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ABSTRACT

I examine interactions between ensembles of cold Rydberg atoms, and between

Rydberg atoms and an intense, optical standing wave. Because of their strong elec-

trostatic interactions, Rydberg atoms are prime candidates for quantum information

and quantum computation. To this end, I study excitation dynamics in many-body

Rydberg systems using a rotary echo technique similar to the echo sequences used in

nuclear magnetic resonance schemes. In this method, a phase reversal of a narrow-

band excitation field is applied at a variable time during the excitation pulse. The

visibility of the resulting echo signal reveals the degree of coherence of the excitation

process. Rotary echoes are measured for several 𝑛D5/2 Rydberg levels of rubid-

ium with principal quantum numbers near 𝑛 = 43, where the strength of electro-

static Rydberg-atom interactions is sharply modulated by a Förster resonance. The

Rydberg-atom interactions diminish the echo visibility, in agreement with theoretical

work. The equivalence of echo signals with spectroscopic data is also examined.

Applications of Rydberg atoms based on controlled interactions require a trap-

ping device that holds the atoms at well-defined positions several microns apart.

Rydberg atoms in ponderomotive optical lattices present a unique platform to meet

this requirement, as well as to study properties and interactions of these highly ex-

cited atoms. Because the Rydberg electron is so loosely bound, the ponderomotive

interaction for a Rydberg electron is very similar to a free electron. Ponderomotive

lattices tailored to trap Rydberg atoms will allow new experiments in quantum infor-

xv



mation physics and high-precision spectroscopy. Microwave spectroscopy is used as a

powerful technique to probe the motion and to verify trapping of Rydberg atoms in

ponderomotive lattices. The potentials for non-degenerate, low angular momentum

states, are used to obtain ensembles of Rydberg-atom trajectories in the lattice, and

to simulate the spectra of microwave transitions of Rydberg atoms moving through

the lattice. Additionally, adiabatic potentials are calculated for Rydberg atoms in

one-dimensional ponderomotive lattices for a variety of atomic states and lattice pa-

rameters. The lattice induced mixing of nearly-degenerate, high-angular-momentum

states is explained in terms of effective electric and magnetic fields.

xvi



CHAPTER I

Introduction

Rydberg atoms have attracted significant interest in the scientific community

over the past several decades due to their unique, exaggerated properties. These

atoms are characterized by their large sizes, strong electro-static interactions, and

polarizabilities that scale with principal quantum number to the seventh power,

resulting in extreme sensitivity to external fields. The name “Rydberg atom” is

in honor of the Swedish physicist Johannes Rydberg, who introduced the Rydberg

formula and the Rydberg constant as an empirical way to determine the energy of

the spectral lines in hydrogen. The formula also applies to other species of atoms,

and is an excellent approximation for highly excited Rydberg atoms. These atoms

have an outer electron that is excited into a very high energy state, i.e. a state of

high principal quantum number 𝑛. When this occurs, the atom behaves essentially

like a very large hydrogen atom, with a loosely bound outer electron at a high radial

separation from the positive ion core. Rydberg atoms are often used in experiments

pertaining to quantum information [1, 2], but are also used in other contexts. For

example, Rydberg-Rydberg molecules can be created from multipole forces that bond

two Rydberg atoms at large internuclear distances [3–6]. Ref. [3] suggests a number

of interesting possibilities for the use of such molecules, such as studying collective

1
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excitation, and the creation of superposition states between free and bound atoms.

Rydberg atoms can also spontaneously evolve into a plasma [7] and vice versa. Some

of the first experiments in plasma formation were conducted by the Rolston group

at the National Institute of Standards and Technology in Gaithergsburg, MD [8–

10]. An ultracold plasma formed via ionization of cold Rydberg atoms is a unique

state of matter that can have temperatures four orders of magnitude smaller than

conventional cold plasmas. Such ultracold plasmas have applications to antihydrogen

formation [11] and even quantum information [2]. Because the strong interactions of

Rydberg atoms persist over long ranges (10’s to 100’s of microns), these atoms are

also often studied in the context of many-body physics [12–15].

1.1 Rydberg atom properties

Because of the Rydberg atom’s similarity to a hydrogen atom, the Bohr model

works well as a first approximation for many of the Rydberg atom’s properties.

For example, balancing the centripetal acceleration of the Rydberg electron and

Coulombic force from the nucleus gives us

𝑚𝑒𝑣
2

𝑟
=

𝑒2

4𝜋𝜖0𝑟2
(1.1)

where 𝑚𝑒 and 𝑣 are the electron’s mass and speed, respectively. Quantizing

angular momentum in units of ℏ (𝑚𝑒𝑣𝑟 = 𝑛ℏ) immediately leads to the relationship

𝑟 =
ℏ
2

(𝑒2/4𝜋𝜖0)𝑚𝑒
𝑛2 = 𝑎0𝑛

2 (1.2)

where 𝑎0 is the familiar Bohr radius. This is an important result which tells us

how the Rydberg atom radius scales with 𝑛 and explains why Rydberg atoms can

reach nearly macroscopic sizes. Equation 1.1 also leads to a result for the Kepler
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frequency, 𝜔 = 𝑣/𝑟, of the Rydberg electron:

𝜔2 =
𝑒2/4𝜋𝜖0
𝑚𝑒𝑟3

. (1.3)

From Equations 1.2 and 1.3, we see that the Kepler frequency scales as 𝑛−3, which

will be important for later sections of this thesis concerning optical lattices. A number

of other scaling parameters can also be derived from the classical description of the

atom and are summarized in Table 1.1. Two particularly relevant scalings include

the electric field at which the Rydberg atom ionizes, which will be important in state

selective detection of Rydberg atoms, and the dipole-dipole interaction (proportional

to the dipole moment squared), which is the basis for many of the studies in this

thesis.

To determine the ionization electric field for a Rydberg atom, I begin with the

combined Coulomb-Stark potential given by

𝑉 = −1
𝑟
+ 𝐸𝑧 (1.4)

where 𝐸 is an electric field applied along the z direction and 𝑟 is the radius

of the Rydberg electron orbit. This equation is written in atomic units which are

summarized in Appendix A.2. The saddle point of this potential, found by setting

the derivative equal to zero, is located at 𝑧 = −𝐸−1/2 where the potential is −2√𝐸.

This means that an electric field of 𝐸 = 𝑊 2/4, where 𝑊 is the binding energy of the

Rydberg electron, will ionize the atom. The binding energy, 𝑊 , can be calculated

from a sum of the electron’s kinetic and potential energies and is equal to −1/2𝑟.

Employing Equation 1.2, the electric field required to ionize Rydberg states is found

to be
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𝐸 =
1

16𝑛∗4
(1.5)

where 𝑛∗ is the effective principal quantum number, 𝑛 − 𝛿𝑙 [16]. This derivation

works very well to estimate the ionization electric field, but ignores the fact that as

the ionization electric field is increased, the atoms undergo a Stark shift and may

mix with nearby energy levels. The atom may traverse the Stark map adiabatically

(staying in its original energy level) or diabatically (hopping to other nearby levels)

depending on both the speed of the electric field ramp and the size of the avoided

crossings. Diabatic traversal of the Stark map will broaden the ionization signature

and result in ionization electric fields ranging from 1
4𝑛∗4 to

1
9𝑛∗4 [16].

The dipole-dipole interaction is the interaction energy of a dipole in the electric

field of another dipole. The dipole moment of an atom is given by �⃗� = 𝑒 ⋅ r and

scales like 𝑛2. The electric field of a dipole at a location R is the result of the field

from the nucleus which scales as 1/𝑅2, and the field of the electron which scales as

−1/ (𝑅 + 𝑟)2. The sum of these fields for large distances R can be approximated as

𝑟/𝑅3, or 𝑛2/𝑅3. This results in a dipole-dipole interaction energy of 𝑉dd ∼ 𝑛4/𝑅3.

It is important to note that in the context of the Rydberg atom experiments dis-

cussed here, the atoms do not have permanent dipole moments, and therefore the

dipole-dipole interaction is a result of transition dipole moments to other states.

Additionally, I have left out the angular dependence of the derivation of the dipole-

dipole interaction energy. The complete form of the interaction energy is given by

𝑉dd =
�⃗�1 ⋅ �⃗�2 − 3 (�⃗�1 ⋅ �̂�) (�⃗�2 ⋅ �̂�)

𝑅3
(1.6)

where �⃗�1 and �⃗�2 are the transition dipole moments of the two atoms involved

in the interaction, and �̂� is the unit vector pointing from atom one to atom two.
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Binding energy 𝑛−2

Energy between adjacent states 𝑛−3

Orbital radius 𝑛2

Dipole moment 𝑛2

Polarizability 𝑛7

Radiative lifetime 𝑛3

Rabi frequency for excitation 𝑛−3/2

Table 1.1: Scaling laws for Rydberg atoms.

Table 1.1 contains many of the Rydberg atom scalings that will be important for

this thesis.

1.2 Rydberg atoms for quantum information

The application of Rydberg atoms to quantum computing is perhaps the most

significant driving force behind the study of these exotic atoms. Here I will briefly

explain recent developments in the field and how Rydberg atoms can be used to gen-

erate quantum gates. There are several excellent references in which the reader can

find more detailed information [1, 2, 17] as well as the Quantum Information Science

and Technology Roadmap website, operated by Los Alamos National Security, LLC,

at http://qist.lanl.gov/.

The importance of modern computing in everyday life cannot be overestimated.

The speed of computers has increased dramatically each year ever since the first

integrated circuits were developed over five decades ago. One of the cofounders

of Intel, Gordon Moore, was the first person to point out that computers seemed

to double in speed about once every 18 months. Indeed, Moore’s law has been

remarkably accurate since it was first introduced in 1965. The problem with Moore’s

law is that within the next ten years we will enter a new realm where the size of

transistors reaches the atomic length scale. The issue with this is that quantum

mechanical effects begin to interfere with the fidelity of electronic devices as they
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get smaller and smaller. However, we can instead take advantage of these effects by

using the principle of superposition.

A classical computer uses bits of information stored as 1s or 0s, while a quantum

computer is capable of storing any superposition of these two states. While at the

end of the computation the superposition state is destroyed and the result must be

read out simply as one of the two states, the advantage of the quantum nature of the

system lies in the computation itself. One can show that a quantum computer can

be simulated by a classical computer, but it is impossible to perform this simulation

efficiently. This means that quantum computers offer an essential speed advantage

over classical computers. In fact, this speed advantage is so immense that many

researchers believe that no conceivable amount of progress in classical computation

would ever be able to close the gap between the classical and quantum computation

domains [17, 18].

David Deutsch of the University of Oxford was the first person to develop a

specifically quantum computational algorithm and therefore is widely considered

one of the pioneers of the field of quantum computation. In 1985, Deutsch developed

the idea of the Universal Quantum Computer that could efficiently simulate any

physical system using the principles of quantum mechanics. He was the first to show

that there existed problems that could be solved using a quantum computer that

were not tractable on a classical computer. This idea was further developed in 1994

when Peter Shor showed that the problem of finding the prime factors of a number

could be solved efficiently on a quantum computer. This is an enormously important

problem in today’s world because of its ties to data encryption, and is a prime reason

why research in quantum information is of prime interest for defense agencies. At

about the same time, another famous physicist, Richard Feynman, pointed out that
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quantum systems that were too complicated to be simulated on a classical computer

could in fact be simulated on a quantum computer, which would have huge scientific

and technological implications. The bottom line is that although we still do not

know all of the benefits that quantum computing has to offer, it is certain that it

will become the future of computing.

For successful quantum computation, one must create a quantum bit, or qubit,

that can exist in one of two states labeled ∣0⟩ and ∣1⟩. In 2000, David DiVincenzo of

IBM laid out some requirements for a successful quantum computer. These include

scalability, the ability to initialize the qubits, gates fast enough to avoid the effects

of decoherence, a universal gate set (meaning that any arbitrary operation can be

completed), and the ability to read out an answer. What kinds of qubit systems

show promise for the creation of a quantum computer? There are several different

avenues that are all simultaneously being explored1. Popular systems include trapped

ions [19], neutral atoms [20], semiconductor quantum dots [21], cavity QED [22], and

NMR based systems [23].

Ions are one of the most promising candidates because they are easily trapped

and have strong interactions via the Coulomb force. The strong interactions mean

that gate operations can be completed quickly. However, just like the ions interact

strongly with each other, they are also capable of interacting strongly with their

environment, which leads to decoherence. Neutral atoms provide the opposite sit-

uation. They interact more weakly with their environment than ions, but at the

same time gate times are longer because they also interact weakly with other atoms.

Alternatively, Rydberg atoms provide the best of both of these worlds.

Rydberg atoms, though neutral, interact very strongly with each other. This

1The website mentioned earlier, http://qist.lanl.gov/, contains roadmaps for all of the current quantum informa-
tion research areas. While these roadmaps are from 2004 and the field has grown remarkably since then, many of
explanations are excellent for basic understanding of the principles involved.
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Figure 1.1: Rydberg atom fast phase gate first proposed by Jaksch et al. in 2000.

allows quantum gates to be completed quickly, as in the case of trapped ions. An

additional advantage that ions do not have is the fact that the interaction can be

tuned and even switched off for a desired amount of time. This can be done either

by Stark shifting the Rydberg state with an electric field, or by de-exciting the atom

from the Rydberg state. Once the interaction is turned off, the coherence can be

preserved because as mentioned above, the neutral atom does not interact strongly

with its environment. Lastly, because Rydberg atoms are significantly larger than

their ground-state atom counterparts, they are more easily accessible (i.e. they can

be individually addressed with laser beams) for quantum computing applications.

The first Rydberg atom quantum gate was proposed by Jaksch et al. in 2000 [1].

This proposal was for a two-atom fast phase gate taking advantage of the dipole-

dipole interaction that prevents more than one Rydberg atom from being excited at

one time (see Section 1.3). This gate involves hyperfine ground state levels, labeled

∣0⟩ and ∣1⟩, and one Rydberg state. A laser couples ∣0⟩ to the Rydberg level, while ∣1⟩

is not coupled, as shown in Figure 1.1. There are three steps to the gate: a 𝜋 pulse

is applied to atom A, a 2𝜋 pulse is applied to atom B, and then another 𝜋 pulse is
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applied to atom A. The idea is that for every case except for ∣11⟩ (where there is no

coupling of the atoms to the Rydberg state at all), the excitation blockade prevents

the second atom being excited. This results in a phase shift for every state except

∣11⟩. The truth table for such a gate is shown on the left-hand side of Figure 1.1.

Later, Lukin et al. showed that this same idea could be applied to a mesoscopic

ensemble of atoms via entanglement [2].

Since then, a number of exciting advances have been made in the field of quantum

information processing with Rydberg atoms. Particularly, in 2009, Phillipe Grang-

ier’s research group from Laboratoire Charles Fabry and Pierre Pillet’s research group

from Laboratoire Aimé Cotton demonstrated collective excitation of two atoms each

held in a separate dipole trap [24]. This experiment was a major step forward in

quantum-information science as well as in many-body physics in general because

it was the first time anyone had successfully demonstrated the excitation blockade

with individual atoms. They also observed an enhancement of single-atom excitation

proving the coherent behavior of their system. In early 2010, Grangier’s group gen-

erated an entangled state with the same system of spatially separated dipole traps

with a fidelity of 0.75 [25]. At the same time, a research group at the University of

Wisconsin demonstrated a controlled-NOT gate with a fidelity of 0.58 [26].

1.3 Rydberg atoms and the excitation blockade

As mentioned in Section 1.2, the Rydberg excitation blockade, sometimes referred

to as the dipole blockade, is the basis behind using Rydberg atoms for quantum

information. The strong electrostatic interactions between Rydberg atoms lead to

energy perturbations of any system with more than a single excitation. This is

shown graphically in Figure 1.2. In this figure, the labels on the right hand side are
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Figure 1.2: Rydberg excitation ladder.

shorthand notation for the number of Rydberg excitations that are coherently shared

among all atoms in the excitation region of our experiment until a measurement is

made that projects that excitation onto a single atom. The ket ∣0R⟩ represents a

system where all atoms are in the ground state, and the ket ∣1R⟩ is sum over all

possible configurations where a single atom is in the Rydberg state. It is somewhat

inaccurate to label the second excited state with the ket ∣2R⟩ because this is a doubly

excited state and its energy will depend on the distance between the excited atoms.

However, it will suffice for the treatment in this thesis.

Here, I have labeled the energy difference between the states ∣0R⟩ and ∣1R⟩ as

ℏ𝜔. If the atoms were non-interacting, then one would expect that the ∣1R⟩ → ∣2R⟩

transition energy would also be ℏ𝜔. However, because of the afore mentioned strong

interactions, the ∣2R⟩ state is shifted in energy. The size and direction depends on

the Rydberg state [27], but if the magnitude of the shift is greater than the linewidth

of the optical source used for excitation, then the ∣2R⟩ state is out of resonance, and

all excitation above ∣1R⟩ is blockaded.

The energy shift for an arbitrary Rydberg state may be calculated using second

order perturbation theory. Consider two Rydberg-atom states 𝐴 = ∣𝑛, 𝑙, 𝑗,𝑚𝑗⟩ that
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have non-zero transition-dipole-moments to the states 𝐵 = ∣𝑛′, 𝑙′, 𝑗′,𝑚′𝑗⟩ and 𝐶 =

∣𝑛′′, 𝑙′′, 𝑗′′,𝑚′′𝑗 ⟩. The infinite-separation energy defect is defined as Δ = 𝑊𝐵 +𝑊𝐶 −

2𝑊𝐴. It is then found that the second order shift, Δ𝑊
(2), is given by

Δ𝑊 (2) = −
∑

𝑛′,𝑙′,𝑗′,𝑚′
𝑗 ,

𝑛′′,𝑙′′,𝑗′′,𝑚′′
𝑗

∣⟨𝑛′′, 𝑙′′, 𝑗′′,𝑚′′𝑗 ∣ ⊗ ⟨𝑛′, 𝑙′, 𝑗′,𝑚′𝑗∣𝑉dd∣𝑛, 𝑙, 𝑗,𝑚𝑗⟩ ⊗ ∣𝑛, 𝑙, 𝑗,𝑚𝑗⟩∣2
Δ

(1.7)

where 𝑉dd was defined in Equation 1.6. Equation 1.7 is sufficient to find the energy

shift of an arbitrary state ∣𝑛, 𝑙, 𝑗,𝑚𝑗⟩ as long as the Rydberg atom does not possess

a permanent dipole moment. Low angular momentum states of rubidium Rydberg

atoms do not have a permanent dipole moment unless an external field is applied at

a sufficient strength [28].

In general, the sum in Equation 1.7 will have contributions from many two particle

states. If none of the interaction channels (2𝐴↔ 𝐵+𝐶) are resonant (i.e. Δ≫ 𝑉dd),

then the system is considered to be in the off-resonant, van der Waals regime. In this

case, the interaction induced energy shift scales as 𝑉 2
dd/Δ or 𝑛

11/𝑅6, as is evident from

Equation 1.7. However, there are cases in which a resonant interaction channel (Δ≪

𝑉dd) exists. In this case, the non-degenerate perturbation treatment in Equation 1.7

is not accurate. Here, the system is in the on-resonant, dipole-dipole regime, and

the interaction induced energy level shift is calculated via degenerate perturbation

theory. One then finds that the energy left shift scales as 𝑉dd or 𝑛
4/𝑅3. These

resonant interaction channels are referred to as Förster resonances, and because the

value of Δ can easily be Stark-shifted using electric fields, it possible to generate a

Förster resonance in cases where they do not exist naturally. The tunability of such

interactions and the enhanced interaction energy makes them a popular research
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subject in numerous contexts [14, 29–31].

1.4 Properties of Rubidium

All of the experiments in this thesis use 85Rb. Alkali-metal atoms (lithium,

sodium, potassium, rubidium, cesium, and francium) are popular for Rydberg atom

experiments as well as for atomic physics experiments in general. For one, their ex-

citation frequency from the ground to the first excited state is in the visible part of

the electromagnetic spectrum. Laser light at these frequencies is increasingly easy to

generate, and indeed, alkali-metal atoms were the first to be cooled and trapped. It

is also an easy task to generate an atomic beam because of the large vapor pressure

of these atoms. All alkali-metal atoms have a closed electronic core with a single

valence electron. This means that the state of the electron is completely determined

by its orbital and spin angular momenta, 𝑙, and 𝑠, since the closed electronic core

does not contribute.

There are three important temperature scales to consider when cooling and trap-

ping 85Rb [32]. The first of these is referred to as the capture limit. When resonant

light is shined on an atom moving at a high speed, the Doppler shift may cause the

light to be far enough out of resonance that the atom cannot absorb the photons’

energy. For 85Rb, this velocity is equal to

𝑣𝑐 =
𝛾

𝑘
= 2𝜋 × 6 MHz×

(
2𝜋

𝜆

)−1

= 4.7 m/s (1.8)

where 𝛾 is the linewidth of the transition and 𝜆 is the frequency. This corresponds

to a temperature of

𝑇𝑐 =
𝑀𝑣2𝑐
𝑘𝐵

= 222 mK (1.9)
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where 𝑀 is the mass of Rubidium and 𝑘𝐵 is the Boltzmann constant.

The next temperature scale is the Doppler limit, which is the energy corresponding

to the natural linewidth of a transition. The Doppler limit arises because of the

randomness of spontaneous emission (necessary for laser cooling), which causes the

atom to move on a random walk and therefore competes with cooling. The Doppler

temperature gives us a limit of how effective Doppler cooling can be for a particular

species of atom, although sub-Doppler cooling often allows much lower temperature

almost by accident [33]. The Doppler temperature and velocity are given by

𝑇𝐷 =
ℏ𝛾

2𝑘𝐵
= 144 𝜇K (1.10)

𝑣𝐷 =

(
𝑘𝐵𝑇𝐷
𝑀

)1/2

= 11.8 cm/s. (1.11)

Lastly, the recoil limit, as the name suggests, corresponds to the energy gained or

lost through the absorption or emission of one photon by the atom. For Rb,

𝑣𝑟 =
ℏ𝑘

𝑀
= 0.6 cm/s (1.12)

𝑇𝑟 =
𝑀𝑣2𝑟
𝑘𝐵

= 0.37 𝜇K (1.13)

There are two rather inventive ways of optically cooling below the recoil limit,

including Raman cooling [34] and Velocity Selective Coherent Population Trapping

(VSCPT) [35]. These methods allow one to reach a temperature in the 100’s of

nanoKelvin range. Below this, for example to achieve BEC, non-optical techniques

such as evaporative cooling are necessary [36]. In this thesis, I focus on atoms

cooled to approximately the Doppler limit, and sub-Doppler cooling is not usually a

requirement.
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1.5 Thesis framework

This thesis is organized as follows: In Chapter 2, I begin with a summary of

the experimental apparatus used to conduct the experiments described in the re-

mainder of the thesis. Two primary setups were used, referenced as the “Blockade

Experiment” and the “CryoMOT”.

Chapter 3 discusses a rotary echo technique I used to demonstrate excitation

coherence in a system of Rydberg atoms as a means to overcome the effects of

density inhomogeneity. Maintaining the coherence of the system is important in

many applications, but most notably in quantum computation where information

must be preserved during the course of each gate operation. My experimental effort

was initially inspired by a paper written by Francis Robicheaux in 2008 [37]. There,

it was suggested that rotary echo schemes could be used to quantify coherence in

a mesoscopic ensemble of atoms. Previously, coherence was measured by observing

Rabi oscillations of cold, trapped atoms between the ground and excited Rydberg

state. However, the number of atoms in a system had to be limited to one or two in

order to measure such coherence, since interactions between Rydberg atoms quickly

caused dephasing in the Rabi oscillations of neighboring atoms [38]. Also in 2008,

Tilman Pfau’s research group published their results on applying the rotary echo

technique to a 3.8 𝜇K sample of rubidium atoms with a density of 5.2×1013 cm−3 [39].

This was a remarkable achievement because it allowed the measurement of excitation

coherence in a large ensemble of atoms - a system much easier to produce than a

single isolated atom.

The goal of my experiment was to use a rotary echo sequence to verify coherence

in a system of atoms with a much higher temperature, and to investigate the effects



15

of atom-atom interactions on echo visibility. I was able to measure a rotary echo in

a 1 mK sample of atoms with a density of 2.5×1011 cm−3. This experiment is the

first in which an echo signal was observed for a system of atoms with a temperature

as high as 1 mK and is more applicable to today’s research in quantum computation

with Rydberg atoms than the 3.8 𝜇K temperatures used in [39]. I show how echo

visibility depends strongly on the strength of Rydberg-Rydberg interactions, and

explain the results in terms of the theory described in Ref. [39]. I also show that the

interpretation given in this paper is inaccurate for certain cases in which an increased

interaction strength between Rydberg atoms appears to induce a reduction in the

observed echo signal. Even more importantly, this echo technique can be used in the

future to measure coherence as a function of a wide variety of parameters, including

atom temperature, density, interaction strength, and interaction time. In this way,

systems designed for quantum computation can be easily analyzed in terms of their

coherence properties.

The fundamental parts of the atom trap and imaging system used to measure

rotary echoes were designed and built by Tara Cubel-Liebisch and Aaron Reinhard.

After their graduation, I designed the system of electronics used to generate the

rotary echo sequence and wrote all of the software used to record and analyze the echo

signals. I also designed and engineered a system of crossed-beam excitation to narrow

my excitation region from several millimeters to about ten microns. Additionally, this

system is capable of dual excitation regions produced by diffraction in a non-linear

crystal, a feature that will be useful in future endeavors.

In Chapter 4, I use microwave spectroscopy between neighboring Rydberg states

to study Rydberg atoms that are within an optical lattice. As with Chapter 3, my

work here is also directly applicable to quantum information. However, instead of
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studying coherence, I examine the ponderomotive optical lattice as a novel method

of Rydberg atom storage that will allow atoms to be individually addressed for qubit

initialization and readout. And because the lattice can be precisely tailored using

the lattice laser beams, it also allows for scalability of the system. The experiment

described in Chapter 4 constitutes the first evidence of a ponderomotive optical

lattice for Rydberg atoms. The theoretical existence of such a lattice had been

suggested in Refs. [40] and [41], but never observed experimentally. Not only does

this trap localize the atoms in space, but it also confines the atoms in micron-sized,

spatially separated potential wells such that the atoms to be individually addressed

via focused laser beams. This work was featured on the front page of the National

Science Foundation website at www.nsf.gov as well as the front page of the University

of Michigan website at www.umich.edu.

The experimental apparatus used in this experiment was built by Alisa Walz-

Flannigan and Brenton Knuffman. After their graduation, I added the optics to

generate a focused optical lattice at the center of the excitation region, and was the

first to experimentally observe and characterize the effects of the lattice by using

optical and microwave spectroscopy (detailed in depth in Chapter 4).

In Chapter 5 I calculate the trajectories of Rydberg atoms in optical lattices

in order to better understand the experimental results shown in Chapter 4. The

results of the simulations prove the effectiveness of microwave spectroscopy as a

tool to characterize the efficiency of the optical lattice as a trapping device. The

simulations used in this chapter were written by Prof. Georg Raithel. I performed

the calculations and analyzed the resulting spectra and trajectories.

Chapter 6 extends the optical lattice discussion to a theoretical description of

much deeper lattice potentials and compares the results to the diamagnetic problem
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in classical mechanics. Deeper lattice potentials than those achieved in experiments

described in Chapter 4 will be necessary to observe these effects experimentally. The

simulations used here were also written by Georg Raithel. Analysis of my results

using the simulations was done by Georg and myself.

Lastly, in Chapter 7 I summarize my results and describe a few possible future

research projects involving both the Blockade Experiment and the CryoMOT.



CHAPTER II

Experimental Apparatus

I performed the experiments described in this thesis using two primary exper-

imental designs. I will refer to these two designs as the “Blockade Experiment”

and the “CryoMOT”. In this chapter, I will discuss the basic principles common to

all experiments, and then describe the important differences between the Blockade

Experiment and the CryoMOT.

2.1 Laser cooling and magneto-optical trapping of atomic vapors

Room temperature atomic vapors are made up of atoms with velocities of ap-

proximately 300 m/s. However, since we are concerned with studying atom-atom

interactions, we desire a system where thermal contributions can be neglected. This

is achieved prior to Rydberg-atom excitation via laser cooling of an ensemble of

ground-state atoms. The technique of cooling atoms using radiation pressure is an

integral part of many atomic physics experiments today, and has opened entirely new

domains of physics since its advent. Prior to the development of laser cooling, stud-

ies of atomic samples were all performed with fast-moving atoms, which can make

measurements very difficult. Spectral resolution was limited because of the limited

observation time, as well as the displacement and broadening of spectral lines due to

the Doppler shift and relativistic time dilation. One of the biggest motivations for

18
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developing laser cooling was the limitation on atomic clock performance. Laser cool-

ing also helped lead to many new phenomena such as Bose-Einstein condensation [42]

and quantum logic gates [43] The technique of laser cooling was first developed using

ions trapped with electric fields, and led to the award of the 1997 Nobel prize in

physics to Steven Chu, Claude Cohen-Tannoudji and William Phillips.
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Figure 2.1: Hyperfine levels of the 5S1/2 and 5P3/2 levels in
85Rb.

Cooling can be generated along one direction of motion by directing a red-detuned

laser into a cloud of atoms. Due to the Doppler shift, atoms moving anti-parallel

to the laser beam will absorb more radiation from the laser beam than atoms mov-

ing parallel to the beam. Atoms will re-emit the absorbed radiation in a random
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direction, and, after many thousands of scattering events, there will be a signifi-

cant cooling effect along the direction of the laser beam. Cooling in all directions

is accomplished by applying three pairs of counter-propagating beams in orthogonal

directions.

Laser cooling is accomplished using a “cycling” transition, meaning that the atom

will absorb and re-emit in a closed sequence of atomic states. Figure 2.1 shows the

hyperfine levels of 5S1/2 and 5P3/2 levels in
85Rb. For simplicity, the 𝑚𝐹 sub-levels

are not shown, but we apply 𝜎+ polarized light such that the atoms are always in

the extreme 𝑚𝐹 states. The cycling transition is from 5S1/2, ∣𝐹 = 3⟩ → 5P3/2,

∣𝐹 ′ = 4⟩. However, because the ∣𝐹 ′ = 4⟩ state is separated from the ∣𝐹 ′ = 3⟩ by only

120 MHz, about one out of every 1600 photons scattered will off-resonantly excite

into the ∣𝐹 ′ = 3⟩ state. From here the atom can decay into the ∣𝐹 = 2⟩ manifold,

which is 3 GHz detuned from the cycling transition. Therefore, a “repumper” laser

must be used to transfer the atom back to the cycling transition. This laser is tuned

to the ∣𝐹 = 2⟩ → ∣𝐹 ′ = 3⟩ transition.

The limits of this technique arise from the fact that the atoms will undergo a

random walk as they spontaneously emit absorbed radiation. Laser cooling is ca-

pable of reaching temperatures near the Doppler limit: 144 𝜇K, or 11.8 cm/s for

Rubidium. Thus, we can reduce the velocity of the atoms from the speed of sound to

approximately the speed of a mosquito. For more information, C.J. Foot’s Atomic

Physics provides an excellent overview of the details of this technique.

Laser cooling generates what is often referred to as an optical molasses, since an

atom moving in a light field reacts similarly to a particle moving a viscous fluid.

We must note, however, that laser cooling is a velocity dependent force and not a

position dependent force. Atoms will be cooled while they remain under the presence
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of radiation pressure, but are not constrained to remain within of the laser beam

path. Therefore, laser cooling alone cannot be used to trap atoms. The addition of

a quadrupole magnetic field centered about the trapping region provides a position-

dependent restoring force. This kind of setup is referred to as a magneto-optical trap

or a MOT, and offers an extremely robust method of cooling and confining atoms.

I

I

z

ρ

Figure 2.2: The field coils and magnetic field lines of a magneto-optical trap.

Figure 2.2 shows how the magnetic field of a MOT is constructed. Two coils in

the anti-Helmholtz configuration create the necessary quadrupole field. The force on

an atom in a magnetic field is given by

−→
𝐹 =

−→∇(−→𝜇 ⋅ −→𝐵 ) (2.1)

where −→𝜇 is the magnetic moment of the atom. The magnetic field −→𝐵 is given by

𝐴(𝜌2 + 4𝑧2)1/2 (2.2)

where 𝐴 is the field gradient. A convenient quality of the quadrupole field is that

the field gradient is 𝐴 fixed along any line through the origin, so on any of these lines,
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we have 𝐵 = 𝐴𝑟
√
4 cos2 𝜙+ sin2 𝜙: a linear field gradient when 𝜙 is constant. This

gradient produces the energy level structure for the Zeeman levels of the trapped

atom shown in Figure 2.3. This example is for a simple 𝐽𝑔 = 0 → 𝐽𝑒 = 1 system,

but easily extends into more complicated atom structures where 𝐽𝑔 → 𝐽𝑒 = 𝐽𝑔 + 1.

z
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Me = +1

Me = -1
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Figure 2.3: Zeeman splitting of the first excited state due to the linear magnetic field gradient.

We can take advantage of this Zeeman splitting by choosing the correct polariza-

tion for our cooling and trapping light. If the beam has frequency 𝜔𝑙 with 𝜎
+ light

incident from the left, and 𝜎− light is incident from the right, the excitation scheme

will look like that shown in Figure 2.4:
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Figure 2.4: Excitation scheme for a magneto-optical trap.
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Consider an atom at position 𝑧′. This atom is much closer to resonance with the

light if it is in the 𝑀𝑒 = −1 Zeeman sub-level than if it is in the 𝑀𝑒 = +1 level. If it

is in the 𝑀𝑒 = −1 level, it can only scatter light from the 𝜎− beam (and vice versa),

and therefore it will be preferentially scattered to the left. The reverse situation

occurs when 𝑧′ is located on the other side of the magnetic field zero.

It is of practical importance to remember the polarizations used for the MOT

beams depend on the chosen frame of reference. In the figures in this section, the

polarizations are with respect to the atoms, not to the beam axis. With respect to

the beam axis, both beams along a single axis have the same polarization (either

LCP or RCP with respect to the direction of travel). The strong axis of the magnetic

field (vertical in Figure 2.2) will have the opposite polarization from the other two

axes. An easy way to guarantee the polarizations are the same along each axis is to

retroreflect the beams with a 𝜆/4 waveplate and a mirror.

In the Blockade Experiment, a vapor cell MOT of 85Rb generates a trap with a

density of about 1010 atoms/cm3 and an atom number of ∼ 106. The diameter of

the MOT is about half a millimeter. We achieve a larger, more dense atom sample

by using a two-MOT setup where the vapor cell MOT serves as a primary trap to

load a secondary trap located inside an ultra-high-vacuum chamber. In this way,

atoms can be collected and cooled in the high-pressure vapor cell MOT, and then

transferred into the low-pressure chamber where collision-induced atom loss rates are

suppressed.

The transfer from the primary MOT to the secondary MOT is accomplished using

a resonant beam with 𝜎+ polarization that drives the 5𝑆1/2, ∣𝐹 = 3,𝑚F⟩ → 5𝑃3/2,

∣𝐹 ′ = 4,𝑚′F = 4⟩ cycling transition of 85Rb. This creates a stream of atoms that move

from the vapor cell into the vacuum chamber with a velocity of about 10 m/s. This
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type of system is often referred to as a Low Velocity Intense Source, or, LVIS [44].

Using the LVIS, we obtain MOTs with a density of approximately 5×1010 atoms/cm3

and an atom number of 5× 106.

2.2 Imaging

2.2.1 Calculating atomic sample parameters

Atom numbers and densities are determined using a shadow imaging technique

where resonant light is directed onto the atomic sample and “shadow” cast by the

atoms is measured with a CCD camera. We define 𝐼0(𝑥, 𝑦) to be the intensity profile

of the incident laser beam and 𝐼(𝑥, 𝑦) to be the profile of the beam after passing

through the trap. A brief calculation can show that the area density of the atoms is

given by

𝑁𝐴(𝑥, 𝑦) =
Γℎ𝜈

2𝐼sat
ln
𝐼(𝑥, 𝑦)

𝐼0(𝑥, 𝑦)

where Γ is the natural linewidth of the transition, ℎ𝜈 is the change in energy due

to a single photon of the probe light, and 𝐼sat is the saturation intensity. Note that

this requires that 𝐼 ≪ 𝐼𝑟𝑚𝑠𝑎𝑡 such that there are no line splittings and the linewidth

of the transition is not broadened.

The total atom number, 𝑁 , can be calculated by assuming the distribution

𝑁𝐴(𝑥, 𝑦) = 𝑁𝐴(0, 0)𝑒𝑥𝑝(−𝑥
2 + 𝑦2

𝜎2
) (2.3)

and integrating over 𝑥 and 𝑦. The characteristic width, 𝜎, and the central area

density can be calculated by fitting the shadow image data to a 2D Gaussian function.

The central volume density can be calculated:
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𝑁𝑉 (𝑥, 𝑦, 𝑧) = 𝑁𝑉 (0, 0, 0)𝑒𝑥𝑝(−𝑥
2 + 𝑦2 + 𝑧2

𝜎2
) (2.4)

which also gives the useful result:

𝑁𝑉 (0, 0, 0) =
𝑁𝐴(0, 0)

𝜎
√
𝜋

(2.5)

2.2.2 Direct versus 4F imaging

The imaging system used to collect the light for the shadow image can greatly

affect the resolution that is obtained. If the shadow image is shone directly onto a

CCD camera, the resolution is given by

1.22𝜆𝑓

𝐷atoms

(2.6)

where 𝜆 is the wavelength of the light, 𝑓 is the distance from the atoms to the

camera, and 𝐷atoms is the diameter of the atom cloud. For reasonable experimental

conditions, the amount of blurring seen for a 1 mm MOT cloud is on the order of 100

microns. However, for a smaller atomic sample, such as the dipole trap discussed in

Section 2.3, the atoms would be completely obscured by diffraction. In this case, we

use a system known as 4F imaging, illustrated in Figure 2.5.

f 2f f

Figure 2.5: 4F imaging system for improved resolution of small atomic samples.

For 4F imaging, the resolution becomes
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1.22𝜆𝑓

𝐷lens

(2.7)

where now we have the diameter of the lenses in the denominator instead of the

diameter of the atom cloud. This makes it possible for imaging of atom clouds with

diameters of 10’s of microns, provided a camera with small enough pixel size is used.

A pixelfly high performance digital 12 bit CCD camera with a pixel size of 6.7 𝜇m

produces the images shown in Figure 2.6. Both of these images are formed using 4F

imaging. While it would be possible to directly image the MOT, the dipole trap with

a 15 𝜇m diameter would be not be resolvable. Additionally, a further advantage of

a 4F imaging system is that high frequency noise can be reduced by putting a filter

on-axis between the two lenses.

~300μm

15μm

a) b)

Figure 2.6: Images obtained with a 4F imaging system. a) Magneto-optical trap, density 5 ×
1010 atoms/cm3, atom number 5× 106. b) Optical dipole trap, density 5× 1011 atoms/cm3, atom
number 3× 104.

2.3 Optical dipole traps

An atom trap with a high density and uniform density gradient is an advantage

in many atomic physics experiments. In the Blockade Experiment, this is achieved
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by creating an optical dipole trap after atoms are trapped in the MOT. Dipole traps

are based on the light shift (AC Stark shift) that atoms experience in an intense laser

field. Depending on the detuning of the dipole trap laser, a potential will be created

for ground state atoms that attracts them to either the laser intensity maximum (red

detuning) or minimum (blue detuning).

Dipole traps need to balance the dipole force with the radiation scattering force

in order to trap effectively. For the derivation below, we assume a two-level atom

but the equations extend easily to multi-level atoms. The two-level assumption is

reasonable in this case because in 85Rb, the transition from the 5S1/2 ground state

to the intermediate 5P manifold dominates the contribution to the light shift and

scattering rate. The interaction potential of the induced dipole moment of a two-level

atom in an oscillating driving field is given by

𝑈dip(
−→𝑟 ) = 3𝜋𝑐2

2𝜔3
0

Γ

Δ
𝐼(−→𝑟 ) (2.8)

where Γ is the linewidth of the transition between the two levels, 𝜔0 is the laser

frequency, Δ is the laser detuning from resonance, and 𝐼 (−→𝑟 ) is the intensity profile

of the laser. The scattering rate is given by

Γsc(
−→𝑟 ) = 3𝜋𝑐2

2ℏ𝜔3
0

(
Γ

Δ

)2

𝐼(−→𝑟 ). (2.9)

Equation 2.9 is obtained after applying the rotating wave approximation and

assuming that 𝜔/𝜔0 ∼ 1 (𝜔 is the transition frequency between the two levels of

the atom). From these equations, we see that the potential scales as 𝐼/Δ and the

scattering rate scales as 𝐼/Δ2. Because of this, optical dipole traps usually use large

detunings and high intensities to keep the scattering rate as low as possible for a

given potential.
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Because the light shift of the atomic states is proportional to the intensity of the

laser beam, by focusing the laser beam through the MOT, a potential well can be

created that traps the atoms. The spatial intensity of a focused Gaussian beam with

power 𝑃 propagating along the z-axis is given by

𝐼FB(𝑟, 𝑧) =
2𝑃

𝜋𝑤2(𝑧)
exp

(
−2 𝑟

2

𝑤2(𝑧)

)
(2.10)

with

𝜔(𝑧) = 𝜔0(1 + (𝑧/𝑧𝑟)
2)1/2 (2.11)

𝑧𝑟 = 𝜋𝑤
2
0/𝜆 (2.12)

where 𝜔(𝑧) is beam waist and 𝑧𝑟 is the Raleigh length.

The optical potential can be determined from Equation 2.8:

𝑈dip(
−→𝑟 ) = 3𝜋𝑐2

2𝜔3
0

Γ

Δ

2𝑃

𝜋𝑤2(𝑧)
exp

(
−2 𝑟

2

𝑤2(𝑧)

)
. (2.13)

The depth of the trap is given by �̂� = ∣𝑈(𝑟 = 0, 𝑧 = 0)∣. We see that the potential

in the radial direction is much steeper than in the axial direction, since 𝑧𝑟 is a factor

of 𝜋𝑤0/𝜆 larger than 𝑤0. Our dipole trap is formed with a 5W, 1064 nm laser beam

focused to a full width at half maximum of the intensity profile (FWHM) of 16 𝜇m.

The resonant transition frequency is 780 nm, and this results in a trap depth of

1.6 mK. Although the atoms in the MOT have a temperature near the Doppler limit

of 140 𝜇K, transfer into the dipole trap heats the atoms to about 1 mK. Transfer is

accomplished by overlapping the dipole trap laser beam with the MOT for 30 ms.

The MOT laser beams are then turned off for 38 ms in order to let untrapped atoms
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fall out of the excitation region. This generates the cigar shaped trap shown in

Figure 2.6.

2.4 Rydberg atom excitation

I excite 85Rb Rydberg atoms out of the dipole trap or the MOT using the two-

photon transition 5S1/2 → 5P3/2 → nS,nD. The wavelengths for the lower and upper

transitions are 780 nm and 480 nm, respectively. Transitions to states that are not

dipole-coupled (nP or nF, for example) can be accomplished as well by applying an

electric field across the excitation region. Direction excitation from the 5S state into

the Rydberg state can also be done using an ultraviolet laser at 297 nm [45]. A

single-photon transition has the advantage that only one laser is required. However,

UV light is difficult to generate at the required intensity and the matrix elements

coupling the 5S1/2 state into the Rydberg state are much smaller than those for the

two-photon transition. For these reasons, only the two-photon transition scheme is

used here.

2.4.1 External cavity diode lasers

For the lower transition at 780 nm, we use home-built external cavity diode lasers

(ECDLs). Diode lasers operate on the basic principle of a p-n junction in a direct

band gap semiconductor. The gain region of the diode is surrounded by an optical

cavity to form the laser. Electron-hole pairs in the semiconducter will annihilate and

release photons. Photons that are emitted into a mode of the waveguide inside the

cavity will bounce back and forth many times before they escape the cavity. The

photons can cause further electron-hole pairs to combine which will in turn emit

more photons. The mode of the laser is determined by the geometry of the cavity,

and depending on the size of the cavity, the laser can either be single- or multi-mode.
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To generate a single-mode beam, the laser waveguide must be on the order of the

optical wavelength, such that only one mode is supported and a diffraction limited

beam is formed.

The wavelength of the laser is determined by the semiconductor material and the

modes of the optical cavity. One can tune the diode over a range of a few nanometers

by adjusting the current density and the temperature of the diode. Adjusting the

injection current will change the refractive index of the active area, which in turn

changes the length of the cavity. Temperature influences both the path length and

the gain curve of the semiconductor.

A diffraction grating placed after the collimation lens of the diode is also used to

adjust the lasing wavelength. This arrangement is known as the Littrow configura-

tion. The first order reflection off the grating is directed back into the diode, while

the zeroth order is used as the laser output. There is a trade-off between stabilizing

the laser with as much reflected power as possible, and still achieving the desired

output power. In some cases, up to 50% of the power is reflected back into the

diode.

2.4.2 Frequency doubled lasers

The upper transition 480 nm laser light is also generated by an ECDL, but because

no commercial direct diode at 480 nm currently exists, I use a frequency doubled

960 nm laser from Toptica Photonics. The Toptica lasers in the Raithel laboratory

use a non-linear crystal placed inside of a bow-tie cavity where the 960 nm light

circulates and builds up in power. Second harmonic generation is a result of the

first nonlinear term of the polarization induced in the crystal by the electric field of

the 960 nm light [46]. This is discussed in more detail in Appendix C. Once light is

phase matched into the crystal, some of the light is converted from 960 nm to 480 nm.
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Ideally the conversion efficiency can approach 30 percent. The wavelength of the light

can be adjusted via grating and current feedback (as discussed in Section 2.4.1 by

about ±20 nm. After exciting the shutter of this laser, the 480 nm laser beam is

coupled into an optical fiber and directed toward the atoms trapped in the vacuum

chamber.

Part of the fundamental 960 nm beam is also coupled out of the system before it

enters the doubling cavity. This beam has about 2-3 mW of power. It is used both to

measure the wavelength of the laser, and is sent into a pressure-tuned, temperature

stabilized Fabry-Perot cavity to stabilize the laser frequency.

2.4.3 Frequency stabilization of diode lasers

2.4.3.1 Saturated absorption spectroscopy

Our home-built, 780 nm diode lasers are stabilized to a Rb reference cell using

saturated absorption spectroscopy. The Doppler broadened line shape of a gas of

atoms is given by the Boltzmann distribution 𝑒−𝑚𝑣
2
𝑧/(2𝑘𝐵𝑇 ). A laser beam interacts

with atoms that have a given velocity class,

𝑣𝑧 =

(
𝜈 − 𝜈1
𝜈1

)
𝑐 (2.14)

where 𝜈 is the laser’s frequency and 𝜈1 is the resonance frequency. The number

of atoms absorbing is a Gaussian of the form,

𝑒−𝑚𝑐
2(𝜈−𝜈1)2/(2𝑘𝐵𝑇𝜈21) (2.15)

The full width at half-maximum is therefore

Δ𝜈1/2 =
√
8𝑘𝐵 ln 2

𝜈1
𝑐
(𝑇/𝑀)1/2 (2.16)

At room temperature this is on the order of a GHz. In order to improve the

frequency resolution, one can use saturated absorption spectroscopy. The laser beam

setup is shown in Figure 2.7.
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Figure 2.7: Beam configuration for saturated absorption spectroscopy.

When the pump and probe beams are not on resonance with an atomic transition,

they interact with different velocity classes since they are counterpropagating (Figure

2.8). Only when they are on resonance will they interact with the same atoms

(velocity class 𝑣𝑧 = 0). This causes reduced absorption for the probe beam because

the pump beam depletes the ground state atom population. This is observed by

a narrow depression within the Doppler-broadened line. When the reference beam

is subtracted such that the two Doppler signals cancel, this depression is the only

feature that appears.

probe pump

ngs

vz0

Figure 2.8: Pump and probe beams interacting with different velocity classes.

When two transitions share a common ground state and differ in frequency by

less than the Doppler width, cross-over peaks occur. From Figure 2.9, it is clear that

at some frequency, the same atoms will be resonant with 𝜈1 by the probe and 𝜈2 by

the pump (and vice versa). We can easily calculate this frequency:
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Figure 2.9: The origin of cross-over peaks.

𝜈1 = 𝜈cross − 𝑣𝑧1
𝑐
𝜈cross (2.17)

𝜈2 = 𝜈cross +
𝑣𝑧1
𝑐
𝜈cross (2.18)

Solving for the cross-over frequency results in

𝜈cross =
𝜈1 + 𝜈2
2

(2.19)

The peaks generated using this method of saturated absorption spectroscopy have

a width of a few MHz and act as a suitable signal for locking the 780 nm lasers. Feed-

back to stabilize the laser frequency is provided by a lab-built PID servo connected

to the current of the laser for fast feedback and the grating of the laser for slow

feedback.

2.4.3.2 480 nm lasers

The Toptica 480 nm lasers involve two separate locks. The fundamental 960 nm

laser light is locked to a home-built, pressure-tuned Fabry-Perot interferometer with

free spectral range of 500 MHz and Finesse of about 40. [47]. This setup allows the

frequency of the laser to be tuned smoothly by several hundred MHz. The doubling

cavity is locked using the Pound Drever Hall technique [48].
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2.4.4 Excitation region and detection of Rydberg atoms

MCP
Phosphor

Field
Ionization
ElectrodesDipole

Trap

Figure 2.10: Qualitative view of beam geometry in the Rydberg excitation region and the detection
electronics used for determining the number and state distribution of excited Rydberg atoms.

Figure 2.10 shows the 780 nm and 480 nm excitation beam geometry for the

Blockade Experiment. The cigar shaped dipole trap is shown in the center (dipole

trap beam not shown). The two beams are focused at the excitation region and

propagate in orthogonal directions. Since the beam geometry changes slightly for

the individual experiments presented in this thesis, further details on the geometries

will be elucidated in each chapter.

As discussed in Chapter 1, Rydberg atoms are easily ionized with an electric field

described by Equation 1.5. The electric field is applied using electrodes positioned

above and below the excitation region as shown in Figure 2.10. The freed electrons

are then pushed toward a micro-channel plate (MCP) with a phosphor screen located

behind it. This technique, known as state selective field ionization (SSFI) not only

provides a count of the number of Rydberg atoms excited, but also enables resolution

of the atomic state distribution. The time at which the electrons reach the MCP can

be converted into an electric field, and Equation 1.5 can be used to determine the

state of the atom.

Each channel of the MCP is a continuous dynode electron multiplier, in which
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the multiplication takes place under the presence of a strong electric field. The gain

is 104 through a single channel, and > 107 for the stacked (Chevron) configuration.

The phosphor screen transfers the electron energy into light with an efficiency of

about 0.06 photons/eV/electron. The phosphor screen produces 5-10 mV pulses on

top of the 5000 V applied to it. The DC signal is filtered out with a high voltage

capacitor and sent to a pulse counter.

2.5 CryoMOT and Blockade Experiment differences

Both the CryoMOT and the Blockade Experiment use a double-MOT setup where

atoms are first loaded in a primary MOT and then pushed into a secondary MOT as

an LVIS. Rydberg excitation then proceeds out of the secondary MOT. As described

above, the Blockade Experiment uses a six-beam MOT produced inside of a vapor

cell. The CryoMOT, on the other hand, uses a pyramidal MOT configuration where

the six beams necessary to create a MOT are generated by a single, large diameter

beam incident on a set of four mirrors in a pyramidal configuration [49]. This beam

also serves as the “pusher” beam to force atoms into the secondary MOT (this is

the same type of LVIS as above). Atom densities and numbers for both methods are

comparable, as are the vacuum pressures for the two chambers (∼ 10−9 Torr).

The experimental repetition rate in the Blockade Experiment is 5 Hz, while the

repetition rate in the CryMOT is 200 Hz. Although both experiments use a high

intensity 1064 nm laser to form a dipole trap, the fast repetition rate of the CyroMOT

experiment does not allow time for atoms outside of the dipole trap to fall out of the

excitation region. This topic will be discussed further in Chapter 4 when we discuss

ponderomotive optical lattices for Rydberg atoms.

Chapter 3 of this thesis discusses a rotary echo experiment performed with the
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Blockade Experiment apparatus. Chapters 4, 5, and 6 each refer to the CryMOT ex-

periment. Specifics of each experimental setup that do not pertain to all experiments

will be detailed in the individual chapters.



CHAPTER III

Rotary Echo Tests of Coherence in Rydberg-atom Excitation

3.1 Excitation coherence in Rydberg atoms

The exaggerated properties of Rydberg atoms discussed in Chapter 1 lead to in-

teractions that enable fundamental studies of quantum many-body systems [50, 51]

and are the basis for applications in quantum information processing [1, 2]. Of par-

ticular interest is the Rydberg excitation blockade, described briefly in Section 1.3,

which follows from the spectral characteristics of the entangled many-body states

that describe systems of interacting Rydberg atoms. Due to these interactions, the

energy separation of the levels ∣𝑁, 0⟩ and ∣𝑁, 1⟩ differs from that of the levels ∣𝑁, 𝑘⟩

and ∣𝑁, 𝑘 + 1⟩, where 𝑘 is the number of Rydberg excitations and 𝑁 the number of

atoms that coherently share these excitations. The level shifts prohibit narrow-band

photo-excitation into levels ∣𝑁, 𝑘⟩ with 𝑘 > 1. The blockade has been observed via re-

duced excitation rates [28, 29, 45] and narrowed excitation number distributions [52].

More recently, resonant energy transfer between cold atoms in spatially separated

cylindrical regions was observed [53], and the ∣𝑁, 0⟩ → ∣𝑁, 1⟩ and ∣𝑁, 1⟩ → ∣𝑁, 2⟩

transitions were spectroscopically measured [30].

One consequence of the coherent many-body nature of the states ∣𝑁, 𝑘⟩ is that the

Rabi frequency between states ∣𝑁, 0⟩ and ∣𝑁, 1⟩ is given by Ω = √𝑁Ω0, where Ω0

37
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is the single atom Rabi frequency [2]. We can quickly derive this scaling by writing

our ground and excited states,

∣𝜓g⟩ = ∣𝑔1, 𝑔2 . . . 𝑔𝑁−1, 𝑔𝑁⟩ (3.1)

∣𝜓e⟩ = 1√
𝑁

𝑁∑
𝑖=1

∣𝑔1, 𝑔2 . . . 𝑒𝑖 . . . 𝑔𝑁−1, 𝑔𝑁⟩. (3.2)

The Rabi frequency is given by

Ω =
𝜇𝑧𝐸

ℏ
(3.3)

=
𝑒⟨𝜓𝑒∣𝑧∣𝜓𝑔⟩𝐸

ℏ
(3.4)

=
𝑒𝐸√
𝑁ℏ

𝑁∑
𝑖=1

⟨𝑔1, 𝑔2 . . . 𝑒𝑖 . . . 𝑔𝑁−1, 𝑔𝑁 ∣𝑧∣𝑔1, 𝑔2 . . . 𝑔𝑁−1, 𝑔𝑁⟩ (3.5)

=
𝑒𝐸√
𝑁ℏ
𝑁⟨𝑔∣𝑧∣𝑒⟩ (3.6)

=
√
𝑁Ω0. (3.7)

The scaling of the Rabi frequency Ω with
√
𝑁 , which indicates collective, coher-

ent dynamics, has been measured experimentally [54]. However, experimental work

aimed at measuring the
√
𝑁 -enhancement of the Rabi frequency has been compli-

cated by the fact that measurements in extended atom samples yield sums over many

excitation domains, leading to rapid dephasing of the Rabi oscillations. Because of

density gradients within the sample, the number of atoms per excitation domain, 𝑁 ,

varies substantially over the excitation volume. The blockade condition is described

by

𝐶6

𝑟6𝑏
∼ Ω (3.8)

for van der Waals interactions with 𝑟𝑏 the blockade radius (the distance between

excitations). The factor 𝐶6 represents the strength of the van der Waals interaction

and scales as 𝑛11. The number of atoms, 𝑁 , is given by the volume of the blockaded
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region times the density,

𝑁 =
4

3
𝜋
(𝑟𝑏
2

)3
𝜌. (3.9)

The blockade radius is divided by two in this case because 𝑟𝑏 is the full distance

between two Rydberg atoms. We can combine these two equations to yield some

noteworthy scaling laws.

𝑁 =

(
𝐶6

Ω0

)2/5(
4𝜋𝜌

3

)4/5

× 2−12/5 (3.10)

𝑟𝑏 =

(
𝐶6

Ω0

)2/15(
4𝜋𝜌

3

)−1/15

× 21/5 (3.11)

Ω = 𝐶
1/5
6 Ω

4/5
0

(
4𝜋𝜌

3

)2/5

× 2−6/5 (3.12)

We see that there is a weak, 𝜌−1/15, dependence of the domain radius, 𝑟b, on the

local density and a 𝜌2/5 dependence of the Rabi frequency Ω on the local density

in the van der Waals regime [55]. The same treatment for the dipole-dipole regime

yields a stronger 𝜌2/3 dependence of the Rabi frequency on the local density. This

further reenforces the fact that a measurement of the Rabi frequency in a mesoscopic

ensemble of atoms is highly unlikely to yield results that show the coherent behavior

of the atoms. Rydberg atom Rabi oscillations have previously been measured as a

demonstration of the coherence of Rydberg atom systems [56], but the observation of

many oscillation cycles requires that the number of Rydberg excitations be limited

to one or two [38].

3.2 Rotary echo sequences

Echo schemes, such as spin and rotary echo sequences, have been used extensively

in the past to overcome the effects of inhomogeneities in many different systems. The

first studies used both spin and rotary echo methods to study the free precession

of nuclear spins about a radio frequency field while in the presence of a large, DC
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Figure 3.1: Rotary echo sequences with varying values of 𝜏p. As 𝜏p is increased, the amount of
excitation at the end of the sequence changes accordingly. When the sign of the excitation is
inverted halfway through the excitation pulse, all atoms will be back in the ground state (rotary
echo).

magnetic field [57, 58]. In 2008, a rotary echo experiment was performed in a strongly

interacting Rydberg gas to demonstrate coherence [39]. This experiment involved

exciting atoms for a time 𝜏p, and then inverting the sign of the excitation amplitude.

Here, I perform a similar experiment. I compare and contrast the methods used in

Section 3.5.

In the rotary echo experiment presented here, I adjust the time 𝜏p as shown in

Figure 3.1. An acousto-optic modulator driven by a radio-frequency (RF) pulse is

used to generate the excitation laser pulse. In Figure 3.1, the RF pulse is represented

by the oscillating curves at the top. Excitation inversion can be accomplished by

flipping the phase of the RF by 𝜋, or 180 degrees. The dashed line represents how the

excitation would evolve were there no excitation inversion. When the phase inversion

occurs, the excitation process reverses and travels back down toward zero. If the

inversion occurs halfway through the excitation pulse (far right panel of Figure 3.1),

a rotary echo occurs at the end of the pulse, provided the excitation was coherent.

The amount of signal remaining after such a sequence is a quantitative measure of

the excitation coherence of the system.

A many-body pseudoparticle approach, where groups of blockaded atoms are
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treated as “super-atoms”, is well suited to model this experiment in the strongly

blockaded regime where the number of blockaded atoms, 𝑁 , is much greater than

one [55, 59]. In the pseudoparticle approach, the Hamiltonian describing the excita-

tion is given by [37]

�̂�(𝑡) =
∑
𝑗

�̂�j(𝑡) +
∑
𝑗<𝑘

𝑉jk∣𝑛j𝑛k⟩⟨𝑛j𝑛k∣ (3.13)

�̂�j(𝑡) =− [Δ𝜔 + 𝜖]∣𝑛j⟩⟨𝑛j∣+ Ω0

2

√
𝑁j(∣𝑔j⟩⟨𝑛j∣+ ∣𝑛j⟩⟨𝑔j∣).

Here, the interaction 𝑉jk is between pseudoparticles and not individual atoms. The

kets ∣𝑔j⟩ and ∣𝑛j⟩ correspond to pseudoparticle j being in the ground state ∣𝑁j, 0⟩ and

excited state ∣𝑁j, 1⟩, respectively, Δ𝜔 is the laser detuning (approximately zero in our

case) and 𝜖 is a mean-field energy shift due to distant excited atoms. If Ω0 → −Ω0 at

𝑡 = 𝜏p and the terms 𝜖 and 𝑉jk are negligible, the Hamiltonian in (3.13) exhibits near-

perfect symmetry �̂�(𝜏p − 𝑡) = −�̂�(𝜏p + 𝑡). Assuming that the excitation begins at

𝑡 = 0, a rotary echo occurs at a time 2𝜏p, when all pseudoparticles will be back in the

ground state, regardless of the inhomogeneity in 𝑁j. If 𝜖 and 𝑉jk are significant and

are not inverted, the Hamiltonian lacks this symmetry. The resultant decoherence

of systems containing multiple pseudoparticles causes a reduction in echo visibility.

In this experiment, the rotary echo method is employed to study the effect of

Rydberg-atom interactions on the coherence of excitation processes in many-body

Rydberg-atom systems. The echo signal is recorded by varying 𝜏𝑝 for a fixed pulse

length 𝜏 and counting the number of excitations. I show how the visibility of the

rotary echo diminishes as the interaction strength, 𝑊 , between Rydberg atoms is

increased. I vary 𝑊 by taking advantage of the interaction process 2 × 𝑛D5/2 →

(𝑛+ 2)P3/2 + (𝑛− 2)F7/2, which for Rb is nearly resonant at the principal quantum
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number 𝑛=43. This is a natural Förster resonance, as referred to in Section 1.3.

Due to this resonance, 𝑊 varies strongly as a function of 𝑛 in the vicinity of 𝑛=43,

allowing me to realize cases ranging from minimal interactions (𝑛=40) to strong

interactions (𝑛=43) over a narrow range of 𝑛 [27]. Rydberg excitation spectra, taken

with and without excitation inversion, provide an alternate, equally valid test of

coherence. Here, I highlight the importance of atom-atom interactions in rotary

echoes as well as the equivalence of such echoes with spectroscopic information for

the demonstration of coherence.

3.3 Experimental setup for rotary echo tests

5S1/2

5P3/2

nD5/2

130MHz

480nm

780nm

τ
p

(a) (b) τ=120nsRb

Figure 3.2: Experimental setup. (a) Rydberg atom excitation scheme. (b) RF signal sent to the
acousto-optic modulator used to control the upper transition laser pulse for the case without phase
inversion (top) and with phase inversion at time 𝜏𝑝 (bottom).

Figure 2.10 in Section 2.4.4 shows the trap setup used to conduct this experiment.

I cool and trap 85Rb atoms in a MOT and then form an optical dipole trap with a

5 W, 1064 nm laser beam focused through the center of the trap. As described in

Section 2.3, the dipole trap has a temperature of approximately 1 mK and a peak

density of 2.5× 1011 atoms/cm3. Figure 3.2 shows the excitation scheme. The exci-

tation is performed with two narrow-linewidth, coincident laser pulses propagating

in orthogonal directions, as shown in Figure 2.10. The pulses have a square tem-

poral profile with a width of 120 ns. The lower transition laser beam is focused to
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a full-width at half-maximum (FWHM) of the intensity of 18 𝜇m and has a peak

Rabi frequency of Ω1 = 2𝜋 × 10 MHz. The laser is detuned from the intermediate

5𝑃3/2 state by 𝛿 = 2𝜋 × 130 MHz. The upper transition laser beam is focused to a

FWHM of 8 𝜇m, and has a peak Rabi frequency of Ω2 ≈ 2𝜋 × 10 MHz. Both lasers

have a linewidth 𝛿𝜈/2𝜋 ≲ 2 MHz. These conditions result in a Rabi frequency at

the two-photon resonance of Ω1Ω2

2𝛿
≈ 2𝜋 × 400 kHz. In order for the excitation to

remain coherent, it is important that spontaneous emission out of the intermediate

5P3/2 state be negligible. The scattering rate is given by

𝛾scat =
𝑠0Γ/2

1 + 𝑠0 + (2𝛿/Γ)
2 (3.14)

where Γ = 2𝜋×5.98 MHz is the linewidth of the transition and 𝑠0 is the on-resonance

saturation parameter, 2∣Ω∣2/Γ2. For the parameters stated above, there are less than

0.01 spontaneous emission events per atom on the lower transition during one exper-

imental cycle. For typical experimental conditions there are about 500 ground-state

atoms in the excitation volume. The number of atoms per blockaded region, 𝑁 ,

reaches a maximum of about 100 at 𝑛=43. I apply an SSFI ramp 100 ns after excita-

tion to ionize the Rydberg atoms, and detect the freed electrons with a microchannel

plate detector. To perform the rotary echo experiment, I shift the phase of the ra-

dio frequency (RF) applied to the acousto-optic modulator (AOM) that controls the

upper-transition light pulse by 𝜋 after a time 𝜏𝑝, as illustrated in Figure 3.2(b). This

accomplishes the inversion of Ω0 in (3.13). The phase shift is done by using a 180

degree power splitter connected to an RF oscillator. The two outputs of the split-

ter (Mini-Circuits part number ZFSCJ-2-4-S) are 180 degrees out of phase. These

output are connected to a high isolation RF switch (ZASWA-2-50DR+) to change

between the two signals, followed by a second high isolation switch to turn the op-

tical pulse on and off. Total losses through the system are approximately 7dB, and
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the signal is amplified by +29dB (ZRL-700+) before being directed to the AOM. It

is worth noting that a setup using an RF oscillator and a high isolation switch often

provides far superior performance to that of a typical AOM driver (DE-802 series

from IntraAction Corporation or DRFA40Y series from Electro-Optical Products

Corporation). The RF leakage from these drivers is on the order of 10−4, but even

the small amount of light produced by this leakage constantly interacting with the

Rydberg atom excitation region can significantly distort the results of an experiment.

The isolation for a Mini-Circuits ZASWA, on the other hand, is 10−10 at 100 MHz.

3.4 Echo spectra for a variety of Rydberg states

Figure 3.3(a) shows the rotary echo signal for the Rydberg state 40D5/2. For each

data point, the atoms are excited for a time 𝜏𝑝 and then the evolution is reversed for

a time 𝜏 − 𝜏𝑝 (pulse width 𝜏 = 120 ns). Each point represents 200 averages. Similar

to a convention used in [39], for the visibility of the echo I use

𝑁𝑅(𝜏𝑝 = 0) +𝑁𝑅(𝜏𝑝 = 𝜏)− 2𝑁𝑅(𝜏𝑝 = 𝜏/2)
𝑁𝑅(𝜏𝑝 = 0) +𝑁𝑅(𝜏𝑝 = 𝜏) + 2𝑁𝑅(𝜏𝑝 = 𝜏/2)

. (3.15)

From the definition in Equation 3.15, the visibility will range from 0 to 1, with

an increased visibility representing greater coherence in the system. The visibility

obtained for 40D5/2 is 0.67±0.11, which is greater than any of the echo visibilities

achieved in Ref [39]. Standard error propagation techniques are used to arrive at the

quoted uncertainty. The slight asymmetry of the curve is most likely due to small

asymmetries in the short pulse used for excitation. Reasons why the visibility does

not reach 100% could be because of residual interactions (which exist even for 𝑛=40)

and the laser linewidths, which affect the magnitudes of the terms 𝑉jk and Δ𝜔 in

(3.13), respectively.

According to the principle that time-domain and spectroscopic information are
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Figure 3.3: Echo data and spectra for the state 40D5/2 for square excitation pulses. (a) Number
of Rydberg atoms for pulses with duration 𝜏 = 120 ns, detected as a function of 𝜏𝑝, the time of
the phase flip with respect to the beginning of the excitation pulse. (b) Excitation spectra without
phase inversion (black squares) and with phase inversion at 𝜏𝑝 = 60 ns (red circles). c) Power
spectra of three different square pulses. Black line: 𝜏 = 120 ns and constant phase. Red dashed
line: 𝜏 = 120 ns and phase flip at 𝜏𝑝 = 𝜏/2. Blue dash-dotted line: 𝜏 = 60 ns square pulse without
phase flip and with twice the intensity of the other two pulse types.

generally equivalent, evidence for the coherence of the evolution can not only be

obtained via rotary echoes but also by spectroscopy of the excited Rydberg level.

I record the number of Rydberg excitations as a function of the 480 nm excitation

laser frequency, 𝜈b, with and without the phase inversion of the RF applied to the

AOM. Figure 3.3(b) shows spectra obtained by scanning 𝜈b across the two-photon

resonance. The fact that the spectrum with phase inversion (circles) in Figure 3.3(b)

closely resembles the power spectra of a pulse with a phase flip at 𝜏𝑝 = 𝜏/2 (dashed
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line in Figure 3.3(c)) confirms the coherence of the excitation. In both the measured

spectrum and the corresponding calculated power spectrum (dashed curve), the sep-

aration between the two resolved peaks is ∼ 13 MHz. If the Rydberg excitation was

not coherent, the excitation pulse with phase inversion at 𝜏𝑝 = 𝜏/2 = 60 ns would act

as two individual 60 ns pulses. These would generate an excitation spectrum with

twice the width and half the amplitude of the spectrum obtained with the 120 ns

pulse absent the phase inversion (dash-dotted line in Figure 3.3(c)).

Noting that the pulse used in Figure 3.3(b) represents a coherent sequence of

two half-pulses (of opposite phase), it is not surprising that the spectrum in Fig-

ure 3.3(b) resembles spectra obtained with Ramsey’s well-known separated oscilla-

tory field method [60]. In both cases, the presence of spectral modulations signifies

coherent evolution. Differences between typical conditions used in the separated-

field method and the present work include the time separation between the pulses

(vanishing in our case), and the significance of the detuning during excitation and

excitation saturation (both high in our case).

To measure the effect of Rydberg-Rydberg interactions on the echo visibility, I

enhance the interaction strength, 𝑊 , by varying the 𝑛-value of the excited Ryd-

berg state. I verify the relative interaction strengths of different Rydberg states by

recording the number of Rydberg excitations as a function of the upper transition

laser power for different 𝑛. As a consequence of the Rydberg excitation blockade,

the interactions between atoms lead to saturation in the number of excitations as

the laser power is increased [45]. The saturation is more prominent for more strongly

interacting Rydberg states. The inset of Figure 3.4 shows the number of detected

Rydberg excitations as a function of upper transition laser power for several Rb 𝑛D5/2

states. The count number for 40D5/2, the state with the weakest interactions studied
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Figure 3.4: Number of Rydberg atoms detected as a function of 𝜏𝑝 for the states 40D5/2 (black
diamonds), 42D5/2 (green triangles), 43D5/2 (red circles), and 45D5/2 (blue squares). For ease of
comparison, all curves are scaled to a value of five at 𝜏𝑝 = 0 and 120 ns. The inset shows the
number of Rydberg atoms detected as a function of upper transition laser power for the same set
of states. The degree of saturation reflects the strength of atom-atom interactions.

in this thesis, shows very little saturation. Conversely, the count number saturates

significantly for 43D5/2, the state exhibiting the strongest interactions (because it

is closest to the center of the Förster resonance). For the states 42D5/2 and 45D5/2

I observe intermediate saturation behavior, according to their moderate interaction

strengths (see Figure 3a of [27]). I record the echo signal for 𝑛 = 42, 43, and 45

using the same experimental procedure as described above. The upper transition

laser power used is scaled proportional to 𝑛∗3, with effective quantum number 𝑛∗,

to give the same single-atom Rabi frequency for each state; for 𝑛 = 43 the intensity

is 5.8 MW/m2. The results are shown in Figure 3.4. The curves are multiplied by

scaling factors such that the average values of the counts for 𝜏𝑝 = 0 and 𝜏𝑝 = 120 ns

are five for each curve. The scaling factors reflect the varying degree of interactions;

stronger interactions lead to more saturation and thus larger scaling factors (see Fig-
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Figure 3.5: Echo visibilities (squares, left axis) and calibration factors (circles, right axis) for each
𝑛-state examined. The points in this graph follow a very similar trend because of the correlation
between saturation of Rydberg atom excitation and loss of echo visibility.

ure 3.5). From (3.15), the echo visibilities for 𝑛=40, 42, 43, and 45, obtained from

the data shown in Figure 3.4, are 0.67±0 11, 0.57±0.10, 0.41±0.07, and 0.50±0.09,

respectively. The trends of echo visibility and saturation behavior as a function of 𝑛

are compared in Figure 3.5. The figure clearly demonstrates that saturation behavior

and loss in echo visibility are closely correlated.

Finally, I have recorded excitation spectra analogous to the spectrum shown in

Figure 3.3(b) for 𝑛=42, 43, and 45. The results are shown in Figure 3.6. The visibil-

ity of the two side peaks for the case where the excitation amplitude is inverted (red

circles) decreases as the atom-atom interaction strength increases. The echo data

and spectroscopic data presented here allow us to conclude that increased atomic

interactions and the resultant decoherence in pseudoparticle evolution have comple-

mentary consequences in the dynamics and the spectral properties of many-body

Rydberg systems, namely a loss of visibility in rotary echo curves (Figure 3.4) and

a loss of contrast in spectral data (Figure 3.3(b) and Figure 3.6).
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3.5 Comparison to past studies

I first discuss my results in context with recent theoretical calculations performed

by Hernandez et. al [37]. I first note that the system studied in this thesis is charac-

terized by many-body interactions between pseudoparticles (as opposed to interac-

tions between individual atoms); this statement follows from the saturation behavior

shown in Figure 3.4 and from estimates of 𝑁𝑗 based on the measured ground-state

and Rydberg atom numbers. In Ref. [37], echo visibilities are calculated for three

cases: a sparse system where the interaction 𝑉jk is negligible, a perfectly blockaded

system in which only one Rydberg excitation is allowed in the entire excitation vol-

ume, and an intermediate system in between these two limiting cases. A perfect echo

visibility is achieved for the first two cases, while the echo is reduced for the third

case when 𝑉jk is no longer negligible. The results for the state 40D5/2 correspond to

the limiting case in which the interaction between particles is at a minimum and,

hence, the best echo visibility is achieved. The results for the states 42D5/2, 43D5/2

and 45D5/2 correspond to the intermediate case in [37], where the role of atomic in-

teractions is sufficiently strong to cause a reduction in echo visibility, but not strong

enough to turn the entire excitation volume into a single excitation domain.

Ref. [37] strongly suggests that the loss in visibility in the intermediate regime is a

result of an increased interaction strength between pseudoparticles which inhibits the

complete inversion of the Hamiltonian in Equation 3.13. Here, I interpret the results

in a different manner. First, I compare the terms
√
𝑁jΩ0 and 𝑉jk in (3.13). I assume

a power law, 𝑊 ∝ 𝐶p𝑑
−𝑝, for the Rydberg-atom interaction 𝑊 as a function of

interatomic separation 𝑑, and strong saturation,
√
𝑁jΩ0 ≫ 𝛿𝜈𝐿 (this means that the

number of atoms per blockaded region is much greater than unity). The excitation
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Figure 3.6: Excitation spectra for the states 42D5/2, 43D5/2, and 45D5/2. The black squares show
the case where the excitation amplitude is constant throughout the pulse, and the red circles show
the results when 𝜏𝑝 = 𝜏/2. The number of detected excitations is scaled to give a maximum
excitation number of five.

domain radius, 𝑟b, is then found to scale as

𝐶2/(2𝑝+3)
p 𝜌−1/(2𝑝+3) (3.16)

(using the same steps that led to Equation 3.12). Here, 𝛿𝜈𝐿 is the laser linewidth, 𝜌

is the ground-state atom density, and 𝑝 = 3 for resonant electric-dipole interactions

and 𝑝 = 6 for van-der-Waals interactions. To find 𝑉jk, which is the interaction

strength between pseudoparticles, the interaction between individual atoms within

each pseudoparticle must be considered. The exact interaction is given by a sum over

the interactions between all individual atoms separated by variable distances. This

sum must be weighted by the probability to find two atoms separated by a given

distance. Thus, we have 𝑉jk = ⟨𝐶p𝑑
−𝑝
lm ⟩, where the indices 𝑙 and 𝑚 identify a random

atom pair with atom 𝑙 in pseudoparticle 𝑗 and atom 𝑚 in pseudoparticle 𝑘, and ⟨...⟩

identifies an average with weighting factor given by the probability of finding a pair
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of Rydberg excitations on atoms 𝑙 and 𝑚. Assuming an efficient blockade, consistent

with the experimentally observed saturation, one may expect ⟨𝑑−𝑝lm ⟩ ≈ [2𝑟b]−𝑝. This

means that instead of calculating a weighted average to find the mean distance

between individual atoms, one can simply use the center-to-center distance between

pseudoparticles. If these two values are indeed equal, it follows from Equation 3.8

that
√
𝑁jΩ0 and 𝑉jk are identical. Then, from Equation 3.16, I find that

√
𝑁jΩ0 and

𝑉jk scale as 𝜌
𝑝/(2𝑝+3)𝐶

3/(2𝑝+3)
p .

The consequence of the above is that the time-dependent Schrödinger equation

that follows from Equation 3.13 becomes invariant under variations of density, 𝜌, and

interaction strength, 𝐶p, if an excitation pulse is used that is invariant as a function

of a scaled time, 𝑡 ∝ 𝑡𝜌𝑝/(2𝑝+3)𝐶
3/(2𝑝+3)
p (𝑡 is the physical time). So, although the

magnitude of the Hamiltonian scales with 𝜌 and 𝐶p, we can counteract this increase

by reducing the duration of the excitation by the same factor. Since in my experiment

I keep the timing of the physical pulse fixed, stronger interactions correspond to

longer scaled times 𝑡. Since longer scaled times lead to more strongly excited domains,

I conclude that the reduced visibilities, observed for stronger interactions in the

intermediate regime, are a result of driving the domains further into their first excited

states, ∣𝑁j, 1⟩. Interestingly, in this model the reduced visibilities do not result from

an enhancement of the 𝑉jk-terms relative to the
√
𝑁jΩ0-terms in (3.13) as suggested

by Ref [37]. I note that longer scaled times can also be achieved by simply increasing

the physical pulse duration while keeping all other conditions the same. I did, indeed,

observe a trend that longer physical pulse durations lead to less visible echoes.

A critical assumption made in the above is that ⟨𝑑−𝑝lm ⟩ ≈ [2𝑟b]−𝑝. In simpler lan-

guage, this means that it is reasonable to represent all atoms within a blockaded vol-

ume with a single pseudoparticle to find the interaction strength between blockaded
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Figure 3.7: Ratio of ⟨𝑑−𝑝
lm ⟩ to [2𝑟b]−𝑝

for 𝑝 = 1, 3, and 6 and 𝑟b = 5𝜇m.

regions. In a perfectly blockaded atom sample, the validity of this assumption is en-

sured by a drastic suppression of the pair correlation function of Rydberg excitations

for Rydberg-Rydberg separations 𝑑 < 2𝑟b [61]. Systems with a reduced blockade ef-

fectiveness will exhibit a less dramatic suppression of the pair correlation function at

small distances. A reduction in blockade effectiveness can result for several reasons,

including the excitation bandwidth, anisotropy and “dead angles” (angles where the

dipole-dipole interaction is reduced to zero) in the Rydberg-Rydberg interaction, and

motion-induced decoherence during excitation. A loss of structure in the Rydberg

pair correlation will obviously lead to a more random spread of Rydberg excitations

over all atoms in the sample. Consequently, the condition ⟨𝑑−𝑝lm ⟩ ≈ [2𝑟b]−𝑝 will trend

towards ⟨𝑑−𝑝lm ⟩ ≫ [2𝑟b]
−𝑝 (for large and positive 𝑝). I have verified this trend in a

two-dimensional simulation where I randomly place atoms within a circular area,

then calculate both ⟨𝑑−𝑝lm ⟩ and [2𝑟b]−𝑝. The results of this simulation are shown in

Figure 3.7 for 𝑝 = 1, 3, and 6 and 𝑟b = 5𝜇m. The trend simply arises from the

likelihood of finding Rydberg-atom pairs at small separations 𝑑lm. A few instances

of small separations are sufficient to strongly inflate the expectation value for ⟨𝑑−𝑝lm ⟩,

because 𝑑−𝑝lm quickly diverges at small 𝑑lm (for large and positive 𝑝). Thus, the as-

sumption ⟨𝑑−𝑝lm ⟩ ≈ [2𝑟b]−𝑝, the effectiveness of the Rydberg excitation blockade, and
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the validity of the model underlying Equation 3.13 are intimately related to each

other.

In the following, I compare our results with a recent experiment described in [39].

For the case of least interaction (𝑛 = 40), I find a maximum echo visibility of 0.67,

which is about 0.10 higher than the largest echo visibility obtained in [39], recorded

in their case of lowest density. In [39], a trap temperature as low as 3.8 𝜇K was used,

which allowed for longer coherence times than would be obtainable in our 1 mK

trap. The highest trap density used in [39] was ∼ 5 × 1013 atoms/cm3 and typical

excitation pulse lengths were ∼ 500 ns. I have shown in the present experiment

that an excellent echo visibility is achievable in a much hotter sample by performing

the experiment with shorter pulses and using densities that are about two orders of

magnitude lower than those used in [39]. A substantial difference between the work

in [39] and our work is that our work has been performed with 𝐷-Rydberg levels,

while the data in [39] have been obtained with the 43𝑆 level. The fact that I observe

substantial rotary echoes despite that difference is noteworthy for two reasons. First,

𝐷5/2-levels in Rb have stronger, attractive and anisotropic interactions, while 𝑆-

levels have weaker, repulsive and isotropic interactions. The 𝑛𝐷5/2-states in Rb

shift because of couplings to states with angular momenta that allow for so-called

“Förster zeroes” (i.e., binary molecular Rydberg states with little interaction [62]),

while 𝑆-states do not have Förster zeroes. Our results show that these differences

do not preclude considerable echo visibility in systems of interacting Rydberg atoms.

Second, the 𝑛𝐷5/2-levels of Rb exhibit a Förster resonance at 𝑛 = 43 while 𝑆-

levels exhibit a more generic van-der-Waals-type interaction. The Förster resonance

leads to substantial populations of Rydberg levels in the Förster-resonant states,

as demonstrated earlier [12]. The results for 43𝐷5/2 presented here show that the
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Förster-resonance-induced state mixing does not cause a breakdown of echo visibility.

3.6 Conclusion and future developments

In this chapter, I have demonstrated coherent excitation of Rb 𝑛𝐷5/2 Rydberg

atoms using a rotary echo method. Echo signals and excitation spectra are found to

be equal means of providing evidence of such coherence. I have varied the strength of

the atom-atom interactions by performing the experiment with Rydberg states near

a Förster resonance where the interaction features an abrupt change in magnitude

and a zero-crossing at 𝑛=40. I have shown that the echo visibility is reduced as the

strength of the interaction increases. I have interpreted this behavior by examining

the Hamiltonian of the system given in (3.13). To improve the echo visibility in the

case of strongly interacting Rydberg-atom systems, in future work one may look for

ways to invert all terms in the Hamiltonian given in (3.13) (as opposed to just the

terms
√
𝑁jΩ0). This could be accomplished by exploiting the abrupt change in sign

of atomic interactions in the vicinity of Förster resonances [37].



CHAPTER IV

State-dependent Energy Shifts of Rydberg Atoms in a
Ponderomotive Optical Lattice

So far, I have examined excitation coherence in a mesoscopic ensemble of atoms

using a rotary echo technique. A system with a coherence time longer than the

quantum gate time is one of the DiVincenzo requirements for successful quantum

computation, as discussed in Section 1.2. In this chapter, I consider a novel type of

Rydberg atom trap that will help in meeting three of the remaining four requirements,

including scalability, qubit initialization, and qubit readout.

Since the development of laser cooling and trapping of atoms in the 1980’s, the

idea that atoms could be organized and stored via the AC Stark shift produced

by fields of interfering laser beams has been studied in numerous theoretical and

experimental contexts, many of which are reviewed in detail in Ref. [63]. The optical

lattice potential can be modeled exactly and the lattice parameters can be controlled

precisely via the laser beam geometry, intensity, frequency and polarization. This

makes the optical lattice a very attractive system for a breadth of physics subfields.

Some recent studies include investigations of effects in condensed matter systems

such as interacting fermions in periodic potentials (3D optical lattice) [64], purely

quantum mechanical effects such as quantum random walks to distribute atoms in a

lattice [65], and the generation of entanglement for quantum information [66].

55
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Optical lattices present a unique opportunity to create Rydberg atom traps with

suppressed collisions, long storage times, and minimal trap-induced shifts compared

to other techniques [67]. Microwave spectroscopy of Rydberg atoms trapped in an

optical lattice will allow for high precision spectroscopy of quantum defects and

the Rydberg constant [40]. Microwave modulations of the lattice could be used

to probe highly dipole-forbidden transitions between Rydberg states [41]. Perhaps

most significantly, Rydberg atom lattices will be ideal for quantum information ex-

periments exploiting the strong electrostatic interactions between the atoms [2]. Re-

search groups in Paris and Wisconsin have each independently created an entangled

hyperfine-hyperfine ground state quantum bit using the Rydberg state to generate

the entanglement [25, 26]. However, one of the major obstacles in these experiments

is the fact that the Rydberg state is not trapped. Thus, any time an atom is excited

into the Rydberg state, it can freely leave the trapping region. In fact, both of these

experiments used dipole traps to localize their ground state atoms, which produces

an anti -trapping force on any atom in the Rydberg state. Both groups report signif-

icant atom loss: 39% for the Paris group and 17% for the Wisconsin group2, which

could be improved dramatically if there existed a trapping potential for the Rydberg

state in addition to the hyperfine ground states.

In this Chapter, I use microwave spectroscopy to measure trap-induced level shifts

of Rydberg atoms in an optical lattice. I show how the shifts depend on both the light

field’s spatial variation and the Rydberg atom’s state. This method of microwave

spectroscopy allows analysis of Rydberg atom trajectories within the lattice, the

characterization of which is a prerequisite for using lattices as trapping devices.

2The reported fidelities of 0.75 and 0.58 for the Paris and Wisconsin group, respectively, were adjusted to include
only cases where atoms were not lost from the trap.
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4.1 The ponderomotive energy

The spatial extent and large number of nearly degenerate states in Rydberg atoms

makes the study of Rydberg atoms in optical lattices distinct in relation to their

ground-state atom counterparts. For ground-state atoms, the atom-field interac-

tion is between bound states. The trapping force is due to light shifts induced by

laser beams with a frequency nearby a resonance between the ground state and one

or a few nearby bound excited states. The light shift for a Rydberg atom is not

as straightforward, since optical transitions between Rydberg atoms do not exist.

Following the calculation for the ground-state light shift, it would be necessary to

consider the effect of virtual transitions to all available atomic states as well as the

continuum. An alternate method involves considering that the quasi-free Rydberg

electron experiences a position dependent ponderomotive force, much like a free elec-

tron. The ponderomotive shift is the time averaged kinetic energy of a free electron

in an oscillating electric field, and is given by

𝑉p =
𝑒2∣E∣2
4𝑚𝑒𝜔2

, (4.1)

where −𝑒 and 𝑚𝑒 are the electron charge and mass, respectively, and E is a slowly

varying electric field with angular frequency 𝜔. This result can be easily derived for

a standing wave optical lattice propagating along z and polarized along x where the

electric field takes the form,

E (r, 𝑡) = 𝐸𝑥 (𝑧, 𝑡) �̂� = 𝐸0𝑥 [cos (𝜔𝑡− 𝑘𝑧) + cos (𝜔𝑡+ 𝑘𝑧)] �̂�

= 2𝐸0𝑥 cos (𝜔𝑡) cos (𝑘𝑧) �̂�. (4.2)

The electric field induces a driven oscillation of the electron that is sometimes

referred to as a “quiver” motion. The acceleration and velocity of the motion are
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given by,

�̈� =
𝑒𝐸𝑥 (𝑧, 𝑡)

𝑚𝑒
�̂� (4.3)

=
2𝑒𝐸0𝑥

𝑚𝑒
cos (𝑘𝑧) cos (𝜔𝑡)

�̇� =
2𝑒𝐸0𝑥

𝜔𝑚𝑒
cos (𝑘𝑧) sin (𝜔𝑡) (4.4)

assuming that the initial velocity is zero. The time averaged kinetic energy is

then,

𝑉p =
𝜔
2𝜋

∫ 2𝜋
𝜔

0
1
2
𝑚𝑒�̇�

2𝑑𝑡

= 𝑒2[2𝐸0𝑥 cos(𝑘𝑧)]2

4𝑚𝑒𝜔2 (4.5)

This equation has the same form as Equation 4.1. The force on the quasi-free

Rydberg electron due to the ponderomotive shift forces the Rydberg electron (and

thus the bound nuclear core) toward regions of low laser field intensity. In an opti-

cal lattice, this potential is periodic in space and acts as a grating off of which free

electrons can be diffracted (the Kapitza-Dirac effect [68]). The ponderomotive shift

on Rydberg electrons has been studied in a number of contexts, not always yielding

consistent results. The measurement is complicated by the fact that it is difficult

to accurately characterize the exact laser intensities experienced by the atom dur-

ing the experiment. Small misalignment of the employed laser beams will cause a

reduction of the measured Stark shift but still result in a shift that scales linearly

with the beam intensity, masking the misalignment issue. The ponderomotive shift

on Rydberg electrons has been studied in references [69, 70] and, for instance, gives

rise to observable structures in above-threshold ionization [71, 72]. In Ref. [70], AC

Stark shifts of Xe Rydberg atoms in high-intensity laser fields were measured, and

the results were in excellent agreement with ponderomotive predictions. The authors
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discuss in detail the extreme care taken to accurately measure all beam intensities.

Ref. [70] also provides a comprehensive description of the sordid history of past failed

experiments aimed at measuring the same AC Stark shifts.

4.2 State-dependent energy shifts

If 𝑉p exhibits substantial spatial variation, generally both level shifts and state

mixing occur, with the exception of sufficiently non-degenerate Rydberg levels. For

the latter, the adiabatic lattice potential is [40]

𝑉ad (R) =

∫
𝑑3𝑟𝑉p (r+R) ∣𝜓 (r) ∣2. (4.6)
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Figure 4.1: Effect of atom size on ponderomotive level shifts of Rydberg atoms in an optical
lattice. a) The level shifts are averages over the free electron ponderomotive potential (dotted
curve; maximum height 𝜅𝑒−) weighted by the Rydberg electron’s density distribution. Hence, the
lattice potentials of large Rydberg atoms tend to be shallower than those of small ones (sold curves;
maximum height 𝛼𝑛𝜅𝑒− , with state-dependent reduction factors 0 < 𝛼𝑛 < 1). b) Calculated
frequency shift, (𝛼𝑛+1 − 𝛼𝑛)𝜅𝑒− , of the Rb 𝑛S→(𝑛+1)S transition at a lattice maximum as a
function of principal quantum number, 𝑛.

Here, R is the center-of-mass coordinate of the atom, r is the relative coordinate

of the Rydberg electron, 𝑉p (r+R) is the position dependent free-electron pondero-
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motive potential (Equation 4.1), and 𝜓 (r) is the Rydberg wavefunction. Following

Equation 4.6, 𝑉ad (R) is a spatial average of 𝑉p with weighting function ∣𝜓 (r) ∣2. If

the field varies over a length scale comparable to the size of the atom, the result de-

pends on the atomic state. This leads to the state-dependent ponderomotive shifts

of the Rydberg levels illustrated in Figure 4.1a.

The state-dependence of the ponderomotive level shifts in an optical lattice can

be demonstrated using two-photon microwave spectroscopy between Rb 𝑛S states

as a sensitive probe. S-states are well suited because of their large quantum defect

and resultant rigidity against state-mixing, their isotropic electronic wavefunction,

and their low sensitivity to residual electric and magnetic fields, allowing transform-

limited microwave spectroscopy. In Figure 4.1b, I show calculated frequency shifts for

the two-photon microwave transition 𝑛S→ (𝑛+ 1)S of a Rb Rydberg atom located

at an intensity maximum of a one-dimensional ponderomotive optical lattice versus

the principal quantum number 𝑛. The lattice is formed by two counter-propagating,

linearly polarized laser beams of equal electric-field amplitude, 𝐸0, and wavelength

(1064 nm). The shifts are scaled by the full lattice-induced shift of the free electron

ponderomotive potential, 𝜅𝑒− = 𝑒
2𝐸2

0/𝑚𝜔
2. For 𝑛 < 69, the shift is negative and has

a maximal value of 0.018×𝜅𝑒− at 𝑛=50. For 𝑛 ∼ 69 the frequency shift becomes very

small because the size of the wavefunction approximately equals the lattice period,

and for 𝑛 > 69 the shift turns positive.

4.3 Apparatus for optical lattice experiments

The experimental apparatus used to perform this experiment is similar to that

used in Chapter 3. However, there are a few noteworthy differences. In this experi-

ment, atoms are collected in a MOT while in the presence of a running or standing
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wave 1 Watt, 1064 nm laser beam. This is a continuous-wave optical beam and is

used to form both a dipole trap (for diagnostic purposes) and an optical lattice.

As before, slow Rydberg atoms are prepared via a two-photon excitation from a

laser-cooled cloud of 85Rb atoms in a magneto-optical trap (MOT). Atoms are first

collected in a primary, pyramidal MOT, then pushed through a small hole in the

pyramid into a vacuum chamber where they are recollected in a secondary MOT. The

secondary MOT has a temperature ∼ 200𝜇K and density ∼ 1010 atoms/cm3. The

lower transition beam (780 nm, FWHM 150 𝜇m) is detuned from the intermediate

5P3/2 state by 1.2 GHz, instead of only 130 MHz as in Chapter 3. This way, all atoms

will see an effectively constant detuning from the 5P level, regardless of their position

within the trap. The upper transition beam (480 nm, FWHM 25 𝜇m) is tuned in

frequency to achieve resonant 5S → 𝑛S two-photon Rydberg excitation. Both lasers

have a linewidth of about 2 MHz. To excite Rydberg atoms, the MOT laser beams

are turned off and the optical excitation beams are pulsed on for 2 𝜇s. The 1064 nm

lattice laser beam (focal diameter 13 𝜇m at FWHM) is always on and produces an

optical lattice for atoms in the 5S ground state as well as a ponderomotive optical

lattice (see Section 4.1) for atoms in Rydberg states.

For this particular experiment, after excitation the Rydberg atoms are exposed

to several 𝜇s of microwave radiation, which will be discussed in detail below. Subse-

quently, an electric-field ramp is applied to the atoms for state-selective field ioniza-

tion. The freed electrons are counted using a micro-channel plate detector.

The spatial arrangement of the laser beams and atom cloud is sketched in Fig-

ure 4.2a. The 1064 nm lattice beam and the 780 nm lower transition beam are

launched from the same optical fiber and are focused through the excitation region

with a 30 cm lens. The focus of the 1064 nm beam is centered on the excitation region,
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Figure 4.2: a) Diagram of laser beams used for Rydberg excitation and for creating the optical
lattice. b) Offset foci of the 780 nm and 1064 nm beams.

overlapping about 1% of the MOT. The out-going 1064 nm beam is re-collimated

by another 30 cm lens and then retroreflected back through the chamber, where it

re-focuses onto itself to form an optical lattice. Chromatic aberrations in the lens

system cause the 780 nm lower transition beam to focus about 2 mm away. Fig-

ure 4.2b shows a measurement of the 1064 nm and 780 nm beam sizes as a function

of position. The 780 nm beam has a FWHM of about 10 𝜇m at its focus and a

FWHM of about 120 𝜇m at the focus of the 1064 nm beam.

To align the lattice, the retroreflected beam is first blocked, resulting in a simple,

running-wave dipole trap for the ground state atoms in the MOT. Atoms in the dipole

trap are quite efficiently cooled by the MOT laser beams, which are relatively far

detuned from the cooling transition due to the dipole-trap-induced light shifts [73].

A Rydberg excitation spectrum from the dipole trap is shown in Figure 4.3 (black

diamonds). The large peak on the left side of the spectrum results from atoms

excited in the wings of the 780 nm beam outside of the dipole trap. The peak on

the right corresponds to atoms within the dipole trap beam, where the transition

frequency is blue-shifted due to the trap-induced light shifts. The blue-shifted peak

exhibits a sharp high-frequency cutoff because most atoms in the dipole trap are
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Figure 4.3: Laser excitation spectra of the 50S Rydberg level for the dipole trap and optical
lattice, obtained by scanning the upper transition laser. The dashed vertical line represents the
approximate maximum lattice-induced shift. Clearly, this estimate of the maximum shift is accurate
only to within a few MHz, as it is difficult to tell exactly when the signal drops to zero.

located relatively close to the bottom of the trap. I optimize the dipole trap focus

for maximum light shift and sharp high-frequency cutoff.

The optical lattice is formed by unblocking the retroreflected 1064 nm beam and

aligning it back through the optical fiber. A typical lattice spectrum is shown in

Figure 4.3 (red squares). As would be expected, the optimal position of the 30 cm

retroreflection lens is close to the point where the retroreflected beam power is max-

imized back through the optical fiber. However, abberations of the system shift the

focus slightly. Figure 4.4 shows lattice spectra as a function of the position of the

30 cm retroreflection lens. The bright red vertical line on the left side of the graph

corresponds to atoms outside of the trap (left peak in Figure 4.3). There are two

positions that provide a maximal shift to the atoms: 13.2 mm and 11.6 mm. These

are marked by black arrows in Figure 4.4. The maximum at 13.2 mm is the result of
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Figure 4.4: Lattice spectra as a function of the retroreflection lens position. Count rate is plotted
on a log scale to show extra detail in low-count regions. The black arrows point to regions where
the atoms experience a local maximum in the light shift (see text).

the 780 nm excitation beam being focused onto the excitation region instead of the

1064 nm lattice beam. This is evident by the fact that the peak for atoms outside of

the trap is broadened quite significantly (note the difference in the signal in the 5 -

20 MHz region). The maximum at 11.6 mm is the desirable position for the retrore-

flection lens. The horizontal white line located just above 11.2 mm marks the point

where the lattice light is best coupled back through the fiber. The optimal position

of the lens is about 350 𝜇m farther away from the trap. This factor was found to

be consistent from day to day, and allowed a rather simple positioning procedure for

the retroreflection lens once the optimal coupling position was measured.

Unlike the dipole trap spectrum, lattice spectra do not exhibit a sharp cutoff.

Because the force from the optical potential is conservative, some cooling of the

atoms must occur as they enter the potential formed by the 1064 nm beam(s), or

the atoms will simply roll back up the optical potential and out of the trap. This

cooling is provided by the MOT laser beams, which are increasingly red-detuned as
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the atoms move deeper into the potential. The broad cutoff of the lattice spectra

may be due to a loss in cooling efficiency in potentials deeper than about 45-50 MHz.

To investigate this further, I measured dipole trap and lattice spectra as a function

of 1064 nm laser power. Figure 4.5 shows the resultant spectra. The optical dipole

trap (left graph of Figure 4.5) exhibits a linear shift as a function of 1064 nm laser

power for essentially the entire range of the 0→1.5 W scan in power. The lattice

(right graph), exhibits spectra similar to those in the dipole trap for very low laser

powers. However, for increasing powers the spectra are broadened because the MOT

light is too far detuned to efficiently cool the atoms. The lattice loses its ability to

collect atoms very quickly when a laser power above 1 W is applied, corresponding

to a shift of about 45 MHz. At this point, not only are the atoms not cooled into

the bottom of the trap wells, they are unlikely to remain in the trap at all.
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Figure 4.5: Dipole trap and lattice spectra as a function of 1064 nm laser power. Count rate is
plotted on a log scale to show extra detail in low-count regions.
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4.4 Rydberg atom averaging in the ponderomotive optical lattice

For perfect, loss-free retroreflection, the intensity at the lattice maxima would be

4 times that of the dipole trap, but the observed shift seen in Figure 4.3 is only

about twice as much. Experimental factors that reduce the lattice-induced shift are

imperfect alignment and power loss of the return beam as it passes through the lens

system. The observed trap-induced shift is further reduced by the spatial averaging

in Equation 4.6. Figure 4.6 illustrates both of these factors.

5S

unperturbed
energies

Ryd

Potential seen
by a 65S atom Potential seen

by a 50S atom

Potential seen
by a free electron

G

R

Figure 4.6: The total shift measured in the lattice spectrum is a combination of the ground state
light shift and the averaged ponderomotive shift seen by the Rydberg electron. The total shift can
depend strongly on the attenuation of the return beam used to create the optical lattice, because
this adds a running wave component to the field and results in an offset energy shift for both the
ground and excited states. This shift does not depend on the Rydberg state.

The measured shift in the optical lattice is due to a light shift of both the ground

state and the Rydberg state. The ground state can be considered point-like in

relation to the optical lattice, while the Rydberg state averages over many parts of

the potential, depending on its size. This is shown in Figure 4.6, where the ground

state shift is labeled as 𝐺, and the shift that would be seen by a (stationary) free

electron is labeled as 𝑅. As shown in Figure 4.1, the Rydberg state energy shift is
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reduced by a factor 𝛼𝑛 from the free electron shift because of averaging. The value

of 𝛼𝑛 is found via Equation 4.6.
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Figure 4.7: Rydberg electron trap depth as a fraction of the free electron trap depth versus the
principal quantum number for nS1/2 states of Rb.

It is important to keep in mind that just as the maximum shift is decreased by 𝛼𝑛,

the minimum is increased by a factor 1-𝛼𝑛. This is a consequence of the way I have

defined the parameter 𝛼𝑛. The depth of the trap seen by the atom in comparison to

that which is seen by a free electron is therefore decreased by a factor of 2𝛼𝑛-1. The

magnitude of this factor is shown in Figure 4.7 as a function of principal quantum

number 𝑛. From this graph, it is seen that for 𝑛=65 and 74, the depth of the trap is

nearly zero. Between these points, the trap modulation experienced by the Rydberg

atom is actually inverted from that which is seen by a free electron.
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When calculating the ground and Rydberg state contributions to the measured

shift in the optical lattice, one must include the effects of return beam attenuation

and imperfect alignment of the foci of the two beams. This will create a situation

where there is a running wave component to the shift. The Rydberg potential will

have a positive offset and the ground state potential will have a negative offset (as

shown in Figure 4.6).

To account for the running wave component of the lattice, I introduce the constant

𝜂 to denote the fractional power remaining in the return beam. The incident electric

field is then 𝐸0, and the return beam electric field is 𝜂𝐸0. The maximum electric

field in the lattice is then 𝐸0 (1 + 𝜂) while the minimum electric field is 𝐸0 (1− 𝜂).

The maximum shift of the 5S ground state is then

𝐺 =
1

4
𝜅5S (1 + 𝜂)

2 (4.7)

where 𝜅5S = 𝛼5S𝐸
2
0 and 𝛼5S is the dynamic polarizability of the 5S1/2 ground

state.

The shift of the Rydberg state is slightly more complicated because for all Rydberg

states the running wave component will create the same shift, while the Rydberg

averaging factor 𝛼𝑛 will be Rydberg-state dependent. The averaged lattice depth

(peak to peak distance in Figure 4.1) for a free electron is given by

𝑅e−,depth =
1

4

𝜅𝑒−

𝐸2
0

(
𝐸2

max − 𝐸2
min

)
=
1

4
𝜅𝑒−
[
(1 + 𝜂)2 − (1− 𝜂)2]

=
1

4
𝜅𝑒− × 4𝜂. (4.8)

where 𝜅𝑒− = 𝑒
2𝐸2

0/𝑚𝜔
2 as defined earlier. The average lattice depth for a Rydberg

electron is thus 𝑅𝑛,depth = (2𝛼𝑛 − 1)𝑅e−,depth. Again, the reason I add a factor of
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(2𝛼𝑛 − 1) here is because 𝛼𝑛 only accounts for the reduction of the lattice maxima.

Here, I am comparing the averaged lattice depths, and so not only are the maxima

reduced but the minima are raised, decreasing the depth further.

The average shift3 of the Rydberg state does not depend on 𝛼𝑛 and is the same

for both a free electron and a Rydberg electron. It is given by

𝑅avg =
1

4

𝜅𝑒−

𝐸2
0

(𝐸2
max + 𝐸

2
min)

2

=
1

4
𝜅𝑒−

[
(1 + 𝜂)2 + (1− 𝜂)2

2

]

=
1

4
𝜅𝑒−
(
1 + 𝜂2

)
(4.9)

Thus, the total maximum shift of the Rydberg state is

1

2
𝑅𝑛,depth +𝑅avg =

1

4
(2𝛼𝑛 − 1)𝜅𝑒− × 2𝜂 + 1

4
𝜅𝑒−
(
1 + 𝜂2

)
=
1

4
𝜅𝑒−
[
1 + 𝜂2 + 2𝜂 (2𝛼𝑛 − 1)

]
(4.10)

The total lattice induced energy shift (LIES) seen spectroscopically is then the

sum of Equations 4.7 and 4.10, or

LIES =
1

4
{𝜅5S (1 + 𝜂)2 + 𝜅𝑒−

[
1 + 𝜂2 + 2𝜂 (2𝛼𝑛 − 1)

]}
=
1

4
𝜅5S (1 + 𝜂)

2 +
1

4
𝜅𝑒−
[
1 + 𝜂2 + 2𝜂 (2𝛼𝑛 − 1)

]
. (4.11)

A quick check reveals that when 𝜂 = 1, I arrive at the simple result:

LIES = 𝜅5S + 𝜅e− × 𝛼n, (4.12)

as expected.

The total lattice shift measured in Figure 4.3 is approximately 48 MHz (Rydberg

state 50S). To find the ground and Rydberg state contributions to the 48 MHz shift,

3By average shift I mean halfway between the maximum and minimum shifts, i.e. the flat potential in Figure 4.6.
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Shift Parameter 𝐴 1
4𝜅5S =

LIES

(1+𝜂)2+
𝜅
𝑒−

𝜅5S
[1+𝜂2+2𝜂(2𝛼𝑛−1)]

Maximum ground state shift Gmax 𝐴× (1 + 𝜂)
2

Maximum Rydberg state shift Rmax LIES - Gmax

Maximum free electron shift Re− Rmax/𝛼𝑛

Free electron depth Re−,depth 𝐴× 𝜅𝑒−
𝜅5S

× 4𝜂
Average Rydberg/electron shift Ravg 𝐴× (1 + 𝜂2

)× 𝜅𝑒−
𝜅5S

Rydberg electron depth Rdepth (2𝛼𝑛 − 1)×Re−,depth

Table 4.1: A number of parameters related to the lattice induced shift.

I begin with

48 MHz =
1

4
{𝜅5S (1 + 𝜂)2 + 𝜅𝑒−

[
1 + 𝜂2 + 2𝜂 (2𝛼𝑛 − 1)

]} (4.13)

The ratio 𝜅𝑒−/𝜅5S = 1.354/1.776 (see Appendix B.3). The values of 𝛼𝑛 for the

various Rydberg states are shown in Figure 4.7, and 𝛼50 = 0.708. This is enough

information to solve for the component shifts for a given value of 𝜂.

Table 4.1 shows the relevant parameters that can be calculated using the formulae

above. For 𝑛 = 50, a lattice induced shift of 48 MHz, and 𝜂 = 0.7, the ground and

Rydberg state contributions are 31 and 17 MHz, respectively. In this case, the depth

of the trap for a Rydberg electron is 10 MHz. The corresponding ponderomotive

shift of a free electron would be 24 MHz. Figure 4.8 shows how the calculated trap

depth depends on the assumed value of 𝜂. The dependency is not very strong until 𝜂

falls below about 0.5, but does limit the ability to precisely determine that potential

depth of the Rydberg atom trap.

4.5 Microwave spectroscopy of Rydberg atoms

In principle, it would be possible to use lattice spectra and Equation 4.11 to

demonstrate the 𝑛-dependence of 𝛼𝑛 predicted by Equation 4.6. However, as alluded

to above, this method would not be precise due to the laser linewidths, as well as

uncertainties in 𝜂, the measured lattice-induced shift, and the lattice intensity. In-
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Figure 4.8: Dependency of the Rydberg trap depth on 𝜂.

stead, I use microwave spectroscopy as a sensitive and reliable method. A WR-28 or

WR-42 waveguide is used to direct continuous microwave radiation into the vacuum

chamber. I introduce 6 𝜇s between Rydberg excitation and subsequent detection

to allow the Rydberg atoms time to interact with the microwaves. The microwave

intensity is set low enough that power broadening is minimal. The interaction dura-

tion is sufficiently short to keep the effect of Rydberg atom motion transverse to the

lattice axis small while still resulting in narrow microwave spectra. Also, by exciting

fewer than one atom per shot, we ensure that atom-atom interactions (such as those

that lead to an excitation blockade) do not play a role. The optically excited and

microwave-coupled Rydberg states produce distinct SSFI signals that are recorded

separately with a gated pulse counter.

Figure 4.9 shows the results of driving a two-photon transition from 50S to 51S.

The top curve is the microwave spectrum without a lattice. The frequency axis is

chosen such that the unperturbed 50S→51S transition frequency of approximately

61.92 GHz is located at zero. This curve has a FWHM of 110 kHz, which is close

to the calculated Fourier transform limit of about 120 kHz (see Appendix D), and

exhibits small Fourier side peaks, indicating coherent excitation. The other three
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Figure 4.9: Microwave spectra of the 50S→51S transition outside of the lattice and for three different
lattice-induced shifts. The thick green line shows the results of a numerical simulation (see text).
(For clarity, spectra are staggered vertically.)

curves show microwave spectra with the lattice turned on for three different lattice-

induced shifts. For these cases, the upper transition 480 nm laser is set to excite

atoms at the deepest part of the lattice (far right side of lattice spectrum in Figure 4.3,

marked by dashed line). Thus, Rydberg atoms are located near the ponderomotive-

lattice peaks at the beginning of the microwave interaction. The three lower spectra

in Figure 4.9 show distinct features referred to as A, B, and C: a strongly red-shifted

peak that shifts approximately linearly with the lattice intensity (A), a central peak

that red-shifts slightly with the lattice intensity (B), and a blue-shifted signal (C).

For the lowest spectra, the shift of peak A is about −430 kHz. This coincides with the

value expected from Figure 4.1b, assuming a ponderomotive-lattice depth consistent

with Figure 4.3 and Equation 4.11.

To interpret the features in the microwave spectra, numerical simulations of the

Rydberg-atom evolution were conducted. The simulation software was written by

Professor Raithel, while I performed the simulations and analyzed the results. The

simulation assumes a Boltzmann distribution of ground-state atom positions and
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velocities in the 5S-lattice potential. Based on the optical excitation spectra shown

in Figure 4.3, atomic temperatures are estimated to be 200 𝜇K. After randomly

selecting positions and momenta following this Boltzmann distribution, the proba-

bilities that the atoms are excited into the 50S level are determined. It is assumed

that the net optical excitation bandwidth is 5 MHz and that the optical Rydberg

excitation is resonant at the lattice-field maxima. For each 50S Rydberg atom pro-

duced, its classical center-of-mass trajectory, R(𝑡), in the adiabatic ponderomotive

lattice potential 𝑉ad,50S(R) (see Equation 4.6), is computed using a fourth order

Runge-Kutta method. The lattice field strength and 𝜂, which determine the peak

height and the modulation depth of 𝑉ad,50S(R), are chosen consistent with Equa-

tion 4.11 and Figure 4.3. Then, the microwave-driven evolution operator in the inter-

nal space {∣50𝑆⟩, ∣51𝑆⟩}, �̂� = exp(−i�̂�𝑡/ℏ) with 𝐻 = ℏ𝜒(∣50𝑆⟩⟨51𝑆∣ + ∣51𝑆⟩⟨50𝑆∣)

+ (𝑉ad,50S(R(𝑡)) + ℏ𝛿)∣50𝑆⟩⟨50𝑆∣ + 𝑉ad,51S(R(𝑡))∣51𝑆⟩⟨51𝑆∣, is computed based on

the simulated trajectory R(𝑡) and the adiabatic potentials 𝑉ad,50S(R) and 𝑉ad,51S(R).

The two-photon microwave Rabi frequency, 𝜒, is constant during the atom-field inter-

action and is chosen such that the on-resonant final 51𝑆-population without lattice

matches that observed in the experiment (top curve in Figure 4.9). As in the exper-

iment, the atom-field interaction time is randomly selected between 6 𝜇s and 8 𝜇s.

The simulated spectra vs the detuning of the microwave frequency from the field-free

transition frequency are shown as bold lines in Figures 4.9 and 4.10.

It is noted that for the simulation of R(𝑡), the potential 𝑉ad,50S is used, while

the quantum state actually is a coherent mix of 50S and 51S. This approximation

is allowable, because the maximum relative discrepancy between 𝑉ad,50S and 𝑉ad,51S

is only 1.8% (see Figure 4.1), and because over the course of the given atom-field

interaction time the atoms only perform a few center-of-mass oscillations or run
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only over a few lattice wells. Also, the results are found to be quite insensitive

to the assumed atom temperature. The three main lattice-induced features in the

microwave spectra shown in Figure 4.9 are reproduced very well by the simulation.

In both simulations and experiment, peak A is centered at -430 kHz and has a width

of about 150 kHz. By visual inspection of simulated Rydberg-atom trajectories R(𝑡)

contributing to peak A (see Chapter 5), I find that peak A is due to atoms that are

excited at a lattice maximum and remain close to that maximum over the duration

of the atom-field interaction. I further observe that Peak B in Figure 4.9 corresponds

to atoms that are excited at lattice maxima and have enough kinetic energy to roam

over many lattice wells. Lastly, the C-signal corresponds, in part, to atoms that are

trapped by the lattice potential and oscillate back and forth within a single well.

There is enough time for about three oscillations during the course of the atom-field

interaction. Atoms with other trajectories add to the C-signal as well, such as ones

that mostly move transverse to the lattice axis near a plane with vanishing intensity.

I do not consider these atoms trapped, as the present lattice does not provide a

transverse trapping force. The overall ratio of trapped and untrapped atoms prepared

by the optical excitation depends on experimental details, such as the lattice potential

and the optical excitation frequency. The presence of a mix of trapped and untrapped

atoms is reasonable, considering that in our experiment the modulation depth of the

ponderomotive optical lattice is about 10 MHz, the kinetic energy of the laser-cooled

atoms is about 2 MHz, and the Rydberg atoms are excited near the ponderomotive-

lattice peaks. It is expected that, as the lattice intensity is reduced, the positions

of all features A, B, and C in the microwave spectra should scale proportional to

the lattice intensity. This is indeed observed experimentally (see Figure 4.9) and

is reproduced in simulations. Specifically, for the strongly red-shifted feature A, we
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Figure 4.10: Microwave spectra of the 62S→63S and 68S→71S transitions. (For clarity, spectra are
staggered vertically.)

observe microwave shifts of −340 kHz and −240 kHz for optical lattice-induced shifts

of 36 and 24 MHz, respectively. In close agreement, the corresponding microwave

shifts expected from Figure 4.1b are −320 kHz and −220 kHz. Figure 4.10 shows

the microwave spectra for the transitions 62S→63S (middle) and 68S→71S (bottom)

in a lattice with the same intensity as the bottom spectrum in Figure 4.9. The

62S→63S spectrum exhibits side-structures A and C that span about half the range

of corresponding structures seen in the lowest curve of Figure 4.9, with peak A located

at about -180 kHz. This observation agrees with predictions based on Figure 4.1b

and is reproduced by simulations (bold lines in Figure 4.10). For Rydberg states near

𝑛=69, Figure 4.1b indicates that the microwave shift in the optical lattice should be

negligible. Accordingly, the microwave spectrum of the transition 68S→71S, shown

at the bottom of Figure 4.10, shows no side peak structure (in this measurement, I

have chosen Δ𝑛=3 for technical reasons).
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4.6 Conclusion

These results show that the energy shifts of Rydberg atoms in ponderomotive

lattices depend on the specific Rydberg level, in close agreement with theory. The

simulations here also provide additional insight into the Rydberg atom trajectories

that will be discussed in much more detail in the following chapter. In particular, the

results suggest that both trapped and untrapped Rydberg atoms are excited in the

ponderomotive lattice, although most atoms remain untrapped. In the next chap-

ter, I discuss ways to increase Rydberg-atom trapping efficiency using an excitation

scheme that prepares the Rydberg atoms near ponderomotive-lattice minima.



CHAPTER V

Trajectories of Rydberg atoms in a Ponderomotive Optical
Lattice

5.1 Introduction

In Chapter 4, I introduced a microwave spectroscopy technique useful for studying

Rydberg atoms in ponderomotive optical lattices. Here, I provide a detailed analysis

of the microwave spectra shown in Chapter 4, and analyze strategies that will lead to

improved trapping and analysis. Using software written by Professor Georg Raithel, I

simulate the trajectories of Rydberg atoms subject to the optical lattice potential and

identify three different classes of trajectories (labeled as A, B, and C in the previous

chapter). I begin with an analogy to the problem of the simple plane pendulum that

helps in the understanding of the allowed trajectories.

5.2 Classical Phase Space Dynamics of Rydberg atoms in a 1D Pondero-
motive Lattice

Due to the vast difference between typical Rydberg-atom Kepler frequencies (∼

1011Hz) and optical frequencies (≳ 1014Hz), the dominant effect of a non-resonant

laser field applied to a Rydberg atom is that the field adds a ponderomotive term,

𝑒2𝐸2/4𝑚𝑒𝜔
2, to the usual atomic potential in the Rydberg electron’s Hamiltonian.

Here, −𝑒 is the electron charge and 𝑚𝑒 its mass, 𝜔 = 𝑘𝑐 is the angular frequency of

77
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the field, 𝑘 the wavenumber, and 𝐸 the electric-field amplitude. If the field consists of

two counter-propagating laser beams, the spatial period of the intensity modulation

in the resultant standing wave is 𝜋/𝑘. If the period is much larger than the atom, the

ponderomotive term does not vary substantially over the atom’s volume. For laser

beams with equal linear polarization and field amplitude 𝐸0, the trapping potential

acting on the Rydberg atom’s center-of-mass coordinate then approximately equals

the free-electron ponderomotive potential in the lattice,

𝑈(𝑍) =
𝑉0
2
(1− cos (2𝑘𝑍)) (5.1)

where 𝑍 is the atom’s center-of-mass coordinate in the lattice-beam direction and

𝑉0 is the maximum potential depth, 𝑉0 = 𝑒
2𝐸2

0/𝑚𝑒𝜔
2. The equation of motion for

the atom is

𝑍 = −𝑉0𝑘
𝑚

sin (2𝑘𝑍) . (5.2)

In comparison, the equation of motion for a plane pendulum is

𝜃 = − 𝑔
𝐿
sin 𝜃. (5.3)

From Equations 5.2 and 5.3 it is obvious that there is a direct analogy between

the angular motion of the plane pendulum and the motion of an atom parallel to

the axis of the lattice. The small-amplitude oscillation frequencies are
√
2𝑉0𝑘2/𝑚

and
√
𝑔/𝐿 for the lattice and the pendulum, respectively. As the energy of the atom

increases toward a critical energy equal to the depth of the lattice potential, the

oscillation amplitude increases and the oscillation frequency decreases. Looking at

the phase diagram for this problem assists in understanding the motion of the atoms

in the lattice. Consider an atom with a total energy 𝐸0 in the lattice potential given

by Equation 5.1. The equation of motion can be written as

�̇� =

√
𝑉0
𝑚
(cos (2𝑘𝑍)− 1) + 2𝐸0

𝑚
. (5.4)
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Figure 5.1: Phase-space diagram for motion of atoms in a ponderomotive optical lattice. The
different shaded regions correspond to the trajectory classes A, B, and C seen in Figure 5.2.

Figure 5.1 shows a plot of the phase-space diagram for 85Rb atoms in a lattice

with 𝑉0 = 10 MHz and lattice laser wavelength 𝜆 = 1064 nm. The phase-space

diagram has a separatrix at an energy that equals the lattice depth (𝐸0 = 𝑉0; bold

line in Figure 5.1). For 𝐸0 < 𝑉0, the phase-space trajectories are periodic and

resemble closed ellipses, corresponding to atoms that are trapped inside one lattice

well. For 𝐸0 > 𝑉0, the phase trajectories are periodic but not closed, corresponding

to un-trapped atoms running over the lattice wells. The separatrix forms a boundary

between the two cases; it has hyperbolic fixed points at the lattice potential maxima,

{(𝑧 = (𝑛+ 1/2)𝜆/2, �̇� = 0), 𝑛 ∈ ℤ}. Trajectories close to the separatrix have a long

period, and atoms on such trajectories spend most of their time in the vicinity of the

hyperbolic fixed points.

In the experiment described in Chapter 4 (also Reference [74]), the depth of

the Rydberg trapping potential, 𝑉0, was derived from line shifts measured via laser

spectroscopy of optical Rydberg excitation lines in the lattice. The lattice depth

experienced by a Rydberg atom was typically 10 MHz, corresponding to a small-
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Figure 5.2: Experimental microwave spectra (dots and thin lines) of the 50S→51S transition outside
of the lattice and for a Rydberg lattice modulation depth of 𝑉0 = 10 MHz. The shaded curve shows
the result of a simulation. The coloring of the shaded curve corresponds to the coloring of the
different regions of Figure 5.1.

amplitude oscillation period of 3.5 𝜇s. Atoms were excited into Rydberg states near

the lattice maxima, with thermal kinetic energies of about 2 MHz. Since the lattice

depth was much larger than the thermal kinetic energy, the relevant phase-space

trajectories were concentrated near the separatrix. Hence, both trapped and un-

trapped classes of trajectories were excited in Chapter 4. The different classes of

trajectories correspond to well-defined features in the measured microwave spectra,

as will be discussed in the following section.

5.3 Microwave spectra of Rydberg transitions in an optical lattice

In the analysis presented in the previous section, it was assumed that the Rydberg

atom is much smaller than the lattice period, resulting in a potential depth 𝑉0 =

𝑒2𝐸2
0/𝑚𝑒𝜔

2. This approximation becomes inaccurate for principal quantum numbers

large enough that the Rydberg wavefunction extends over a significant portion of a

lattice well. In that case, the adiabatic lattice potential of the Rydberg atom follows

from [75],
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𝑉ad (R) =

∫
𝑑3𝑟𝑉p (r+R) ∣𝜓 (r) ∣2. (5.5)

where R is the center of mass coordinate of the atom, r is the relative coordinate

of the Rydberg electron, 𝑉p (r+R) is the position dependent free-electron pondero-

motive potential, 𝑒
2∣E(r+R)∣2
4𝑚𝑒𝜔2 , and 𝜓 (r) is the Rydberg wavefunction. As a result, the

adiabatic trapping potentials depend on the atomic state. Typically, with increas-

ing principal quantum number, 𝑛, the adiabatic Rydberg-atom trapping potentials,

𝑉ad (R), become shallower than the underlying free-electron potential, 𝑉p (R), and

may even become inverted for certain aspect ratios of atom size and lattice period.

From Equation 5.5 it is obvious that the angular quantum numbers also affect the

detailed shape of 𝑉ad (R). The adiabatic potentials are in general complicated and

are accompanied by substantial lattice-induced state mixing [75]. However, the po-

tentials for 𝑛𝑆 Rydberg atoms are fairly simple due to the non-degeneracy of these

states (hence, no state mixing) and the isotropy of their wave-functions. In the 1D-

lattice considered here, the adiabatic potentials of 𝑛𝑆 Rydberg states are still of the

general form of Equation 5.1; the state dependence primarily affects the potential

depth. While the state-dependence of 𝑉ad will, in most cases, not affect the function-

ality of the lattice as a trapping device for Rydberg atoms, it leads to frequency shifts

of transitions between different Rydberg states. In Chapter 4, this lattice-induced

frequency shift and its state dependence have been used to verify the effectiveness of

the ponderomotive optical lattice.

Figure 5.2 shows a microwave spectrum from Chapter 4 of the 50S→51S transition

for atoms within a Rydberg lattice having a modulation depth of 10 MHz. In that

experiment, atoms were excited into the 50S Rydberg state near a lattice potential

maximum. Atoms that have very little initial kinetic energy spend a majority of their
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time near a hyperbolic fixed point in Figure 5.1. In the plane pendulum analogy, this

case corresponds to an inverted pendulum near an unstable equilibrium. Calculating

the shift of the 50S → 51S microwave transition using Equation 5.5 for an atom

resting at a hyperbolic fixed point, I obtain line shifts of ∼ −430 MHz. I therefore

expect that the pink region in Figure 5.1 should correspond to peak A in Figure 5.2.

Atoms that have enough energy to sample many lattice wells during the given atom-

field interaction time will see a reduced shift of the transition energy because of

averaging, and are therefore expected to contribute to peak B in Figure 5.2 (light

green phase-space area in Figure 5.1). Finally, atoms that are trapped oscillate

in a single lattice well and are expected to have upshifted microwave transition

frequencies. These atoms contribute to region C in the microwave spectrum (light

blue phase-space area in Figure 5.1).

5.4 Trajectory Simulations

Via software written by Georg Raithel, I have performed numerical simulations

of the Rydberg atom trajectories to gain additional insight into the behavior of

Rydberg atoms in an optical lattice. This is a simplified version of the software

described in the previous chapter, where the full microwave spectrum for each case

was calculated. Again, a Boltzmann distribution of ground-state atom positions and

velocities in the ground, 5S-lattice potential is assumed. I use a temperature estimate

of 200 𝜇K consistent with the data shown in Chapter 4. After randomly selecting

positions and momenta following this Boltzmann distribution, the probability for

excitation into the 50S level is determined. I assume that the net optical excitation

bandwidth is 5 MHz and that the optical Rydberg excitation is resonant at the lattice-

field maxima. I randomly choose 10,000 ground state atom position-momentum
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pairs and reduce this to include only the 1% most likely to be excited. Then, for

each 50S Rydberg atom produced, its classical center-of-mass trajectory, R(𝑡), is

computed using a fourth order Runge-Kutta method. This is done using the adiabatic

ponderomotive lattice potential 𝑉ad,50S(R), calculated via Equation 5.5. To obtain

satisfactory statistics, the procedure is repeated until the simulated sample contains

10,000 realizations of the Rydberg-atom evolution. After performing the simulation

for a set of microwave detunings, I obtain simulated microwave spectra by plotting

the average final 51S population vs the microwave detuning. The Rabi frequency of

the microwave transition is adjusted to yield good agreement between on-resonant

experimental and simulated 51S probabilities without lattice. Experimental and

simulated spectra are compared in Figure 5.2.

To visualize the types of trajectories that, at a given microwave detuning, con-

tribute the most to the observed microwave spectrum, I identify the subset 𝑆0.01 of

1% of all simulated Rydberg atom trajectories that result in the highest microwave

transition probabilities. In Figure 5.3, I show the 𝑆0.01-subsets of Rydberg atom

trajectories for three values of microwave detunings intended to correspond to the

features A, B, and C observed in the 50S → 51S microwave spectrum. Parameters

selected for this simulation are tailored to match the experimental parameters used

to measure the data shown in Figure 5.2.

Panel (a) of Figure 5.3 shows the 𝑆0.01-subset of trajectories at a −430 kHz shift of

the 50S→ 51S transition, i.e. the frequency shift at which the A-signal is observed in

Figure 5.2. This frequency offset is equal to the -430 kHz frequency shift of the 50S

→ 51S transition that an atom frozen at a lattice maximum (hyperbolic fixed point in

Figure 5.1) would experience. Inspecting the histogram in the top panel of Figure 5.3,

it is seen that the 𝑆0.01-subset of trajectories at −430 kHz indeed spend a vast
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Figure 5.3: Calculated 𝑆0.01-subset of Rydberg atom trajectories in a ponderomotive optical lattice
for the same parameters as in Figure 5.2 and for the indicated values of the microwave detuning
(-430 kHz, -80 kHz, and 40 kHz from top to bottom). The histograms on the right show the
corresponding probability distributions along the 𝑧-coordinate.

majority of their time near lattice maxima, while only occasionally sampling other

parts of the lattice. These atoms have total energies in the range of 𝑉0 and correspond
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to the pink region in the phase-space map in Figure 5.1. The simulation hence

confirms that the A-component of the microwave spectrum in Figure 5.2 corresponds

to atoms on trajectories that do not deviate much from the lattice maxima.

Panel (b) shows the 𝑆0.01-subset of trajectories that give rise to a -80 kHz shift,

corresponding to the B-peak in the microwave spectrum in Figure 5.2. There is a

striking difference between the trajectories seen in panels (b) and (a): atoms with

trajectories shown in panel (b) have enough energy after excitation to roam over

many lattice wells during the given interaction time. Inspecting the histogram in the

middle panel of Figure 5.3, it is seen that the atoms spend only little more time in

regions where the 50S→ 51S transition is red-shifted (lattice maxima) than they do

in regions where the transition is blue-shifted (lattice minima). Hence, on average

there is only a small net red shift, in agreement with the small negative shift of

the B-peak in Figure 5.2. The simulation hence confirms that the B-component of

the microwave spectrum is due to atoms sampling many lattice wells, corresponding

to the green area in the phase-space map in Figure 5.1. It is further found that,

when exciting the Rydberg atoms near the maxima of the ponderomotive lattice, the

majority of trajectories are in the green phase-space area in Figure 5.1.

Panel (c) shows a typical 𝑆0.01-subset of trajectories that result in a +40 kHz blue

shift of the 50S→ 51S transition (i.e. in between the broad B- and the C-signatures of

the microwave spectrum in Figure 5.2). Most of these these trajectories are confined

to a single lattice unit cell. Hence, these atoms are trapped in a single well and

cannot freely roam through the lattice. During the given atom-field interaction time

(6-8 𝜇s), the atoms have enough time to make two or three oscillations in the lattice

well in which they are trapped.

In Figure 5.3 I have shown 𝑆0.01-subsets of trajectories for several values of the
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microwave detuning at which these subsets have quite uniform, distinctive character-

istics. At a detuning of −430 kHz, the 𝑆0.01-subset mostly consists of atoms spending

most of their time near hyperbolic fixed points in Figure 1, at -80 kHz it mostly con-

sists of atoms running across many lattice wells, and at +40 kHz it mostly consists

of trapped atoms. It is necessary to note that for other detunings the 𝑆0.01-subsets

of trajectories are not, in general, very uniform in their qualitative characteristics.

For example, in the detuning range ≳ 100 kHz both trapped trajectories as in panel

(c) as well as un-trapped ones as in panel (b) contribute. Noting that the microwave

excitation probability depends on both the Fourier spectrum of the microwave pulse

and the time dependence of the microwave detuning imposed by the atoms’ motion

through the lattice, it is not very surprising that at certain microwave detunings

several distinct types of trajectories contribute equally to the 𝑆0.01-subsets.

5.5 Rydberg Atom Trapping

The number of atoms that are confined to a single lattice well depends strongly

on the experimental parameters used to generate the lattice potential and on the

optical Rydberg excitation frequency. In the case studied in Chapter 4, the fact

that ground-state atoms are excited into Rydberg states at a potential maximum of

the lattice provides the Rydberg atoms with near-maximal initial potential energy.

In this case, the only atoms that can be trapped are those that are fortuitously

both excited slightly displaced from a lattice maxima due to the linewidth of the

excitation laser, and that also have little kinetic energy. Some of these atoms do

not have enough energy to climb over lattice potentials and are trapped. From the

spectra shown in Figure 5.2 and the calculated trajectories in Figure 5.3, I estimate

that about 5% of all excited Rydberg atoms are trapped in the lattice over the 8 𝜇s
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atom-field interaction time.

Atoms that are trapped in a one-dimensional ponderomotive lattice will still leave

the lattice transversely because the lattice potential is generally repulsive in the

directions transverse to the axis of the lattice laser beams. For the lattice used in

Chapter 4, atoms with a temperature of 200 𝜇K excited on the lattice axis will leave

the lattice region within about 20 𝜇s.

For these reasons, there are two factors that need to be addressed in order to

improve the trapping functionality of ponderomotive optical lattices. First, instead

of exciting Rydberg atoms at lattice maxima, with near-maximal potential energy,

a method needs to be found to initially prepare the Rydberg atoms in a lattice

minimum. Second, the lattice-beam geometry needs to be re-designed to enable

transverse trapping, resulting in a three-dimensional optical Rydberg atom trap. In

the following paragraphs, I present methods to address both of these issues.

5.5.1 Improvement of longitudinal trapping performance

Since the lattice acts as a red-detuned optical dipole trap for the laser-cooled

ground-state atoms, the ground-state atoms collect at the maxima of the lattice

laser field. In Chapter 4, the ground-state and Rydberg-state level shifts in the

optical lattice were used to selectively excite ground-state atoms trapped in the

optical dipole trap into Rydberg states. As a result, the Rydberg atoms were excited

at locations of high potential energy in the ponderomotive Rydberg atom trapping

potential. This resulted in a low fraction of Rydberg atoms that were trapped at all,

and the temperature of the trapped atoms was high. In the following, I present a

method by which the fraction of trapped atoms can be greatly increased and their

temperature can be reduced.

A 𝜋 phase shift applied to one of the lattice laser beams immediately after Rydberg
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Figure 5.4: Contour plot of microwave spectra of the 50S→ 51S transition as a function of microwave
detuning and lattice phase shift after excitation.

excitation can serve to shift the location of the lattice potential maxima by 𝜆/4.

After the shift, atoms that are initially excited at the potential maxima will find

themselves at a potential minimum. Hence, they will be efficiently trapped in the

one-dimensional ponderomotive Rydberg-atom lattice. The lattice phase shift can

be accomplished through a number of means, for example with a voltage-controlled

waveplate. For the method to work, it is essential that the phase shift is applied over

a time interval that is much shorter than the round-trip period of the atoms in the

lattice wells.

Microwave spectroscopy is a powerful method to probe the effectiveness of the

lattice phase shift. To show this, I have simulated microwave spectra like the one

shown in Figure 5.2 as a function of an instantaneous phase shift of the lattice

after Rydberg excitation. Figure 5.4 shows the simulated microwave spectra as a

function of lattice phase shift. The optical Rydberg-atom excitation is assumed to
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be resonant at the lattice field maxima prior to the shift. A phase shift of 𝜆/4

corresponds to the case where the lattice is completely inverted immediately after

excitation (i.e. all atoms excited to lattice maxima are instantaneously transferred to

lattice minima). Figure 5.4 shows that, as the phase shift is increased from zero, the

microwave spectrum undergoes an overall blue frequency shift, which is suggestive of

more trapped atoms. For a phase shift of 𝜆/4, the microwave spectrum exclusively

consists of a blue-shifted peak centered at +380 kHz. This value approaches the

frequency shift of +430 kHz that an atom pinned down at a ponderomotive-lattice

minimum would experience. Figure 5.4 hence indicates that microwave spectroscopy

is suited to prove the enhanced trapping performance, and that for a phase shift of

𝜆/4 most Rydberg atoms should be longitudinally trapped.

Figure 5.5 shows the trajectories of atoms in a lattice with varying amounts of

phase shift. The parameters used to calculate these trajectories are tailored to match

the experimental parameters used to measure the data in Figure 5.2. In contrast to

Figure 5.3, in Figure 5.5 I do not selectively plot trajectories that maximize the

microwave transition probability at a specific microwave frequency - instead I show

trajectories of random samples of Rydberg atoms optically excited in the lattice.

On the right side of Figure 5.5, I show histograms of the 𝑧-positions of the atoms

in the lattice. Without a lattice phase shift, most atoms roam over many wells

within the lattice. They slow down near the lattice maxima, thus giving rise to the

peaks in the histogram at these points. Upon closer inspection, one will find that a

small percentage of the atoms are trapped, as discussed in Sections 3 and 4. If the

lattice is shifted by 𝜆/8 (atoms moved to lattice inflection points after excitation), a

great majority of the atoms become trapped. These atoms exhibit a sloshing motion

between the classical turning points of a single lattice site. The sloshing motion
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leads to the pair of peaks in the 𝑧-probability distributions. Lastly, a 𝜆/4 phase shift

(atoms moved to lattice minima after excitation) leads to trapping of essentially all

excited Rydberg atoms. These atoms are also tightly confined within a single lattice

site, and will remain trapped until they exit the lattice transversely. The temperature

of the trapped Rydberg atoms is similar to that of the ground-state atoms prior to

excitation.

5.5.2 Three-dimensional trapping

As the ponderomotive lattice generally produces light forces pointing away from

the light-field maxima, it is less straightforward to generate 3D ponderomotive traps

than it is to generate attractive (red-detuned) optical dipole traps. In the following,

I describe an efficient method to generate a 3D ponderomotive Rydberg atom trap

using only two Gaussian beams.

A typical optical lattice formed with a pair of identical laser beams has an electric

field of the approximate form

√
2𝑃

𝜋𝑤 (𝑧)
𝑒−𝜌

2/𝑤(𝑧)2
[
𝑒𝑖𝑘𝑧+𝑖𝑘

𝜌2

2𝑅(𝑧)
−𝑖𝐺(𝑧) + 𝑒−𝑖𝑘𝑧−𝑖𝑘

𝜌2

2𝑅(𝑧)
+𝑖𝐺(𝑧)

]
(5.6)

where 𝑃 is the total power in each beam, 𝜌 is the distance from the axis of the

beams, 𝑤(𝑧) is the beam waist, 𝑧 is the coordinate along the beam axis, 𝑘 is the

wavenumber, 2𝜋/𝜆, 𝑅 is a parameter representing the wavefront curvature and 𝐺

is the Guoy phase. A transverse lattice potential gradient can be formed either by

offsetting the focus of one of the laser beams from the other, or by adjusting the

radial beam size of one of the beams. In any case, it is straightforward to realize

conditions such that, at the location of the atoms, one beam is larger in diameter

than the other. In that case, the electric field is given by
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Figure 5.5: Rydberg atom trajectories for the indicated amounts of lattice shift after excitation. The
right side of each graph contains a histogram of z-positions in the lattice. The sine waves overlaid
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√
2𝑃1

𝜋𝑤1 (𝑧)
𝑒−𝜌

2/𝑤1(𝑧)
2

𝑒𝑖𝑘𝑧 +

√
2𝑃2

𝜋𝑤2 (𝑧)
𝑒−𝜌

2/𝑤2(𝑧)
2

𝑒−𝑖𝑘𝑧 . (5.7)

Here, 𝑤1(𝑧) and 𝑤2(𝑧) are the different beam-waist functions of the beams, and
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𝑧 is measured from the common focal spots. The wavefront curvature and the Guoy

phase terms, as shown in Equation 6, were found to be insignificant in the parameter

range of interest, and are left out in Equation 5.6 for simplicity.

The three-dimensional intensity profile of a standard optical lattice compared to a

lattice where one beam is a factor of ten larger than the other is shown in Figure 5.6

panels (a) and (b). In panel (b), one can see that a transverse force is generated that

will confine cold atoms near the lattice axis. I refer to this as a “bottle trap potential”.

The transverse potential height is about one quarter that of the longitudinal barrier.

a) b)

ρ

z

Figure 5.6: Three-dimensional intensity profiles for an optical lattice with equal beam sizes (a) and
for two beams with a spot size ratio of ten to one (b).

Figure 5.7 shows two typical trajectories of atoms trapped in a potential resem-

bling that of Figure 5.6b. In the simulation, I have combined the bottle trap potential

with a 𝜆/4 phase shift of the lattice applied immediately after excitation. The same

beam intensities as in Figure 5.5 are used, however, one lattice beam has a FWHM

of 1 𝜇m while the other beam has a FWHM of 10 𝜇m. Atoms are now confined lon-

gitudinally and transversely. The trajectories oscillate back and forth between near

𝜌 = 0 and the outer edge of the trap potential near 𝜌 ≈ 1 𝜇m. The apparent repul-

sion near 𝜌 = 0 is a result of the centrifugal barrier, 𝐿2
𝑍/(2𝑚𝜌

2), which occurs in the

three-dimensional calculation. (The calculation in Figure 5.1 was one-dimensional,

hence there was no centrifugal term).
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Figure 5.7: Two example trajectories of atoms in the potential shown in Figure 5.6b. Both atoms
are three-dimensionally trapped, as a result of the attractive radial force that follows from the
potential shown in Figure 6b. The inner turning point results from a centrifugal potential.

5.6 Conclusion

In this Chapter, I have analyzed microwave spectra and trajectories of Rydberg

atoms in a ponderomotive optical lattice. These are important steps forward in

tailoring the optical lattice as a trapping device. I have shown that microwave

spectroscopy is an important tool in characterizing the lattice, and offered techniques

for increasing the trapping efficiency. Trapping can be increased to very nearly 100%

by implementing both the 𝜆/4 phase shift and the bottle trap configuration. In the

next chapter, I will consider new effects that are visible when the lattice depths are

increased by a factor of 20-40. In this regime, one can describe the lattice in terms

of effective electric and magnetic fields, and a direct comparison to the diamagnetic

problem in classical mechanics works well to describe the system.



CHAPTER VI

Adiabatic Potentials for Rydberg Atoms in a Ponderomotive
Optical Lattice

So far, the discussion in this thesis has been limited to non-degenerate (low angular

momentum) states in optical lattices. Using nS1/2 states, I have proven the existence

of the ponderomotive optical lattice for Rydberg atoms, and characterized it using

microwave spectroscopy as a sensitive probe. These experiments required a lattice

depth of about 50 MHz for sufficient visibility of the theorized microwave shifts. This

depth is much less than would be necessary to mix the nS states with other nearby

Rydberg states. Some interesting effects occur, however, when the lattice potential

becomes deep enough such that state-mixing does occur.

In this chapter, I show how the adiabatic potentials for degenerate states in a one-

dimensional ponderomotive optical lattice can be calculated, and use effective electric

and magnetic fields to obtain insight into the underlying physics. This work con-

trasts with previous calculations of ponderomotive optical lattice potentials, where

electric and magnetic fields were used to deliberately remove the degeneracy of the

Rydberg states in order to eliminate the mixing between different states [40]. Near

the inflection points of the lattice potential and for sufficiently low principal quantum

numbers (𝑛 <∼ 35 in the cases studied), the adiabatic level structure resembles that

of the dc Stark effect, and an effective electric-field model can be used to model the

94
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lattice-induced perturbation. Near the nodes and anti-nodes of the lattice field, the

adiabatic level structure exhibits a combination of adjacent rotational and vibrational

energy level sequences. Here, an analogy between the ponderomotive optical lattice

and the diamagnetic problem works well to interpret the lattice-induced perturbation

in terms of an effective magnetic field.

The adiabatic potentials for atoms in an optical lattice can be calculated semi-

classically by treating the internal dynamics quantum mechanically along with a

classical description of the center of mass motion. At each position in space, the

atom-field interaction Hamiltonian is obtained and diagonalized, yielding position-

dependent adiabatic energy eigenvalues. The adiabatic potential surfaces are gener-

ated by plotting the eigenvalues versus position. This method is discussed in detail

in Section 6.2.

6.1 Adiabatic potentials of Rydberg atoms in a ponderomotive optical
lattice

In the familiar case of ground-state atoms subjected to an optical lattice, adiabatic

trapping potentials and wave-functions result from an atom-field interaction that

typically couples a few low-lying atomic states. In most cases, the excited states are

adiabatically eliminated, and spatially periodic light-shift potentials are obtained for

the ground state levels [63]. Sometimes, state mixing due to lattice-induced Raman

couplings between magnetic sub-levels of the ground state occurs.

As discussed in Chapter 4 and Appendix B.3, a different approach is usually taken

for Rydberg states. While Rydberg levels are ground-state-like in that they have long

lifetimes (typically ∼ 100 𝜇s), lattice lasers applied to a Rydberg atom usually are

not near-resonant with any optical transition, because transitions between Rydberg

levels are in the GHz and THz frequency range. (I assume a generic case in which the
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lattice laser does not significantly couple the Rydberg level of interest down to a low-

lying atomic level.) Following methods used for ground-state atoms, one may obtain

the light shifts and state mixing of Rydberg atoms in optical lattices by summing

over the effects of virtual transitions to all available atomic states, as well as over

all transitions through the continuum. A more practical method is based on the

fact that the (optical) laser frequency is several orders of magnitude higher than the

Kepler frequency of the Rydberg atom. Consequently, the effect of the laser field can

be treated via a Born-Oppenheimer separation of variables, in which the dynamics at

the optical frequency are accounted for by adding a Born-Oppenheimer potential to

the equations that govern the dynamics in the slow degree(s) of freedom [40, 76]. The

Born-Oppenheimer potential for the case of a (quasi-)free electron in a laser field is

just the previously-discussed ponderomotive potential4, or the time-averaged kinetic

energy of the free electron in the oscillating electric field of the laser as described in

Equation 4.5.

Besides the fact that the origin of the light shifts of ground-state and Rydberg

atoms is fundamentally different, there are additional differences between these two

cases. Since the size of Rydberg atoms is on the order of the lattice period, Ryd-

berg atoms sample an entire region of the lattice at once (this is the origin of the

state-dependent shifts discussed in Chapter 4), while ground-state atoms usually are

considered as point-like particles in relation to the lattice period. The ratio between

Rydberg-atom size and lattice period can be tuned over a wide range around unity

via the principal and the magnetic quantum numbers. Further, the number of states

being coupled by the lattice field is much larger for Rydberg atoms than it is for

ground-state atoms. The adiabatic wave-functions of the Rydberg electron in pon-

4Full quantum-mechanical expressions for the ponderomotive potential and the free-electron state in a laser field
are provided by [76] and references therein.
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deromotive optical lattices typically are coherent superpositions of 10’s to 100’s of

states. Also, these wave-functions vary as a function of the center of mass coordinate

of the atom in the lattice. This is in contrast to the case of ground-state atoms in

an optical lattice, in which the adiabatic wave-functions are spatially varying spin-

states.

6.2 Calculation of adiabatic potentials

The adiabatic potential surfaces shown in this thesis are calculated by adiabati-

cally eliminating the electron quiver motion from the center of mass motion of the

atom via the Born-Oppenheimer approximation along the lines of reference [40]. The

result of this elimination is that an optical standing wave of the type of Equation (4.2)

adds a ponderomotive lattice potential

𝑉P =
1

2
𝑉0 (1 + cos (2𝑘 (𝑧 + 𝑧0))) (6.1)

to the inner-atomic Coulomb potential. Here, 𝑉0 =
𝑒2𝐸2

0

𝑚𝑒𝜔2 with single-beam electric

field 𝐸0, 𝑧0 is the atomic center of mass coordinate, and 𝑧 is the relative (internal)

coordinate of the Rydberg electron. The full atomic Hamiltonian, in atomic units,

is then

𝐻 =
𝑝2

2
− 1

𝑟
+ 𝑉𝑐(𝑟) + 𝑉P(𝑧 + 𝑧0) + 𝑉𝐿𝑆 (6.2)

where 𝑉𝑐(𝑟) is a short-range core potential accounted for by using the proper

quantum defects of the atom and 𝑉𝐿𝑆 is the fine-structure. The variable 𝑧0 is a

classical parameter of the Hamiltonian (not an operator).

The following analysis is similar to the theoretical outline found in reference [41]

with the fine-structure of the Rydberg atom now taken into account to include all

possible state mixing. The lattice potential can be expanded in a Taylor series about
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𝑧 = 0:

1 + cos (2𝑘 (𝑧 + 𝑧0)) =
∞∑
𝑝=0

𝐾𝑝𝑧
𝑝 (6.3)

where the coefficients 𝐾𝑝 are given by

𝐾𝑝 =
(2𝑘)𝑝

𝑝!

⎧⎨
⎩
(−1)𝑝/2 cos (2𝑘𝑧0) + 𝛿𝑝,0 , 𝑝 even

(−1)(𝑝+1)/2 sin (2𝑘𝑧0) , 𝑝 odd

(6.4)

where 𝛿𝑝,0 is a Kronecker-delta.

In the bound energy range of the Rydberg atom, the Hamiltonian including fine

structure can be represented in the basis {∣𝑛, 𝑙, 𝑗,𝑚𝑗⟩} as

𝐻
𝑛′,𝑙′,𝑗′,𝑚′

𝑗

𝑛,𝑙,𝑗,𝑚𝑗
= 𝐸𝑛,𝑙,𝑗𝛿𝑛,𝑛′𝛿𝑙,𝑙′𝛿𝑗,𝑗′𝛿𝑚𝑗 ,𝑚′

𝑗
+
1

2
𝑉0𝛿𝑚𝑗 ,𝑚′

𝑗

∞∑
𝑝=0

{
𝐾𝑝 (𝑟

𝑝)𝑛
′,𝑙′,𝑗′
𝑛,𝑙,𝑗 ×

[
𝐶∗𝑙,𝑗,𝑚𝑗 ,↑𝐶𝑙′,𝑗′,𝑚𝑗 ,↑ (cos

𝑝 𝜃)
𝑙′,𝑚𝑗−1/2

𝑙,𝑚𝑗−1/2 + 𝐶
∗
𝑙,𝑗,𝑚𝑗 ,↓𝐶𝑙′,𝑗′,𝑚𝑗 ,↓ (cos

𝑝 𝜃)
𝑙′,𝑚𝑗+1/2

𝑙,𝑚𝑗+1/2

]}
(6.5)

where the 𝐸𝑛,𝑙,𝑗 are the non-perturbed energy levels, and (𝑟
𝑝)𝑛

′,𝑙′,𝑗′
𝑛,𝑙,𝑗 and (cos𝑝 𝜃)

𝑙′,𝑚𝑗±1/2

𝑙,𝑚𝑗±1/2

are the radial and angular matrix elements induced by the optical lattice, respec-

tively. The 𝐶𝑙,𝑗,𝑚𝑗 ,↑ and 𝐶𝑙,𝑗,𝑚𝑗 ,↓ denote Clebsch-Gordan coefficients for the electron

spin in the angular state ∣𝑙, 𝑗,𝑚𝑗⟩ pointing up or down, respectively. The radial

matrix elements, (𝑟𝑝)𝑛
′,𝑙′,𝑗′
𝑛,𝑙,𝑗 , are calculated numerically using the quantum defects of

the atom of interest. The quantization axis for the 𝑚𝑗-quantum number is along

the laser beam direction for the ponderomotive optical lattice. Due to the resulting

azimuthal symmetry, the magnetic quantum number 𝑚𝑗 is conserved. The angular

matrix elements can be written as

(cos𝑝 𝜃)𝑙
′,𝑚
𝑙,𝑚 = (−1)𝑚 𝑝!

∑
�̃�=𝑝,𝑝−2,...,0

⎧⎨
⎩
(
2�̃� + 1

)√
(2𝑙 + 1) (2𝑙′ + 1)

2(𝑝−�̃�)/2
(
𝑝−�̃�
2

)
!
(
𝑝+ �̃� + 1

)
!!
×

⎛
⎜⎝ 𝑙′ �̃� 𝑙
0 0 0

⎞
⎟⎠
⎛
⎜⎝ 𝑙′ �̃� 𝑙

−𝑚 0 𝑚

⎞
⎟⎠
⎫⎬
⎭

= (−1)𝑚 𝑝! Λ(𝑙, 𝑙′,𝑚, 𝑝) , (6.6)
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where 𝑚 = 𝑚𝑗 ± 1/2. Using Λ(𝑙, 𝑙′,𝑚, 𝑝) as defined in Equation (6.6) and after

some rearrangement, one finds

𝐻
𝑛′,𝑙′,𝑗′,𝑚′

𝑗

𝑛,𝑙,𝑗,𝑚𝑗
= 𝐸𝑛,𝑙,𝑗𝛿𝑛,𝑛′𝛿𝑙,𝑙′𝛿𝑗,𝑗′𝛿𝑚𝑗 ,𝑚′

𝑗
+
1

2
𝑉0𝛿𝑚𝑗 ,𝑚′

𝑗
(−1)𝑚𝑗−1/2+(�̃�min+𝜂)/2 ×∑

𝑝=�̃�min,�̃�min+2,...

{
(−1)(𝑝−�̃�min)/2 (2𝑘)𝑝 (𝑟𝑝)𝑛

′,𝑙′,𝑗′
𝑛,𝑙,𝑗

[
cos
(
2𝑘𝑧0 − 𝜂𝜋

2

)
+ 𝛿𝑝,0

]
×

[
𝐶∗𝑙,𝑗,𝑚𝑗 ,↑𝐶𝑙′,𝑗′,𝑚𝑗 ,↑Λ(𝑙, 𝑙

′, 𝑝,𝑚𝑗 − 1/2)− 𝐶∗𝑙,𝑗,𝑚𝑗 ,↓𝐶𝑙′,𝑗′,𝑚𝑗 ,↓Λ(𝑙, 𝑙
′, 𝑝,𝑚𝑗 + 1/2)

]}
(6.7)

Here, the value �̃�min = ∣𝑙 − 𝑙′∣ and 𝜂 = 0 or 1 for even and odd �̃�min, respec-

tively. Once the Hamiltonian is obtained, the eigenvalues and adiabatic potentials

are determined as described in the introduction.

6.3 Some illustrative adiabatic potentials

6.3.1 Overview

In accordance with the experiment presented in Chapter 4, in these calculations I

have used the quantum defects of rubidium and a lattice laser wavelength of 1064 nm.

Figure 6.1 shows the adiabatic potentials versus the center-of-mass atomic position,

𝑧0, for the hydrogenic states of 𝑛 = 30, 𝑚𝑗=2.5 with a lattice depth 𝑉0 =2 GHz.

Figures 6.2 and 6.3(a) show the corresponding potentials for 𝑛 = 45 and 𝑛 = 65.

The value of 𝑚𝑗=2.5 is chosen for the simulation because it corresponds to the

state that would be reached when exciting out of a P3/2 state and using 𝜎
+ optical

pumping. The anti-nodes of the optical lattice occur at 0,±𝜆/2,±𝜆 . . . and the nodes

at ±𝜆/4,±3𝜆/4 . . .

Since in all cases studied in this thesis the lattice depth is much less than the

Kepler frequency, lattice-induced state mixing only extends over states of similar

effective quantum numbers. Hence, the lattice potential primarily mixes the levels
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Figure 6.1: Adiabatic potentials in wavenumbers, 𝑊 , for an optical lattice with 𝑉0=2 GHz, 𝑛 = 30
and 𝑚𝑗 = 2.5. These potentials exhibit distinct regions of approximately linear and quadratic
behavior, explained in the text.

with zero quantum defect (for rubidium these are all levels with angular momen-

tum 𝑙 ≥ 5). With increasing ratio of lattice depth to the Kepler frequency, the

𝐺 and 𝐹 -levels may mix with the hydrogenic levels as well. For Rydberg states

with principal quantum numbers 𝑛 ≲ 35, the adiabatic potentials exhibit a simple

structure resembling a set of interlaced sine-like curves that are all quite similar to

the underlying free-electron ponderomotive potential, Equation (6.1). This behavior

can be readily explained as follows. Each of the adiabatic states that correspond to

potentials shown in Figure 6.1 is a superposition of many Rydberg states. All com-

ponents of the superposition states have sizes less than a lattice period and, hence,

the sizes of the adiabatic state wave-functions are also less than a lattice period. As

a consequence, all adiabatic states experience a shift that approximately equals the
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Figure 6.2: Adiabatic potentials for an optical lattice with 𝑉0=2 GHz, 𝑛 = 45 and 𝑚𝑗 = 2.5. The
linear region over which the lattice perturbation can be modeled as an effective electric field is much
narrower than that for 𝑛 = 30 (see figure 6.1).

free-electron ponderomotive potential evaluated at the center-of-mass location of the

atom, which corresponds to setting 𝑧 = 0 in Equation (6.1).

Considering the detailed behavior of the adiabatic potentials in Figure 6.1, one

notes several qualitatively different regions. Between the nodes and anti-nodes, most

adiabatic potentials are approximately straight, non-intersecting curves. In these

regions, the lattice perturbation can be modeled via an effective electric field, as

discussed in section 6.3.2 below. Near the nodes (anti-nodes) of 𝑉P, I find regions

of intersecting potentials and, below (above) in energy, regions of nearly flat, non-

intersecting potential curves with non-uniform energy separations. In these regions,

the lattice-induced perturbation is quadratic and can be modeled via an effective

magnetic field, as discussed further in sections 6.3.3 and 6.3.4.
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Figure 6.3: Adiabatic potentials for an optical lattice with 𝑉0=2 GHz, 𝑛 = 65 and 𝑚𝑗 = 2.5
(panel (a)) and 𝑚𝑗 = 32.5 (panel (b)). For 𝑚𝑗 = 2.5, because of the extent of the Rydberg atom
wave-function, there are no longer clear distinctions between different regions of the lattice, as the
wave-function of the Rydberg atom averages over many parts of the potential. For 𝑚𝑗 = 32.5, the
number of states is reduced and the linear- and quadratic-like regions reemerge (see text).

With increasing principal quantum number, the atomic diameter (of order 2𝑛2 to

4𝑛2) approaches and eventually exceeds the lattice period, and the number of levels

that substantially mix increases. As a result, as 𝑛 increases the sets of adiabatic po-

tentials appear more widely spread out (Figure 6.2), and eventually form convoluted

patterns (Figure 6.3). This behavior reflects the fact that, once the wave-function of

the atom extends over a significant part of the lattice period (532 nm), the effective

electric and magnetic field models are no longer applicable.

I note that the sets of adiabatic potentials near the anti-nodes and the nodes

(𝑧0 = 0 versus 𝑧0 = ±𝜆/4) are not exactly symmetric to each other under the

transformation 𝑧0 → 𝑧0 ± 0.25𝜆 and 𝑊 → −𝑊 + 𝑐𝑜𝑛𝑠𝑡. The asymmetry is most

easily seen for higher 𝑛-values, such as in Figures 6.2 and 6.3(a). The deviation

from perfect symmetry is due to the quantum defects, which lead to an asymmetric

placement of several unperturbed low-angular-momentum levels (S, P, D, F and G)
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about the hydrogenic manifolds.

In Figures 6.1 and 6.2, there are two adiabatic potentials that are slightly offset

toward lower energy from the main manifold and that exhibit a fairly simple spatial

dependence. These potentials correspond, respectively, to the 30G and 45G Rydberg

states that have a quantum defect of 0.00405 [77]. In Figures 6.1 and 6.2, the

adiabatic potentials for the G-levels are less complex than what is seen for the bulk of

quantum-defect-free levels because the G-levels are sufficiently non-degenerate from

the quantum-defect-free levels that minimal lattice-induced state-mixing occurs. In

both figures, there are two adiabatic potentials for the G-state, because the 𝑚𝑗=2.5

manifold contains both ∣𝑛, 𝑙 = 4,𝑚𝑙 = 2,𝑚𝑠 = 1/2⟩ and ∣𝑛, 𝑙 = 4,𝑚𝑙 = 3,𝑚𝑠 =

−1/2⟩ components, with 𝑛=30 and 45, respectively. As the fine structure coupling

of the G-components is very small, they do not mix and exhibit slightly different

lattice-induced shifts. Hence, the adiabatic potentials at the bottom of Figures 6.1

and 6.2 correspond to adiabatic electronic states that are approximately given by

∣𝑛, 𝑙 = 4,𝑚𝑙 = 2⟩ and ∣𝑛, 𝑙 = 4,𝑚𝑙 = 3⟩. In Figure 6.3, the lattice-induced coupling

is strong enough that the G-levels are mixed into the manifold of quantum-defect-free

levels.

Further qualitative changes are observed when varying 𝑚𝑗 while keeping 𝑛 fixed.

In Figure 6.3, I compare the adiabatic potentials for 𝑛 = 65 and 𝑚𝑗 = 2.5 (panel (a))

and 𝑚𝑗 = 32.5 (panel (b)). As 𝑚𝑗 is increased, the quantum states generally become

more pancake-like and extend over a smaller range of 𝑧. As a result, the larger the

value of 𝑚𝑗, the higher the value of 𝑛 up to which the ponderomotive lattice can be

modeled using effective electric and magnetic fields. This is because the effective-

fields model gradually loses validity as the extension of the quantum states in the

𝑧-direction approaches the lattice period. For instance, Figure 6.3(b) clearly breaks
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up into a region resembling the Stark effect and a region resembling a diamagnetic

spectrum, while Figure 6.3(a) is much more complex and no such analogy can be

made. It is also noted that in the case of Figure 6.3(b) all states in the manifold are

quantum-defect-free, and the adiabatic potentials exhibit perfect symmetry under

the transformation 𝑧0 → 𝑧0 ± 0.25𝜆 and 𝑊 → −𝑊 + 𝑐𝑜𝑛𝑠𝑡.

6.3.2 Effective Electric Field
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Figure 6.4: Splitting between adjacent adiabatic potential lines at the inflection point of the lattice
for 𝑚𝑗=2.5 (a) and 𝑚𝑗=𝑛-2.5 (b). The splitting values for 𝑚𝑗 = 𝑛− 2.5 are multiplied by a factor
of two (see text). The solid line shows the splitting predicted by the effective electric field model.

For atomic center-of-mass positions, 𝑧0, near the inflection points of the pon-

deromotive potential, Equation (6.1), and for Rydberg-atom wave-functions with

sufficiently small extension in the 𝑧-direction, the potential can be modeled using

an effective electric field. The maximum gradient (and thus maximum force) occurs

at the inflection points of Equation (6.1) and has a value of 𝑉0𝑘, corresponding to

an effective electric field of 𝐹 = 𝑉0𝑘/𝑒. For a lattice depth of 2 GHz, the effective

electric field at the inflection point is 𝐹 = 0.49 V/cm. Using this value, the spacing

between the adiabatic potential curves near the lattice inflection points can be pre-
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dicted for all 𝑛 via Δ𝑊 = 3𝑛𝐹 (in atomic units). Figure 6.4 shows the predicted

values of Δ𝑊 using this effective electric field model, along with the actual spacing

between the adiabatic potential lines for a range of 𝑛 and 𝑚𝑗=2.5 (blue triangles)

and 𝑚𝑗=𝑛 − 2.5 (red squares). For 𝑚𝑗=2.5, the effective electric field model pre-

dicts Δ𝑊 well up until 𝑛 ≈ 37. For higher 𝑛, the values for Δ𝑊 become relatively

constant, and then start to decrease around 𝑛 = 50. This behavior is attributed to

the fact that with increasing 𝑛 the wave-functions of Rydberg atoms located at an

inflection point increasingly extend into regions of decreasing potential gradient, i.e.

smaller effective electric fields.

The 𝑛-value up to which the effective electric field model holds increases with 𝑚𝑗,

because with increasing 𝑚𝑗 the wave-functions become more and more concentrated

in the plane transverse to the lattice quantization axis (the 𝑥𝑦-plane). For the case

𝑚𝑗 = 𝑛−2.5 shown in Figure 6.4, only a few near-circular Rydberg states are present

in the calculation. Since these states mostly extend in the 𝑥𝑦-plane, they do not

average over the lattice potential as much as the lower-𝑚𝑗 states. The red squares in

Figure 6.4 show that for 𝑚𝑗 = 𝑛−2.5, the model of an effective electric field remains

valid over a much larger 𝑛-range than for low 𝑚𝑗. As a minor aside, it is noted

that for large 𝑚𝑗 there is no fine structure coupling. As a result, the computation

of adiabatic potentials for 𝑚𝑗 yields two decoupled manifolds of states, namely one

with𝑚𝑙 = 𝑚𝑗−1/2,𝑚𝑠 = 1/2 and another with𝑚𝑙 = 𝑚𝑗+1/2,𝑚𝑠 = −1/2. Looking

at both manifolds combined in one plot, the adiabatic levels are interlaced in a way

that the apparent level spacing equals (3/2)𝑛𝐹 . In contrast, at low values of 𝑚𝑗,

the adiabatic potentials are grouped in pairs of two with a pair-to-pair spacing of

3𝑛𝐹 (see Figures 6.1 and 6.2 near 𝑧0 = ±𝜆/8). To compare the cases 𝑚𝑗=2.5 and

𝑚𝑗 = 𝑛−2.5 in Figure 6.4, I multiply the spacing observed for the case 𝑚𝑗 = 𝑛−2.5
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by a factor of two.

The 𝑛-range over which the effective electric field model is applicable can be

estimated for low angular momentum states (blue triangles in Figure 6.4) using the

condition that the diameter of the atom must be less than half the lattice period,

4𝑛2 < 𝜆/4. This yields 𝑛 < 35, which agrees well with what is seen in Figure 6.4.

For near-circular states (red squares), I estimate, based on the scaling behavior of

radial and angular wavefunctions, that the effective electric field model should be

valid up to 𝑛 ∼ 250.

6.3.3 Effective magnetic field

Figure 6.6 shows a zoomed-in part of the spectra depicted in Figure 6.1 centered

around the anti-node of the lattice at 𝑧0 = 0. The highest energy levels resemble

those that would be obtained for a rigid rotator (energy level spacings progressively

increasing), while the bottom of the spectra looks more like the energy levels of a

harmonic oscillator (fixed energy level spacings). This phenomenology is very similar

to that found for Rydberg atoms in a magnetic field in the 𝑙-mixing regime, i.e. a

regime in which the magnetic field is strong enough that the 𝑙-states of a given 𝑛-

manifold become mixed. The term responsible for the 𝑙-mixing is the diamagnetic

interaction: 1
8
𝐵2𝑟2 sin2 𝜃 in atomic units. In the following, I show that there is indeed

a close similarity between the diamagnetism of Rydberg atoms in the 𝑙-mixing regime

and the adiabatic spectra observed near the maxima and minima of ponderomotive

optical lattices.

To establish the relationship between the diamagnetic perturbation and the pon-

deromotive optical lattice, I consider the lattice-induced perturbation of the Rydberg

electron potential for an atom with center-of-mass position located at a maximum
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of the standing-wave light field (𝑧0 = 0,±𝜆/2,±𝜆, ...):

𝑉 =
1

2
𝑉0 (1 + cos 2𝑘𝑧) . (6.8)

This potential can be approximated up to second order, yielding a harmonic ap-

proximation of the perturbation that is valid for Rydberg atoms with wave-functions

much smaller than the lattice period:

𝑉 ≈ 𝑉0
2

[
1 + 1− 1

2
(2𝑘𝑧)2

]

= 𝑉0 − 4𝜋2𝑉0
𝜆2
𝑧2 (6.9)

= 𝑉0 − 4𝜋2𝑉0
𝜆2
𝑟2
(
1− sin2 𝜃)

=

[
𝑉0 − 4𝜋2𝑉0

𝜆2
𝑟2
]
+
4𝜋2𝑉0
𝜆2
𝑟2 sin2 𝜃 (6.10)

This expression shares the 𝑟2 sin2 𝜃-term with the diamagnetic perturbation, has

an irrelevant constant, 𝑉0, and includes a term ∝ −𝑟2. The 𝑟2 sin2 𝜃-term of the

lattice-induced perturbation leads to the striking similarities between diamagnetic

spectra and adiabatic energy levels of Rydberg atoms near the maxima of pon-

deromotive lattices. The term ∝ −𝑟2 is only present in the ponderomotive-lattice

case; it is, obviously, responsible for some quantitative differences observed between

the diamagnetic case and the ponderomotive-lattice case. Comparing the respective

pre-factors of the 𝑟2 sin2 𝜃-term and using 𝑉0 = 𝑒
2𝐸2

0/(𝑚𝑒𝜔
2), I find that the pon-

deromotive potential for a Rydberg atom situated at a lattice maximum corresponds

to an effective magnetic field:

𝑒2𝐵2

8𝑚𝑒
=
4𝜋2𝑉0
𝜆2

𝐵2 =
8𝜋𝐸2

0

𝜔2𝜆2

𝐵 =

√
2𝐸0

𝑐
, (6.11)
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where 𝐸0 is the electric-field amplitude of a single laser beam forming the pondero-

motive lattice5. Similarly, for Rydberg atoms located at the nodes (𝑧0 = ±𝜆/4 . . .)

the lattice-induced perturbation of the Rydberg electron potential is

𝑉 (𝑧) ≈ 4𝜋2𝑉0
𝜆2
𝑧2 (6.12)

=
4𝜋2𝑉0
𝜆2
𝑟2 − 4𝜋2𝑉0

𝜆2
𝑟2 sin2 𝜃. (6.13)

Aside from an additive constant 𝑉0, this is the negative of Equation (6.10). This

symmetry is the reason for the (approximate) symmetry of the adiabatic lattice

potentials under the transformation 𝑧0 → 𝑧0 ± 0.25𝜆 and 𝑊 → −𝑊 + 𝑐𝑜𝑛𝑠𝑡.

The effect of the diamagnetic perturbation has been studied in great detail [78–

81]. In these papers, it has been established and explained why the diamagnetic

perturbation leads to adjacent rotor-like and vibrator-like energy level sequences;

these are very similar to the level sequences seen at 𝑧0 = 0 in Figure 6.6 and in several

other figures in this chapter. The rotor-like and vibrator-like energy level sequences

have a noteworthy explanation based on classical mechanics. Classically, in both the

diamagnetic problem and in ponderomotive lattices (for atoms situated at 𝑧0 = 0 and

not too large in size), there exist two types of precession patterns of perturbed Kepler

orbits [79]. In one type, the electron orbit remains mostly aligned with the magnetic-

field axis or the lattice-beam direction with the semi-major axis precessing about that

direction. This type of precession behavior corresponds to the vibrational states in

the spectrum, found on the lower-energy side of the manifold. In the other type,

the electron orbit remains mostly aligned in the plane transverse to the magnetic

field (or the lattice-beam direction), and the semi-major axis periodically precesses

through that plane. This type of precession behavior corresponds to the rotational
5The first term in this equation is just the diamagnetic term mentioned at the beginning of this section. For the

purposes of illustrating how the effective magnetic field is related to the applied electric field, I have written the term
in SI units
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states in the spectrum, found on the high-energy side of the manifold.

The electronic wave-functions of Rydberg states at 𝑧0=0 closely reflect the prob-

ability distributions that follow from the above described classical dynamics. In

Figure 6.5, the squares of the magnitudes of the wave-functions for three different

states are shown. To simplify the discussion, the wave-functions are calculated for

an optical lattice without fine structure or quantum defects. In each case, the atom

is located at position 𝑧0 = 0. The wave-functions are cylindrically symmetric about

the axis of the lattice. Panel (a) shows the fundamental vibrational state. This is

the lowest-energy state, and its wave-function extends along the axis of the lattice.

Panel (b) shows an intermediate state. Compared to the lowest-energy vibrational

state, this intermediate state has some excitation transverse to the lattice, and it has

a rather complex node-line structure. Panel (c) shows the highest energy state. This

state extends entirely in the plane transverse to the lattice and thus is purely rota-

tional. For reference, panel (d) shows the adiabatic potentials for all of the 𝑛 = 30

states. The states corresponding to the wave-functions in panels (a), (b), and (c) are

labeled.

I note that the wave-function squares of vibrational states located at 𝑧0 = 0 have

two symmetric lobes, one pointing along +𝑧 and the other along −𝑧. The wave-

function amplitude of the state displayed in Figure 6.5(a) is symmetric under 𝑧-

inversion. There exists another, practically degenerate vibrational state that is anti-

symmetric under 𝑧−inversion and whose energy exceeds the energy of the symmetric

state only by a minute amount. This behavior reflects the fact that the underlying

classical system has two degenerate vibrational electron orbits, one extending along

positive and the other along negative 𝑧. The analogous quantum system exhibits

near-degenerate, symmetric and anti-symmetric wave-functions with lobes pointing
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along the +𝑧 and −𝑧 directions. In fact, a close study of Figure 6.5(d) reveals that

all vibrational states come in pairs of almost degenerate states; these pairs are near-

identical states, one of which is symmetric and the other is anti-symmetric under

𝑧-inversion. An inspection of Figure 6.5(d) also shows that the near-degeneracy is

lifted as soon as 𝑧0 deviates from 𝑧0 = 0 (i.e. away from the center of the graph).

The rotational states do not exhibit this near-degeneracy.
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Figure 6.5: Wave-function amplitude squared for an 𝑛 = 30 atom at 𝑧0 = 0 for three different states,
and the corresponding set of adiabatic potentials. Wave-functions and potentials are calculated
without fine structure or quantum defects. (a) The lowest-energy adiabatic potential is a state that
is purely vibrational and thus extends along the axis of the lattice. (b) The wave-functions for
higher energies compared to that shown in (a) gain more excitation transverse to the axis of the
lattice. (c) The highest-energy adiabatic potential corresponds to a state that is purely rotational,
extending in the plane transverse to the lattice axis. (d) Adiabatic potentials near 𝑧0 = 0. The
black dots identify the energies and locations for which the wave-functions are calculated.

6.3.4 Parallel electric and magnetic fields

Finally, I consider the case of atoms located in the vicinity of 𝑧0 = 0, at a dis-

tance less than about 𝜆/8. As discussed in the previous chapter, the curvature of the

ponderomotive potential generates a quantum behavior similar to that found in an

equivalent magnetic field. In addition, in section 6.3.2 it has been established that

a linear component of the ponderomotive potential can be modeled via an equiv-

alent electric field. Hence, one may expect that for 𝑧0 ≲ 𝜆/8 Rydberg atoms in

ponderomotive lattices can be modeled using effective parallel electric and magnetic

fields, with a fixed effective magnetic field 𝐵 = 2
√
2𝐸0

𝑐
and an effective electric field
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given by 𝐹 ≈ −2𝑉0𝑘2𝑧0/𝑒. I thus expect a situation similar to that in reference [81],

where helium Rydberg states in parallel electric and magnetic fields were studied. It

has been pointed out in a number of studies that this type of system leads to three

classes of states, referred to as I, II, and III [80, 82]. Classes I and II are vibrational

states with a positive or negative electric dipole moment along the 𝑧-axis, respec-

tively. States in class III are rotational states. The ratio of the electric and magnetic

fields determines the classes of states that are available. In the present context, in

the plots of adiabatic potentials of sufficiently small Rydberg states, the 𝑧0-axis is

analogous to an electric-field-scale, as the effective electric field 𝐸 ≈ −2𝑉0𝑘2𝑧0/𝑒.

Plotting the adiabatic potentials for ∣𝑧0∣ ≲ 𝜆/8, I indeed observe a striking similarity

between the potential surfaces of Rydberg atoms in a ponderomotive lattice and the

spectra of Rydberg atoms in parallel electric and magnetic fields. This is seen when

comparing Figure 6.6 and corresponding figures in the above references, in particular

the first figure in reference [81].

As can be seen in Figure 6.6, as the ratio of the effective electric and magnetic

fields (linear to quadratic perturbations) increases, i.e. when moving from 𝑧0 = 0 to

𝑧0 = 𝜆/8, all states turn into class I states. The situation is similar when moving

from 𝑧0 = 0 to 𝑧0 = −𝜆/8, except that the effective electric field now points in the

opposite direction, and all states turn into class II states.

A close look at the first figure in reference [81] and Figure 6.6 reveals several

fine differences, including an upward curvature of the class III states and a lack of

curvature in the class I/II states in reference [81]. These differences are attributed

to the inhomogeneity of the effective electric field in the lattice and to the presence

of the term −1
8
𝐵2𝑟2 in the lattice-induced Hamiltonian. Nonetheless, in comparison

with these differences, the overall similarity between the first figure in reference [81]
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Figure 6.6: A closer look at the adiabatic potential for a 𝑉0 = 2 GHz lattice with 𝑛 = 30 and
𝑚𝑗 = 2.5 reveals three classes of states. Class I consists of vibrational states with a positive dipole
moment, class II consists of vibrational states with a negative dipole moment, and class III consists
of rotational states.

and Figure 6.6 is compelling.

6.4 Conclusion and experimental possibilities

In the past three chapters, I have shown that the large size and high degree of

degeneracy of Rydberg atoms leads to a number of interesting effects that govern

their behavior in optical lattices. In this chapter, the adiabatic potential surfaces

for Rydberg states in a ponderomotive optical lattice have been calculated. The

structure of the potentials can be modeled via an effective electric field near the

lattice inflection points and an effective magnetic field near the lattice nodes and anti-

nodes. By restricting the available states to high 𝑚𝑗 values, the 𝑛-range over which

the models are applicable is increased due to a reduction of the extent of the Rydberg

atom wave-function along the lattice laser beam direction. I have demonstrated

how the perturbation at the anti-nodes of the lattice electric field resembles the
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diamagnetic problem and gives rise to rotational and vibrational energy levels. I

have shown the adiabatic wave-functions for some representative cases. The adiabatic

potentials in this chapter could be measured spectroscopically in a ponderomotive

optical lattice that is sufficiently deep, such that the individual potentials can be

resolved. With the current experimental setup, trap depths of up to ∼ 50 MHz

are possible, which is not enough to measure the effects described in this chapter.

However, the future implementation of an in-vacuum concentric cavity within the

CryoMOT experiment will drastically improve the depth of the lattice and would be

an important step forward in visualizing the adiabatic potentials of the degenerate

Rydberg atom states within a ponderomotive optical lattice.



CHAPTER VII

Future Directions

In the following, I discuss a few options for future endeavors in both the Blockade

Experiment and the CryoMOT. These are just a few of the many projects we have

discussed over the past five years but never had time to investigate.

7.1 Dual excitation in the Blockade Experiment

In the rotary echo experiment described in Chapter 3, the excitation region is

approximately 1200 𝜇m3. For the case of strongest interactions at 𝑛 = 43, this

allowed for about three excitations (“bubbles”). If the excitation region were reduced

in size such that only one excitation was allowed, while all others were blockaded, new

effects would be visible. For example, I was not able to reach the regime of a perfectly

blockaded system as theoretically studied in Ref. [37] with the current excitation

scheme. Having a single excitation volume would also enable new studies of excitation

statistics [31] and double resonance spectroscopy [30] without the decohering effects

of multiple interacting excitations.

A natural extension of reducing the excitation region size is creating two separate

excitation regions that can be individually addressed. A number of research groups

have moved toward this type of dual excitation [24, 53]. This can be accomplished

either by creating two excitation beams interacting with a single trap of atoms or by

114
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creating two spatially separated traps.

For future experiments in the Blockade Experiment, I have constructed an exci-

tation setup that generates two lower transition (780 nm) excitation beams using a

birefringent calcite crystal. Beam displacers are formed from a plane parallel plate

cut such that the optic axis is angled with respect to the front surface. Light with a

polarization perpendicular to the optic axis will travel straight through the crystal

without refraction, while light with a polarization parallel to the optic axis will travel

at an angle through the crystal. At the exit of the crystal, the two beams will be

parallel yet displaced from each other. The amount of displacement is determined by

the length of the crystal and the angle of the optic axis with respect to the surface

normal. As a side note, sometimes yttrium orthovanadate (YVO4) is used instead

of calcite in beam displacers. YVO4 has better mechanical and optical properties,

better temperature stability, a higher optical damage threshold, and a higher index

of refraction (crystal size can be smaller for the same beam displacement). However,

the transmission through YVO4 is lower for most visible wavelengths and the crystal

itself can be more expensive.

x

so

si=- 8

f

so= -(x-f )f
x-2f

so

Figure 7.1: Initial telescope used to create a slightly divergent beam.

Here I outline the optical setup needed for two excitation spots with adjustable
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separation. The complete setup involves two telescopes with the birefringent crystal

situated between them. A final lens focuses the two spots into the vacuum chamber

and onto the excitation region. In order to create two spatially separated focal spots

in the excitation region, the beam entering the birefringent crystal must be slightly

divergent. Otherwise, the final lens before the chamber will simply focus the two

separated beams onto the same spot. Figure 7.1 shows the first telescope in the dual

excitation setup. The lenses have the same focal length, 𝑓 , and are separated by

slightly more than 2𝑓 . This telescope creates a virtual image behind the lens system

located at 𝑠0 =
−(𝑥−𝑓)𝑓
𝑥−2𝑓

where 𝑥 is the distance between the two lenses.

Δx

Birefringent crystal

Figure 7.2: Birefringent calcite crystal used to separate the incident beam into two polarization
components.

The effect of the birefringent crystal on a divergent beam is shown in Figure 7.2.

Upon entering the crystal, the beam must be polarized such that the polarization

components parallel and perpendicular to the optic axis of the crystal are evenly

divided. In this case, half of the beam power is transmitted straight through the

crystal while the other half is refracted at an angle defined by the angle of the optic

axis. Tracing the beams backwards shows that the effect of the crystal is to create two

beams with a spatially separated virtual focus of Δ𝑥. This separation is determined

by the crystal properties (index of refraction, length, etc.) and is fixed. Usual beam

separations are in the range 0.1-10 mm.

The last telescope serves to recollimate the two beams. Figure 7.3 shows how this

is done. I have assumed here that the focal lengths of the two telescope lenses are the
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Figure 7.3: Recollimation of two spatially separated beams.

same and are equal to the focal lengths of the other telescope lenses, but this need

not be the case. The two virtual beam sources are a distance 𝑠0 +𝑀 from the first

lens where 𝑀 takes into account the mounting distance of the birefringent crystal.

The two beams will focus between the lenses with a separation of Δ𝑥2 = Δ𝑥 𝑦−𝑓
𝑠0+𝑀

.

Here, 𝑦 is the distance between the lenses and is slightly greater than 2𝑓 , such that

the exiting beams are collimated. The two collimated beams then travel with an

angular separation of 𝜀 = Δ𝑥2/𝑓 .

Δx3

Δx3 = ftrapε  

Figure 7.4: Focus of the two beams into the vacuum chamber.

The last part of the dual beam setup is shown in Figure 7.4. The last lens serves

to focus the two beams into the vacuum chamber. The beam separation at the

excitation region is Δ𝑥3 = 𝑓trap × 𝜀.

The complete optical setup is shown in Figure 7.5. The final focused beam sep-

aration can be adjusted by changing the distances 𝑥 and 𝑦 as shown in Figures 7.1

and 7.3. Using a CCD camera placed at the focus of the optical system, I measured
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Figure 7.5: Complete optical setup for dual excitation beams.

a final beam separation of 17 𝜇m for 𝑓 = 5 cm and Δ𝑥=200 𝜇m. By changing the

distance between the first pair of lenses, this value can be adjusted from zero up

to about 100 𝜇m before the beam divergence becomes unmanageable. Figure 7.6

shows the intensity profile of the two beams overlayed with an approximate profile

of the dipole trap. Ideally, the two beam widths would be slightly smaller to ensure

only one excitation is allowed per beam. The best way to accomplish this would

be to move the last lens of the optical system inside the chamber and closer to the

excitation region.

The implementation of the setup described in this section would allow a number

of new investigations into Rydberg atom interactions. For one, the rotary echo

experiment described in Chapter 3 should exhibit much higher echo visibilities of

one can reach the strongly blockaded regime where only one Rydberg excitation is

allowed per excitation beam. To achieve this for 𝑛 = 43, the widths of the 780 nm

beams would have to be reduced to about 5 𝜇m. By changing the polarization of the

light entering the birefringent crystal, it would be easy to switch between a single

excitation region and two nearby regions. Ref. [37] suggests that this would reduce

the echo visibility due to interactions between pseudoparticles, whereas in Chapter

3 I have provided an alternate explanation that suggests the visibility would not be

affected. Additionally, the double-resonance spectroscopy experiment I performed

with Aaron Reinhard in the Raithel lab (Ref. [30]) could yield much clearer results



119

with a single excitation region, and would allow one to study how the Rydberg

excitation ladder energy structure changes with distance between Rydberg atoms.
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Figure 7.6: Intensity profile of two spatially separate excitation beams overlayed with a dipole trap
profile. Fit parameters represent a fit to each individual peak.

7.2 Raman optical lattice in the CryoMOT experiment

There a number of applications that can be pursued with the optical lattice setup

described in Chapter 4. Here I calculate the relevant parameters important in creat-

ing a Raman optical lattice, which is a slight modification of the current apparatus.

This would be an excellent way to increase population transfer into the Rydberg

state over the traditional excitation method. Injecting atoms into the lattice in this

manner would be applicable in quantum information processing schemes where it

is important to fill lattice sites as evenly as possible. In this case, as opposed to

applying 1064 nm radiation, one of the excitation beams is used to form the lattice

instead.

A classical Raman transition refers to a Λ-system where there are two long-lived



120

Δ

δ

Ω
r

Ω
b

5S

5P

R

Figure 7.7: Excitation scheme for Raman optical lattice.

ground states and one excited state. Population is coherently transferred between

the ground states via an excited state that is detuned from resonance. In this case,

the two long-lived states are the ground 5S state and the Rydberg state. This

is loosely termed a Raman transition because the Rydberg state has a very long

lifetime (∼100 𝜇s) compared the to the lifetime of the 5P state (27 ns).

The two-photon Rabi frequency for the transition from the 5S state to the Rydberg

state is given by,

ΩRAM =
Ω𝑅Ω𝐵
2Δ

(7.1)

For an intermediate detuning of Δ = 1 GHz and Rabi frequencies of 2𝜋 × 50 MHz

on both transitions, this leads to a two-photon Rabi frequency of 2𝜋 × 1.25 MHz.

To create an optical lattice, one of the excitation beams is a standing wave such

that the Rabi frequency is modulated in space. The depth of the lattice is given by,

𝑉 =
Ω2

RAM

2𝛿
(7.2)
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For a Rydberg state detuning of 𝛿 = 2𝜋 × 5 MHz, the trap depth is 2𝜋 × 156 kHz.

The corresponding temperature is 𝑇 = ℎ𝜈/𝑘𝑏 = 7.5𝜇𝐾, which points out the fact

that cooling below the Doppler limit of 140 𝜇K would be necessary to keep the atoms

confined. The trap potential takes the form 𝑉 ∼ 𝑉0 cos 2𝑘𝑧 ∼ 𝑉0
(
1− 4𝑘2𝑧2

2

)
where

the bottom of the lattice has been approximated as a harmonic potential. The force

constant, 𝐹 , is then 𝐹 = 𝑉0 (4𝑘
2). The oscillation frequency in such a harmonic

potential is given by, Ω =
√

𝐹
𝑚
= 2𝜋 × 3.5𝜇s.

δ

rydberg state

5S

Figure 7.8: Dressed state picture for Raman optical lattice.

The lattice energy levels in the dressed state picture are shown in Figure 7.8.

The nodes of the lattice are the points where the blue Rabi frequency is zero, and

the antinodes are the points where the Rabi frequency is maximized. When the

blue Rabi frequency is zero, the lower and upper states are pure 5S and Rydberg,

respectively. When the Rabi frequency is at its maximum, the states are coherently

mixed as,

𝜓+ =
1√
2

(∣5𝑆⟩+ 𝑒𝑖𝜙∣𝑅⟩) (7.3)

𝜓− =
1√
2

(∣5𝑆⟩ − 𝑒𝑖𝜙∣𝑅⟩) (7.4)

The atoms will be in the 5S ground state when the lattice is off. The quantum

adiabatic theorem states that a system remains in its instantaneous eigenstate a long
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as a given perturbation acts slowly enough (is adiabatic) and there is a gap between

its eigenvalue and the rest of the spectrum. Therefore, a slow turn on of the optical

lattice will cause the atoms to settle on the lower adiabatic potential. Slow in this

case means slow compared to the relevant Rabi frequencies and detunings. This

means that the turn on time must be at least 1 𝜇s, however, there are some upper

limits to the speed at which the lattice can be turned on.

The scattering rate out of the 5P state limits the coherence time of the lattice.

This rate is given by,

𝜏scatter =
Γ

2

Ω2
𝑟

4Δ2
(7.5)

where Γ is the linewidth of the transition, and
Ω2

𝑏

4Δ
is the light-shifted energy of

the 5P state. For a linewidth of 2𝜋× 6 MHz, the scattering rate is one photon every

85 𝜇s. The lifetime also limits the coherence time of the lattice. Typical lifetimes

for Rydberg S states around 𝑛 = 50 are 100 𝜇s.

With the current experimental apparatus in the CryoMOT, there would be mini-

mal modifications necessary needed to create a Raman optical lattice. Additionally,

adiabatic transfer into the current 1064 nm lattice could also be achieved by sweeping

and electric field across the resonance. The microwave spectroscopy technique used

in Chapters 4 and 5 would provide a method of determining the transfer efficiency

into the lattice as well as the trapping lifetime.

7.3 Goodbye and good luck

In this thesis, I have examined interactions between cold Rydberg atoms, primar-

ily within the context of quantum information. The DiVincenzo requirements for

quantum computing as first listed in Chapter 1 are scalability, qubit initialization,

gates faster than the decoherence time of the system, the ability to read out a result
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at the end of the gate, and a universal gate set. Here, I have addressed the first four

of these requirements. In Chapter 3, I described a unique method for determining

coherence in Rydberg atom excitation with the use of a rotary echo technique. This

method is ideal for larger ensembles of atoms where the more traditional method of

measuring Rabi oscillations is not possible. This rotary echo technique can be used

to test the effect of many sample parameters on coherence time, including atom-

atom interaction strength, atom density, and atom temperature. The technique is

an excellent method for determining the maximum gate time that can be used in

order to maintain the required gate fidelity. The experiment described in Chapter 3

was the first to measure rotary echo signals in an atom sample with a temperature

as high as 1 mK. I also provided a new interpretation of how the coherence time of

the system depends the interaction strength between Rydberg atoms.

In Chapters 4, 5, and 6, I discussed a method to build and uses for a pondero-

motive optical lattice for Rydberg atoms. This was the first demonstration of the

existence of a ponderomotive optical lattice for Rydberg atoms. Trapping Rydberg

atoms in optical lattices has applications in a wealth of research fields, including high

precision spectroscopy, dipole-forbidden transitions, purely quantum mechanical ef-

fects, as well as quantum information. When Rydberg atoms are trapped in a lattice

structure, they exhibit long storage times, reduced collision rates, and minimal trap-

induced shifts. This is ideal for scaling up quantum computation registers to include

multiple qubits. It also allows for qubit initialization and readout, since lattice sites

can be individually addressed with tightly focused laser beams.

In Chapter 7, I have discussed a few possible future endeavors for the Blockade

Experiment and the CryoMOT, yet there seems to be such a number of ideas floating

around at the moment that I have barely grazed the surface. I wish the future
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students who take on these projects the best of luck, and hope that they have as

much fun as I did, but with fewer floods and electrocutions. One last piece of advice,

if someone asks you a question about your project and you don’t know the answer,

say this:

“At this stage there is essentially the question of an influence on the very

conditions which define the possible types of predictions regarding the fu-

ture behavior of the system.” Niels Bohr
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APPENDIX A

Atomic Units

Atomic units are one of the most useful simplifications made in atomic physics. Here

I will give a brief summary.

In atomic units, the rest mass of the electron (𝑚𝑒), the electron charge (𝑒),

Planck’s constant (reduced) (ℏ), and the Coulomb force constant (1/4𝜋𝜖0) are all

set to one. You will have to multiply by the SI value of these constants to convert a

number given to you in atomic units into SI units. For example, if you have a mass

𝑚 = 100 a.u., this is equal to 100×9.109×10−31 kg. The values for the fundamental

atomic units are shown Table A.1.

Symbol SI value
𝑚𝑒 9.10938215(45)×10−31 kg
e 1.602176487(40)×10−19 C
ℏ 1.054571628(53)×10−34 J⋅s

1/4𝜋𝜖0 8.9875517873681×109 kg⋅m3⋅s−2⋅C−2

Table A.1: Fundamental atomic units.

Perhaps the best way to remember what constants you need to multiply is to mem-

orize the units of each of values shown in Table A.1. Additionally, there are many

derived units that are combinations of the values given in Table A.1 and a few other

fundamental constants such as the Bohr radius and the Hartree. The must useful

conversions for understanding the topics in this thesis are given in Table A.2.
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Name and Symbol Fundamental constants SI value

Length (Bohr radius, 𝑎0) 4𝜋𝜖0ℏ
2/
(
𝑚e𝑒

2
)

5.2917720859(36)× 10−10 m
Energy (Hartree, 𝐸h) 𝑚e𝑒

4/ (4𝜋𝜖0ℏ)
2

4.35974394(22)×10−18 J
Electric field 𝐸h/ (𝑒𝑎0) 5.14220632(13)×1011 V⋅m−1

Table A.2: Derived atomic units.

To illustrate the use of these units, I provide a couple of different examples below.

A.1 Interaction Energy Vint

The dipole-dipole interaction energy is written as Vint=𝑛
∗4/𝑅3 in this thesis. See

that this is written in units of inverse length cubed. To convert this value into

Joules, multiply by the Bohr radius cubed and then the Hartree, which is equivalent

to multiplying by 𝑒2𝑎20/4𝜋𝜖0. Explicitly, for a Rubidium Rydberg state,

Vint = n
∗4/R3 → n∗4

R3
× e2a20
4𝜋𝜖0

(A.1)

For the state 50D5/2 at a separation of 1 𝜇m,

Vint =
0.36

√
2 (50− 1.34)4
(10−6m)3

× (1.6× 10−19 C)
2
(0.529× 10−10 m)

2

4𝜋
(
8.85× 10−12 kg−1 ⋅m−3 ⋅ s−2 ⋅ C2

) (A.2)

= 1.84× 10−24 J (A.3)

= 2.77 GHz (A.4)

where in the last step I divided by ℎ to convert to GHz, which is often a more

useful representation than Joules. The 0.36
√
2 factor is particular to this case. The

exact factor may be different for other Rydberg states. The angular momentum D

states couples symmetrically to two states: a P and an F state, resulting in the
√
2

factor. The 0.36 is a result of the wavefunction overlap of the states.
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A.2 Ionization electric field

The electric field at which a Rydberg state ionizes is typically 𝐸 = 1
16𝑛∗4 . To

convert this into SI units, simply multiply by the derived electric field unit shown in

Table A.2. For 50D5/2,

𝐸 =
1

16 (50− 1.34)4 × 5.14× 10
11 V/m (A.5)

= 57.3 V/cm. (A.6)
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APPENDIX B

Scalar, Tensor, and Dynamic Polarizabilities of Atoms

The polarizability of an atomic state describes how the atom responds to an electric

field. Scalar and tensor polarizabilities arise from static electric fields, while the

dynamic polarizability is the result of an oscillating electric field and is frequency

dependent.

B.1 Scalar and Tensor Polarizabilities

The polarizability of an atom represents the amount of charge separation that

occurs when the atom is placed in an external field. The polarizability is related to

the external electric field E via

p = 𝛼 ⋅ E. (B.1)

Consider the energy of an induced dipole in an electric field. Inducing a dipole

moment will affect the energy of the atom and will therefore determine how the atom

acts in the external field. We can relate the change in the energy of the atom to the

polarizability by looking at the amount of work done on the atom by the external

field. The work done on the induced dipole in changing the electric field from E to

E+ 𝑑E is

𝑑𝑊 = −p ⋅ 𝑑E = −E ⋅ 𝛼 ⋅ 𝑑E. (B.2)
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We can integrate this equation to find the total work is simply

𝑊 = −1
2
E ⋅ 𝛼 ⋅ E. (B.3)

An interesting fact is that the polarizability of all atoms in their ground state

is positive for static fields, which means that the energy of a ground state atom is

always lowered by the presence of the external field. This is simply an illustration

of the fact that while in the ground state, the atom can only couple to higher-lying

states.

If the polarizability is isotropic, then equation B.3 reduces to 𝑊 = −1
2
𝛼𝐸2 where

the polarizability 𝛼 can now be represented by a single number since it is a scalar.

This is just the familiar Stark shift of an electron placed in an external field. However,

the polarizability is only isotropic for an atom that has zero total angular momen-

tum (𝐽 = 0). If 𝐽 ∕= 0, then the induced dipole moment will depend on the spin

polarization of the atoms and will be anisotropic. In this case, the polarization is still

proportional to the external field, but the direction of the induced dipole moment

may not be the same as the direction of the applied field. In this case we need a

polarizability tensor, to describe the dipole moment induced in the atom.

The Hamiltonian describing the effect of an electric field E on an atom is given

by [83]

𝐻 = −
(
𝛼0 + 𝛼2

3𝐽2
𝑧 − J2

𝐽 (2𝐽 − 1)
)
𝐸2

2
(B.4)

where J is the angular momentum of the electron and the quantization axis 𝑧 is

parallel to the direction of the electric field. The second term is the tensor polariz-

ability and only exists for 𝐽 ∕= 0, as described above. The terms 𝛼0 and 𝛼2 are the
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5S1/2

5P3/2
mj=-3/2 mj=3/2mj=-1/2 mj=1/2

mj=-1/2 mj=1/2

Coupled
Not Coupled

Figure B.1: Coupling between the 5S1/2 state and the 5P3/2 state due to a static electric field.

scalar and tensor polarizabilities respectively, and are defined by

𝛼0 =
𝑟0
4𝜋2

∑
𝐽 ′
𝜆2𝐽𝐽 ′𝑓𝐽𝐽 ′ (B.5)

𝛼2 =
𝑟0
8𝜋2

1

(2𝐽 + 3) (𝐽 + 1)

∑
𝐽 ′
𝜆2𝐽𝐽 ′𝑓𝐽𝐽 ′ [8𝐽 (𝐽 + 1)− 3𝑋 (𝑋 + 1)] (B.6)

where 𝑋 = 𝐽 ′ (𝐽 ′ + 1) − 2 − 𝐽 (𝐽 + 1), 𝑟0 is the classical electron radius, 𝜆𝐽𝐽 ′ is

the wavelength for a transition between states 𝐽 and 𝐽 ′ and 𝑓𝐽𝐽 ′ is the transition

oscillator strength [84].

As an example, a 𝑃3/2 state has 𝐽 = 3/2, J
2 = 3/2 [3/2 + 1] = 15/4, and 𝐽𝑧 = 3/2

or 1/2. The tensor part of the Hamiltonian is then 𝐻tens = 𝛼2
𝐸2

2
for 𝐽𝑧 = 1/2 and

𝐻tens = −𝛼2𝐸2

2
for 𝐽𝑧 = 3/2. Because the scalar and tensor polarizabilities are a

result of a linear field, the couplings between different states that contribute to the

sum in equation B.4 are limited. For example, the 5S1/2 state does not couple to the

5P3/2,∣𝑚𝑗 ∣=3/2 state, as shown in Figure B.1. The shift of this state is thus entirely

due to higher lying states with angular momentum 𝐽 > 1/2.

B.2 Dynamic Polarizability

The dynamic polarizability is the result of an atom being placed in an oscillating

electric field (like an electro-magnetic wave). This construction is parallel to the AC

stark shift or light shift of atomic energy levels. There are three main differences

between the static polarizability and the dynamic polarizability: the tensor polariz-
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ability can contain an antisymmetric part, the atom can absorb and emit photons

from the field so the polarizability tensor consists of both a dispersive part and an

absorptive part, and the polarizability depends on the frequency of the light inducing

the dipole moment [85]. It is the dynamic polarizabilities of the different levels of

Rb that allow the formation of the optical dipole traps and optical lattices described

in this thesis.

B.3 Dynamic Polarizabilities: On Resonant Dipole Trap Spectra

5S

4D6S

6P

5D

-12700 cm-1

5P 0 cm-1

6700 cm-17400 cm-1

11000 cm-1

13000 cm-1

λ=1064 nm = 9400 cm-1

5P |5P, n>

5S |5S, n+1>
4D
6S

|4D, n-1>
|4S, n-1>

6P

5D

|6P, n-1>
|5D, n-1>

Dressed State

Figure B.2: Energy levels near the 5S-5P transition in Rubidium (left). Dressed state energy levels
with a 1064 nm field (right).

Here I provide a qualitative discussion of the effect of the dipole trap light on the

5S and 5P atomic states in Rubidium. This is an alternative view to that discussed in

Section 2.3. Though off-resonant, the 1064 nm laser light initiates couplings between

the various states of our atoms via a dynamic polarizability as discussed above. These

couplings will generate light shifts of the energy levels and create a potential well
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into which atoms are attracted. To determine the exact light shifts of the 5S and 5P

levels of Rubidium in a 1064 nm field, the sum of the couplings to all other states

must be calculated. It is easiest to consider the situation in the dressed state picture.

The relevant unperturbed energy levels are shown on the left in Figure B.2. On the

right are the energy levels in the dressed state basis where one photon has been

added or subtracted from the field. Here, 5P is taken as the reference, zero-energy

point. Energies are written in wavenumbers (cm−1). The photon from the field is

1064 nm or 9400 cm−1.

The 5S state couples strongly only to the 5P state. The next dipole coupled state is

the 6P state which lies more than two photons away (11000 cm−1+12700 cm−1=23700 cm−1).

Consider the Hamiltonian of the interaction between the 5S and 5P states:

𝐻 =

⎛
⎜⎝ 𝐸 𝜒

𝜒 0

⎞
⎟⎠

where the energy of the 5P state is the reference energy 0, and the energy of the

5S state is 𝐸. The coupling between the state is denoted as 𝜒. The eigenvalues of

the system are,

𝜆+ =
−𝜒2
𝐸

(B.7)

𝜆− = 𝐸 +
𝜒2

𝐸
(B.8)

where 𝜆+ and 𝜆− are the perturbed energy levels of the 5P and 5S states, respec-

tively. Since the energy value 𝐸 is negative in this case (see Fig. B.2), the 5P state

shifts up in energy due to the interaction with 5S, and the 5S state shifts down in

energy due to the interaction with 5P. The shifts are equal in magnitude.

The light shift for 5S is equal to 1
2
𝛼5S𝐸

2 where 𝛼5S is the dynamic polarizability of

the 5S state. In the classical electron oscillator model, the polarizability is calculated
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via

𝛼 = − 𝑒2

𝑚𝜔2

1

𝜔2 − 𝜔2
0

(B.9)

where 𝜔 is equal to 2𝜋𝑐/1064 nm and 𝜔0 is an atomic resonance. Using only

the strong resonance from 5S to 5P at 780 nm to calculate 𝛼, we find a value of

𝛼5S = 1.573 × 10−7 cm2

V2 MHz. Since there are no other strong couplings for the 5S

state, calculating just the shift from the 5P state provides an estimation accurate to

within about 10 percent. A more accurate determination is provided in Ref [86] and

is equal to 1.776× 10−7 cm2

V2 MHz.

It is more difficult to find an estimate of the 5P dynamic polarizability, and, to

my knowledge, has not been experimentally measured to date. From Figure B.2, it

is clear that there are a number of resonances that contribute to the light shift (6S

and 4D will push the state upwards in energy while 5D will depress the energy). We

can find an estimation of the dynamic polarizability of 5P by looking at spectra of

Rydberg atom excitation in an optical lattice. Note that in contrast to the spectra

shown in Chapter 4, for these cases the trap is excited with the lower transition

780 nm laser approximately on resonance with atoms that are located at the bottom

of the dipole trap. This is opposed to the 1.2 GHz detuning used for the experiments

in Chapter 4.

Spectra of the dipole trap excited on resonance show three distinct features. In

figure B.3, the peak on the far left corresponds to atoms not in the trap, being off-

resonantly excited by the 5S-5P light, combined with a 480 nm photon at the right

frequency. The peak in the middle corresponds to atoms at the bottom of the trap,

being resonantly excited by 5S-5P light combined with a 480 nm photon. Lastly, the

peak on the far right corresponds to atoms not in the trap, being resonantly excited

by primary MOT light and a 480 nm photon. The primary MOT light is 5 MHz red
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Figure B.3: Excitations as a function of blue laser frequency. The lower transition light is approxi-
mately on resonance with atoms at the bottom of the dipole trap.

detuned of the 5S-5P transition resonance, so this peak is slightly shifted to the right

in the spectra, since a higher energy blue photon is required for excitation. As a side

note, the primary MOT light leaks into the secondary MOT chamber through the

pyramidal MOT (see Section 2.5). It is usually not desirable that this light would

overlap with the excitation region, but in this case serves as a convenient frequency

marker that does not depend on the intensity of the dipole trap light or the frequency

of the 5S-5P excitation laser light. By measuring the distance between this peak and

the peak on the far left, the detuning of the 5S-5P laser can be easily measured.

Figure B.4 shows how the three peaks in Figure B.3 are excited. As the red

frequency is scanned (arrows (2) and (3)) in Figure B.4) the peaks will shift. There

is a narrow frequency region where atoms in the dipole trap will be resonantly excited.

At all other frequencies, both atoms in the trap and atoms outside of the trap are
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Figure B.4: Origin of the three different peaks in the dipole trap spectra.

excited off-resonantly.

Figure B.5 shows many different spectra for different 5S-5P laser frequencies. As

previously mentioned, the detuning of this laser from the MOT transition can be

determined by measuring the distance between the far left and right peaks in the

spectra. The peak corresponding to the dipole trap does not appear until a detuning

of about 30 MHz has been reached. The maximum height of the peak occurs at a

detuning of 36 MHz. The relative shift of atoms inside and outside of the trap appears

approximately linear. This is expected if atoms are being excited off resonantly, and

most atoms in the dipole trap are at the very bottom of the trap. This is confirmed

from off-resonant dipole trap spectra as shown in Figure B.6, where the intermediate

5S to 5P transition is detuned by 1.2 GHz. From this spectrum, most atoms are

located at a depth of about 25 MHz. By examining Figures B.4 and B.5, and by

using the dynamic polarizabilities of the 5S and Rydberg state (1.776×10−7 cm2

V2 MHz

and −1.354 × 10−7 cm2

V2 MHz, respectively), we can determine the values of 𝛿1, 𝛿2,

and 𝛿3 from Figure B.4. This allows us to estimate the 5P polarizability to be
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Figure B.5: Dipole trap spectra as the 5S-5P laser is scanned in frequency.

∼ −1.9× 10−7 cm2

V2 MHz. This value is consistent with the discussion above.
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Figure B.6: Spectrum of atoms in and out of the dipole trap with a 1 GHz detuning on the
intermediate transition.
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APPENDIX C

Phase Matching in a Frequency-Doubled Laser

In order for the non-linear crystals inside of frequency doubled lasers to be effective

at producing doubled light, the wavevectors of the two colors (960 nm and 480 nm

in the case of this thesis) much match. This is known as phase matching. In general,

the difference between the wavevectors is not zero because the index of refraction of

a material depends on the frequency of the pump field. Ensuring Δ𝑘 is zero is the

same as matching the indices of refraction, since:

Δ𝑘 = 𝑘(2𝜔) − 2𝑘(𝜔) = 2𝜔

𝑐
(𝑛2𝜔 − 𝑛𝜔) (C.1)

If one does not phase match, the second-harmonic wave generated at some plane 𝑧1

having propagated to some other plane 𝑧2, is not in phase with the second-harmonic

wave generated at 𝑧2, and there is interference. Two adjacent peaks of this interfer-

ence pattern are separated by the “coherence length” 2𝜋
Δ𝑘
, which gives the maximum

crystal length that is useful in producing the second-harmonic power.

One way to phase match is to use waves of different types (extraordinary and

ordinary) as the 𝜔 and 2𝜔 beams. The index of refraction for the ordinary beam is

the same no matter what angle it has with respect to the axis of the crystal, but the

index for the extraordinary beam can be adjusted. The index is given by

1

𝑛2𝑒(𝜃)
=
cos2𝜃

𝑛2𝑜
+
sin2𝜃

𝑛2𝑒
(C.2)
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If 𝜃 is chosen correctly, the two indices can be matched, as shown in Figure C.1.

no
2ω

no
ω

ne
ωne

2ω

θ
m

z (optic) axis

Figure C.1: Normal (index) surfaces for the ordinary and extraordinary rays in a negative (𝑛𝑒 < 𝑛0)
uniaxial crystal.

In this case, 𝜃𝑚 is given by

cos2𝜃𝑚
(𝑛2𝜔𝑜 )

2
+
sin2𝜃𝑚
(𝑛𝜔𝑒 )

2
=

1

(𝑛𝜔𝑜 )
2

(C.3)

Solving for 𝜃𝑚 gives

sin2𝜃𝑚 =
(𝑛𝜔𝑜 )

−2 − (𝑛2𝜔𝑜 )−2

(𝑛2𝜔𝑒 )
−2 − (𝑛𝜔𝑜 )−2

(C.4)

This method of phase matching is known as critical phase matching because a

small change in the angle 𝜃𝑚 can change the phase matching by a large amount.

Non-critical phase matching, or ninety-degree phase matching, is sometimes a better

method. In this case, 𝜃𝑚 = 90 ∘. It is seen from Figure C.1 that this is the flattest

part of the ellipse for 𝑛2𝜔𝑒 , and so a small change in angle does not change the phase

matching condition very much. If this technique is used, the value of 𝑛2𝜔𝑒 must be
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adjusted by changing the temperature of the crystal. In this way, Poynting vector

walk-off is avoided, and the crystal angle does not have to be adjusted to phase

match, which could cause the cavity to lose mode matching.
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APPENDIX D

Calculating the Fourier transform limit of an optical pulse

When applying an excitation pulse (optical, microwave, etc) to a system, it is useful

to calculate the Fourier transform limit of the pulse that you apply in order to get an

estimate of the frequency bandwidth of your excitation. It is a reasonable assumption

that the full width of the Fourier transform of an excitation pulse is the inverse of

the temporal pulse width (i.e. 1/𝑇 ), however, this is only true for a Gaussian shaped

pulse. If instead one has a square pulse, which is often a closer approximation for

moderate pulse lengths, our Fourier transform is instead a sinc function and the full

width is less clear. This example shows how to deal with such a case.

If one has a system where there are two coupled levels with amplitudes 𝑐0 and 𝑐1,

detuning Δ, and coupling 𝜒, the Hamiltonian in the rotating wave approximation

(dressed state picture) is given by

𝐻 = ℏ

⎛
⎜⎝ 0 𝜒

𝜒 Δ

⎞
⎟⎠ (D.1)

and the Schrödinger equation yields

𝑖ℏ

⎛
⎜⎝ �̇�0
�̇�1

⎞
⎟⎠ = ℏ

⎛
⎜⎝ 0 𝜒

𝜒 Δ

⎞
⎟⎠
⎛
⎜⎝ 𝑐0
𝑐1

⎞
⎟⎠ . (D.2)

In the limit of low saturation, set 𝑐0 = 1 to find that

�̇�1 + 𝑖Δ𝑐1 = −𝑖𝜒. (D.3)
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Figure D.1: Plot of 𝑦 = sin𝑥 and 𝑦 = 𝑥/
√
(2).

The solution of such a differential equation has a homogeneous part and an inho-

mogeneous part. The homogeneous part has the solution 𝑐1 = 𝑐𝑒
𝑖𝜔𝑡. Plugging this

into Equation D.3 results in 𝑖𝜔𝑐𝑒𝑖𝜔𝑡 + 𝑖Δ𝑐𝑒𝑖𝜔𝑡 = 0. This shows that Δ = 𝜔 and our

final homogeneous solution is 𝑐1 = 𝑐𝑒
𝑖Δ𝑡.

The inhomogeneous part is found by setting �̇�1 = 0. In this case, 𝑐1 = −𝜒/Δ.

Adding the two parts, our complete solution is 𝑐1(𝑡) = 𝑐𝑒
𝑖Δ𝑡 − 𝜒/Δ.

If 𝑐1(0) = 0, then the constant 𝑐 is equal to 𝜒/Δ and the solution becomes

𝑐1(𝑡) =
𝜒

Δ

(
1− 𝑒−𝑖Δ𝑡) . (D.4)

The population of the excited state 𝑐1 is

𝑐1𝑐
∗
1 =
( 𝜒
Δ

)2
(2− 2 cosΔ𝑇 ) . (D.5)

A quick check at this point to see if the calculation is correct can be performed

by setting Δ = 0. This gives 𝑐1𝑐
∗
1 = 𝜒

2𝑇 2 which is what one would expect for zero

detuning. The half-width can be found by setting

𝑐1𝑐
∗
1

𝜒2𝑇 2
=

2

Δ2𝑇 2
(1− cosΔ𝑇 ) = 1

2
. (D.6)
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Using the identity (1− cos (2𝑢)) /2 = sin2 𝑢, Equation D.6 results in the transcen-

dental equation

sin 𝑥 = 𝑥/
√
2 (D.7)

where 𝑥 = Δ𝑇/2. This can be solved using any numerical method of preference.

Figure D.1 shows a graph of the two intersecting curves. The graph shows that

𝑥 = 1.39 or Δ = 2.78/𝑇 . This is the half-width at half maximum. The full width in

frequency units is then

Δ =
2× 2.78
2𝜋𝑇

=
0.88

𝑇
. (D.8)

For example, if the pulse length is 7 𝜇s (as in the microwave pulse used in Chapter

4), then Δ = 126 kHz.
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