind. 
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CHAPTER 3 

 LATERAL DRIVER MODEL DEVELOPMENT 

3.1 Motivation 

The simulator test results are used to develop a lateral driver model under crosswind in 

this chapter.  This driver model can capture driver’s behavior under the strong crosswind, 

including during spin-outs that are observed in the test data.  Lateral driver model 

performance is assessed in both time and frequency domain.  A linear analysis is also 

provided for understanding the stability problem due to driver limitations.  Finally, two 

excises are presented to demonstrate the benefit of this lateral driver model. 

3.2 Lateral Driver Model for Strong Crosswind 

The goal is to develop a lateral driver model that can capture both normal and anomalous 

driving behaviors.  This driver model needs to be flexible enough for fitting different 

driving styles and, at the same time, includes driver limitations so that this model will 

spin out like test participants do.  Four driving styles categorized in the previous chapter 

are used to help understand the fundamental of lateral driving under crosswind.  

MacAdam’s driver model [18] will be a bench-marking model to start with because of its 

proven performance of modeling the lateral driving.  Then, a modification to the 

MacAdam’s model is introduced and its performance is assessed.  In time domain, yaw-

rate is considered to be the most important index for predicting crosswind stability.  So 

yaw-rate fitting result is our primary performance index.  In frequency domain, the 

model’s ability to capture the characteristics of test participants is shown. 
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3.2.1 MacAdam’s Driver Model 

MacAdam’s driver model considers the lateral driving as both prediction and 

optimization process.  The optimal steering input that minimizes the error between 

desired vehicle states and predicted vehicle states in a preview horizon is calculated.  The 

simplest MacAdam’s driver model assumes the steering input remains constant in the 

preview horizon and considers the lateral displacement as the only desired trajectory to 

follow.  Under a strong crosswind, yaw-rate response is very important for the driver 

subjective feeling.  Therefore, both lateral displacement and yaw-rate are choosing as the 

desired vehicle states in this study.  The resulting cost function in MacAdam’s driver 

model is shown in equation (3.1) and wr is the weighting for the yaw-rate. 

     
T

drd dttrtrwtyty
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22
)()()()(

1
 (3.1) 

The preliminary fitting results (Fig. 3.1) show that the MacAdam’s driver model 

can model general behavior of the crosswind maneuver.  However, the MacAdam’s 

driver model is obviously too smooth.  It captures the average driving behavior but 

misses some high frequency contents. 
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Fig. 3.1 MacAdam’s driver model fitting results compared with four driving styles 

Fitting residues from the MacAdam’s model are significant but interesting (Fig. 

3.2).  The residues seem to have the shape of an impulse response of second order 
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systems for all driving styles.  This impulse response of second order systems may be a 

result of an instantaneous feedback reaction to crosswind disturbances.  MacAdam’s 

model assumes drivers control the vehicle with preview and prediction mechanisms.  

Drivers can anticipate future vehicle states and perform optimal driving controls.  

However, when a unexpected disturbance happened, drivers may not be able to anticipate 

and some instantaneous feedback reactions may occur.  This unanticipated or, perhaps, 

―panic‖ behavior can be modeled by an impulse response of second order systems.  When 

drivers encounter a sudden disturbance, an impulse response is induced.  The 

characteristics of this impulse response should be independent to the vehicle because it 

may be a result of panic, not a result of preview and prediction controls.  The impulse 

will die out depending on the characteristic of the second order system and the 

MacAdam’s model part will regain the control and continue the path following task.  The 

overall crosswind driving behavior can be described by the MacAdam’s driver model 

which dominates the normal lateral driving; and a second order system impulse response 

which models an instantaneous feedback reaction of crosswind disturbances. 
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Fig. 3.2 Fitting residues of MacAdam’s driver model 
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3.2.2 Feedback MacAdam’s Driver Model 

A new driver model that combines the MacAdam’s driver model and an instantaneous 

feedback reaction for lane-keeping under crosswind disturbances is shown in Fig. 3.3.  

The desired lateral displacement (yd) and the desired yaw-rate (rd) are inputs of the 

MacAdam’s driver model along with the current lateral displacement (y), lateral velocity 

(Vy), yaw angle (Ψ) and yaw-rate (r) for predicting vehicle future states.  Time delay (Td) 

is included to model the neuromuscular delay.  The instantaneous feedback reaction is 

modeled as a second order system which has an input: lateral acceleration. 
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Fig. 3.3 MacAdam’s driver model with feedback reaction 

This feedback MacAdam’s driver model is fitted against four driving styles. One 

fitting result is shown in Fig. 3.4.  The feedback MacAdam’s driver model fits steering 

wheel angle and yaw-rate much better than the original MacAdam’s model. 
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Fig. 3.4 One fitting example of feedback MacAdam’s driver model 
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The feedback MacAdam’s driver model is fitted to all four driving styles.  The 

results are shown in Fig. 3.5.  The feedback MacAdam’s model shows sufficient 

flexibility to model different driving styles.  It can model the slow responses of smoother 

drivers as well as the excessive over-shoot of over-reacting drivers. 
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Fig. 3.5 Fitting result of feedback MacAdam’s driver model with four driving styles 

The RMS error between the yaw-rate of test data and the model prediction yaw-

rate is used as a performance index.  The smaller RMS error represents a better model 

fitting performance.  The results are shown in Table 3.1.  The feedback MacAdam’s 

driver model shows about 20% smaller RMS error than the MacAdam’s model.  The 

―precise‖ driver type has less improvement perhaps because it has the least effect from 

the feedback reaction, which can be shown in their parameters values (Table 3.2). 
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Table 3.1 RMS error of yaw-rate prediction comparison 

 Rough Smooth 
Over- 

reacting Precise 

MacAdam’s 

driver model 
deg/s 

(STD) 

1.116 

(0.186) 

0.962 

(0.228) 

2.028 

(0.157) 

0.789 

(0.031) 

Feedback 

MacAdam’s 

driver model 

deg/s 

(STD) 

0.898 

(0.171) 

0.770 

(0.185) 

1.307 

(0.252) 

0.732 

(0.121) 

  -19.5% -20% -35.6% -7% 

The parameter values of driver models are listed in Table 3.2.  Smooth drivers 

have the largest time delay, hence, slower response.  Over-reacting drivers have the 

largest feedback gain thus excessive over-shoot.  Precise drivers have the longest preview 

time, the smallest feedback gain, and the highest weighting on yaw-rate, all contributing 

to a better control effort and less panic reaction.  The flexibility of the feedback 

MacAdam’s model is demonstrated by fitting different driving styles.  The less yaw-rate 

prediction error verifies the time domain performance of this model.  The frequency 

analysis will be provided in the next section and its ability to model both normal and 

difficult driving will be demonstrated. 

Table 3.2 Parameters of feedback MacAdam’s driver model for the four driver types  

  Rough Smooth Over-reacting Precise 

Parameters 

for 

MacAdams 

Model  

Tp (sec)  1.7 1.7 1.4 1.9 

Td (sec)  0.5 0.7 0.4 0.4 

Yaw-Rate Weighting (wr) 50 150 50 200 

Parameters 

for 

Feedback 

Reaction  

gain (x10
-4

) 2.5 1.5 3.4 0.375 

damping (ζ) 0.63 0.2 0.53 0.2 

stiffness (wn) (rad/s)  6.32 6.32 7.07 6.32 

3.3 Frequency Responses of the Feedback MacAdam’s Driver Model 

The objective here is to analyze driver behavior under frequency domain and to validate 

the feedback MacAdam’s model.  Wallentowiz’s method [12] is used to analyze the 

frequency response.  The test data is divided into two sets based on crosswind input 

frequency (Fig. 3.6).  The slow crosswind input includes impulse 2-9.  It represents an 

easier driving task because impulses are separated enough that the driver-vehicle 
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response would have settled before the next impulse.  The fast crosswind input includes 

all the rest impulses.  It is considered as a difficult driving task because most of the test 

drivers spin out within this region. 
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Fig. 3.6 Definition of fast and slow crosswind input for frequency analysis 

3.3.1 Frequency Analysis 

The frequency analysis method proposed by Wallentowiz emphases the relative 

magnitude of the open-loop vehicle frequency response and the closed-loop driver 

vehicle frequency response.  It is suitable for this research because the driver’s effect on 

vehicle behavior is one of our major focuses.  Wallentowiz’s method [12] uses measured 

closed-loop vehicle responses on the real road to the obtain open-loop vehicle response, 

because direct measurement of the vehicle open-loop response on the real road is difficult.  

In his method, measured steering angle is used to calculate the yaw-rate due to the 

steering through a bicycle model.  The calculated yaw-rate is then subtracted from the 

measured yaw-rate.  Thus, the driver’s steering influence could be removed and the open-

loop vehicle yaw-rate due to only crosswind is obtained.  However, in a simulator test, 

direct measurement of the vehicle open-loop response under crosswind is feasible.  

Therefore, we obtain both vehicle open-loop frequency responses and closed-loop 

frequency response from simulations directly (Fig. 3.7). 
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Fig. 3.7 Frequency responses of test participants (160 km/h) 

Wallentowiz describes that if the magnitude of the closed-loop frequency 

response is smaller than the magnitude of the open-loop response, the driver is 

attenuating the crosswind disturbance (frequently the case in the lower frequency range).  

If the magnitude of the closed-loop response is larger, the driver is amplifying the 

crosswind disturbance (in the intermediate frequency range).  Finally, if the closed-loop 

and the open-loop response are close, it means the driver has exceeded his/her bandwidth 

and no longer controls the vehicle (in the high frequency range).  Basically, this analysis 

is focus on the relative magnitude of the open-loop and the closed-loop response.  

Therefore, the closed-loop response can be normalized against the open-loop response to 

simplify this analysis.  One example is shown in Fig. 3.8.  If the magnitude is lower than 

one, the driver is attenuating the crosswind disturbance.  If the magnitude is larger than 

one, the driver is amplifying the crosswind disturbance. 
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Fig. 3.8 Normalized frequency response 
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The normalized frequency responses from the slow crosswind input of all twenty-

four drivers are shown in Fig. 3.9.   In the slow crosswind input, all drivers can attenuate 

the crosswind effect at lower frequency (< 0.3 Hz).  Different drivers have different 

amplifications at intermediate frequency (0.3-1 Hz).  Finally, they all have a bandwidth 

that they cannot response to crosswind input (> 1 Hz) anymore. 
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Fig. 3.9 Normalized frequency responses of test participants 

In Fig. 2.25, four different driving styles are categorized.  The same groups of 

drivers are plotted in frequency domain (Fig. 3.10).  Over-reacting drivers have the 

highest amplification in 0.3-1 Hz and precise drivers have the lowest amplification.  And 

there is no significant difference between smooth and rough drivers in the frequency 

analysis.  The normalized frequency responses of the MacAdam’s model and the 

feedback MacAdam’s model are both calculated and compared with four driving styles. 
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Fig. 3.10 Normalized frequency responses of four driving styles under slow inputs 
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The normalized frequency responses of the slow and the fast crosswind input are 

compared in Fig. 3.11.  It can be seen that, under fast crosswind input, the attenuation is 

not as significant as under the slow crosswind input.  Most drivers even amplify vehicle 

responses (normalized frequency responses larger than one) at lower frequencies.  This 

suggests a more difficult driving task in the fast crosswind input than in the slow 

crosswind input. 
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Fig. 3.11 Normalized frequency responses of the twenty-four test participants (fast and 

slow inputs) 

Frequency responses of driver models are shown in Fig. 3.12 and Fig. 3.13 to 

compare their performance.  The MacAdam’s model has peak intensification at around 

0.2-0.5Hz, which is lower than test drivers (Fig. 3.12).  The MacAdam’s model also has 

fewer high frequency components, especially compares with over-reacting drivers.  The 

lack of high frequency components explains the smoother response of the MacAdam’s 

model observed in the time domain.  Under the fast crosswind input, the MacAdam’s 

model is also quite different from test drivers.  Test drivers have frequency responses 

around one (which means no attenuation) at frequency below 0.4 Hz and high 

intensifications above 0.4 Hz.  However, the MacAdam’s model still shows attenuations 

at lower frequency and a smoother transaction to higher frequency. 
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Fig. 3.12 Frequency responses of MacAdam’s driver model compared with test 

participants 

The frequency response of the feedback MacAdam’s driver model is shown in Fig. 

3.13.  Under the slow crosswind input, the feedback MacAdam’s model has high 

frequency contents, which is similar to frequency responses of test drivers.  Under the 

fast crosswind input, the feedback MacAdam’s model has a low frequency response 

around one and a high intensification above 0.4 Hz.  Both are similar to test drivers.  
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Fig. 3.13 Frequency responses of feedback MacAdam’s driver model compared with test 

participants 

3.3.2 Summary 

A lateral driver model is developed to obtain closed-loop vehicle responses under 

crosswind.  This developed driver model is a combination of the MacAdam’s driver 

model and an instantaneous feedback reaction of crosswind disturbances.  Time and 

frequency responses of this driver model are compared with the MacAdam’s driver 

model.  In the time domain, the feedback MacAdam’s driver model has smaller RMS 

yaw-rate error with the test data.  In the frequency domain, the feedback MacAdam’s 

driver model also has much similar frequency components in both slow and fast 

Slow crosswind 
input 

Fast crosswind 
input 

Slow crosswind 
input 

Fast crosswind 
input 
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crosswind input.  The feedback MacAdam’s model is shown to be able to model the 

human normal driving behavior under crosswind.  In the next section, the analysis of 

anomalous behaviors under crosswind will presented and the ability to model those 

behaviors, which lead to driving accident, will also be shown. 

3.4 Lateral Human Anomaly Behaviors Leading to Driving Accident 

The goal of this example is to analyze crosswind induced vehicle stability problems and 

driving accident induced by human driver’s limitations.  One effect of the vehicle 

instability under crosswind is spin-out, which is observed in Fig. 2.18.  In this section, a 

linear analysis is provided to explain behaviors that lead to spin-out.  Simulations is also 

used to verify the analysis. 

3.4.1 Lateral Driving Accidents under Strong Crosswind Wind 

One significant driving accident observed in the simulator test is the spin-out.  All 

participants handle the lane-keeping task very well at the 100 km/h impulse input but 

most of them spin out at the 160 km/h impulse input.  During the 160 km/h impulse 

input, participants can control the vehicle when crosswind input frequency is slower than 

0.1Hz (< 80 sec in the test time).  Seventeen out of twenty-four participants spin out 

when crosswind input frequency is faster than 0.1 Hz (80-120 sec in the test time) (Fig. 

3.14).  In the following section, we will analyze driver behaviors that cause spin-outs in 

the driver vehicle stability point of view. 
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Fig. 3.14 Vehicle side slip angle in spin-out accidents (160 km/h baseline vehicle) 

3.4.2 Linearized Driver Vehicle Model  

The analysis is based on a linearized model.  Closed-loop poles of the linearized system 

are used to indicate the system stability.  The proposed model structure includes a block 

based on the MacAdam’s model which provides the preview/predictive functions.  The 

preview/predictive functions are non-linear for the general path following.  However, the 

MacAdam’s model can be approximated as a constant feedback controller in lane-

keeping maneuvers.  As shown in Fig. 3.3, the MacAdam’s model has two processes: 

prediction of future vehicle states in a preview horizon and calculation of the optimal 

control input that minimizes the error between desired vehicle states and predicted future 

vehicle states.  In this example, we assume the MacAdam’s model uses a linear vehicle 

model for the prediction, so that future vehicle states in a preview horizon only depend on 

initial vehicle states.  Desired vehicle states in the lane-keeping maneuver are assumed to 

be zero (zero lateral displacement and zero yaw-rate).  Therefore, the optimal control 

input is only depends on predicted vehicle states.  Thus, the optimal control input is 

actually only depends on the initial vehicle states.  The MacAdam’s model can be 

approximated as a constant gain state feedback controller with a delay (Fig. 3.15).  
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Fig. 3.15 Linearized driver/vehicle system diagram  

The constant gain KMacAdam depends on the linear vehicle model, preview time 

(Tp) and the yaw-rate weighting (wr).  Detailed derivation of KMacAdam can be found in 

Appendix F.  Furthermore, time delay Td is replaced with a second order pàde 

approximation.  Therefore, poles of the linearized driver/vehicle system can be obtained. 

3.4.3 Driver Limitation Analysis 

There are two questions regarding this analysis: what cause the instability and how severe 

they can be?  In the fixed based simulator test, the open-loop vehicle response is 

deliberately designed to maintain the stability at both 100 and 160 km/h.  However, 

seventeen out of twenty-four participants spin out during the 160 km/h test.  Participants 

is asked to perform at their best to stay in the lane and there must be some limitations that 

prevent them doing so.  The first possible limitation would be the driver’s time delay.  

Time delay is inherited in all drivers with different length.  The linear model is used to 

analyze the stable limit of time delay at a given preview time and a yaw-rate weighting.  

A root contour of the dominate poles location is plotted by varying preview time and time 

delay. 
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Fig. 3.16 Root contour plot with varying preview time and time delay 

The contour starts with a fixed Td, then increasing Tp from ―Td+0.1‖ sec to 2.0 

sec.  For example, if Td is zero, then Tp is increased from 0.1 sec to 2.0 sec.  By doing so, 

Tp is always larger than Td.  In Fig. 3.16, increasing preview time moves poles to the left 

and increases the stability.  On the contrary, if time delay is larger than 0.4 sec, increasing 

time delay decreases the stability.  The maximum time delay allowable for maintaining 

the stability can be summarized in Fig. 3.17.  For example, if the preview time is 2 sec, 

time delay cannot be longer than 1 sec.  Without the weighting on yaw-rate, time delay 

needs to be shorter than about half of the preview time.  With the weighting on yaw-rate, 

the model can tolerate longer time delay for the same preview.  However, the effect of 

adding the yaw-rate weighting is small comparing with the effect of time delay.  

Therefore, we will not focus on yaw-rate weighting in the following analysis. 
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Fig. 3.17 Stability limits of preview time and time delay 
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Based the analysis, the original MacAdam’s model itself can result a spin-out if 

time delay is large enough or preview time is too short.  However, time delay and 

preview time identified in the test data (in lower crosswind input frequency) are not 

sufficient for causing instability.  Therefore, only time delay is not enough to explain 

spin-outs in the simulator test.  The spin-out happened under high frequency crosswind 

inputs is either caused by participants’ increasing in time delay (which is unlikely) or 

other mechanisms.  The second order system used to model the instantaneous feedback 

reaction behavior is another possible source of instability.  The instantaneous feedback 

reaction is hypothesized to be a result of panic.  Some drivers (precise drivers) assumed 

to have more experience and confidence that they have small gain in the second order 

system. Some drivers (over-reacting drivers) have limitations in their control 

performance and, literately, over-react to the disturbance.  The effect of the gain in the 

second order system is analyzed by a root contour plot with varying the gain and time 

delay (Fig. 3.18). 

-3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1

-10

-8

-6

-4

-2

0

2

4

6

8

10

Root Contour (Feedback Gain (K) and Time Delay )

real axis

im
a

g
in

a
ry

 a
x

is

 

 

K = 10%
0.9

1.0
0.80.70.6

T
d
 = 0.5

K = 100%

K = 200%

Rough

Smooth

 

Fig. 3.18 Root contour plot with varying feedback gain and time delay 

The second order system gain identified in the test data is varied from 10% to 

200%.  The analysis shows that increasing the gain moves poles to the right hand side, 

which decreases stability.  However, the second order system gain and time delay 

identified under the slow crosswind input are still not severe enough to induce instability.  

This may explain why all participants can maintain stability during the slow crosswind 
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input.  The mechanism that causes spin-outs during fast crosswind input needs further 

investigation. 
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Fig. 3.19 Tire slip angle from CarSim simulator during the impulse input of 160 km/h 

Another source of instability is driver’s inability to have a perfect internal model.  

In the MacAdam’s model, the driver uses a linear internal model to predict vehicle’s 

future states.  The nominal model is linearized assuming the constant forward speed and 

the zero slip angle.  When large vehicle motion is induced (by crosswind), large tire slip 

angle is generated (Fig. 3.19) and the linear assumption may not be valid anymore.  In 

Fig. 3.20, the actual tire force of front and rear tires from the CarSim is plotted compared 

with the linear approximated tire model.  The right hand plot shows the approximation 

error in percentage.  Despite the large numerical error around the zero slip angle, the 

approximation error of the linear tire model is small when tire slip angle is small (< 1 

deg).  However, the approximation error can be very significant when the tire slip angle 

increases (> 1 deg) and tires become saturated.  We assume the driver does not know it 

and steer the vehicle as if tires can satisfy the lateral force demand.  This will introduce 

additional stability problem. 

  

Fig. 3.20 Error between actual tire force and force predicted by a linear tire model 
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To model the stability problem induced by model uncertainties, the constant state 

feedback gain (KMacAdam) that used to approximate the MacAdam’s model is first 

obtained based on the nominal vehicle model and corning stiffness.  Then, the cornering 

stiffness in the linear vehicle model is varied to study the possible effect of model 

uncertainties.  The root contour with model uncertainties and time delay is plotted in Fig. 

3.21.  The percentage in model uncertainties represents the variation in the cornering 

stiffness of both front and rear tires.  The increasing of model uncertainties will move 

system poles to the right.  When 30% model uncertainty is introduced, smooth driver 

becomes unstable.  30% model uncertainty due to the error of linear tire model 

approximation exists when slip angle is larger than one degree (Fig. 3.20). 
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Fig. 3.21 Root contour with varying model uncertainties and time delay 

The model uncertainties become significant when tire slip angle is large (> 1 deg).  

Large tire slip angle is generally observed under high frequency crosswind input in the 

simulator test.  As shown in Fig. 3.19, one degree of tire slip angle is easily exceeded 

after 80 sec in simulation.  This may explain why participants can handle the lower 

frequency crosswind input but spin out after 80 sec in simulation.  Under the lower 

frequency crosswind input, participants can control the vehicle even with time delay and 

panic behaviors because tires are not saturated and the linear assumption holds.  At 

higher frequency, tires are saturated due to large tire slip angle induced by both 
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crosswind and drivers themselves.  The model uncertainties increases and driver 

vehicle/system becomes unstable. 

3.4.4 Simulation Results 

Twenty-four sets of parameters were fitted from the test drivers under impulse input 160 

km/h (Appendix E).  Those twenty-four sets of parameters are used to simulate the spin-

out (Fig. 3.22).  The MacAdam’s model with time delay as the only instability 

components was simulated first.  In the twenty-four sets of parameters, only eight of them 

spin-out.  The feedback MacAdam’s models were, then, simulated and nineteen of them 

spin-out because the extra unstable component in the feedback part. 
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Fig. 3.22 Model predicted spin-out accident compared with test data  

The simulation result is summarized in Table 3.3.  Among the seventeen 

participants who spin-out, the MacAdam’s model only captures eight of them (2, 4, 10, 

12, 14, 18, 21, and 24).  The feedback MacAdam’s model can model all seventeen spin-

outs observed in test participants, but it introduces two more spin-outs that is not 

observed in tests (5 and 8).  Only time delay in the original MacAdam’s model is not 

enough to capture all seventeen spin-out participants’ behavior.  The MacAdam’s model 

with feedback reaction is needed to capture more spin-out behavior. 
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Table 3.3 Model predicted spin-out accident compared with test data 

sec 1 2 3 4 5 6 7 8 9 10 11 12 

Test Data 
Spin-

out 

Spin-
out 

N/A 
Spin-
out 

N/A 
Spin-

out 

Spin-

out 
N/A 

Spin-

out 

Spin-
out 

N/A 
Spin-
out 

MacAdam 

only 
N/A 

Spin-

out 
N/A 

Spin-

out 
N/A N/A N/A N/A N/A 

Spin-

out 
N/A 

Spin-

out 

MacAdam + 

feedback 

Spin-

out 

Spin-

out 
N/A 

Spin-

out 

Spin-

out 
Spin-

out 

Spin-

out 

Spin-

out 
Spin-

out 

Spin-

out 
N/A 

Spin-

out 

 
13 14 15 16 17 18 19 20 21 22 23 24 

Test Data 
Spin-

out 

Spin-

out 
N/A N/A N/A 

Spin-

out 
Spin-

out 

Spin-

out 

Spin-

out 
Spin-

out 

Spin-

out 

Spin-

out 

MacAdam 

only 
N/A 

Spin-

out 
N/A N/A N/A 

Spin-

out 
N/A N/A 

Spin-

out 
N/A N/A 

Spin-

out 

MacAdam + 

feedback 

Spin-

out 

Spin-
out 

N/A N/A N/A 
Spin-
out 

Spin-

out 

Spin-

out 

Spin-
out 

Spin-

out 

Spin-

out 

Spin-
out 

 

 The hypothesis behind two spin-outs that do not happened in the simulator test is: 

participants changed their driving strategy during the high frequency crosswind input.  

Some drivers panicked and increased the steering motion, which can be modeled by the 

feedback reaction module.  However, some may released the steering wheel so that they 

wouldn’t spin out.  This time-varying behavior was not modeled, therefore, two 

unexpected spin-out happened in simulations. 

3.4.5 Summary 

A linearized driver/vehicle model is used to analysis the stability under crosswind.  The 

preview/prediction function of the MacAdam’s model is simplified as a constant state 

feedback control and time delay is approximated by a second order pàde transfer 

function.  The closed-loop system poles location is used in determine the system stability.  

The analysis shows that increasing preview time can increase the system stability.  And 

increasing time delay, the feedback gain, and model uncertainties will decrease the 

system stability.  Simulation results show that the feedback MacAdam’s model can 

capture twenty-two out of twenty-four participants in terms of spin-out occurrences.  Two 

case that are unable to modeled may due to the time-varying natural of human. 

3.5 Application of the Crosswind Driver Model 

A lateral driver model under crosswind is developed.  This model uses the MacAdam’s 

driver model for the path following and augments it with a second order system to 
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simulate panic behavior under the sudden crosswind input.  Two excises will be provided 

in this section to demonstrate applications of this feedback MacAdam’s model.  In 

section 3.5.1, closed-loop vehicle responses under crosswind will be obtained using the 

feedback MacAdam’s model and results will be used to evaluate the vehicle crosswind 

stability.  In section 3.5.2, the feedback MacAdam’s model will also be used to evaluate 

active safety systems for improving crosswind stability.  Some preliminary analysis will 

be done for demonstrating the effectiveness of active safety systems and the benefit of 

using the feedback MacAdam’s driver model in the design process. 

3.5.1 Vehicle Stability Assessment 

One major challenge in the vehicle design process is to evaluate the vehicle crosswind 

stability.  Crosswind stability of different vehicle configurations and forward speeds are 

often evaluated by the driver subjective rating.  High level of uncertainty is unavoidable.  

Therefore, an objective assessment based on the vehicle response measurement is desired 

for a more precise vehicle crosswind stability evaluation.  This objective assessment 

needs to have high correlation with the subjective rating so that it can be used to predict 

driver’s preference.  Meanwhile, a simulation based assessment is also desired such that 

time and cost can be minimized.  The open-loop vehicle crosswind sensitivity is widely 

used because of its simplicity and sufficient correlation with the subjective rating.  

Therefore, the open-loop vehicle crosswind sensitivity is first studied.  The correlation 

between the open-loop crosswind sensitivity and the subjective rating is calculated as the 

bench-mark.  Then, a closed-loop objective assessment is proposed and the improvement 

over the open-loop sensitivity is shown.  Finally, a simulation based objective assessment 

which utilizes the feedback MacAdam’s model is presented. 

To calculate the correlation, the subjective rating is first obtained from test 

participants during the fixed based simulator test (section 2.2.3).  A 10-point scale is used 

to rank each configuration regarding driver’s general impression of the vehicle stability.  

A vehicle configuration described as ―uncontrollable‖ would receive a value of 1.  Value 

of 10 would indicate that there is no perceived effect of crosswind.  During tests, learning 

effect is observed and drivers tend to give later configurations higher score perhaps 

because they perform better in tests due to learning.  Therefore, the configuration test 
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order is shuffled; Twenty-four participants are divided into four different order groups.  

Furthermore, starting from participant thirteen, a repeated run of baseline vehicle at 160 

km/h is added to quantify the learning effect.  The subjective rating (listed in Appendix 

D) is plotted in Fig. 3.23.  Their corresponding test order is listed as the label of the x-

axis.  The bar height represents the average score and the error bar represents one 

standard deviation.  Started from participant thirteen, a repeated run of baseline vehicle at 

160 km/h is added as shown by the black error bar.  Participants tend to rate the repeated 

run of baseline vehicle at 160 km/h higher than the original run.  A significant learning 

effect exists. 
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Fig. 3.23 Participants subjective rating with respect to different test order (without 

adjusting for learning effect) 

To compensate for the learning effect, the repeated run of baseline vehicle (black 

error bar) is used.  In Fig. 3.24, subjective rating of participants 13-18 is shown as an 

example.  The learning effect is assumed to increase the subjective rating linearly with 

respect to time.  The linear relation can be drawn between with the original run and the 

repeated run of baseline 160 km/h (dash arrow in Fig. 3.24).  Therefore, increasing in the 

rating can be calculated and subtracted from the original scores (solid arrow in Fig. 3.24).  

Individual learning effects are assumed to be the same as the group learning effect 

regardless of vehicle speed.  The same amount of subtraction is applied to all participants 

in this group and to all speed under the same configuration. 
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Fig. 3.24 Linear compensation of learning effect 

The same procedure is applied to the participants 19-24.  Because the lack of the 

repeated run in participant 1-12, the learning effect is assumed to be the same as the 

average of group 13-18 and 19-24.  Therefore, adjustments are also made in rating results 

of participants 1-12 accordingly.  With this learning effect compensation, the adjusted 

subjective rating results are obtained (Fig. 3.25).  Results show that there is no significant 

change in participants’ preferences regarding to vehicle configurations at 100 km/h.  At 

the higher vehicle speed (160km/h), however, the decreased aerodynamic yaw moment 

coefficient configuration receives (statistically significant) the highest subjective rating.  

The spoiler configuration has high average but also high standard deviation, which 

represents a high level of uncertainty by test participants.  The difference of the rest 

configurations is statistically insignificant. 
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Fig. 3.25 Participants subjective rating (all participants lumped, learning effect 

compensated) 
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The driver subjective assessment of some configurations is literally 

indistinguishable, e.g., for baseline vs. cargo.  This is because of fuzzy and imprecise 

nature of the human subjective rating.  We try to define an objective assessment system, 

which hopefully will provide an evaluation method that is more precise.  A major goal of 

this excise is to find an objective assessment index that can predict the subjective rating 

without conducting tests.  As shown in Fig. 3.26, if a high correlation between the open-

loop crosswind sensitivity and the driver subjective rating can be established, this 

crosswind sensitivity can be used for vehicle design iterations without using test results.  

The final design will still need to be validated on a real prototype vehicle.  But the driver 

model can be used to reduce time and cost. 
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Fig. 3.26 Crosswind sensitivity through simulator test 

It is found in the literature that open-loop yaw-rate has good correlation with the 

driver subjective rating.  Therefore, the open-loop yaw-rate is studied first.  Different 

vehicle configurations in the open-loop are simulated with the same impulse crosswind 

scenarios to obtain open-loop vehicle yaw-rate responses.  Open-loop yaw-rate crosswind 

sensitivities are defined as the RMS yaw-rate response of the crosswind impulse 2-9.  A 

larger RMS of yaw-rate suggests a lower subjective rating that this configuration will get.  

Therefore, the reciprocal of RMS yaw-rate is used and plotted with the subjective rating 

in Fig. 3.27. 
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Fig. 3.27 Open-loop yaw-rate vs. lumped driver’s subjective rating 

Open-loop yaw-rate crosswind sensitivity seems to have reasonable correlation 

with statistic of the subjective rating.  Statistical results of the subjective rating are often 

used to represent a group of people, but individual responses vary significantly.  

Disagreement between the open-loop yaw-rate crosswind sensitivity and the individual 

driver subjective rating can be found.  Ten crosswind sensitivities are calculated respect 

to five vehicle configurations and two speeds each.  The correlations between this ten 

entry vector of crosswind sensitivities and twenty-four individual driver’s subjective 

rating are calculated and shown in Fig. 3.28. 
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Fig. 3.28 Correlation between open-loop crosswind sensitivity and individual driver’s 

subjective rating  
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The correlations between the open-loop crosswind sensitivity and the individual 

driver subjective rating are good (average 0.79).  But driver 4 and 6 are significantly low 

(below 0.4).  Open-loop yaw-rate is often considered as a good index in literature, they 

do not predict individual drivers’ preferences well.  As shown in Fig. 3.29, we are trying 

to establish the correlation between the subjective rating and the closed-loop objective 

assessments. The hypothesis is: Closed-loop responses are a better index for representing 

individual preferences because they factor in individual driver’s behavior. 
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Fig. 3.29 Closed-loop objective assessment through simulator test 

The closed-loop objective assessment is defined as RMS of closed-loop yaw rate 

responses from crosswind impulses 2-9.  A ten entries vector of the objective assessment 

of each participant can be calculated from the simulator test data.  Twenty-four sets of the 

objective assessment are obtained and correlations between each objective assessment 

and subjective rating are calculated.  The result is shown in Fig. 3.30.  The improvement 

can be found by using the closed-loop objective assessment to predict the individual 

driver subjective rating.  The correlations between the subjective rating and the closed-

loop objective assessment are higher than correlations obtained from the open-loop 

sensitivity.  Even though the driver 4 and 6 still have the lowest correlation, they are all 

larger than 0.4, a significant improvement from the open-loop sensitivity prediction. 
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Fig. 3.30 Correlation between closed-loop crosswind sensitivity and individual subjective 

rating 

The closed-loop objective assessment shows better correlation for predicting the 

subjective rating.  However, road tests or simulator tests with drivers are still needed to 

obtain the closed-loop objective assessment.  In the following, we will use the driver 

model and simulations to replace test participants and simulator tests, so that we do not 

need to conduct tests for every vehicle designs.  The feedback MacAdam’s model is used 

to predict closed-loop behavior of different vehicle configurations.  Twenty four sets of 

parameters are fitted based on baseline vehicle test results and those twenty-four driver 

model parameters are used to predict the subjective rating of other vehicle configurations.  

The ability of the feedback MacAdam’s model to predict driver’s behavior under 

different vehicle configuration is unknown.  In developing the feedback MacAdam’s 

driver model, two hypotheses are made.  First, drivers would adapt themselves to 

different vehicle characteristics and perform a lateral driving if there is no disturbance.  

Preview time and time delay should be similar under the same driving task if the vehicle 

model is properly adapted.  Second, when unknown disturbance happened, drivers would 

have a feedback response that is independent of vehicle configurations.  The second order 

system in the model should be the same regardless vehicle configurations.  Therefore, the 

feedback MacAdam’s model should be able to predict driver’s behavior under different 

vehicle configurations if a proper internal vehicle model is implemented in the 



 

 

 

 

64 

MacAdam’s model.  Simulations are done to verify the performance of predicting other 

vehicle configurations (Fig. 3.31).  The model parameters is obtained from baseline 

vehicle tests and applied to predict other configuration test results. 
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Fig. 3.31 Feedback MacAdam’s model prediction of different vehicle configurations 

Yaw-rate prediction results for all configurations are similar.  The prediction 

performance of the feedback MacAdam’s model has no significant difference under 

different vehicle configurations.  This shows that the feedback MacAdam’s model can 

predict driver behavior of different vehicle configurations with sufficient consistency.  

Therefore, the feedback MacAdam’s model is used to replace test participants and 

simulate twenty four sets of closed-loop vehicle responses.  The model predicted closed-

loop yaw-rate responses are compared with the subjective rating (Fig. 3.32).  The 

objective assessment based on model predicted yaw-rates has lower correlation with the 

objective assessment of the test data, but it is still better than the correlation with the 

open-loop crosswind sensitivity. 
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Fig. 3.32 Correlation between model predicted closed-loop yaw-rate and individual 

subjective rating 

Open-loop crosswind sensitivities (yaw-rate) can be used to predict a population’s 

subjective rating, but it cannot guarantee for the individual preference.  Closed-loop 

objective assessment (yaw-rate) has better correlation with the individual driver 

subjective rating.  But real human participant is needed.  The feedback MacAdam’s 

model is used to predict closed-loop vehicle responses and the objective assessment.  The 

result shows superior correlation with the individual subjective rating than the open-loop 

sensitivity assessment and it does not need road or simulation tests for every vehicle 

designs.  This closed-loop simulation method provides a better prediction of the 

individual preference and without intensive experiments.   

3.5.2 Variable Gear Ratio Steering System 

The objective of this section is to demonstrate the ability of using the feedback 

MacAdam’s model to evaluate and design active safety systems.  Active steering system 

is chosen as an example because of its raising popularity and its ability to generate yaw 

moment without brake.  Variable gear ratio (VGR) steering system is a simplified active 

steering system and is used here as a preliminary design.  VGR can be divided into two 

categories: angle variable and speed variable [71].  Angle variable VGR system has 

larger steering ratio around the neutral position and smaller steering ratio around extreme 
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positions.  It improves low-speed parallel parking performance, but has no significant 

effect on the high-speed lane-keeping [72].  For speed VGR system, larger ratio is desired 

at high vehicle forward speed for the stability and smaller ratio is used at low vehicle 

forward speed to reduce steering effort.  In this section, the effectiveness of VGR system 

will be evaluated by using the feedback MacAdam’s model.  Closed-loop frequency 

analysis of VGR system will be obtained and its ability to stabilize vehicle will be shown.  

Meanwhile, the drawback of VGR system will also be discussed.  Finally, a new VGR 

system design will be proposed.  The feedback MacAdam’s model will be used to help 

the design process and the performance of this new VGR system will also be discussed. 

A simplified VGR system model is shown in Fig. 3.33.  VGR system has a 

smaller gear ratio at low speed and increase the gear ratio at high speed.  In our 

simulation, the vehicle speed is fixed at 160 km/h.  Therefore, VGR system should have a 

fixed and larger gear ratio in the simulation.  This is modeled as a simple constant gain 

KGR.  When VGR system has a larger gear ratio design, the KGR is small.  KGR will be 

varied to represent different VGR design and their effectiveness will be discussed in the 

following. 
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Fig. 3.33 Simplified VGR system modeling 

Frequency analysis used in section 3.3 is used to analyze the performance of VGR 

system.  Closed-loop frequency responses of vehicle with VGR system from the natural 

crosswind input are obtained by using the feedback MacAdam’s model.   Similar to the 

discussion in section 3.3, a normalized frequency response that has small magnitude is 
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desired.  Normalized frequency responses of VGR systems with different KGR are shown 

in Fig. 3.34. 
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Fig. 3.34 Frequency responses with different VGR system 

With increasing the gear ratio (decreasing KGR), the amount of amplification at 

higher frequency is reduced.  A lower peak gain represents better driver/vehicle 

crosswind stability.  However, with larger gear ratio, the amount of attenuation at lower 

frequency is also reduced (Fig. 3.35).  The amount of attenuation at lower frequency 

represents the driver’s ability to control the vehicle for the disturbance rejection.  In the 

ideal case, driver would like to have zero magnitude at low frequency of the normalized 

frequency response.  It means the driver has the full control of the vehicle and rejects the 

disturbance completely.  The frequency analysis in Fig. 3.35 shows that drivers’ ability to 

reject the disturbance at low frequency is decreased when the gear ratio is increased (KGR 

decreased).  In other words, the low frequency maneuverability is sacrificed for obtaining 

the high frequency stability in this particular VGR design. 
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Fig. 3.35 The attenuation at lower frequency responses with different VGR system 

In VGR design, both high frequency stability and low frequency maneuverability 

are preferred.  However, trade-offs exist between the low peak gain and the low DC gain 

by simply increasing the gear ratio.  A new VGR system is proposed to minimize this 

trade-off.  A VGR system should have a fixed gear ratio when the steering input is at low 

frequency so that drivers can have full control of the vehicle.  At the higher frequency 

steering input, the VGR system should increase the gear ratio for better stability (Fig. 

3.36). 
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Fig. 3.36 VGR system design concept in frequency domain 
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Fig. 3.37 Dynamic VGR system modeling 

The design concept is realized as a dynamic VGR system (Fig. 3.37).  We suggest 

that the gear ratio is unchanged when the steering input frequency is low and the gear 

ratio is increased when steering input frequency is high.  A first order low pass filter can 

be used to realize this design.  Cut-off frequency would be the design parameter and can 

be determined through driver model simulations (Fig. 3.38). 
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Fig. 3.38 Cut-off frequency identification of dynamic VGR system 

Behavior of VGR with different gear ratio is simulated.  Its performance changes 

around 0.2-0.4 Hz.  Above this frequency, increasing the gear ratio would help to 

stabilize the vehicle and below this frequency, the VGR system contaminates the 

maneuverability.  Therefore, a dynamic VGR system that has a cut-off frequency around 
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0.2-0.4 Hz is desired to improve the stability and to reserve the maneuverability at the 

same time. 
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Fig. 3.39 Dynamic VGR system performance compared with speed VGR 

The proposed dynamic VGR significantly reduces the high frequency response 

and maintains the desired low frequency maneuverability (Fig. 3.39).  The dynamic VGR 

design shows superior performance over speed VGR design under natural crosswind 

input.   However, the performance of dynamic VGR cannot be guaranteed under other 

crosswind input maneuvers.   The reason is that the first order low pass filter design in 

this dynamic VGR system will introduce large phase lag.  The phase lag can introduce 

additional instability.  A more advanced filter design can potentially resolve this problem. 

3.5.3 Summary 

A closed-loop objective assessment for vehicle crosswind stability is proposed.  The 

method uses the feedback MacAdam’s model to simulate closed-loop responses of 

different vehicle designs.  This method is better than the open-loop sensitivity assessment 

in term of correlation.  It also requires fewer experiments and human participants as 

needed in obtaining subjective ratings.  The feedback MacAdam’s model is also used to 

evaluate the performance of variable gear ratio (VGR) system.  VGR system ias found to 

be helpful for improving the crosswind stability (lower magnitude peak).  However, it 

also reduces the low frequency maneuverability (higher DC gain).  To minimize the 
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trade-off of VGR system, a dynamic VGR system is proposed.  Dynamic VGR employs a 

low pass filter and changes gear ratio in function of steering input frequency.  The design 

concept is to improve the stability and to reserve the maneuverability at the same time.  

The feedback MacAdam’s model is used to help the design and the performance of the 

dynamic VGR system is superior to original VGR in the lane-keeping task.  However, 

performances of the dynamic VGR in other maneuvers are not guaranteed.  The main 

issue of the dynamic VGR might be the phase lag introduced by the low pass filtering. 

3.6 Conclusion 

The goal of this lateral driving example is to analyze the vehicle stability problem 

induced by crosswind and driving accident induced by human driver limitations.  Both 

numerical simulations and driving simulator experiments are conducted to collect lateral 

driving behavior.  An analytical vehicle model (UMTRI wind-steer model) is developed 

for driver vehicle dynamic response analysis and used for analyzing the vehicle 

crosswind sensitivity.  Based on the sensitivity analysis, variation in C.G. position is 

found to have the highest sensitivity to the crosswind input.  Along with the next four 

highest design parameters, total five vehicle configurations are selected for the driving 

simulator test.  A CarSim model is used for the fixed-base driving simulator test. Two 

crosswind scenarios and two vehicle forward speeds are used.  Twenty four test 

participants are recruited and successfully complete the simulator test.  The simulator test 

results are presented and four driving styles are identified in the impulse crosswind input 

test.  

A lateral driver model is developed based on simulator test results.  This 

developed driver model is a combination of the MacAdam’s driver model and an 

instantaneous feedback reaction of crosswind disturbances.  This feedback MacAdam’s 

model is shown to be able to model the human normal driving behavior under crosswind.  

Driver limitations that lead to anomalous behaviors under crosswind are also analyzed.  

Time delay, panic reaction and the inability to understand the vehicle model are all 

contributing to the vehicle instability.  The feedback MacAdam’s model can capture 

those behavior and result driving accident that observed in simulator tests. 
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Finally, two applications are provided to demonstrate benefits of this lateral driver 

model.  The feedback MacAdam’s model is used to predict closed-loop vehicle responses 

and the objective assessment.  The result shows superior correlation with the individual 

subjective rating than the open-loop sensitivity assessment and it does not need road or 

simulation tests for every vehicle designs.  This closed-loop objective assessment with 

the feedback MacAdam’s model provides a better prediction of the individual preference 

and without intensive experiments.  The feedback MacAdam’s model is also used to 

evaluate the performance of variable gear ratio (VGR) system and accelerates the design 

process.  The trade-off of VGR system is exposed and a preliminary design is proposed to 

minimize the trade-off. 
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CHAPTER 4 

 LONGITUDINAL DRIVING BEHAVIOR STUDY 

4.1 Motivation  

In this study, our focus is to model anomalous behaviors in longitudinal driving.  A 

model template that normally achieves car-following tasks and can be adjusted to 

generate anomalous behaviors is needed.  Many existing car-following models can fulfill 

this need.  However, the majority of them assume driving as a deterministic process, i.e., 

the vehicle states can be calculated exactly from dynamic equations [38], [39] or heuristic 

rules [44], [45].  Precise prediction of vehicle states might be useful in traffic analysis, 

but has little benefits for CW/CA development.  In the actual driving, human would not 

perform deterministically.  The stochastic behavior of driving has been studied in [76]-

[79].  They modeled human randomness with a random noise.  By adjusting the 

magnitude and parameters of this noise, models can be tuned to fit the test data.  This 

modeling procedure can reproduce the stochastic behavior of human drivers.  However, 

those tuning processes of noise magnitude are not convincing and do not reflect actual 

driving behavior well. 

Our aim here is to develop a driver model that emphasizes the stochastic nature of 

drivers.  This model should be able to capture human’s normal driving behavior as well 

as some deviations.  Moreover, those normal and deviated behaviors should be consistent 

with what we observed in realistic driving data in a statistical fashion. 

4.2 Naturalistic Driving Data Base 

The driving database used for the development and evaluation of this driver model is 

from the Road-Departure Crash-Warning (RDCW) System Field Operational Test project 

[73].  The RDCW system was designed to analyze the road departure threat and potential 
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of active safety devices as a remedy. This system was installed on 11 passenger vehicles 

with data acquisition systems.  Seventy-eight test drivers participated and each of them 

drove a test vehicle for four weeks. Total data set represented 83,000 miles of driving and 

over 400 engineering variables were captured at 10 Hz sampling rate. A massive set of 

numerical, video and audio data were collected, including both lateral and longitudinal 

driving behavior (vehicle speed, acceleration, range, range-rate).  Participates of this FOT 

received no instruction or interference about their longitudinal driving behavior. Hence, 

longitudinal driving data can be considered naturalistic and can be used for car following 

study. 

The numerical data signals collected onboard the test vehicles during the FOT are 

stored in the Microsoft SQL format.  There are 89 tables containing over 54 billion data 

points (204 GB in size).  The main database tables are listed below.  The fields in the 

tables of RDCW FOT databases used to analyze longitudinal car-following behavior are 

listed in Table 4.1. 

Table 4.1 List of fields in the tables of RDCW FOT databases [73] 

Field Name Unit Description 

Driver N/A Driver identification code 

Trip N/A Trip index 

Road type  

0 = Freeway/interstate 
1 = Ramp 
2 = Ramp near merge point 

3 = Surface road 

4 = Other (enter in notes) 

Time Csec Time in centi-seconds since the DAS application launch 

StartTime Csec Time in centi-seconds when the CIPV detected 

EndTime Csec Time in centi-seconds when the CIPV disappeared 

AccelPedal Unitless Acceleration pedal position 

Brake N/A Brake switch active 

Engaged N/A Cruise control active 

Speed m/sec Vehicle speed 

Range m Range of the target in front 
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Field Name Unit Description 

Range-rate m/sec Range-rate of the target in front 

Acceleration m/sec/sec Acceleration of target relative to radar 

 

The data needed for longitudinal driving analysis are queried from the SQL 

server.  The query criteria are as follows: 

– Road type 1 & 2 (highway and major road) 

– The same target vehicle (lead-vehicle) was detected 

– The Cruise Control was off throughout the whole engagement 

4,887,660 data points (10 Hz) are queried and sorted based on trip duration. The 

segments that lasted longer than 50 seconds are considered as eligible car-following 

maneuvers.  The results are a total of 3,508 trips from of 78 drivers. 

In the RDCW FOT, the Data Acquisition Systems onboard the test vehicle was 

failed occasionally and the forward radar systems sometimes lost the target vehicle.  

These conditions will cause failure points or ―shot noise‖ in the recorded data which need 

to be removed.  Median filter is a simple and efficient way for removing shot noise and is 

widely used in image processing.  Here, a one-dimensional median filter [74] is 

employed to eliminate those ―shot noise‖.  
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An example of filtered results is show in Fig. 4.1. 
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Fig. 4.1 Median filtering example of RDCW data (n = 10) 
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The shot noises are successfully removed by the median filter. However, the 

filtered data are still contaminated by high-frequency measurement noise.  A simple low-

pass filter is used to deal with high frequency noise.  A third order Butterworth digital 

filter is applied and the cutoff frequency is selected to be .5 Hz.  Furthermore, to avoid 

phase distortion after IIR filtering, a zero-phase digital filtering technique is adopted by 

processing the input signal in the forward and reverse directions [75].  An example of the 

filtered results is shown in Fig. 4.2.  
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Fig. 4.2 Low-pass filtering example of the RDCW data 

A set of two dimensional histograms are presented to illustrate the distribution of 

the RDCW data (Fig. 4.3).  The example plots contain information extracted from ten out 

of seventy-eight drivers.  Data points are plotted in the log scale and the dark color 

represents area with higher concentration.  
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Fig. 4.3 RDCW data distribution 

The range and velocity distribution plot shows that drivers increase the vehicle 

speed with range and maintain the speed after it reaches a desired value (~30m/s). The 

high concentration of data points around the high velocity and the low range region 

represents high speed car-following situations and the data distributed symmetrically 

around zero range-rate implies that drivers are regulating their vehicle with an average  

range-rate of zero.  Several speed profiles are plotted in time domain to provide a better 

understanding of individual maneuver. 
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Fig. 4.4 Examples of velocity profiles from the RDCW database 
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From the RDCW database described above, large number of car-following trips 

are identified and collected.  Simple filtering is applied and to improve data quality.  The 

large quantity of longitudinal human driving data gives us an opportunity to study 

naturalistic human driving behaviors and a good starting point to develop of humanized 

longitudinal driver model and CW/CA algorithms. 

4.3 Stochastic and Deterministic Behavior 

During a car-following task, driver normally regulates the vehicle speed so that the space 

between the following vehicle and the leading vehicle is comfortable large. In the 

meantime, the following vehicle tries to travel at a speed close to a desired speed.  This 

assumption is usually modeled by a deterministic process, like many other car-following 

driver models [31]–[32]. The desired velocity is calculated by certain kinematic or 

dynamic equations.  Thus, the driver’s desire is modeled deterministically.  It works 

reasonable well for macroscopic traffic analysis; however, it is definitely not suitable to 

describe behavior of individual drivers.  This is because human cannot perceive, 

calculate, or control perfectly and human is also unlikely to perform such tasks at a 

regular pace. 

In everyday driving, human driver normally aims to regulate the vehicle speed so 

that the space between the following vehicle and the leading vehicle is large enough.  The 

above statement has two assumptions: human driver has intention to achieve a desired 

vehicle state (speed) and as long as this state was roughly achieved, some deviations 

would be acceptable.  This deviation of control is due to various reasons like driver’s 

imperfections in control, perception, or exogenous disturbances (powertrain dynamics, 

road gradient, etc).  This assumption about deviation of control is discussed in [79] and 

modeled by a random process.  However, the color and magnitude of noises are unknown 

and a tuning step is needed.  In [80], the deviation of braking control of human driver 

under deceleration is acknowledged and modeled as a truncated Gaussian distribution.  In 

this study, we assumed those deviations exist in both braking and accelerating. 

In this section, we assumed that the deviations are related to the space between 

the two vehicles.  When the space (range) is large, there is more room for the driver of 
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the following vehicle to deviate.  Thus, the deviation in control should increase with 

range.  This hypothesis is summarized below and will be verified later in section 4.4. 

Drivers are assumed to have a target vehicle acceleration which is hypothesized to be a 

function of range, range-rate, and/or time headway, which can be viewed as a generalized 

stimulus-response model. 

   had TtRtRfta
d

),(),(   (4.2) 

This desired state will not be achieved exactly and instead will have some deviations, 

which are a function of range. 

   )(tRft    (4.3) 

4.4 Data Analysis and Validation 

The RDCW data is used to verify the hypotheses. In equation (4.2), the desired 

acceleration is assumed to be a function of range, range-rate, and/or time headway.   

First, we plot the relationship between acceleration of the following vehicle and range-

rate.  A simple linear relation can be drawn. 

 

Fig. 4.5 Acceleration vs. range-rate from RDCW data  
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This simple relationship is first discussed in Pipe’s work [31].  If range is taken 

into consideration, the relation is not linear anymore.  In Fig. 4.6, the acceleration and 

range-rate are plotted into different range groups.  The proportional gain P is decreasing 

with range, which means the acceleration is more sensitivity to the range-rate if the range 

is small. 
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Fig. 4.6 RDCW data acceleration vs. range-rate with various range 
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If the constant proportional gain P in equation (4.4) is replaced by a function of 

range (equation (4.6)), the data fit quality is much improved (Fig. 4.7). 
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Fig. 4.7 Third order polynomial in function of range for fitting 

acceleration sensitivity 
 

 

Fig. 4.6 shows that the accelerations of the following vehicle are largely 

proportional to the range-rate, but have a scatter around the linear fit.  This phenomenon 

is discussed in section 4.3 and confirmed there.  The human driver may have a desired 

acceleration that is a function of range-rate and range, but the desired acceleration would 

be achieved in a random distribution.  Acceleration distributions along the fitted line are 

plot in Fig. 4.8 and their standard deviations are calculated (σ).  As Fig. 4.9 shows, the 

standard deviation can be fitted by a second order polynomial. 
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Fig. 4.8 RDCW data acceleration distribution with various range 
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Fig. 4.9 Second order polynomial in function of range for fitting standard deviation of 

acceleration distribution  
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The parameters )3,2,1,0( iPi and )2,1,0( iPi are listed in Appendix H. 

The driver’s actual acceleration is modeled as a stochastic process that has the 

mean as a function of range (ad(R(t))) and the deviation also as a function of range 

(σ(R(t))).  A probability density function [81] is used to describe this stochastic process: 
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The overall stochastic driver model is summarized below.  
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A remaining unknown in the stochastic driver model is the density function f in 

Eq. (4.9).  Brunson [80] adopted a truncated Gaussian distribution for decelerating cases.  

However, the observation in Fig. 4.8 shows that the distribution is not symmetric.  In the 

car-following situation, human drivers have more freedom to decelerate and have more 

constraints in the acceleration.  Therefore, the acceleration distribution shows non-
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symmetric shape with a long tail at the deceleration direction.  To approximate the non-

symmetric distribution, the lognormal distribution (4.10) and the extreme value (4.11) 

distribution [81] are two possible candidates. 
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Curve fitting shows that the extreme value distribution has better agreement with 

the RDCW data.  Therefore, the extreme value distribution will be used in the following 

study. 
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Fig. 4.10 The RDCW acceleration distribution and fitting result of a given range 

4.5 Modification for Time Headway and Driver Model Diagram 

In Equation (4.5), the driver only responds to non-zero range-rate.  Therefore, the model 

may follow the lead vehicle with a very small range or a very large range.  Moreover, the 

proportional gain in Equation (4.5) is a function of range.  If the range is too large (e.g. 

>70 m), the model will hardly response to any stimulus; the following vehicle will thus 

fall behind.  Both situations are not normal car-following behavior.  In reality, human 

drivers also regulate range or time headway as discussed in [37] and [38].  Human drivers 

are assumed to have a desired range and regulate the vehicle speed to achieve the desired 

range.  To capture this behavior, an extra term is included in Equation (4.12). 
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  ))()(()()()( tVTtRCtRtRPta Fhd    (4.12) 

where C is a constant gain for range regulation and hT  is the time headway. 

The time headway Th in Equation (4.12) is obtain from the RDCW data.  The 

actual time headway of the human drivers can be calculated by dividing range with 

range-rate.  Its distribution was shown in Fig. 4.11, which contains the data from driver 1 

only.  The time headway distribution is approximated as a random process with the 

lognormal distribution.  However, this random process generates a random variable every 

sampling time.  In the real driving, human drivers obviously do not adjust their time 

headway so frequently.  By adding a 4-step running average filter, the output becomes 

smoother and similar to the actual driving data. 
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Fig. 4.11 Time headway distribution and fitting results of one example driver 

A schematic diagram of the stochastic driver model is shown in Fig. 4.12.  The 

inputs are the desired time headway (Th) and the lead vehicle velocity (VL), which is from 

naturalistic driving data.  The average desired acceleration (ad) and deviation (σ) are 

calculated from equations (4.12) and (4.7), respectively.  The actual acceleration is then 

generated through a random number generator (MATLAB function ―evrnd‖) and the 

output VF can be obtained by the integration.  A running average filter is used to model 

the vehicle longitudinal dynamics so that the acceleration cannot change rapidly.  This 

model simulates the normal driver behavior and random deviations derived from the 

actual driving data.  Three different simulations are shown in Fig. 4.13 to illustrate the 
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stochastic natural of this model.  Those simulations use the same lead vehicle velocity 

profile (dot in the plot) as the input.  For every run, the following vehicle acceleration is a 

little different due to the probability distribution of the actual acceleration and the 

resulting following vehicle velocity profiles (colored line) are different.  Comparing with 

the following vehicle velocity (blue line) from the database, the simulated vehicle 

velocities are distributed around the test data. 
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Fig. 4.12 Stochastic driver model diagram 

 

25 30 35 40 45 50

5

6

7

8

9

10

m
/s

Velocity

 

 

25 30 35 40 45 50
5

10
15
20

time (s)

m

Range

simulation1

simulation2

simulation3

RDCW V
F
 

RDCW V
L
 

 

50 55 60 65 70 75
15.5

16

16.5

17

17.5

18

m
/s

Velocity

 

 

50 55 60 65 70 75

30

40

time (s)

m

Range

 

 

simulation1

simulation2

simulation3

RDCW V
F

RDCW V
L

 

Fig. 4.13 Stochastic driver model simulation example 

4.6 Simulation Results and Discussion 

The proposed stochastic driver model (SDM) is evaluated by using the RDCW data.  The 

lead vehicle speed is used as the input to the SDM.  The SDM response is compared with 

the following vehicle motion from the RDCW database.  The model performance is 
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evaluated by the model prediction error. If the prediction error is small and randomly 

scatters around zero, it is considered as a good performance.  The SDM performance is 

also compared with other driver models to benchmark the SDM. 

In the RDCW database, driving records of 78 drivers’ data are available.  Based 

on the query criteria shown in section 4.2, the car-following driving data is extracted. The 

results are 20 – 74 maneuvers (20,000 – 600,000 data points) from each driver.  These 

maneuvers are separated into training sets and evaluating sets.  The ten longest 

maneuvers of each driver are used as training sets to obtain the SDM parameters.  Then, 

the eleventh to twentieth maneuvers are used as evaluation sets.  Calculated lead vehicle 

speed is used as input to the SDM (VL in Fig. 4.12).  The model predicted VF is then 

compared with the experiment data from the RDCW.  Examples of model prediction 

error distributions are shown in Fig. 4.14. 
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Fig. 4.14 Velocity prediction error distributions of two example evaluation sets 

For good model prediction results, the mean of error should be close to zero and 

the standard deviation should be small and the training/evaluation results should be of 

similar magnitude.  The training and evaluating results for the first ten drivers are shown 

in Table 4.2.  Small means of errors show that the SDM is capable of fitting different 

driver’s normal driving characteristics.  

 

 

 



 

 

 

 

87 

Table 4.2 Training and evaluation results for the first ten drivers 

 driver 1 2 3 4 5 6 7 8 9 10 Average 

Training 
Mean 

(m/s) 
-.1347 -.0447 -.1840 0.0050 -.1154 0.0438 -.0029 -.0574 -.0203 0.3422 0.0950 

 STD 0.8121 0.7060 0.6748 1.2657 0.6662 1.0908 0.8618 0.8191 0.7036 0.8109 0.8411 

Evaluating 
Mean 

(m/s) 
-.0078 -.0486 -.2878 0.0607 -.1253 0.0403 0.0113 -.0655 -.1100 0.3577 0.1185 

 STD 0.7887 0.6777 0.7562 1.2328 0.7261 1.0847 0.7844 0.9965 0.7023 0.7903 0.8540 
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Fig. 4.15 Evaluating results mean and deviation plots 

The acceleration, range and range-rate distributions of the SDM are plotted in Fig. 

4.16 to compare with the RDCW data qualitatively.  Distributions of the SDM show 

similar characteristics with the RDCW data and same distributions from other 

deterministic driver models will be discussed to benchmark the SDM in the next section. 
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Fig. 4.16 Distribution of RDCW data and SDM simulation. 

4.6.1 Model Comparison 

To benchmark the performance of the stochastic longitudinal driver model,  performances 

of several deterministic longitudinal driver models are also studied.  Three models ( 

 

 

 

 

 

Table 4.3) are selected because of their simplicity and reasonable accuracy.  Note that, 

Lee [61] reports that the Gipps model [39] has the best performance for fitting human 

driver in his study.  However, the Gipps model generates a desired velocity.  When 

applying parameters to evaluating sets, this desired speed generated from the training sets 

would not be valid.  Therefore, the Gipps model is not selected as a model to compare 

with. 
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Table 4.3 Selected deterministic driver models 

Model 
Model 

parameters 
Equation 

Pipes [1] 

Linear follow-

the-leader 
K, τ    tRKtaF

  

Gazis [32] 

Nonlinear 

follow-the-leader 
C, τ, l, m  

 

 
 tR

tR

tVC
ta

l

m
F

F



  

Tyler [38] 

Linear optimal 

control 

τ, C
V
, C

S
, C

C
         tVCtRCtRCta FCSVF    

 

The same training sets used for obtaining the SDM parameters are used and a 

numerical optimization technique is applied to obtain the best parameters for these 

models.  For each driver, there are ten maneuvers in the training sets; hence ten sets of 

parameters are obtained.  The parameter values are averaged and applied to the 

evaluation sets.  The distributions of the velocity error are shown in Fig. 4.17. 
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Fig. 4.17 Model comparison results 

For the training sets along, the SDM has the worst results in terms of standard 

deviation of the predicted speed.  However, several observations are made: 

 SDM did not go through an optimization step for each training maneuver. 

 SDM used only one set of parameters for all ten maneuvers, meanwhile all other 

models used a unique parameter set for each maneuver in the training set.   

In the evaluation sets, the SDM is more consistent than all other models.  The 

error of the SDM increases only slightly while the standard deviation remains the same.  

However, all other models’ performances degrade significantly for the evaluation data 

sets.  This indicts that deterministic driver models with optimized parameters are good for 

fitting human driver behavior but are not robust in predicting drivers’ behavior under 

evaluation maneuvers.  The robustness of the SDM is further verified by simulations.  In 

the previous evaluation, the parameters of the training set from one particular driver are 

applied to the evaluating set of the same driver.  However, if we apply the parameters 

obtained from different drivers, the SDM can still perform relatively well. Table 4.4 

shows the evaluation results from different training sets.  Drivers 1-5 were evaluated by 

using the training set parameters from drivers 6-10.  And drivers 6-10 are evaluated by 

using the training set parameters from drivers 1-5. 

Table 4.4 Evaluation results from different training sets 
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driver 1 2 3 4 5 6 7 8 9 10 Average 

Mean 

(m/s) 
0.0564 -.1107 -.0981 0.1533 -.0744 0.3109 0.0368 -.1230 -.0300 0.4514 0.1445 

STD 0.8821 0.6474 0.7399 1.3782 0.7199 1.2692 0.9725 0.7727 0.6617 0.8758 0.8919 

 

As we can see, the mean and the STD of error increase very slightly.  The 

robustness of the SDM provided a good model template for predicting driver behaviors.  

An even more significant advantage of SDM is demonstrated by examining the 

acceleration and range-rate plots (Fig. 4.18). 
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Fig. 4.18 Range and range-rate distribution comparison 

It can be seen that besides SDM and Tyler’s model, no other model has similar 

characteristic as observed in the RDCW data.  Because of the regulation of time 

headway, Tyler’s model has an elliptic shape distribution like RDCW.  However, its 

distribution still does not spread out enough like SDM. 

4.7 Summary 

A stochastic longitudinal driver model (SDM) is developed and evaluated against 

naturalistic driving data.  Sufficient flexibility is shown in training this model to fit the 

data.  Meanwhile, superior robustness is demonstrated in predicting the human driving 

behavior in the evaluation test sets.  The SDM can capture human’s normal driving 

behaviors with deviations.  Moreover, those normal and deviated behaviors are 

statistically similar to what we observed in actual driving data. 

In the following study, the SDM will serve as driver model template for the 

development of an errable driver model.  Because of its flexibility and robustness, the 

SDM can be used to model human’s normal driving behavior.  Combining with error 

mechanisms derived from human behavior, this model can be made to make mistake, i.e., 

errable.
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CHAPTER 5 

LONGITUDINAL ERRABLE DRIVER MODEL 

5.1 Motivation 

Our goal here is to build a longitudinal driver model useful for the evaluation of CW/CA 

systems.  The purpose of the CW/CA system is to assist a human driver when he or she is 

not able to avoid or mitigate a crash; in other words, when the driver is either making a 

mistake or simply is not able to handle the situation.  Therefore, for evaluating CW/CA 

algorithms, models that achieve driving tasks perfectly are not useful.  On the contrary, a 

model that makes mistake similar to human drivers would be more suitable for the 

development of CW/CA systems. 

In this study, three types of error-inducing behavior are analyzed, perceptual 

limitation, distraction, and time delay.  Each of them affects the normal driving and 

degrades the car-following performance.  Individually, their effects might not be 

significant enough to induce a crash.  However, combinations of those behaviors could 

cause crashes.  To validate this hypothesis, the error-inducing behaviors are modeled as 

stochastic processes based on the frequency of their occurrences.  Then, those stochastic 

processes of error are introduced into the longitudinal driver model (SDM) 

independently.  The goal is to have the model to generate rear-end crashes at a rate that is 

similar to human drivers. 

5.2 Error-Inducing Behavior  

5.2.1 Perceptual Limitation  

Whether or not, and how accurate the environmental variables can be perceived are 

critical for performing driving tasks.  Human drivers need to perceive environmental 

variables constantly and accurately.  Failure to do so may cause accidents during driving.  
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Therefore, perceptual limitation is studied as one of the error-inducing behavior in this 

research. 

Human drivers sense and perceive environmental variables such as range, range-

rate and vehicle speed to perform the driving task.  Among all the feedback mechanisms, 

vision is the primary source for motor vehicle operations [84], [85].  In a car-following 

task, abilities to detect changes in distance and velocity are critical.  Therefore, vision 

perception limitations are studied as an error-inducing behavior in this research.  The 

proposed SDM uses range and range-rate as two feedback cues.  The range between 

vehicles is perceived though optical invariants [86].  The perception is then limited by the 

resolution of human eyes.  A typical accepted localization threshold is 6 arc sec (0.5μm 

on the retina).  Other than visual angle, human also utilizes environmental information 

such as eye-height, relative position, and texture of the ground for reference to obtain a 

fairly accuracy distance [87].  Therefore, we do not implement the perceptual limitation 

of distance or range. 

How human drivers perceive relative speed has long been a research pursuit.  

Many researches are done aiming to answer the following question: Can human perceive 

relative speed directly or is it indirectly inferred through the change in position?  This 

question is sometimes recast in a different form: is perceptual sensitivity of velocity 

different from sensitivity of position?  Nakayama [88] used a random-dot pattern 

movement to isolate the motion from position cues.  Randomly generated dot pattern 

prevented the position comparison and allow motion detection to be the only mechanism. 

The result concludes that motion and position perception are two different mechanisms.  

For low frequency range (< 2 Hz), human has a direct assessment of motion. But for 

higher frequency (> 2 Hz), using derivative from positions to obtain motion seems to 

exist.  Other than different mechanisms for motion perception, a different perceptual 

threshold was also reported by McKee [89].  The result confirms that velocity detection is 

related to the estimation of motion change, in other word, time derivative of position 

change.  A very accurate velocity perception was reported (5%) in McKee’s study.  

Various Just-Noticeable Differences (ΔV/V) of velocity discrimination from 0.05 to 0.2 

were found in [90]-[93].  Since velocity detection in the car following task is relatively 
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easy (comparing to hitting a baseball), a generous velocity threshold (0.1) is selected in 

this study. 

The perceptual limitation is simulated as a quantized range-rate input.  The 

disagreement between perceptual and real signals will be the cause of error.  The 

implementation of this perceptual limitation quantizer is: 


















otherwise   )1(

1.0
)1(

)1()(
 if        )(

)(

kR

kR

kRkR
kR

kR








  (5.1) 

This implementation is done in discrete time 10 (Hz) and R  represents the actual 

range-rate and R is perceptual range-rate.  An example simulation of the perceptual 

limitation quantizer is shown in Fig. 5.1.  In driving simulation, the perception error will 

delay or prevent driver model’s response if the change of range-rate is not significant 

enough.  This error-inducing behavior is part of in human nature and is assumed to 

always exist during driving. 
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Fig. 5.1 Perceptual limitation quantization simulation 

5.2.2 Time Delay 

Time delay is another source of driving error.  Neuromuscular delay and brain processing 

time are two major sources of time delay.  Neuromuscular delay may be a constant for 

each driver, but the brain processing time is not.  Therefore, the total time delay is 

varying.  The truth is that the delay time may very well be related to distraction due to 
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secondary tasks.  However, it is important to include delay as a separate error mechanism 

in the SDM.  A parallel recursive least square (RLS) method is used to estimate the time 

delay.  Thirty ARMA models with different delay steps (0.1 sec) are used to fit the test 

data simultaneously by the RLS algorithm.  For every time instant, the delay step of the 

most accurate ARMA model is chosen as driver’s time delay, and then the time delay 

sequence can be constructed.  The ARMA model (5.2) used here is derived from Tyler’s 

model (Appendix I) because it has similar structure with SDM in the deterministic sense.  

NiikRdikRcikVbkVakV FFF 1,    )1()()1()1()(   (5.2) 

The driver time delay was reported to be .5-.9 sec from an instrumented vehicle in 

a test track [97] responding to a signal change.  A longer brake response time was found 

(1.5-3.5 sec) in a driving simulator [98]  for car-following task and in real traffic (3.5-4.5 

sec) [99].  The value for N is selected to be thirty (three seconds). The estimated results 

of the RDCW data are analyzed.  One example is shown in Fig. 5.2. 
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Fig. 5.2 Time delay estimation of RDCW data 

This sequence shows a significant character that the delay step increases with time 

and, then dropped or reset to zero. This can be modeled as a renewal process.  To 

duplicate the characteristic of time delay observed in the previous section, a probability 

distribution of time delay is first obtained from the time delay sequence.  If time delay 

step is zero, we define it as normal driving and their distribution is shown in Fig. 5.3(a) 

which can be fitted by an exponential distribution.  When time delay step is larger than 

zero, we define it as delayed driving and their distribution is approximated as uniform 

(Fig. 5.3(b)). 
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(a) Time delay Distribution (b) Customized PDF fit 

Fig. 5.3 Time delay distribution and PDF fitting 

Next, the human time delay is modeled by a renewal process which has an inter-

arrival time indicated by a probability density function.  When a renewal arrives, the time 

delay step will increase from zero and reset until the next renewal.  The resulting time 

delay sequence is similar to the real sequence obtained by RLS and will be used in 

simulations (Fig. 5.4). 
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Fig. 5.4 Time delay simulation and comparison with the RDCW estimation 
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5.2.3 Distraction 

Driver distraction was reported to be responsible for almost thirty percent of police-

reported crashes [1].  Therefore, it is an important error-inducing mechanism that should 

be included.  Driver can be distracted by in-vehicle tasks including cell phone usage, or 

interaction with other passengers, etc. [6].  The consequences of distraction can be hand-

off the steering wheel, eyes off the road, or other adverse vehicle events (wandering in 

the lane, sudden braking, etc) [1].  To model driver distraction, we need to understand 

how distraction affects normal driving behavior.  During driving, human can be 

considered as multi-tasking.  If there is no distraction, a human driver can control the 

vehicle with full attention.  When a secondary task happens, the human driver will have 

reduced attention to driving.  Some of the secondary tasks may require higher 

participation and may temporarily disable human driver’s ability to attend to driving (Fig. 

5.5).  Sheridan [94] suggested a switching type of control configuration that can be 

applied to model the transition between different modes of driving.  In this study, we 

define the multi-task driving as ―mind-off-the-road‖.  The human driver is assumed to 

keep his/her eyes on the road while doing the secondary task.  However, the non-driving 

task increases the mental load and degrades the driving performance.  Boer [95] reported 

an increasing deviation of steering wheel angle for lane-keeping driving.  The same 

increasing deviation of control should exist in car-following driving.   Meanwhile, if a 

human driver fully devotes himself or herself into a secondary task, very often he/she will 

move the eyes to this task and stop updating the driving information.  We define this 

situation as ―eyes-off-the-road‖. 
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dial cell phone, read map,…etc
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Fig. 5.5 Different driving mode of driver under distraction  
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One challenge in the errable driver model is to identify the ―mind-off-the-road‖ 

mechanism and quantify it for modeling.  Driving data from 10 drivers was collected 

from the RDCW database.  Based on the actual test data, the SDM can predict the next 

vehicle states and calculate their deviations.  The SDM contains two elements, desired 

accelerations and possible deviations.  Based on the actual test data, the SDM can use 

desired acceleration to predict next vehicle states and calculate their possible deviations 

respectively.  If the test data lands outside of plus/minus one standard deviation of the 

prediction, we define it as a deviated behavior (Fig. 5.6).  In this study, the deviated 

behavior is assumed to be a consequence of mind-off-the-road. 

 

Fig. 5.6 Distraction prediction based on the SDM 

This analysis is applied to the RDCW data and the result is shown in Fig. 5.7.  

The predicted result is shown on the right hand side of Fig. 5.7 with dotted line and can 

be modeled by an alternative renewal process with two independent identical 

distributions (IID) (Fig. 5.8). 
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Fig. 5.7 Distraction prediction of the RDCW data 
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Fig. 5.8 Distribution and fitting of the normal and deviated behavior 

Every time the process has a renewal event which indicates the driver is distracted 

the deviation in the random number generator Equation (4.9) would be increased (to 

model the increased workload and the degraded control). 

Table 5.1 Distributions parameters of mind-of-the-road distraction 

Lognormal 

Distribution 
Mean (sec) STD 

Normal 26.62 0.75156 

Deviated 1.8465 0.89344 

This type of distraction is modeled as alternative renewal processes.  Drivers are 

assumed to start at a normal condition without distraction.  After an inter-arrival time, 

which has mean and standard deviation listed in Table 5.1, drivers will become distracted 

for a short period of time.  This process will be repeated indefinitely in simulations and 

one simulation example is illustrated in Fig. 5.9. 
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Fig. 5.9 Example of renewal sequence for modeling mind-off-the-road distraction 
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When eyes are off the road, drivers stop updating the feedback cues and/or the 

control actions.  The perceived range, range-rate, and speed would remain unchanged 

from the previous step.  Drivers are also assumed to freeze their control actions at the 

previous level.  Once the distraction ends, the driver will resume updating the 

information and perform proper control action.  The above statement can be realized by 

using a switch and a register.  The eye-off-the-road behavior are studied in several 

literatures and frequency of occurrences can be found in [1] and [104].  However, the 

effect of eye-off-the-road is at least partially included in this errable driver model when 

the time delay is modeled in section 5.2.2.  In Fig. 5.10, the time delay appears to 

increase linearly with time and they get reset. In other words, the driver model keeps 

using the same old data without updating, which is equivalent to switch off the 

information flow.   Therefore, another mechanism will not be implemented to avoid 

double-counting the effect of eye-off-the-road. 
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Fig. 5.10 The equivalent effect of eye-off-the-road in modeling time delay  

5.2.4 Simulation Results 

All three error inducing behaviors are implemented on the stochastic driver model.  The 

resulted errable driver model is illustrated in Fig. 5.11. 
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Fig. 5.11 Block diagram of errable driver model 

A time-domain simulation example is shown in Fig. 5.12.  A minor crash occurs 

under a lead-vehicle maneuver extracted from the RDCW database.  Notice that in this 

particular case, the simulated driver is much slower than the actual test result, because 

during the critical moment, the simulated driver happens to have several long delays.  If 

we simulate the same scenarios multiple times, under most cases there will be no crash.  

The behavior of the simulated driver, we hope, is similar to the actual driver statistically. 
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Fig. 5.12 Time domain simulation of the errable driver model 
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A thorough validation of the proposed model is hard to do because of the 

statistical nature of human drivers and the proposed model.  Despite of great promise, 

advanced tools such as functional MRI is still far away from practical use to assess real 

human errors.  One measurement known as ―confliction‖ is used for characterizing driver 

behavior under near the crash situation of car-following [102].  Confliction is defined in 

ICC FOT as the frequency of being in the ―near‖ region (Fig. 5.13).   

 

Fig. 5.13 Near region defined in ICC FOT [102] 

 The near region is defined by the following equation: 

g

R
VRR p




1.02
5.0  and  0

2
  (5.3) 

Vp is the lead vehicle velocity.  The equation (5.3) can be interpreted as the lead vehicle 

is within 0.5 sec ahead and decelerated faster than 0.1 g.  This represents a near crash 

situation in the car-following which the proposed errable driver model is meant to 

simulate.  Frequencies of being in the confliction by drivers from RDCW database are 

first calculated.  Then, the errable driver model behavior is generated with the lead 

vehicle inputs from the same RDCW data set.  The example of resulting probability of 

being in the confliction is compared in Fig. 5.14.   
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Fig. 5.14 Probability of being in the confliction 

The errable driver model has similar probability of being in the confliction with 

drivers from RDCW database, except for driver 2 and 8.  The probabilities of confliction 

in driver 2 and 8 are underestimated by the errable driver model.  The errable driver 

model does not drive ―close‖ enough like the RDCW driver 2 and 8.  This characteristic 

can also be found by analyzing the driving style of each driver.  The driving style is also 

defined in ICC FOT by the percentage of time being in the different region of normalized 

range-range rate diagram. 

 

Fig. 5.15 The normalized range-range rate diagram for defining driving styles [102] 
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 The four regions A, B, C, and D are defined as: 





















)075.0/(

)65.0/(

)075.0/(

)25.2/(

VRPD

VRPC

VRPB

VRPA




 (5.4) 

where P(…) is the probability of the event enclosed in the parentheses.  The 

measurement A represents the ―far‖ tendency of a driver; B represents the ―fast‖; C 

represents ―close‖; and D represents ―slow―.  The four measurements are used to 

categorize the driving styles of each driver.  The comparison of the RDCW drivers and 

the errable driver model is showed in Fig. 5.16.  
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Fig. 5.16 Driving styles defined in ICC FOT comparison 

Driver 1, 4, 6, and 7 have tendencies of being far from the lead vehicle and the 

errable driver model captures their behavior very well.  Driver 3 and 5 actually tend to 

stay in the central region because all four measurements are very small.  Driver 2 and 8 in 

RDCW data have tendencies of being close and the errable driver model is 

underestimated these tendencies which are consistent with the confliction measurement. 

The errable driver model captures RDCW driver behavior of the near crash 

situation well, but there are some extreme cases (driver 2 and 8) that are underestimated.  

The ability of modeling the near crash situation is useful for developer of the CW/CA 

algorithm.  A more significant advantage of the errable driver model is the ability to 

simulate crashes.  In the real driving data, no (or very few) crash is available that the 

performance of CW/CA algorithms can only be estimated.  Crashes that generated by the 

errable driver model can be used to evaluate the performance of CW/CA algorithms 

thoroughly.  Because of the statistical nature of the errable driver model and the lack of 

real crash data, the validation is hard to make.  In this study, the crash rate is used to 
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represent the statistic of crashes and quantize the performance of the errable driver model 

in terms of simulate crashes.  

Crash per Vehicle Miles Traveled is used to define the crash rate.   To evaluate 

the crash rate of the errable driver model, 340 RDCW driving maneuvers of ten drivers 

are selected and the lead vehicle speed is used as the input to the errable driver model.  

Those maneuvers have time-span from fifty to more than three hundred seconds.  Each of 

them is simulated for one thousand times to fully demonstrate the stochastic nature of the 

model.  The simulated crash rate is shown in Table 5.2. 

Table 5.2 Errable driver model crash rate 

Crash Number 
Total Simulation 

Mileage 
Crash/100M VMT 

25  8,846,976  282.6 

 

The simulation results are compared with actual crash data obtained from NHTSA 

report [1].  In year 2005, the average rate for all type of crash is 206 per 100M VMT.  For 

passenger and light truck, about 30% of the crashes are rear-end crashes.  Thus, the actual 

crash rate for rear-end collision is approximately 60/100M VMT.  Our simulation crash 

rate is too high.  One possible explanation is that not all minor crashes are reported.  

Another possible explanation is the lack of a feedback mechanism in our model under 

near-crash situations.  In the actual near crash driving, a driver may be warned by 

passengers, brake light, etc. and engage in an emergent maneuver, with much higher 

deceleration level, which is not captured in our model.  In other words, the errable driver 

model developed in this paper represents a conservative approximation of actual drivers, 

with all statistical characteristics identified from actual driving data.  This conservative 

characteristic, we believe, is actually useful for evaluating AST, such as Collision 

Warning/Collision Avoidance systems.  CW/CA system is designed for situations when 

the driver does not properly react to a near crash event, which the proposed model seems 

to emulate. 
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5.3 Evaluating CW/CA algorithms 

The errable driver model can improve the evaluations of CW/CA algorithms in several 

ways.  In a scenario-based approach, the driving behavior of the target vehicle can be 

replaced by a humanized errable driver model.  The errable driver model could generate 

more realistic driving behavior than randomly selected scenarios.  For a human centered 

approach, the errable driver model can be used to generate near-crash or crash 

maneuvers.  It should be noted that crashes do not happen frequently.  Even for large-

scale driving database such as [103] with more than 82,000 miles of driving, all the 

identified threatening situations did not result in an actual crash.  With the errable driver 

model, actual crashes can be simulated and used for evaluating CW/CA algorithms. 

Even though the errable driver model can be used to generate driving behavior 

under prescribed test matrices.  An alternative is proposed to fully utilize the advantage 

of the errable driver model and not limit it use to prescribed test matrices.  The errable 

driver model is developed based on a stochastic driver model and all error-inducing 

behaviors are imposed as stochastic processes.  Given any initial conditions (vehicle 

velocity, range-rate, range and lead vehicle acceleration), the probability of future 

maneuvers can be calculated.  Hence, the probability of crash can be predicted without 

exhaustive simulations.  A simple example is done by using only the stochastic driver 

model without any error mechanisms.  To demonstrate this concept, a one step prediction 

is done.  For any given range, range-rate and following vehicle speed, the distribution of 

the acceleration of the following vehicle can be calculated by the stochastic driver model.  

With the leading vehicle velocity or even acceleration available, the crash-accelerations 

that would end up with a crash in a preview time can be calculated from 

L

preview

preview

crashpreviewFLFL a
t

tRR
ataatVVR 






2

2

21
)(21)(


 (5.5) 

After obtaining the crash-accelerations, the probability that driver will actually 

accelerate at or beyond those crash-accelerations can be calculated by replacing ad in 

(4.11) with acrash.  A one dimension example is shown in Fig. 5.17. Initial conditions 

were VF = 30m/s, range-rate = -4m/s, lead vehicle acceleration = -0.22g and preview time 
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= 2s.  The initial range is varied from zero to twenty meters and their corresponding 

probability of crash can be calculated. 
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Fig. 5.17 An example of probability of crash (lead vehicle velocity = 30m/s, range-rate = 

-4m/s, lead vehicle acceleration = -0.22g) 

Fig. 5.17 can be interpreted as follows: for the given conditions, whenever the 

range is smaller than 7.0m, the target vehicle will have a crash within the next two 

second.  And, if the range is large than 12m, the probability of crash within the next two 

second is zero.  This approach can be further extended to multi-dimensions and compared 

with existing CW/CA algorithms timing.  Several algorithms are compared in Fig. 5.18. 
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Fig. 5.18 Probability of Crash Predicted by SDM compared with other algorithms 
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Some preliminary conclusions can be draw from Fig. 5.18.  For example, the 

Doi’s algorithm issues warnings earlier than EDM prediction and Fujita’s algorithms are 

generally late.  Those conclusions are confirmed with the human-approach evaluation 

results [103].  However, this preliminary evaluation approach is done without any error-

inducing behavior and only one prediction step is used.  More detailed and completed 

evaluation will be done in the future study. 

5.3.1 Developing a humanized CW/CA algorithm 

In the previous section, the errable driver model is used to evaluate the CW/CA 

algorithms by comparing the warning timing with the probability of crash.  This 

probability of crash can also be used as the warning criteria.   The probability of crash 

can be calculated based on actual vehicle states.  If the predicted probability of crash 

exceeds a threshold, a warning can be issued.  The prediction method provided in the 

previous section estimates the maximum acceleration which would cause a crash and 

calculates the probability of crash backwards.  This method is computation effective but 

not accurate because it assumes constant acceleration through the whole prediction 

horizon.  A forward multi-step prediction can be used to achieve a higher accuracy.  

Using current vehicle states as the starting point, the vehicle’s possible future states can 

be predicted with their probability.  A simplified example is shown in Fig. 5.19. 
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Fig. 5.19 Multi-step prediction for the vehicle future range 
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The prediction is assumed to start at state 00.  The next three possible states 10, 

11, and 12 can be calculated with their probability P00,10, P00,11, and P00,12 respectively. 

The prediction can keep going until the preview time tpreview or the states become 

absorbing. The states will become absorbing if the following vehicle speed VF and/or 

range-rate is equal to or smaller than zero, which indicates the vehicle is fully stopped or 

is slower than the lead vehicle. Meanwhile, the states can also become absorbing if the 

range is smaller than zero, which represents a crash.  The probability of crash can be 

calculated by summing up probabilities of all the states that result in crashes. 

 An example is shown in Fig. 5.20. Initial conditions are VF = 30m/s, range-rate = 

-4m/s, range = 20m, aF = -0.6g.  The preview time is 2 sec and prediction steps is 4 (0.5 

sec each step).  For every current state, there are 12 possible future states.  Therefore, 

there would be 12
4
 possible final vehicle states at the end of the preview.  Each final state 

can be reached from the given initial state with a possibility.  The possibilities are 

cumulated according to the range of final states, so that the possibility of what the range 

would be after two seconds can be plotted as Fig. 5.20. 
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Fig. 5.20 Cumulative probability of vehicle range after two seconds. 

The probability of crash (range smaller than zero) in the next two seconds in the 

future is 18% which may be high enough to issue a warming.  Fig. 5.21 shows the 

probabilities of crash for different initial conditions.  With error-inducing behaviors and 

multi-step prediction, probabilities of crash are slightly different from the prediction 

made in the previous section.  The vehicle has higher probability of crash because of the 

error-inducing behaviors.  However, the probability of crash increases slower because of 
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the multi-step prediction.  The physical interpretation of multi-step prediction means the 

model has more steps to correct its behavior. 
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Fig. 5.21 Errable driver model warning map based on the behavior of two different 

drivers 

This probability of crash distribution (Fig. 5.21) can be used to construct a 

warning map.  One benefit of this algorithm is that the probability of crash can be 

selected to set different levels of warning.  Algorithm developers can select appropriate 

warning levels and they can be driver adjustable.  Another strength of using EDM as a 

CW/CA algorithm is its ability to adapt to different drivers’ behaviors.  When calibrating 

the errable driver model, model coefficients ( )3,2,1,0( iPi and )2,1,0( iPi in equations 

(4.6) and (4.7)) are obtained by fitting a set of driving data, which can be customized 

with individual driving data.  Therefore, the errable driver model can be updated in real-

time for better customization to the driver.  Conventional CW/CA systems tuned under 

open-loop were frequently found to work unsatisfactorily with human-in-the-loop.  If 

updated in real-time, the obtained CW/CA algorithm has the potential to achieve a much 

lower level of false positives and false negatives, which are critical for the 

commercialization of CW/CA algorithms. 

5.3.2 Summary 

A humanized errable car-following driver model is used to evaluate the performance of 

several CW/CA algorithms.  This errable driver model emulates human driver and can 

generate both nominal (error-free) and devious (with error) behaviors.  A large-scale 

naturalistic driving database is used for developing and validating this errable car-

following driver model.  Three error-inducing behaviors were implemented in this model, 
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human perceptual limitation, time delay, and distraction due to non-driving tasks. By 

combining three error-inducing behaviors, rear-end collisions with the lead vehicle occur, 

and at a probability similar to what is reported in traffic accident statistics.  This ability of 

emulating rear-ends collision behavior is useful to evaluate the performance of CW/CA 

algorithms—several of which are shown and the evaluation results are summarized. 

Subsequently, a new CW/CA algorithm is suggested based on the errable driver 

model.  The driver model is used to predict the probability of crash, based on which 

warning or braking action can be issued.  This algorithm is tuned with realistic human 

driving data.  The developed CW/CA algorithm has the potential to be tuned in real-time 

to adapt to individual drivers.  Efficient computation and actual performance of this 

CW/CA algorithm have not been demonstrated can be a future research topic. 

5.4 Conclusion 

An errable longitudinal driver model was developed.  The term ―errable‖ is new, and for 

which we mean a driver model which achieves the car-following task but can be made to 

make mistakes similar to real drivers.  Those mistakes are induced based on several 

mechanisms that may be the cause of accidents in actual human driving. 

Three types of error-inducing mechanisms are analyzed: perceptual limitation, 

distraction, and time delay.  Each of them affects normal driving and degrades car-

following performance.  Individually, their effects might not be significant enough to 

induce a crash.  However, combinations of those behaviors could cause crashes.  

Perceptual limitation is embedded in the errable driver model; distraction and time delay 

are modeled as stochastic processes.  The parameters of those stochastic processes are 

estimated or adopted from available data in the literature.  Then, stochastic processes are 

introduced into the longitudinal stochastic driver model independently.  The resulting 

crash rate for the errable driver model is lager (282.6/100M VMT) compared with 

NHTSA data (60/100M VMT).  One possible reason could be the lack of feedback 

mechanisms under near-crash situations.  Those feedback mechanisms involve higher 

level of control which has not yet been included in this model. 
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The errable car-following driver model is used to evaluate the performance of 

several CW/CA algorithms.  This errable driver model emulates human driver and can 

generate both nominal (error-free) and devious (with error) behaviors.  This ability of 

emulating rear-ends collision behavior is useful to evaluate the performance of CW/CA 

algorithms—several of which are shown in this study and the evaluation results are 

summarized.  Subsequently, a new CW/CA algorithm is suggested based on the errable 

driver model.  The driver model is used to predict the probability of crash, based on 

which warning or braking action can be issued.  This algorithm is tuned with realistic 

human driving data.  The developed CW/CA algorithm has the potential to be tuned in 

real-time to adapt to individual drivers.  Efficient computation and actual performance of 

this CW/CA algorithm has not been demonstrated and are our current research focus. 
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CHAPTER 6 

CONCLUSION AND FUTURE STUDY 

6.1 Conclusion 

Human anomalous driving behaviors in both lateral and longitudinal driving are 

analyzed.    A new kind of driver models is developed to emulate anomalous driving 

behaviors.  This new type of models is developed based on the concept that a driver 

model that normally achieves driving tasks could be perturbed to emulate anomalous 

behaviors like human drivers by considering human’s inherent limitations or by 

incorporating error mechanisms.  When driver limitations or error mechanisms are 

properly designed, these driver models generate accidents or near-accident behaviors that 

are of interest to engineers who are developing Active Safety Technology (AST).  AST is 

developed for assisting human drivers to avoid or mitigate accidents.  They are helpful 

when drivers are either making a wrong move or are not able to handle the situation.  To 

evaluate the effectiveness of AST, driver models that achieve driving tasks normally and 

emulate anomalous behaviors at the same time would be more useful.  Most existing 

models focus on describing driver behavior under normal tasks, and few of them include 

anomalous behaviors.  The main contribution of this study is to fulfill the missing link 

between modeling normal driving tasks and modeling anomalous behaviors and to 

provide the development of architecture and modeling process for driver models that 

emulate anomalous behaviors. 

The vehicle crosswind stability problem induced by driver limitations is used as 

an example for the lateral driving.  An analytical vehicle model (UMTRI wind-steer 

model) and a complex commercial software model (CarSim) are used to analyze and 

simulate the crosswind driving.  A fixed-base simulator test is conducted to collect 

human driving behaviors under crosswind.  Finally, a lateral driver model that emulates 
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both normal and anomalous behaviors is developed.  A linear analysis is formulated to 

provide an insight understanding of driver limitations that induce instability.  Two 

excises are presented for demonstrate the benefit of using the developed lateral driver 

model to evaluate the stability of vehicle under crosswind and the effectiveness of active 

safety systems. 

The UMTRI wind-steer model is implemented in MATLAB/Simulink and is 

suitable for driver vehicle dynamic response analysis.  The CarSim model is used for the 

simulator test and potential AST design.  Based on the sensitivity analysis with UMTRI 

wind-steer model, variation in C.G. position is found to have the highest sensitivity to the 

crosswind input.  Along with four other design parameters with high sensitivity, five 

vehicle configurations are implemented in the fixed-base driving simulator test.  Two 

crosswind scenarios are employed in the simulator: impulse crosswind and natural 

crosswind.  The impulse crosswind is used for the driver model development and the 

subjective stability assessment.  The natural crosswind is used for verification and 

evaluation of AST design.  Twenty four test participants are recruited and successfully 

complete the simulator test. 

Four categories of driving styles under crosswind are identified from the 

simulator test analysis.  Then, a lateral driver model that emulates anomaly behaviors for 

crosswind maneuver is developed.  This driver model is a combination of MacAdam’s 

driver model and an instantaneous feedback reaction for strong crosswind disturbances.  

It captures the driving behavior better than the original MacAdam’s driver model and it 

also captures the spin-out accidents that also happened in simulator tests.  The ability of 

reproducing yaw-rate responses makes this model suitable for evaluating the vehicle 

crosswind stability.  A new closed-loop crosswind stability evaluation method is 

proposed.  This method evaluates vehicle crosswind stability almost as easy as using the 

crosswind sensitivity approach.  Meanwhile, the developed feedback MacAdam’s model 

is also used for the evaluation and design of active steering systems.  Trade-off between 

stability and maneuverability is identified and a new design is proposed to minimize the 

trade-off. 

A longitudinal errable driver model is developed for understanding anomalous 

behaviors due to driving errors.  This errable driver model normally achieves car-
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following tasks and can be made to make mistakes like human.  Those mistakes are 

induced based on the same mechanisms which could cause accidents in actual driving.  

The accidents or error behaviors emulate real human behaviors, and the error rate 

matches the real driving error rate statistically.  The ability of emulating rear-ends 

collision behavior is used to evaluate the performance of CW/CA algorithms and develop 

a new CW/CA algorithm. 

A large number of car-following trips are identified and collected from RDCW 

database.  Simple filtering is applied to improve the data quality.  Random behavior are 

observed in the data and modeled by a stochastic driver model. This model is developed 

and evaluated against the naturalistic driving data.  Sufficient flexibility is shown in 

training this model to fit the data.  Meanwhile, superior robustness is demonstrated in 

predicting the human driving behavior in evaluation test sets.  The stochastic driver 

model captures human’s normal driving behaviors with deviations.  Moreover, those 

normal and deviated behaviors are statistically similar to what we observed in the actual 

driving data. 

Three types of error-inducing behaviors are analyzed: perceptual limitation, 

distraction, and time delay.  Each of them affects the normal driving and degrades the 

car-following performance.  Individually, their effects might not be significant enough to 

induce a crash.  However, combinations of those behaviors could cause crashes.  To 

validate this hypothesis, the error-inducing behaviors are modeled as stochastic processes 

based on the frequency of their occurrences.  Then, those stochastic processes of error are 

introduced into the longitudinal driver model independently.  The resulting crash rate for 

the errable driver model is similar (282.6/100M VMT) compared with NHTSA data 

(60/100M VMT). 

The ability of emulating rear-ends collision behaviors is used to evaluate the 

performance of CW/CA algorithms—several of which are shown in this study and the 

evaluation results are summarized.  A new CW/CA algorithm is proposed based on the 

errable driver model.  The driver model is used to predict the probability of crash, based 

on which warning or braking action can be issued.  This algorithm is tuned with realistic 

human driving data.  The developed CW/CA algorithm has the potential to be tuned in 
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real-time to adapt to individual drivers.  Efficient computation and actual performance of 

this CW/CA algorithm have not been demonstrated and are our current research focus. 

6.2 Future Study Plan 

In the lateral driving behavior study, a fixed-base simulator test is conducted.  The visual 

feedback of vehicle motion provides basic information for performing the lane-keeping 

task, but is not necessary sufficient for near-accident/accident maneuvers.  In the normal 

driving situation, lane position and vehicle heading information, which can be provided 

through visual cue, may be enough for driver to control the vehicle.  In extreme or 

anomalous situations, driver may need more information which is lacking from the fixed-

base simulator.  A motion-base simulator which can provide both visual and motion 

feedback would be more close to the real driving and, hence, provide a more reliable 

analysis. 

Motion-base simulator test can be conducted using a similar setting of the fixed-

base simulator test.  However, several refinements should be done.  First of all, the 

learning effect is observed during the simulator test.  The recurring impulses crosswind 

input provides good repetition for identifying and verification of lateral driver model 

development.  But the frequency sweeping type of impulses are predictable and have less 

surprise for experience drivers.  A modification can be done by introducing more 

randomness into the impulse sequences.  An example is shown in Fig. 6.1. 

 

Fig. 6.1 Modified impulse crosswind input to minimize learning effect 

This input sequence has identical impulses for repetition but more randomness in 

occurrence for preventing test drivers from anticipating the disturbance.  Another 

time (sec) 
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necessary modification is adding surrounding traffics.  In our test scenarios, test drivers 

can drifted (due to crosswind) to the other lane without immediate dangerous.  With 

surrounding traffic, more realistic recovery maneuver from the lane departure would be 

needed.  Finally, the proposed variable gear ratio strategy can be implemented.  The 

performance of this VGR system can be evaluated and a more insightful understanding of 

VGR system can be established. 

In the longitudinal errable driver model, the distraction and time delay are 

modeled as renewal processes.  The renewal time is only depended on a random 

distribution and not influenced by the environment, e.g. the lead vehicle motion.  

Therefore, once the state of the model is set to be distracted, it will not be recovered until 

the next renewal arrived.   However, in actual driving, a driver may recover from his/her 

distracted driving to attentive driving if the environment is potentially danger, e.g. the 

lead vehicle is too close.  This recovery action can be prompted by passengers, brake 

light, or CW/CA algorithms.  Some of those behaviors require higher level of perception, 

cognition, and decision modeling.   An input-output task-specific model like the errable 

driver model may not be able to model those behaviors.  A more complex, multi-task 

modeling approach will be needed. 
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Appendix A Questionnaire Sheets
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Appendix B Driver Background Information 

Participant 1 2 3 4 5 6 

Gender male male male female male male 

Age 36 32 25 26 18 28 

Years Driving 10 3 6 1 2 1 

Primary Model mini-van sedan compact sedan sedan compact 

Crosswind Experience once/week rare frequently no once occasionally 

Lost control by crosswind no no no no no no 

Lost control of any kind no yes no no no yes 

Participant 7 8 9 10 11 12 

Gender male male male male male male 

Age 33 22 28 20 19 31 

Years Driving 9 8 5 5 3 13 

Primary Model small SUV sedan compact sedan compact small SUV 

Crosswind Experience twice rare 3~5 frequently no rarely 

Lost control by crosswind no no no no no no 

Lost control of any kind no yes yes yes no no 

Participant 13 14 15 16 17 18 

Gender female male male male male female 

Age 29 31 21 20 22 31 

Years Driving 6 8 6 4 6 10 

Primary Model small SUV compact hatch back hatch back compact compact 

Crosswind Experience rarely 2-3/yr occasionally rarely rarely twice/yr 

Lost control by crosswind no no no no no no 

Lost control of any kind no yes yes no no no 

Participant 19 20 21 22 23 24 

Gender male male female male male male 

Age 18 27 29 18 24 27 

Years Driving 2 9 3 2 5 9 

Primary Model mid-SUV wagon compact sedan van  

Crosswind Experience 1-2/week often 1/week twice seldom no 

Lost control by crosswind no no no no no no 

Lost control of any kind yes no no yes no no 
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Appendix C Driver Spin out Cases 

Participant  1 2 3 4 5 6 

Baseline 160 spin out spin out - spin out - spin out 

Cargo 160 spin out spin out - spin out - spin out 

Decreased yaw 160 - - - - - - 

Increased yaw 160 spin out spin out spin out spin out spin out spin out 

Spoiler 160 - - - - - - 

Participant  7 8 9 10 11 12 

Baseline 160 spin out - spin out spin out - spin out 

Cargo 160 spin out - spin out spin out - spin out 

Decreased yaw 160 - - - - - - 

Increased yaw 160 spin out spin out spin out spin out spin out spin out 

Spoiler 160 spin out - - - - - 

Participant  13 14 15 16 17 18 

Baseline 160 spin out spin out - - - spin out 

Cargo 160 - spin out - - - spin out 

Decreased yaw 160 - - - - - - 

Increased yaw 160 - spin out - - spin out spin out 

Spoiler 160 - - - - - - 

Baseline 
Repeated 

160 - - - - - - 
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Participant  19 20 21 22 23 24 

Baseline 160 spin out spin out spin out spin out spin out spin out 

Cargo 160 - - spin out spin out spin out - 

Decreased yaw 160 - - - - - - 

Increased yaw 160 spin out spin out spin out spin out spin out spin out 

Spoiler 160 - - - - - - 

Baseline 
Repeated 

160 - - - - spin out - 
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Appendix D Driver Subjective Rating 

Participant  1 2 3 4 5 6 

baseline 100 8 7 7 4 9 5 

 160 2 2 5 2 6 4 

cargo 100 8 8 7 5 9 6 

 160 3 3 5 3 7 5 

d-yaw 100 8 9 7 5 9 7 

 160 4 7 5 5 8 8 

i-yaw 100 7 9 7 6 8 7 

 160 2 4 3 5 4 6 

spoiler 100 8 9 8 7 8 8 

 160 3 8 5 5 8 9 

        

Participant  7 8 9 10 11 12 

baseline 100 6 6 8 7 7 7 

 160 1 3 1 3 2 2 

cargo 100 6 6 8 7 8 8 

 160 1 2 2 3 3 2 

spoiler 100 6 7 9 8 8 8 

 160 1 3 5 5 3 2 

i-yaw 100 6 7 9 8 9 7 

 160 1 1 2 3 2 1 

d-yaw 100 6 8 9 8 9 8 

 160 5 5 5 5 4 3 

        

Participant  13 14 15 16 17 18 

baseline 100 4 6 8 6 6 9 

 160 1 1 4 3 4 2 

d-yaw 100 6 8 8 8 7 9 

 160 4 6 6 7 5 6 

cargo 100 5 4 7 7 5 7 

 160 2 2 5 3 3 1 

spoiler 100 5 7 7 5 7 8 

 160 4 3 5 4 4 6 

i-yaw 100 6 4 7 6 6 7 

 160 2 3 4 3 3 1 

baseline Repeated 3 4 4 4 3 5 
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Participant  19 20 21 22 23 24 

baseline 100 6 7 6 6 7 6 

 160 1 2 2 3 3 1 

iyaw 100 6 8 7 7 8 6 

 160 2 3 1 3 3 1 

dyaw 100 7 9 7 9 9 6 

 160 4 5 4 5 5 3 

cargo 100 6 8 8 8 8 5 

 160 3 4 1 4 3 1 

spoiler 100 6 8 8 9 9 5 

 160 4 5 5 9 4 2 

baseline Repeated 2 3 4 4 3 3 
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Appendix E Driver Model Parameters  

Smooth 4 9 14 16 18 20 23   

Tp 1.7 1.7 1.7 1.8 1.7 1.8 1.8   

YR 150 150 150 150 150 150 150   

Td 0.7 0.5 0.6 0.5 0.6 0.4 0.6   

K (e-4) 2.35 1.23 6 0.89 2 0.4 0.99   

damp 0.18 0.18 0.785 0.15 0.28 0.07 0.11   

stiffness 4.12 6.7 4.47 6.7 6.32 5 5.48   

Precise 3 11 15 17      

Tp 1.9 1.9 1.8 1.9      

YR 200 200 200 200      

Td 0.4 0.3 0.4 0.3      

K (e-4) 0.5 0.34 0.05 0.25      

damp 0.27 0.39 0.47 0.42      

stiffness 5.48 3.87 6.32 5.92      

Rough 1 2 6 7 8 13 5 19 22 

Tp 1.7 1.7 1.7 1.7 1.8 1.7 1.9 1.9 1.7 

YR 50 50 50 50 50 50 50 50 50 

Td 0.5 0.6 0.4 0.4 0.4 0.4 0.4 0.3 0.4 

K (e-4) 3 5.45 5.33 1.16 1.6 2 3.75 5 2.5 

damp 0.4 0.533 0.63 0.27 0.3 0.4 0.79 1.185 0.55 

stiffness 6.32 4.69 3.87 5.48 5 6.32 6.32 6.32 6.32 

Over-reacting 10 12 21 24      

Tp 1.4 1.4 1.5 1.4      

YR 50 50 50 50      

Td 0.4 0.4 0.4 0.4      

K (e-4) 5 3.33 4.8 4.8      

damp 0.78 0.60 0.7 0.8      

stiffness 5.48 5.48 5 5      



 

 

 

 

131 

Appendix F Linearization of MacAdam’s Driver Model 

For a linear 2DOF vehicle model 

xCr

xCy

BuAxx

r

y







          (F.6.1) 

where A is vehicle system matrix, B is input matrix, y is lateral displacement, r is yaw-

rate, and Cy and Cr are output matrix respectively. 

The cost function proposed in MacAdam’s model has the following form 
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The output of the linear systems can be decomposed into zero input response and zero 

state response 
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The optimal solution for equation (F.2) can be obtained by substituting equation (F.3) and 

(F.4) into (F.2) and setting the partial derivation of the cost function J with respect to u to 

be zero 
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For computational purpose, we can discretize the solution 
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In crosswind steering scenario, if we assume that driver is driving straight, yd and rd will 

equal to zero. 
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Here, F and g depend on vehicle model (F.1) and are constants.  Optimal steering angle 

uopt is only depending on x0. 
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Appendix G Nomenclature 

Symbol Name 

ad(t) Driver desired acceleration 

aF(t), VF(t), XF(t) Following vehicle acceleration, velocity & position 

aL(t), VL(t), XL(t) Lead vehicle acceleration, velocity & position 

C,K Gain, sensitivity 

Cv, Cs, Cc Constants for linear optimal control model 

Ε Saturation function threshold 

K Sample (discrete time) 

m, l Exponent parameters for nonlinear follow-the-leader model 

N Length of interaction 

P Desired acceleration gain of range-rate 

P0 ,P1 ,P2 ,P3 Desired acceleration gain coefficient  

 Deviation gain coefficient 

 Range, Range-rate 

 Perceptual range-rate  

Rmin Minimum range 

T Time 

tpreview Preview time 

Th Time headway 

Τ Time delay 

VFd Desired velocity of the following vehicle 

Σ Deviation 
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Appendix H Parameters Values 

Table H.1 SDM parameters 

 
       

mean STD 

Driver 1 0 0 -.0023 .0732 0 -.002 0.1526 0.5658 0.4042 

Driver 2 -0 0.0001 -.0069 .1478 0 -.0001 0.0702 -0.4224 0.4844 

Driver 3 -0 0 -.0011 0.0391 0 -.0047 0.2499 0.2291 0.4022 

Driver 4 -0 0 -.0029 0.0751 -0 0.0042 0.0678 0.3653 0.6559 

Driver 5 -0 0 -.003 0.0786 0 -.0011 0.1093 0.1717 0.4677 

Driver 6 -0 0 -.0026 0.0773 0 -.0034 0.2005 0.6727 0.5756 

Driver 7 -0 0.0001 -.0047 0.1366 -0 0.0015 0.0912 0.2521 0.4075 

Driver 8 -0 0 -.0007 0.0235 0 -.0022 0.1869 -0.2841 0.423 

Driver 9 -0 0.0001 -.0042 0.0452 0.0001 -.0045 0.2558 0.142 0.3191 

Driver 10 0 -0 0.0021 -.012 0.2727 0.206 0.2926 0.4596 0.4833 
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Appendix I Derivation of ARMA model 

Tyler’s model has the following form: 

 FcFLsFLvF VCxxCVVCtV  )()()(       (I.1) 

VL, xL, and xF can be replaced by R and R  

FFL VxxtR  LV  (t)R and )( where  , and equation (I.1) becomes 

 )()()()( tVCtRCtRCtV FcsvF          (I.2) 

Discretization is done with sampling time T 
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(I.3) is re-organized as follows: 

)()()1()()()(                    

)()()()1()()1(

kRCCTkRCkVCCTkV

kVCCTkRCTkRCkRCkVkV

vsvFcsF

FcssvvFF








 

)()1()()()1( kRdkRckVbkVakV FFF    

where a, b, c, d are the coefficients for ARMA model. 

Finally, the time step is shifted and the ARMA model can be obtained.  

)1()()1()1()(   kRdkRckVbkVakV FFF     (I.4) 
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