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ABSTRACT 

ABSTRACT 

High performance fiber reinforced concretes (HPFRCs) are characterized by pseudo-

ductile tensile strain-hardening behavior, large energy absorption prior to crack 

localization and confined-like compressive response. These properties imply that 

HPFRCs have the potential to serve as highly damage tolerant and energy absorbing 

materials under severe loading conditions. A structural system that could significantly 

benefit from the use of HPFRC is reinforced concrete (RC) coupled wall systems 

(CWSs). Therefore, the overall objective of this work is to investigate, through 

computational and hybrid simulation techniques, the seismic behavior of RC CWSs in 

which HPFRC is used to replace regular concrete in vulnerable regions of the structure.  

 

In order to simulate the hysteretic behavior of HPFRC structural components under 

random displacement reversals, an inelastic HPFRC material model is developed using a 

new mixed rotating/fixed smeared crack formulation. Two 18-story CWSs, one RC and 

the other containing HPFRC in the coupling beams and wall plastic hinge zones, are 

designed and their seismic responses investigated. The latter system is designed with less 

reinforcing steel and reduced detailing than the former in recognition of the beneficial 

effects of HPFRC. Comparisons between the seismic performances of both systems 

indicate that the HPFRC system has an enhanced energy dissipation pattern and less post-



 

xvi 

 

event damage than the RC system despite the reduction in reinforcement quantity and 

detailing.  

 

In addition to conventional computational simulation, hybrid simulation is also employed 

to model the seismic behavior of HPFRC CWSs. A strategy for estimating the tangent 

stiffness of structures during hybrid simulation is proposed. It is shown that when the 

strategy is combined with the widely used Operator Splitting Method (OSM) for hybrid 

simulation, the simulation accuracy is enhanced compared to the traditional OSM. A new 

conditionally stable algorithm, called Full Operator Method (FOM) is also developed. It 

is shown that FOM has enhanced accuracy compared to OSM and that it is possible to 

modify FOM into an unconditionally stable algorithm for cases where the estimated 

tangent stiffness is larger than the real tangent stiffness. Hybrid simulation of an 18-story 

prototype with FOM indicates that the new technique is able to model seismic behavior 

of CWSs with reasonable accuracy.  
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CHAPTER 1 

INTRODUCTION 

 

 

1.1 GENERAL 

High performance fiber reinforced concrete (HPFRC) is a class of materials that have 

properties that are attractive to structural engineers. These materials are characterized by 

pseudo-ductile tensile strain-hardening behavior after first cracking (Fig. 1.1) 

accompanied by multiple cracks and large energy absorption prior to crack localization 

(Li 2003; Naaman and Reinhardt 2006). After crack localization, which typically occurs 

at strains ranging between 0.5% and 4% (about 2 orders of magnitude greater than 

traditional concrete), the material strain-softens gradually and further deformation 

demand is accommodated within a single growing crack or band of cracks (Kim et al. 

2009). In compression, HPFRC materials behave like confined concrete, i.e. the material 

has greater ductility compared to regular concrete due to the confining effect introduced 

by the fibers. These properties imply that HPFRC have the potential to serve as highly 

damage tolerant and energy absorbing materials under severe loading conditions. In fact, 

good response has been observed in HPFRC members subjected to tension, shear, and 

bending under both monotonic and reversed cyclic loading (Otter and Naaman 1998; 

Parra-Montesinos 2005; Canbolat et al. 2005; Parra-Montesinos et al. 2006; Parra-
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Montesinos and Chompreda 2007). An advantage of the confining effect introduced by 

the embedded fibers in HPFRC is that it makes it feasible to reduce required confining 

reinforcement in critical regions of a structure, simplifying construction details, 

eliminating steel congestion and reducing construction costs (Parra-Montesinos 2005; 

Parra-Montesinos et al. 2006; Parra-Montesinos and Chompreda 2007; Canbolat et al. 

2005). The potential of using HPFRC materials for structural retrofit applications has also 

been recognized and explored (Kesner and Billington 2005). 

 

A structural system that could potentially benefit from the use of HPFRC is reinforced 

concrete (RC) coupled wall systems. Such systems are often used in mid- to high-rise 

structural systems in zones of high seismic risk to provide lateral resistance to earthquake 

loading. Coupled wall systems are comprised of two or more wall piers in series 

connected via RC coupling beams (Fig. 1.2). Under seismic action, the coupling beams 

must transfer adequate force between adjacent walls and, at the same time, are expected 

to contribute significantly to energy dissipation when undergoing inelastic deformation. 

These stringent requirements usually result in a dense configuration of reinforcement, 

which complicates erection of RC coupled wall systems. Furthermore, as a result of the 

way a coupled wall system deforms (Fig. 1.3), most of the inelastic behavior in wall piers 

takes place in a limited plastic hinge zone at the base of the piers. Since the deformation 

demands are expected to be high in plastic hinge zones, such regions are usually heavily 

confined to assure good response under reversed cyclic behavior. The good 

characteristics of HPFRC have the potential for alleviating some of the previously 
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mentioned difficulties, by reducing reinforcement congestion in the coupling beams and 

plastic hinge zones.   

 

Experimental studies on individual coupling beams have shown that using HPFRC to 

replace traditional concrete material can allow a reduction in reinforcing details while 

still providing satisfactory performance, i.e. strength and deformation capacity (Canbolat 

et al. 2005; Wight and Lequesne 2008; Lequesne et al. 2009). Other studies have also 

shown that the use of HPFRC in the plastic hinge zone is beneficial (Parra-Montesinos et 

al. 2006) by reducing confinement steel and required shear reinforcement. As indicated, 

only a few sets of studies were performed on single structural components, and there 

have been only limited studies (Lequesne et al. 2010) to confirm and study the overall 

effectiveness of using HPFRC in RC coupled wall systems.  

 

The premise of this dissertation is that using HPFRC to replace regular concrete in 

critical parts of coupled wall systems, namely coupling beams and plastic hinge zones, 

will result in good seismic response of the system. This acceptable performance will, 

however, be achieved with a significant reduction in steel detailing requirements, and 

perhaps overall steel reinforcement. It is hypothesized that the expected improvements in 

contstructibility, manifested as a reduction in construction time and cost, as well as 

reduction in steel reinforcement, will offset the added cost of using HPFRC in selected 

small portions of the system. The effectiveness of using HPFRC for improving system 

response is studied using two modeling techniques applied to a coupled wall prototype 

system, namely traditional computational simulation and the hybrid simulation method.  
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1.1.1 Computational simulation of coupled wall systems 

Traditional computational simulation models as applied to HPFRC can be broadly 

categorized by their resolution in modeling nonlinear behavior as micro-scale models, 

macro-scale models, and structural-scale models. Micro-scale models describe the 

behavior of and interaction among the three phases of the material, i.e. fiber, matrix, and 

interfacial zones. Macro-scale models, on the other hand, focus on phenomenological 

behavior at the point level. They are capable of explicitly accounting for key phenomena 

such as hardening and softening in compression, crushing behavior, and post-cracking 

and post-peak response in tension. Structural-scale models implicitly capture the essence 

of structural behavior at the domain level, for example, cross-sectional moment versus 

curvature behavior and panel shear force versus distortion relationships. They are 

generally favored by practitioners because they are computationally expedient and 

because they produce data that is intuitive and that deals directly with design variables 

such as moments, rotations, etc. Sirijaroonchai (2009) discusses examples of HPFRC 

models for each of these categories.  

 

Since micro-scale models focus on the behavior of the constituents of HPFRC, they have 

high computational demands that severely limit their use in analysis applications 

involving large structures. Structural-scale models lack the resolution needed to 

understand detailed structural response. Macro-scale models, on the other hand, are 

significantly more computationally efficient than micro-scale models because they 

capture the overall response and at the same time can provide detailed information about 
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local response. They can therefore be practically used in continuum finite element 

simulations of large structural systems. Based on this rationale, the focus of this 

dissertation is to develop a 2-D macro-scale model for computational simulation of 

HPFRC structural systems. 

 

1.1.2 Hybrid simulation of coupled wall systems 

Over the past 3 decades, the development of the hybrid simulation technique for 

evaluation of structural seismic performance has evolved rapidly (Takanashi et al. 1978; 

Shing and Mahin 1984; Takanashi and Nakashima 1987; Mahin and Shing 1985; Thewalt 

and Mahin 1987; Nakashima et al. 1990; Shing et al. 1990; Shing and Vannan 1991; 

Nakashima et al. 1992; Shing et al. 1994; Thewalt and Mahin 1994; Combescure and 

Pegon 1997; Molina et al. 1999; Nakashima and Masaoka 1999; Darby et al. 1999; Darby 

et al. 2001; Wu et al. 2005; Zhang et al. 2005; Pan et al. 2006; Ghaboussi et al. 2006; Pan 

et al. 2006; Bonnet et al. 2007; Wu et al. 2007; Ahmadizadeh and Mosqueda 2008; Hung 

and Sherif 2009a,b). Hybrid simulation is a technique, which combines the advantage of 

physical testing and conventional numerical simulation for evaluation of a structure’s 

seismic behavior. In hybrid simulation, a structure can be divided into several 

substructures. Each of these structures is either physically tested in a laboratory or 

numerically modeled in a computer. Like the conventional numerical method, hybrid 

simulation uses a discrete-mass model to represent the continuous system and uses time-

stepping integration method to calculate the history response of a structure under an 

earthquake. The major difference between hybrid simulation and traditional numerical 

method is that the term of the restoring force in the equation of motion, representing the 

http://www.engineeringvillage2.com.proxy.lib.umich.edu/controller/servlet/Controller?CID=quickSearchCitationFormat&searchWord1=%7BPegon%2C+Pierre%7D&section1=AU&database=3&yearselect=yearrange&sort=yr
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discrete mass system, is obtained directly from each substructure that is tested either 

physically or numerically. One advantage of hybrid simulation is that it allows 

geographically-distributed simulation (Kwon et al. 2008), in which substructures are 

tested or simulated at different sites and the information of the substructures’ responses at 

each time step is sent to a main computer through a network to calculate the system 

response of the next time step. Furthermore, using hybrid simulation allows combining 

the capabilities of various finite element analysis packages.  Due to its capabilities, the 

hybrid simulation technique is used to study the seismic behavior of HPFRC coupled 

wall systems in addition to the traditional computational method. 

  

1.2 RESEARCH OBJECTIVES 

The overall goal of this study is to investigate, through computational and hybrid 

simulation techniques, the inelastic dynamic response of coupled wall systems in which 

HPFRC is used to replace regular concrete in critical, damage prone parts of the system, 

such as coupling beams and wall plastic hinge zones. Specific objectives are:  

 

1) Develop a robust HPFRC macro model capable of modeling the hysteretic response of 

regular concrete and at the same time able to address the unique strain hardening 

behavior of HPFRC.  

 

2) Use traditional computational simulation to compare between the seismic responses of 

traditional RC coupled wall systems and modified systems in which HPFRC is employed.   
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3) Develop new hybrid simulation tools that can be applied to model the inelastic 

behavior of coupled wall systems.  

 

1.3 DISSERTATION OUTLINE 

This dissertation is comprised of 7 chapters. Chapter 1 is an introduction. Chapter 2 

addresses research objective 1, while Chapter 3 addresses objective 2. Chapters 4 to 6 

address objective 3, while Chapter 7 summarizes the work and draws key conclusions. 

Following is a more detailed description of each chapter.  

 

Chapter 1: Introduction. This chapter provides an overview of the research. The 

objectives and the structure of the dissertation are also provided.  

 

Chapter 2: Hybrid rotating/fixed-crack model for high performance fiber reinforced 

cementitious composites. This chapter presents a new HPFRC material model based on a 

plane-stress, orthogonal, mixed rotating/fixed-crack approach that can be used for 

modeling the 2-D behavior of HPFRC structural members and systems subjected to 

reversed cyclic loading. The performance of the proposed material model is demonstrated 

through comparisons of experimental and numerical results from a series of tests on 

various HPFRC structural components. 

 

Chapter 3: Seismic behavior of a coupled-wall system with HPFRC materials in critical 

regions. This chapter investigates the effectiveness of using HPFRC material in the 

critical components of a coupled wall system for enhanced seismic performance. The 
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seismic performance of the prototype HPFRC coupled wall system is evaluated using 

several parameters, such as the interstory drift and the rotation of coupling beams and 

shear walls. The seismic performance of the HPFRC system is compared with that of a 

conventional RC coupled wall system. 

 

Chapter 4: A method for estimating specimen tangent stiffness for hybrid simulation. This 

chapter suggests a method to estimate structures’ tangent stiffness during hybrid 

simulation. The use of estimated tangent stiffness is shown to be able to increase the 

simulation accuracy when combined with existing hybrid simulation algorithms. The 

enhanced simulation accuracy is shown via an energy error index.  

 

Chapter 5: Full Operator algorithm for hybrid simulation. This chapter presents a new 

algorithm for hybrid simulation. The algorithm, consisting of a predictor and a corrector, 

is shown to be a good candidate to simulate structures with nonlinear behavior. The effect 

of displacement control errors on the proposed algorithm is studied. In addition, the 

stability characteristics of the newly developed Full Operator Method are investigated. 

Based on the investigation result, a modified Full Operator Method is proposed for 

improved stability. The stability and accuracy characteristics of the modified Full 

Operator Method are then discussed. 

 

Chapter 6: Hybrid simulation of HPFRC coupled wall systems. An interface connecting 

the hybrid simulation platform, UI-SimCor, and a finite element analysis package, LS-

DYNA, is developed in this chapter. The enhanced Full Operator Method is combined 
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with the interface to conduct hybrid simulation of the prototype HPFRC coupled wall 

system. The capabilities of hybrid simulation and the modified Full Operator Method are 

discussed in light of the simulation result. 

 

Chapter 7: Summary, conclusions, and future research. This chapter provides a summary 

of this research study. Conclusions from the results and from the previous chapters are 

drawn and future work is recommended. 

 

1.4 PUBLICATIONS FROM THIS DISSERTATION 

In this dissertation, Chapter 4 and the first half of Chapter 5 are published as journal 

papers. Chapter 2 and the second half of Chapter 5 have been submitted for publication, 

and Chapter 3 and 6 are in preparation and will soon be submitted for publication. Details 

are listed as below: 

 

C.C. Hung, S. El-Tawil. Hybrid Rotating/Fixed-Crack Model for High Performance 

Fiber Reinforced Cementitious Composites. ACI Materials Journal (submitted, 

July 2009). (Chapter 2) 

C.C. Hung, S. El-Tawil. Seismic Performance of Midrise High Performance Fiber 

Reinforced Cementitious Composite Coupled Wall Systems. Journal of Structural 

Engineering (in preparation). (Chapter 3) 

C.C. Hung, S. El-Tawil. A Method for Estimating Specimen Tangent Stiffness for 

Hybrid Simulation. Earthquake Engineering and Structural Dynamics. V38, p115-

p134, 2009. (Chapter 4) 
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C.C. Hung, S. El-Tawil. Full Operator Algorithm for Hybrid Simulation. Earthquake 

Engineering and Structural Dynamics V38, p1545-1561, 2009. (Chapter 5) 

C.C. Hung, S. El-Tawil. Stability Characteristics of the Full Operator Method for 

HybridSimulation. Engineering Structures (submitted). (Chapter 5) 

C.C. Hung, S. El-Tawil. Numerical Hybrid Simulation of a High Performance Fiber 

Reinforced Cementitious Composites Coupled Wall System. Earthquake 

Engineering and Structural Dynamic (in preparation). (Chapter 6) 
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Fig. 1.1 -  Typical monotonic stress-strain relationship of HPFRC materials (Naaman 

and Reinhardt 2006) 
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Fig. 1.2 -  Coupled wall system 

 

 

Fig. 1.3 -  Deformed coupled wall system 
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CHAPTER 2 

HYBRID ROTATING/FIXED-CRACK MODEL FOR HIGH PERFORMANCE 

FIBER REINFORCED CEMENTITIOUS COMPOSITES
1
 

 

 

2.1   INTRODUCTION 

High performance fiber reinforced cementitious composite (HPFRCC) materials are 

distinguished from conventional concrete materials by their unique strain hardening 

behavior in tension, which translates into enhanced shear and bending resistance at the 

structural level (Naaman and Reinhardt 2006). The favorable properties of HPFRCC have 

motivated researchers to explore using the material to replace traditional concrete in 

critical elements of a structure for seismic applications and structural retrofit (Parra-

Montesinos 2005; Canbolat et al. 2005; Parra-Montesinos et al. 2006; Parra-Montesinos 

and Chompreda 2007; Kesner and Billington 2005). While many of the investigations to 

date have been experimental in nature, there is demand for robust and expedient inelastic 

computational models that can be used to better understand member and system response. 

In order to predict the behavior of HPFRCC components under various loading 

conditions, a material model based on a plane stress, orthogonal, hybrid rotating/fixed 

crack approach, is developed in this study. The developed material model addresses the 

                                                 
1
 Chapter 2 is based on a submitted paper manuscript:  

C.-C. Hung, S El-Tawil. “Hybrid rotating/fixed-crack model for high performance fiber reinforced 

cementitious composites.” ACI Materials Journal. (submitted) 
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material’s pronounced strain hardening behavior and takes into account its 

loading/unloading/reloading characteristics. The proposed 2-D macro-scale model for 

HPFRCC is based upon a model previously proposed by Han et al. (2003) (hereon 

designated HFB model). The proposed model differs from the HFB model on a number 

of fronts. In particular, the HFB model is based on a rotating crack model, whereas the 

current model is based on a hybrid rotating/fixed crack representation. There are also 

differences in constitutive relationships employed for both tension and compression and 

in the way shear response is computed, which make the proposed model able to 

accurately capture shear distortions at the structural level. The validity of the developed 

material model is shown through extensive comparisons between experimental data and 

numerical results for test specimens exhibiting varied structural responses. The 

comparison results indicate that the developed HPFRCC material model is capable of 

simulating the behavior of HPFRCC structures with reasonable accuracy. 

 

2.2   CONSTITUTIVE MODEL 

 

2.2.1   Crack modeling 

The two methods commonly used to represent cracks in concrete models are the discrete 

crack approach and the smeared crack approach. In the former, the crack is modeled by 

generating finite elements at opposite sides of a crack to represent the discontinuity and 

by inserting specialized elements between opposing elements to represent local crack 

behavior, such as aggregate interlock and crack closing. The smeared crack approach, 

which was introduced by Rashid
 
(1968), assumes that cracks exist in a uniform 

continuous sense. Rather than explicitly modeling a discontinuity, the presence of a crack 
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is modeled through local modification of material response. Although the discrete crack 

approach is able to describe physical cracks more realistically than the smeared crack 

model, its complex and intensive computational demands make it less popular, especially 

when it is applied to model two or more intersecting cracks. On the other hand, the 

smeared crack approach is able to simulate models containing well-distributed cracking 

with much less complexity. In addition, it also allows multiple cracks to occur 

simultaneously with different orientations at an integration point. Other advantages of the 

smeared crack approach can be found in Bolander and Wight (1989). 

 

The smeared crack modeling approach has an extensive history. Some important 

developments can be found in the works by Balakrishnan and Murray (1988). and 

Cervenka (1985). Most existing smeared crack models have been developed for 

monotonic loading, however, some researchers have attempted to model concrete 

behavior under cyclic loading conditions (Han et al. 2003; Sittipunt and Wood 1995; 

Hassan 2004; Mo et al. 2008; Mansour and Hsu 2005). In this work, the smeared crack 

approach is adopted to model the influence of cracks on the cyclic response of HPFRCC 

material. Cracks are allowed to open and close and cracking orthogonal to an original 

crack is permitted to occur.   

 

2.2.2   Crack orientation and growth 

Two different approaches are commonly used to determine crack orientation after crack 

formation, namely fixed crack model and rotating crack model. In the former, the 

orientation of the crack plane is fixed after the crack forms. The stress-strain response at 
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the fixed crack plane and the plane perpendicular to it is then computed according to the 

loading history.  Applications of the fixed crack model can be found in the studies by 

Sittipunt and Wood (1995), and Said et al. (2005). Vecchio and Collins (1982) suggested 

that the fixed crack approach may over constrain the problem, resulting in a higher 

predicted stiffness. In contrast, the rotating crack model assumes that the crack 

orientation continues to change with the principal direction after the crack initiates. This 

implies that damage in concrete is temporary, and is criticized by Bazant
 
(1983) that it 

violates the basic concept of permanency of damage in concrete members.  

 

HPFRCC materials undergo multiple fine cracks prior to crack localization (i.e. 

formation of a major crack, see Fig. 2.1a). In this work, the material is assumed to remain 

homogenous in a macro-sense during the multiple cracking stage until crack localization 

occurs. The effect of multiple cracking is, however, taken into account by recognizing 

that the material’s tensile properties change once the elastic limit is exceeded, as 

described next. In essence, the material is assumed to be characterized by a rotating crack 

model in which crack directions can change orientation arbitrarily until crack localization 

occurs. After localization, the crack direction is fixed. The proposed HPFRCC model is 

therefore a hybrid rotating/fixed-crack model.  

 

Crack initiation in the proposed model is defined using a strain criterion. A fixed crack is 

assumed to initiate when the principal strain at a certain integration point reaches the 

crack localization strain ( tp ) of the HPFRCC material (Fig. 2.1a). Using this approach, 
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cracks are generated on the principal planes, and the directions and values of the principal 

strain vector are determined using Mohr’s circle. 

 

2.2.3   Stress-strain relationship – backbone curves 

In the proposed crack model, the stress-strain relationships in both principal directions 

are assumed to behave uniaxially. In other words, the stress-strain relationship in one 

plane is assumed to be uncoupled from the other one. External confinement effects in 

HPFRCC are, however, assumed to follow the model by Mander et al. (1988) and are 

accounted for in the analysis by adjusting parameters in the unconfined model to reflect 

the additional strength and ductility due to confinement as was done in El-Tawil et al. 

(1999).   

 

The monotonic uniaxial stress-strain relationship of HPFRCC materials is defined next 

based on experimental results in Liao et al. (2007), as shown in Fig. 2.1. The monotonic 

tensile behavior is assumed to consist of 3 segments (Fig. 2.1a). The 1
st
 segment is the 

linear elastic portion. This is followed by strain hardening behavior (segment II) until 

crack localization occurs. After crack localization, the tensile behavior starts to linearly 

strain soften (segment III) until it is no longer able to support tensile stress. The failure 

envelope in tension is expressed as 
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The monotonic compressive behavior of HPFRCC materials is also assumed to be 

composed of 3 stages (segments I through III in Fig. 2.1b). In the first segment, the 

compressive stress starts from zero and progressively increases until reaching the 

compressive strength. Hognestad’s parabolic function (Park and Paulay 1988) is used to 

simulate the hardening behavior in stage 1. The 1
st
 stage is then followed by a linear 

softening portion (denoted segment II) until the residual strength is reached. In the 3
rd

 

stage, the stress is assumed to remain constant, i.e. a plateau stress is reached. The overall 

envelope for the monotonic compressive behavior can be expressed using the following 

equations.  
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2.2.4   Stress-strain relationship – cyclic models 

Under random cyclic loading, the stress-strain functions in the HFB model (Han et al. 

2003) are adopted. In tension, the stress can be calculated as (Han et al. 2003)
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where maxmax
*

tt    for initial unloading; tprlt  max
* for unloading followed by partial 

reloading; max

*

ttultul t    for initial unloading; t  is a constant for tensile 

unloading curve; tpultul  *  for unloading followed by partial reloading.  

 

When HPFRCC materials are under random cyclic displacements in compression, the 

stress state can be calculated as 
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where minmin
*

cc    for initial unloading conditions; cprlc  min
*  for unloading 

conditions followed by partial reloading; min

*

cculcul c    for initial unloading 

conditions; c  is a constant for compressive unloading curve; cpulcul  *  for unloading 

followed by partial reloading. Fig. 2.2 shows an illustration of the stress values of a single 

element subjected to random cyclic displacements. 

 

2.2.5   Shear stiffness reduction 

Shear stiffness decreases after cracking occurs. Within the fixed crack context, some 

studies (Chung and Ahmad 1995; Hu and Schnobrich 1990) used a fixed reduction factor 

to reduce the shear modulus of concrete to differentiate between intact and cracked 

material. The fixed reduction factor was usually taken between 0 and 1. A more refined 

approach
 
(Balakrishnan and Murray 1988; Cervenka 1985) assumes that the shear 

stiffness varies as a function of the strain perpendicular to the crack direction. More 

recently, Said et al. (2005) proposed a shear function to account for the shear stress-strain 

relationship for reinforced concrete.  
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To account for the reduced shear modulus of damaged HPFRCC material, a retention 

factor for the shear stiffness is introduced in the developed material model as is 

commonly done for regular concrete models (Balakrishnan and Murray 1988; Hassan 

2004). The retention factor is assumed to vary as a function of the normal strain on the 

crack plane. As shown in Fig. 2.3, after crack localization, the retained shear stiffness is 

defined as hpfrcci GG  ; where 
 v

E
G

hpfrcc

hpfrcc



12

; i  represents the direction, 1i  for 

crack direction, and 2i  for the direction perpendicular to crack direction. When the 

tensile strain exceeds the crack localization tensile strain, tp , the shear stiffness is 

assumed to start decreasing linearly with an increase in the normal strain. The shear 

stiffness is assumed to reach a plateau, hpfrccGpG 1min  , when the strain reaches 

tpp  2min  , where 
1p and 

2p are constants to define the minimum shear modulus and 

corresponding strain. The shear modulus in direction i  can be expressed as 
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The total shear stiffness is then calculated using the local shear stiffnesses as 
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For regular concrete, Hassan (2004) suggested that the value of µ  depends on the type of 

the simulated structure, while Sittipunt and Wood (1995) proposed that the general values 

of µ,
min and p1 are 0.2, tp5.12 , and 0.005, respectively, for regular concrete. In this 

work µ  is assumed to be dependent on the type of fiber reinforcement used in the 

HPFRCC. Based on a calibration to the experimental data from a series of cyclic loading 

tests on HPFRCC structural members with various types and volume fractions of fibers 

(Chompreda 2005), µ  is taken as 0.2 for HPFRCC with 1% to 2% by volume steel fibers 

and 0.1 for HPFRCC with 1% to 2% by volume polymeric fibers, while 
1p and 

2p  are 

taken as 0.0001 and 12 respectively.  

   

2.2.6   Mesh size dependency and material parameters 

It is a well established fact that use of a softening material model in finite element 

analysis gives results which have first order mesh dependency i.e. the solution does not 

converge as the mesh becomes finer. This is because of a loss of hyperbolicity (in the 

dynamic case) or ellipticity (in the static case) of the underlying partial differential 

equations. Some of the existing techniques used to eliminate mesh sensitivity are non-

local formulations, gradient based enhancements, visco-plastic formulations (Khandelwal 

and El-Tawil 2007), and the crack band approach (Bazant and Oh 1983; Cervenka and 

Papanikolaou 2008). A convenient way to solve the problem of mesh dependency is to 

make the material model dependent on element size, which is the approach adopted 
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herein. To achieve this objective, the ultimate tensile strain, 
tu , for the numerical model 

is computed from a series of simulations of a dog-bone tensile test. The experimental 

value of the ultimate tensile strain is set as a target value, and a trial-and-error process is 

used to choose an appropriate numerical value for the ultimate tensile strain so that the 

computed load deflection response for the dog bone specimen matches the 

experimentally measured one for a given mesh density. The identified element size along 

with its corresponding ultimate tensile strain is then used in structural simulations. Mesh 

size dependency is only considered for elements in tension and not compression because 

tensile behavior is expected to dominate the response of structures considered in this 

research. 

 

2.3   MATERIAL RESPONSE MODELING 

The procedure for obtaining the current stress state at an integration point using the 

proposed approach is shown in Fig. 2.4. The current state of the global strain is first 

determined by adding the incremental strain to the strain state from the previous step. 

Then, depending upon whether the post cracking strain tp  
has been previously reached, 

either the direction of the principal plane or the crack plane is calculated. After that, the 

corresponding local stresses are obtained using the current state of the local strain and the 

history variables. The orientations of the stress and strain in the principal/crack direction 

at each time instant are assumed to coincide. Therefore, the current state of global 

stresses can be computed using  
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The proposed constitutive model for HPFRCC materials was implemented as a user-

defined material model in LS-DYNA
 
(Livermore Software Technology Corporation 

2007). The subroutine for the user-defined model is compiled and linked to the LS-

DYNA executable file to create a new executable file that can accommodate HPFRCC 

material behavior. At every time step, the user-defined model is fed strain and history 

information for each integration point and returns information on stresses, strains, and 

updated history variables. The solution is calculated in LS-DYNA using an explicit 

numerical integration scheme.  

 

2.4   VALIDATION OF THE DEVELOPED HPFRCC MATERIAL MODEL 

Three experimental tests are simulated using the developed numerical HPFRCC model to 

show that the model is able to accurately capture structural behavior. In these examples, 

which include a coupling beam, a dual cantilever beam, and a cantilever structural wall, 

steel reinforcement is modeled using nonlinear truss elements. Steel response is assumed 

to be elastic-plastic with kinematic hardening. The steel rebars used herein have a 

Young’s modulus of 29000ksi (200 GPa), a hardening ratio of 1%, and yield strength 

specified in the studies in question. In addition, perfect bond is assumed between steel 

truss elements and the surrounding cementitious material. 

 

2.4.1   Validation example 1 – coupling beam 
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A HPFRCC coupling beam with a 1.5% volume fraction of hooked fibers was tested 

under displacement reversals by Wight and Parra-Montesinos
 
(Wight and Lequesne 

2008). The dimensions of the coupling beam were .6.24.42 ininin 
 

( cmcmcm 2.150.617.106  ) for thicknessheightlength  . A picture of the test set-up 

is shown in Fig. 2.5a, where cyclic displacements were imposed on the top concrete 

block, which was connected to the HPFRCC coupling beam. The bottom concrete block 

was fixed by bolting the subassemblage to the strong floor. To encourage the specimen to 

undergo pure shear deformation, vertical displacement of the top concrete block was 

guided by using 2 pinned steel struts connecting the top concrete block to the strong floor. 

 

The reinforcement details for the specimen are shown in Fig. 2.5b. Longitudinal 

reinforcement was placed in two identical layers, and each layer consisted of 2 No. 3 and 

2 No. 4 rebars. In addition, 4 No. 5 diagonal steel rebars were placed in the middle layer. 

No. 3 stirrups with a spacing of 2.75 in. (7.0 cm) were placed at the beam ends, and a 

spacing of 6 in. (15.2cm) was adopted for the middle portion of the beam. The yield 

strength for the steel rebars is 62 ksi (430 MPa). 

 

The numerical model is shown in Fig. 2.6a, where the bottom concrete block is fixed and 

the vertical displacement of the top block is prevented to model the effect of the vertical 

struts constraining the motion of the specimen. A cyclic horizontal displacement was then 

imposed on the top concrete block. Material parameters used for the material models in 

this study are shown in Table 1 and were chosen based on data from material tests and 

previously discussed calibration data. The computed crack pattern is shown in Fig. 2.6b. 
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Fine cracking (in the hardening stage) are represented by thin line segments, while 

localized cracks with larger width are denoted by heavy lines, where heavier lines 

indicate larger crack width. Concrete crushing is denoted by solid circles.  

 

At the end of the experimental test, a dense pattern of cracks accompanied by some 

concrete crushing at both ends of the coupling beam was observed as shown in Fig. 2.6c. 

Failure was, however, dominated by flexural response and flexural crack localization 

took place at the base and top of the specimen. The computed crack pattern and crush 

zones (Fig. 2.6b) match reasonably well the experimental configuration especially in the 

lower region of the specimen. However, the model over predicts the density of shear-

related cracks in the middle portion of the specimen. A comparison between the 

computed and measured hysteretic responses is shown in Fig. 2.7. While the loading and 

unloading stiffnesses are well represented, the strength in the negative region is over 

predicted by 25% and in the positive region by 15%. Nevertheless, the degradation of 

strength with cycling is captured well, as is the pinching behavior. 

 

2.4.2   Validation example 2 – dual cantilever beam 

A dual cantilever beam (denoted as PE1.5-0.8-1.7 (Chompreda 2005; Parra-Montesinos 

and Chompreda 2007) with 1.5% polyethylene fibers, 0.8% transverse reinforcement, and 

1.7% longitudinal reinforcement) was tested under reversed displacement. The specimen 

consisted of two beam components, which have dimensions of 4 in. (10.2 cm) by 10 in. 

(25.4 cm), connected by a middle block for the purpose of loading. Each cantilever beam 

had longitudinal reinforcement of 4 No. 5 steel rebars and was designed to evaluate the 
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interaction between transverse reinforcement and HPFRCC materials under large shear 

reversals. The yield strength for No. 2 rebars is 85 ksi (590 MPa) while that for all the 

other rebars is 62 ksi (430 MPa). Details of the beam dimensions and boundary 

conditions are shown in Fig. 2.8, while material properties are shown in Table 1. One 

side of the specimen was given slightly weaker material strength than the other (1% less) 

to initiate earlier inelastic response, thereby forcing deformation to preferentially localize 

there as was observed in the test. 

 

The experimental result in Fig. 2.9a shows that the specimen exhibited a diagonal tension 

failure at a drift ratio of 10.2%, and no visible spalling of cover or buckling of 

longitudinal reinforcement was observed (Chompreda 2005; Parra-Montesinos and 

Chompreda 2007). The specimen response is successfully modeled by the numerical 

model as shown in Fig. 2.9b, where significant shear deformation and associated cracks 

in the plastic hinge region are observed. A comparison of the measured and computed 

hysteretic responses is shown in Fig. 2.10. It is clear that the load-drift hysteresis loops 

match each other closely and that stiffness, strength capacity, load/unloading/reloading 

slopes, and pinching behavior are all well represented. Fig. 2.11 shows the relationship 

between shear distortion and shear stress in the plastic hinge region. The shear distortion 

is computed from the numerical model in the same manner as Chompreda (2005), i.e. by 

computing diagonal deformations in the shear panel. Fig. 2.11 indicates that even though 

pinching is more pronounced in the computational model, the model still matches 

reasonably well the experimental data.  
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2.4.3   Validation example 3 – cantilever shear wall 

The developed HPFRCC material model is further validated through a test of a slender 

structural wall (Parra-Montesinos et al. 2006). The structural wall has dimensions of 

.94.3.37.39.83.135 ininin 
 
( cmcmcm 0.100.1000.345  ) for thicknesslengthheight 

 

with details as shown in Fig. 2.12a. The structural wall was constructed using HPFRCC 

material with 1.5% volume fraction of steel twisted fibers in the lower portion with a 

height of 59.06 in. (150.0 cm) and regular concrete for the rest. Concrete behavior is 

simulated using the HPFRCC model adjusted so that the tensile strength is negligible.  

The material properties and reinforcement details of the structural wall are shown in 

Table 1 and Fig. 2.12a, respectively. Since the tensile properties of the HPFRCC in this 

experimental test were not documented (Parra-Montesinos et al. 2006), they are selected 

based a similar HPFRCC mix by Naaman and Reinhardt (2006). The yield strength for all 

the steel rebars is 62 ksi (430 MPa). The wall is fixed at its bottom end and is tested 

under reversed cyclic loading applied to its top.  

 

As shown in Fig. 2.12b, the observed behavior of the structural wall was dominated by 

the flexural response
 
(Parra-Montesinos et al. 2006). A dense array of flexural cracks 

accompanied by concrete crushing was observed in the lower section of the specimen as 

displayed in Fig. 2.12b. The crack pattern predicted by the developed numerical model is 

plotted in Fig. 2.12c, which indicates that the model reasonably captures the observed 

damage pattern. However, towards the end of the load regime, the model predicted minor 

crushing at the base of the wall, which was not observed experimentally. This may be 

attributed to the fact that the specimen suffered some local instability in plastic hinge 
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zone, which may have shielded it from excessive compressive demands that led to 

crushing in the model. The model could not represent this phenomenon because of its 

planar nature, i.e. it could not represent out-of-plane local buckling response. 

Nevertheless, good overall comparison is achieved for the load versus deflection (Fig. 

2.13) and shear stress versus shear distortion responses (Fig. 2.14). Also, while the shear 

strain from the numerical model is about 15% less than that from the experimental result, 

the pinching behavior from the numerical simulation matches that from the experiment 

quite well.  

 

2.5   SUMMARY  

A numerical model for simulating the reversed, cyclic behavior of HPFRCC structural 

components is proposed in this study. The model, based upon a hybrid rotating/fixed-

crack approach, allows orthogonal cracking and can be applied to plane stress problems. 

A retention factor that is a function of the crack normal strain is used to capture the effect 

of cracking on the shear response of HPFRCC materials. The developed model is 

validated through numerical simulations of various types of HPFRCC structures under 

reversed displacement, including a coupling beam with diagonal steel reinforcement, a 

dual steel-reinforced cantilever beam dominated by shear cracking, and a slender 

structural wall. Comparisons between numerical and experimental data show that the 

hysteretic response is generally reasonably well captured including load deflection 

behavior, shear stress versus shear distortion response, pinching response, loading and 

unloading stiffness and strength. Discrepancies between computed and measured results 

could be attributed to assumptions that were necessarily made due to lack of test data 
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characterizing the response of HPFRCC under cyclic loading. For example, the proposed 

model does not capture the effects of tension stiffening, tension softening, or bond slip. 

Size effects are also not considered. Such effects can be included in future versions of the 

proposed model once pertinent test data for HPFRCC under reversed cyclic loading 

becomes available.  
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2.6   NOTATIONS 

 
i  = direction 

j  = time step 

  = retention factor 

T = strain transformation matrix 

)( j  
= angle of the principal/crack plane 

ccf   = compressive strength of HPFRCC adjusted to account for confinement effects 

0k  = ratio of residual compressive stress to 
ccf   

t  = power for tensile unloading curve 

c  = power for compressive unloading curve 

t  = constant for tensile unloading curve 

c  = constant for compressive unloading curve 

1p  = constant associated with the minimum shear modulus 

2p  = constant associated with 
min  

v  = Poisson’s ratio 

hpfrccE  = Young’s modulus 

crG  = shear stiffness 

minG  = minimum shear stiffness 

hpfrccG  = shear stiffness of the intact HPFRCC 

iG  = shear stiffness in direction i 

)(

12

j  =  shear stress in local coordinate system 

  = stress 

)(

1

j  = 1
st
 principal stress 

)(

2

j  = 2
nd

 principal stress 

)( j

xy  = stress vector in global coordinate system 

)(

12

j  = stress vector in local coordinate system 

tc  = cracking stress 

tp  = post-cracking stress 

min
*
t  = minimum tensile stress for partial reloading 

tul
*  = stress associated with tul

*  

maxt  = maximum experienced tensile stress 

max
*
t  = maximum tensile stress for partial reloading 

cp  = peak compressive stress 

cu  = residual compressive stress 
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min
*
c  = minimum compressive stress for partial reloading 

minc  = minimum experienced compressive stress 

cul
*  = stress associated with cul

*  

  = strain 

  = strain rate 

min  = strain associated with 
minG  

inn,  = normal strain in direction i 

)( j

xy  = strain vector in global coordinate system 

tc  = cracking strain 

tp  = post-cracking strain 

tu  = ultimate tensile strain 

tul  = minimum tensile strain during unloading 

tul
*  = minimum tensile strain for partial reloading 

maxt  = maximum experienced tensile strain 

max
*
t  = maximum tensile strain for partial reloading 

tprl  = maximum tensile strain during partial reloading 

minc  = minimum experienced compressive strain 

min
*

c  = minimum compressive strain for partial reloading 

cul  = maximum compressive strain during unloading 

cul
*  = maximum compressive strain for partial reloading 

cp  = peak compressive strain corresponding to ccf   

cu  = ultimate compressive strain  

cpul  = maximum compressive strain during partial unloading 

cprl  = maximum compressive strain during partial reloading 

)( j

xy  = shear strain in global coordinate system 

)( j

xy  = incremental strain vector in global coordinate system 

)( j

y  = incremental strain in y direction 

)( j

xy  = incremental shear strain in global coordinate system 
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Table 2.1 - Material parameters for the numerical models used in the validation examples. 

 

Material 

parameters 

Coupling 

Beam 

Dual Cantilever 

Beam 

Cantilever Wall 

HPFRCC Concrete 

hpfrccE , ksi (GPa) 2666 (18.4) 3500 (24.1) 3000 (20.7) 3000(20.7) 

v  0.15 0.15 0.15 0.15 

tc , ksi (MPa) 0.40 (2.8) 0.35 (2.4)  0.3 (2.1) 0 

tc  0.00015 0.0001 0.0001 0 

tp , ksi (MPa) 0.50 (3.4) 0.45 (3.1) 0.4 (2.8) 0 

tp  0.002 0.002 0.005 0 

tu  0.17 0.12 0.15 0 

cp , ksi (MPa) -5.5 (37.9) -7.3 (50.3) -10.4 (72.0) -7(48.2) 

cp  -0.006 -0.0075 -0.005 -0.0035 

cu , ksi (MPa) -2.0 (13.8) -2.0 (13.8) -2.0 (13.8) -2(13.8) 

cu  -0.03 -0.03 -0.04 -0.025 

  0.2 0.1 0.1 0.1 

1p  0.0001 0.0001 0.0001 0.0001 

2p  12 12 12 12 

t  6 6 6 10 

c  3 3 3 10 

t  0.4 0.4 0.4 0.8 

c  0.4 0.4 0.4 0.8 
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(a) tensile response 

 

(b) compressive response 

Fig. 2.1 - Typical monotonic stress-strain relationship of HPFRCC materials 
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(a) reversed tensile response 

 

(b) reversed compressive response 

Fig. 2.2 - Reversed stress-strain relationship of the developed model 
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Fig. 2.3 - Relationship between normal strain and shear stiffness 
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Fig. 2.4 - Procedure of implementing the algorithm for the HPFRCC material model 
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(a) experimental test setup (b) reinforcement details 

 

Fig. 2.5 - Experimental test of a HPFRCC coupling beam 

 

 

 

 
(a)  coupling beam model (b) computed pattern (c) observed pattern 

Fig. 2.6 - Computed versus observed damage patterns for coupling beam test 
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Fig. 2.7 - Comparison between computed and experimental hysteresis response for 

coupling beam test 
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Fig. 2.8 - Experimental setup and reinforcement details of dual cantilever specimen 
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(a) experimental crack pattern 

 

(b) computed crack distribution 

Fig. 2.9 - Crack pattern of dual cantilever specimen 

 

Fig. 2.10 - Shear stress versus drift relationship of dual cantilever specimen 
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Fig. 2.11 - Shear stress versus shear strain relationship of dual cantilever specimen 
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Fig. 2.12 - The cantilever wall validation study 
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Fig. 2.13 - Lateral load versus drift relationship of cantilever wall specimen 

 

 

Fig. 2.14 - Shear stress versus shear strain relationship of cantilever wall specimen 
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CHAPTER 3 

SEISMIC BEHAVIOR OF A COUPLED-WALL SYSTEM WITH HPFRC 

MATERIALS IN CRITICAL REGIONS
1
 

 

 

 

 

3.1   INTRODUCTION 

Reinforced concrete coupled wall (RC-CW) systems are often used in mid- to high-rise 

structural systems in zones of high seismic risk to provide lateral resistance to earthquake 

loading. Coupled wall systems are comprised of two or more wall piers in series 

connected via reinforced concrete (RC) coupling beams. Under seismic action, the 

coupling beams must transfer adequate force between adjacent walls and, at the same 

time, are expected to contribute significantly to energy dissipation. These stringent 

requirements necessitate careful design and detailing of RC coupling beams to ensure that 

they have the necessary performance characteristics during a design seismic event.  

 

Many studies of RC coupling beam performance have been conducted over the past four 

decades, e.g. Paulay (1971); Paulay and Binney (1974); Tassios et al. (1996); Galano and 

Vignoli (2000); Kwan and Zhao (2001); and Hindi and Hassan (2004). The common 

research theme in these studies was to investigate the effect of various reinforcement 

                     
1
 Chapter 3 is based on a paper which is in preparation. 

C.C. Hung, S. El-Tawil. Seismic Performance of Midrise High Performance Fiber Reinforced Concrete 

Coupled Wall Systems. Journal of Structural Engineering (in preparation). 
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amounts and configurations on the cyclic response of RC coupling beams, with the aim 

of ensuring stable hysteretic response. The results of these studies have culminated in the 

current commonly used design provisions in the ACI (2008) code and other codes 

worldwide, which entail diagonally reinforced coupling beams with sufficient steel 

confinement. Beams detailed in such a manner have been shown to be capable of 

providing adequate strength, stiffness, and energy dissipation capacity. They are able to 

dissipate a large amount of energy prior to the onset of significant inelastic response of 

the coupled wall piers, which is the preferred energy dissipation mechanism for RC-CW 

systems (Harries and Mcneice 2006).  

 

The stringent detailing requirements for coupling beams usually results in a dense 

reinforcement configuration, which complicates erection of RC coupled wall systems, 

lengthening construction time and increasing cost. Furthermore, as a result of the way a 

coupled wall system deforms, most of the inelastic behavior in wall piers takes place in 

the plastic hinge zone at the base of the piers. Since the deformation demands are 

expected to be high in the plastic hinge zones, such regions are usually heavily confined 

to assure good response under reversed cyclic behavior. In other words, RC-CW systems 

require extensive detailing to ensure that they can provide acceptable seismic 

performance.  

 

The detailing requirements for RC-CW systems stem primarily from the brittle nature of 

concrete, especially when subjected to cyclic loading. As indicated in Chapter 1, an 

alternative building material that has the potential for alleviating many of the stringent 
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detailing requirements for RC-CW systems is high performance fiber reinforced concrete 

(HPFRC). The material‟s tensile strain hardening behavior after first cracking coupled 

with its self-confined compressive response implies that a reduction in the level of 

detailing can be achieved without compromising performance.   

 

Experimental studies on individual coupling beams have indicated that using HPFRC to 

replace traditional concrete material can allow relaxation of reinforcing details while still 

providing satisfactory performance, i.e. strength and deformation capacity (Canbolat et 

al. 2005). Furthermore, Parra-Montesinos et al. (2005) showed that using HPFRC 

materials in slender walls can lead to good performance under cyclic displacement in 

spite of significantly reduced confinement detailing. To investigate the implications of 

these experimental observations at the system level, numerical studies are conducted to 

compare the performance of a traditional RC 18-story coupled wall systems with that of 

another similar system in which the coupling beams and plastic hinge regions are HPFRC 

instead of RC, hereafter denoted H-CW system. The study presented herein is conducted 

using computational simulation models that account for the major sources of nonlinear 

response in HPFRC walls including regular concrete and HPFRC cracking and crushing 

behavior as well as rebar yielding. The system performance under various hazard levels is 

investigated and the system response is evaluated through various parameters including 

inter-story drift, rotation and distortion of critical structural parts.  

 

While numerical studies of RC-CW systems subjected to seismic loading abound in the 

literature, the majority of these were conducted using structural-scale models in which 
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member response is modeled using linear or non-linear beam-column elements. Readers 

are referred to El-Tawil et al. (2010) for a succinct summary of the results of these 

studies. This chapter goes beyond the many published studies on coupled wall systems 

that employed macro-models in that it represents system response using detailed finite 

element models. Moreover, the work differs from all existing studies on coupled wall 

systems in that it focuses on modeling and investigating the behavior of wall systems 

with HPFRC components.   

 

3.2   SYSTEM DESIGN 

The theme system considered in this chapter consists of a 94.0 ft [28.8 m] by 78.5 ft [24.0 

m] (in plan) steel moment resisting frame surrounding a 47 ft [14.3 m] by 31.5 ft [9.6 m] 

(in plan) core wall system. The plan view of the prototype structure is given in Fig. 3.1. 

The total height of the structure is 219 ft [67.5 m]. The first floor‟s height is 15 ft [4.6 m] 

and typical floors are 12 ft [3.7 m] high. The thickness of the wall is 20” [500 mm] and 

the total structure‟s weight is 20,831 kips [9449 tons]. Two different prototype wall 

systems are designed for comparison purposes. The first is a traditional RC system. The 

second prototype has HPFRC coupling beams. In addition, HPFRC is used in the first 

four floors of the wall piers. 

 

The prototype structure is assumed to be an office structure in Los Angeles, and is 

categorized as Seismic Use Group I. The spectral response accelerations for short periods 

and at 1 second, Ss and S1, are then determined, respectively. Assuming site class D, the 

map accelerations are adjusted to the design accelerations, SDS and SD1. The building is 
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thus classified as Seismic Design Category E. The structure is defined as a dual system 

due to the structure‟s frame-wall system, and the design coefficients and factors are 

chosen from (FEMA-450 2003) accordingly. 

 

Seismic design loads are calculated in accordance with the equivalent lateral force 

analysis in (FEMA-450 2003). Due to the symmetric nature of the theme system, the 

numerical analysis is simplified by modeling only half of the structure. To account for 

cracking and loss of stiffness due to expected cyclic behavior of the concrete walls, the 

effective flexural and axial stiffness of wall piers are taken as 0.70EIg and 1.00EAg (ACI 

2008) for the compression wall, and 0.35EIg and 0.35EAg for the tension wall, 

respectively (El-Tawil et al. 2010). 

 

A target coupling ratio of 45% (computed when the system has formed a full plastic 

mechanism as discussed in El-Tawil et al. 2010) is chosen for both RC-CW and H-CW 

systems. The coupling ratio is the proportion of the moment generated by the coupling 

action to the system overturning moment (El-Tawil et al. 2010). To simplify the coupling 

beam design, the generally reasonable assumption that the theme system does not have 

significant higher mode effects is made. In addition, it is assumed that the plastic 

deformation mechanism of the wall system is that plastic hinges form at the base of the 

shear walls and at the ends of all coupling beams. Analysis results presented in Hassan 

and El-Tawil (2004) suggest that these assumptions are fair for the set of 18-story 

buildings that they considered. The total coupling beam forces are uniformly distributed 

to each beam, and all coupling beams are therefore designed to have the same cross 
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section. Following (Hassan and El-Tawil 2004; El-Tawil et al. 2010), the beam shear 

demand is  

 

    SNOTMCRVbeam   (3.1) 

                                         

 

where CR is the coupling ratio, in this case 0.45; OTM is the overturning moment; N is 

the number of stories; S is the distance between wall centroids. An elastic frame model is 

then numerically constructed to determine wall forces and drifts. In the model, beam-

column elements, which are located at the gross section centroid of each wall, are used to 

represent walls. Coupling beams are represented using rigid body elements with released 

restraints at both ends and applied coupling beam shear force, Vbeam, and end moment, 

Mbeam at the wall piers. The applied end moment is calculated using 

                                                            

   2beambeambeam VLM   (3.2) 

 

where Lbeam is the clear span length of the coupling beam. 

 

The concrete and steel yield strengths are 7 ksi [48 MPa] and 60 ksi [414 MPa], 

respectively. The HPRCC material properties used herein are based on Naaman and 

Reinhardt (2006)‟s work in which a 2% volume fraction of Torex fibers was used to 

make HPFRC. The HPFRC crack-localization strain is 1%, the tensile strength is 0.75 ksi 

[5.1MPa], and the compressive strength is 7 ksi [48MPa].  
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In contrast to the method in the ACI code (2008) wherein flexural capacity is provided 

solely by the diagonal cages, the moment capacity of the RC coupling beams is provided 

by both diagonal reinforcement cages and flexural reinforcement rebars. The shear is 

provided by diagonal and transverse reinforcement to fully exploit the capacity of the 

steel reinforcement. The diagonal reinforcement cage consists of 4 #7 bars and #4 hoops 

spaced at 5” [127 mm]. The resulting coupling beam has a thickness of 20” [508 mm], 

depth of 28” [711 mm], and aspect ratio of 2.1. Reinforcement details are shown in Fig. 

3.2.  

 

The reinforcement detailing proposed by Canbolat et al. (2005) is used for the HPFRC 

coupling beam. Instead of the diagonal cages shown in Fig. 3.2, the HPFRC coupling 

beam is reinforced via 2#10 diagonal steel bars as shown in Fig. 3.3. Based on their test 

results, Canbolat et al. (2005) also showed that HPFRC material can provide a shear 

strength 40% larger than the maximum shear stress allowed in the ACI 318 Code (2008) 

for very short coupling beams. To account for the enhanced shear resistance of HPFRC 

over RC, the shear reinforcement is reduced by about 30% for the HPFRC coupling beam 

as shown in Fig. 3.3. However, the dimension and amount of longitudinal reinforcement 

for the HPFRC beam are kept the same as those for the RC beam. 

 

The details of the RC-CW piers are designed based on (ACI 318 2008) and are shown in 

Fig. 3.4 and Table 3.1; where the thickness of the wall, tw, is 20” [508 mm], and Lbe is the 

length of boundary zone. Since no design provisions exist for the H-CW system, 

available research results coupled with engineering judgment were employed to detail the 
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piers. Using moment versus curvature analysis to meet the design moment demand, the 

flexural reinforcement scheme outlined in Table 3.1 and shown in Fig. 3.4 is selected for 

the H-CW piers. It is notable that the amount of primary flexural reinforcement in the 

first 4 floors of the H-CW piers is about 20% less than that in the corresponding areas in 

the RC-CW piers, which reflects the superior strength and ductility of the HPFRC 

material. Initial trials using the reinforcement scheme in the RC-CW resulted in the 

plastic hinges being shifted to the 5
th

 floor when the H-CW system was subjected to 

strong seismic shaking, which resulted in unacceptable system performance. In 

recognition of the beneficial effects of HPFRC and in accord with Parra-Montesinos 

(2005), the confinement reinforcement in the first 4 floors of H-CW is reduced by 50% 

from that used in the corresponding zones in the RC-CW piers.  

 

3.3   FINITE ELEMENT MODELING 

The developed hybrid rotating/fixed crack model from Chapter 2, which is suitable for 

plane stress elements for simulating HPFRC and reinforced concrete materials, is used to 

model the prototype structures. Although the model is primarily based on uniaxial 

material response in the principal directions, the effect of confinement detailing is 

addressed in an indirect manner. Confinement effects in both RC and HPFRC 

components are assumed to follow the model by Mander et al. (1988) and are accounted 

for in the analysis by adjusting parameters in the unconfined model to reflect the 

additional strength and ductility due to confinement as was done in El-Tawil and 

Deierlein (1999). As presented in Chapter 2, the developed model was shown to be 

accurate and robust through extensive comparisons between experimental and 
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computational results of hysteresis behavior and crack patterns for several types of 

structural components, including a coupling beam, shear wall, and double cantilever 

beam (Hung and El-Tawil 2009). In general, the model was capable of reasonably 

predicting the strength capacity, loading/unloading/reloading slopes, pinching behavior, 

and shear deformation characteristics of the various HPFRC structural components 

considered. Fig. 3.5 shows the backbone curves for compression and tension response 

simulated by the model. 

 

The theme structure models were run on LS-DYNA (Livermore Software Technology 

Corporation 2007), an explicit finite element software package. Steel reinforcement is 

modeled using nonlinear truss elements and steel material is modeled using kinematic 

hardening plasticity with elastic-plastic behavior. The steel rebars used herein have a 

Young‟s modulus of 29000 ksi [200 GPa], a yield strength of 60 ksi [414 MPa], and a 

hardening ratio of 1%. Perfect bond is assumed between the rebar and concrete material. 

Before seismic excitation is imposed, gravity loads are first applied to the prototype 

structures. In addition, a 5% damping ratio is introduced in the analysis. 

 

Although the model described above has shown satisfactory performance in predicting 

the behavior of HPFRC and reinforced concrete structural components considered in the 

validation studies, it does have a number of limitations, as noted in Hung and El-Tawil 

(2009). In particular, the model cannot account for sliding shear, rebar slip, splitting, 

tension stiffening and tension softening in both concrete and HPFRC. In addition, it 

cannot address out of plane stability, e.g. local buckling of cracked wall parts, rebar 

buckling and the effects of low-cycle fatigue fracture on bar response. The first set of 
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limitations stem primarily from a lack of test results by which to calibrate the developed 

HPFRC model, while the stability issues noted in the second set stems from the planar 

nature of the model. Nevertheless, as long as these limitations are kept in mind, the model 

can still yield valuable insight into structural response, especially at the system level, as 

shown in the successful validation studies presented in Hung and El-Tawil (2009). 

 

3.4   ANALYSIS RESULTS 

Performance of both prototype systems is evaluated using nonlinear dynamic time history 

analysis. Two groups of simulated time history ground motion records, developed by the 

SAC (Acronym for Structural Engineers Association of California „SEAOC‟, Applied 

Technology Council ‘ATC‟ and California University for Research in Earthquake 

Engineering „CUREe‟) steel project, representing different seismic hazard levels, are 

used herein. Both groups contain seven ground motion records in each with probability of 

exceedance of 10% in 50 years (10/50), and 2% in 50 years (2/50), respectively. To 

reduce the computational effort, only the strong motion duration of the ground motion 

record is adopted for seismic excitation. The strong motion duration is defined as the time 

segment in which 90 percent of the seismic energy is delivered (Hassan and El-Tawil 

2004).  

 

The systems are evaluated using various parameters (FEMA-356 2000), including story 

drift, wall deflection profile, wall rotation (Fig. 3.6), and coupling beam chord rotation 

(Fig. 3.7). The average value of each response parameter during the seven ground motion 

histories is used as a representative value of the system‟s performance (FEMA-356 
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2000). System performance is then evaluated by comparing the demand computed form 

the numerical models to the performance criteria (Table 3.2) specified in FEMA-356 

(2000).  

 

Details of the maximum component responses for each earthquake are plotted in Figs. 3.8 

through 3.14. Performance parameters for 10/50 earthquakes are plotted in Figs. 3.8 

through 3.10. The story drift of both systems under each prescribed motion is shown in 

Fig. 3.8 where the average curves indicate that the prototype HPFRC structure and RC 

structure have similar profiles of story drift despite the reduced steel reinforcement and 

simplified reinforcing detailing in the HPFRC structure. Furthermore, the average 

maximum drift that occurs in both systems is around 0.008, which is below the 

acceptance criterion specified in (FEMA- 356 2000), implying that both prototype 

systems can perform adequately during a 10/50 event. 

 

Figs. 3.9 and 3.10 show the rotation demands of the beams and wall piers during the 

10/50 events, respectively. Clearly, both systems have similar rotational demands in the 

beams and wall piers along the building height. Again, the response parameters indicate 

that the prototype H-CW system is able to achieve similar overall response as the RC-

CW system at the 10/50 hazard level. In particular, the maximum plastic hinge rotation 

and coupling beam rotations are around 0.002 rad and 0.0073 rad, respectively, which are 

well below the acceptance criteria in (FEMA-356 2000). 

 

System responses during the 2/50 earthquakes are plotted in Figs. 3.11 through 3.13. The 



61 

maximum story drifts of the systems for each prescribed excitation are displayed in Fig. 

3.11. It can be seen that the average value of story drifts from both systems are below 

2%, meeting the acceptance criterion in (FEMA-356 2000). Coupling beam rotations 

during the 2/50 events are plotted in Fig. 3.12. In general both systems have similar 

coupling beam rotation demands in spite of the reduced reinforcement amount and 

detailing in the HPFRC coupling beams. The maximum coupling beam rotation is around 

0.016 rad for both systems, which is below the acceptance criterion (0.03 rad) in (FEMA-

356 2000). Fig. 3.13 shows the wall deflection response of the two systems. Again, it can 

be seen that both systems have similar wall deflection profiles despite key differences in 

the reinforcing steel quantities and detailing. 

 

Wall rotations during the 2/50 events are plotted in Fig. 3.14. It is obvious that plastic 

hinges take place at the wall base for both systems when the peak response is reached. 

Nevertheless, unlike the similar wall rotation response observed during the 10/50 events, 

the wall rotation at H-CW wall base (0.0048 rad) is substantially less than that at the RC-

CW wall base (0.0074 rad), i.e. reduced by 35%, during the 2/50 events. To highlight the 

effect of HPFRC, the maximum wall rotations of both systems during the most 

demanding earthquake are plotted in Fig. 3.15, which focuses only on the bottom floors 

of the structures. The Fig. 3.15 shows the wall rotations corresponding to various values 

of story drift, i.e. 1%, 2.5%, and 3.3%. It can be seen that the effect of HPFRC becomes 

more prominent as the demand grows. For example, at 1% drift, both systems experience 

the same rotational demand at the first floor. However, the rotation of the first floor of H-

CW drops with respect to the corresponding value for RC-CW as the drift increases. 
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Particularly, when the drift increases to 2.5%, the plastic hinge rotation of the H-CW is 

25% less than that of the RC-CW. Further, when the maximum drift of 3.3% is reached, 

the H-CW‟s rotation is 35% less than the RC-CW‟s. The lower rotational demand in the 

first floor of H-CW is accompanied by increased rotational demands in the 2
nd

, 3
rd

 and 

even 4
th

 floors compared to the RC-CW system. In other words, the HPFRC causes the 

size of the plastic hinge zone to increase significantly compared to the RC system, but 

with a lower peak rotational demand due to a more even distribution of curvature along 

the plastic hinge zone. This suggests that despite of the reduced reinforcement amount 

used, HPFRC walls possess a better energy dissipation capacity and will likely suffer less 

permanent damage after severe seismic events.  

 

 

 

Fig. 3.12 suggests that the coupling beams between the 8
th

 and 18
th

 floor are likely 

subjected to more damage compared to other coupling beams. The crack localization 

patterns of the coupling beam at the 12
th

 floor at various stages (corresponding to various 

beam rotations) during the most demanding earthquake are plotted in Fig. 3.16. In the 

figure, the thickness of the lines indicating crack localizations is proportional to crack 

width, while black dots represent concrete crushing. It can be seen that the flexural and 

shear cracking damage in the RC coupling beams are more severe and widespread than 

that in HPFRC coupling beams. Moreover, at the end of the ground excitation, residual 

crack localizations in HPFRC coupling beams are much less than in their RC 

counterparts. This is taken to imply that HPFRC coupling beams could require 

significantly less repair than RC coupling beams after a strong seismic event. 
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The crack localization patterns of the first five floors levels, corresponding to the time 

when the maximum system response takes place, are plotted in Fig. 3.17. It can be seen 

that a combination of flexural and shear cracks occurs in both systems. However, it also 

indicates that the RC wall system is subjected to more severe flexural cracks at the wall 

base whereas a more uniformly distributed cracking is observed in the HPFRC system. 

Fig. 3.18 shows the residual crack localization patterns of both systems after the most 

demanding motion. It shows a more severe permanent flexural and shear cracking 

damage in RC-CW (Fig. 3.18b) versus H-CW (Fig. 3.18a).  

 

3.5   SUMMARY 

The effectiveness of using HPFRC material to replace conventional RC in the critical 

portions of an 18-story coupled wall system was discussed. Two coupled wall systems 

were considered: the first was a traditional RC design, while the second was a modified 

design in which HPFRC is used in the plastic hinge regions of the wall piers and in the 

coupling beams. The latter system was designed with less steel and relaxed detailing than 

the former in recognition of the beneficial effects of HPFRC; in particular, 30% reduction 

in the shear reinforcement of the coupling beams, 20% reduction in the flexural 

reinforcement in the flange and boundary zone of the wall piers, and 50% reduction in 

confinement reinforcement in the boundary zone. The responses of both systems 

subjected to seismic events with different hazard levels were compared. The hazard 

levels considered herein included a level of 10% probability and a level of 2% probability 

of exceedance in 50 years. Comparisons of seismic response were made using story drift, 

wall rotation, and rotation of the coupling beams. For the 10/50 earthquakes, the 
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performance parameters studied suggested that both systems delivered similar 

performance in spite of the reduced reinforcement quantity and relaxed detailing in the 

HPFRC system compared to the RC system. The advantage of using HPFRC for the 

coupled walls became more evident when 2/50 earthquakes were considered. First of all, 

the HPFRC system was capable of delivering collapse prevention performance despite 

the reduced reinforcement amount and simplified reinforcing detailing. Further, the 

unique pseudo strain-hardening behavior of HPFRC materials effectively reduced the 

maximum wall rotation at the wall base through an enhanced energy dissipation pattern. 

The advantage of using HPFRC for the coupled walls was also evident in the crack 

patterns from the coupling beams and wall piers of both systems which suggested that at 

the end of a seismic event, the HPFRC system remained significantly more intact than the 

RC system, likely requiring less repair.   
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Table 3.1 - Reinforcement details of HPFRC and RC walls 

 

   
Flange Web Boundary Zone 

System Floors Lbe Horiz. Vert. Horiz. Vert. Horiz. Vert. 

HPFRCC 

Walls 

17-18 0 #4@12” #4@12” #4@12” #5@8” - - 

15-16 24” #4@12” #4@12” #4@12” #5@8” #4@12” 12#7 

13-14 32” #4@8” #5@12” #4@8” #5@8” #4@8” 16#9 

11-12 32” #4@8” #6@12” #4@8” #5@8” #4@8” 16#9 

9-10 40” #5@8” #6@8” #5@8” #6@8” #4@8” 20#9 

7-8 40” #5@8” #7@8” #5@8” #6@8” #5@8” 20#10 

5-6 48” #5@8” #8@8” #5@8” #7@8” #5@8” 24#10 

3-4 48” #6@8” #7@8” #6@8” #7@8” #5@8” 24#10 

1-2 48” #6@8” #7@8” #6@8” #7@8” #5@8” 24#10 

RC Walls 

17-18 0 #4@12” #4@12” #4@12” #5@8” - - 

15-16 24” #4@12” #4@12” #4@12” #5@8” #4@12” 12#7 

13-14 32” #4@8” #5@12” #4@8” #5@8” #4@8” 16#9 

11-12 32” #4@8” #6@12” #4@8” #5@8” #4@8” 16#9 

9-10 40” #5@8” #6@8” #5@8” #6@8” #4@8” 20#9 

7-8 40” #5@8” #7@8” #5@8” #6@8” #5@8” 20#10 

5-6 48” #5@8” #8@8” #5@8” #7@8” #5@8” 24#10 

3-4 48” #6@8” #8@8” #6@8” #7@8” #5@4” 24#11 

1-2 48” #6@8” #8@8” #6@8” #7@8” #5@4” 24#11 
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Table 3.2 - Acceptance criteria for the selected performance level (FEMA-356 2000) 
 

 Acceptance criteria 

 Collapse 

Performance 

Life 

Safety 

Shear wall story drift (rad) 0.02 0.01 

Shear wall plastic hinge 

rotation (rad) 

0.015 0.01 

Shear wall coupling beam 

chord rotation (rad) 

0.03 0.018 
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Fig. 3.1 - Plan view of prototype structural system 

 

 
 

 

 

Fig. 3.2 - Reinforcement layout for RC coupling beam 
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Fig. 3.3 - Reinforcement layout for HPFRC coupling beam 

 

 

 
 

Fig. 3.4 - Shear wall cross section detail 
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(a) tensile response 

 
(b) compressive response 

 

Fig. 3.5 - Typical monotonic stress-strain relationship of HPFRC and regular concrete 

materials 

 

 

 
Fig. 3.6 - Definition of wall rotation 

 

 

 

Fig. 3.7 - Definition of coupling beam chord rotation 
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(a) HPFRC system                    (b) RC system          
 

Fig. 3.8 - Wall rotation levels at peak drift 

 

 

 

 

 

(a) HPFRC system                    (b) RC system          
 

Fig. 3.9 - Wall rotation levels at peak drift 

 
 

0 0.005 0.01 0.015
0

2

4

6

8

10

12

14

16

18

10/50 HPFRCC Drift

Drift(rad)

F
lo

o
r

0 0.005 0.01 0.015
0

2

4

6

8

10

12

14

16

18

10/50 RC Drift

Drift(rad)

F
lo

o
r

average average

0 1 2 3 4 5

x 10
-3

0

2

4

6

8

10

12

14

16

18

10/50 HPFRCC Wall Rotation

Wall Rotation(rad)

F
lo

o
r

0 1 2 3 4 5

x 10
-3

0

2

4

6

8

10

12

14

16

18

10/50 RC Wall Rotation

Wall Rotation(rad)

F
lo

o
r

average
average



71 

 

(a) HPFRC system                    (b) RC system          
 

Fig. 3.10 - Beam rotation demands at peak drift 

 

 
 

 

(a) HPFRC system  (b) RC system 
 

Fig. 3.11 - Interstory drift of the systems 
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(a) HPFRC system (b) RC system 

 

Fig. 3.12 - Beam rotation levels at peak drift 

 

 

(a) HPFRC system  (b) RC system 

 

Fig. 3.13 - Deflection curves at peak drift 
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(a) HPFRC system  (b) RC system 
 

Fig. 3.14 - Wall rotation levels at peak drift 
 

  
 

(a) HPFRC system  (b) RC system 

 

Fig. 3.15 - Wall rotation levels of the systems with various story drift 
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(i) -0.03 beam rotation 

 

(i) -0.03 beam rotation 

 

 

(ii) 0.01 beam rotation 
(ii) 0.01 beam rotation 

 

(iii) -0.01 beam rotation 
(iii) -0.01 beam rotation 

 

(iv) residual crack 

localizations  

(iv) residual crack 

localizations 

(a) HPFRC coupling beams  (b) RC coupling beams 

 

Fig. 3.16 - Crack patterns of RC and HPFRC coupling beams at the 12
th

 floor at various 

stages of the simulation (unit: rad) 

 

 

 

 
  

(a) HPFRC system  (b) RC system 

 

Fig. 3.17 - Crack patterns of RC and HPFRC walls at the maximum system response 
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(a) HPFRC system  (b) RC system 

 

Fig. 3.18 - Crack patterns of RC and HPFRC walls after the earthquake 
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CHAPTER 4 

A METHOD FOR ESTIMATING SPECIMEN TANGENT STIFFNESS FOR 

HYBRID SIMULATION
1
 

 

 

4.1   INTRODUCTION 

Researchers have long recognized the importance and potential benefits of utilizing the 

tangent stiffness matrix of a test specimen in hybrid simulations employing implicit and 

mixed integration schemes. However, computation of the tangent stiffness matrix during 

testing has proved to be challenging, particularly for test specimens with more than one 

degree-of-freedom. This chapter presents a new methodology that is more 

straightforward and simpler than existing techniques for computing the tangent stiffness 

matrix of a multi-degree-of-freedom test specimen. The proposed method is combined 

with the operator-splitting method and the capabilities, advantages and limitations of the 

new formulation are demonstrated through several examples. The accuracy, stability, and 

error propagation characteristics of the modified operator-splitting method are also 

studied theoretically as well as numerically.  

 

4.2   GENERAL BACKGROUND 

                                                           

1
 The contents of this Chapter are based on a published journal article. Its official citation is 

C.C. Hung, S. El-Tawil. A Method for Estimating Specimen Tangent Stiffness for Hybrid Simulation. 

Earthquake Engineering and Structural Dynamics. V38, p115-p134, 2009. 
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The term hybrid simulation commonly refers to a set of methods that combine 

computational simulation with physical model testing to compute structural dynamic 

response. In its most general form, hybrid simulation could entail the combination of two 

or more purely computational models or multiple computational and physical models. In 

this method, a structure is numerically represented as a discrete mass system and its time-

history response to seismic excitation is computed by solving the differential equation of 

motion of the system. The difference between hybrid simulation and traditional numerical 

methods is that some of the terms of the restoring force vector in the differential equation 

of motion are either directly obtained by measurement from a physical test or computed 

from an associated computational model running in parallel with the main numerical time 

integration scheme. When the entire restoring force vector is obtained from physical 

testing, hybrid simulation is commonly referred to as pseudo-dynamic testing. The 

pseudo-dynamic test technique was first proposed by Takanashi et al. (1978). Since then, 

many pseudo-dynamic and hybrid testing algorithms have been proposed (Shing and 

Mahin 1984; Takanashi and Nakashima 1987; Thewalt and Mahin 1987; Combescure 

and Pegon 1997; Mahin and Shing 1985; Shing et al. 1991, 1994; Nakashima et al. 1992; 

Thewalt and Mahin 1994; Darby et al. 1999, 2001; Molina et al. 1999; Nakashima and 

Masaoka 1999; Zhang et al. 2005; Wu et al. 2005; Pan et al. 2006). These algorithms can 

be categorized as explicit, implicit or mixed algorithms.  

 

The application of explicit algorithms for hybrid testing is limited by the intrinsic 

stability problem, which restricts the maximum time step that can be imposed. In essence, 

as the number of degrees of freedom in a system increases, the size of the time step is 
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bounded and controlled by the system’s highest natural frequency. Exceeding the 

maximum allowable time step will lead to numerical instability and will eventually 

disrupt the simulation. As the limiting time step becomes smaller, the duration of a hybrid 

test employing an explicit scheme lengthens. While this results in additional costs and the 

inconvenience of a long test, a more serious concern is that the time step could become 

too small to permit a viable test. In such situations, the small time step results in 

displacement (or force) increments that are too small to reliably apply to a specimen.  

  

Implicit methods, on the other hand, are unconditionally stable and are not hindered by 

the stability limitation. They are therefore attractive because they permit larger time steps 

to be taken. However, unless iterations are undertaken to ensure an acceptable level of 

accuracy, the use of large time steps can lead to an accumulation of errors, especially 

when nonlinear specimen response occurs. The need for iterations can be alleviated if an 

accurate tangent stiffness of the test structure is used in the simulations. Nevertheless, 

computing the tangent stiffness matrix for a multi-degree-of-freedom specimen has 

traditionally been considered practically difficult, and as a result, most existing implicit 

algorithms avoid using the tangent stiffness altogether. Instead, iterative corrections of 

the restoring force on the test specimen are sometimes used (Thewalt and Mahin 1994). 

However, conducting iterations on a physical specimen is difficult to achieve in practice, 

especially for inelastic structures, and can lead to path-dependent effects. This difficulty 

has given rise to mixed explicit-implicit schemes where the objective is to compute an 

explicit target displacement to avoid iterations on the specimen during testing (e.g. the 

OS method proposed by Nakashima and Kato (1987)). 
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As discussed in this chapter, a few researchers have recognized the importance and 

potential benefits of utilizing the tangent stiffness matrix of the test specimen in implicit 

and mixed integration schemes and have taken steps to compute or update the tangent 

stiffness matrix during testing. They used the tangent stiffness for a variety of purposes 

including correction of the measured restoring force, suppressing displacement control 

errors, estimating energy errors in the pseudo-dynamic test and compensation for delay in 

real-time hybrid testing. This chapter presents a new methodology that is more 

straightforward and simpler than existing techniques for computing the tangent stiffness 

matrix of a multi-degree-of-freedom test specimen. The proposed method is combined 

with the operator-splitting method and the capabilities, advantages and limitations of the 

new formulation are demonstrated through several examples. The accuracy, stability, and 

error propagation characteristics of the modified operator-splitting method are also 

studied theoretically as well as numerically.   

 

4.3   INTEGRATION TECHNIQUES FOR HYBRID TESTING 

Shing and Mahin (1983, 1984) examined a number of explicit integration techniques and 

recommended the use of a modified version of the Newmark algorithm which includes 

frequency-proportional numerical damping. Based on a variation of Newmark’s method 

by Hilbert et al. (1997), Thewalt and Mahin (1987, 1994) suggested an unconditionally 

stable implicit algorithm for pseudo-dynamic testing. In their method, estimation of 

structural stiffness is not required to get the restoring force at each time step. The 

restoring force is measured and corrected continuously within each time step by using the 
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analog feedback of the instantaneous restoring force associated with the input 

displacement. This algorithm has substantial advantages for testing structures with many 

DOFs, where only a few modes contribute to the response. Since larger time steps are 

permitted by using this algorithm, the number of steps for a test is reduced, thus reducing 

the testing duration. Nevertheless, the actuator control accuracy remains unknown during 

testing, and thus the influence of displacement control errors cannot be investigated. 

Moreover, additional hardware is needed to continuously correct the analog feedback.  

 

To eliminate the drawbacks of the Thewalt and Mahin (1987, 1994) algorithm, Shing et 

al. (1991) developed an implicit algorithm also based on the implicit algorithm by Hilbert 

et al. (1977). In their algorithm, they used a parameter to control the size of the 

displacement at each sub-step before a corrector displacement is applied to the physical 

specimen. This scheme produces every sub-step in a continuous loading/unloading form 

such that it prevents loading and unloading iterations on the physical specimen. Shing et 

al. (1990) used this algorithm successfully to evaluate reinforced masonry shear wall 

components.  

 

Pan et al. (2006) developed a P2P internet online hybrid test system. In this new system, 

the equations of motion are not formulated for the entire model, but for each separate 

substructure instead. During the testing, two rounds of quasi-Newton iteration are used to 

ensure compatibility and equilibrium between each substructure. However, this scheme 

was not applied to structures which exhibit significant non-linearity. Also, when the 
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system includes more physical substructures, it could become more susceptible to 

experimental errors.   

 

Nakashima et al. (1990) proposed the operator-splitting method (OSM) for pseudo-

dynamic testing. In this method, which is a mixed explicit-implicit scheme, an explicit 

target displacement is computed to avoid iterations on the specimen during testing. This 

is achieved by approximating the tangent stiffness of the tested structure by its initial 

stiffness in the restoring force calculations. The method is unconditionally stable when 

the initial stiffness of the tested structure is greater than the tangent stiffness during the 

entire test.  

 

Combescure and Pegon (1997) proposed a modification of OSM, which they termed the 

 operator-splitting method ( -OSM). In this algorithm, the   parameter is introduced 

into the equations of motion to produce numerical dissipation that eliminates the spurious 

oscillation induced by control errors in the high frequency modes. When   is set to zero, 

 -OSM reverts into the regular OSM. The drawback of the method is that when a 

structure loses a large portion of its initial stiffness during testing, the results could 

become inaccurate (1997). In  -OSM, the equation of motion of a structural system is 

expressed as: 

 

nnnnnnn ffrrCvCvMa    1111 )1()1()1(
  (4.1)
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where M is the mass matrix of the structure; C is the damping coefficient matix; r  is the 

restoring force vector; a  is the vector of nodal accelerations; v  is the vector of nodal 

velocities; f  is the vector of external excitation forces; subscript n denotes the current 

time step. The displacement and velocity at the next time step are acquired from a 

Newmark integration scheme. The obtained displacement and velocity are split into 

predicted (Eq. 4.2) and corrected (Eq. 4.3) responses. 
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As previously discussed, the primary assumption of this method is that the restoring force 

at time step n+1 can be approximated as  

 

 111111

~
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Substituting Eqs. 4.2 - 4.4 into Eq. 4.1, the acceleration at time step n+1 can be computed 

as 
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When the physical test structure becomes inelastic, the primary assumption of OSM and 

 -OSM that the tangent stiffness of the specimen can be replaced with its initial stiffness 

(i.e., Eq. 4.4) becomes inaccurate, and can adversely affect the accuracy of the test 

method.  

 

A few researchers have taken steps to compute and incorporate the tangent stiffness 

matrix during testing. Efforts appear to be limited because of the practical difficulty of 

directly estimating the tangent stiffness as the test progresses. One of the earliest attempts 

to employ the tangent stiffness during testing was by Nakashima and Kato (1987). They 

estimated the tangent stiffness in an effort to correct the measured restoring force and 

suppress displacement control errors. In their work, they collected the necessary 

information from sub-steps within a time step to estimate the tangent stiffness. 

Nevertheless, they only used the estimated tangent stiffness to modify the restoring force 

instead of merging the estimated tangent stiffness with the integration algorithm as is 

done in this chapter.  

 

Thewalt and Roman (1994) developed an approach based on the BFGS formula (Nocedal 

and Wright 1999) to estimate the tangent stiffness during testing. They used the estimated 

tangent stiffness to estimate energy errors in the pseudo-dynamic test. Carrion and 

Spencer (2006) estimated the tangent stiffness based on the Broyden formula (Broyden 
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1965). They used the estimated tangent stiffness for compensation of delay in real-time 

hybrid testing.  

 

In this chapter, a new strategy for estimating the tangent stiffness is proposed. The 

scheme is general in that it can be applied to a variety of implicit and mixed integration 

methods. However, in this work, the new methodology is combined with the traditional 

OSM to show the resulting advantages of implementing it within a hybrid simulation 

framework. These advantages are demonstrated using a series of hybrid simulation 

exercises, including test structures that exhibit significant inelastic behavior and that have 

multiple degrees of freedom.  

 

4.4   PROPOSED OPERATOR-SPLITTING METHOD WITH UPDATED 

TANGENT STIFFNESS (OSM-US) 

The incremental force and displacement at time step n+1 can be associated through the 

tangent stiffness at time step n+1 as 
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where )(

1
~ q

nr   is the incremental restoring force at the q
th

 degree-of-freedom (dof) of the 

model at time step n+1. yx

nK ,

1
 is the component value at (x,y) position of the tangent 
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stiffness matrix at time step n+1. 
)(

1

~ q

nd   is the incremental predicted displacement at the 

q
th

 dof of the model at time step n+1.  

 

By assuming that the tangent stiffness does not change substantially during the current 

and previous m-1 steps, i.e. for a total of m steps from time step n+2-m to n+1, the 

relation between the incremental force and the incremental displacement during the time 

interval n+2-m to n+1 can be expressed as 
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Transposing Eq. 4.7, 
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For Eq. 4.8 to yield a solution, the number of considered time steps, m, must be equal to 

or larger than the number of dof in the test structure, i.e. m ≥ dof. Eq. 4.8 can be 

partitioned into dof equations as shown in Eq. 4.9. 
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When m = dof in Eq. 4.9, a unique solution can be found for the tangent stiffness 

coefficients. However, when m > dof in Eq. 4.9, the system becomes over determined, 

and the least squares method, for example, as implemented in (MATLAB 2007), can be 

used to solve for the tangent stiffness matrix. 

 

The initial stiffness in the regular OSM and  -OSM (as shown in Eq. 4.4) can now be 

replaced by the estimated tangent stiffness computed from Eq. 4.9.  The restoring force at 

time step n+1 is now approximated as: 

 

 1111111

~
)

~
(~)(   nn

T

nnnnn ddKdrdr  (4.10) 

 

where T

nK 1
is the tangent stiffness at time step n+1. As shown in Fig. 4.1, the restoring 

force, )( 11  nn dr , is an approximation of the sum of the predicted restoring force, 

)
~

(~
11  nn dr , which is the feedback from the substructures subjected to the predicted 

displacement, and a modification term,  111

~
  nn

T

n ddK , which is the difference between 

the predicted and actual displacement multiplied by the tangent stiffness. Equivalent 

force equilibrium using the tangent stiffness can now be expressed as: 
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The procedure for hybrid simulation using OSM-US is illustrated in Fig. 4.2. The 

predicted displacement and velocity are first computed based on the response from the 

previous time step. After the predicted displacements are imposed upon the test specimen, 

the resulting reaction forces,
 1

~
nr  , and the actual imposed displacements,

 
m

nd 1

~
  , are 

measured. Then, the incremental values of the restoring forces and the measured 

displacements from the current and previous m-1 steps are used to calculate the tangent 

stiffness matrix. The damping coefficient, equivalent force and equivalent mass are then 

updated using the tangent stiffness. After that, the acceleration, the corrected 

displacement and velocity of the current time step are computed from Eq. 4.3 and Eq. 

4.11, and are used for the next time step.  

 

Two rules are imposed on the algorithm to ensure reasonable results. The first resets the 

reloading/unloading tangent stiffness to the initial stiffness right after the point where the 

displacement direction changes. After reloading/unloading at this point, the original 

scheme continues collecting the previous records and estimating the stiffness. This rule 

limits the proposed method to structures dominated by first mode response, where 

unloading of one member is associated with unloading of the entire structure. The second 

rule is more practical in nature. It filters out the steps where the imposed displacements 

are smaller than a user-specified threshold, specified as a minimum incremental 



91 

 

displacement. This is to ensure that only steps that are large enough to contribute reliably 

to the stiffness calculations are utilized in the computations. Although user experience 

clearly plays a role in identifying this parameter, a number that is 2-3 times the 

displacement resolution of the actuator is recommended.   

 

4.5   NUMERICAL SIMULATION OF HYBRID TESTING USING OSM-US  

As discussed above and in (Combescure and Pegon 1997; Nakashima et al. 1990), the use 

of the traditional OSM for pseudo-dynamic testing could generate unreliable results, 

especially for structures whose stiffness degrades significantly during testing. The new 

OSM-US methodology proposed herein alleviates this problem. To highlight the 

advantages of OSM-US, four numerical models that are designed to exhibit significant 

inelastic behavior during hybrid simulation are used. The simulations are conducted 

without damping and with 3% Rayleigh damping. As shown in Fig. 4.3a, Model 1 

represents a 1-story, 1 degree-of-freedom, structure. Model 2 (Fig. 4.3b) represents a 2-

story structure with 2 lateral DOFs. Model 3 (Fig. 4.3c) represents a 6-story structure 

with 6 lateral DOFs. In Model 4, a 2-story structure is split into 2 substructures (Fig. 

4.3d). The bottom substructure, which would usually be physically tested in a hybrid 

simulation, is numerically simulated here, while the top column is treated as a numerical 

substructure. 

 

The cross-section of the column used in all examples is shown in Fig. 4.4. OpenSees 

(OpenSees version 1.7 2006) is used to model the inelastic behavior of the members. 

Concrete02 and Steel01 material models in OpenSees are used to represent concrete and 
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steel, respectively. Parameter definitions and properties of the material models are shown 

in Fig. 4.5 and Table 4.1. The 1940 El Centro earthquake history record with PGA=0.36g 

is used as the external excitation throughout this study. 

 

Lateral displacement control for Model 1 (Fig. 4.3a) is achieved using the pseudo-

dynamic method with both OSM and OSM-US. The results are compared together along 

with the reference results from OpenSees in Fig. 4.6. A comparison of the displacement 

responses in Fig. 4.6a shows that OSM deviates a little from the reference solution, 

especially at the peaks, while OSM-US consistently matches the results well. The 

computed hysteresis responses are shown in Fig. 4.6b, which shows that the simulated 

solution from OSM-US matches the reference solution better than that from OSM, 

especially when the model experiences significant inelastic behavior. 

 

The behavior of Model 2 (Fig. 4.3b) also demonstrates the capabilities of OSM-US. 

Simulation of the undamped model is conducted with an incremental time step 0.005sec 

and m = 3. The resulting displacement responses from OpenSees, OSM, and OSM-US 

are compared in Fig. 4.7, which indicates that both integration methods appear to match 

the reference results from OpenSees quite well. However, as shown in Fig. 4.7b, the 

cumulative energy error, Ec, computed for the top-node response, shows that the error 

from OSM-US is less than half of the result computed from OSM. The cumulative energy 

error is defined as 

 

Ec:

 

      






nj

j
openseesjOSMUSOSMjOSMUSOSMj ddr

1
//

   (4.12)

 



93 

 

 

 
OSMMOSMjd

/
 is the displacement of node of interest computed from OSM-US or OSM; 

 
openseesjd is the displacement of the node of interest from OpenSees;  

OSMMOSMjr
/

is the 

restoring force at the same node from OSM-US or OSM, and n  is the current time step.  

The same model (Model 2), but with 3% damping, more clearly demonstrates the 

advantages of OSM-US over OSM. It is obvious from Fig. 4.8 that the resulting 

displacement from OSM deviates from the reference OpenSees solution, whereas the 

OSM-US results remain very good. The success of OSM-US in this case is due to its 

ability to utilize the correct tangent stiffness matrix in the Rayleigh damping 

computations.   

 

Model 3 (Fig. 4.3c) is simulated with a time step of 0.005sec and m = 8. Fig. 4.9a shows 

the response of the undamped model. Again, although the differences between OSM and 

OSM-US are not obvious in this figure, Ec computed at the top node from OSM-US is 

significantly less than that for OSM, as observed in Model 2. Also, as observed in Model 

2, differences in displacement response become more pronounced when damping is 

accounted for (Fig. 4.9b). In this case OSM-US is much closer to the reference solution 

than OSM.  

 

The influence of m on the simulation results is shown in Fig. 4.10. Fig. 4.10a shows Ec 

computed at the top node. It is observed that the cumulative energy becomes larger as m 

increases. Recall that the minimum value for m is the number of degrees of freedom. At 

m=80, the cumulated energy error from OSM-US is close to that from OSM. Fig. 4.10b 
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indicates that the disagreement between the displacement response from OSM-US and 

the reference solution becomes larger as m continues to increase.  

 

To better understand the influence of m and why accuracy degrades as m increases 

beyond a certain limit, consider that the 1
st
 and 2

nd
 mode periods for Example 3 are 4.9 

seconds and 0.8 seconds, respectively. When m=40, the imposed displacements and 

reaction forces from the past 40 time steps, corresponding to a duration of 0.2 seconds in 

this case, are used to estimate the current tangent stiffness. In other words, immediately 

after the point of unloading/reloading, the proposed scheme uses the initial stiffness for 

integration for 0.2 seconds, a period during which significant inelasticity occurs. Fig. 

4.11 demonstrates this idea and shows that for a structure vibrating solely in 2
nd

 mode, 

the 0.2 seconds is too large a fraction of the 2
nd

 mode period to allow realistic updating of 

the stiffness properties. Clearly the results will continue to deteriorate as m increases.  

The trends observed in Models 1 through 3 are also observed in Model 4, which is solved 

using m=8 and a smaller time step of 0.002sec due to the high axial stiffness of the 

column.   

 

4.6   ERROR PROPAGATINON CHARACTERISTICS OF OSM-US 

Actuator control errors occur during a hybrid test with a physical component. In order to 

gauge the effect of displacement control errors on the proposed OSM-US, numerical 

simulation of a hybrid experiment with induced displacement control errors is conducted. 

Model 2, Fig. 4.3b, is selected for this purpose. To simulate the effect of control errors, a 

random displacement control error signal with an average of 0 and a variance of 3E-7 
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inch is introduced. The resulting maximum control error is 1.75E-3 inch, which is within 

the range of accuracy of commercially available actuators. The simulation result is shown 

in Fig. 4.12 and compared to the results from OpenSees (without induced errors). It can 

be observed from Fig. 4.12 that the effect of the induced displacement control errors on 

the resulting response from OSM-US is negligible for this particular case. Nevertheless, 

if the error propagation induced by actuator control errors is considered to be too 

deleterious, the T-Modification strategy suggested by Nakashima and Kato (1987) can be 

applied to mitigate displacement control errors. The T-Modification approach is only 

possible in this case because the tangent stiffness matrix is available through the OSM-

US algorithm.   

 

Compatibility between substructures in hybrid simulation is assured through 

displacement control of the DOFs at the boundaries between experimental and numerical 

substructures. However, equilibrium, i.e. the presence of unbalanced forces, at the 

boundaries between both substructures is not necessarily assured unless iterations are 

performed. Since OSM-US, which employs a specimen’s tangent stiffness, traces the 

nonlinear response better than OSM, which utilizes the initial stiffness, it is expected that 

unbalanced forces will be reduced at the interface.  

 

To investigate the growth of unbalanced forces in both OSM and OSM-US, the hybrid 

simulation involving Model 4 is used. Unbalanced moments at the interface are measured 

through a normalized quantity,
maxM

MM bt  , where tM is the moment at the boundary node 
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from top element; 
bM  is the moment at the boundary node from the bottom element; 

maxM  is the maximum moment in both elements during the simulation. The result is 

extracted and plotted for a portion of response as shown in Fig. 4.13. It can be seen from 

the linear regression of the unbalanced force that the OSM-US has significantly reduced 

unbalanced forces compared to OSM. It is noted that the larger unbalanced force 

segments in the OSM-US correspond to the portion where the initial tangent stiffness is 

used for integration. This result suggests that OSM-US can improve the quality of the 

solution with fewer iterations if iterations are deemed necessary.   

 

4.7   STABILITY AND ACCURACY CHARACTERISTICS OF OSM-US 

When OSM-US is applied to hybrid simulation, the equations of motion for an elastic, 

single degree of freedom system can be written as 

 

    11111111 )
~

()
~

()~()~(   nn

R

nn

EST

n

R

nn

EST

n FdKddKvCvvCMa  (4.13)  

 

where ESTC  and ESTK  are the estimated damping coefficient and tangent stiffness, and 

RC  and RK  are the real damping coefficient and tangent stiffness, respectively. Eq. 4.13 

can be further rearranged in a recursive form as shown in Eq. 4.14. 

 

 (4.14) 

 

nn AXX 1



97 

 

Where 




















2

~

~

ta

tv

d

X

n

n

n

n
; 



















QQP

A 110

111

, is the amplification matrix, 

2

2

4

1
1 






P , 
2

2

4

1
1

2









Q , 




M

C R

2
 , and t

M

K
t

R

  .  is 

defined as the estimation error of the tangent stiffness and is expressed as 
R

EST

K

K
 ; 

 is defined as the estimation error of the damping and is expressed as 
R

EST

C

C
 .  

 

The stability and accuracy of OSM-US can be investigated through the characteristics of 

the matrix A (Hilber et al. 1997). The spectral radius, )( A , is the maximum absolute 

eigenvalue of A. The algorithm is stable when 1)( A  . With 1   , the spectral 

radius versus with varying   can be plotted as shown in Fig. 4.14. It can be seen that 

the stability of OSM-US increases (i.e., spectral radius reduces) as   increases.  

 

The effect of the accuracy of the computed tangent stiffness on the stability can also be 

investigated. In this case,   is fixed at 2%, and  =1. The result is plotted in Fig. 4.15a. 

It can be seen from the figure that the stability drops as the accuracy of the estimated 

tangent stiffness decreases. By fixing 1  and  = 2%, the relationship between the 

spectral radius versus with varying   is plotted in Fig. 4.15b. It shows that stability 

increases with a lower  , but the influence of   on stability is not as obvious as  . 
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The numerical accuracy of OSM-US is related to the ratio of period distortion and 

numerical damping (Wu et al. 2005; Shing and Mahin 1985). The non-zero eigenvalues 

of A  can be expressed as  

 

   212,1
ˆexp iLLi      (4.15) 
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.
 Also, the displacement solution for a viscously 

underdamped free-vibration response can be written as (Wu et al. 2005) 

 

 )sin()cos()exp( 21 tnctnctnD ddnn     (4.16)
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


 d

n . The numerical damping is defined as 

  

    (4.17) 

 

In the case of 1 , the variation of numerical damping ratio against with varying   

is shown in Fig. 4.16a. It can be seen that the numerical damping ratio is negative and its 

absolute value increases with higher   and  . The correlation of the numerical damping 

ratio versus   with varying   is plotted in Fig. 4.16b for   = 2%. It is clear that the 

numerical damping ratio is also negative for the assumed parameters. Furthermore, the 

absolute value of the numerical damping ratio increases as the accuracy of the estimated 
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tangent stiffness decreases. A study of the variation of the numerical damping ratio 

versus   with varying   showed that the absolute value of the numerical damping ratio 

increases as   becomes larger, but that the difference between the results for varying 

 is minor. 

 

Period distortion can be expressed as 
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Period distortion against   with varying  is plotted in Fig. 4.17a for 1  and 

02.0 . It can be seen that the period extends for the prescribed parameters. However, 

distortion can be alleviated by increasing the accuracy of the estimated tangent stiffness. 

Using 1 , and 02.0 , period distortion against   with varying   is plotted in Fig. 

4.17b. It is shown that period distortion increases with increasing  . Nevertheless, the 

effect of  on the period distortion is not significant. Finally, it can be observed from Eq. 

4.18 that the effect of varying  on period distortion is not obvious since the damping 

ratios for most civil structures are less than 5%. 

 

4.8   SUMMARY 

A strategy for estimating the tangent stiffness of a structural system during hybrid 

simulation was proposed in this chapter. The new method is based upon the premise that 

the specimen’s tangent stiffness does not change substantially during the few steps 
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preceding the current time integration step.  By exploiting this assumption, it was 

possible to solve a set of equations (possibly over-determined) to identify the full 

stiffness matrix for a multi-degree-of-freedom test specimen. Although the proposed 

technique is general and can be applied to a variety of the implicit algorithms for time-

stepping integration, it was combined in this work with the operator-splitting method 

resulting in a new operator-splitting formulation designated OSM-US.   

 

The capabilities, advantages and limitations of OSM-US were discussed and 

demonstrated through several examples of single and multi-degree-of-freedom specimens. 

The research results showed that the proposed algorithm provides results that are better 

than those produced via the regular operator-splitting method alone, especially for 

damped structures undergoing highly inelastic behavior during testing. The enhancement 

was observed in improved displacement calculations, reduced cumulative energy errors, 

and lower unbalanced forces between substructures in the examples studied. The 

accuracy, stability, and error propagation characteristics of the modified operator-

splitting method were also studied theoretically as well as numerically. Specifically, the 

study quantified the effect of tangent stiffness estimation error on the stability and 

accuracy of a single degree-of-freedom model.   
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Table 4.1 - Material parameters of the concrete and steel models 

Concrete properties fpc(ksi) epsc0 fpcu(ksi) epsU q ft(ksi) Ets(ksi) 

Unconfined concrete -6 -0.002 -0.4 -0.01 0.1 0.6 300 

Confined concrete -7.2 -0.0045 -2.4 -0.03 0.1 0.72 360 

Steel bar properties 
fy(ksi) E0(ksi) B  

60 29000 0.01     
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Fig. 4.1 - The approximated restoring force at time step n+1 
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Fig. 4.2 - Flowchart of OSM-US operations 



103 

 

 

 

 

15’
12.5’

8.33’

12.5’

8.33’

Experimental substructure
(simulated by OpenSees)

Numerical substructure

Coordinating PC

OpenSees simulation environment

(a) Model 1 (b) Model 2

(c) Model 3

5’

5’

5’

5’

5’

8.33’

(d) Model 4

in

s
kipsm

2

23

in

s
kipsm

2

23

in

s
kipsm

2

10

in

s
kipsm

2

10

in

s
kipsm

2

6

in

s
kipsm

2

6

in

s
kipsm

2

6

in

s
kipsm

2

6

in

s
kipsm

2

6

in

s
kipsm

2

10

in

s
kipsm

2

10

 

Fig. 4.3 - Demonstration examples of the proposed OSM-US 
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Fig. 4.4 - Cross-section of the column used in the examples 
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Fig. 4.5 - Concrete and steel bar material models in OpenSees 
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Fig. 4.6 - Simulated responses for Model 1 
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(a) displacement response of top node (b) cumulative energy index 

 

Fig. 4.7 - Simulated top-node responses of undamped Model 2 
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Fig. 4.8 - Computed top-node response of Model 2 (damped) 
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(a) Undamped response (b) Damped response 

 

Fig. 4.9 - Simulated top-node responses of Model 3  

 
 

(a) Cumulative energy error (b) Displacement of the top node 

 

Fig. 4.10 - Effect of m parameter on response of Model 3 
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Fig. 4.11 - The approximate distribution of the stiffness for the 2
nd

 mode response 
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Fig. 4.12 - Effect of induced displacement control errors on the response of top-node 

in Model 2 
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Fig. 4.13 - Normalized unbalanced moment between substructures in Model 4 
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Fig. 4.14 -  Trends in the spectral radius with varying   and   ( )1(   ) 
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Fig. 4.15 - Trends in the spectral radius with varying   and  )1(    
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Fig. 4.16 - Trends in the numerical damping ratio 
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Fig. 4.17 - Trends in period distortion versus      
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CHAPTER 5 

FULL OPERATOR ALGORITHM FOR HYBRID SIMULATION
1
 

 

 

5.1   INTRODUCTION 

As mentioned in Chapter 4, the Operator-Splitting method (OSM) (Nakashima et al. 1990; 

Nakashima and Kato 1987) is a commonly used technique for hybrid simulation. One of 

the weaknesses of this method is that its corrector step employs the approximation that 

incremental forces are linearly related to the tested structure’s initial stiffness matrix. 

This chapter presents a new predictor-corrector technique in which the assumptions about 

the tested structure’s response are shifted to the predictor step, which results in an 

enhancement in overall simulation accuracy, especially for nonlinear structures. Unlike 

OSM, which splits the displacement and velocity operators into explicit and implicit 

terms, the new method uses predicted accelerations to compute fully-explicit 

displacement and velocity values in the predictor step. Another advantage of the 

proposed technique, termed the Full Operator Method (FOM) is that its formulation 

makes it suitable for both quasi-static and real-time hybrid simulation. The effectiveness 

                                                           

1
 The contents of this Chapter are based on a published journal article and a submitted journal paper. Their 

official citations are 

C.C. Hung, S. El-Tawil. Full Operator Algorithm for Hybrid Simulation. Earthquake Engineering and 

Structural Dynamics V38, p1545-1561, 2009. 

C.C. Hung, S. El-Tawil. Stability Characteristics of the Full Operator Method for Hybrid Simulation. 

Engineering Structures. (submitted January 2010) 
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of FOM is demonstrated by investigating error propagation in a set of single and multi 

degree-of-freedom models. A formal investigation of the stability of FOM shows that 

FOM is conditionally stable and has a stability criterion similar to that of the central 

difference method. A new version of FOM with enhanced stability characteristics is then 

proposed and the numerical characteristics, including stability and accuracy, of the 

modified FOM (mFOM) are investigated analytically.  

 

5.2 OPERATOR-SPLITTING METHOD (OSM) 

An attractive feature of OSM is that it is effectively transformed into an explicit scheme 

when the tangent stiffness matrix of the structure, which is usually considered difficult to 

estimate during testing, is replaced by the initial stiffness matrix. Consider the equation 

of motion of a discrete structural system:  

 

1111   nnnn frCvMa
  (5.1)

 

 

where M  is the mass matrix of the structure; C  is the damping coefficient matrix; r  is 

the restoring force vector; f  is the vector of external excitation forces. The displacement 

and velocity at the next time step, n+1, obtained using Newmark’s integration scheme 

can be expressed as 
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where d  is the vector of nodal displacements; v  is the vector of nodal velocities; a  is 

the vector of nodal accelerations; parameters   and   define the variation of 

acceleration over a time step; t  is the incremental time step; subscript n denotes the 

current time step.  

 

In OSM, the displacement and velocity equations from the traditional Newmark 

integration scheme are split into predictor, which are explicit terms, and corrector 

responses. The predictor responses are: 
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The corrector responses are:
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The procedure for implementing OSM starts off by calculating the predictor responses 

using the response values from time step n. The predictor responses are then imposed on 

the tested structure, and the resulting restoring force 1
~
nr  is measured. The measured 

restoring force and the initial stiffness of the system are used to calculate the acceleration 

at time step n+1. After that, the corrector responses are obtained using the acceleration. 

The entire system behavior can be acquired by repeating the above procedure. 
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OSM is unconditionally stable when the initial stiffness of the tested structure is greater 

than the tangent stiffness during the entire test (Combescure and Pegon 1997). On the 

other hand, OSM becomes conditionally stable when it is applied to a system which 

shows stiffening behavior. The key limitation of the method is that when the tested 

system becomes inelastic, the primary assumption of OSM that the tangent stiffness of 

the system can be replaced by its initial stiffness breaks down. Under such conditions, the 

accuracy of the simulated response will be reduced (Combescure and Pegon 1997; Hung 

and El-Tawil 2009).  

 

As outlined in Chapter 4, the use of a tangent stiffness matrix, as opposed to an initial 

stiffness matrix, is beneficial for highly nonlinear problems, enabling an accurate solution 

scheme without iterations. However, estimation of an accurate tangent stiffness matrix 

during testing is challenging. As a result, a method, which adopts not only a strategy for 

estimating a reasonably accurate stiffness matrix, but also an active self-correction to 

suppress errors resulting from inaccuracies in the estimated stiffness matrix, is desired. 

This chapter presents a new method, termed the Full Operator Method (FOM), for hybrid 

simulation that does that. 

 

5.3 PROPOSED ALGORITHM FOR HYBRID TESTING 

The equation of motion for the predictor step can be expressed as 

 

1111
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  nnnn frvCaM
  (5.5)
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where 1
ˆ

na  is the predictor acceleration vector; 1
ˆ

nv  is the predictor velocity vector; 

1
ˆ
nr is the predictor restoring force vector at time step n+1. Once the predictor 

acceleration vector is computed as discussed later on, the predictor velocity and 

displacement vectors can be obtained as 
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The predictor restoring force at time step n+1 can be approximated using the tangent 

stiffness as  
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where T

nK 1
ˆ

  is the estimated tangent stiffness at time step n+1, discussed later on in the 

chapter. Substituting Eqs. 5.6 and 5.7 into Eq. 5.5, the predictor acceleration at time step 

n+1 can be expressed as 
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where 1
ˆ

nM  is the predictor equivalent mass matrix; 1
ˆ

nC  is the predictor damping 

coefficient matrix, which is constant if it is mass-proportional or can be computed from 

T

nK 1
ˆ

  if stiffness proportional damping is assumed; 1
ˆ

nf  is the predictor equivalent force 

vector. Eq. 5.8 implies that 1
ˆ

na  is a direct function of the estimated tangent stiffness 

T

nK 1
ˆ

 . In a manner similar to Eq. 5.7, the restoring force relationship at time step n+1 is 

approximated as  
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From Eqs. 5.6 and 5.9, the difference between the corrector and predictor restoring forces 

can be expressed as  
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Eq. 5.10 contains 2
nd

 order terms of the incremental time step. These terms are also a 

function of the difference between acceleration vectors, each of which contains small 

acceleration values. Therefore it is reasonable to assume that the difference between both 

vectors is negligibly small compared to either restoring force vector. In other words 
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The numerical studies presented later on in the chapter confirm that Eq. 5.11 is an 

accurate assumption. An advantage of making the assumption in Eq. 5.11 is that it shields 

the solution from the uncertainty introduced by using the tangent stiffness in the corrector 

step.  

 

The corrector acceleration is calculated by substituting Eqs. 5.2 and 5.11 into 5.1. The 

resulting solution can be expressed as  
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where 1

nM  is the corrector equivalent mass matrix; 1


nf  is the corrector equivalent force 

vector. 1nC  is the corrector damping coefficient matrix assumed to be equal to the 

predictor value, i.e. 1nC = 1
ˆ

nC . Unlike the predictor acceleration, the corrector 

acceleration is not associated with the estimated tangent stiffness but is computed from 

the measured restoring force from the tested structure.  

 

The procedure of the proposed method is illustrated in Fig. 5.1. First, the predictor 

displacement and velocity from Eq. 5.6 are calculated using the predictor acceleration 

from Eq. 5.8. The computed predictor displacement 1
ˆ

nd  and velocity 1
ˆ

nv  are imposed 

on the tested structure. The resulting restoring forces from the tested structure are then 

used in Eq. 5.12 to calculate the corrector acceleration, which is then substituted into Eq. 



123 

 

5.2 to generate the corrector displacement 1nd  and velocity 1nv . Meanwhile, the new 

estimated tangent stiffness TK̂  for the next time step is computed using the measured 

increment in the predictor displacement m

n

m

n

m

n ddd ˆˆˆ
1    and restoring force vector 

nnn rrr  1 , as well as the current tangent stiffness; where m

nd 1
ˆ

  is defined as the 

measured predictor displacement 1
ˆ

nd . Since both predictor displacement and velocity are 

generated from the algorithm, an advantage of FOM is that it can be applied to real-time 

hybrid simulation.  

 

The proposed FOM for hybrid simulation is viewed as an improvement over the regular 

OSM for two reasons. In the predictor step, the regular OSM, as shown in Eq. 5.3, 

neglects the implicit term 1na  in the Newmark integration scheme. FOM increases the 

accuracy of the predictor by including this term and by relying on the estimated tangent 

stiffness as shown in Fig. 5.1. Second, the corrector acceleration in OSM is based on the 

estimated initial stiffness of the system, which adversely affects accuracy when the tested 

structure exhibits significant inelastic behavior. In contrast, FOM employs the measured 

restoring force from the tested structure, without resorting to approximations such as 

those used in OSM. These two points suggest that FOM is a better candidate for general 

hybrid simulation, as is demonstrated quantitatively later on in the chapter. Since 

computation of the tangent stiffness during testing is important to the success of the 

proposed methodology, various techniques for computing it are introduced next. 
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5.4 METHODS FOR ESTIMATING THE TANGENT STIFFNESS 

Five different algorithms, including BFGS, DFP, Broyden, Broyden Family, and SR1, are 

used to estimate the tangent stiffness. The first method, the Broyden-Fletcher-Goldfarb-

Shanno (BFGS) method, which is considered the most effective (Nocedal and Wright 

1999) of all quasi-Newton updating formulae, is a method to solve for unconstrained 

nonlinear optimization problems. The BFGS formula for updating tangent stiffness is 

shown below (Nocedal and Wright 1999). 
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where all the terms were previously defined. The Davidon-Fletcher-Powell formula (DFP) 

method is a quasi-Newton method that generalizes the secant method for 

multidimensional problems. The DFP formula for updating tangent stiffness is defined in 

Eq. 5.14. Although DFP has been largely abandoned by many current researchers in favor 

of the BFGS method, the DFP method is still nevertheless used in this study as one of the 

candidate methods for updating the tangent stiffness. 
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Broyden’s method, which was first documented by C. G. Broyden (Broyden 1965), is a 

quasi-Newton method for the numerical solution of nonlinear equations with multiple 

variables. When used for updating the tangent stiffness it can be expressed as
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Broyden’s family is a linear combination of BFGS and DFP with a parameter controlling 

the weighting of BFGS and DFP contributing to the final solution. In this method, the 

positive definiteness of the Hessian approximations is also enforced (Nocedal and Wright 

1999). The Broyden’s family algorithm used for estimating tangent stiffness is shown 

below, where the parameter   is between 0 and 1.   is chosen as 0.5. 
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The formula for updating tangent stiffness using the SR1 method is given in Eq. 5.17. 

Unlike rank-two update methods (e.g. BFGS and DFP), the SR1 method does not 
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guarantee that the updated tangent stiffness will maintain positive-definiteness. There is 

evidence that SR1 often generates a better approximation than the BFGS method 

(Nocedal and Wright 1999).  
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In the following section, the effectiveness of the corrector step for suppressing inaccurate 

structural behavior resulting from an approximate or miscalculated tangent stiffness, i.e. 

as computed from one of the methods listed above, is numerically investigated. 

 

5.5 PERFORMANCE OF THE FULL OPERATOR METHOD (FOM) 

In order to investigate the performance of FOM, an undamped single DOF model with 

linear behavior is considered. In this numerical investigation, the external excitation is 

assumed to be zero. The system response is simulated using the proposed algorithm with 

an initial disturbance of a unit displacement. The estimated tangent stiffness is assumed 

to be realest KK  ; where estK  and realK  are the estimated and real tangent stiffnesses of 

the model, respectively;   is the stiffness ratio of the estimated tangent stiffness to the 

real tangent stiffness. The real tangent stiffness, realK , of the model  is assumed to be 1 

inlb / . 
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The simulation procedure is illustrated in Fig. 5.2. The predictor displacement is first 

computed using the assumed estimated stiffness and is then imposed on the tested model. 

The resulting reaction force is calculated by multiplying the predictor displacement with 

the real stiffness. After that, the corrector displacement is generated using Eqs. 5.2 and 

5.12. The model response to the initial disturbance is then acquired by repeating the 

above procedure. Since there is no external excitation except the initial disturbance, the 

system oscillating with a constant unit amplitude is the analytic response. In this 

investigation, the system is characterized by using a parameter  , defined as twn , 

that accounts for the effect of step size and natural frequency on the solution; where nw  

is the natural frequency of the system; t  is the step size. Two different models with   

0.02, and 0.1 are investigated. For each case, two different stiffness ratios,  =0.1 and 10, 

are considered. The simulated responses using the proposed method with and without the 

corrector step are compared with the reference solution from the traditional Newmark 

method with the correct tangent stiffness. The parameters   and   in the integration 

algorithm are chosen to be 
2

1
 and 

4

1
, respectively.  

 

The computed solutions from the system with    0.02 are plotted in Fig. 5.3. It is 

observed from Fig. 5.3a that, when  =0.1, the proposed method produces accurate 

results compared to the reference solution whether the scheme incorporates the corrector 

step or not. In Fig. 5.3b, where  =10, it is seen that employing the corrector step 

generates a better result than when the corrector is not used. On the other hand, as   is 

increased to 0.1, the scheme without the corrector step loses its ability to track the 
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reference solution as shown in Fig. 5.4. However, in contrast, the scheme with the 

corrector is still able to generate a result coinciding with the reference solution. 

  

Comparing Fig. 5.3 with Fig. 5.4, it is inferred that not using the corrector step produces 

results that are increasingly in error as   goes up. On the other hand, once the corrector 

step is employed, the displacement error is greatly diminished. Another observation is 

that for those results from the scheme without the corrector step, the oscillation amplitude 

becomes larger as time proceeds when the estimated tangent stiffness is less than the real 

tangent stiffness, whereas the amplitude diminishes with time when the stiffness ratio is 

larger than 1.  

 

The cumulative energy error, Ec, computed for the response for the various systems is 

plotted in Figs. 5.5 and 5.6. It is clear from both Figs. 5.5 and 5.6 that Ec increases as   

increases regardless of whether the corrector step is used or not. However, it can also be 

seen that deploying the corrector step significantly diminishes Ec suggesting that FOM 

can effectively maintain simulation accuracy even when the tangent stiffness is 

incorrectly estimated. 

 

5.6 APPLICATION OF FOM TO NONLINEAR PROBLEMS 

Two numerical examples are used to demonstrate the capabilities of the proposed method 

when applied to nonlinear structures. The 1940 El Centro earthquake history record, 

scaled such that PGA=1g, is used as seismic excitation for both examples. UI-SimCor 

(Kwon et al. 2008) is used as the platform for data transmission between the main 
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computer and the substructures, which are numerically modeled using OpenSees 

(OpenSees 2006). The simulated responses using the proposed algorithm are compared 

with reference solutions from numerical simulations of the entire systems in OpenSees. 

The parameters   and   are chosen as 
2

1
 and 

4

1
, respectively. In order to show the 

effect of different schemes for estimating tangent stiffness on the model response, the 

tangent stiffness matrix is updated using the previously mentioned schemes, i.e. BFGS, 

DFP, Broyden, Broyden Family, and SR1.  

 

Two rules recommended by Hung and El-Tawil (2009) are imposed on the algorithm to 

ensure reasonable results. The first resets the reloading/unloading tangent stiffness to the 

initial stiffness right after the point where the displacement direction changes. Although 

this rule limits the proposed validation study to structures dominated by first mode 

response, where unloading of one member is associated with unloading of the entire 

structure, it does not necessarily limit the applicability of FOM to structures dominated 

by first mode effects. The second rule is more practical in nature. It filters out the steps 

where the imposed displacements are smaller than a user-specified threshold, specified as 

a minimum incremental displacement. This is to ensure that only steps that are large 

enough to contribute reliably to the stiffness calculations are utilized in the computations. 

Although user experience clearly plays a role in identifying this parameter, a number that 

is 2-3 times the displacement resolution of the actuator is recommended.  
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The first example is a reinforced concrete shear wall model as shown in Fig. 5.7. The 

shear wall model is simulated as a 1 DOF structure with a mass of 
in

s
kips

2

2 , and height 

of 15’. Cross section details are shown in Fig. 4.4.  Concrete02 and Steel01 material 

models in OpenSees are used in the simulation and the associated parameter definitions 

are shown in Fig. 4.5 and Table 4.1. An incremental time step of sec02.0
 
is used for this 

example. To study the operation of FOM in detail and understand how its various 

components contribute to a successful solution, the following 4 schemes are simulated: 1) 

FOM with initial stiffness and without the corrector step; 2) FOM with initial stiffness 

and with the corrector step; 3) FOM with updated tangent stiffness and without the 

corrector step, and 4) FOM with updated tangent stiffness and corrector step, i.e. the full 

capability of FOM. 

 

The simulation result from the 1
st
 scheme is shown in Fig. 5.8a. It is clear that the 

resulting simulated behavior diverges from the reference solution when the corrector step 

and the updated tangent stiffness are not used. On the other hand, the solution improves 

greatly when the other 3 schemes are employed as can be seen in Fig. 5.8b. Although the 

figure only shows results from the BFGS updating method, equally good results are 

obtained when the other 4 updating methods are used. These are not shown so not to 

clutter up the figure.  

 

The influence of the various parts of FOM can be seen in Fig. 5.9, which plots Ec (on a 

log scale) computed from the 4 different schemes. Clearly, and as was obvious in Fig. 

5.8a, using only the initial stiffness without the corrector step produces simulation errors 
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that are much larger than those produced by the other 3 schemes. Using only the tangent 

stiffness matrix (without a corrector step) reduces Ec by approximately an order of 

magnitude, while incorporating the corrector step in both cases dramatically reduces Ec. 

Using a tangent stiffness with a corrector step, which is the case when FOM is fully 

implemented, is the best situation. Fig. 5.9 also demonstrates the advantage of FOM over 

OSM. In particular, OSM accumulates errors that are two orders of magnitude greater 

than the full implementation of FOM for this particular problem (Fig. 5.9a). The 

superiority of FOM over OSM can also be seen in Fig. 5.9b, which shows that FOM 

traces the reference solution very well, while OSM deviates from it, especially at the peak 

points.  

 

The second example is a 6-story shear model with the cross section details shown in Fig. 

4.4. The values of the concentrated mass blocks and heights for each floor are displayed 

in Fig. 5.10. For hybrid simulation purposes, the building is broken up into 2 parts, the 

first floor serves as the 1
st
 substructure and the remaining portion as the 2

nd
 substructure. 

The entire building is also simulated in OpenSees to provide a reference solution. An 

incremental time step of sec005.0  is chosen for this example. 

 

The same 4 schemes employed in the single-DOF cantilever example above are used in 

this example as well to show the effect of the various parts and assumptions of FOM. In 

addition, since all the tangent stiffness updating methods gave close results, only the 

results from the BFGS method are presented. Fig. 5.11a shows the result from the 1
st
 

scheme in which the initial stiffness is used but not the corrector step. Clearly, the 
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solution diverges from the reference solution. The simulation results from the other 3 

schemes are plotted in Fig. 5.11b, which shows that the simulated seismic responses from 

these 3 schemes match the reference solution better than the one in Fig. 5.11a. However, 

zooming in on the plot (not shown) shows that there are differences, which can be seen 

by computing the cumulative energy error, Ec. The value of Ec associated with the first-

floor displacement is calculated and plotted in Fig. 5.12. As noted in the single-DOF 

cantilever example, the use of the tangent stiffness alone or initial stiffness with corrector 

both improve the simulation accuracy compared to just using the initial stiffness; in 

particular, Ec is more than an order of magnitude less in the case when the initial stiffness 

with corrector is used. As alluded to previously in Fig. 5.9, Fig. 5.12 shows that full 

implementation of FOM (with tangent stiffness and corrector) results in significantly less 

errors than application of the traditional OSM. 

 

5.7 HANDLING DISPLACEMENT CONTROL ERRORS IN FOM 

Displacement control errors in hydraulic actuators can greatly affect simulation accuracy 

during hybrid testing. The I-modification technique (Nakashima and Kato 1987) was 

proposed as a means to suppress the adverse effects of displacement control errors when 

the OSM method is used. However, it has been shown in (Combescure and Pegon 1997) 

that when the OSM with I-modification is used to simulate structural behavior with 

significant inelastic behavior, the resulting simulated displacements may suffer in 

accuracy.  
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The effect of displacement control errors on the performance of the proposed algorithm is 

studied using the 6-story shear model. A constant overshoot displacement control error of 

0.001 in is assumed in the simulations. Results from FOM are compared to those from 

OSM with I-modification in Fig. 5.13 to show the benefits of using the new method. It 

can be seen from the figure that OSM with I-modification deviates from the reference 

solution from OpenSees. On the other hand, the proposed method is still able to achieve 

good performance. This is attributed to the fact that the corrector in the proposed method 

relies entirely on measured information from the tested structures, i.e. the restoring force, 

instead of using an estimated initial stiffness or tangent stiffness of the structure in the 

case of OSM.  

 

5.8 STABILITY CHARACTERISTIC OF FOM 

To investigate the stability of FOM, an elastic, undamped single degree of freedom 

system is considered. The equations of motion of FOM for the predictor and corrector 

steps, respectively, at time step n+1 can be written as: 
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real tangent stiffnesses, respectively. Rearranging Eqs. 5.4, 5.18 and 5.19 with 
2

1
  and 

4

1
 , the free vibration solution for FOM can be written in a recursive form as 
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, is the amplification 

matrix; t
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K
t

R

  , is the sampling frequency.  is defined as the estimation 

error of the tangent stiffness and is expressed as 
R

EST

K

K
 . 

The stability of FOM can be investigated using the spectral radius of the amplification 

matrix A (Hilber et al. 1977; Hung and El-Tawil 2009a). The spectral radius, )( A , is 

the maximum absolute eigenvalue of the amplification matrix. An algorithm is stable 

when its spectral radius is less than or equal to 1. The spectral radius of FOM’s 

amplification matrix versus   with varying   is plotted in Fig. 5.14. It can be seen that 

nn AXX 1
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FOM is a conditionally stable algorithm. The stability criterion for FOM becomes more 

stringent as the accuracy of the estimated tangent stiffness decreases. In particular, when 

1 , FOM is stable if 2 , which is the same stability criterion of the central 

difference method (Chopra 2006). 

 

5.9 ENHANCING THE NUMERICAL CHARACTERISTICS OF FOM 

5.9.1 Modified FOM (mFOM) 

The response of structures with higher mode response is challenging to simulate using 

conditionally stable algorithms. The short period associated with the highest mode 

controls the simulation by imposing strict limits on the size of the time step. Small 

incremental time steps not only increase the total simulation time but also magnify the 

adverse effect of actuator control errors on simulation accuracy.  

In order to enhance the stability characteristics of FOM for structures showing higher 

mode response, a new version of FOM is proposed, termed modified-FOM, or mFOM. 

As discussed previously (Hung and El-Tawil 2009b), the restoring force relationship at 

time step n+1 can be approximated as 

 

 11111
ˆˆˆ
  nn

T

nnn ddKrr
   (5.21)

 

 

The corrector restoring force in FOM is assumed equal to the predictor restoring force, i.e.
 

11
ˆ
  nn rr . This assumption was justified (Hung and El-Tawil 2009b) based on the 

argument that the incremental force in Eq. 5.21 is associated with a 2
nd

 order term minor 

enough to ignore. This assumption is, however, the main reason that FOM is 
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conditionally stable, and when the expression in Eq. 5.21 is used instead of the 

approximation that 
11

ˆ
  nn rr , a new version of FOM with enhanced stability 

characteristics is obtained.  

 

Substituting Eq. 5.21 into the equation of motion at the corrector step at time step n+1: 

 

   11111111
ˆˆˆ

  nnn

T

nnnnn fddKrvCMa
  (5.22)

 

 

Rearranging Eq. 5.22, the corrector acceleration for mFOM can be calculated as: 
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T

nnnnnnnn

T

nnn

nnn

atKratCvCff

tKtCMM

fMa



          (5.23) 

 

where 1

nM  is the corrector equivalent mass matrix of mFOM; 1


nf  is the corrector 

equivalent force vector of mFOM. While it appears small, this modification has a large 

impact on the stability characteristics of mFOM as outlined next. 

 

5.9.2 Stability characteristic of mFOM 

The stability and accuracy characteristics of mFOM are investigated in this section with 

particular emphasis on the effect of the estimated tangent stiffness and damping 

coefficient. In the predictor step of mFOM, the equation of motion for an elastic, damped 

single degree of freedom system under free vibration can be written as 
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     0)ˆ()ˆ(ˆ
111   nnn
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ndnn
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n rddKfvvCaM  (5.24) 

 

where 
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n

R
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)ˆ()ˆ( nn

EST

n

R

n ddKdKr  ; 

ESTC  and RC are the estimated and real damping coefficients, respectively.  

 

The equation of motion for the corrector at the same time step can be expressed as 

 

    0)ˆ()ˆ()ˆ()ˆ( 1111111   n

R
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R

nn
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n dKddKvCvvCMa  (5.25)  

 

The response solution can be obtained in a recursive form using Eq. 5.24 and Eq. 5.25 

and applying 
2

1
  and 

4

1
 , i.e.: 

 

                                                                                                               (5.26) 
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  .   is defined as the estimation error of the damping 

coefficient and is expressed as 
R

EST

C

C
 . 

 

When 05.0 and  =1, the spectral radius versus   with varying   is plotted in Fig. 

5.15. As shown in Fig. 5.15a, mFOM is unconditionally stable when 1 . When 1 , 

mFOM becomes conditionally stable as can be seen from Fig. 5.15b. Compared to the 

original FOM, which was conditionally stabile, the stability of mFOM is guaranteed 

when the estimated tangent stiffness is larger than or equal to the true stiffness of the 

structure. This implies that when the tangent stiffness of the structure is difficult to 

estimate, the initial tangent stiffness can be used with mFOM to achieve unconditional 

stability. This is true as long as the structure’s stiffness degrades with testing, which is a 

common situation in most civil structures. The effect on the simulation accuracy of 

replacing the tangent stiffness with the initial stiffness is discussed in the next section 

using a numerical example. 
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The numerical accuracy of mFOM can be investigated using the ratio of period distortion 

and numerical damping (Wu et al. 2005; Shing and Mahin 1985; Hung and El-Tawil 

2009a). Among the 4 eigenvalues of the amplification matrix A , 2 are complex numbers, 

1 is a real number, and 1 equals zero. The displacement response for a viscously 

underdamped free-vibration response can be expressed using eigenvalues as (Wu et al. 

2005; Hung and El-Tawil 2009a)  

 

  n

ddnn ctnctnctnd 3321 )sin()cos()exp(     (5.27) 

 

where the complex eigenvalues    212,1
ˆexp iLLi   ; 
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numerical damping is defined as 

  

    (5.28) 

 

The variation of numerical damping ratio against   with varying  when 05.0  and 

1 is plotted in Fig. 5.16. As shown in Fig. 5.16a, when 1 , the absolute value of 

the maximum numerical damping ratio increases with increasing  . As   increases, the 

numerical damping ratio converges to a constant around -0.1. The numerical damping 

ratio versus   when 1 is depicted in Fig. 5.16b. The figure shows the absolute value 

of the maximum numerical damping ratio increases as the estimated tangent stiffness 

becomes less accurate. The value of numerical damping ratio also converges to a constant 
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for each  . However, the absolute value to which the damping ratio converges is larger 

compared to the case where 1 .  

 

The effect of the accuracy of the estimated damping coefficient on the numerical 

damping ratio is plotted in Fig. 5.17 for 05.0 and 1 . The figure shows that the 

absolute value of the numerical damping ratio increases with increasing  ; however, the 

influence of   is less than that of  on the numerical damping ratio. 

 

In addition to the numerical damping ratio, period distortion is used as an indication of 

mFOM’s accuracy. Period distortion is defined as (Wu et al. 2005; Shing and Mahin 

1985; Hung and El-Tawil 2009a) 
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T
  (5.29) 

 

The relationship between period distortion and   for 1  is plotted in Fig. 5.18a for 

the case where 1  and 05.0 . The result indicates that for 1 the period 

decreases as the accuracy of estimated tangent stiffness decreases whereas the period 

elongates for  1  as shown in Fig. 5.18b. The influence of  on the period is plotted in 

Fig. 5.19, which implies that the period elongates as   increases. 

 

5.9.3 Hybrid simulation of a 6-story model using mFOM 
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A 6-story shear model is used to demonstrate the performance of mFOM for hybrid 

simulation. The values of the concentrated mass blocks and heights for each floor are 

displayed in Fig. 5.10.  As shown in Fig. 5.10, the bottom floor is chosen to serve as the 

1
st
 substructure, while the rest of the structure serves as the 2

nd
 substructure. Both 

substructures are numerically simulated in OpenSees (2006). Cross section details are 

shown in Fig. 4.4. The displacement-based beam column element in OpenSees (2006), 

which allows distributed plasticity with linear curvature distribution along the element, is 

chosen to simulate the model.  Concrete02 and Steel01 material models in OpenSees 

(2006) are used in the simulation and the associated parameter definitions are shown in 

Fig. 4.5 and Table 4.1. 

 

The response of the system to the 1940 El Centro earthquake is simulated using four 

different approaches, including mFOM with updated tangent stiffness, mFOM with initial 

structural stiffness, OSM, and the conventional numerical method, which is used as the 

reference solution. An incremental time step of sec005.0  is used for all the schemes. UI-

SimCor (Kwon et al. 2008) is used as the hybrid simulation platform. In order to show 

that mFOM is capable of simulating structures with significant nonlinear behavior, the 

earthquake history record is scaled such that the peak ground acceleration is 1g. The 

parameters   and   in mFOM are chosen as 
2

1
 and 

4

1
, respectively. The tangent 

stiffness matrix is updated using the BFGS method (Hung and El-Tawil 2009b).  

 

The displacement history responses of the 1
st
 floor associated with the various solution 

schemes are plotted in Fig. 5.20a. The figure shows that the responses computed from all 
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methods match the reference solution well. However, there are some differences between 

the various schemes, which can be seen more clearly in the magnified view shown in Fig. 

5.20b. The figure indicates that while the solution from mFOM with updated tangent 

stiffness very closely matches the reference solution, the solutions from OSM and mFOM 

with initial structural stiffness deviate somewhat from the reference solution.  

 

The differences in performance of the various schemes can be better appreciated using 

the cumulative energy error index (CEEI) (Hung and El-Tawil 2009b).  In addition to the 

previously mentioned schemes, the performance of the regular FOM, which also matched 

the reference solution very closely, is also included in the discussion.  

 

The resulting CEEI from each scheme (associated with the 1
st
 floor) is plotted in Fig. 

5.21. The figure indicates that mFOM with initial structural stiffness results in a solution 

with error propagation characteristics similar to OSM. This suggests that mFOM with 

initial stiffness is at least as good as OSM, which also employs the initial stiffness in its 

calculations. Another observation from Fig. 5.21 is that mFOM with updated tangent 

stiffness and the regular FOM have similar CEEI values. At the end of the simulation, 

both schemes generate CEEI values that are less than 10% of that for OSM. Overall, the 

simulation results indicate that both versions of mFOM are capable of producing 

reasonable solutions, although the version with tangent stiffness is more accurate than the 

one employing initial stiffness. This is, however, not surprising, since it is well known 

that the use of the tangent stiffness instead of the initial stiffness improves the accuracy 

of predictor-corrector schemes such as mFOM (Hung and El-Tawil 2009a).  
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5.10 SUMMARY 

A new hybrid simulation technique was presented in this chapter. The technique, termed 

Full Operator Method, or FOM, differs in two significant ways from the commonly used 

OSM. First, FOM increases the accuracy of the predictor step by including a predictor 

acceleration term and by relying on the tested structure’s estimated tangent stiffness. 

Second, FOM employs the measured restoring force from the tested structure for the 

corrector step, without resorting to approximations such as those used in OSM. Based on 

the advantages of the method, it is suggested that FOM is a better candidate for general 

hybrid simulation than the Operator-Splitting Method and other similar techniques. 

Furthermore, since both predictor displacement and velocity are generated from the 

algorithm, FOM can be applied to real-time hybrid simulation. The capabilities of FOM 

were demonstrated through a number of numerical simulations, including an elastic 

SDOF vibrator, an inelastic single-DOF shear wall system, and an inelastic 6-story shear 

structure. A final exercise showed that FOM can also be used to generate good results 

even when displacement control errors are present.  

 

The stability of the Full Operator Method (FOM) was then formally investigated. By 

examining the spectral radius of FOM’s characteristic matrix, the technique was found to 

be conditionally stable. It was found that when the estimated tangent stiffness is equal to 

the actual structural stiffness, the required sampling frequency for FOM necessary to 

achieve stability is equal to that for the central difference method. A modified version of 

FOM, termed mFOM, which accounts for the incremental restoring force between the 
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predictor and corrector steps, was proposed. The stability and accuracy characteristics of 

mFOM were then investigated and it was found that mFOM is unconditionally stable 

when the estimated tangent stiffness of the structure is larger than or equal to the actual 

stiffness of the structure. mFOM is therefore unconditionally stable when the initial 

stiffness is employed during hybrid testing of  structures in which the stiffness 

characteristics degrade with loading. The effect of inaccurately estimating the tangent 

stiffness and damping coefficient on the stability and accuracy of mFOM was discussed 

in terms of period distortion and numerical damping. The performance of mFOM for 

hybrid testing was also demonstrated using a 6-story numerical model. The simulation 

results indicated that the two variations of mFOM considered were able to predict the 

seismic response of the model with reasonable accuracy.  
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Fig 5.1 - Algorithm for the proposed method 
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Fig 5.2 - Procedure for investigation of the influence of the corrector step on the 

simulated solution 

1
ˆ

nd 11
ˆ

  nrealn dKr 1nd

1 nn

Corrector step 
Tested Structure 

realK

Predictor step 

realest KK 



147 

 

 

0 50 100 150 200
-1.5

-1

-0.5

0

0.5

1

Steps

A
m

p
lit

u
d
e

 = 0.1;   =0.02

 

 

0 50 100 150 200
-1

-0.5

0

0.5

1

Steps

A
m

p
lit

u
d
e

 = 10;   =0.02

 

 

without corrector

with corrector

reference solution

 

Fig 5.3. - Model response with   0.02 using different stiffness ratios: (a)  0.1 and 
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Fig 5.4 - Model response with   0.1 using different stiffness ratios: (a)  0.1 and (b) 
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Fig 5.5 - Displacement errors with and without the corrector step when  0.1 

 

 

Fig 5.6 - Displacement errors with and without the corrector step when  10 
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Fig 5.7 - Properties of the shear wall model 

 

  

(a) Initial stiffness without the corrector step (b) Results from various FOM schemes 

Fig 5.8 - Simulated seismic responses of the shear wall model 
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(a) Cumulated energy error, Ec (b) Solutions from OpenSees, FOM and OSM 

Fig 5.9 - Comparison of shear wall model results computed from various schemes 
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Fig 5.10 - Details of the 6-story model 
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(a) Initial stiffness without the corrector step (b) Results from various FOM schemes 

Fig 5.11 - Simulated seismic response of the 6-story model 
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Fig 5.12 - Comparison of 6-story model results computed from various schemes 
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Fig 5.13 - The effect of displacement control error on simulation results 
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Fig. 5.18 - Relationship between period distortion and   with varying   for mFOM 
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Fig. 5.19 - Relationship between period distortion and   with varying   for mFOM 
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(a) solutions from various schemes (b) magnified solution curves  

 

Fig. 5.20 - Simulated seismic response of the 6-story model 
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Fig. 5.21 - Cumulative energy errors for the 6-story model 
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CHAPTER 6 

HYBRID SIMULATION OF HPFRC COUPLED WALL SYSTEMS  

 

 

6.1 INTRODUCTION 

Two traditional approaches for investigating structural response are physical testing and 

numerical simulation. Each technique has its limitations and so the results of one method 

is frequently used in conjunction with the other's to reach a full appreciation of system 

response. 

 

Physical testing involves testing a specimen under simulated loading and boundary 

conditions that model the hazard in question. The modeling approximations can influence 

the physical specimen's response thereby introducing uncertainty about the specimen's 

true insitu behavior. In earthquake engineering, the two common physical testing 

methods are member/subassemblage tests and shake table tests. In the first, a member or 

structural subassemblage with idealized boundary conditions is tested under a specified 

pseudo static or dynamic loading regime. Relatively large-sized specimens can be tested 

in this method because only a single member or a small subassemblage of members is 

tested at a given time. By its very nature, this method cannot accurately model full 

system response under seismic loading because of the assumed loading and boundary 
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conditions. Furthermore, the effect of loading rate is not accounted for in the test if the 

loading rate is pseudo static. For many materials, such as concrete and steel, the influence 

of seismic loading rate is not significant, but certain other materials, such as viscoelastic 

materials, are sensitive to the loading rate and must be tested under dynamic loading. 

Shake table testing, on the other hand, is a more realistic test environment since it allows 

system testing under simulated earthquake motion. However, the size of the shake table 

poses a severe limitation on the applicability of the method. In many cases, only small-

scale specimens can be tested on a given shake table, which introduces scaling issues that 

could distort the fidelity of the test results. 

 

The widespread availability of numerical simulation tools has led to a surge in the 

application of computational tools for investigating the response of new structural 

systems. However, computational models can be quite sensitive to a host of modeling 

assumptions, which means that simulation tools should only be exercised by competent 

analysts who have experience with the intricacies and sensitivities of their tools. In 

general, the results of simulation models are not acceptable unless a thorough validation 

exercise is undertaken and the bounds of applicability of the model are established. 

 

The hybrid simulation technique combines features of the member/subassemblage and 

simulation evaluation methods to provide an attractive option that overcomes many of the 

individual limitations of each technique by itself. The technique is ideal for structures 

comprised of a part that is straight forward to simulate and another that is difficult to 

model and must therefore be physically tested, e.g. critical structural components whose 
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response is difficult to simulate because of extreme nonlinearity. The method permits 

testing of specimens in an environment that approaches shake table testing, but without 

the size constraint. Moreover, the technique permits more accurate representation of the 

loading and boundary conditions while allowing the use of commonly available static or 

dynamic actuators. 

 

In this chapter, the effectiveness of using the hybrid simulation technique to predict the 

seismic behavior of HPFRC coupled wall systems is numerically investigated. While no 

physical testing is actually conducted, a simulation of the technique itself is done by 

combining the capabilities of two different computer programs. The objective is to 

demonstrate that the technique is applicable to coupled wall systems and to show that it is 

feasible to combine the capabilities of disparate computer models using the hybrid 

simulation method. The veracity of the solution obtained from hybrid simulation is 

demonstrated by comparing it to the response computed from conventional computational 

simulation.  

 

6.2 PLATFORM FOR HYBRID TESTING 

UI-SimCor (Kwon et al. 2008) is used as the platform to conduct the hybrid simulation 

exercise. The main task of UI-SimCor is to transmit target response values and the 

resulting system response between the tested (in this work, simulated) substructures and 

the main coordinator computer. In addition, algorithms for hybrid simulation can be 

implemented in conjunction with UI-SimCor by embedding them as a subroutine within 

UI-SimCor.  
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As shown in Fig. 6.1, the coordinator computer, which uses the selected hybrid 

simulation algorithm for solving the equation of motion, computes the target structural 

response at a particular time step. After that, the target value is imposed on the tested 

(simulated) substructures, and the resulting reaction force is measured. The measured 

reaction force is then transmitted to the main computer to calculate the system response 

in the next time step. The above procedure is repeated to extract the entire seismic 

response of the tested (simulated) structure.  

 

The default interface provided by UI-SimCor allows the use of ABAQUS, OpenSees, 

FEADES Lab, and ZEUS-NL to model the computational substructure. In order to use 

LS-DYNA for computational HPFRC substructures, a new interface is developed to 

connect LS-DYNA to the coordinating computer. The interface is developed in Matlab 

using object-oriented programming. The developed interface has 3 main tasks. First, it 

receives the target responses from the coordinating computer. After that, it imposes the 

target responses on the numerical model and restarts a pseudo-static analysis in LS-

DYNA. The resulting reaction forces are then read by the interface and sent back to the 

coordinator computer. 

 

6.3 HYBRID SIMULATION OF THE HPFRC COUPLED WALL SYSTEM 

To conduct hybrid simulation, the entire structure is divided into two substructures, i.e. 

the bottom 4 levels as the first substructure (B-Sub) and the remainder of the structure as 

the second substructure (T-Sub). The B-Sub, which is intended to represent the 



164 

 

physically-tested substructure in the laboratory, is modeled using macro-scale elements in 

LS-DYNA as was done in Chapter 3. On the other hand, the T-Sub is modeled in 

OpenSees using structural-scale elements. As shown in Fig. 6.2, the two shear walls for 

the T-Sub are represented by beam-column elements which are capable of representing 

behavior under combined axial force and bending moment. The beam-column elements 

are located at the gross section centroid of each shear wall.  

 

The numerical model of the prototype HPFRC coupled wall system from Chapter 3 is 

slightly modified for the hybrid simulation exercise presented in this chapter. Recall that 

the first 4 stories and all coupling beams of the prototype structure in Chapter 3 are 

comprised of HPFRC, while the remainder of the system is made of RC. Since OpenSees 

does not possess a suitable material model to account for the hysteretic behavior of 

HPFRC, RC coupling beams are used instead of HPFRC in the beams above the 4
th

 floor 

level.  

 

Some assumptions are made in order to permit use of OpenSees’ beam-column elements 

to represent the response of RC coupling beams with diagonal reinforcement cages. The 

moment capacity of each coupling beam is computed using the longitudinal 

reinforcement and the longitudinal component of the diagonal reinforcement of the beam. 

For shear behavior, the coupling beam is designed to yield, in an elastic perfectly plastic 

manner, once the design shear demand is reached. To ensure that these assumptions are 

reasonable, the cyclic behavior of the coupling beam model from the T-Sub (OpenSees) 

is compared to that from the reference solution computed from the macro-scale model 



165 

 

(LS-DYNA). As shown in Fig. 6.3, the coupling beam model in OpenSees provides a 

strength capacity that matches the reference solution from the macro-scale model. 

However, the pinching behavior generated by the structural-scale model (OpenSees) is 

slightly more pronounced than that from the macro-scale (LS-DYNA) model. The 

comparison implies that the T-Sub’s coupling beam model is able to capture the overall 

cyclic behavior from the reference model with acceptable resolution despite the 

simplifications made in modeling the coupling beams in T-Sub. 

 

In order to form the equation of motion for the entire structure, the mass of the B-Sub is 

represented using 2 lumped mass blocks. Each mass block has 3 DOFs: 2 translational 

DOFs and 1 rotational DOF as can be seen in Fig. 6.4. For the T-Sub, lumped mass 

blocks are located at the beam-column connections as well as the boundary connecting to 

the B-Sub. The lumped mass blocks at the beam-column connections are displacement 

controlled in the horizontal DOF while the lumped mass blocks at the boundary posses 3 

DOFs (Fig. 6.5). Each substructure is modeled in different computers with different IP 

addresses, and connected using UI-SimCor through a network as shown in Fig 6.2. 

 

The FOM (Hung and El-Tawil 2009) is used to compute the seismic behavior of the 

coupled wall system and the 1940 El Centro earthquake history record with PGA=0.36g 

is used as the ground motion excitation. The simulated seismic response of the entire 

structure from conventional finite element analysis in LS-DYNA is used as the reference 

solution to judge the performance of the hybrid model. The comparison of the 

displacement history responses from the two methods is shown in Fig 6.6. It can be seen 
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that the computed result from the hybrid simulation technique captures the frequency 

content of the seismic behavior of the coupled wall system provided by the reference 

solution. The maximum story drift and roof displacement predicted by the methods are 

listed in Table 1. The hybrid simulation technique generates a maximum story drift 7% 

smaller than the reference solution, and its prediction of maximum roof displacement is 

9% less than the reference solution.  

 

The discrepancy between the solutions of the hybrid simulation model and the reference 

model can be attributed to the assumptions made in the hybrid simulation model. First, 

the reference model computes the response solution using a continuum representation 

while the hybrid simulation technique simplifies the model into a system with a limited 

number of DOFs. Besides, in the reference model, the selected incremental time step for 

solving the equations of motion representing the system is optimized by LS-DYNA to 

provide high resolution. On the other hand, careful judgment needs to be made in hybrid 

simulation to prevent the use of too-small a step size to avoid extended simulation time 

and amplified error propagation.  

 

Although the use of hybrid simulation yields a fair prediction of the coupled wall 

system’s seismic behavior, the quality of the solution can be improved by refining the 

hybrid simulation model. For example, the simulation resolution can be enhanced by 

shortening the incremental time step from the current 0.01sec to 0.005sec. However, as 

mentioned above, this will significantly increase the entire simulation time and amplify 

the displacement control errors associated with the actuators in physical hybrid 
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simulation. In addition, considering the number and characteristics of actuators 

commonly available in most laboratories, the current controlled DOFs for B-Sub are 

limited to the 4
th

 floor level only. The simulation resolution can be improved if the DOFs 

of the lateral displacements at the bottom 3 floor levels are included, but that will require 

more actuators to be available and will necessitate high control accuracy at the bottom 

floor since displacements are expected to be small.  

 

It is also important to note that the overall simulation accuracy is influenced by the 

capabilities of the simulation models themselves. While the shear walls and coupling 

beams in T-Sub are modeled using structural-scale elements, they are modeled using 

macro-scale elements in the reference model. A better simulation result could likely be 

obtained if a macro-scale model is used for T-Sub instead of a structural scale model. 

However, this will certainly increase the simulation time.  

 

6.4 SUMMARY 

The effectiveness of using hybrid simulation to predict the seismic behavior of HPFRC 

coupled wall system was explored in this chapter. A prototype model based on the 18-

story HPFRC coupled wall system from Chapter 3 was adopted for this purpose. The 

prototype system was divided into T-Sub and B-Sub, which were modeled using 

structural-scale elements in OpenSees and macro-scale elements in LS-DYNA, 

respectively. In order to use finite element models from LS-DYNA for hybrid simulation 

through UI-SimCor, an interface was developed in Matlab using object-oriented 

programming. The tasks of the interface were to receive the computed target response 
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from the coordinator computer, restart the LS-DYNA substructure with target response, 

and send the resulting reaction force back to the coordinator computer. During the hybrid 

simulation, the substructures were modeled in different computers connected through UI-

SimCor within a network. The computed solutions (from hybrid simulation and 

conventional finite element analysis) were compared using parameters such as maximum 

story drift, maximum roof displacement, and displacement history responses. The 

comparison showed that the hybrid simulation technique can capture the overall response 

of the system in terms of frequency content and displacement amplitude. Discrepancies 

between the solutions were attributed to the assumptions made in setting up the hybrid 

simulation model.  
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Table 6.1 – Comparison of the story drift and roof displacement 

Max Response Story drift (%) Roof displacement (in) 

Hybrid Simulation 

(T=2.0 sec) 0.275 4.70  

Reference Solution 

(T=3.1 sec) 0.296 5.19  
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Fig. 6.1 – Implementation of hybrid simulation using UI-SimCor 
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Fig. 6.2 –Numerical hybrid testing of the modified coupled wall system 
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Fig. 6.3 – Cyclic behavior of the coupling beam models from OpenSees and LS-DYNA 
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Fig. 6.4 – Controlled degrees of freedoms of the bottom substructure 
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Fig. 6.5 – Controlled degrees of freedoms of the top substructure 
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Fig. 6.6 – Comparison of the displacement responses from hybrid simulation and the 

reference solution 
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CHAPTER 7 

SUMMARY, CONCLUSIONS, AND FUTURE RESEARCH 

CHAPTER 1 SUMMARY, CONCLUSIONS, AND F 

CHAPTER 2 UTURE RESEARCH 

7.1 SUMMARY 

This dissertation investigated the advantages of using HPFRC material to replace 

traditional concrete in critical components of a structure. Specifically, computational and 

hybrid simulation techniques were employed to explore the potential for using HPFRC 

material in coupling beams and plastic hinge zones of coupled wall systems. A new 

model that describes the planar response of HPFRC was developed and used to represent 

material behavior in computational system studies of prototype coupled wall systems. 

Two new algorithms were proposed to address the limitations of existing hybrid 

simulation techniques, including a particularly promising method, termed full operator 

method (FOM). Hybrid simulation of the seismic response of hybrid coupled wall 

systems with HPFRC was demonstrated using the new FOM technique. Following are 

more specific details of the innovations in this thesis and the major conclusions that can 

be drawn.  
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7.1.1 Inelastic HPFRC material model 

An inelastic HPFRC material model was developed to predict the hysteretic behavior of 

HPFRC structural components under reversed displacements. In order to develop the 

material model, stress-strain relationships of HPFRC materials in both tension and 

compression were defined based on the available experimental data. The initiation and 

growth of cracks in the HPFRC material were described using a smeared crack approach. 

In addition, the orientation of cracks was defined using a new mixed fixed/rotating crack 

approach. The newly developed macro-scale constitutive model for HPFRC, based on a 

plane stress representation, was shown to be able to adequately account for the 

phenomenological behavior of HPFRC at the macro-scale level and capture responses 

such as cracking, softening, and hardening. The material model was implemented as a 

user-defined material model in LS-DYNA. The performance of the material model for 

modeling HPFRC structural components’ behavior under displacement reversals was 

demonstrated through comparisons between experimental results and computational 

solutions for a variety of structural components, including a coupling beam, a double 

cantilever beam, and a slender shear wall. The comparisons were made by focusing on 

parameters such as loading/unloading/reloading slopes, pinching behavior, strength 

capacity, and shear deformation. It was demonstrated that the newly implemented model 

is capable of capturing the hysteretic behavior of HPFRC structural components with 

reasonable accuracy.  
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7.1.2 Seismic performance of HPFRC coupled wall system 

Two 18-story coupled wall systems were designed using contemporary seismic design 

specifications. The first system was a traditional RC coupled wall system while the 

second one was constructed with HPFRC material in its coupling beams and the first four 

floor levels of the shear walls. Given the enhanced tensile, shear and moment resistance 

of HPFRC over regular concrete, the reinforcement detailing and amounts in the HPFRC 

coupled wall system were simplified and reduced from those in the RC system. In 

particular, the diagonal reinforcement cages with heavy confinement in the RC coupling 

beams were replaced by single layer steel rebars without confinement. Also, the 

transverse reinforcement in the HPFRC coupling beams was reduced from the RC 

coupling beams by 30%. For the shear wall, the vertical reinforcement in the boundary 

zone and the flange of the HPFRC system was 20% less than that in the RC system. 

Additionally, the confinement in the boundary zone was reduced by 50%. The seismic 

performance of the systems was examined using the requirements associated with Life 

Safety and Collapse Prevention performance level in FEMA 356 (2000). It was found 

that the seismic behavior of both systems satisfied the acceptance criteria in terms of 

story drift, coupling beam rotation, and plastic hinge zone deformation, despite the 

reduced reinforcement and simplified detailing in the HPFRC system. The benefit of 

using HPFRC to replace RC in the critical regions was clearly seen in the plastic hinge 

zone deformation. Specifically, it was shown that the pseudo strain-hardening behavior of 

HPFRC in tension helped extend the size of the plastic hinge zone from the wall base to 

the fourth floor level, reducing peak rotational deformation demands at the shear wall 

base as deformation demands increased. In contrast, the plastic hinge in the RC system 
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concentrated at the wall base as the system response increased. The advantage of using 

HPFRC also showed in terms of crack localization patterns during and after the 

prescribed ground motion events. It was found that the HPFRC system suffered much 

less localized cracks in the coupling beams and shear walls compared to the RC system. 

It was concluded that using HPFRC to replace RC in critical regions of a structure is able 

to reduce and simplify the reinforcement amount and detailing while enhancing 

permanent damage patterns in the aftermath of seismic events. 

 

7.1.3 Enhancements in hybrid simulation techniques 

A strategy for estimating the tangent stiffness of structures during hybrid simulation was 

proposed. The proposed strategy extracts the current tangent stiffness by solving a set of 

equations related to the displacement responses and reaction forces of the system from a 

few steps prior to the current time step. The technique for estimating the tangent stiffness 

was combined with the Operator-Splitting Method (OSM) for hybrid simulation and was 

shown to result in enhanced simulation accuracy when compared to the traditional OSM. 

The influence of the accuracy of the estimated tangent stiffness and the damping 

coefficient on the stability and accuracy characteristics of the modified OSM technique 

was investigated analytically. 

 

A new predictor-corrector algorithm, termed the Full Operator Method (FOM), was 

proposed to resolve some of the issues associated with the widely used OSM. The new 

method was distinguished from OSM by two aspects. First, it increases the accuracy of 

the predictor response by applying an estimated tangent stiffness to calculate the 
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predictor acceleration term. A variety of schemes for estimating structures’ tangent 

stiffness were suggested, such as BFGS, Broyden, DFP, and SR1. Second, the corrector 

response of FOM only resorts to the reaction forces from the tested/simulated 

structures/substructures without other assumptions like those made in OSM. The 

enhanced performance of FOM was demonstrated through several numerical hybrid 

simulation exercises. It was concluded that FOM is able to simulate the seismic behavior 

of structures with excellent accuracy, especially for structures showing significant 

nonlinear behavior, particularly when compared to OSM. Furthermore, it was found that 

when displacement control errors inherent in the hydraulic actuators were induced, the 

resulting adverse effect on FOM was less than that on OSM. This was attributed to the 

fact that the corrector response in FOM is only dependent on the true reaction forces. 

 

The stability of FOM was investigated analytically and was found to be conditionally 

stable. A modified form of FOM, termed mFOM, was proposed to address this stability 

issue. It was shown that mFOM is unconditionally stable when the estimated tangent 

stiffness is larger than the real tangent stiffness of the structure. It was suggested that 

when FOM is applied to a structure dominated by higher mode response, and at the same 

time, the structure’s tangent stiffness is difficult to estimate, the tangent stiffness can be 

substituted by the initial stiffness of the structure to reach unconditional stability and to 

allow the use of a larger incremental time step to speed up the hybrid test. The 

performance of mFOM was demonstrated through hybrid simulation of a 6-dof model. It 

was concluded from the validation examples that mFOM was able to predict structural 

seismic behavior with accuracy that is at least as good as OSM. 
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7.1.4 Hybrid simulation of HPFRC coupled wall system 

Hybrid simulation of a HPFRC coupled wall system was demonstrated. The system was 

divided into 2 substructures, each of which was modeled using a different computer 

program and model type. The bottom four floors were treated as the first substructure (B-

Sub) and the remainder of the system was the second substructure (T-Sub). The B-Sub 

was simulated using macro-scale elements in LS-DYNA while the T-Sub was modeled 

using structural-scale elements in OpenSees. The different substructure responses were 

connected using UI-SimCor within a network. The computed seismic behavior from 

hybrid simulation was compared with that from the conventional computational method. 

It was found that while the frequency content and the general displacement amplitude 

from the hybrid simulation were able to match the reference solution quite well, the 

hybrid simulation technique was not able to reproduce fine details of the response, 

especially at the peaks. This discrepancy was attributed to the assumptions that were 

necessarily made to enable the hybrid simulation involving both OpenSees and LS-

DYNA. For example, the continuum system was simplified and represented as a system 

with 30 lumped mass blocks. Also, T-Sub was modeled using beam-column elements 

instead of plane-stress elements as was done in the conventional computational method. 

Further, the shear and moment behavior of the coupling beams were also greatly 

simplified due to the limitations of the beam-column elements employed in T-Sub. 

Nevertheless, the exercise demonstrated that hybrid simulation between disparate finite 

element programs and models is feasible and can produce reasonable nonlinear results in 

spite of the approximations made.  
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7.2 CONCLUSIONS 

Major findings from this research are as follows. 

 The newly proposed mixed fixed/rotating crack model for HPFRC materials is 

able to predict the hysteretic behavior of various types of HPFRC structural 

components with reasonable accuracy. 

 Despite a significant reduction in the amount of reinforcing steel and 

simplifications in seismic detailing, using HPFRC materials to replace RC in 

coupled wall systems can nevertheless enhance the seismic performance of 

coupled wall systems. This is manifested as a reduction in local deformation 

demands in the plastic hinge zones and reduced permanent damage after a seismic 

event. 

 The newly developed FOM is conditionally stability. There are two reasons for its 

enhanced accuracy compared to OSM: 1) it increases the accuracy of the predictor 

response, and 2) eliminates inaccurate assumptions in the corrector response. 

 It is possible to modify FOM into an unconditionally stable algorithm, termed 

mFOM. The modified method is unconditionally stable when the estimated 

tangent stiffness is larger than the real tangent stiffness. The stability of mFOM 

can therefore be guaranteed if the initial stiffness of the structure is used in the 

mFOM when analyzing structures with degrading stiffness characteristics, a 

category in which most civil structures fall. The simulation accuracy of mFOM is 

at least as good as OSM in the examples studied.  
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 Hybrid simulation between two disparate computational sub-models of a hybrid 

coupled wall system is able to provide a fair prediction of response in terms of the 

system’s maximum displacement response, story drift, frequency content, and 

displacement amplitude. However, details of the response can only be roughly 

modeled due to the assumptions that were necessarily made to enable the 

simulation to occur. 

 

7.3 Future Research 

The work that was conducted in this dissertation offers a strong foundation from which to 

launch a variety of research directions. These research opportunities can be categorized in 

four parts: further development of a HPFRC material model, effectiveness of using 

HPFRC in structures for enhanced seismic behavior, development of hybrid simulation 

algorithms, and enhancements in using hybrid simulation for coupled wall systems. The 

following is a description of these recommended areas of research. 

 

7.3.1 Development of a HPFRC material model 

Although the proposed material model is capable of accounting for some of the most 

important sources of nonlinear behavior in HPFRC structural components, it is incapable 

of addressing some other phenomena such as concrete splitting, sliding shear failure, and 

tension softening. This deficiency is not due to limitations on the model itself, but rather 

a lack of pertinent test data by which to calibrate the model. Once such data becomes 

available, a refined HPFRC material model, which is able to address the above issues, 

can be developed. Another refinement that can be pursued is to correlate the parameters 



185 

 

controlling the model to characteristics of the HPFRC materials, such as fiber types and 

the volume fraction of fibers. The HPFRC material model was shown to be able to 

simulate the hysteretic behavior of coupling beams, double cantilever beams, and slender 

shear walls. However, the performance of the model in other structural components, such 

as beam-column connections, which possess more complicated behavior, remains to be 

explored. In addition, the model herein is based on plane stress elements, and thus it is 

limited to analyze 2-D problems. A HPFRCC material model which is able to account for 

full 3-D cyclic behavior is recommended for future work.  

 

7.3.2 Effectiveness of using HPFRC in structures for enhanced seismic behavior 

In this dissertation, HPFRC materials were used in coupled wall systems. It is of interest 

to explore other types of structures that could benefit from HPFRC. For example, using 

HPFRC can greatly reduce the reinforcement detail and amount in the beam-column 

connections. A potential research direction is to conduct system level simulations to 

investigate the influence of using HPFRC beam-column connections on structural 

behavior since most existing research work has only focused on behavior at the level of a 

single beam-column connection.  Furthermore, the behavior of HPFRC structures 

subjected to other types of severe events is also worth exploring, e.g. the response of 

structures to blast and impact.  

 

7.3.3 Experimental validation of FOM 

The enhanced performance of FOM was demonstrated under simulated conditions. It is 

necessary to conduct physical tests to make sure that the FOM would work under 



186 

 

practical hybrid simulation conditions. Moreover, the developed method has been applied 

to structures with overall hardening response and dominated by first mode behavior. 

Additional research is necessary to investigate if it will provide similarly good results for 

softening structures and to develop it for use in structures with higher mode response.  

 

7.3.4 Effectiveness of using hybrid simulation for HPFRC coupled wall systems 

The discrepancy between the solutions of the hybrid simulation and the conventional 

computational method can be attributed to the assumptions that were necessarily made in 

order to perform the simulation. Future research directions are recommended to refine the 

model in order to relax these assumptions. First, the number of lumped mass blocks of 

the B-Sub can be increased from the current two blocks, thus increasing the controlled 

DOFs of B-Sub and allowing more control over the simulation and improved accuracy. 

Further, the structural-scale model used to represent T-Sub can be further refined. For 

example, the beam-column elements used to represent the coupling beams can be 

improved to allow better representation of coupling beam response. The simulation 

accuracy can also be improved by reducing the size of the incremental time step. 

However, it should be noted that reducing the step size not only extends the entire 

simulation time but also amplifies the control errors related to hydraulic actuators in 

physical hybrid simulation.  
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Appendix A Stress-Strain Responses of HPFRCC under Various Loading Conditions 

(Supplement to Cha 

pter 3) 

APPENDIX A 

IMPLEMENTATION OF THE NEWLY DEVELOPED HPFRC MATERIAL 

MODEL IN LS-DYNA 

 

 

This section gives an overview of the configuration of the user-defined material model in 

LS-DYNA. The procedure of implementing the inelastic HPFRC material model is also 

reviewed and detailed. 

 

 

A.1 CONFIGURATION OF THE USER-DEFINED MATERIAL MODEL 

The newly developed HPFRC material model is implemented using the user-defined 

material subroutine, called UMAT, in LS-DYNA. In the UMAT, the default inputs from 

the main LS-DYNA program are the previous incremental strain  𝚫𝛆xy
(j−1)

, the previous 

state of stresses  𝛔xy
(j−1)

 and strains   𝛆xy
(j−1)

. The inputs are employed by the user to 

compute the current material state, i.e., stresses  𝛔xy
(j)

, strains 𝛆xy
(j)

, using the material 

constants and history variables that are defined by the user. The main program then uses 

the current material state to compute the inputs for the next time step. The user-defined 

material subroutine, which is written in FORTRAN, is compiled and linked to the LS-

DYNA executable file as a static library. The configuration of the UMAT and its 
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implementation with LS-DYNA can be referred to Fig. A.1 (Moraes and Nicholson, 

2001). 

 

A.2 PROCEDURE FOR IMPLEMENTING THE HPFRC MATERIAL MODEL 

The procedure for implementing the newly developed HPFRC material constitutive 

model is recalled from Chapter 2 and further detailed. Fig 2.4 shows the steps 

constituting the implementation loop for the HPFRC material model using the UMAT. 

For programming purpose, the entire material subroutine divided into several sub-

subroutines, as 1) Total global strain, 2) Principal direction/crack direction, 3) Principal 

strain and (if crack localization occurs) shear strain, 4) HPFRC material constitutive law, 

5) Reduced shear modulus, and 6) Global stress. To start the procedure, the current global 

strains are first computed using the incremental global strains and the total global strains 

from the previous time step. Then, depending on whether the crack localization strain has 

been previously reached, either the principal direction (using Mohr circle) or the crack 

direction (same direction as in the previous time step) is determined. After that, the 

computed direction is employed with the HPFRC material constitutive law to calculate 

the stresses in the principal direction or the crack direction. The newly developed HPFRC 

constitutive model consists of 4 scenarios for monotonic tensile stress-strain 

relationships, 3 scenarios for monotonic compressive stress-strain relationships, 5 

scenarios for cyclic tensile stress-strain relationships, and 4 scenarios for cyclic 

compressive stress-strain relationship. The details of these scenarios can be referred to 

Chapter 2. The last step of the implementation loop is to transform the local stresses into 

global stresses using Mohr circle. 
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Fig. A.1- Configuration of the user-defined material subroutine and the main LS-DYNA 

program (Moraes and Nicholson, 2001) 
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