
Scalable Algorithms for Communication Networks

by

Li-yen Chen

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Electrical Engineering: Systems)
in The University of Michigan

2010

Doctoral Committee:

Assistant Professor Petar Momcilovic, Chair
Professor Demosthenis Teneketzis
Associate Professor Mingyan Liu
Associate Professor Mark P. Van Oyen

c⃝ Li-yen Chen

All Rights Reserved
2010

To my parents and teachers.

ii

ACKNOWLEDGEMENTS

I am grateful for having the ideal advisor, Professor Petar Momcilovic. Working

with Professor Momcilovic has brought me the greatest joy of learning. His industrious

and rigorous attitudes made him the paragon of a researcher throughout my graduate

study. Without his vision and guidance, this dissertation simply would not have been

possible.

I would like to express my gratitude towards my dissertation committee. I thank

Professor Demosthenis Tenekitzis for his comprehensive and valuable comments on my

research. He has also been an inspiring teacher in my mathematical coursework. I am

grateful to Professor Mingyan Liu for her attentive reviews on my thesis draft and her

excellent teaching in my very first course on communication in Michigan. I also thank

Professor Mark Van Oyen whose course intrigued my interest in queueing theory.

My gratitude extends to all my teachers in the Electrical Engineering: Systems,

Mathematics, Statistics, Computer Science and Industrial & Operations Engineering

Departments. In particular, I thank Professor Serap Savari for her warm and helpful

advices. I am grateful for having the company of my classmates and colleagues. I

thank my friends, for being consistently supportive and encouraging. They have made

my graduate life cheerful and enjoyable.

This dissertation would not be complete without the mention of my respectful par-

ents. Their dedication to my education is the primary reason for my love towards

science and engineering. I sincerely thank them for their confidence in my capability of

doing anything with determination.

iii

TABLE OF CONTENTS

DEDICATION . ii

ACKNOWLEDGEMENTS . iii

LIST OF FIGURES . vi

LIST OF APPENDICES . ix

ABSTRACT . x

CHAPTER

1 Introduction . 1
1.1 Routing Problem . 2
1.2 Scheduling Problem . 5
1.3 Bandwidth Sharing Problem 8
1.4 Organization of Dissertation 9

2 Scalable Routing . 10
2.1 Introduction . 10
2.2 Model and Preliminaries . 12
2.3 Routing Tables . 16

2.3.1 Types of Routing Records 16
2.3.2 Size of Routing Tables 18
2.3.3 Compression . 20
2.3.4 Example: Longest-Prefix Compression 22

2.4 Shortest-Path Routing . 27
2.5 Information-Efficient Routing 34
2.6 Distributed Approach . 37
2.7 Concluding Remarks . 40

3 Scalable Scheduling . 41
3.1 Introduction . 41
3.2 Model . 43

3.2.1 Virtual-Output-Queued switch 43
3.2.2 Maximum-Weight-Matching scheduling 45

iv

3.2.3 Algorithm comparisons 47
3.3 Time-encoding computation 48

3.3.1 Time-encoding operations 48
3.3.2 A motivating example 49

3.4 Distributed scheduling . 50
3.4.1 Basic algorithm . 51
3.4.2 Distributed implementation 52
3.4.3 Performance . 55

3.5 Reversible algorithm . 61
3.6 Concluding remarks . 68

4 Bandwidth Sharing . 70
4.1 Introduction . 70
4.2 Model . 72

4.2.1 Cyclic network . 72
4.2.2 Buffer management policies 73

4.3 Throughput analysis . 74
4.3.1 Deterministic service time 75
4.3.2 Exponential service time 80

4.4 Numerical comparisons . 82
4.5 Concluding Remarks . 85

5 Conclusions . 86

APPENDICES . 90

BIBLIOGRAPHY . 107

v

LIST OF FIGURES

Figure

2.1 An example of R(·, ι) for a fixed ι and its reduced form by applying
longest-prefix compression. The compressing operation in the merging
process of the tree representation is shown in Fig. 2.2. The table on the
left (corresponding to the tree representation on the top in Fig. 2.2) is
the routing table before compression; the table in the center corresponds
to the tree on the bottom in Fig. 2.2, which is the routing table after the
merging procedure; on the right is a fully compressed version of routing
table. 23

2.2 The example of R(·, ι) in Fig. 2.1, represented by a binary tree. Each
leaf of the tree corresponds to an address of length log2N , specified by
the unique path from the root. The tree can be compressed by merging
leaves non-conflicting indices. 24

2.3 There exist multiple shortest paths (in the number of hops) between two
cells located in different rows and columns. Three different paths are
shown in this example. When a cell can achieve the same number of
hops to the destination cell via 2 different neighbors, it chooses one at
random. 28

2.4 This figure provides an example on how virtual rows and columns for a
Voronoi tessellated unit square are constructed by the distributed algo-
rithm. A set of 104 points are selected uniformly at random as centers of
the Voronoi cells, which satisfies the condition that rules out too eccen-
trically shapes. The figure on the top shows cells c0, c1, c2, and the initial
path P ; in the figure on the bottom, only the virtual rows (columns) with
indices of multiples of 6 are colored for clarity. 38

3.1 The structure of a Virtual-Output-Queued switch. Packets are enqueued
at inputs based on their destinations. Each input/output can be con-
nected to at most one output/input in every time slot. 43

3.2 Illustration for the motivating example. The switching fabric has only 2
possible states shown on the top. On the bottom is the time line that
indicates the expiration of the timers. In this example, the timers are set
at t = 0. At t = X1,2, the first timer to expire is the one associated with
input-output pair (1, 2). Thus, in this instance the switch is configured
to the matching with weight M2. 49

vi

3.3 An example of how a matching is built in the case X1,2 < X3,2 < X3,3 <
X1,1 < X2,1 < ∞ and all other Xi,j’s are equal to ∞. The first timer
expires at t1 = X1,2, the second at t2 = X3,2 and so on. When a timer
expires, the input is connected to the output only if such a connection is
feasible. Non-feasible connections are shown with dashed lines. 53

3.4 Conceptual operation of a 2× 2 switch under A(W). Poisson processes
are generated at each virtual buffer (input-output pair) with rates pro-
portional to the occupancy continuously over time; these processes serve
as the required timers during scheduling phases. At the beginning of
each scheduling phase, all input-output ports are disconnected. As im-
pulses arrive (timers expire), the corresponding feasible connections are
established. The configuration of the switching fabric after each arrival
of the Poisson processes is shown on the bottom of the graph. Once the
fabric is configured, a cell transfer phase starts. 54

3.5 For a switch with N = 32, the expected average virtual output queue length

Q⟨⟩ and expected maximum virtual output queue length Q↑ for the MWM

(+), APSARA (�), LQF (×), and A(Q) (◦) algorithms under uniform traffic. 58

3.6 For a switch with N = 32, the expected average virtual output queue length

Q⟨⟩ and expected maximum virtual output queue length Q↑ for the MWM

(+), APSARA (�), LQF (×), and A(Q) (◦) algorithms under diagonal traffic

with α = 1/2 (top) and α = 2/3 (bottom). The corresponding maximum ρ’s

for A(Q) are also shown. 59

3.7 An example of how the state of the switching fabric evolves over time. The

minimum elements in both X and Y at the time instances when changes

of state occur are X1,1, X1,2, Y1,1, X2,1, X2,2. At these time instances, the

algorithm changes the matching correspondingly and updates X and Y . The

values of X and Y after updates are shown under the corresponding bipartite

graphs; the updated elements are underlined. A dashed edge indicates that

the connection fails to be established due to a conflict with the current state;

a dotted edge indicates that an existing connection is eliminated. 63

3.8 The expected average virtual output queue length Q⟨⟩ and expected maximum

virtual output queue length Q↑ for Bγ(Q) (+,�) and an approximation of

A(Q) (◦) under diagonal traffic with α = 1/2 (N = 32). Here A(Q) is

approximated by Bγ(Q) with (λ, µ, τ) = (1, 0, 1), and Bγ(Q) uses parameters

(λ, µ, τ) = (1, 10, 1)(+) and (1, 10, 10)(�). The upper bound of the critical ρ

for A(Q) is also shown; note that Bγ(Q) stabilizes the switch under diagonal

traffic with values of ρ that exceed this bound. 67

4.1 The cyclic network contains N nodes and N flows. Each flow traverses
all nodes in the network sequentially. In the figure, only flow 1 and flow
2 are shown with dotted lines. 72

4.2 The throughput θ as a function of input rate x under the OPF policy (+),

NPF policy (×) and FCFS service with tail dropping (◦). The cyclic network

consists of N = 100 nodes and there are no buffer spaces (b = 1) for all nodes.

Service times are deterministic with unit length. 83

vii

4.3 The throughput θ as a function of input rate x under the OPF policy (+),

NPF policy (×) and FCFS service with tail dropping (◦). The cyclic network

consists of N = 100 nodes and b = 1 (top) or b = 5 (bottom) for all nodes.

Service times are exponentially distributed. 84

A.1 A cell forwards packets in the south-to-east direction if the straight line
connecting the source and destination crosses the two bold lines. Pro-
vided that the source is located at (r, φ) in polar coordinates relative to
the cell’s upper-right corner, the destination can be anywhere inside the
shaded disc sector. The figure is plotted for the case 0 ≤ φ ≤ π/4. . . . 94

A.2 Probability p of forwarding packets of a flow in the south-east direction
by the cell in the center of the figure can be estimated by conditioning on
the location of source and destination cells (lower-bottom and upper-left,
respectively). All the distances shown are measured in cells. 96

B.1 The interference graph for an N × N switch under diagonal traffic is shown

on the top, where nodes correspond to queues with positive occupancies and

arrival rates; edges connect queues with a common input/output port. On

the top, the interference graph is drawn according to the relative location

of the nodes in the traffic matrix; in the middle the graph is drawn on two

circles, each circle refers to a matching of size N . Conditioning on the event

that queue (1, 1) is scheduled first, the remaining interference graph is linear

as shown on the bottom of the figure. Here an additional fictitious node 0

is added to the left end of the line in order to draw an equivalency with a

dimer packing problem considered in [65]. A dimer is placed on nodes 2 and

3, indicating that queue (3, 3) is scheduled. As a result, queues (2, 3) and

(3, 4) can not be scheduled in the same time slot, since dimers are not allowed

to overlap. 104

viii

LIST OF APPENDICES

APPENDIX

A Appendix for Chapter 2 . 91
A.1 Proof of Lemma 2.2 . 91
A.2 Proof of Lemma 2.4 . 92

B Appendix for Chapter 3 . 98
B.1 Proof of Theorem 3.1 . 98
B.2 Proof of Proposition 3.1 . 102
B.3 A procedure for estimating ρ∗ for α ∈ (0, 1) 106

ix

ABSTRACT

Network scalability has emerged as the essential problem in designing architectures

and protocols for large-scale communication systems. Minor efficiencies, that can be

tolerated in small networks, can accumulate and become a dominant factor determining

the performance of large networks. In this thesis, we consider three problems that are

related to scalability. First, we examine the size of routing tables as the number of nodes

in the network increases. It is shown that the widely used shortest-path and straight-

line routing algorithm can be implemented only when nodes’ memory increases with the

network size. On the other hand, it is established that there exist information-efficient

algorithms, e.g., column-first routing protocol, that route packets correctly even if each

node in the network is capable of storing information on a fixed number of destina-

tions only. In the second part, we present a novel computational model utilizing time

encoding, that enables a distributed scheduling mechanism. The scheduling algorithm

we propose achieves performance comparable to centralized algorithms under uniform

traffic. Exploiting a connection between switch scheduling and interval packing, we

argue that the distributed nature of the algorithm limits the maximum relative load

to 1 − e−2 under the worst-case scenario. The stability of the algorithm can be im-

proved by enabling reversibility in distributed decision making. Finally, we discuss the

bandwidth sharing problem for multi-hop networks. A buffer management policy that

utilizes only simple packet attributes delivers a constant fraction of the maximum pos-

sible throughput. Moreover, the policy is robust to heavy traffic loads in the sense that

the throughput does not degrade due to congestion.

x

CHAPTER 1

Introduction

Network scalability, a topic motivated by the growth of networking infrastructures,

has emerged as a pivotal problem in designing architectures and protocols for large-

scale multi-hop wireless networks. Indeed, the impact of large scales on the system

performance can be acute: minor efficiencies, that can be tolerated in small networks,

can accumulate and become a dominant factor determining the performance of large

networks. As a result, the amount of local resources (e.g. buffer space, computational

power, transmission bandwidth) provides a limitation on the network size that can be

supported. Given that in the future, the growth of network size is only expected to

continue, it is of interest to develop algorithms that support the operation of large

networks.

Most of the scalability problems are impractical to be addressed experimentally due

to the considerable cost of building large-scale prototypes. Even simulating such sys-

tems is often very difficult because of the computational limitations. Hence, our focus

on mathematical analysis. In contrast to previous studies that overlook the limitations

of individual nodes, our interest is in the impact of finiteness of resources at individual

nodes on the overall network performance. To this end, in the rest of this dissertation,

we consider three aspects of operation in large-scale networks: routing, scheduling and

bandwidth sharing. The obtained analytical insight, e.g. scaling laws and optimal oper-

ations, of these problems is then utilized to design scalable algorithms, i.e., algorithms

1

that require only negligible resources but achieve performance comparable to the per-

formance delivered by centralized algorithms. The algorithmic aspect is particularly

important given that some of widely considered algorithms require excessive resources

at individual nodes and, hence, are not scalable. In these three aspects of the net-

work operation, we improve the scalability of the algorithms from angles that were not

considered in the literature, which in turn demonstrates the multidimensionality of the

network scalability. Our study also address the tradeoff between the distributiveness

and the performance of the algorithms, which has rarely been considered in the design

of small systems. These results serve as the first-step analysis toward the other general

network scalability problems, and indicate that completely new protocols are in need of

establishment to support the operation of large-scales networks. The ultimate goal is to

establish the existence and construction of algorithms that support efficient operation

of large-scale networks of nodes with limited resources.

1.1 Routing Problem

In this section, we summarize the main results on the routing problem. We consider

a network model with N nodes located in a unit square and grouped into cells based

on their locations. It is appropriate to think of cells as nodes in a higher-level logical

network. Our focus on cell-based algorithms is due to the following property: under the

relaxed protocol model (a common model for interference) and a carefully chosen cell

dimension, the number of cells that interfere with any given cell is bounded by a constant

independent of the network size N [24]. In other words, the cell tessellation provides

us a normalization of the network – a constant fraction of cells can transmit/receive

packets simultaneously. For these cell-based algorithms, the routing table for each cell

typically contains multiple records, that describe how packets to specific destination

nodes need to be handled by this cell. Note that if one requires a node to hold a single

2

packet, then the node memory increases at least logarithmically in the network size,

since ⌈log2N⌉ bits are needed to uniquely identify a destination. Given that all nodes

have identical capabilities (hardware), it is reasonable to make the assumption that the

routing records are spread evenly among the nodes in a cell; hence it is sufficient to

consider the amount of routing information stored in each cell. Each record contains

a destination address, possibly along with adjacent cell identifiers, depending on the

employed routing policy. In particular, nodes can maintain (possibly in compressed

form) lists of records, each containing the address of a destination node, an input cell

label and an output cell label. With this type of records, a cell forwards only packets

with the destination address and input cell label that match a record in the list. Observe

that in this case a cell can be treated as a switch/router with neighboring cells being

input/output ports. Including the extra information (cell labels) in the records helps

with compression of routing tables and is subject to only a small overhead.

We first consider a theoretic lower bound on the size of routing tables. In particular,

for given forwarding and input cells, it is shown that the bound is proportional to the

minimum number of routes utilizing the same output cell. The intuition behind this

result is that if the packets forwarded by a cell are directed to all of the neighboring

cells equally likely, the routing table cannot be compressed efficiently due to the high

entropy of the content. On the other hand, if a large body of the packets forwarded

by a cell is directed to a single neighbor, then the routing table can be effectively com-

pressed. In particular, the majority of the packets are forwarded through this direction

by default; only the records for those packets that are to be handled differently need to

be stored in the table. The by-default forwarding allows us to eliminate the set of des-

tination addresses (and output labels that are of negligible length) that are forwarded

in the dominant direction, and form the routing table for destination addresses that

are forwarded in the other directions only. We illustrate this result by applying the

well-known longest-prefix compression algorithm [67] to two cases of forwarding direc-

3

tions: (i) uniform forwarding, and, (ii) biased forwarding. We demonstrate that the

more biased the distribution of forwarding direction is, the better the performance of

the longest-prefix compression. Therefore, it is desirable to design a routing protocol

that routes packets on pre-constructed “highway system” – most of the packets (pack-

ets along the “highway”) travel on same routes and are handled in the same way by

intermediate cells.

Next, we propose the main concept of this work: information-efficiency. A routing

protocol in a flat-label network is said to be information-efficient if the amount of

information at individual nodes required to route packets does not increase with the

network size. We first examine the straight-line routing algorithms, considered in [33,

24, 25], (packets are forwarded along the cell intersected by the straight line connecting

the source and destination cells). Such a routing scheme is shown to be not information-

efficient. That is, this protocol can be implemented only when nodes’ memory increases

with the network size. A closely-related algorithm is the shortest-path algorithm, which

selects a route such that it contains the minimum number of cells (hops) at random.

This algorithm is also information-inefficient. These results suggest that these two

straightforward routing algorithms, which are aligned with many current real-world

protocols, are of poor scalability and are not suitable for large-scale communication

networks.

On the other hand, we argue that there exist information-efficient algorithms that

route packets correctly even if each node in the network is capable of storing information

on a fixed number of destinations only. To demonstrate the existence of such algorithms,

we prove the information-efficiency for a particular routing scheme, i.e., column-first

routing. We note that, in consistent with the discussion about compression of routing

tables, column-first routing yields a single dominant forwarding direction in each cell.

The notions of columns and rows (within the nature of square cells) serve as pre-existent

routes; packets travel along these routes for most of the duration from the source to

4

the destination. The information efficiency of column-first algorithm indicates that it is

desirable to construct a “highway” system for routing, in order to maintain a constant

size routing table at individual nodes. Our focus on column-first policy is due to the

simplicity – it is not the only information-efficient routing algorithm.

In the last part of this work, we relax the assumption on the cell shape by proposing a

heuristic distributed algorithm for constructing virtual rows and columns with Voroni

cells (see [63] for a discussion of Voroni tessellation). Column-first-like routing can

be operated given these pre-existent “highways”. Our procedure starts with a single

random cell identifying the furthest cell in the network by flooding a distance vector

(counters of numbers of hops). Analogously, this identified cell can find a furthest cell,

and the shortest path in between serve as an initial virtual row. This virtual row in

turn flood a distance vector and establish other virtual rows in the network. Virtual

columns can be established in a similar fashion. After the one-time construction, each

cell in the network belongs to exactly one virtual row and one virtual column, and

column-first-like algorithms can operate correctly utilizing these virtual rows/columns.

The described procedure requires only negligible overhead, and provides only one way

of constructing the virtual routes; it is by no means exclusive.

1.2 Scheduling Problem

This section outlines our research contribution in the scheduling problem. We design

a fully distributed scheduling scheme with implicit information exchange by introducing

a new model of computation based on time encoding. In our model, variables are

represented with time intervals of possibly random lengths rather than deterministic

bits. A time interval (and hence its length) can be defined by two impulses. Two

operations are in particular enabled with simple implementation by the time-encoding

model: minimum and inverse sum. The minimum of two intervals is given by the

5

following procedure: define the new starting impulse as the beginning of the two aligned

time intervals, and the new ending impulse as the earlier of the two ending impulses.

The inverse sum can be implemented by applying the minimum operator to exponential

random variables with means being the inverse of the input variable; this operator is

only approximate, but can be implemented in a distributed fashion.

Enabled by the time-encoding model is a set of randomized scheduling algorithm

that allows for distributed implementation. We focus on the scheduling of a crossbar

switch due to both the simplicity and generality of the architecture. In the algorithm

we propose, each time slot is divided into two phases: scheduling and cell transfer. In a

scheduling phase, each input-output pair is represented by an exponentially distributed

random variables with mean being the inverse of the corresponding weight; the weight

of a pair can be computed through a selected weight function using only local attribute

of this pair. A input-output pair with the minimum variable is selected in each iter-

ation until no more pairs can be selected; then, the switch facilitates transmission to

the selected pairs in the remaining of this time slot (cell transfer phase). In order to

implement this algorithm distributively, suppose that the source of randomness is avail-

able at each input port, i.e., a unit mean exponential random time interval (timer) for

each time slot. Adjusting the intensities of these time intervals is equivalent to setting

timers based on the weight at input-output pairs. Upon the expiration of a timer, the

pair is scheduled unless it conflicts with another scheduled pair. This process continues

until all timers with finite length expire. The exponential timers can be implemented

conveniently with our time-encoding computing model. Since only limited inter-port

information exchange is performed, the implementation of this scheduling algorithm is

distributed, and hence, scalable.

The described scheduling algorithm is shown to be rate stable for packet switches

of size 2 × 2 under any admissible traffic pattern. Moreover, we show that it is rate

stable for packet switches of an arbitrary size under uniform traffic patterns. The

6

proof of these results follows the fluid model, i.e., a deterministic, continuous system of

equations that parallels the evolution of the buffer occupancy process in packet switches.

Our numerical comparison shows that this algorithm performs competitively (in terms

of buffer occupancies/delay) under uniform traffic for a wide range of relative load,

when compared to centralized switch scheduling algorithms, e.g., Maximum-Weight-

Matching(MWM), Longest-Queue-First, and APSARA [29](a heuristic algorithm based

on the MWM with a smaller complexity). For diagonal traffic, the algorithm fails to

stabilize the switch for high values of relative load. We argue that the distributed

nature of the algorithm limits the maximum relative load to 1 − e−2 under diagonal

traffic by exploiting a connection between switch scheduling and interval packing [65].

An upper bound of the critical relative load for diagonal traffic pattern with arbitrary

parameter can be evaluated numerically through an iterative procedure.

The stability of the algorithm can be improved by enabling reversibility in dis-

tributed decision making. The above algorithm makes irreversible scheduling decisions;

once a pair is scheduled, the decision remains valid until the next scheduling phase,

regardless of consequent scheduling decisions. In a reversible scheduling algorithm, all

scheduled pairs are subject to disconnections based on the arrivals of a fixed rate Pois-

son processes until the end of the scheduling phase. Similar to the basic algorithm,

each reconfiguration of the switching fabric, which either schedules or un-schedules a

input-output pair, involves only this single pair – no inter-port communication is re-

quired. Therefore, it can be realized by a similar scheme as the one described above,

with the additional ability to un-schedule. We make the observation that the state

of the switching fabric is described by a continuous-time Markov chain. By deriving

the product-form stationary distribution of this chain, we conclude that the probability

of a matching being scheduled increases exponentially with respect to the number of

packets in the matching. The expansion of stability region comes at the cost of a higher

computational complexity.

7

1.3 Bandwidth Sharing Problem

In this section, we summarize our results in the bandwidth sharing problem. We do

not study the problem under the fluid assumption of the network flows, i.e., treating

the traffic as continuous medium; instead, the system is examined at packet-level gran-

ularity. Our approach to achieve the desired bandwidth sharing is based on employing

buffer management policies. A buffer management mechanism consists of two parts: the

service discipline and the dropping policy. In particular, the network throughput under

three buffer management policies is considered and compared, namely, the first-come-

first-serve (FCFS) discipline with tail dropping, the oldest-packet-first (OPF) policy

and the newest-packet-first (NPF) policy. A network node operating under the FCFS

discipline serves packet in its order of arrival to the node; it discards the newly arrival

packets when the buffer is fully occupied under tail dropping. Under the OPF policy,

the packets arriving to a node is served/enqueued with priority given by their age; the

larger the number of hops it has traveled in the network, the higher the priority. In

contrast, the NPF serves/buffers packets with a smaller number of hops traveled with

higher priority.

We consider two cases of service time distribution for the network nodes: determin-

istic and exponentially distributed service times. In both cases, the throughput under

FCFS discipline with tail dropping is maximized for a specific value of input rate, which

is dependent of the network size. The throughput degrades exponentially with the in-

crease of input rate beyond that value. In other words, in order to achieve the highest

possible throughput, additional congestion control mechanism at end users is required

to maintained the input rate at a certain level; otherwise the system throughput is

subject to the decay due to congestion. On the other hand, the throughput under the

OPF policy do not exhibit such behavior. As the input rate increases, the throughput

approaches a constant fraction of the maximum throughput, suggesting that the OPF

policy is robust to high traffic load, i.e., free of congestion. The throughput under

8

the NPF policy behaves similar to the throughput under the FCFS discipline with tail

dropping.

1.4 Organization of Dissertation

The dissertation is organized as follows. In Chapter 2 we analyze the scalability of

routing problem. The scalability of scheduling problem the bandwidth sharing problem

is studied in Chapter 3 and Chapter 4, respectively. Chapter 5 contains concluding

remarks and reflections of our research. Subsidiary proofs and computation procedures

omitted in the main text are located in the Appendices.

9

CHAPTER 2

Scalable Routing

2.1 Introduction

Mathematical study of large-scale wireless networks has been initiated in [33] where

the authors established an upper bound on the network throughput as a function of the

network size (number of nodes). The authors also constructed a protocol that achieves

a slightly smaller throughput than the limiting one. Consequent studies focused on the

throughput-delay trade-off [24, 25], achievability of the limiting throughput [27], and

various extensions of the original model and their analysis [38, 49, 46]. The throughput

capacity of wireless networks relates to that of lattice networks, e.g. see [6, 7] and the

references therein. When the network nodes exhibit high mobility, i.e. discontinuous

positions, the capacity is further improved [32].

It is recognized that design of scalable routing algorithms for wireless ad hoc net-

works is a challenging problem [68]. The difficulty is due to the fact that node identifiers

(addresses) of adjacent nodes are not similar (flat-labeling), i.e., the address aggrega-

tion employed in the Internet is not directly applicable. Geographic routing [43, 50, 12]

achieves aggregation by assigning additional identifiers to nodes based on their geo-

graphic location. However, we do not exploit this approach here since in that case

an additional mechanism is needed to provide translation between the original and

location-based identifiers; resource requirements of such a DNS-like mechanism can be

10

significant. In this chapter, we focus on one particular aspect of routing scalability: the

size of routing tables, i.e., the amount of information stored at network nodes required

for routing packets between sources and respective destinations. In contrast with our

interest in the required memory space of the control plane, the majority of existing

studies that concerns limited memory space is dedicated to that of the data plane, i.e.,

buffer space used to store enqueued packets. Indeed, in [7] the authors obtained an

approximation of the throughput in a large finite-buffer lattice network with determin-

istic transmission times. A wireless network with exponential transmission times and

finite-buffer nodes was considered in [37]. Buffer requirements in a wireless network

with mobile nodes were discussed in [34].

The size of routing tables is directly dependent on the adopted routing algorithm.

To this end, we term a routing protocol information-efficient if it can operate correctly

when each node stores information on a fixed number of destinations regardless of the

network size. That is, routing tables at network nodes do not increase with the network

size. We show that the straight-line routing algorithm, considered in [33, 24, 25], and

the closely related shortest-path algorithm are not information-efficient. However, we

demonstrate that the column-first routing scheme is information-efficient. Such an

algorithm induces routing tables that can be efficiently compressed.

The remaining of this chapter is organized as follows. In the next section we describe

a wireless network model and state preliminary results. Routing tables are discussed

in Section 2.3. The following section contains scalability results on the straight-line

and shortest-path routing algorithms. In Section 2.5 we demonstrate that there exists

an information-efficient routing scheme for large wireless networks. A distributed algo-

rithm is outlined in Section 2.6. Concluding remarks and technical proofs can be found

in Section 2.7 and Appendix A, respectively.

11

2.2 Model and Preliminaries

Consider a random topology network model with N nodes placed uniformly at

random in a unit-area square. Each node is identified by a unique address (label). Node

locations and addresses are independent, i.e., the Internet model of address aggregation

is not applicable; such an assumption holds often for ad hoc networks. A node sends a

packet to some other node in the network by specifying the destination node’s address

to the network layer, i.e., a packet contains its destination address.

We consider the relaxed protocol model of interference [24, 25]: a transmission from

node i to node j is successful if for some δ > 0 and all nodes k ̸= i transmitting

simultaneously with i

∆(k, j) ≥ (1 + δ)∆(i, j), (2.1)

where ∆(i, j) is the Euclidian distance between nodes i and j. It is known [33] that

under reasonable assumptions this model is equivalent to the popular physical model

based on the signal-to-interference ratio.

In the following discussions, we focus on a cell-based algorithm for packet transmis-

sion. Namely, the unit square is divided into square cells of area aN , where the subscript

indicates the network size. The shape of cells is square just for the convenience of anal-

ysis; other ways to partition the unit square into cells can be considered, e.g., Voronoi

tessellations [33] (see also Section 2.6). For simplicity, we assume that the quantity

1/
√
aN is an integer so that all cells (1/aN in total) are of the same size and shape.

Without loss of generality, let {aN} be a non-increasing sequence in N . A packet is

delivered from its source to the destination by forwarding between cells, i.e., between

the nodes located in those cells. A packet can be forwarded from a cell to only one of

the four neighboring cells (north, east, south, west); no multi-cell hops are permitted.

Under the relaxed protocol model the number of cells that interfere with any given cell

is bounded by a constant independent of the network size N [24, Lemma 2]. In other

12

words, a constant fraction of cells can transmit/receive packets simultaneously.

In order for the cell-based algorithm to deliver packets to their destinations, each

cell that forwards packets should contain at least one node. Requiring that every cell

in the unit square contains at least one node can satisfy this condition. To this end, let

kN(i), 1 ≤ i ≤ 1/aN , be the number of nodes in the ith cell (the labeling of the cells

is arbitrary) when the network consists of N nodes. Given the uniform distribution

of node locations, there exists a minimum cell size aN that probabilistically ensures

kN(i) > 0 for all 1 ≤ i ≤ 1/aN . A stronger version of the following lemma was stated

in [24]; it indicates that is sufficient to have aN = Ω(lnN/N)1 as N → ∞.

Lemma 2.1. If aN > a lnN/N for some a > 1 then, as N → ∞,

P
[

min
1≤i≤1/aN

kN(i) = 0

]
→ 0.

The next lemma provides an additional characterization of the minimum and max-

imum number of nodes in a single cell. Note that the expected number of nodes in a

cell is given by EkN(i) = aNN .

Lemma 2.2. Suppose that aN > a lnN/N for some a > 1. There exist 0 < γ1 < γ2 <

∞ such that, as N → ∞,

P
[

min
1≤i≤1/aN

kN(i) ≥ γ1aNN

]
→ 1 (2.2)

and

P
[

max
1≤i≤1/aN

kN(i) ≤ γ2aNN

]
→ 1. (2.3)

Proof. See Appendix A.1.

Next, we describe the configuration of traffic patterns. Each node chooses a point

on the unit square uniformly at random as its destination. All destinations are inde-

1We use the standard asymptotic notation, see e.g. [15, Section I.3].

13

pendent. Since at a chosen point there will be no node with probability 1, packets

from the corresponding source will be delivered to one of the nodes that share the cell

with the destination point. A similar assumption was made in [33] – it ensures the

independence of traffic routes. A routing algorithm specifies a set of cells that forward

packets between the sources and respective destinations. It this chapter we compare

three different routing policies: straight-line, shortest-path and column-first. These

policies operate as follows:

• Straight-line: The source node and destination point are connected by the straight

line. Packets are forwarded along the cells intersected by the line. This policy was

employed in [33, 24, 25] because it facilitates mathematical analyses. However,

it cannot be implemented easily in practice without sophisticated node hardware

and/or central authority.

• Shortest-path: The route is selected in such a way that it contains the minimum

possible number of cells (hops). When a cell can achieve the same number of

hops via multiple neighbors, the cell chooses one of these neighbors uniformly at

random. The main advantage of this policy is that it can be implemented via the

distributed asynchronous Bellman-Ford algorithm [10, Section 5.2].

• Column-first: Packets are delivered from the source cell to destination cell in two

phases [48, Section 1.7]. First, they are forwarded along the column that contains

the source cell until they reach the row that contains the destination cell. In the

second phase packets are forwarded along the row to their destination.

We conclude the description of the routing policies with an observation that for the

considered model all (unit square and square cells) three algorithms produce routes of

the same hop (cell) length for any source-destination pair.

One more aspect of the network model needs to be specified: the amount of time

required to correctly transmit a packet between two neighboring cells. Packet trans-

14

mission times can be modeled as both deterministic [33, 24, 25, 7] and stochastic [37]

quantities. In particular, in [37] it was assumed that the transmission times are expo-

nentially distributed. The expected transmission time is a function of the packet size

in bits. Since we assume that destination addresses are included in each packet’s meta-

data field, the packet size has to increase at least logarithmically in the network size

N , i.e., log2N bits are needed on average to uniquely identify all nodes in the network.

For simplicity we assume that each node has an infinite amount of buffer space to

temporarily store packets in the course of the forwarding process. Network throughput

ϑN is feasible if all N source-destination pairs can communicate at long-term rate ϑN .

The cell-based algorithm is optimal in the sense that it achieves asymptotically the

optimal trade-off between the throughput and delay [24, 25]. Studies [24, 25] assumed

deterministic service times with a time-slotted transmission system and employed the

straight-line routing scheme. It is straightforward to extend Theorem 1 of [24] for the

case of the shortest-path and column-first routing policies:

Theorem 2.1. Consider network nodes capable of storing arbitrary amounts of rout-

ing information. Suppose that straight-line, shortest-path or column-first routing is

employed. Let aN > a lnN/N for some a > 1. The network throughput scales as

ϑN = Θ(a
−1/2
N /N), i.e., there exist constants 0 < ζ1 < ζ2 <∞ such that

P
[
ϑN <

ζ1√
aNN

is feasible

]
→ 1

as N → ∞, and

lim inf
N→∞

P
[
ϑN >

ζ2√
aNN

is feasible

]
< 1.

Since the throughput scaling is better understood for the model with deterministic

transmission times and time-slotted system, we keep the discussion on the trade-off

between the throughput and size of routing tables restricted to that model (see Corol-

lary 2.1). However, we point out that Theorem 2.1 can be extended to cover the model

15

with exponentially distributed transmission times (a time-slotted system is not applica-

ble in that case). Namely, it can be shown that the network is equivalent to a queueing

Kelly network [42, Ch. 3] for which stability results are available. When the transmis-

sion times are random but not exponential, the network stability might depend on the

routing policy and could be hard to evaluate in general.

2.3 Routing Tables

In this section we discuss the size of routing tables at individual nodes required for

the correct operation of routing protocols. We say that a routing algorithm operates

correctly if packets from all destinations can be delivered to their respective destinations

in the cell-based algorithm.

2.3.1 Types of Routing Records

Routing tables contain records, i.e., the information on how packets to specific des-

tination nodes need to be handled. The amount of information required for correct

routing depends on the type of a record, i.e., whether packets contain additional meta-

data besides the destination address. Two cases are of interest:

• Destination address only. Due to the broadcast nature of packet transmissions

in wireless networks, a packet can be received by all nodes that satisfy the in-

terference constraint (2.1). Each node keeps a list of destination addresses they

forward packets to. A node examines all the packets it receives and either retrans-

mits them (a some point of time) if they are on the list, or simply discards them.

In this case a routing table consists of a list of destination addresses. A mech-

anism is needed to prevent a node from transmitting the same packet multiple

times.

16

• Destination address & adjacent cell identifiers. All cells are assigned labels such

that each cell can uniquely identify all of its interfering cells. Each packet contains

cell labels of the transmitting and receiving nodes, i.e., a pair (η, ω); this is in

addition to the address of the destination node. Nodes maintain (possibly in

compressed form) lists of triples of the form (α, ι, ω), where α is the address

of a destination node, ι is an input cell and ω is an output cell. A node is

responsible for forwarding packets with destination α from cell ι to cell ω (hence,

the term input and output cells). A node receives only packets that contain

address α and transmitting-cell label ι such that (α, ι, ·) is on the node’s list.

Before retransmitting a packet, a node updates the packet’s meta-data field with

its own cell label and the receiving-cell label ω from the triple (α, ι, ω). We observe

that in this case a cell can be treated as a switch/router with neighboring cells

being input/output ports.

We focus on the second type of records for two reasons. First, compressing routing

tables in the former case is difficult because the randomness of address locations results

in high entropy of the list. On the other hand, having extra information (cell labels)

helps with compression. Second, the overhead due to cell labels is small. Since each

cell has at limited number c of interfering cells (see Section 2.2), it is sufficient to have

only (c + 1) labels to have each cell identify its interfering cells uniquely [15, p. 1092],

i.e., ⌈log2(c + 1)⌉ bits per cell label are sufficient. In addition, such labels might be

available at very little cost due to the layered architecture of current networks, e.g., one

could exploit the already existing layer-2 addressing space. Finally, we remark that one

could also design routing tables with other types of records. For example, records of

type (α, ω) are feasible, i.e., the input cell identifier is eliminated in the triple (α, ι, ω).

However, such a design does not substantially decrease the record size in bits while the

ability to compress routing tables is compromised.

17

2.3.2 Size of Routing Tables

Next, we turn our attention to sizes of routing tables. Due to the model(flat-label),

a prefix-based compression [62] of routing tables is not applicable. Let CN(i) be the set

of routing records in cell i needed to correctly forward packets between the sources and

destinations. All the information required in a cell has to be stored at nodes located in

that cell, i.e.,

CN(i) =
∪
n∈i

TN(n),

where TN(n) is the set of records stored at node n. By ∥CN(i)∥ and ∥TN(n)∥ we

denote the sizes of routing tables CN(i) and TN(n), respectively, measured in number

of address length, i.e., if ∥CN(i)∥ = x then the size of compressed CN(i) in bits is given

by x⌈log2N⌉. Effectively, we assume that each node can hold a packet in its memory

(since the packet size is lower bounded by ⌊log2N⌋ bits). Given that all nodes have

identical capabilities (hardware), it is reasonable to assume that the routing information

is spread evenly among nodes in a cell. This implies, for all i ∈ n,

∥TN(n)∥ ≥
⌊
∥CN(i)∥
kN(i)

⌋
(2.4)

(recall that kN(i) is the number of nodes in the ith cell). Data stored at each node should

contain not only a compressed routing table but also an decompression algorithm. Thus,

it would perhaps be more appropriate to consider the Kolmogorov-Chaitin complex-

ity [16, Ch. 7] of the routing table CN(i). However, estimating the Kolmogorov-Chaitin

complexity of the routing table is difficult in general. Therefore, we will establish a

lower bound by considering the traditional information-theoretic compression. In that

case the compressed data do not have to contain a decompression algorithm (which

is not true in the case of the Kolmogorov-Chaitin complexity). Note that considering

specific algorithms for compression of general tables (such as [8]) will not provide a

lower bound on ∥CN(i)∥.

18

Let ψd(i) be the number of flows forwarded by cell i in direction d. Direction d

indicates the neighbors of cell i between which it forwards packets (i.e. the input and

output cells), e.g., south-to-north, north-to-east, etc. In other words, for a given cell,

direction d can be represented by a pair of neighboring cell labels (ι, ω) with ι ̸= ω. For

all non-edge cells in the unit-area square, d can take 12 possible values; denote the set

of these values by D.

A routing table CN(i) can be thought of as a discrete-valued function2 R that has

two inputs and one output:

ω = R(α, ι), (2.5)

where ω is the output cell label computed based on the destination address α and the

input-cell label ι.

The following lemma establishes a lower bound on the amount of routing information

stored at individual nodes. The bound is based on the minimum value of ψd(i) over

d ∈ D. The intuition behind the lemma is as follows. For a given cell i, consider the

function R(·, ι) for some specific ι. Let α be a destination chosen uniformly at random

among destinations that have packets forwarded by cells ι and i. Then the randomness

of R(α, ι) is determined by ψd(i) for d = (ι, ·), since ψd(i) for d = (ι, ·) determines

the likelihood of possible values of R(α, ·). The higher the randomness of R(α, ι) (or

entropy of R(·, ι)) the more information is need to correctly route packets. In the

extreme case when R(α, ι) is deterministic no information about individual destination

needs to be stored – routing can be performed solely based on the input cell labels (in

this case, all packets arriving from the input cell ι are forwarded to a single neighboring

cell regardless of the destination address α.)

Lemma 2.3. Let ψ := mind∈D ψd(i). There exists ζ > 0 such that for all n ∈ i

∥TN(n)∥ ≥ ζψ

kN(i) lnN
.

2For compression of functions in communication contexts see [64, 45].

19

Proof. For notational simplicity let ψ̂ :=
∑

d∈D ψd(i). It is sufficient to consider the

case ψ > 0; otherwise the lemma holds trivially. The proof is based on a counting

argument. For d = (ι, ω) define

Ad(i) := {α : ω = R(α, ι)} (2.6)

as a set of destination addresses forwarded by cell i in direction d. Because of the uni-

form distribution of addresses in the unit square, the minimum number of bits required

to describe R(·, ·) is lower bounded by the number of bits required to describe Ad(i)

with the smallest cardinality (across d ∈ D) so that {α ∈ Ad(i)} is verifiable. This

number of bits is further lower bounded by log2
(
ψ̂
ψ

)
, since ψ is the cardinality of small-

est of sets Ad(i), d ∈ D, and ψ̂ is the total number of destination addresses forwarded

by cell i; for a given set of cardinality ψ̂, the number of subsets with cardinality ψ is

given by
(
ψ̂
ψ

)
. Furthermore, for ψ > 0,

(
ψ̂

ψ

)
≥ (ψ̂ − ψ)ψ

ψ!
≥

(
ψ̂

ψ
− 1

)ψ

,

and hence, for some ζ > 0,

∥CN(i)∥ ≥ ζ
ψ

lnN
;

we used the fact the address length is equal to ⌈log2N⌉ bits. Recalling (2.4) completes

the proof.

2.3.3 Compression

In this subsection we discuss a practical compression scheme that, in certain cases,

can achieve performance that is close to the lower bound from Lemma 2.3. The algo-

rithm exploits the difference in cardinalities of sets Ad(i) for fixed i and different d’s

(see (2.6) for the definition), i.e., the compression is based on the existence of dom-

20

inant routing directions. Consider a forwarding cell i and one of its neighbors ι. A

single-argument routing/forwarding function R(·, ι) (see (2.5)) can be expressed in the

following form:

R(α, ι) =

ω2, if α ∈ Ad2(i), d2 = (ι, ω2),

ω3, if α ∈ Ad3(i), d3 = (ι, ω3),

ω1, otherwise,

(2.7)

where ι ̸= ω1 ̸= ω2 ̸= ω3 are the four neighbors of cell i. Then, the function R(·, ι) can

be described by the two sets Ad2(i) and Ad3(i). Upon a reception of a packet, cell i

examines whether the destination address α belongs to either Ad2 or Ad3 . If it does,

the packet is forwarded to either cell ω2 or cell ω3; otherwise to cell ω1. The number of

bits required to describe R(·, ι) in the form (2.7) is upper bounded by

(∥Ad2(i)∥+ ∥Ad3(i)∥+ 1) ⌈log2N⌉,

for N large enough, where ∥Ad(i)∥ is the number of destination addresses in set Ad(i).

Selecting d1 in such a way that it satisfies

Ad1(i) = max
d∈{d1,d2,d3}

∥Ad(i)∥,

results in the minimum number of bits required (for this particular scheme). The

algorithm is particularly effective when ∥Ad1(i)∥ ≫ ∥Ad2(i)∥+ ∥Ad3(i)∥. In particular,

for each input node ι, the largest set Ad1(i) can be eliminated from the its routing table.

Instead, a packet from ι is directed according to d1 by default if it carries an destination

address that does not belong to either Ad2(i) or Ad3(i). We further exploit this idea in

Section 2.5.

21

2.3.4 Example: Longest-Prefix Compression

The idea of biasing routing algorithms in order to reduce the size of forwarding ta-

bles is not limited to a specific compression scheme employed at a cell. In the following,

we illustrate such a point by examining the well-known longest-prefix compression algo-

rithm [67]. Namely, we compare the performance of compression scheme under various

cardinalities of sets Adi ’s (e.g. with or without dominant forwarding directions). For

simplicity, suppose that packets to a given destination are forwarded by cell c from

cell ι in the direction di with probability pi for 1 ≤ i ≤ 3. In a given cell c, forward-

ing directions for different destinations are independent. Then the total number flows

forwarded by cell c from cell ι is binomially distributed with parameter (N, p), where

p = p1 + p2 + p3 is the probability that a given destination address has its packets

forwarded by cell c from cell ι. An example of an uncompressed routing table is shown

in the left in Fig. 2.1. Upon receiving a packet from cell ι, cell c looks up the destination

address in the table and forwards the packet to the appropriate output cell (indexed by

1, 2 and 3).

Next, we describe a binary tree representation of the routing table in order to

illustrate the procedure of longest-prefix compression. For convenience, assume that

the number of nodes N is a power of 2; the addresses in the network correspond to the

leaves of a complete binary tree of depth log2N . For each address α ∈ {0, 1}log2N we

store the output cell identifier at a leaf node corresponding to α as shown on the top in

Fig. 2.2. If packets to destination α are not forwarded by cell c from cell ι, then the leaf

node corresponding to α is empty. Applying longest-prefix compression to the set of

addresses is equivalent to iterating the following merging procedure on the tree. We say

that a set of leaf nodes have non-conflicting indices if they are either empty or contain

cell index i for some 1 ≤ i ≤ 3. If a leaf and its sibling have non-conflicting indices,

they are merged into a new node (either empty or with cell index i). We iterate the

procedure until no more leaves can be merged. An example of a tree before and after

22

address output cell

0010 1
0011 1
0100 1
0101 2
0110 3
0111 3
1000 1
1001 1
1010 2
1011 3
1100 1
1110 2
1111 1

00 1
0100 1
0101 2
011 3
100 1
1010 2
1011 3
110 1
1110 2
1111 1

prefix output cell

* 1
0101 2
011 3
1010 2
1011 3
1110 2

prefix output cell

α3

α4

α5

α6

α7

α8

α9

α10

α11

α12

α13

α15

α16

Figure 2.1: An example of R(·, ι) for a fixed ι and its reduced form by applying longest-
prefix compression. The compressing operation in the merging process of the tree
representation is shown in Fig. 2.2. The table on the left (corresponding to the tree
representation on the top in Fig. 2.2) is the routing table before compression; the table
in the center corresponds to the tree on the bottom in Fig. 2.2, which is the routing
table after the merging procedure; on the right is a fully compressed version of routing
table.

this operation are shown in Fig. 2.2; the corresponding routing tables can be found

in Fig. 2.1. After the merging process, each leaf corresponds to a prefix stored in the

routing table. Note that a node x in the binary tree has its prefix stored in the routing

table if and only if (i) all leaf descendants of x have non-conflicting indices with at least

one leaf being non-empty, and (ii) there is a pair of leaf descendants of the parent of

x such that they have conflicting indices. Observe that one of the output cell indices

can be removed from the routing table without producing ambiguity. Without loss of

generality, assume that p1 ≥ max{p2, p3}. Then, prefixes with output cell indices 1 can

be replaced by a single entry (∗, 1) in the table, as shown in the right in Fig. 2.1 (the

symbol “∗” represents a zero-length prefix). Whenever a packet arrives, it is forwarded

to an output cell according to the longest-prefix in the routing table that matches the

destination address.

We now estimate the expected number of bits needed to store all the prefixes.

Clearly, the performance of longest-prefix compression depends on the content stored

23

1 1 1 2 3 3

0

0

0 0 0 0

0 0

1

1 1

1111

1 1 2 3 1 2 1

0

0 0 0 0

0 0

1

1 1

1111

1

1

1 2

0

0

0

0

1

1

1

2 3 2 1

0

0 0

0 0

1

1 1

11

1

1 13

R(·, ι)

R(·, ι)

α1

α1 ÷ α4

α2 α3 · · ·

α5 α6 · · · α16

α16

Figure 2.2: The example of R(·, ι) in Fig. 2.1, represented by a binary tree. Each leaf of
the tree corresponds to an address of length log2N , specified by the unique path from
the root. The tree can be compressed by merging leaves non-conflicting indices.

24

at each leaf. Define Bj
x as the event that the children of x can be merged to a node

with index j, for 1 ≤ j ≤ 3, and B0
x as the event that all of the descendant leaves of x

are empty. Then, if node x is of height l(x), the probabilities of Bj
x are as the follows:

P
[
Bj
x

]
=

p2

l(x)

0 , if j = 0;

(p0 + pj)
2l(x) − p2

l(x)

0 , if 1 ≤ j ≤ 3,

(2.8)

where p0 = 1− p is the probability that a leaf node is empty. Let Bx be the event that

x is a prefix leaf with cell index j ̸= 1 (i.e. a leaf in the compressed (merged) tree with

cell index j ̸= 1). This event indicates that the prefix corresponding to x is stored in

the compressed version of routing table. Then,

Bx =
∪

j∈{2,3}

{
Bj
x ∩
{
Bj
σ(x) ∪B0

σ(x)

}}
,

where σ(x) is the sibling of x in the original tree, and B denotes the complement of B.

Given the height l(x) of x, the conditional probability of Bx, due to (2.8), satisfies

P[Bx|l(x) = i] =
∑

j∈{2,3}

P
[
Bj
x

] (
1− P[Bj

σ(x)]− P[B0
σ(x)]

)
=
∑

j∈{2,3}

(
(p0 + pj)

2i − p2
i

0

)(
1− (p0 + pj)

2i
)
. (2.9)

The expected number of bits needed for the routing table stored in cell c is given by

E∥CN(n)∥ = E

log2N∑
i=0

∑
x:l(x)=i

(log2N − i) · 1{Bx}

=

log2N∑
i=0

2log2N−i(log2N − i)P[Bx|l(x) = i]. (2.10)

Next, we examine two contrasting cases that illustrate the impact of the routing

algorithm on the size of routing tables:

25

• Uniform forwarding directions: p1 = p2 = p3 = p/3.

From (2.8), it follows that

P[Bx|l(x) = i] = 2
(
(1− 2p/3)2

i

− (1− p)2
i
)(

1− (1− 2p/3)2
i
)
. (2.11)

Note that a throughput-efficient routing algorithm requires that p = p(N) → 0 as

N → ∞, i.e. each node forwards packets for only a negligible fraction of all nodes.

The summation in (2.10) can be lower bounded by a single term corresponding

to i = ⌊− log2 p⌋; in that case, P[Bx|l(x) = i] is Θ(1), as N → ∞. Thus, (2.10)

and (2.11) yield

E∥CN(n)∥ ≥ Np log2(Np) P[Bx|l(x) = ⌊− log2 p⌋]

= c1(Np lnN)(1 + o(1)), (2.12)

as N → ∞, for some constant c1 > 0. The last equality is due to the fact

that p must dominate O(1/N); indeed, a packet with a given destination address

is typically forwarded by at most a negligible fraction of nodes in the network.

Note that the expected number of bits needed to store the routing table before

compression is Np lnN , which is of the same order as the right-hand side of (2.12)

(the empty leaf nodes need not be stored). Hence, the longest-prefix algorithm

results in only a constant factor reduction of the size of routing tables when there

the forwarding directions is uniform.

• Dominant forwarding direction: p1 ≫ p2 = p3. Note that this corresponds to

∥Ad1∥ ≫ ∥Ad2∥+ ∥Ad3∥ (See the previous subsection).

In this case, the conditional probability in (2.9) evaluates to

P[Bx|l(x) = i] = 2
(
(1− p+ p2)

2i − (1− p)2
i
)(

1− (1− p+ p2)
2i
)
.

26

Thus, as N → ∞, the expected number of bits needed for the routing table is

upper bounded by

E∥CN(n)∥ ≤ log2N (Np log2(Np)P[Bx|l(x) = ⌈− log2 p⌉])

= c2
p2 lnN

p1
(Np lnN) (1 + o(1)),

for some constant c2 < ∞. That is, if p1 ≫ p2 lnN , then the size of routing

table is compressed with reduction of factor proportional to p1/(p2 lnN) ≫ 1.

Therefore, the more biasing the dominant forwarding direction is, the better the

performance of the longest-prefix compression.

2.4 Shortest-Path Routing

In this section we focus on two routing algorithms: straight-line and shortest-path.

The straight-line algorithm is deterministic, i.e., for a fixed pair of cells it always pro-

duces the same route. On the other hand, the shortest-path algorithm is randomized.

In addition to referring to cells by a single index i ∈ {1, . . . , N}, we also refer to

cells by a pair of indices (i, j), i, j ∈ {1, . . . , 1/√aN} when convenient. These indices

specify the relative position of cells with respect to the lower-left corner of the unit

square. The cells in the lower-left and upper-right corners are labeled by (1, 1) and

(1/
√
aN , 1/

√
aN), respectively. When cell locations are of significance we will use the

two-dimensional indexing.

Consider a pair of source-destination cells as shown in Fig. 2.3. The shortest path

(in the number of hops) between these cells is not unique. In fact, given that the source

and destination nodes are located in cells (m,n) and (u, v), respectively, the number of

shortest paths is given by
(|u−m|+|v−n|

|u−m|

)
; each of these paths is |u − m| + |v − n| hops

long. Unless the source and destination cells are located in the same row or column, the

destination cell can be reached via two different neighbors of the source. Given that the

27

1

1

√

aN

√

aN

Figure 2.3: There exist multiple shortest paths (in the number of hops) between two
cells located in different rows and columns. Three different paths are shown in this
example. When a cell can achieve the same number of hops to the destination cell via
2 different neighbors, it chooses one at random.

sole goal is to minimize the number of hops, neither of the neighbors is preferred over

the other one. Thus, our assumption that cells choose uniformly at random between

the alternatives (neighbors). Furthermore, in the absence of geographic information at

individual cells, random choice of neighbors appears to be a natural solution.

The next lemma establishes a lower bound on the number of forwarded flows in all

directions by a large fraction of cells in the network. This result coupled with the fact

that most cells forward packets to Θ(
√
aNN) destinations (because a typical distance

between a source and destination is Θ(1/
√
aN) cells) implies that the forwarded flows

are evenly spread among the set D (modulo a pre-factor). For a set of nodes or cells S,

let ∥S∥ be the cardinality of the set.

Lemma 2.4. Consider either the straight-line or shortest-path routing algorithm. Let

aN ≥ 1/N such that aN → 0 as N → ∞. For arbitrary δ ∈ (0, 1) there exists a sequence

of sets CN ⊆ {1, 2, . . . , a−1
N } such that aN∥CN∥ ≥ 1− δ for all N large enough and

NP[ψd(i) < ε
√
aNN] → 0,

as N → ∞, for some ε > 0, all i ∈ CN and all d ∈ D.

28

Proof. See Appendix A.2.

Remark 2.1. The conditions of the lemma on the cell size are not restrictive: (i) The

case aN < 1/N is not relevant to the cell-based algorithm in view of Lemma 2.1; (ii)

When lim aN > 0 only Θ(1/N) throughput per source-destination pair can be achieved,

cf. Theorem 2.1. However, Θ(1/N) throughput can be achieved without multi-hop

forwarding.

The following theorem is the first main result of this chapter. It characterizes the size

of routing tables at individual nodes under the straight-line and shortest-path routing

algorithms. Effectively, the theorem states that within our model these algorithms

are not scalable in the sense that they require excessively large routing tables when

throughput close to the limiting one is desired (aN = o(ln2N) as N → ∞, cf. Fig. 2.3).

Theorem 2.2. Consider either the straight-line or shortest-path routing scheme. Let

aN > a lnN/N , for some a > 1, such that aN → 0 as N → ∞. For arbitrary δ ∈ (0, 1),

routing tables at (1 − δ)N nodes scale as Ω(a
−1/2
N / lnN) as N → ∞. That is, there

exists a sequence of sets NN ⊆ {1, 2, . . . , N} with ∥NN∥ ≥ (1 − δ)N , and ε > 0 such

that, as N → ∞,

P
[
min
n∈NN

∥TN(n)∥ ≥ ε
√
aN lnN

]
→ 1,

i.e., the size of the routing tables increases without a bound as the network size N → ∞,

since aN > a lnN/N implies ε/(
√
aN lnN) → ∞, as N → ∞.

Remark 2.2. The theorem also holds for a wide set of network topologies that satisfy

Lemma 2.4. Effectively, the theorem holds for topologies under which there is no

significant correlation between input and output cells (see Section 2.3).

Proof. We start with obtaining an estimate on the number of nodes that forward a

large number of flows in all 12 possible directions. To this end, let CN be a set of cells

with ∥CN∥ ≥ (1− ζ)a−1
N for some ζ ∈ (0, 1); recall that the total number of cells is a−1

N .

29

It is appropriate to think of CN as the set of cells that are not “too close” to the edges

of the unit square. De Morgan’s law and the union bound yield

P
[
min
i∈CN

min
d∈D

ψd(i) ≥ ξ
√
aNN

]
= P

[∩
i∈CN

∩
d∈D

{ψd(i) ≥ ξ
√
aNN}

]

= 1− P

[∪
i∈CN

∪
d∈D

{ψd(i) < ξ
√
aNN}

]

≥ 1−
∑
i∈CN

∑
d∈D

P [ψd(i) < ξ
√
aNN]

≥ 1− ∥D∥∥CN∥max
i∈CN

max
d∈D

P[ψd(i) < ξ
√
aNN]

> 1− 12N max
i∈CN

max
d∈D

P[ψd(i) < ξ
√
aNN],

where the last inequality follows from ∥D∥ = 12 and ∥CN∥ ≤ N . The preceding

inequality and Lemma 2.4 imply that there exists set of cells CN that which contains

(1− ζ) fraction of cells such that, as N → ∞,

P
[
min
i∈CN

min
d∈D

ψd(i) ≥ ξ
√
aNN

]
→ 1, (2.13)

i.e., (1− ζ) fraction of cells forward at least ξ
√
aNN flows in all directions.

Now consider a cell i ∈ CN . According to Lemma 2.3 the following bound holds for

all nodes n located within the cell i:

∥TN(n)∥ ≥ ζ
mind∈D ψd(i)

kN(i) lnN
, (2.14)

for some ζ > 0. Define a set NN of nodes located within cells in the set CN

NN := {n ∈ {1, 2, . . . , N} : n ∈ i ∈ CN},

30

and note that by the strong law of large numbers

lim inf
N→∞

∥NN∥
N

> 1− δ, (2.15)

where δ ∈ (0, 1) is such that δ → 0 as ζ → 0. By applying the minimum operator on

both sides of (2.14), we obtain a lower bound on the size of routing tables at all nodes

in set NN :

min
n∈NN

∥TN(n)∥ ≥ ζ min
n∈NN

{
mind∈D ψd(i(n))

kN(i(n)) lnN

}
= ζ min

i∈CN

{
mind∈D ψd(i)

kN(i) lnN

}
≥ ζ

mini∈CN mind∈D ψd(i)

maxi∈CN kN(i) lnN
,

where i(n) is the cell that contains the node n. Finally, the preceding inequality, (2.13),

Lemma 2.2 and (2.15) imply the statement of the theorem.

Theorem 2.2 allows one to quantify the required memory at network elements for

a given cell tessellation parameter aN . Since this parameter aN also determines the

throughput for the model with deterministic transmission times (see Theorem 2.1),

one has that the amount of available memory at individual nodes limits the maximum

throughput. The following Corollary establishes the dependency of the throughput on

the memory size at individual nodes.

Corollary 2.1. Consider either the shortest-path or straight-line routing scheme. Let

each node be capable of storing bN addresses in its routing table when the network

consists ofN nodes. If bN = O(
√
N/ lnN) asN → ∞, then there exist 0 < ζ1 < ζ2 <∞

such that

P [ϑN < ζ1bN/N is feasible] → 1, (2.16)

31

as N → ∞, and

lim inf
N→∞

P [ϑN > ζ2bN lnN/N is feasible] < 1. (2.17)

Remark 2.3. If bN = Θ(N/ lnN) then the fraction that determines ϑN satisfies

bN/N = Θ(1/
√
N lnN). Given that the maximum achievable throughput under the

cell-based algorithm and column-first routing is Θ(1/
√
N lnN), increasing bN beyond

Θ(N/ lnN) does not improve the throughput.

Proof. We prove (2.16) first. Set
√
aN = ⌈c/bN⌉ for some constant c > 0. Due to the

assumption bN = O(
√

lnN/N) it is possible to choose c such that aN > a lnN/N with

a > 1, i.e., the assumption of Theorem 2.1 is satisfied. Hence, there exists ξ1 > 0 such

that with no limit on the size of routing tables we have

P
[
ϑN <

ξ1√
aNN

is feasible

]
→ 1, (2.18)

as N → ∞. Next we establish an upper bound on the size of a routing tables in all

cells. The size of the routing table in cell i is upper bounded by the number of flows

traversing the cell,
∑

d∈D ψd(i). If throughput ϑN is achievable, then there exists a fixed

δ > 0 such that for all 1 ≤ i ≤ 1/aN

∑
d∈D

ψd(i) <
δ

ϑN
,

where δ can be interpreted as the maximum transmission rate of a cell. Limit (2.18)

and the preceding inequality yield, as N → ∞,

P

[
max

1≤i≤1/aN

∑
d∈D

ψd(i) <
δ
√
aNN

ξ1

]
→ 1. (2.19)

On the other hand, the minimum number of routing records that can be stored in a

32

cell can be estimated by Lemma 2.2:

P
[
bN min

1≤i≤1/aN
kN(i) > ε

√
aNN

]
→ 1, (2.20)

as N → ∞, for some ε > 0; we also used the relationship between aN and bN . Com-

bining (2.19) and (2.20) yields that for ξ1 large enough each cell has enough memory

space to store all the required routing records in the limit as N → ∞:

P

[
max

1≤i≤1/aN

∑
d∈D

ψd(i) < bN min
1≤i≤1/aN

kN(i)

]
→ 1.

Therefore, (2.18) holds also for the case when each node can store bN addresses rather

than an infinite number of them. Recalling that
√
aN = ⌈c/bN⌉ renders (2.16).

Now we consider (2.17). It suffices to consider only the case aN > a lnN/N with

a > 1 since otherwise (2.17) holds due to the fact that Θ(1/
√
N logN) is the highest

throughput achievable with the cell-based algorithm [33, 24, 25]. For the routing pro-

tocol to operate correctly all the required routing records need to be stored in nodes’

memory, implying that bN has to satisfy

bN ≥ max
1≤n≤N

∥TN(n)∥

≥ max

{
1, min

n∈NN

∥TN(n)∥
}
,

where NN ⊆ {1, . . . , N}; if bN = 0 than there is no memory available for routing tables

at all, and, thus, one requires bN ≥ 1. When aN > a lnN/N , a > 1, the preceding

relationship and Theorem 2.2 yield, for some ε > 0,

P
[
bN >

ε
√
aN lnN

]
→ 1 (2.21)

33

as N → ∞. Theorem 2.1 guarantees an existence of ξ2 <∞ such that

lim inf
N→∞

P
[
ϑN >

ξ2√
aNN

is feasible

]
< 1.

Combining this limit with (2.21) concludes the proof.

2.5 Information-Efficient Routing

In this section we establish that there exists an information-efficient routing algo-

rithm. In particular, we show that column-first routing (see Section 2.2) has such a

property. That is, the scheme can operate correctly in large networks without sacrificing

the throughput even when each node has enough memory to store only a finite number

of routing records (addresses). The compression scheme described in Section 2.3.3 can

be used to efficiently represent routing tables when column-first policy is employed.

We stress that the column-first policy is only one of possible information-efficient poli-

cies; we focus on this particular policy due to its simplicity. Also, it is possible to

devise an information-efficient policy that is distributed and does not require global

node coordinates (see Section 2.6).

Consider a non-edge cell and a packet to be forwarded through this cell. If the

packet is forwarded along a row, then the packet will remain in the same row until

it reaches its destination. This implies that a packet arriving from the west or east

neighboring cell has to be forwarded to the east and west neighbor, respectively. In

other words, no packet is forwarded in the east-to-south, east-to-north, west-to-south

and west-to-north direction, i.e., ψd(i) = 0 for these directions. For most of the cells, if

a packet arrives from the south neighbor, it is more likely to be forwarded to the north

neighbor, since

Eψd(i) = aN(l − 1)(1− l
√
aN),

34

where l is the row the cell is located at and d is the south-to-north direction, and

E [ψd1(i) + ψd2(i)] = aN(l − 1)(
√
aN − aN),

where d1 and d2 are south-to-west and south-to-east directions, respectively3. Therefore,

a cell can perform correct routing by maintaining only 4 sets of destination addresses

{Adi}. Packets destined to addresses in {Adi} are forwarded from the south or north cell

to either the east or west cell, depending to which Adi the address belongs. All other

packets are forwarded straight across the cell (north-to-south, south-to-north, east-

to-west, west-to-east). With this kind of representation of the routing functions R(·, ·)

each destination contributes at most one routing record to one cell in the network. This

follows from the fact that each route experiences at most one 90◦-change of direction.

The next proposition is the second main result of the chapter.

Proposition 2.1. Let Πb the column-first routing algorithm in a network of nodes

capable storing b routing records. If aN > a lnN/N for some a > 1, then there exists

b <∞ such that P[Πb operates correctly] → 1 as N → ∞.

Proof. Let νN(i) be the number of routes that undergo a change in direction in a cell i

when the network is of size N . Then, the maximum of νN(i) across all cells can be

estimated using the union bound:

P
[

max
1≤i≤1/aN

νN(i) ≤ γaNN

]
≥ 1−

a−1
N∑
i=1

P[νN(i) > γaNN].

For a fixed cell i, a route changes its direction at this cell only if the source is in

the same column and the destination is in the same row (but not in the cell i). For

j = 1, . . . , N , let Ij = 1 if node j originates a flow that changes direction at cell i, and

3The disparity of ψd(i) for direction i’s that allows for an efficient representation of routing tables
was exploited in [7] to obtain an approximation of the throughput of lattice networks with deterministic
service times and finite buffers.

35

Ij = 0 otherwise. Then, we have

νN(i) =
N∑
j=1

Ij. (2.22)

Due to our assumption of independence of traffic routes (see Section 2.2), the sequence

{Ij}Nj=1 is an i.i.d. sequence of Bernoulli random variables with EIj = (
√
aN − aN)

2 <

aN ; the probability that the source node is in the same column as cell i (but not in cell

i) is (
√
aN−aN), the same applies to the destination. Then, (2.22), Markov’s inequality

and the independence of source-destination pairs yield, for arbitrary s > 0,

P[νN(i) > γaNN] = P

[
N∏
j=1

esIj > esγaNN

]

≤ e−sγaNNE
[
esI1
]N

≤ e−sγaNN (1 + aN(e
s − 1))N

= e−sγaNNeN ln(1+aN (es−1))

≤ e−aNN(γs−es+1),

where the last inequality is due to ln(1 + x) ≤ x for x ≥ 0. Given the assumptions of

the proposition, it is possible to select s and γ such that, as N → ∞,

P
[

max
1≤i≤1/aN

νN(i) ≤ γaNN

]
→ 1. (2.23)

The required amount of storage at individual nodes for correct operation of the

routing algorithm in cell i is upper bounded by ∥TN(n)∥ ≤ ζ
⌈
νN(i)/kN(i)

⌉
, where

ζ > 1 accounts for bits needed to represent cell labels. This bound is based on the

assumption that all the records can be stored in a distributed fashion within the cell.

36

Finally, (2.23) and Lemma 2.2 result in

P
[

max
1≤i≤1/aN

⌈νN(i)/kN(i)⌉ ≤
γ

ε

]
≥

P
[

max
1≤i≤1/aN

νN(i) ≤ γaNN, min
1≤i≤1/aN

kN(i) ≥ εaNN

]
→ 1,

as N → ∞. Choosing b = ⌈ζγ/ε⌉ completes the proof.

Proposition 2.1 and Theorem 1 from [37] suggest that nodes with limited memory

can be used to create large multi-hop networks, at least when the transmission times

are exponentially distributed. The protocol constructed in [37] utilized the column-first

routing strategy. These two results indicate that memory bottlenecks can be avoided

both in the data and control planes.

2.6 Distributed Approach

In the previous sections, the discussion focused on a unit square partitioned into

square cells. It is of interest to consider information-efficient routing algorithms with

more general cell shapes. Moreover, high-level notions of rows and columns do not

usually pre-exist in distributed networks. The purpose of this section is to illustrate

that information efficiency of routing protocols is not tied to regular cell shapes and pre-

existing notions of rows and columns; detailed design and analysis of efficient distributed

algorithms is beyond the scope of the discussion. Namely, we provide an example on

how virtual rows and columns can be distributively constructed with dense Voronoi

tessellations. Cells in the network do not have any information about the network

topology besides the identity of their neighboring cells.

Consider the Voronoi tessellation of the unit square (see [63] for a discussion of

Voronoi tessellation). Let {x1, x2, . . . , x1/aN} be a set of 1/aN points on the unit square;

each point represents a center of a cell, and hence there are 1/aN cells in total. The set of

37

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

c0

c1

c2

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 2.4: This figure provides an example on how virtual rows and columns for a
Voronoi tessellated unit square are constructed by the distributed algorithm. A set
of 104 points are selected uniformly at random as centers of the Voronoi cells, which
satisfies the condition that rules out too eccentrically shapes. The figure on the top
shows cells c0, c1, c2, and the initial path P ; in the figure on the bottom, only the
virtual rows (columns) with indices of multiples of 6 are colored for clarity.

38

all points that are closer to xi than to any of the other xj’s, for each i, i.e., {x ∈ (0, 1)2 :

|x− xi| ≤ |x− xj|, j ̸= i}, is called a Voronoi cell. Such tessellation provides a method

of grouping nodes that are physically close to each other and was considered in previous

work on cell-based forwarding algorithms (e.g., see [33]). Following [33] (see Section

IV. in [33]), we require that each cell contains a disk of area Θ(aN) as N → ∞, and

is contained by a disk of area Θ(aN); this condition rules out too eccentrically shaped

cells. As in the previous sections, packets are forwarded between neighboring cells. The

following algorithm constructs virtual rows and columns for a Voronoi tessellated unit

square (an instance is shown in Fig. 2.4):

1. A randomly selected cell c0 floods a distance counter that increases by hops over

the network so that every cell is aware of the minimum distance (in hops) to c0.

2. A cell c1 with the longest hop distance to c0 is identified. Cell c1 performs another

distance-counter flood to identify a furthest cell c2 from c1.

3. An initial path (a set of connected cells) P from c1 to c2 is created; random

decisions are made whenever there is a tie.

4. Path P floods a distance counter; all of the cells in P have distance counters set

to zero. The distance to P is equal to the minimum distance to a cell belonging

to P . Cells with the same distance to P (and on the same side) form virtual rows.

5. A cell furthest away from P is identified as c3; a cell furthest away from c3 is

identified as c4. As in steps 3 and 4, cells c3 and c4 can be used to construct a

path and thus the virtual columns.

Each time a distance counter is flooded, all cells receive the counter. Hence, all cells

belongs to exactly one virtual row and one virtual column. Note that neighboring cells

in a virtual row (column) can be separated by at most one cell with a different distance

counter, due to the nature of distance counters. Hence, a cell needs to interact with

39

at most all the two-hop neighbors. When a packet is forwarded along a virtual row or

column, intermediate cells may need to forward the packet to multiple neighbors (i.e.

the neighbors that have not yet received the packet). However, the number of forwarding

actions taken remains constant. This is due to a constant number of neighbors for each

cell.

After the one-time construction of virtual rows and columns, a column-first-like

routing algorithm can be performed on the unit square. Given a transmission pair,

the source and destination nodes forward a request along the column and row they

belong to. The two requests intersect at some cell, which in turn keeps the record of

the forwarding destination address in the routing table. It is straightforward to argue

that routing by the virtual rows and columns requires the same (order of magnitude)

amount of routing information as column-first routing with square cells of the similar

size. The above construction of virtual rows (columns) can be generalized to a larger

class of tessellation on convex regions. We stress that the above algorithm provides one

way of constructing the virtual rows and columns, but is by no means exclusive.

2.7 Concluding Remarks

The amount of information required to route packets in a large wireless network can

have a significant impact on the achievable network throughput. The widely considered

shortest-path and straight-line algorithms require routing tables of excessive size when

non-negligible throughput is desired (in comparison with the maximum throughput).

On the other hand, when the column-first scheme is employed, each node has to store

routing information on only a fixed number of destinations regardless of the network

size.

40

CHAPTER 3

Scalable Scheduling

3.1 Introduction

In this chapter, we address the scheduling problem within the framework of a par-

ticular network topology, namely, a full bipartite graph that corresponds to the packet

switch. High performance routers and switches, being the core of various existing and

proposed architectures, are likely to remain indispensable parts of future networks.

We develops a novel model of computation that enables efficient operation of packet

switches with distributed scheduling; the model yields a new architecture and schedul-

ing algorithms. Scalability of packet switches has been considered in the literature. In

short, there exists a tradeoff between the switch performance and hardware complexity,

as well as between the complexity of data-plane hardware (crossbars, memory banks,

etc.) and control plane hardware (control unit). However, the studies in this domain are

dominated by architectures with either a significant number of switching components

and/or a centralized controller. The assumption of system coordination is typically

implied in those models. Our algorithms are not based on this assumption. Namely,

we design a fully distributed scheduling scheme for packet switches. Distributed opera-

tion is enabled by introducing a novel model of computation, and thus eliminating the

standard model based on bits, registers, machine cycles and all related hardware. The

new model of computation utilizing time encoding is capable of drastically reducing

41

the complexity of the control plane, since inter-port communication on a single piece of

switching fabric is not required. While a number of alternative models of computation

have been proposed (molecular, quantum, membrane, etc.), at present devices based on

these models do not outperform those using the standard model. In contrast, the ar-

chitecture we propose provides performance that is comparable with known centralized

architectures.

Our model of computation is inspired by neurons. In particular, the relevant quan-

tities for determining a feasible schedule are represented by the length of time intervals

instead of conventional bits in registers; hence, the term time encoding. Computation

required to determine a state of the switching fabric can be performed efficiently under

such representation. We point out that the model is potentially extendable to other

inherently decentralized systems such as wireless networks. Our focus on the switch

design problem is dictated by two factors: (i) switch scheduling problem is well-defined,

structured and important in practice, and (ii) the resulting architecture can not only

be implemented physically, but also enables switch operation at speeds that are com-

parable to switches based on conventional technology.

The remaining of this chapter is organized as follows. In the next section, we outline

the basic switch model and briefly review relevant literature. Section 3.3 describes a

novel model of computation based on time encoding, where time intervals are used to

perform computations. In Section 3.4 we discuss a distributed scheduling algorithm

utilizing this model and its implementation. A reversible version of our algorithm is

presented in Section 3.5. Finally, concluding remarks can be found in Section 3.6.

42

.
.
.

.
.
.

.
.
.

.
.
.

output 1

output N

input 1

input N

Q1,1

Q1,N

QN,1

QN,N

switching fabric

Figure 3.1: The structure of a Virtual-Output-Queued switch. Packets are enqueued
at inputs based on their destinations. Each input/output can be connected to at most
one output/input in every time slot.

3.2 Model

3.2.1 Virtual-Output-Queued switch

The Virtual-Output-Queued (VOQ) switch architecture has the following desirable

properties: (i) it is based on a switching fabric operating at line speeds, while output-

queued switches require hardware speedup; (ii) it does not suffer from performance

degradation due to the head-of-line (HOL) blocking as in the case of input-queued

switches; (iii) it can be implemented on a single switching fabric (crossbar); (iv) no

reordering of packets is required. The reduced hardware requirements and improved

performance come at the cost of increased control complexity. Hence, the key perfor-

mance metrics (throughput, delay, etc.) crucially depend on the employed scheduling

algorithm. In particular, it has been shown that a greedy algorithm performs poorly

under certain traffic scenarios [47].

The structure of an N × N VOQ switch is shown in Fig. 3.1. Packets arriving to

input i with destination j are enqueued in the virtual output buffer (i, j). We assume

that the buffer is of infinite size, that time is slotted, and that every packet is of uniform

43

size such that it takes exactly one time slot to transmit a packet. The number of packets

in queue (i, j) at time slot t is denoted by Qi,j(t). Let Ai,j(t) be the number of packets

arriving to queue (i, j) at time t. The queue occupancies evolve in time according to

Qi,j(t+ 1) = Qi,j(t)− Si,j(t) + Ai,j(t), (3.1)

where Si,j(t) = 1 if queue (i, j) is non-empty and is served at time t, i.e., a packet is

switched from input i to output j; otherwise Si,j(t) = 0. Event {Si,j(t) = 1} indicates

that the switching fabric is configured to a state such that one packet in queue (i, j) is

switched, and, thus, Si,j(t) depends on the scheduling algorithm. The switching fabric

is physically constrained to transmit at most one packet for each input/output port in

a time slot, i.e.,
N∑
i=1

Si,j(t) ≤ 1 and
N∑
j=1

Si,j(t) ≤ 1. (3.2)

A scheduling algorithm determines the value of {Si,j(t)} subject to (3.2). Hence, in

view of (3.1), the impact of scheduling algorithm on the evolution of queue occupancy

processes is only through the values of {Si,j}.

In the rest of the discussion, we assume that the arrival processes satisfy a strong

law of large numbers, i.e., with probability 1,

lim
T→∞

1

T

T∑
t=0

Ai,j(t) = λi,j, i, j = 1, . . . , N, (3.3)

where λi,j is the traffic intensity at virtual queue (i, j). We say that a scheduling

algorithm is rate stable if, with probability 1,

lim
T→∞

1

T

T∑
t=0

Si,j(t) = λi,j, i, j = 1, . . . , N,

44

for any arrival process satisfying (3.3). The input traffic is called admissible if

λ.,j =
N∑
i=1

λi,j(t) < 1 and λi,. =
N∑
j=1

λi,j(t) < 1. (3.4)

It is straightforward to show that no scheduling algorithm is rate stable under non-

admissible traffic (λ.j > 1 or λi. > 1 for some i, j). In that case, Qi,j(t) increases over

time without a bound regardless of the scheduling algorithm for some i and j.

3.2.2 Maximum-Weight-Matching scheduling

Maximum-Weight-Matching (MWM) algorithm is rate stable under any admissible

traffic pattern and is known to provide high throughput and low delay [20, 17, 35, 31, 59].

We sketch the operation of MWM below. The state of the switch can be described

by a bipartite graph, with vertices representing input and output ports, and edges

representing the corresponding virtual buffers. In each time slot t, edge (i, j) is assigned

a weight Wi,j(t) that measures the congestion level of the corresponding queue, e.g.,

Wi,j(t) = Qβ
i,j(t), β > 0 [3, 54]. In the context where delay is concerned, the weight

function is oftentimes associated with the age of the packets in the queue. (Note that

an ideal weight function for our scheduling algorithm in Section 3.4 uses only local

information from individual queues, in order to achieve distributiveness.) A discussion

on the selection of weight functions can be found in [44]. The MWM algorithm selects

a matching (set of independent input-output pairs) with the highest sum of weight

and schedules transmissions according to the matching. When Wi,j(t) = 1{Qi,j(t)>0},

the algorithm reduces to the Maximum-Size-Matching (MSM) algorithm. In [79, 54]

it was shown that the MWM algorithm is rate stable with Bernoulli arrival processes

when no input or output port is overloaded (admissible traffic); the result was extended

for more general arrival processes in [20]. MWM-like algorithms were also argued to

perform well when applied in the networks of constrained queues [77] and switches [53].

45

Furthermore, the MWM algorithm with appropriately chosen weight functions performs

optimally under the heavy load scenario not only in switches [71, 75] (the cross-bar

switch considered here is a special case of the generalized switch examined in [75]), but

also in stochastic processing networks [18, 4] (optimality is considered with respect to

holding cost).

Nonetheless, computing the maximum weight matching at line speeds is a chal-

lenge. Existing algorithms [17, 35, 31] are either of significant complexity or poor

scalability, i.e., requiring a large number of arithmetic operations for a large number of

input/output ports. Hence, a number of practical algorithms were developed, including

iSLIP [52], MUCS [19] and RPA [1]. These algorithms do not attempt to approximate

the MWM algorithm explicitly and are inferior to the MWM when the input traffic is

not uniform [30]. In particular, iSLIP is a maximal matching scheduling algorithm; no

unconnected pair of input and output do not have packets for each other in a maxi-

mal matching. It was shown in [20] that all maximal matching algorithms are stable

at speedup 2 when the traffic is Bernoulli i.i.d. and the delay performance is inves-

tigated in [70]. On the other hand, algorithms based on MWM approximations were

also considered, see e.g. [78, 29, 21]. They utilized the observation that queue occupan-

cies exhibit correlation in time, and hence, the weight of a matching does not change

significantly over a small time interval. Recently, an algorithm based on an auction is

proposed in [13].

Distributed switch scheduling on a single crossbar poses additional challenges. It-

erative algorithms such as iSLIP [52] and the bidding algorithm [13] can be considered

distributed but they require multiple rounds of “information exchange”. Namely, in-

put and output ports communicate between each other in order to establish a feasible

schedule. Note that the problem of switch scheduling can be viewed as an instance of

a general problem of scheduling on interference graphs. Interference graphs were also

considered in the context of scheduling in wireless networks. In such networks informa-

46

tion exchange (message passing) is even costlier since control packets utilize the same

resource (bandwidth) that needs to be allocated (scheduled). Algorithms that require

a large number of rounds of message exchanges are capable of supporting switch opera-

tion at limited speeds only since a non-negligible amount of time is needed for rounds to

take place. On the other hand, schemes with simple implementations such as maximal

scheduling (single round of scheduling) deliver only a fraction of the possible through-

put [14, 72]. Distributed algorithms with low-complexity considered in the literature

include local back-pressure policy [77] and the Longest-Queue-First (LQF) policy [23].

For further studies of distributed scheduling in wireless networks see [59, 26, 74] and

references therein. The extension of our basic algorithm, the reversible algorithm de-

scribed in Sect. 3.5, is conceptually closest to the distributed CSMA algorithm proposed

in [39]; in particular, even though the algorithms are different, the structures of under-

lying Markov chains bear resemblance.

3.2.3 Algorithm comparisons

Although it is desirable to have a scheduling algorithm with a higher relative

throughput, this oftentimes comes at the cost of larger time complexity. When compar-

ing the performance of scheduling policies, both the quality and running time of decision

making need to be taken into account. In particular, if an algorithm achieves relative

throughput ρ ∈ [0, 1] and takes τ seconds to determine a schedule, then the maximum

theoretic throughput is at most ρτ cells/s. For example, consider two scheduling al-

gorithms C and D, achieving 100% and 85% of the relative throughput, respectively.

If it takes 10−8 s for C and 10−10 s for D to compute a schedule, then the maximum

theoretic throughput is at most 108 cells/s for C and 85 · 108 cells/s for D. Therefore

D significantly outperforms C due to faster decision making.

47

3.3 Time-encoding computation

In this section, we discuss a model of computation based on time encoding. The

standard model of computation is based on bits and elementary operations (e.g., sum-

mation comparison and multiplication) and is implemented in digital logic. Although

some early computing machines were based on analog components, today digital circuits

dominate the implementation of specialized and general-purpose processors. Nonethe-

less, alternative models of computation have received considerable attention (e.g., see [2,

60, 66]), most of which are yet to be physically implemented. On the other hand, the

model of computation we propose can be integrated into the existing solid-state tech-

nology.

3.3.1 Time-encoding operations

In our model of computation, variables are represented with time intervals of pos-

sibly random lengths rather than deterministic bits. A time interval (and hence its

length) can be defined by two impulses. Let X and Y be two variables. The following

two basic operations can be utilized to implement time-encoding algorithms:

• Minimum (min{X,Y }). Variables X and Y are represented by two constant time

intervals with lengths X and Y , respectively. Define the new starting impulse as

the beginning of the two aligned time intervals, and the new ending impulse as

the earlier of the two ending impulses. Clearly, the length of the new time interval

is min{X, Y }.

• Inverse sum (1/(X + Y)). Variables X and Y are represented by two random-

length time intervals. In particular, the length of the intervals are given by expo-

nential random variables with means 1/X and 1/Y ; denote the lengths of these

intervals by TX and TY , respectively. The minimum of the two, min{TX , TY }, can

be obtained by applying the minimum operator. Random variable min{TX , TY }

48

1 111

2 222

t0 X1,2 X2,2 X1,1 X2,1

W1,1 → X1,1

W2,2 → X2,2

W1,2 → X1,2

W2,1 → X2,1

X1,2 = min{Xi,j}

Figure 3.2: Illustration for the motivating example. The switching fabric has only 2
possible states shown on the top. On the bottom is the time line that indicates the
expiration of the timers. In this example, the timers are set at t = 0. At t = X1,2, the
first timer to expire is the one associated with input-output pair (1, 2). Thus, in this
instance the switch is configured to the matching with weight M2.

is exponentially distributed with mean 1/(X+Y). Hence, the output of the oper-

ator, min{TX , TY }, is only an approximation of the inverse sum, 1/(X + Y), but

can be implemented in a distributed fashion.

3.3.2 A motivating example

Next, we illustrate how the basic time-encoding operations can be used with a mo-

tivating example. For simplicity, consider a 2 × 2 switch with input-output weights

given by [Wi,j]i,j=1,2. In this case there exist two matchings (switch configurations)

with weights M1 = W1,1+W2,2 and M2 = W1,2+W2,1 (with corresponding connectivity

patterns {(1, 1), (2, 2)} and {(1, 2), (2, 1)} as shown in Fig. 3.2). The MWM algorithm

schedules a matching with the maximum weight. Given the standard model of com-

putation based on digital logic (i.e., bits, registers, summations, comparisons, etc.),

effectively a single entity is required in order to determine which matching has a higher

weight. In particular, the entity needs to be aware of the values of [Wi,j]i,j=1,2 so thatM1

and M2 can be computed and compared.

Our distributed scheme using information encoded in timing is described next.

49

The scheme is randomized with the following intuition: the heavier the matching the

more likely it is scheduled. In the first step each input-output weight is randomized.

In particular, Wi,j is replaced with Xi,j where Xi,j is exponentially distributed with

EXi,j = 1/Wi,j. This is the step that enables distributed summation. Observe that

the randomization can be implemented in a distributed fashion since each Xi,j depends

only on the corresponding value of Wi,j. In the second step, at some fixed time, say

t = 0, each input-output pair (i, j) (virtual buffer) sets a timer with an expiration

time Xi,j. Upon the expiration of timer (i, j), an attempt is made to connect in-

put i and output j. Such a connection is feasible only if both input i and output j

have not yet been connected to some other ports. The algorithm terminates when all

finite timers expire. We call the algorithm distributed since each virtual queue at-

tempts a transmission based on local information only. Note that in the 2 × 2 case

the matching is scheduled whenever one of its two input-output pairs is scheduled first

(equivalently, a timer expires first). For example, matching with weight M1 is sched-

uled if and only if min{X11, X22} < min{X12, X21}. The key fact is that min{X11, X22}

and min{X12, X21} are exponentially distributed with means 1/M1 and 1/M2, respec-

tively. Effectively, we use the comparison of min{X11, X22} and min{X12, X21} (fully

distributed based on timers) as a proxy for the comparison between M1 and M2. A

straightforward computation shows that the two matchings are chosen with probabili-

ties M1/(M1 +M2) and M2/(M1 +M2).

3.4 Distributed scheduling

The centralized implementation of the MWM algorithm requires the presence of a

control unit in the switch architecture. Previous approaches to eliminate the control

unit come at cost of increasing the complexity of the switching hardware. Informally,

the idea is to shape the input processes (make the input traffic uniform) so that a

50

simple scheduling algorithm can be employed, e.g. see the load-balanced router archi-

tecture [40, 41]. The increased complexity stems from the additional hardware required

to reorder the packets (in order to restore the original sequencing) prior to their trans-

mission to output ports. In contrast, our approach aims at developing a distributed

scheduling algorithm (i.e. no control unit is required) that maintains the original or-

der of packets within the switch. The key idea behind our architecture is to enable

distributed summations so that matching weights can be computed without explicit

information exchange between ports.

3.4.1 Basic algorithm

In this subsection, we describe a randomized algorithm A(W). The argument W

refers to a function that is used to assign weights to input-output pairs. For example, if

W = Qβ (as proposed originally in [3]), then at time slot t the weight of the edge (i, j)

in the corresponding input-output bipartite graph is given by Qβ
i,j(t). We use [Ti,j(t)]

to denote an N × N matrix that is independent of the arrival processes. Elements of

each matrix are independent and exponentially distributed random variables with unit

mean; the matrices for different values of t are independent. The algorithm operates as

follows.

Algorithm A(W) [55]

For each time slot t:

1. Define X as an N ×N matrix with elements

Xi,j :=
Ti,j(t)

Wi,j

.

51

2. Match input i to output j such that

(i, j) = argminXk,l; (3.5)

delete the ith row and jth column from X.

3. Repeat the preceding step until X is empty or Xi,j = ∞ for all i, j.

It is clear that A(W) implements LQF scheduling with “randomized queue length”

given by X−1
i,j = Wi,j/Ti,j. The reason for not defining A(W) as simply a randomized

LQF algorithm is that the above description of the algorithm allows for a distributed

implementation (see the next subsection). Such an implementation is feasible due to

the argmin operator in (3.5) – the LQF algorithm requires the argmax operator. The

algorithm A(W) with an appropriately chosen weight function has the following desired

characteristics [52]:

• High throughput: in the following subsections we argue that the algorithm re-

mains stable under relatively high traffic loads.

• Starvation free: A(W) eventually serves all virtual output queues as long as the

total backlog is not infinite and W is proportional to the queue lengths; there

exists a positive probability for any of the non-empty queues to be scheduled.

• Simple implementation: aside from the source of randomness, the algorithm is

straightforward to implement. Conceptually, operation of each input-output pair

(virtual queue) remains the same, regardless of the size of the switch.

3.4.2 Distributed implementation

Suppose that the source of randomness is available at each input port; that is, for

each time slot, unit mean exponential random variables [Ti,j] are available at the input

52

11

11

11

11

11

11

22

22

22

22

22

22

33

33

33

33

33

33

t0 = 0 t1 = X1,2 t2 = X3,2

t3 = X3,3 t4 = X1,1 t5 = X2,1

Figure 3.3: An example of how a matching is built in the case X1,2 < X3,2 < X3,3 <
X1,1 < X2,1 <∞ and all otherXi,j’s are equal to∞. The first timer expires at t1 = X1,2,
the second at t2 = X3,2 and so on. When a timer expires, the input is connected to the
output only if such a connection is feasible. Non-feasible connections are shown with
dashed lines.

ports. By adjusting the intensities of these random variables based on Wi,j (e.g., based

on Qi,j(t)), one obtains [Xi,j]. At a fixed time, each input-output pair (i, j) sets a timer

that expires in Xi,j time units; note that these units do not correspond to time slots

needed to switch a packet (cell) from an input to an output. Upon the expiration of

timer (i, j), input i is matched to output j unless either of them is already matched.

This process continues until all timers with Xi,j < ∞ expire. An example of how the

algorithm operates for a 3 × 3 switch is shown in Fig. 3.3. The timers are set at time

t = 0; as they expire, attempts are made to connect the corresponding input and output

ports. Upon the completion of the scheduling phase (in this case the input ports 1, 2

and 3 are connected to the output ports 2, 1 and 3, respectively), the cell transfer phase

begins.

Note that the implementation is distributed whenever Wi,j is only a function of the

state of the virtual queue (i, j), i.e., the timers are set with local parameters only. How-

ever, the complexity of implementing the required source of randomness needs to be

53

scheduling phase scheduling phase scheduling phase
cell transfer phase cell transfer phase

(1, 1)

(1, 2)

(2, 1)

(2, 2)

X1,1

X2,2

X1,2

X2,1

Figure 3.4: Conceptual operation of a 2 × 2 switch under A(W). Poisson processes
are generated at each virtual buffer (input-output pair) with rates proportional to
the occupancy continuously over time; these processes serve as the required timers
during scheduling phases. At the beginning of each scheduling phase, all input-output
ports are disconnected. As impulses arrive (timers expire), the corresponding feasible
connections are established. The configuration of the switching fabric after each arrival
of the Poisson processes is shown on the bottom of the graph. Once the fabric is
configured, a cell transfer phase starts.

considered. There exists at least two possible approaches to obtain randomness: (i) ex-

ternal – a physical device (e.g. photon-based) auxiliary to the switching fabric can serve

as a source of randomness (Poisson process); these devices can potentially operate at

very high speeds; and (ii) internal – randomness can be extracted from packet payloads,

e.g., see [22]. We note that lasers and photon-counting semiconductor detectors can

be used to implement Poisson timers [82]. Intensities of external Poisson processes (se-

quences of impulses) at virtual buffers are modulated according to buffer occupancies.

By the memoryless property of Poisson processes, an exponentially-distributed time

interval can be defined by a single impulse, namely, the ending impulse. Then, the

argmin of a set of variables is determined by the first impulse from the corresponding

set of Poisson processes. Thus, the algorithm can be implemented through the two

operations described in Sect. 3.3.1. Moreover, in order to simplify the source of ran-

domness, such impulses are generated continuously as shown in Fig. 3.4. The switch

operates in two alternating phases: scheduling and cell transfer; the length of the cell

54

transfer phase is relatively longer. Note that in practice, each scheduling phase is of

fixed length, and there is a positive probability that the some impulses do not arrive

before the scheduling phase ends. We adjust the arrival rate to be large compared to

the length of the scheduling phase, hence approximating algorithm A. In Fig. 3.4 we

illustrated the conceptual operation of the 2× 2 switch. At the beginning of a schedul-

ing phase, a sequence of impulses is generated at each virtual buffer. As impulses are

generated (equivalently timers expire) from the Poisson processes, the switching fabric

is configured accordingly. The resulting configurations are shown on the bottom of the

figure. Once the configuration is determined, the cell transfer phase starts. Upon com-

pletion of a cell transfer phase, the switching fabric is reset, i.e., all input and output

ports are disconnected, and the scheduling phase for the next time slot begins.

Finally, we point out that one can potentially implement the LQF algorithm by

setting Ti,j’s in the definition of A(W) to constants rather than of unit-rate random

variables. However, in that case one will need to implement timers that allow for

synchronization of initial impulses. In addition, producing time intervals of precise

lengths poses technical challenges.

3.4.3 Performance

The distributed nature of the proposed architecture and the scheduling algorithm

results in a low complexity of the control plane. In this subsection, we evaluate the

performance of A. Inefficiencies of A are due to the fact that inverse summation

is performed only approximately (see Sect. 3.3.1), and, thus, the maximum weight

matching is evaluated approximately as well. First, we consider the uniform traffic

pattern defined by arrival rates λi,j = ρ/N , 1 ≤ i, j ≤ N , where ρ ∈ [0, 1) is the relative

traffic load. A preliminary version of the following result appeared in [55].

Theorem 3.1. Algorithm A(Qβ), β > 0, is rate stable under any admissible traffic in

a 2× 2 switch. Moreover, A(Qβ), β > 0, is rate stable under uniform admissible input

55

traffic in a switch of an arbitrary size.

Proof. See Appendix B.1.

Next, we considered the diagonal traffic pattern parameterized by α ∈ [0, 1], and

defined by

λi,j =

αρ, j = i,

(1− α)ρ, j = (i mod N) + 1,

0, otherwise;

(3.6)

parameter ρ ∈ (0, 1) is the relative load for each input and output. Under this traffic

pattern, the queue occupancy process is unstable under A(Qβ) when ρ > ρ∗, where

ρ∗ denotes the value of the critical relative load. The inefficiency arises due to the

distributed nature of the algorithm. Note that ρ∗ < 1 when empty queues are served

with positive probabilities in the long run. We illustrate this point with the following

example. Consider a 3×3 switch under diagonal traffic with α = 1/2 and ρ = 1. In the

long run, the switch should be configured into one of the two following service matrices:

m1 =

1 0 0

0 1 0

0 0 1

 and m2 =

0 1 0

0 0 1

1 0 0

 (3.7)

with probability 1. Any other configuration inevitably “wastes” one unit of service.

For example, if connection (1, 1) is made, it must follow that queues (2, 2) and (3, 3)

will also be served in the same time slot. However, since A(Qβ) is distributed, the

configuration for the remaining input/output ports (2 and 3) are not constrained by

the established connection that corresponds to (1, 1). Hence, when all queues with

positive arrival rates are large, the scheduling algorithm selects a service matrix other

56

than m1 and m2, such as

m3 =

1 0 0

0 0 1

0 0 0

 , (3.8)

with a positive probability, where only two units of service occur. Note that when the

switching fabric is configured according to the above service matrix, no other input-

output pair with positive arrival rate can be scheduled concurrently. Although the

input-output pair (3, 2) can be scheduled in addition to the scheduled pair (1, 1) and

(2, 3), it has zero arrival rate and hence corresponds to an empty queue for the given

traffic pattern – service of queue (3, 2) does not contribute to an actual departure of a

packet.

The following proposition establishes a performance limit of A(Qβ) under the diag-

onal traffic pattern.

Proposition 3.1. Consider algorithm A(Qβ), β > 0, under diagonal traffic with α =

1/2. The algorithm is not rate stable for

ρ > 1−

(
2N−1∑
r=0

(−2)r

r!
+

1

2

(−2)2N

(2N)!

)
→ 1− e−2, (3.9)

as the number of input/output ports N → ∞.

Proof. See Appendix B.2.

Results of numerical comparisons of A(Q) and several other centralized algorithms:

MWM, LQF, and APSARA [29] under uniform and diagonal traffic are shown in Fig. 3.5

and Fig. 3.6, respectively. The MWM scheduling is discussed in Section 3.2.2 in details.

The other two algorithms in comparisons are considered in the literature and briefly

described below.

LQF scheduling chooses queues to serve in a slot iteratively, starting from the queue

with the largest weight (or the longest queue, as the name indicates) and proceeding in

57

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

−3

10
−2

10
−1

10
0

10
1

10
2

10
3

ρ

Q
〈〉
≤

Q
↑

Figure 3.5: For a switch with N = 32, the expected average virtual output queue length Q⟨⟩
and expected maximum virtual output queue length Q↑ for the MWM (+), APSARA (�),
LQF (×), and A(Q) (◦) algorithms under uniform traffic.

a decreasing manner. Queues that have one of their neighbors in the interference graph

selected are not considered in the next iteration step. When two or more queues have

equal backlog, a tie-breaking rule must be specified. This procedure is stopped until

no further (nonempty) queue can be included. At each time slot, the served queues

form a maximal independent set of the subgraph consisting of the nonempty queues.

It is shown that the stability of LQF depends not only on the average intensities of the

arrival processes in addition to their average intensities. A set of sufficient conditions

for stability can be found in [23].

APSARA [29] is a heuristic algorithm based on MWM with a smaller complexity.

In each time slot, it selects between the matching served in previous time slot and

a matching from a Hamiltonian walk on the graph of all matchings, i.e., a matching

randomly drawn from all possible matchings. APSARA utilizes the fact that the MWM

matchings of contiguous time slots are correlated, since individual queue lengths can

differ by one at most and, thus, the weight of a matching changes by a bounded amount.

58

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

−3

10
−2

10
−1

10
0

10
1

10
2

10
3

0.8647...
ρ

Q
〈〉
≤

Q
↑

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

−3

10
−2

10
−1

10
0

10
1

10
2

10
3

0.8744...
ρ

Q
〈〉
≤

Q
↑

Figure 3.6: For a switch with N = 32, the expected average virtual output queue length Q⟨⟩
and expected maximum virtual output queue length Q↑ for the MWM (+), APSARA (�),
LQF (×), and A(Q) (◦) algorithms under diagonal traffic with α = 1/2 (top) and α = 2/3
(bottom). The corresponding maximum ρ’s for A(Q) are also shown.

59

Namely, a heavy matching is likely to stay heavy over several time slots. APSARA is

shown to be rate stable under any admissible i.i.d. Bernoulli packet arrival processes.

In our simulation, the arrivals form independent Bernoulli processes, and the number

of input/output ports is N = 32. For a range of values of ρ, two quantities,

Q⟨⟩ =
1

N2

N∑
i,j=1

EQi,j(t) (3.10)

and

Q↑ = E
[
max
i,j

Qi,j(t)

]
,

are estimated under the four algorithms. It is clear that Q⟨⟩ ≤ Q↑, and, thus, we do

not label data points in the figures. Note that for the diagonal traffic pattern one can

alternately normalize Q⟨⟩ by 2N instead of N2 as in (3.10), since only 2N virtual queues

receive packets. Given that we consider only relative performance of algorithms, the

normalization does not effect our comparison.

As seen in Fig. 3.5, the algorithm A(Q) performs competitively under uniform traffic

for a wide range of ρ, when compared to centralized switch scheduling algorithms.

Numerical results for diagonal traffic with α = 1/2 and α = 2/3 are shown in Fig. 3.6.

As observed, the algorithm fails to stabilize the switch for high values of relative load ρ as

indicated in Proposition 3.1. The LQF algorithm also fails to stabilize the switch under

diagonal traffic as argued in [23] (the sufficient local pooling condition is not satisfied

in this case). For α = 1/2 an estimate of the critical ρ∗ is given in Proposition 3.1. An

upper bound of the critical relative load for α = 2/3 can be evaluated numerically with

as described in Appendix B.3. In particular, ρ∗ < 0.8744 . . . for α = 2/3 and A(Q).

The following section describes a scheduling algorithm that addresses the instability.

60

3.5 Reversible algorithm

Algorithm A makes irreversible scheduling decisions; once a connection between

two ports is established, these ports remain connected until the next scheduling phase,

regardless of consequent scheduling decisions. In this section, we demonstrate that en-

abling reversibility in decision making potentially improves the scheduling performance.

A scheduling algorithm Bγ(W), whereW is the set of weights, operates during a fixed

length (τ time units) scheduling phase. Similar to algorithm A(W), Bγ(W) attempts to

connect eligible input-output pairs upon arrivals in the corresponding Poisson processes.

However, all connected pairs are subject to disconnections based on arrivals in rate-µ

Poisson processes. In particular, for an unmatched pair (i, j), a connection is attempted

according to a Poisson process with rate λWi,j; a matched pair (k, l) is disconnected

after an exponentially distributed time interval with rate µ. When µ = 0 and λ→ ∞,

the algorithm reduces to A(W) (since τ is finite). The parameter γ = λ/µ controls

the relative rate of connecting/disconnecting ports. The state of the switching fabric is

fixed at the end of the scheduling phase for the duration of the cell transfer phase. The

operation of Bγ is formally described below. Here, for t ∈ [0, τ], [Ti,j(t)] is an N × N

matrix with elements being i.i.d. unit-rate exponentially distributed random variables;

the matrices are independent for different values of t. Let X be the set of all feasible

fabric configurations:

X =

{
I ⊆ [1, N]2 :

N∑
i=1

1{(i,j)∈I} ≤ 1,
N∑
j=1

1{(i,j)∈I} ≤ 1

}
.

Without loss of generality, assume that the scheduling phase begins at t = 0.

Algorithm Bγ(W)

61

1. Initialization:

Xi,j := Ti,j(0)/(λWi,j), 1 ≤ i, j ≤ N, (3.11)

Yi,j := ∞, 1 ≤ i, j ≤ N,

S := ∅.

2. While t ≤ τ :

(i, j) := argminXn,m,

(k, l) := argminYn,m.

Case 1: Xi,j < Yk,l.

If S ∪ {(i, j)} ∈ X ,

then Xi,j := ∞ and Yi,j := Ti,j(t)/µ+ t,

otherwise Xi,j := Ti,j(t)/(λWi,j) + t.

Case 2: Xi,j > Yk,l.

Set S := S \ {(k, l)},

Xk,l := Tk,l(t)/(λWk,l) + t and Yk,l := ∞.

Update t:

t := t+min{Xi,j, Yk,l}.

3. Configure the switching fabric according to S.

Elements of X and Y represent times when the corresponding connections are at-

tempted and disconnections are preformed, respectively. An example of how the algo-

rithm evolves over time in a 2× 2 switch is shown in Fig. 3.7. Given the time-encoding

computation model, Bγ can be implemented in a distributed fashion. Each reconfigura-

62

111111

111111

222222

222222

t0 = 0

X =

[

0.2 0.5

0.7 0.8

]

Y =

[

∞ ∞

∞ ∞

]

t1 = 0.2

X =

[

∞ 0.5

0.7 0.8

]

Y =

[

0.55 ∞

∞ ∞

]

t2 = 0.5

X =

[

∞ 0.75

0.7 0.8

]

Y =

[

0.55 ∞

∞ ∞

]

t3 = 0.55

X =

[

0.98 0.75

0.7 0.8

]

Y =

[

∞ ∞

∞ ∞

]

t4 = 0.7

X =

[

0.98 0.75

∞ 0.8

]

Y =

[

∞ ∞

0.99 ∞

]

t5 = 0.75

X =

[

0.98 ∞

∞ 0.8

]

Y =

[

∞ 0.92

0.99 ∞

]

Figure 3.7: An example of how the state of the switching fabric evolves over time. The
minimum elements in both X and Y at the time instances when changes of state occur are
X1,1, X1,2, Y1,1, X2,1, X2,2. At these time instances, the algorithm changes the matching
correspondingly and updates X and Y . The values of X and Y after updates are shown
under the corresponding bipartite graphs; the updated elements are underlined. A dashed
edge indicates that the connection fails to be established due to a conflict with the current
state; a dotted edge indicates that an existing connection is eliminated.

63

tion of the switching fabric, which either establishes or removes a connection, involves

only a single input-output pair – no inter-port communication is required. Therefore,

Bγ can be realized by a similar scheme as the one described in Sect. 3.4.2, with the

additional ability to disconnect two matched ports.

Since the elements of X and Y are exponential random variables, the state of the

switching fabric can be described by the continuous-time Markov chain {S(t), 0 ≤ t ≤

τ}; a state of the switching fabric I is uniquely defined by the set of edges (matched

input-output pairs) in the corresponding bipartite graph. Edges in I, I ∈ X , are non-

conflicting, i.e., they do not share an input or output node. The state ∅ denotes the

empty configuration. For every I ∈ X , define the following two sets:

K+
I = {J ∈ X : J = I ∪ {(k, l)} for some (k, l)},

K−
I = {J ∈ X : I = J ∪ {(k, l)} for some (k, l)}.

In short, K+
I is the set of states that I can augment into with an extra connection, and

K−
I is the set of states that I can reduce into with one removal of a connection. For

example, in a 3×3 switch, for I = {(1, 1), (2, 2)}, we have K+
I = {{(1, 1), (2, 2), (3, 3)}}

and K−
I = {{(1, 1)}, {(2, 2)}}. The process {S(t), 0 ≤ t ≤ τ} is described by the initial

state S(0) = ∅ and the rate matrix [pI,J] with elements

pI,J =

λWi,j, J ∈ K+

I and (i, j) ∈ J \ I,

µ, J ∈ K−
I ,

0, otherwise.

The state of the switching fabric at the end of a scheduling phase S(τ) is fixed for

the duration of the cell transfer phase that follows immediately. As λ, µ → ∞, the

distribution of S(τ) converges to the stationary distribution π of the process with rate

matrix given by [pI,J]. Let nI(W) denote the number of edges in I that have a nonzero

64

weight, i.e.,

nI(W) =
∑

(i,j)∈I

1{Wi,j>0}.

Then, the stationary distribution π is given by

πI = π∅ γ
nI(W)

∏
(i,j)∈I

Wi,j,

where

π−1
∅ =

∑
I∈X

γnI(W)
∏

(i,j)∈I

Wi,j.

Indeed, it is straightforward to verify that π is a solution to the set of balance equations,

and it satisfies
∑

I∈X πI = 1.

Observe that as γ → ∞ and µ→ ∞, algorithm Bγ selects only matchings with the

highest size. That is, only matchings from the set X ∗ = {I : nI(W) = maxJ∈X nJ (W)}

are selected with positive probability. In particular, for I ∈ X ∗,

P[S(τ) = I] →
∏

(i,j)∈I Wi,j∑
J∈X ∗

∏
(i,j)∈J Wi,j

,

and
∑

I∈X ∗ πI → 1, as both γ → ∞ and µ → ∞. Hence, algorithm Bγ implements

a weighted version of the MSM algorithm in the limit as γ → ∞ and µ → ∞. For

example, whenWi,j = 1{Qi,j>0}, algorithm Bγ(W) selects uniformly among all maximum

size matchings. On the other hand, when Wi,j(t) = exp{Qi,j(t)} and γ, µ → ∞, the

algorithm configures the switching fabric to state I with probability

πI =
exp

{∑
(i,j)∈I Qi,j(t)

}
∑

J∈X exp
{∑

(i,j)∈J Qi,j(t)
} ,

65

i.e., the probability of a matching being scheduled increases exponentially with respect

to the number of packets in the matching. In [76] the authors conjecture that a delay-

optimal algorithm is the one that selects a max-weight matching among the maximum

size matchings (the weight is a logarithmic function). Therefore, by setting Wi,j = Qi,j,

algorithm Bγ approximates (in the limit) this algorithm in [76] since it selects a matching

based on
∏

(i,j)∈I Qi,j and log
∏

(i,j)∈I Qi,j =
∑

(i,j)∈I logQi,j. Finally, we point out that

the structure of stationary distribution π is identical to the stationary distribution of a

chain that arises in the analysis of a CSMA scheduling algorithm proposed in [39].

Next we provide some intuition on why reversibility improves switch stability. To

this end, consider the example discussed in Sect. 3.4.3 of a 3× 3 switch under diagonal

traffic with α = 1/2. Given that all queues with positive arrival rates are equal and

large, algorithm A selects a matching that serves 2 rather than 3 queues (such as m3,

see (3.8)) with probability (approximately) 1/3, i.e., with probability 1/3 one unit of

service is “wasted”. This effect results in ρ∗ < 1 (see Proposition 3.1). On the other

hand, when λ ≫ µ ≫ 1/τ , algorithm Bγ can configure the switching fabric to a state

corresponding to m3 only at the beginning of the scheduling phase. Given that the

switch is in this state, one of the connected pairs will be disconnected (since µ≫ 1/τ),

and, due to λ ≫ µ, a feasible pair of ports will be connected. This process continues

until 3 pairs are connected, say m1 or m2 (see (3.7)). Once the fabric is in one of these

states, it is not configured to a state corresponding to m3 due to the fact that as soon

as one of the pairs is disconnected, the same pair is connected right away (λ ≫ µ)

because it remains the only feasible pair. That is, the limiting algorithm B selects only

among maximum size matchings.

A numerical comparison of Bγ(Q) with parameters (λ, µ, τ) = (1, 10, 1), (1, 10, 10)

and an algorithm approximating A(Q) (Bγ(Q) with (λ, µ, τ) = (1, 0, 1)) under diagonal

traffic is shown in Fig. 3.8. We point out that while Bγ(Q) for finite values of λ, µ, τ

can provide a larger admissible region than A(Q), the corresponding queues sizes under

66

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

−2

10
−1

10
0

10
1

10
2

10
3

10
4

0.8647...
ρ

Q
〈〉
≤

Q
↑

Figure 3.8: The expected average virtual output queue length Q⟨⟩ and expected maximum
virtual output queue length Q↑ for Bγ(Q) (+,�) and an approximation of A(Q) (◦) under
diagonal traffic with α = 1/2 (N = 32). Here A(Q) is approximated by Bγ(Q) with (λ, µ, τ) =
(1, 0, 1), and Bγ(Q) uses parameters (λ, µ, τ) = (1, 10, 1)(+) and (1, 10, 10)(�). The upper
bound of the critical ρ for A(Q) is also shown; note that Bγ(Q) stabilizes the switch under
diagonal traffic with values of ρ that exceed this bound.

67

Bγ(Q) can be larger than under A(Q) for moderate values of ρ. This is due to the

fact that Bγ(Q) is not efficient when λ ≫ µ does not hold, since some feasible input-

output pairs might not be connected at the end of the scheduling phase. However, given

that Bγ(Q) is determined by the product λQi,j (see (3.11)), increasing queue lengths

uniformly and multiplicatively is equivalent to increasing λ. Thus, when queue lengths

increase, the scheduling performance improves.

Finally, note that the performance of Bγ(W) can be improved by running the algo-

rithm in background during the cell transfer phase, i.e., effectively increasing the value

of τ and, thus, allowing for better convergence to the stationary distribution π. Re-

computing the schedule for each time slot is equivalent to independently sampling from

π in each time slot in the limit as γ, µ→ ∞. On the other hand, the algorithm in [39]

produces schedules that are strongly correlated in time, and, thus, different behavior.

For example, under diagonal traffic with α = 1/2 and Qi,j = q1{λi,j>0} for large q,

Bγ(W) serves each matching with probability 1/2; on the other hand, if the algorithm

is not reset (all ports disconnected) for each time slot, then a matching is selected with

probability 1/2 and served in the following time slots until its weight becomes small

relative to the weight of the other matching.

3.6 Concluding remarks

In this chapter we introduce a time-encoding model of computation, which enables

a set of new architectures and algorithms for packet switches. We developed distributed

algorithms for single cross-bar packet switch that achieves performance comparable to

that of centralized algorithms. The proposed scheduling algorithms can be applied

to scheduling in wireless networks modeled by general interference graphs; in an in-

terference graph, two nodes can not transmit concurrently if they share an edge, see,

e.g., [14, 61, 56]. The crossbar switch has a well-structured interference graph (the dual

68

graph of a full bipartite graph) with each node representing an input-output pair. In

the case of wireless networks, nodes in the graph represent network nodes and edges

typically indicate physical proximity of network noes. Algorithm A operates on a gen-

eral graph as follows. Each network node sets possibly multiple timers according to

the corresponding weights. A connection is established if the timer expires before any

of the interfering pair is scheduled for transmission. The resulting schedule is an ap-

proximation of the maximum weight matching on the general graph. Algorithm B

can be applied to general interference graphs analogously by enabling reversibility of

scheduling decisions.

69

CHAPTER 4

Bandwidth Sharing

4.1 Introduction

The performance of a multi-hop network depends on the bandwidth sharing among

individual flows. Various bandwidth sharing policies have been proposed to achieve

throughput maximization and/or user fairness [57, 58]. It was shown [11, 81] that

fair bandwidth sharing stabilizes the network whenever possible, while the bias intro-

duced by discriminatory scheduling policies may lead to loss of capacity. These studies

are mostly conducted under the fluid assumption of network flows, i.e., the traffic is

treated as continuous medium and the packet-level granularity is ignored. In practice,

the information on flow rates, oftentimes critical to bandwidth sharing mechanisms im-

plemented distributively at nodes (either intermediate network nodes or end users), is

generally not explicitly available. Instead, the observation of the network traffic at a

node is limited to packet-level events, e.g. arrivals, departures and packet drops due

to lack of buffer space. While it might be reasonable to use the number of packets

as a proxy for the flow rates at intermediate nodes when the number of packets per

flow in a buffer is large, such an approximation can be erroneous when the amount of

memory at intermediate nodes is limited. For example, suppose that two flows with

different rates utilize an intermediate node. With a large buffer space, the node may

buffer 100 packets and 10 packets from the first and the second flows, respectively, and

70

thus, the node can differentiate flows based on their rates. However, when the node has

very limited buffer space, it is likely that it holds only one packet from each flow, and,

hence the node’s ability to make effective differentiation solely based on the packet

count is compromised. The invalidity of fluid assumption in this case is due to the

discrete nature of packets. Therefore, the analysis of the network on packet-level band-

width sharing and its implementation is of interest. A number of studies that concern

bandwidth allocation in terms of packet-based implementation adopt the framework of

the TCP connection game [5, 84]. However, these results are commonly restricted to

the assumption of network model with a single bottleneck link. On the other hand,

a number of studies are devoted to congestion control. A hop-by-hop congestion con-

trol algorithm is proposed in [83]. In [9, 5, 28], the necessity of presence and level of

congestion control is investigated. In [73], the authors propose the shortest remaining

processing time preemptive resume scheduling algorithm. A duality between congestion

control and queue management is discovered by [51].

Our approach to achieve the desired bandwidth sharing is based on employing buffer

management policies in intermediate nodes that utilize additional attributes of the

packets. In particular, we focus on improving the network throughput. The buffer

management mechanisms that implement a bandwidth allocation consists of two as-

pects: service discipline and packet dropping. That is, given a collection of packets in

the buffer, a node needs to select the next packet for transmission; when the buffer is

full, the node chooses a packet to drop upon a packet arrival.

The rest of this chapter is organized as follows. In Section 4.2, we describe the cyclic

network model and three buffer management policies. The throughput performance of

each policy is analyzed in Section 4.3 under two service time distributions: determin-

istic and exponential. Section 4.4 contains numerical simulations of these algorithms.

Finally, concluding remarks can be found in Section 4.5.

71

1
2

3

N

N − 1

flow 1
flow 2

x x
θ1

θ2

Figure 4.1: The cyclic network contains N nodes and N flows. Each flow traverses all
nodes in the network sequentially. In the figure, only flow 1 and flow 2 are shown with
dotted lines.

4.2 Model

4.2.1 Cyclic network

We focus on a cyclic network model with N identical nodes and N flows. A node

serves packets according to the given service discipline; without loss of generality, the

mean service time is taken to be unity. A flow is indexed by the first node on its route;

in particular, flow i enters the network at node i, traverses all nodes in the network

in the order of (i+ 1) mod N, (i+ 2) mod N, . . . , (i+N − 1) mod N , and exits the

system as shown in Fig. 4.1. Flows generate packets to be injected into the network

according to i.i.d. Poisson processes with rate x. Each node is capable of storing

b− 1 packets (b is the maximum number of packets that a node is capable of holding,

including possibly the one in service). When a packet arrives at a node in service, it can

be enqueued if the buffer is not full; otherwise, the node discards a packet according to

the packet dropping policy. We denote the throughput of flow i, i.e., the expected rate

that packets complete service and exit the system, by θi. In particular, let ϕi(t) be the

72

cumulative number of packets from flow i that complete service (traverse all nodes) up

to time t, starting from an empty system; the throughput is defined as

θi = lim inf
T→∞

Eϕi(T)
T

,

for i, and the average throughput of the system is θ =
∑N

i=1 θi/N . Note that regardless

of the arrival processes and service time distribution, the maximum throughput of the

cyclic network model cannot exceed 1/N . In fact, this is only achieved under the

condition that all arrivals and service times are perfectly paced, so that utilization of

each node is 1.

4.2.2 Buffer management policies

The specification of a buffer management mechanism consists of two parts: service

discipline and dropping policy. The service discipline determines the priority of packets

in receiving service. We assume that the service is operated in a work-conserving fashion

throughput the chapter. On the other hand, the dropping policy selects the packet to

be dropped upon a packet arrival at a node with full buffer. We assume that all nodes

in the network are identical, i.e., they adopt the same buffer management policy. In

the following, three different buffer management mechanisms are discussed.

• First-come-first-serve (FCFS)and tail dropping

The FCFS service discipline with tail dropping policy is a simple and commonly

considered buffer management policy. As the names suggest, the packets are

served in the order of their arrivals to the node; under tail dropping policy, the

newly arrived packet is rejected when the buffer is full. Both policies do not utilize

any packet attributes besides arrival times.

• Oldest-packet-first (OPF) policy

This policy prioritizes packets according to its age in the system; the longer (in the

73

number of hops) a packet stays in the network, the higher its priority of receiving

service and being enqueued. Under this regime, each packet maintains a counter

that is incremented every time the packet completes service in a node, a piece of

information similar to the time-to-live (TTL) field in the standard packet format

provided by TCP/IP protocol. Whenever a service is completed, the node selects

the packet with the highest priority and serves for this packet, before forwarding

it to the next node (or the packet exiting the system). In addition, when the

arriving packet has a strictly higher priority than the one in service, the service is

withdrawn and given to the arriving packet. If a packet arrives to a node with full

buffer, the packet (among the enqueued and the new arrival) with the smallest

number of hops traveled is discarded. Each time the node begins serving a different

packet, the service time is regenerated from the given distribution. Aside from the

additional time information stored in the packets, the oldest-packet-first policy

required each node to perform a sorting function to the enqueued packets, which

is of complexity O(log b). However, the operations of these algorithms remain

fully distributed.

• Newest-packet-first (NPF) policy

This scheme serves as a comparison to the OPF policy. Packets with smaller ages

in the system are served/enqueued) with higher priority. Similar to OPF, each

packet is required to keep record of the number of hops that it has traveled in

the network. The service is received by the newest packet and the oldest packet

is dropped upon an arrival to a full buffer.

4.3 Throughput analysis

In this section, we consider two distributions of service times: deterministic and

exponential. It is demonstrated that, unlike the FCFS with tail dropping, the OPF

74

policy performs well regardless of the offered load, i.e., the network does not experience

throughput degradation due to congestion.

4.3.1 Deterministic service time

First, we consider the case of deterministic service times and nodes with no buffer

space (b = 1). Under these assumptions, a packet arriving to a node is either served

(at least until another arrival occurs) or rejected; if another packet with strictly higher

priority arrives while the packet is in service, the packet is dropped immediately. The

conditional probability that a packet is dropped at the ith node on its route given that

it is served by the first (i− 1) nodes on its route is denoted by pi; and the conditional

probability that a packet completes service at the ith node on its route, given that it is

served by all previous nodes is denoted by qi = 1−pi. Due to symmetry of the network

topology, these conditional probabilities are independent of the flow index. Note that if

two packets have both completed service at the same node, then their potential arrivals

at all downstream nodes differ by at least by one time unit, i.e., neither of the packets

will be discarded at a node because the other packet is receiving service or arriving

at that node. Hence once a packet completes service at the first node, it can only be

dropped due to an exogenous arrival. Clearly, the throughput is uniform across network

nodes and is given by

θ = x
N∏
i=1

qi. (4.1)

The following theorem characterizes the limiting behavior of the throughput per-

formance under the OPF policy. This result indicates that the OPF policy is free of

throughput degradation due to congestion.

Theorem 4.1. Consider the N -node cyclic network with b = 1. Under the OPF policy,

75

the throughput θOPF is satisfies

x

1 +Nx
≥ θOPF ≥ x

1 + (2N − 1)x
,

for all N > 0 and any x > 0.

Proof. We make the observation that a packet can not be dropped once it completes

service at least one node. This is because under the OPF policy, exogenous arrivals

are always served/enqueued with the lowest priority, and other forwarded packets do

not arrive at the same node within one time unit. Thus, given that a packet completes

service at the first node, the dropping probability is zero, i.e., pi = 0 and qi = 1 for

i > 1. Then, due to (4.1), one has θOPF = q1x.

Since packets arrive to the system according to Poisson processes, we will utilize the

PASTA property to evaluate p1. Two exclusive and exhaustive scenarios that result in

a packet drop at the first node are discussed individually:

1. The server of the first node busy when the packet arrives. This event occurs with

probability Nq1x, sice the server is busy Nq1x fraction of the time.

2. A packet is forwarded from an upstream neighboring node while the newly arrived

packet is in service at the first node on its route. A sufficient condition for this

event to occur is that the packet arrives in one unit prior to the arrival of the

forwarded packet. Thus, the probability that a new arrival will be dropped due

to this reason is in [0, (N − 1)q1x], since this condition is satisfied (N − 1)q1x

fraction of time.

Taking into account of these two cases, we obtain the relation

Nq1x ≤ p1 ≤ (2N − 1)q1x.

76

Solving the above inequality allow us to upper and lower bound q1 as follows

1

1 +Nx
≥ q1 ≥

1

1 + (2N − 1)x
,

and, hence, the throughput can be bounded by

x

1 +Nx
≥ θOPF ≥ x

1 + (2N − 1)x
.

Due to the nature of this policy, the first node for each flow exhibits a congestion

control behavior that restricts the number of packets injected into the network. Note

that both bounds increases with x, suggesting that increasing the input rate does not

result in congestion that diminishes the network performance. In the limiting case when

x → ∞, the throughput θ∗OPF = limx→∞ θOPF ∈ [1/(2N), 1/N), and thus, θ∗OPF =

Θ(1/N) as N → ∞. Therefore, the OPF policy achieves at least one half of the

maximum throughput. Clearly, in the case x = o(1/N), the throughput approaches x

as N → ∞.

In order to complete the comparison, we also compute the throughput under the

NPF policy.

Theorem 4.2. Consider the N -node cyclic network with b = 1. The throughput θNPF

under the NPF policy is given by

θNPF =
e−2(N−1)xx

1 + x
,

for all N > 0 and any x > 0. Hence, the maximum throughput under the NPF policy

77

is achieved when the input rate is given by

x∗NPF =
1

2

(√
N + 1

N − 1
− 1

)
.

Proof. In contrast with the OPF policy, a packet arriving to the network is dropped

upon arrival only if the first node on its route is serving a packet from the same flow.

By the PASTA property, the drop probability satisfies p1 = q1x, since q1x represents

the fraction of time that a node is busy serving packets from the flow that enters the

network at that node. Thus, at the first node,

p1 =
x

1 + x
. (4.2)

Once a packet is forwarded to the second node, it will only be dropped due to exogenous

arrivals at the second node, since all other packets forwarded from the previous node

do not arrive within one time unit. The same applies to all downstream node, i.e.,

a forwarded packet can be dropped due to exogenous arrivals. In particular, suppose

that the packet arrives at the ith node at time ti, i > 1, the service is completed if and

only if there are no exogenous arrivals on this node between (ti − 1, ti + 1). Since the

exogenous arrival processes are mutually independent and independent of the state of

the network, using the property of Poisson processes, we obtain

qi = e−2x (4.3)

for i > 1; qi is the probability that there are no arrivals from an exogenous arrival

process in two units of time. Combining (4.3) with (4.1) and (4.2) renders

θNPF =
e−2(N−1)xx

1 + x
. (4.4)

78

The input rate x∗NPF that achieves the optimal (highest) throughput can be obtained

by taking the derivative of (4.4) with respect to x:

dθ

dx
=
e−2(N−1)x

(1 + x)2
(
2(N − 1)x2 + 2(N − 1)x− 1

)
.

Setting the derivative to 0 yields

x∗NPF =
1

2

(√
N + 1

N − 1
− 1

)
.

When network size grows to infinity, we have limN→∞Nx∗NPF = 1/2, and the lim-

iting throughput is given

lim
N→∞

Nθ∗NPF =
1

2e
,

i.e., the NPF policy can potentially provide a 1/(2e) ≃ 0.1839... fraction of the max-

imum possible throughput at best. However, the throughput θ∗NPF is achieved under

the very specific input rate x∗NPF ; as input rate increases beyond x∗NPF , the system is

subject to a performance degradation due to congestion. Moreover, this degradation is

approximately exponential in x. In order to achieve the optimal throughput, the input

rate at each node needs to be set to a value that is dependent of the network size, i.e.,

some congestion control mechanisms that utilizes global information is required.

Throughput degradation due to congestion also occurs under the FCFS with tail

dropping policy. The dependency between input rate and throughput is similar to the

dependency under NPF as demonstrated by numerical simulation in Section 4.4 (See

Fig. 4.2).

79

4.3.2 Exponential service time

Next, we consider the case when the service times are i.i.d. and exponentially

distributed with rate 1, and b ≥ 1. Similar to Section 4.3.1, the arrival/service/drop

dynamic, is identical for all nodes, due to the symmetry of the cyclic network. In order

to gain analytical insight, we approximate the arrival process formed by packets from

individual flows by independent Poisson processes. This approximation allows us to

apply the PASTA property and focus our computation on the rate of the process. In

fact, the processes are more regular than Poisson processes – burst of packets are likely

to be eliminated when they go through nodes. It is suggested in [80] that, similar

the PASTA property, periodic arrival processes also observe the system in steady state

distribution in many general stochastic systems. Under the FCFS discipline with tail

dropping, each node is approximated by a M/M/1/b queueing system. Recall that the

drop probability for the M/M/1/b queueing system is πb, where

πi =
1− λ

1− λb+1
λi, (4.5)

i = 0, . . . , b, is the steady state distribution of the buffer occupancy and λ is the total

arrival rate to the node, e.g., see [10]. The arrival process to a node consists of N com-

ponents: (N −1) forwarded flows of the corresponding rates x
∏j

i=1 qi, j = 1, . . . , N −1

and one exogenous arrival process of rate x; recall that qi’s are the conditional pass

probabilities defined in Section 4.3.1. By the Poisson assumption for the arrival pro-

cess, qi is independent of the index i of the node (hence we omit the index and write

q = qi), and is given by

q = 1− πb

=
1− λb

1− λb+1
, (4.6)

80

where the second equality follows from (4.5). The total arrival rate λ can be expressed

in terms of x and q as the follows,

λ = x+ qx+ q2x+ · · ·+ xqN−1

= x
1− qN

1− q
, (4.7)

and the expression for the throughput in (4.1) yields an approximation θ̃FCFS for the

throughput θFCFS:

θ̃FCFS = qNx. (4.8)

The set of equations (4.6), (4.7) and (4.8) fully characterizes the relationship between

input rate x and throughput approximation θ̃FCFS.

Now, we consider the limiting case N → ∞. It is sufficient to consider two cases:

λ = Ω(1) and λ = o(1), as N → ∞. In the case when λ = Ω(1), since the conditional

pass probability q is strictly less than 1, the throughput θ̃FCFS decreases exponentially

with N → ∞. On the other hand, when λ = o(1), (4.5) yields, as N → ∞,

πb = Θ
(
λb
)
,

and (4.7) results in, as N → ∞

x =
1− q

1− qN
λ

= Θ

(
λb+1

1− e−Nλb

)
. (4.9)

81

Substituting the (4.9) into (4.8), we obtain

θ̃FCFS = Θ

(
λb+1e−Nλ

b

1− e−Nλb

)
,

as N → ∞, which, with a change of variable y = nλb, can be written as

θ̃FCFS = N− b+1
b Θ(g(y)) .

The function g(y) is defined as

g(y) =
e−y

1− e−y
y

b+1
b ,

and for all large enough y,

∂g

∂y
=

exp(−y)y b+1
b

[
(−1 + b+1

b
y−1)(1− e−y)− e−y

]
(1− e−y)2

is negative, i.e., g(y) is maximized with a finite y. Thus the quantity θ̃FCFS is maximized

with λ = Θ(N−1/b), implying that

θ̃∗FCFS = Θ(N− b+1
b),

as N → ∞. As seen in the following section, the throughput θFCFS is subject to an

exponential decay in input rate x, as approximated by θ̃FCFS.

4.4 Numerical comparisons

This section contains numerical comparisons of the throughput under the three

buffer management mechanisms discussed in Section 4.2.2. The simulations are con-

ducted with network size N = 100. In Fig. 4.2, we plot the throughput θ as a function

82

0 0.02 0.04 0.06 0.08 0.1
0

1

2

3

4

5

6

7
x 10

−3

x

θ

Figure 4.2: The throughput θ as a function of input rate x under the OPF policy (+), NPF
policy (×) and FCFS service with tail dropping (◦). The cyclic network consists of N = 100
nodes and there are no buffer spaces (b = 1) for all nodes. Service times are deterministic
with unit length.

of the input rate x under the OPF policy, NPF policy and FCFS discipline with tail

dropping. Both the NPF policy and FCFS discipline with tail dropping suffer from per-

formance degradation due to congestion; under high traffic load, the probability that a

packet completes service decreases exponentially with the number of hops traveled. In

contrast, the throughput under the OPF policy increases with input rate x.

A comparison for the system of exponentially distributed (unit rate) service times

(the specification for network size and buffer space remains the same) is shown on the

top of Fig. 4.3; on the bottom plot we present the simulation result for the case b = 5.

Observe that a small increase in the buffer space significantly boosts the throughput,

especially for OPF and FCFS, rather than for NPF. Nonetheless, in both cases, the

throughput performance exhibits similar behavior as in Fig. 4.2 – under the the NPF

policy and FCFS discipline with tail dropping it decreases exponentially for large input

83

0 0.002 0.004 0.006 0.008 0.01
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
x 10

−3

x

θ

0 0.01 0.02 0.03 0.04 0.05
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

−3

x

θ

Figure 4.3: The throughput θ as a function of input rate x under the OPF policy (+), NPF
policy (×) and FCFS service with tail dropping (◦). The cyclic network consists of N = 100
nodes and b = 1 (top) or b = 5 (bottom) for all nodes. Service times are exponentially
distributed.

84

rate x while under the OPF policy it increases with x and approaches a constant fraction

of the maximum throughput.

4.5 Concluding Remarks

This chapter examines the bandwidth sharing problem in multi-hop networks. In

contrast with approaches in the literature that rely on the fluid assumption of the flows,

our discussion focus on the packet-level granularity. We propose a buffer management

profile, the OPF policy, that achieves a constant fraction of the throughput and the

robustness under heavy traffic load, i.e., the throughput performance does not degrade

with congestion as observed under the FCFS with tail dropping policy. Furthermore,

our buffer management mechanism is distributed and can be easily implemented on

current queueing systems without additional hardware. The implementation is identical

for all network nodes and does not require global information or any time-correlated

estimation (e.g. flow rate)of the system.

85

CHAPTER 5

Conclusions

Advances in information technology enabled the development of large-scale commu-

nication networks, giving rise to a new set of research problems on scalability studied

in this dissertation. The basic idea is to analyze the impact of the network scale on

its operation and use these insights to design a set of algorithms that support effi-

cient operation of large-scale networks. In particular, we propose a set of scalable

algorithms that facilitate communication effectively when the network size increases

while individual network nodes are equipped with only limited resources. We start by

an investigation of the size of routing tables under various routing algorithms as the

number of nodes in the network increases. We term a routing protocol in a flat-label

network information-efficient if the amount of information at individual nodes required

to route packets does not increases with the network size. It is shown that the popu-

lar shortest-path and straight-line routing algorithms are not information-efficient, i.e.,

these protocols can be implemented only when nodes’ memory increases with the net-

work size. On the other hand, it is established that there exist information-efficient

algorithms, e.g., column-first routing protocol, that route packets correctly even if each

node in the network is capable of storing information on a fixed number of destinations

only. Next, we develop a novel scheduling mechanism for distributed systems, and

packet switches in particular, based on a minimal set of hardware components. The

standard model of computation implemented by digital logic is replaced by a model

86

based on time encoding. This new model allows for distributed computation with low

hardware complexity. A distributed switch scheduling algorithm utilizing time encoding

is shown to deliver performance comparable to centralized algorithms under uniform

traffic. Exploiting a connection between switch scheduling and interval packing, we

argue that the distributed nature of the algorithm limits the maximum relative load to

1− e−2 under the worst-case scenario. We also point out that the stability of the algo-

rithm can be improved by enabling reversibility in distributed decision making. Finally,

we discuss the bandwidth sharing problem for multi-hop networks. Instead of adopting

the fluid assumption of the network traffic, we examine the system at the packet-level

granularity. A set of buffer management mechanisms that delivers a constant fraction

of the maximum throughput is considered. In contrast to the widely-adopted FCFS

service discipline with tail-dropping policy, this mechanism is robust to heavy traffic

loads – the throughput does not degrade due to congestion. Furthermore, the buffer

management is minimal, since it utilizes only simple packet attributes and requires no

estimation of flow rate. The implementation is identical for all network nodes and does

not require global information of the network.

The reflections on our research is threefold. First, the results in this dissertation

indicate that improving the scalability of algorithms is a multidimensional problem.

Network scalability is a relatively new metric of assessing the system performance;

analytical studies on this topic have received considerable attention only recently. The

results are far from complete and a number of issues remain to be resolved. In this

dissertation, we examine the network scalability from various aspects that have been

overlooked in the literature. In particular, while theoretical studies on the impact of

finite memory focused on the data plane (buffer space), our discussion in Chapter 2

direct the attention to the control plane, i.e., the routing information. In Chapter 3,

it is suggested that an entirely different model of computation can be effectively used

to perform distributed scheduling, i.e., implicit information exchange can be utilized to

87

replace the traditional message-passing approaches.

Second, our research provides evidences that a set of completely new protocols

might be required for the operation of large-scale communication networks – some of

the protocols employed by the current systems either suffer from inefficiencies that ex-

acerbate with the network scale, or require an impractically large amount of computing

resources. This is best demonstrated by drawing a contrast between traditional algo-

rithms and our proposed algorithms that aim to improve scalability. For example, the

information-efficient/inefficient routing protocols in Chapter 2, and the buffer manage-

ments with/without packet attributes in Chapter 4. The mathematical insights and

proposed algorithms can serve as first steps toward the evaluation of other network

scalability problems. A uniform theoretical framework remains to be established.

Third, a tradeoff between the distributiveness and the performance of algorithms

is exhibited. The design of scalable systems is recognized to be a challenging prob-

lem. While the algorithmic complexity is well-defined (e.g., time or space complexity),

the notion of distributiveness is yet to be quantified fully. The ambiguity of the dis-

tributiveness of algorithms stems from its multidimensionality. For example, the ideal

distributed algorithm has the feature of symmetric implementation, i.e., it can be im-

plemented on a homogenous network (a set of identical computing devices). Moreover,

the devices are expected to utilize only local information, since, in order to reduce the

communication bandwidth, it is desirable to have a minimal amount of information

exchange between the devices. This is due to the fact that the exchange of information

between network elements is very often more expensive than information retrieval and

storage on a single centralized system. These features of an algorithm oftentimes come

at the cost of reduced system performance. Therefore, in contrast to centralized algo-

rithms, the distributed algorithms discussed in this dissertation do not always achieve

the maximum performance, i.e., these algorithms operate suboptimally. In particular,

in Chapter 3, the price for enabling distributed decision making (scheduling) is the

88

reduction in the stability region. In the past, this tradeoff between distributiveness

and the performance of algorithms has been overlooked by the majority of designers

that consider small systems. This aspect is both essential for the design of large-scale

systems and difficult to evaluate/quantify.

89

APPENDICES

90

APPENDIX A

Appendix for Chapter 2

A.1 Proof of Lemma 2.2

1) Statement (2.2): The union bound and the fact that all {kN(i)}Ni=1 are identically

distributed yield

P
[

min
1≤i≤1/aN

kN(i) ≥ εaNN

]
≥ 1− a−1

N P[kN(i) < εaNN].

The last term in the preceding inequality can be bounded by applying Markov’s in-

equality and invoking the independence of node locations on the unit square:

P[kN(i) < εaNN] = P[e−skN (i) > e−sεaNN]

≤ esεaNNEe−skN (i)

≤ esεaNN
[
1− aN(1− e−s)

]N
= esεaNN+N ln(1−aN (1−e−s)), (A.1)

for some s > 0. Combining (A.1) with relationship ln(1 − x) ≤ −x, for all x ∈ (0, 1),

results in

a−1
N P[kN(i) < εaNN] ≤ e−aNN(1−e−s−εs)−ln aN .

Therefore, the lemma holds provided that the exponent on the right-hand side grows

91

without bound as N → ∞:

aNN(1− e−s − εs) + ln aN → ∞. (A.2)

The function in (A.2) is monotonic in aN , implying that it is lower bounded by

a(1− e−s − εs) lnN − lnN + ln lnN + ln a (A.3)

due to the assumption on aN . Now, under the assumptions of the lemma, it is possible

to select s > 0 and ε > 0 such that the function (A.3) tends to infinity as N → ∞,

and, hence, (A.2) holds. This concludes this part of the proof.

2) Statement (2.3): The proof is very similar to the one of the first part of the

lemma. Namely, we have

P
[

max
1≤i≤1/aN

kN(i) ≤ γaNN

]
≥ 1− a−1

N P[kN(i) > γaNN]

and

a−1
N P[kN(i) > γaNN] ≤ a−1

N e−sγaNN+N ln(1+aN (es−1))

≤ e−aNN(sγ+1−es)−ln aN (A.4)

for some s > 0. Because of the assumptions of the lemma on aN it is possible to select

γ < ∞ such that the right-hand side of (A.4) tends to 0 as N → ∞. Hence, the

statement holds. �

A.2 Proof of Lemma 2.4

1) Straight-line routing: In order to avoid repetition, we provide a detailed proof of

the lemma statement for only one specific direction d – south-to-east. All other values

92

of d can be treated in a similar manner.

Let CN be the set of cells located at least δ units away from the nearest edge of the

unit square. The cardinality of such a set is at least (1− δ)a−1
N due to the assumption

aN → 0 as N → ∞. Consider an arbitrary cell i ∈ CN .

First, we estimate probability p that cell i forwards packets originating at an ar-

bitrary node in the south-to-east direction. This can be achieved by conditioning on

the location of the source node. To this end, suppose that the source node is located

at distance r and angle φ relative to the upper-right corner of cell i as illustrated in

Fig. A.1. Denote the conditional probability by pr,φ. The given cell forwards packets in

the south-to-east direction if the straight line connecting the source and the respective

destination crosses the lower and right edges of the cell (the bold edges in Fig. A.1).

For
√
2aN ≤ r ≤ δ and 0 ≤ φ ≤ π/4, this occurs when the the destination is located in

the shaded disc sector of angular size ϕ shown in Fig. A.1. The fact that the radial size

of the sector is δ and the definition of set CN ensures that the sector is within the unit

square for N large enough. The uniform distribution of destinations in the unit square

yields that pr,φ is lower bounded by the area of the shaded sector, i.e.,

pr,φ ≥ ϕ[(δ + r)2 − r2]/2

≥ ϕδ2/2. (A.5)

Geometry of the considered case yields that the angle ϕ ≤ φ is related to the pair of

polar coordinates (r, φ) via

tan (π/2− φ− ϕ) = tan(π/2− φ)−
√
aN/(r sinφ),

which renders

r sinϕ =
√
aN sin(φ− ϕ), (A.6)

93

r

δ

ϕ

φ

√

aN

Figure A.1: A cell forwards packets in the south-to-east direction if the straight line
connecting the source and destination crosses the two bold lines. Provided that the
source is located at (r, φ) in polar coordinates relative to the cell’s upper-right corner,
the destination can be anywhere inside the shaded disc sector. The figure is plotted for
the case 0 ≤ φ ≤ π/4.

for 0 < φ ≤ π/4. By further restricting values of r and φ to (δ/2, δ) and (π/8, π/4),

respectively, it is straightforward to obtain a lower bound on ϕ from (A.6):

ϕ ≥ ζ
√
aN/r, (A.7)

for some ζ > 0 and all N large enough; the bound is based on the expansion of the sin

function around the origin and aN → 0 as N → ∞.

Now, integrating the conditional probability pr,φ over a restricted range of (r, ϕ)

results in the following lower bound

p ≥
∫ δ

2
√
aN

∫ π/4

0

pr,φ r dϕ dr

≥
∫ δ

δ/2

∫ π/4

π/8

ϕδ2

2
r dϕ dr,

where the second inequality is due to (A.5). The preceding relationship and (A.7) yield

94

a desired bound for some ξ > 0

p ≥ ξ
√
aN . (A.8)

Second, consider an estimate of ψd(i). The independence of node locations and (A.8)

imply

P[ψd(i) < ε
√
aNN] ≤ P

[
N∑
j=1

Ij < ε
√
aNN

]
, (A.9)

where {Ij}Nj=1 is an i.i.d. sequence of Bernoulli random variables with EIj = ξ
√
aN ;

variable Ij lower bounds the indicator function of whether node i forwards packets with

source node j in direction d.

Applying Markov’s inequality to (A.9) results in, for s > 0,

P[ψd(i) < ε
√
aNN] ≤ esε

√
aNN

[
1− ξ

√
aN(1− e−s)

]N
≤ esε

√
aNN+N ln(1−ξ√aN (1−e−s))

≤ e−
√
aNN(ξ(1−e−s)−εs),

where the last inequality follows from ln(1− x) ≤ −x for all x ≥ 0 small enough. For a

given value of ξ it is feasible to select s and ε > 0 such that ξ(1− e−s)− εs > 0. This

fact, coupled with the assumption
√
aN ≥ 1/

√
N , yields the statement of the lemma.

2) Shortest-path routing: As in the proof of the statement for the straight-line

scheme, we focus on one direction d – south-to-east; all other direction can be treated

similarly.

Define CN as the set of all cells that are at least (⌈δ/√aN⌉+ 1) cells away from the

boundary of the unit square. The cardinality of such a set is at least (1− δ)a−1
N for N

large enough. Let i be an arbitrary cell in CN .

Next, we lower bound the probability p that cell i forwards packets with the source at

an arbitrary node in direction d. To this end, conditioning on the source and destination

cells with relative locations (j, l) and (u, v), respectively (see Fig. A.2), and a path-

95

j
l

u
v

Figure A.2: Probability p of forwarding packets of a flow in the south-east direction
by the cell in the center of the figure can be estimated by conditioning on the location
of source and destination cells (lower-bottom and upper-left, respectively). All the
distances shown are measured in cells.

counting argument yield

p ≥ a2N
4

⌈δ/√aN ⌉∑
j,l=1

⌈δ/√aN ⌉∑
u,v=1

(
j + l

j

)
2−(j+l)

≥ aNδ
2

4

⌈δ/√aN ⌉∑
j=⌊δ/(2√aN)⌋

⌈j⌉∑
l=⌊j−

√
j⌋

(
j + l

j

)
2−(j+l).

Since the relative values of j and l are large when N is large, Stirling’s approximation

is applicable and renders an estimate on the summands in the preceding inequality:

(
j + l

j

)
2−(j+l) ≥ 1

2π

√
j + l

jl

(j+l
2
)j+l

jjll

≥ ζ/
√
j.

for some ζ > 0. Therefore, the following holds for N large enough

p ≥ aNδ
2

4

⌈δ/√aN ⌉∑
j=⌊δ/(2√aN)⌋

⌈j⌉∑
l=⌊j−

√
j⌋

ζ

⌊
δ

2
√
aN

⌋−1/2

≥ ζ
√
aNδ

3/16,

96

i.e., p ≥ ξ
√
aN , for some ξ > 0. The rest of the proof is identical to the second part of

the proof for the straight-line scheme – see the part that follows (A.8). �

97

APPENDIX B

Appendix for Chapter 3

B.1 Proof of Theorem 3.1

In order to prove Theorem 3.1, we introduce the fluid model of a switch. The fluid

model is a deterministic, continuous system of equations that parallels (3.1). Recall that

Si,j(t) is the service provided to queue (i, j) in the time slot t. We can rewrite (3.1) as

the following:

Qi,j(t) = Qi,j(0) +
t∑

τ=0

Ai,j(t)−Di,j(t), (B.1)

where Di,j(t) =
∑t

τ=0 Si,j(τ) is the cumulative number of departures from queue (i, j)

up to the time slot t; Di,j(0) = 0. For each t ≥ 0, the evolution of the fluid model is

governed by

Q̄i,j(t) = Q̄i,j(0) + λi,jt− D̄i,j(t) ≥ 0, (B.2)

where Q̄i,j(t) = limr→∞Q(rt)/r and D̄i,j(t) = limr→∞D(rt)/r are the fluid limits of

Qi,j and Di,j, respectively. A proof of convergence to a unique limit can be found in [20].

Note that D̄ depends on the scheduling algorithm. We specify the rate of departure

˙̄D(t) at time t in the fluid model under algorithm A by defining a function ψ; ˙̄D(t)

denotes the derivative of D̄(t) at t. For any square matrix X, we use Xβ to denote

98

a matrix of the same size with elements Xβ
i,j, X(λ) denotes the matrix with elements

Xi,j/λi,j, and ∥X∥ =
∑N

i,j=1Xi,j. Function ψ represents the expected service rate of

the virtual queues under A, and can be recursively defined as follows.

Definition B.1. ψ(X) is a matrix with the same dimension as the square matrix X

with non-negative elements. If X is a 1× 1 matrix, i.e., a real number, then ψ(X) = 1.

For an N ×N matrix X, ψ(X) is an N ×N matrix with elements

ψi,j(X) =
Xi,j

∥X∥
+
∑

k ̸=i,l ̸=j

Xk,l

∥X∥
ψi,j(X−(k,l)),

where X−(k,l) is the (N − 1)× (N − 1) matrix obtained by deleting the kth row and lth

column from X.

Next lemma follows directly from the definition of ψ.

Lemma B.1. ψ(cX) = ψ(X) for any constant c > 0.

Note that by conditioning on the first timer to expire under A(W), it is straight-

forward to obtain ESi,j(t) = ψi,j(W (t)). From the construction of the fluid model, we

have

˙̄Di,j(t) = lim
δ↓0

lim
r→∞

1

rδ
(Di,j(r(t+ δ)−Di,j(rt)))

= lim
δ↓0

lim
r→∞

1

rδ

⌊r(t+δ)⌋∑
τ=⌊rt⌋

Si,j(Q
β(τ)).

For each index pair (i, j), let

t∗i,j =
1

r
arg max

τ=⌊rt⌋···⌊r(t+δ)⌋
ψi,j(Q

β(τ))

be the time index that maximizes function ψi,j in the specified time interval. We can

99

upper bound ˙̄Di,j as follows when Q̄i,j(t) > 0:

˙̄Di,j(t) ≤ lim
δ↓0

lim
r→∞

1

rδ
(⌊r(t+ δ)⌋ − ⌊rt⌋)ψi,j(Qβ(rt∗i,j))

= lim
δ↓0

lim
r→∞

ψi,j(r
−1Qβ(rt∗i,j)))

= lim
δ↓0

ψi,j(Q̄
β(t∗i,j))

= ψi,j(Q̄
β(t)),

where the second equality is due to Lemma B.1 and the third equality follows from the

continuity of ψ; it is clear from the definition of t∗i,j that t ≤ t∗i,j ≤ t + δ. Analogously,

we can obtain a corresponding lower bound, which combined with the upper bound,

yields

˙̄Di,j(t) = ψi,j(Q̄
β(t)), if Q̄i,j(t) > 0. (B.3)

Equations (B.2) and (B.3) together form the fluid equations of the system operating

under algorithm A(Qβ). Any solution (D̄, Q̄) to the fluid equations is a fluid model

solution under algorithm A(Qβ). A switch operating under algorithm A(Qβ) is rate

stable if for every corresponding fluid model solution (D̄, Q̄) with Q̄(0) = 0, we have

Q̄(t) = 0 for t ≥ 0 (see Theorem 3 in [20]). Let ⟨·, ·⟩ be the element-wise inner product

operator of matrices. By Lemma 1 in [20], it is sufficient to show that

d

dt
⟨Q̄β(t), Q̄(λ)(t)⟩ ≤ 0 (B.4)

for any Q̄(t) ̸= 0. The derivative in (B.4) satisfies

d

dt
⟨Q̄β(t), Q̄(λ)(t)⟩ = (1 + β)⟨Q̄β(t), ˙̄Q(λ)(t)⟩

= (1 + β)
(
∥Q̄β(t)∥ − ⟨Q̄β(t), ˙̄D(λ)(t)⟩

)
, (B.5)

100

where the second equality is due to (B.2). In the following discussion, index t may be

dropped when there is no ambiguity.

(2× 2 switch.) For any admissible 2× 2 arrival matrix [λi,j], there exists a matrix

[λ∗i,j] such that λ∗i,j > λi,j and λ∗1,1 + λ∗1,2 = λ∗2,1 + λ∗2,2 = 1, since [λi,j] satisfies (3.4).

Definition B.1 and (B.3) yield

˙̄Di,j(t) =

 M1∥Qβ∥−11{Qi,i>0}, i = j,

M2∥Qβ∥−11{Qi,j>0}, i ̸= j,

where M1 = Q̄β
1,1 + Q̄β

2,2 and M2 = Q̄β
1,2 + Q̄β

2,1, and, thus,

⟨Q̄β, ˙̄D(λ)⟩ ≥ ⟨Q̄β, ˙̄D(λ∗)⟩

=
M2

1/λ
∗
1,1 +M2

2 /(1− λ∗1,1)

∥Qβ∥
.

The preceding inequality and (B.5) result in

d

dt
⟨Q̄β(t), Q̄(λ)(t)⟩ ≤

1 + β

∥Qβ∥

(
−
1− λ∗1,1
λ∗1,1

M2
1 −

λ∗1,1
1− λ∗1,1

M2
2 + 2M1M2

)

= −1 + β

∥Qβ∥

(√
1− λ∗1,1
λ∗1,1

M1 −

√
λ∗1,1

1− λ∗1,1
M2

)2

≤ 0.

Hence, the first statement of the theorem follows.

(N ×N switch.) Next, we consider a switch of arbitrary size under uniform traffic.

The proof is by induction on the number of input/output ports N . In the case of

N = 1, (B.4) holds trivially. Now, suppose that (B.4) holds for a switch with size

(N − 1)× (N − 1); then (B.2), (B.4) and (B.5) imply

⟨Q̄β, ˙̄D(λ)⟩ = (N − 1)
N−1∑
i,j=1

Q̄β
i,jψi,j(Q̄

β) ≥ ∥Q̄β∥, (B.6)

where Q̄ is a (N − 1)× (N − 1) matrix. For a switch of size N ×N , combining (B.2),

101

Definition B.1 and λi,j = 1/N yields

⟨Q̄β, ˙̄D(λ)⟩ = N

N∑
i,j=1

Q̄β
i,j

(
Q̄β
i,j

∥Q̄β∥
+
∑

k ̸=i,l ̸=j

Q̄β
k,l

∥Q̄β∥
ψi,j(Q̄

β
−(k,l))

)

=
N

∥Q̄β∥

(
∥Q̄2β∥+

N∑
k,l=1

Q̄β
k,l

∑
i ̸=k,j ̸=l

Q̄β
i,jψi,j(Q̄

β
−(k,l))

)

≥ N

∥Q̄β∥

(
∥Q̄2β∥+ 1

N − 1

N∑
k,l=1

Q̄β
k,l∥Q̄

β
−(k,l)∥

)
, (B.7)

where the inequality follows from applying the inductive hypothesis (B.6) to matrix

Q̄β
−(k,l). Next, let qi,j = Q̄β

i,j/∥Q̄β∥ and rewrite the right-hand side of (B.7) as

N∥Q̄β∥
N∑

k,l=1

qk,l

(
qk,l +

1

N − 1

∑
i̸=k,j ̸=l

qi,j

)

≥ N∥Q̄β∥ inf
{qk,l}

{
N∑

k,l=1

qk,l

(
qk,l +

1

N − 1

∑
i̸=k,j ̸=l

qi,j

)}
,

where the infimum is over all qk,l ∈ [0, 1] such that
∑

k,l qk,l = 1. The infimum is

attained when qk,l = 1/N2 for all k, l, resulting in

⟨Q̄β, ˙̄D(λ)⟩ ≥ ∥Q̄β∥.

The preceding inequality, (B.5) and (B.6) imply the second statement of the theorem.

B.2 Proof of Proposition 3.1

Consider the fluid model described in Appendix B.1:

 Q̄i,j(t) = Q̄i,j(0) + λi,jt− D̄i,j(t),

˙̄Di,j(t) = ψi,j(Q̄
β(t)), if Q̄i,j(t) > 0.

(B.8)

102

We show that Q̄i,j(t) → ∞ as t → ∞ for j = i or (imod N) + 1, under the diagonal

traffic with α = 1/2 and some ρ ∈ (0, 1), and the following initial condition:

Q̄i,j(0) =

 q, j = i or (i mod N) + 1,

0, otherwise,

where q > 0, i.e., Q̄i,j(t) = 0 for all t ≥ 0 and i, j such that λi,j = 0. Given this initial

condition, due to a symmetry in ψ and the arrival matrix, as well as Lemma B.1, (B.8)

reduces to

Q̄i,j(t) =

 q + ρt/2− σt, j = i or (i mod N) + 1,

0, otherwise.

for all t ≥ 0 when ρ/2 > σ with σ being the service rate:

lim
T→∞

1

T

T∑
t=0

Si,j(t) =

 σ, j = i or (i mod N) + 1,

0, otherwise.

That is, for any ρ > 2σ, the algorithm is not rate stable.

In order to determine the service (departure) rate σ, we construct the interference

graph of the switch under the diagonal traffic (see the top of Fig. B.1). Virtual queue

(i, j) with positive arrival rate is represented as the node (i, j); the total number of

nodes in the interference graph is 2N . In this graph, two nodes are connected by an

edge if they can not be scheduled concurrently. The graph under diagonal traffic is a

2N -cycle, exhibiting the symmetry of the queues with positive arrival rates. Due to this

symmetry, the service rate σ satisfies σ = sN/2N , where sN is the expected number of

scheduled queues in a single time slot. Without loss of generality (due to symmetry),

we assume that queue (1, 1) is scheduled first, then it follows that queues (1, 2) and

(N, 1) can not be scheduled in the same time slot. Thus, the remaining interference

graph is linear with 2N − 3 nodes, as shown in the bottom of Fig. B.1. We argue

103

(1, 1)

(1, 2) (2, 2)

(2, 2)

(2, 3)

(2, 3)

(3, 3)

(3, 3)
(N − 1, N)

(N,N)

(N,N)

(N, 1)

0

1
1

1

2

2

2 3

N

N

N − 1

N − 1

2N − 4 2N − 3

input

o
u
tp
u
t

·
·
·

· · ·

·
·
·

· · ·

· · ·

·
·
·

·
·
·

·
·
·

·
·
·

· · ·

Figure B.1: The interference graph for an N ×N switch under diagonal traffic is shown on
the top, where nodes correspond to queues with positive occupancies and arrival rates; edges
connect queues with a common input/output port. On the top, the interference graph is
drawn according to the relative location of the nodes in the traffic matrix; in the middle the
graph is drawn on two circles, each circle refers to a matching of size N . Conditioning on the
event that queue (1, 1) is scheduled first, the remaining interference graph is linear as shown
on the bottom of the figure. Here an additional fictitious node 0 is added to the left end of
the line in order to draw an equivalency with a dimer packing problem considered in [65]. A
dimer is placed on nodes 2 and 3, indicating that queue (3, 3) is scheduled. As a result, queues
(2, 3) and (3, 4) can not be scheduled in the same time slot, since dimers are not allowed to
overlap.

104

that determining the expected number of served queues on a linear interference graph

is equivalent to computing the expected number of vacancies on a line packed with

randomly placed dimers (non overlapped adjacent pairs of nodes). For convenience,

in the following discussion, we relabel the nodes in the interference graph by natural

numbers. With an additional fictitious node 0 on the left end of the line interference

graph, placing a dimer at node pair {i− 1, i} is equivalent to an expiration of a timer

corresponding to node i. In particular, when a dimer is placed at a node pair {i− 1, i},

then a dimer can not be placed at node pairs {i− 2, i− 1} and {i, i+ 1} since dimers

are not allowed to overlap. This is equivalent to preventing queues corresponding to

nodes i − 1 and i + 1 from being scheduled when the queue corresponding to node i

is already scheduled. Hence, if xk is the expected number of vacancies on a line graph

with k nodes (including the node 0), then the following relationship must hold:

(2N − 3) + 1 = 2(sN − 1) + x(2N−3)+1.

The value of xk was obtained by Page [65]:

xk = (k + 2)

(
k+1∑
r=0

(−2)r

r!
+

1

2

(−2)k+2

(k + 2)!

)
,

and, therefore, we have

sN = N − 1

2
x2N−2

= N

(
1−

[
2N−1∑
r=0

(−2)r

r!
+

1

2

(−2)2N

(2N)!

])
.

Recall that the critical relative load ρ∗ can be at most sN/N . For example, the preceding

expression yields s32 ≈ 27.6693 . . ., indicating that ρ∗ < 0.8647 . . . for a 32× 32 switch

(see the top of Fig. 3.6). In addition, it also follows that ρ∗ < 1 − e−2 in the limit as

N → ∞.

105

B.3 A procedure for estimating ρ∗ for α ∈ (0, 1)

In order to upper bound the maximum relative load under diagonal traffic, we

consider the fluid model analyzed in Appendix B.2. In particular, we focus on the fluid

model (B.8) with the following initial condition:

Q̄i,j(0) =

κq, j = i,

(1− κ)q, j = (i mod N) + 1,

0, otherwise,

(B.9)

where κ ∈ [0, 1] is such that

ψi,i(Q̄
β(0))

ψi,(i mod N)+1(Q̄β(0))
=

α

1− α
. (B.10)

Note that such κ exists for any α ∈ [0, 1] due to continuity and symmetry of ψ. Due

to symmetry of the arrival matrix, under (B.9) and (B.10), (B.8) renders for all t ≥ 0,

when ρ > σ,

Q̄i,j(t) =

κq + α(ρ− σ)t, j = i,

(1− κ)q + (1− α)(ρ− σ)t, j = (i mod N) + 1,

0, otherwise,

where σ is the total service rate of queues (i, i) and (i, (i mod N) + 1). In this case,

the algorithm is not rate stable.

The value of κ that yields (B.10) can be evaluated numerically since ψ is de-

fined recursively in Definition B.1. Once this value is obtained, one can obtain σ =

ψ1,1(Q̄(0))+ψ1,2(Q̄(0)) and an upper bound ρ∗ < σ follows. For example, when N = 32

and α = 2/3, we have κ = 0.6295 . . ., ψ1,1(Q̄(0)) = 0.5829 . . ., ψ1,2(Q̄(0)) = 0.2915 . . .

and σ = 0.8744

106

BIBLIOGRAPHY

107

BIBLIOGRAPHY

[1] M. Ajmone Marsan, A. Bianco, E. Leonardi, and L. Milia. RPA: A flexible schedul-
ing algorithm for input buffered switches. IEEE Trans. Commun., 47(12):1921–1933,
1999.

[2] L. Adleman. Molecular computation of solutions to combinatorial problem. Science,
266:1021–1024, 1994.

[3] M. Andrews, K. Kumaran, K. Ramanan, A. Stolyar, R. Vijayakumar, and Ph.
Whiting. Scheduling in a queuing system with asynchronously varying service rates.
Probab. Engin. Inform. Sci., 18:191–217, 2004.

[4] B. Ata and W. Lin. Heavy traffic analysis of maximum pressure policies for stochas-
tic processing networks with multiple bottlenecks. Queueing Syst. Theory Appl.,
59(3-4):191-235, 2008.

[5] A. Akella, A .Seshan R. Karp, S. Shenker, and C. Papadimitriou. Selfish behavior
and stability of the internet:: a game-theoretic analysis of TCP. SIGCOMM Comput.
Commun. Rev., 32(4):117-130, 2002.

[6] G. Barrenechea, B. Beferull-Lozano, and M. Vetterli, “Lattice sensor networks: Ca-
pacity limits, optimal routing and robustness to failures,” in Proc. IPSN, Berkeley,
CA, April 2004.

[7] G. Barrenetxea, B. Beferull-Lozano, and M. Vetterli, “Efficient routing with small
buffers in dense networks,” in Proc. IPSN, Los Angeles, CA, April 2005.

[8] A. Buchsbaum, G. Fowler, and R. Giancarlo, “Improving table compression with
combinatorial optimization,” in Proc. ACM-SIAM SODA, San Francisco, CA, Jan-
uary 2002.

[9] T. Bonald, M. Feuillet and A. Proutiere. Is the “Law of the Jungle” Sustainable for
the Internet? In Proc. IEEE Infocom, Rio de Janeiro, Brazil, April 2009.

[10] D. Bertsekas and R. Gallager, Data Networks, 2nd ed. Prentice-Hall, 1992.

[11] T. Bonald and L. Massoulié Impact of fairness on Internet performance. In Proc.
ACM Sigm., Santa Clara, California, June 2000.

[12] P. Bose, P. Morin, I. Stojmenovic, and J. Urrutia, “Routing with guaranteed de-
livery in ad hoc wireless networks,” Wireless Networks, vol. 7, pp. 609–616, 2001.

108

[13] M. Bayati, B. Prabhakar, D. Shah, and M. Sharma. Iterative scheduling algorithms.
In Proc. IEEE Infocom, Anchorage, AK, May 2007.

[14] P. Chaporkar, K. Kar, and S. Sarkar. Throughput guarantees through maximal
scheduling in wireless networks. In Proc. of Allerton Conf. on Comm., Control, and
Comput., Monticello, IL, September 2005.

[15] T. Cormen, C. Leiserson, R. Rivest, and C. Stein, Introduction to Algorithms,
2nd ed. MIT Press, 2001.

[16] T. M. Cover and J. A. Thomas, Elements of Information Theory. John Wiley &
Sons, Inc., 1991.

[17] E.A. Dinic. Algorithm for solution of a problem of maximum flow in a network
with power estimation. Soviet Math. Dokl., 11:1277–1280, 1970.

[18] J. Dai and W. Lin. Asymptotic optimality of maximum pressure policies in stochas-
tic processing networks. Ann. Appl. Probab., 18:2239–2299, 2008.

[19] H. Duan, J. Lockwood, and S.M. Kang. Matrix unit cell scheduler (MUCS) for
input-buffered ATM switches. IEEE Commun. Letters, 2(1):20–23, 1998.

[20] J. Dai and B. Prabhakar. The throughput of data switches with and without
speedup. In Proc. IEEE Infocom, Tel Aviv, Israel, March 2000.

[21] S. Deb, D. Shah, and S. Shakkottai. Fast matching algorithms for repetetive
optimization: An application to switch scheduling. In Proc. CISS, Princeton, NJ,
March 2006.

[22] N.G. Duffield and M. Grossglauser. Trajectory sampling for direct traffic observa-
tion. IEEE/ACM Trans. Networking, 9(3):280–292, 2001.

[23] A. Dimakis and J Walrand. Sufficient conditions for stability of longest queue first
scheduling: Second order properties using using fluid limits. Adv. Appl. Probab.,
38(2):505–521, 2006.

[24] A. El Gamal, J. Mammen, B. Prabhakar, and D. Shah, “Optimal throughput-delay
scaling in wireless networks - Part I: The fluid model,” IEEE Trans. Inform. Theory,
vol. 52, no. 6, pp. 2568–2592, 2006.

[25] ——, “Optimal throughput-delay scaling in wireless networks - Part II: Constant-
size packets,” IEEE Trans. Inform. Theory, vol. 52, no. 11, pp. 5111–5116, 2006.

[26] A. Eryilmaz, A. Ozdaglar, and E. Modiano. Polynomial complexity algorithms for
full utilization of multi-hop wireless networks. In Proc. IEEE Infocom, Anchorage,
AK, May 2007.

[27] M. Franceschetti, O. Dousse, D. Tse, and P. Thiran, “On the throughput capacity
of random wireless networks,” IEEE Trans. Inform. Theory, vol. 52, no. 6, pp. 2756–
2761, 2006.

109

[28] S. Floyd and K. Fall. Promoting the use of end-to-end congestion control in the
internet. IEEE/ACM Trans. Netw., 7:458V472, 1999.

[29] P. Giaccone, B. Prabhakar, and D. Shah. Randomized scheduling algorithms for
high-aggregate bandwidth switches. IEEE J. Select. Areas Commun., 21(4):546–559,
2003.

[30] P. Giaccone, D. Shah, and B. Prabhakar. An implementable parallel scheduler for
input-queued switches. IEEE Micro, January-February 2002.

[31] H.N. Gablow and R.E. Tarjan. Faster scaling algorithms for general graph matching
problems. J. ACM, 38(4):815–853, 1991.

[32] Matthias Grossglauser and David N. C. Tse, “Mobility increases the capacity of ad
hoc wireless networks,” IEEE/ACM Trans. Netw., vol. 10, no. 4, pp. 477–486, 2002.

[33] P. Gupta and P. R. Kumar, “The capacity of wireless networks,” IEEE Trans.
Inform. Theory, vol. 46, no. 2, pp. 388–404, 2000.

[34] J. Herdtner and E. Chong, “Throughput-storage tradeoff in ad hoc networks,” in
Proc. IEEE Infocom, Miami, FL, March 2005.

[35] J.E. Hopcroft and R.M. Karp. An n5/2 algorithm for maximum matching in bi-
partite graphs. SIAM J. Comput., 2:225–231, 1973.

[36] V. Jacobson. Congestion avoidance and control. SIGCOMM Comput. Commun.
Rev., New York, 1995.

[37] P. Jelenković, P. Momčilović, and M. Squillante, “Scalability of wireless networks,”
IEEE/ACM Trans. Netw., vol. 15, no. 2, pp. 295–308, 2007.

[38] A. Jovičić, P. Viswanath, and S. Kulkarni, “Upper bounds to transport capacity
of wireless networks,” IEEE Trans. Inform. Theory, vol. 50, no. 11, pp. 2555–2565,
2004.

[39] L. Jiang and J. Walrand. A distributed CSMA algorithm for throughput and utility
maximization in wireless networks. In Proc. of Allerton Conf. on Comm., Control,
and Comput., Monticello, IL, September 2008.

[40] I. Keslassy, S.-T. Chuang, and N. McKeown. A load-balanced switch with an
arbitrary number of lines. In Proc. IEEE Infocom, Hong Kong, March 2004.

[41] I. Keslassy, C.-S. Chang, N. McKeown, and D.-S. Lee. Optimal load-balancing. In
Proc. IEEE Infocom, Miami, FL, March 2005.

[42] F. Kelly, Reversibility and Stochastic Networks. New York: Wiley, 1979.

[43] B. Karp and H. Kung, “Greedy perimeter stateless routing,” in Proc. ACM Mobi-
Com, Boston, MA, August 2000.

110

[44] I. Keslassy and N. McKeown. Analysis of scheduling algorithms that provide 100%
throughput in input-queued switches. In Proc. of Allerton Conf. on Comm., Control,
and Comput., Monticello, IL, October 2001.

[45] E. Kushilevitz and N. Nisan, Communication Complexity. Cambridge University
Press, 1997.

[46] P. R. Kumar and L.-L. Xie, “A network information theory for wireless communi-
cations: Scaling laws and optimal operation,” IEEE Trans. Inform. Theory, vol. 50,
no. 5, pp. 748–767, 2004.

[47] I. Keslassy, R. Zhang-Shen, and N. McKeown. Maximum size matching is unstable
for any packet switch. IEEE Commun. Letters, 7(10):496–498, 2003.

[48] F. T. Leighton, Introduction to parallel algorithms and architectures: Arrays, trees,
and hypercubes. San Mateo, CA: Morgan Kaufmann Publishers, 1992.

[49] O. Leveque and E. Telatar, “Information theoretic upper bounds on the capacity
of ad hoc networks,” IEEE Trans. Inform. Theory, vol. 51, no. 3, pp. 858–865, 2005.

[50] J. Li, J. Jannotti, D. D. Couto, D. Karger, and R. Morris, “A scalable location
service for geographic ad hoc routing,” in Proc. ACM MobiCom, Boston, MA, August
2000.

[51] S. Low. A duality model of TCP and queue management algorithms. IEEE/ACM
Trans. Networking, 11(4):525–536, 2003.

[52] N. McKeown. The iSLIP scheduling algorithm for input-queued switches.
IEEE/ACM Trans. Networking, 7(2):188–201, 1999.

[53] M.G. Ajmone Marsan, P. Giaccone, E. Leonardi, and F. Neri. On the stability of
local scheduling policies in networks of packet switches with input queues. IEEE J.
Select. Areas Commun., 21(4):642–655, 2003.

[54] N. McKeown, A. Mekkittikul, V. Anantharam, and J. Walrand. Achieving 100%
throughput in an input-queued switch. IEEE Trans. Comm., 47(8):1260–1267, 1999.

[55] P. Momčilović. A distributed switch scheduling algorithm. (In Proc. of Perfor-
mance, Cologne, Germany, October 2007.) Perform. Eval., 64(9-12):1053–1061, 2007.

[56] P. Mani and D. Petr. Clique number vs. chromatic number in wireless interference
graphs: Simulation results. IEEE Commun. Letters, 11(7):592–594, 2007.

[57] J. Roberts and L. Massoulie. Bandwidth Sharing and Admission Control for Elastic
Traffic. Telecommunication Systems, 15:185–201, 1998.

[58] J. Roberts and L. Massoulie. Bandwidth sharing: objectives and algorithms
IEEE/ACM Trans. Networking, 10(3):320–328, 2002.

111

[59] E. Modiano, D. Shah, and G. Zussman. Maximizing throughput in wireless net-
works via gossiping. In Proc. ACM Sigmetrics, Saint Malo, France, June 2006.

[60] M. Nielsen and I. Chuang. Quantum Computation and Quantum Information.
Cambridge University Press, Cambridge, UK, 2000.

[61] P. Ng, D. Edwards and S. Liew. Colouring link-directional interference graphs
in wireless ad hoc networks. In Proc. IEEE Globecom, Washington, DC, November
2007.

[62] G. Narlikar and F. Zane, “Performance modeling of fast IP lookups,” in Proc.
ACM Sigmetrics, Cambridge, MA, June 2001.

[63] A. Okabe, B. Boots, and K. Sugihara, Spatial Tessellations Concepts and Applica-
tions of Voronoi Diagrams. New York: Wiley, 1992.

[64] A. Orlitsky and J. Roche, “Coding for computation,” in Proc. IEEE FOCS, Mil-
waukee, WI, October 1995.

[65] E. Page. The distribution of vacancies on a line. J. Royal Stat. Soc. B, 21(2):364–
374, 1959.

[66] G. Paun. Membrane computing. Springer, Berlin, 2002.

[67] S. Fuller, T. Li, J. Yu and K. Varadhan. Classless inter-domain routing(CIDR): an
address assignment and aggregation strategy. RFC 1519, September 1993.

[68] A. Rao, S. Ratnasamy, C. Papadimitriou, S. Shenker, and I. Stoica, “Geographic
routing without location information,” in Proc. ACM MobiCom, San Diego, CA,
September 2003.

[69] B. Raghavan and A. Snoeren. Decongestion control. In Proc. of the Fifth Workshop
on Hot Topics in Networks (HotNets-V), Irvine, California, November 2006.

[70] D. Shah. Maximal matching scheduling is good enough. In Proc. IEEE Globecom,
San Francisco, CA, December 2003.

[71] D. Shah. Randomization and heavy traffic: New approaches for switch algorithms.
PhD thesis, Stanford University, 2004.

[72] S. Sarkar and K. Kar. Achieving 2/3 throughput approximations with sequential
maximal scheduling under primary interference constraints. In Proc. of Allerton
Conf. on Comm., Control, and Comput., Monticello, IL, September 2006.

[73] L. Schrage and L. Miller. The M/G/1 queue with the shortest remaining processing
time first discipline. Operations Research, 14(4):670–684, 1965.

[74] G. Sharma, N. Shroff, and R. Mazumdar. Joint jongestion control and distributed
scheduling for throughput guarantees in wireless networks. In Proc. IEEE Infocom,
Anchorage, AK, May 2007.

112

[75] A. Stolyar. MaxWeight scheduling in a generalized switch: State space collapse
and workload minimization in heavy traffic. Ann. Appl. Probab., 14(1):1–53, 2004.

[76] D. Shah and D. Wischik. Optimal scheuling algorithms for input-queued switches.
In Proc. IEEE Infocom, Barcelona, Spain, 2006.

[77] L. Tassiulas. Adaptive back-pressure congestion control based on local information.
IEEE Trans. Automat. Control, 40(2):236–250, 1995.

[78] L. Tassiulas. Linear complexity algorithms for maximum throughput in radio
networks and input queued switches. In Proc. IEEE Infocom, San Francisco, CA,
April 1998.

[79] L. Tassiulas and A. Ephremides. Stability properties of constrained queueing sys-
tems and scheduling for maximum throughput in multihop radio networks. IEEE
Trans. Automat. Control, 37(12):1936–1949, 1992.

[80] M. Tariq, A. Dhamdhere, C. Dovrolis and M. Ammar. Poisson versus periodic
path probing (or, does PASTA matter?). In Proc. ACM SIGCOMM IMC,, 11–124,
Berkeley, CA, October 2005.

[81] G. De Veciana, T. Lee and T. Konstantopoulos Stability and performance analysis
of networks supporting elastic services. IEEE/ACM Trans. Networking, 9(1):2–14,
2001.

[82] K. Winick. Personal communication.

[83] Y. Yi and S. Shakkottai. Hop-by-hop congestion contorl over a wireless multi-hop
network. IEEE/ACM Trans. Networking, 15(1):133–144, 2007.

[84] H. Zhang, D. Towsley and W. Gong. TCP Connection Game: A Study on the
Selfish Behavior of TCP Users In Proc. IEEE ICNP, Boston, MA, November 2005.

113

