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ABSTRACT

This dissertation discusses several aspects of estimation and inference for high

dimensional networks, and is divided into three main parts. First, to assess the sig-

nificance of arbitrary subnetworks (e.g. pathways), I propose a latent variable model

that directly incorporates the network information. By formulating the problem as

a (generalized) mixed linear model, I introduce a general inference procedure for

testing the significance of subnetworks, that can be used to test for changes in both

expression levels of the corresponding nodes (e.g. genes), as well as the structure

of the network. The framework is then extended for analysis of data obtained from

complex experimental designs. We also study the effect of noise in the network in-

formation, both theoretically and empirically, and show that the proposed inference

procedure is robust to the presence of random noise.

In the second part, we consider the problem of estimating directed graphs from ob-

served data. The general problem of estimation of directed graphs is computationally

NP-hard and direction of interactions may not be distinguishable from observations.

I consider a special case of this problem, where the nodes (i.e. variables) inherit

a natural ordering, and propose efficient penalized likelihood methods for estimat-

ing the underlying network structure. Consistency of the estimators in the high

dimensional setting (more variables than observations) is established. I also propose

an extension of the lasso penalty that results in improved estimation of graphical

ix



Granger causality from time-course observations.

The last part of the dissertation is devoted to issues of dimension reduction and

efficient computation in networks. I propose a dimension reduction algorithm for

networks using Laplacian eigenmaps, discuss the connections of this method to prin-

cipal component analysis, and formulate the inference problem using a group lasso

penalty. I also address computational aspects of estimation in networks, by propos-

ing a distributed algorithm based on block-relaxation and derive conditions required

for convergence of the algorithm to the maximum likelihood estimates. Finally, I

present an extension of the block-relaxation algorithm, called approximate block-

relaxation, that facilitates the use of iterative algorithms in optimization problems

with complex objective functions.
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CHAPTER I

Introduction

A number of emerging statistical applications involve analyzing observations from

complex systems. Biological, physical and social systems are few examples of such

applications. Although these systems are inherently different, and have varying levels

of complexity, some of the goals and concerns in their analysis are common. Systems,

by definition, involve components that interact with each other in an orchestrated

fashion to carry out the main function(s). It is therefore crucial to account for the

interactions among components in the analysis of complex systems. From a statistical

point of view, interactions among components of a system correspond to correlations

among the related random variables, and these correlations can be incorporated into

models in order to improve the efficiency in estimation and inference.

Many statistical methods have been developed to accommodate and take advan-

tage of the correlations among observations. Models for analysis of temporal corre-

lation among observations, and spatial correlations resulting from physical distances

between variables are classic examples. In this dissertation, I consider the analysis of

biological systems, represented by large networks. Although throughout this disser-

tation we often refer to gene networks, the methodology developed here is to a large

extent applicable to other biological components (e.g. proteins and metabolites),

1



2

and more generally can be used for analysis of high dimensional networks.

The goal of this research is to develop models that incorporate the network in-

formation in order to determine which components of the biological system (i.e.

sub-networks) respond to specific environmental factors, or are involved in genetic

contributions to complex diseases. To that end, two types of problems are considered:

(i) incorporating the available information about the associations among genes in or-

der to improve estimation and inference and (ii) identifying the association among

genes, in case where such information is unavailable (network discovery).

Many researchers have recently been attracted to analysis of biological networks

and significant contributions have been made in both of the above areas. To address

the first problem above, I propose a latent variable model that directly incorporates

the existing network information (e.g. information available in public repositories

and genetic information websites) and show that this model can be represented as

a (generalized) mixed linear model. We then use the framework of mixed models to

present a general inference procedure for testing the significance of arbitrary subnet-

works based on estimable linear combinations of fixed effect parameters. We discuss

several possible test procedures and present an optimal method that allows us to

isolate the effect of every subnetwork and to test for changes in both gene expression

levels and the structure of the network. Extensions of the original model for analysis

of general networks, including both directed and undirected edges, and generaliza-

tions for analysis of complex experiments are also discussed. We study the effect of

noise in the network information and show that the proposed methodology is robust

to random noise in the network information. This implies that, in case where the net-

work information is unavailable, estimated network structures can be incorporated, as

long as the estimation error is small. I also propose a dimension reduction method for
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networks, based on Laplacian eigenmaps with isolated (Neumann) boundary condi-

tions, which can be used to extract informative features from arbitrary subnetworks.

Finally, we address the computational aspect of the estimation problem on networks

by proposing an iterative algorithm based on block-relaxation (BR). Conditions re-

quired for convergence of the algorithm to the maximum likelihood estimates and

extensions of the algorithm for distributed computing are discussed.

To address the second problem (network reconstruction), we consider construction

of directed graphs from observation. This is an computationally NP-hard problem

and the direction of the edges may not be distinguishable from observations alone.

We consider a special case of the problem, where the variables inherit a natural or-

dering, and propose penalized likelihood methods for estimation of high-dimensional

networks. The asymptotic properties of the estimators are studied in high dimen-

sional, sparse settings, and an efficient algorithm is proposed for estimation of model

parameters. I also propose an extension of this model for estimation of directed edges

from time-course observations (using the concept of Granger causality) and propose

a novel penalty, called truncating lasso, for simultaneous estimation of model param-

eters and the order of the underlying vector autoregressive (VAR) model.

This dissertation consists of three main parts, each including two chapters. The

first part is devoted to developing a general inference framework for analysis of arbi-

trary subnetworks. In Chapter II, we introduce the latent variable model for incor-

porating the network information and its mixed linear model representation. Basic

properties of the model and the proposed inference procedure are discussed, and the

network contrast vector for assessing the significance of subnetworks is introduced.

Chapter III consists of an extension of the model of the previous chapter, which

incorporates more complex experimental conditions and considers temporal correla-
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tions among observations. Robustness of the proposed methodology to random noise

in network information is also discussed.

In the second part, we discuss the problem of network reconstruction. Chap-

ter IV includes the penalized likelihood method of estimating directed acyclic graphs

(DAGs). Asymptotic properties of the proposed estimators and efficient computa-

tion in high dimensional settings are also discussed. The material in Chapter V

extends the model of the previous chapter, in order to estimate the so-called graph-

ical Granger model from time-course observations. The truncating lasso penalty for

simultaneous estimation of model parameters and the order of the underlying VAR

is introduced in this chapter and computational, as well as theoretical, issues related

to this new penalty are discussed.

Issues of dimension reduction, and efficient computation for high dimensional

networks are discussed in the last part of the dissertation. Chapter VI, includes

the proposed dimension reduction method for analysis of significance of subnetwork.

The problem of inference for subnetworks is formulated as a group-penalized regres-

sion problem on graphs, and the properties of the resulting estimates are discussed.

Finally, in Chapter VII, we discuss the proposed iterative algorithm, for distributed

estimation of parameters of mixed linear models on networks, and discuss a gen-

eralization of the BR algorithm for the cases where the likelihood function is not

readily available (e.g. the generalized mixed linear model). Possible extensions and

directions for future research are discussed in Chapter VIII.



CHAPTER II

Network-Based Gene Set Analysis

2.1 Introduction

In standard analysis of differential expression, statistical significance of each gene

is assessed independently and some method of multiple testing correction is used to

adjust the p-values. Such methods are usually less sensitive in detecting genes that

have smaller differences in mRNA abundance between different experimental condi-

tions and may therefore be less powerful than desired. Furthermore, analyzing indi-

vidual genes (single-gene analysis) often generates results that are not reproducible

and lack meaningful biological interpretations. The focus of current research has

thus shifted to analyzing a priori defined sets of genes (gene set analysis) and using

external information to strengthen the analysis of differential expression. Analysis

of gene sets may result in increased power compared to single gene analysis, when

individual genes are not significant, but the combined effect of genes in the gene

set indicates a significant association. Furthermore, methods of gene set analysis

can preserve the correlation among genes which may lead to more reliable inference.

These methods however, do not directly incorporate the external information about

the interactions among genes represented by the gene network. In this chapter, I

develop a model that directly incorporates the network information, and propose a

5
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general inference framework for testing the significance of genetic pathways.

2.1.1 A Motivating Example

In an interesting approach, Ideker et al. (2001) integrated gene expression and

protein level data to study significant signaling and metabolic pathways in yeast

Saccharomyces cerevisiae. They reported interactions among genes and proteins in

different pathways along with information on the estimated correlation among genes

in the network. The authors also grouped the genes into subnetworks (pathways)

based on their biological functions. Figure 2.1, which was originally presented in

Ideker et al. (2001), illustrates the network of genes under consideration. We have

updated their network based on newly defined interactions reported in Bader et al.

(2004). This results in a network of 343 genes with 419 interactions for which esti-

mates of correlations among genes are also available (these data are referred to as

the Ideker data henceforth).

The mRNA expression levels of genes in the Ideker data are measured in 9 different

perturbations of GAL genes along with the wild type yeast. For each perturbation,

two samples of data are available. The first set of samples represents the expression

levels of genes in cells grown in presence of galactose (gal+), while the second set

includes expression levels for cells grown in absence of galactose (gal–), where the

main source of carbon is raffinose. Our primary goal is to determine the pathways

that are involved (either induced or suppressed) in cell growth in gal+ compared to

gal– environments. In other words, we would like to test whether each of 15 gene

sets defined by yeast pathways in Ideker et al. (2001) is differentially expressed in

gal+ compared to gal– medium. In Section 2.3, we study different aspects of analysis

of gene sets, and discuss the need for including changes in both expression levels, as

well as associations among genes in different experimental conditions.
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Figure 2.1: Yeast Galactose Utilization pathway published in Ideker et al. (2001), printed with permission
from Science and the American Association for the Advancement of Science

We start by analyzing the Ideker data using the Gene Set Enrichment Analysis

(GSEA) method of Subramanian et al. (2005). This method uses a permutation-

based test to determine whether genes in a priori defined gene sets have non-random
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Table 2.1: Analysis of Galactose utilization pathway using GSEA. The first two columns illustrate the
pathway considered and the number of genes in the pathway. For each gene set, the Nominal p-value, FDR
q-value and FWER p-value are reported along with the involvement of the pathway in gal+/gal– conditions.

Pathway Nominal FDR FWER Involved
Pathway size p-val q-val p-val in GAL(+/–)

Galactose Utilization 12 0.0020 0.00114 0.003 +

Amino Acid Synthesis 30 0.1853 0.21562 0.676 +

rProtein Synthesis 28 0.5261 0.44938 0.972 +

Stress 12 0.02004 0.19283 0.108 –

Vesicular Transport 19 0.07243 0.54138 0.489 –

Glycogen Metabolism 12 0.1321 0.41115 0.538 –

Respiration 9 0.1878 0.39508 0.637 –

O2 Stress 13 0.2384 0.6601 0.906 –

Fatty Acid Oxidation 7 0.4694 0.82373 0.963 –

Mating, Cell Cycle 58 0.3583 0.71842 0.968 –

Sugar Transport 2 0.7358 1 0.993 –

Metal Uptake 4 0.8374 1 0.997 –

Gluconeogenesis 7 0.8455 0.98853 0.997 –

RNA Processing 75 0.9879 1 1 –

Glycolytic Enzymes 16 0.9683 0.98189 1 –

associations with the phenotype. To that end, we first normalize the data so that the

expression levels only represent the effect of the growth environment1 . The results

of the analysis are displayed in Table 2.1.

The first line of the table presents an expected outcome; the expression levels

of genes in the Galactose Utilization pathway is expected to change in response to

perturbations of GAL genes in the gal+ environment. On the other hand, although

some of the pathways seem to have differential expression when cells lack galactose

(e.g. Stress and Vesicular Transport), no other pathway appears significant after

adjusting for multiple testing using the False Discovery Rate (FDR) controlling pro-

cedure of Benjamini and Hochberg (1995) with a q-value of 0.05. In Section 2.5, we

revisit the analysis of the Ideker data based on the method proposed in this chapter,

which directly incorporates the network information represented by the gene network

in Figure 2.1.

1The mean expression levels of the two samples corresponding to each perturbation is subtracted from the two
columns of data.
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2.1.2 Background

Recent research on gene set analysis can be broadly classified into permutation-

based methods motivated by the GSEA paper (Subramanian et al., 2005) and model-

based approaches that make specific distributional assumptions about the gene ex-

pression data. The literature can be further categorized on whether direct or indirect

external information on the gene network is employed. Tian et al. (2005) considered

the problem of gene set analysis and described two hypotheses that should be consid-

ered when studying the significance of sets of genes. One of these hypotheses, which

is the same as the hypothesis considered in GSEA, focuses on non-random associa-

tion of genes in the gene set with the phenotype. The other hypothesis, considers

non-random correlations between genes in a gene set. The test method proposed for

the first hypothesis is based on permuting the class labels (column permutation) and

the second hypothesis is tested by permuting genes (row permutation). Efron and

Tibshirani (2007) formalized the idea of gene set analysis in a coherent statistical

framework and examined the hypotheses presented in Tian et al. (2005). They also

proposed an alternative test statistic with superior power properties and analyzed

the effects of row and column permutations. Goeman and Bühlmann (2007) reviewed

different methods proposed for testing significance of gene sets and highlighted im-

portant issues in selecting appropriate methods.

Although the above permutation-based methods are computationally intensive,

they include minimum assumptions about the underlying biological model and are

therefore robust to model misspecification. An alternative approach is based on

model-based tests procedures, where specific distributions for the expression data

are assumed. In one such approach, Jiang and Gentleman (2007) extended the

idea of gene set analysis by adapting a linear model approach and adjusting for
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other covariates. They presented the gene sets in the form of an index matrix and

offered a heuristic argument for using a normal approximation for testing sum of the

expression levels of genes in each gene set. One major difficulty regarding model-

based methods is the large number of variables (genes) compared to the small number

of samples (the large p, small n problem, West, 2000). In such situations, estimation

of model parameters becomes a challenging task and may result in unstable outcomes.

However, additional sources of information besides the expression levels of genes

could be used to improve the estimation. One possible source of external information

is the underlying relationship between genes which itself is of independent interest. It

is known that genes interact with each other through their protein products and form

gene regulatory networks. Also, the protein products of groups of genes are involved

in controlling specific functions in cells through genetic pathways. Increasing amount

of information about these relationships is becoming available in public repositories,

such as KEGG (Kyoto Encyclopedia of Genes and Genomes) (Kanehisa and Goto,

2000) and Gene Ontology (GO) (Ashburner et al., 2000) and can be used to improve

the estimates of model parameters.

A number of researchers have recently used external information about gene net-

works to improve the analysis of gene sets. Rahnenführer et al. (2004) demonstrated

that the sensitivity of detecting relevant pathways can be improved by integrat-

ing information about pathway topology. Barry et al. (2005) presented a permuta-

tion based procedure, called SAFE, that considers the underlying network structure.

More recently, Wei and Li (2007) proposed a Markov Random Field model to incor-

porate the information on the gene network in the analysis. In a related approach,

Wei and Pan (2008) have modeled the network information via latent variables into

a spatially correlated mixture model. The latter two methods consider the problem
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of analysis of single genes on the network.

The above methods either (a) assume that the underlying gene network does not

change as the experimental conditions change or (b) do not incorporate this change

directly. However, changes in the underlying network structure can amplify the

change in expression patterns and should be included in the analysis. For instance, Li

(2002) demonstrated that the correlation patterns among ARG2 and other members

of the urea-cycle pathway can change drastically as the expression level of ARG2

changes. Another concern in analyzing network data is to decorrelate subnetworks

from the effects of other nodes in the network and to deal with nodes that belong to

multiple networks. Alexa et al. (2006) present one such method which is an attempt

to decorrelate GO graph structures. Their method focuses on decorrelating nodes at

lower levels (children) from upper level nodes (parents).

In this chapter, I propose a latent variable model to directly incorporate the

underlying gene network and present test statistics for testing the significance of

arbitrary sub-networks based on the theory of mixed linear models. One major

advantage of this method is that it not only considers the change in the expression

levels of the genes in different conditions, but also reflects the change in network

structures and correlations among genes. We also present a systematic approach that

decorrelates each subnetwork from the other nodes while maintaining the interactions

among genes in the subnetwork.

The rest of the chapter is organized as follows. In the next section, we introduce

the proposed latent variable model and discuss some of its basic graph theoretical

properties. In Section 2.3, I represent the latent variable model using the framework

of mixed linear models and propose a general testing scheme based on the theory

of mixed linear models. Section 2.3 ends with a result that is used to test the pure
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effect of each subnetwork. This result prevents tests of significance of subnetworks

from being confounded with the effects of other subnetworks and also allows testing

the effect of genes that belong to multiple networks. Section 2.4 includes three

simulation studies for evaluating the performance of the new model under different

testing conditions as well as studying the effect of noise in the network information

on the proposed inference procedure. In Section 2.5, we revisit the Ideker data, and

test the significance of pathways using the proposed model. Section 2.6 includes a

discussion on limitations of the proposed model and future extensions.

2.2 The Latent Variable Model

Consider gene expression data D organized as a p×n matrix comprised of the

expression levels of p genes for n samples, and let Y be the kth sample in the

expression data (kth column of D ).

To model the correlation structure caused by the gene network, we represent the

network as a directed graph G = (V,E) with vertex set V , and edge set E, where E is

represented by the p×p adjacency matrix A. Each nonzero element of the adjacency

matrix, Aij, represents a directed edge in the network. Elements of the adjacency

matrix correspond to the strength of association among genes in the graph and are

real values in (−1, 1).

Consider the simple network of Figure 2.2:

Figure 2.2: A simple gene network

Suppose Y = X + ε, where X represents the signal and ε ∼ Np(0, σ
2
εIp) the noise.

Consider two adjacent genes i and j, where i affects j. One can represent the
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relationship between i and j using a simple linear model Xj = ρijXi. However,

to account for unknown associations among genes and/or errors in the association

weights, ρij, we also add latent variables γj ∼ Np(µj, σ
2
γ) to represent the baseline

expression level of gene j. For instance, γ2 represents the expression level of gene 2

without the effect from gene 1. Thus for the simple gene network of Figure 2.2 we

obtain

X1 = γ1

X2 = ρ12X1 + γ2 = ρ12γ1 + γ2

X3 = ρ23X2 + γ3 = ρ23ρ12γ1 + ρ23γ2 + γ3

These equations can be summarized in vector notation as:

(2.1) Y = Λγ + ε, γ ∼ Np(µ, σ
2
γIp), ε ∼ Np(0, σ

2
εIp)

where Λ is called the influence matrix of the graph. In the simple example above,

we have

Λ =


1 0 0

ρ12 1 0

ρ12ρ23 ρ23 1



Under such a model, Y is a normal random variable with mean E[Y ] = Λµ and

variance Var(Yi) = σ2
γΛΛ′ + σ2

εIp, where Λ′ denotes the transpose of matrix Λ.

In the remainder of this section, we study the relationship between the influence

matrix, Λ, and the adjacency matrix of the graph, A. We provide a general result

for the relationship between Λ and A as well as a compact expression that can be

used to efficiently evaluate Λ for specific classes of graphs. We also discuss conditions
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under which the matrix Λ has full rank, which will be used in the analysis of the

proposed inference procedure in Section 2.3.

Lemma II.1. For any graph G = (V,A) we have Λ = A0 +A1 +A2 + · · · =
∑∞

r=0A
r

(here A0 is defined to be the identity matrix).

Proof. From the matrix representation of the latent variable model in (2.1)

Yi =

p∑
j=0

Λijγj + εi, i = 1, · · · , p

where Λii = 1 and Λij 6= 0 only if there is a path (of some length) on the graph from

node i to node j. But for any graph G, the number of paths of length r (r ∈ N)

from vi to vj is given by the (i,j) element of Ar (Diestel, 2006). Therefore, Λij 6= 0

whenever there exists r such that [Ar]ij > 0. Hence, all possible paths from i to j

are given by [
∑∞

r=0A
r]ij. This implies that Λ =

∑∞
r=0 A

r.

Corollary II.2. For any Directed Acyclic Graph (DAG), Λ = A0+A1+A2+· · ·+Ap.

Proof. This follows immediately from Lemma II.1 by noting that since there are no

loops in DAGs, the maximum length of paths equals p.

The following results provide sufficient conditions for the matrix Λ to be of full

rank. Although this guarantees validity of the model for at least some classes of

directed graphs, it does not provide a necessary condition. Based on experiments

with randomly generated adjacency matrices, there are in fact larger classes of graphs

satisfying this property.

Lemma II.3. For any Directed Acyclic Graph (DAG), the matrix Λ has full rank.

Proof. The full rankness of Λ is proved by showing that Λ can be re-arranged into a

lower triangular matrix with 1’s on the diagonal.
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First observe that Λij × Λji = 0, since otherwise there will be a cycle in the graph.

Also, from II.1 we have Λii = 1.

Consider a reordering of rows (and correspondingly of columns) of the matrix in

decreasing number of zeros. Every DAG has at least one root (a node that is not

affected by any other node). This means that there is at least one row with Λkk = 1

and Λkj = 0 for all j. Permute Λ so that row k is the first row of the matrix and

continue in the same way. Denote the number of zero elements of row i by φi and

number of zeros in column j as φCj. Then by the above observation, φRi ≥ p− φCi

(here p− φCi is the number of nonzero elements in column i).

To complete the proof, we need to show that the rearranged matrix Λ can be further

permuted to result in a lower diagonal matrix. Suppose there exists j > i such that

Λij > 0 and therefore Λji = 0. If φRj = φRi switch i and j to get a lower triangular

matrix. However, if φRj < φRi (i.e. if i is affected by a row with less number of zeros)

there exists l such that Λjl > 0 but Λil = 0. However, Λjl > 0 means there exists a

path from l to j and Λij > 0 means that there exists a path from j to i. Thus there

exists a path from l to i, i.e. Λil > 0, a contradiction. Therefore Λ must be a lower

triangular matrix with Λii = 1.

Lemma II.4. Consider a graph G = (V,A) with influence matrix Λ

a) If G is a Directed Acyclic Graph (DAG), then A = I − Λ−1.

b) If the sum of absolute values of weights of edges ending at every node of the graph

G is less than 1 (i.e. A is sub-stochastic), then A = I − Λ−1 and Λ has full rank.

Proof. a) From Corollary II.2, Λ =
∑p

r=0A
r and hence

AΛ =

p∑
r=0

Ar+1 = Λ + Ap+1 − I

But when G is a DAG, Ap+1 = 0 hence AΛ = Λ − I. By full rankness of Λ,
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A = I − Λ−1.

b) The condition in (b) implies that the sum of the absolute values of off-diagonal

elements of A is less than 1. Let si be the sum of absolute values of off-diagonal

elements of the ith row of A. Since the diagonal elements of A are 0, by the Ger-

shgorin’s Ring Theorem (Friedberg et al., 1996) if λ is an eigenvalue of A, we have

|λ| ≤ si ≤ 1. Now let Λm =
∑m

r=0 A
r. Then Λ = limm→∞ Λm and using an argument

similar to part (a),

AΛm = Λm − I + Am+1

Since eigenvalues of A are less than 1 in magnitude, limm→∞ Λm exists (Friedberg

et al., 1996) and by the eigen-decomposition of A, Am+1 → 0 as m → ∞. Hence

taking the limit, we get AΛ = Λ− I +A. On the other hand, the established bound

on the eigenvalues of A implies that all eigenvalues of I−A are nonzero, which means

that I − A and therefore, Λ are full rank. Thus A = I − Λ−1.

Lemma II.4 establishes an alternative relationship between Λ and A and deter-

mines two classes of graphs for which such a relationship is valid. As noted be-

fore, conditions presented in this result are only sufficient. For the general graph

G = (V,A), if the spectral radius of A is less than 1, Λ has full rank and the rela-

tionship between A and Λ established in Lemma II.4 holds. On the other hand, in

special cases where Λ is not of full rank, it may be possible to modify the graph and

therefore apply the model presented here. For instance, one large class of graphs

where Λ is not full rank consists of cyclic graphs. The cycles in biological networks

are often representatives of feedback loops which are common features of cell cycle

related networks. However, the feedback is usually effective after a time delay and

therefore, when time series data are used to study these networks, the cycles can

be broken down by distinguishing between nodes at the beginning and end of each
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cycle. Undirected edges (e.g. protein-protein interactions) can also be transformed

into two directed edges using a common latent variable affecting both nodes. More

generally, it is often possible to transform the graph by introducing dummy nodes

and can hence apply the model presented here.

2.3 Inference

2.3.1 Preliminaries

In this section, we study the inference procedure for the proposed model. Al-

though this method can be used to test a variety of hypotheses, in order to simplify

the presentation, we focus on testing the equality of means of two experimental con-

ditions. The extension to more complicated settings is discussed at the end of the

section. As before, let Y be a given sample in the expression data (kth column of

data matrix D) and let Y C and Y T represent control and treatment conditions, with

n1 columns of D corresponding to control samples and n2 = n−n1 columns to treat-

ment samples. Also let two sets of parameters (µC ,ΛC) and (µT ,ΛT ) represent mean

vectors and influence matrices under control and treatment conditions, respectively.

Let b be an indicator vector determining genes that belong to a specific gene set

(pathway). In other words, bj = 1 if gene j is in gene set and 0 otherwise. We can

test the significance of the gene sets by defining the test statistic V = bY T − bY C

and testing:

(2.2) H0 : E[V] = 0 vs. H1 : E[V] 6= 0

Then under H0:

E0[V] = 0

and

Var0(V) = (1/n2)[n2(bΛT )(bΛT )′ + n1(bΛC)(bΛC)′]
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Although the hypothesis in (2.2) can be tested using a generalized likelihood ratio

test, it turns out that the latent variable model of Section 2.2 can be represented

as a Mixed Linear Model (MLM). Using this framework, we can study a variety of

spatio-temporal models and consider more general hypothesis testing problems.

2.3.2 Mixed Linear Model representation

Let Y, γ and ε represent the rearrangement of vectors Y ,γ and ε into np × 1

column vectors. Then Y = Ψβ + Πγ + ε where:

β = (µC1 , . . . , µ
C
p , µ

T
1 , . . . , µ

T
p )′

Ψ =

 ΛC · · · ΛC 0 · · · 0

0 · · · 0 ΛT · · · ΛT


′

Π = diag(ΛC , . . . ,ΛC ,ΛT , . . . ,ΛT )′

In this model, γ is the vector of (unknown) random effects and γ and ε are

normally distributed random vectors with:

E

 γ

ε

 =

 0

0


and

Var

 γ

ε

 =

 Σγ 0

0 Σε


For the latent variable model presented in the previous section, Σγ = σ2

γI and Σε =

σ2
εI and the variance of Y j, j ∈ {C, T} is given by σ2

γΛ
j(Λj)

′
+ σ2

εI.
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The estimate of β in the mixed linear model is given by (Searle, 1971):

β̂ = (Ψ′Ŵ−1Ψ)
−1

Ψ′Ŵ−1Y

where W = (σ2
γΠΠ′ + σ2

εInp). The estimate of β depends on estimates of σ2
γ and σ2

ε

which can be estimated via Restricted Maximum Likelihood procedure (REML).

The framework of mixed linear models allows us to test a variety of hypotheses

about β by considering tests of the form:

(2.3) H0 : lβ = 0 vs. H1 : lβ 6= 0

Here l is in general any estimable linear combination of β’s (Searle, 1971). An

example of such a vector is a contrast vector, which satisfies the constraint 1′l = 0.

In the ensuing discussion, any linear combination of β’s satisfying the estimability

requirement is referred to as a contrast vector.

Based on the theory of mixed linear models, we can test (2.3) using the test

statistic:

(2.4) T =
lβ̂√
lĈl′

where C = (Ψ′W−1Ψ)
−1

.

Under the null hypothesis in (2.3), T has approximately a t distribution with ν

degrees of freedom, where the degrees of freedom is estimated using the Satterthwaite

approximation method (McLean and Sanders, 1988):

ν =
2(lĈl′)

2

τ ′Kτ

with τ = ( ∂
∂σ2
γ
lCl′, ∂

∂σ2
ε
lCl′)′ and K is the empirical covariance matrix of (σ2

γ, σ
2
ε)
′.

2.3.3 Computational issues and the use of the Mixed Linear Model

The mixed linear model facilitates the representation of the latent variable intro-

duced in Section 2.2. However, estimation and inference in this framework involves
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forming the matrices Ψ and Π, and performing operations involving products and

inverses of these matrices. In the context of analysis of genetic data the dimensions

of these matrices (np × 2p and np × np) can cause serious difficulties in terms of

computation time, memory requirement and numerical stability of the estimation

algorithms. It is therefore necessary to derive alternative methods for estimation of

parameters in the model. It turns out that due to the special structure of the model

presented in Section 2.2, and the sparsity pattern of matrices Ψ and Π, the formulas

presented in the previous section can be substantially simplified. More specifically,

for the problem stated in Section 2.3.2 we have:

β̂ =

 β̂C

β̂T

 =

 Ȳ C

Ȳ T


and

C =

 1
n1

(
σ2
γIp + σ2

ε(Λ
C ′ΛC)

)
0

0 1
n2

(
σ2
γIp + σ2

ε(Λ
T ′ΛT )

)


In the particular case considered here, the REML estimates of the variance com-

ponents can be directly computed as the maximizers of the REML equation without

any need for iterative methods. However, profiling out one of the variance compo-

nents may result in more stable solutions.

2.3.4 Role of the contrast vector

The estimates of β based on the mixed linear model represent the individual ex-

pression level of each gene in the network. Thus, in order to evaluate the combined

effect of each gene set using the test statistic T , the choice of contrast vector l proves

fairly crucial. More specifically, the choice of l determines the null and alternative
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hypotheses of the test in (2.3), which in turn affects its significance level and power.

In this section, we present different choices of contrast vectors and study their prop-

erties and effects on the power of tests.

A simple choice for the contrast vector l is to use the indicator vector of the gene

set. In other words,

(2.5) l(1) = (−b,b)

This simple choice of l corresponds to testing the following hypothesis:

(2.6) H
(1)
0 : b

(
µT − µC

)
= 0 vs. H

(1)
1 : b

(
µT − µC

)
6= 0

which for each gene set g is equivalent to

(2.7) H
(1)
0 :

∑
i∈g

µTi − µCi = 0 vs. H
(1)
1 :

∑
i∈g

µTi − µCi 6= 0

Such a contrast vector however, only considers the mean expression levels of genes

and does not reflect the combined effect of the set of genes in b, which is affected by

interactions among genes in the network.

When the underlying network structure and therefore the correlation among genes

is known, a natural alternative to l(1) is to also include the influence matrices ΛC

and ΛT . This leads to the following choice of contrast vector:

(2.8) l(2) = (−bΛC ,bΛT )

which corresponds to testing the following hypotheses:

(2.9) H
(2)
0 : b

(
ΛTµT − ΛCµC

)
= 0 vs. H

(2)
1 : b

(
ΛTµT − ΛCµC

)
6= 0

The null hypothesis presented in (2.9) may first seem less intuitive and the choice

of l(2) rather arbitrary. However, the rationale behind the latter choice of contrast
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vector becomes clearer when we examine the test statistics corresponding to each one

of the two null hypotheses in (2.6) and (2.9). In the case of the two-population test

considered here, the above choices of contrast vectors lead to (after some algebra)

the following test statistics:

(2.10) T1 =
b
((

ΛT
)−1

Ȳ T −
(
ΛC
)−1

Ȳ C
)

√
σ̂2
γ

(
1
n1

+ 1
n2

)
bb′ + σ̂2

ε

[
b
(

1
n2

(
ΛT ′ΛT

)−1
+ 1

n1

(
ΛC ′ΛC

)−1
)

b′
]

and

(2.11) T2 =
b
(
Ȳ T − Ȳ C

)√
σ̂2
γ

[
b
(

1
n2

ΛTΛT ′ + 1
n1

ΛCΛC ′
)

b′
]

+ σ̂2
ε

(
1
n1

+ 1
n2

)
bb′

From the above two equations it becomes clear than choosing l(2) as the contrast

vector leads to a very familiar test statistic. The numerator of test statistic T2 consid-

ers the difference in average observed values of expression levels and its denominator

represents the variance of Ȳ T − Ȳ C based on the mixed linear model.

It is also important to study the effect of the contrast vector on the power of tests.

The two null hypotheses presented in (2.6) and (2.9) are different and therefore the

usual power analysis cannot be applied to choose the right test. However, when

ΛC = ΛT = Λ, the hypothesis presented in (2.6) is a special case of (2.9) (assuming

that Λ has full rank) and it is possible to compare the powers of the two tests in this

special case. When ΛC = ΛT = Λ, the null and alternative hypotheses are given in

(2.6) and the test statistics T1 and T2 have the following simplified forms:
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(2.12) T1 =
b
(
Λ−1

(
Ȳ T − Ȳ C

))√
b
(

1
n1

+ 1
n2

) (
σ̂2
γI + σ̂2

ε (Λ′Λ)−1)b′

(2.13) T2 =
b
(
Ȳ T − Ȳ C

)√
b
(

1
n1

+ 1
n2

) (
σ̂2
γ (ΛΛ′) + σ̂2

εI
)
b′

From these equations, we can see that when no underlying network structure is

taken into account, (Λ = I) the two test statistics are the same. However, if there is

an underlying network structure (Λ 6= I), the test statistic in (2.13) represents the

likelihood ratio test for testing the null hypothesis in (2.6), which is asymptotically

most powerful. On the other hand, as
∥∥ΛT − ΛC

∥∥ increases, the test presented by l(1)

will no longer be appropriate and we could expect l(2) to have a better performance.

In the more general case, where ΛC 6= ΛT , it is desirable for the test statistic to

account for all of the interactions between genes in the specific subnetwork and to

not include any effects from genes outside the subnetwork. Consider again the simple

network of Figure 2.3, where the subnetwork of interest consists of X2 and X3 i.e.

b = (0, 1, 1). s

Figure 2.3: Illustration of the Network contrast vector on a simple network. Red dashed line indicates the
interactions that are included in the contrast vector

It is then easy to see that

(bΛ) = (ρ12 + ρ12ρ23, 1 + ρ23, 1)
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includes all the interactions among nodes connected to the subnetwork, while the

proposed network contrast vector

(bΛ · b) = (0, 1 + ρ23, 1)

corresponds to the desired interactions. The following result describes a choice of a

contrast vector that achieves this goal.

Lemma II.5. Consider a 1×p indicator vector b and let x ·y represent the element-

wise product of x and y.

Then (bΛ · b)γ includes the effects of all the nodes in b on each other, but it is not

affected by any node outside of the set of nodes indexed by b .

Proof. Let Ib = {i : bi = 1}. Based on the latent variable model, the jth column

of Λ includes the influences of node j on all other nodes in the network. Therefore,

(bΛ)j is the influence of the jth node on all nodes in b. Also, note that Λii = 1 for

all i and Λji is non-zero only if there is a path from j to i.

Thus,

(bΛ)j =


∑

i∈Ib Λji j /∈ Ib

1 +
∑

i∈Ib,i 6=j Λji j ∈ Ib

But (bΛ · b)j is non-zero only if j ∈ Ib and therefore

(bΛ · b)γ =
∑
j∈Ib

γj +
∑
j∈Ib

∑
i∈Ib,i 6=j

Λjiγj

which means that (bΛ·b)γ only includes the effects of elements of b on each other.

The estimated β’s in the latent variable model reflect the individual effect of each

gene and therefore, can be thought of as the “pure signals”. Based on Lemma II.5,
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in order to include interactions among genes in each subnetwork and prevent any

confounding effects, we define the network contrast vector by

l(N) =
(
−b · bΛC ,b · bΛT

)
2.3.5 Comparison with other Gene Set Analysis techniques

In this section, we discuss the main differences between the approach proposed

in this chapter, and the idea of gene set enrichment analysis (GSEA) presented in

Subramanian et al. (2005) and generalized by Efron and Tibshirani (2007).

Permutation based methods of gene set analysis, including GSEA, first compute

an association measure relating the expression levels of each gene in the list to the

phenotype (e.g. the p-value from the two sample t-test). The individual association

measures are then combined into an enrichment score for each gene set (GSEA uses

a version of Kolmogorov-Smirnov test statistic, while a maxmin function is used

in GSA). The main strength of the GSEA method, that is also inherited by its

extensions, is that the correlation structure of genes in the gene set is preserved,

and the permutation based distribution of the enrichment score also represents the

correlation among genes. However, these methods compute the individual association

measures of each gene separately and do not directly include the correlation among

genes when calculating the enrichment score.

Alternatively, if efficient estimation of the covariance matrix is possible, paramet-

ric test statistics may be used to test the difference between the expression levels

of the two treatment groups. This is not usually possible since in most microarray

analysis applications the number of parameters needed to be estimated is consider-

ably larger than the number of samples available (n � p). However, the external

information about the underlying gene network can make this estimation problem
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tractable. For instance, in the mixed linear model proposed in this chapter, the co-

variance matrix is modeled as a function of few parameters which can be efficiently

estimated from the data. Thus, it is possible to test the significance of each gene

set using tests that include the expression levels of all genes in the gene set and

also directly incorporates the covariance structure of the genes in each subnetwork.

An example of such a test statistic is the T2 test statistic discussed in Section 2.3.4,

which is a version of the two-sample t-test. If the model is correctly specified, one

could expect such a test statistic to be sensitive to changes in both the expression

levels and also in the covariance structure. However, in the absence of external infor-

mation about the network, estimation of the covariance matrix may be impractical

and non-parametric methods like GSEA, may offer better inference properties.

In the next section, we carry out simulation studies to illustrate the difference

between the proposed model and the GSEA method. We will also examine the effect

of the choice of the contrast vector on the performance of the proposed test statistic.

2.4 Performance Analysis

Three sets of simulation studies are considered in this section. In the first simu-

lation, we study different choices of contrast vectors and compare their performance

with GSEA in a simple network. The second simulation study is designed to analyze

the combined effect of change in mean and covariance between control and treat-

ment conditions. In the last simulation, we evaluate the sensitivity of the proposed

inference procedure to the presence of noise in the association weights. Note that in

simulation studies of this section, it is assumed that the effect of the gene network

is appropriately modeled using the latent variable model of Section 2.2 and that the

topology of the network is correctly specified.
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Table 2.2: Settings of mean parameters for the first simulation study.
Scenario Mean Parameters

1 µT = µC = 0
2 µT = 2 for top one-third levels of the tree, µT = µC = 0 for rest
3 µT = 2 for top two-third levels of the tree, µT = µC = 0 for rest
4 µT = 2 in the left branch of the tree (including the root node),

µT = µC = 0 in the right branch

2.4.1 Simulation 1: Different Choices of Contrast Vector

In the first setting, a simple network structure consisting of an 8-level binary tree

with 255 nodes is used. It is assumed that there are no interactions in the network

under the control condition (ΛC = I) . Under the treatment condition, genes on the

network are assumed to be positively correlated with different association strengths:

The association for the first 3 level of the genes in the network (top 7 genes in the

tree) is assumed to be 0.8, genes in the next three levels (56 genes) have association

equal to 0.5 and the remainder of the genes are weakly associated with ρ = 0.2.

Under control, the mean vector for mRNA expression levels of genes is set to zero

(µC = 0). Scenarios for mean expression levels under treatment are presented in

Table 2.2 and Gene sets considered in this simulation are given in Table 2.3. The

gene sets are chosen so that for each mean scenario there exists gene sets with highly

expressed genes and also gene sets that represent non-differentially expressed genes.

Table 2.4 presents the estimated powers of the GSEA method and tests based on

the three contrast vectors, l(1), l(2) and l(N), introduced in Section 3.3 based on 1000

simulations. The powers are calculated based on the FDR controlling procedure of

Benjamini and Hochberg (1995) with a q-value of 0.05.

The positive correlation structure of the network affects the significance of the

subnetworks selected for this comparison. When a specific gene in the network

becomes differentially expressed, the other genes in the network that are influenced
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Table 2.3: Gene sets considered in the first simulation study2.
Gene Set Genes considered

1 All genes in the network
2 top one-third levels of the tree
3 first two-third levels of the tree
4 the last level of the tree
5 left branch of the tree (including the root)
6 right branch of the tree (excluding the root)
7 20 percent of genes in the network selected randomly

by that gene will also have modified expression levels in the same direction and the

combined subnetwork becomes strongly significant. This propagation mechanism

explains the abundance of powers of 1 in the table. The first mean scenario in this

study corresponds to the case that ΛCµC = ΛTµT . All the methods have nominal

significance level of 0.05 for this test. On the other hand, there are some differences

between the tests based on different contrast vectors and the GSEA method. As

one expects from the discussion in Section 2.3.4, the test based on l(2) has higher

power than the test based on l(1). It can also be seen that in all but one case,

the power resulted from test based on l(2) is higher than the power for the GSEA

method verifying the discussion of Section 2.3.5. There are few cases that deserve

special attention. The GSEA method indicates no power for testing all the genes

in the network under scenario 2. However, in this case the top 1/3 levels of the

tree are significant and therefore it is natural to expect significant differences in

overall expression levels. The same pattern can be observed when comparing the two

methods for testing the right branch of the tree under the second scenario and the top

1/3 of genes under the third scenario. On the other hand, the test based on l(2) has a

high false positive rate for testing the right branch of the tree in the situation where

only the left branch is up-regulated (scenario 4) while the GSEA method correctly

shows no deviation from the null hypothesis. The same phenomenon can be seen for

the results of testing the last level of the tree in the case where the top 2/3 levels of
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Table 2.4: Results of the first simulation study: Powers of tests based on GSEA and three contrast vectors
for different mean scenarios. Multiple testing adjustment is based on FDR with q∗ = 0.05. Italic RED
entries indicate powers that are lower or higher than expected and numbers in Bold GREEN show powers
close to values expected from the simulation design.

Scenario Method All Top 1/3 Top 2/3 Last level Left branch Right branch Random
1 GSEA .000 .000 .000 .000 .000 .000 .000

l(1) .024 .015 .014 .014 .019 .022 .018

l(2) .023 .020 .015 .012 .011 .023 .019

l(N) .022 .021 .015 .010 .011 .021 .018
2 GSEA .000 1.000 1.000 .000 1.000 .000 .000

l(1) .119 1.000 .535 .047 .127 .056 .046

l(2) 1.000 1.000 1.000 .090 .980 .956 .523

l(N) 1.000 1.000 1.000 .070 .979 .562 .067
3 GSEA 1.000 .000 1.000 .000 1.000 1.000 1.000

l(1) 1.000 1.000 1.000 .089 1.000 1.000 .999

l(2) 1.000 1.000 1.000 .568 1.000 1.000 1.000

l(N) 1.000 1.000 1.000 0.089 1.000 1.000 1.000
4 GSEA 1.000 .000 1.000 1.000 1.000 .000 1.000

l(1) 1.000 .997 1.000 1.000 1.000 .089 1.000

l(2) 1.000 1.000 1.000 1.000 1.000 .476 1.000

l(N) 1.000 1.000 1.000 1.000 1.000 .089 1.000

the tree are significant. The test based on l(2) is not able to isolate the significance

of the genes under consideration from the effect of other genes in the network and

can therefore result in high false positive rates. As expected based on Lemma II.5,

the test based on l(N) resolves these shortcomings. The power of this test is close to

the nominal significance level for testing the above two cases while it offers a high

power in cases where the GSEA method fails to distinguish the significance of the

subnetworks.

Tree 1

Tree 3

Tree 4

Tree 7

Tree 6

Tree 5

Tree 2

3

2

1

Tree with Upregulated Nodes

Figure 2.4: Design of the second simulation study. Solid arrows and boxes represent high positive asso-
ciation (0.6 here); dashed arrows and boxes represent high negative association (-0.6); dotted arrows and
boxes indicate low positive association (0.1). The root genes 1 and 2 are up regulated while the expression
level for gene 3 does not change.
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Table 2.5: Results of the second simulation study. Estimated powers for the GSEA and the test based on
l(N) for different mean scenarios and different subnetworks. In results for each subnetwork, the first row
represents the power for the GSEA method and the second row displays the power for the test based on
l(N). Settings of fonts and colors are similar to Table 2.4.

Mean Increase: 0 0.2 0.4 0.6 0.8 1.0

Tree 1 GSEA 1.000 1.000 1.000 1.000 1.000 1.000
NetGSA 1.000 1.000 1.000 1.000 1.000 1.000

Tree 2 GSEA 1.000 1.000 1.000 1.000 1.000 1.000
NetGSA 1.000 1.000 1.000 1.000 1.000 1.000

Tree 3 GSEA .000 .000 .000 .000 .000 1.000
NetGSA .2500 .9580 1.00 1.00 1.00 1.000

Tree 4 GSEA .000 .000 .000 .000 .000 .000
NetGSA .263 .277 .298 .278 .298 0.295

Tree 5 GSEA .000 .000 .000 .000 .000 .000
NetGSA .281 .296 .290 0.297 0.305 0.281

Tree 6 GSEA .000 .000 .000 .000 .000 .000
NetGSA .982 .984 .986 .980 .978 .976

Tree 7 GSEA .000 .000 .000 .000 .000 .000
NetGSA 1.00 1.00 1.00 1.00 1.00 1.00

2.4.2 Simulation 2: Simultaneous Changes in Mean and Covariance

The second simulation study is designed to evaluate simultaneous changes in ex-

pressions levels as well as associations among genes. The network structure in this

simulation consists of 3 root nodes and 7 five-level trees (220 genes total). The net-

work consists of low and high association subnetworks and also includes both positive

and negative correlations. Three of the subnetworks are considered to be differen-

tially expressed (the level of expression increases in increments of 0.2) and the other

subnetworks have equal values of mean in treatment and control conditions. Figure

2.4 illustrates the setting of parameters of this simulation study.

Table 2.5 presents the estimates of powers for the GSEA method and the test based

on l(N) for testing different trees with increasing expression levels in a simulation with

1000 repetitions. It can be seen from the results that both of these methods reject the

null hypothesis for tests related to trees with high positive correlation (subtrees 1, 2

and 7 in Figure 2.4). The GSEA method can only detect the significance of subtree

3 for large values of increase in the expression level while the test based on l(N), can
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detect this change for smaller values of increase. Subtrees 4 and 5 correspond to

cases where the correlation among genes is minimal. Subtree 4 is affected by root

genes 1 and 2 that are both up regulated but they have opposite correlations with

genes in subtree 4. As one would expect, the powers for subtree 4 are similar to those

of subtree 5 which suggests that the combined effect of genes 1 and 2 on subtree 4

is the same as the effect of gene 3 on subtree 5. Subtree 6 illustrates the fact that

the test based on l(N) takes advantage of the known correlation structure even if the

genes in the network are negatively correlated while the GSEA method cannot detect

the change in the correlation structure between control and treatment conditions.

2.4.3 Simulation 3: Effect of Noise in Network Information

In the last simulation, we evaluate the sensitivity of the proposed inference pro-

cedure to presence of noise in association weights of the gene network. The network

consists of 4 similar subnetworks, each with 40 genes. Under control, genes have

mean µC = 1 and the weights of the adjacency matrix are set to 0.2. The settings

of the parameters under treatment are given in Table 2.6. The estimated powers

of tests of significance of each subnetwork using a test based on l(N) are plotted in

Figures 2.5 and 2.6. Figure 2.5 represents the case where the errors are introduced at

random, that is, each weight in the adjacency matrix under treatment is perturbed

by a uniform noise in the range [−e, e] where e is a value between 0 and 0.4. On the

other hand, Figure 2.6 represents the estimated powers of tests when a systematic

bias is included in the weights of the adjacency matrix under treatment. It can be

seen that if the underlying model is correctly specified, presence of random noise in

weights of adjacency matrix will not significantly affect the power of the test. How-

ever, presence of systematic bias in the estimated weights can introduce both type

I, as well as type II errors. This is illustrated by the increase of power of the test as
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Table 2.6: Significant parameters of the third simulation study under the treatment condition. In all other
cases µT = µC = 1 and ρT = ρC = 0.2.

Subnetwork Mean Association Weight

1 µT = 1.5 ρT = 0.6
2 – ρT = 0.6
3 – –
4 µT = 1.5 –

the difference between weights under treatment and control becomes more significant

(Figure 2.6). It is important to note that the simulation considered here does not

include errors in the topology of the network. These errors become more critical if

the topology of the network, as well as the association weights, are estimated from

expression data, which is beyond the scope of this article.

Figure 2.5: Estimated powers of test of significance of subnetworks in presence of random noise in weights
of the adjacency matrix. Thick green plots represent the powers of subnetworks whose true adjacency
matrices in control and treatment are the same.

Figure 2.6: Estimated powers of test of significance of subnetworks in presence of systematic bias in weights
of the adjacency matrix. Thick green plots represent the powers of subnetworks whose true adjacency
matrices in control and treatment are the same.
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2.5 Analysis of Yeast Galactose Utilization Pathway Data

In Section 2.1.1 we analyzed the yeast GAL pathway data (Ideker data) using the

GSEA method, which revealed that the Galactose Utilization pathway is significantly

activated in gal+ condition. In that analysis, the external information provided by

the network was only used to determine the gene sets of interest. As discussed in

Section 2.1.1, the Ideker data also includes strength of gene interactions in the net-

work, Therefore, it is possible to directly incorporate the network information and

use the proposed network based inference procedure. It is important to note that

the Ideker data only includes one set of association weights for both gal+ and gal–

conditions. In other words, in this section we assume ΛT = ΛC = Λ and hence

the proposed inference procedure can not test the change in the network structure.

Assuming that the latent variable model correctly represents the effect of the under-

lying network, the increased power of the network based procedure is mainly due to

directly incorporating the network information.

Table 2.7 compares results of analyzing the Ideker data using the GSEA method

and the network based method presented in this chapter (using l(N)). This table also

includes results of analyzing this data using the GSA method of Efron and Tibshi-

rani (2007) 3. As one may expect, all three methods find the Galactose Utilization

pathway to be statistically significant. Although the GSEA and the GSA methods

agree on the significance of other subnetworks, it can be seen from Table 2.7 and

Figure 2.7 that including the underlying network structure in the analysis reveals

4 additional significant pathways. Although additional experiments are needed to

verify the result of Table 2.7, the biology of yeast cells may offer some insight to

significance of newly detected pathways. These pathways can be categorized into

3The minmax criteria is used as the enrichment function in the GSA method.



34

Table 2.7: Analysis of yeast Galactose utilization pathways using GSEA, GSA and NetGSA. Results of
NetGSA are based on the proposed network contrast vector l(N). For each method, the nominal p-value
and whether the pathway is significant based on the FDR with q∗ = 0.05 is reported.

GSEA GSA l(N)

NOM FDR NOM FDR NOM FDR
PATHWAY SIZE p-val signif p-val signif p-val signif

rProtein Synthesis 28 0.5261 0.278 0.0038 X
Glycolytic Enzymes 16 0.9683 0.357 0.2825

RNA Processing 75 0.9879 0.386 0.479

Fatty Acid Oxidation 7 0.4694 0.299 0.0068 X
O2 Stress 13 0.2384 0.285 0.4448

Mating, Cell Cycle 58 0.3583 0.417 0.4317

Vesicular Transport 19 0.07243 0.156 0.3693

Sugar Transport 2 0.7358 0.458 0.3319

Glycogen Metabolism 12 0.1321 0.034 0.3057

Stress 12 0.02004 0.007 0.0000 X
Metal Uptake 4 0.8374 0.326 0.0802

Respiration 9 0.1878 0.091 0.0001 X
Gluconeogenesis 7 0.8455 0.475 0.0383

Galactose Utilization 12 0.002045 X 0.001 X 0.0000 X
Amino Acid Synthesis 30 0.1853 0.054 0.0665

two groups: Galactose Utilization and rProtein Synthesis pathways are involved in

cell growth in gal+ environment while genes in the Stress, Respiration and Fatty

Acid Oxidation pathways are induced in gal– environment. The Stress pathway

has a low nominal p-value in both GSEA and GSA results, however, these methods

do not consider this pathway significant. The significance of the Stress pathway is

not surprising and can be explained by the fact that galactose is a more efficient

source of carbon than raffinose. Thus in absence of galactose (gal–), the genes in the

Environmental Stress Response (ESR) are induced Gasch et al. (2000); Gasch and

Werner-Washburne (2002). The Fatty Acid Oxidation and Respiration pathways are

also upregulated in gal– environment. The genes in the Respiration pathway are

among the genes that are induced in the ESR.

Many of the stress defense mechanisms consume ATP and therefore, cellular stress

could lead to the induced expression of respiration genes Hohmann and Mager (2003).

Also, many genes involved in importing and exporting fatty acids are induced in ESR
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and the induction of these genes can increase the local concentration of fatty acids,

which in turn may induce the expression of genes in Fatty Acid Oxidation pathway

Hohmann and Mager (2003). The induction of Fatty Acid Oxidation and Respiration

genes can be further explained by the coregulation of genes in these pathways. It

should be noted that two of the genes in the Respiration pathway are directly affected

by genes in GAL pathway (GAL4 regulates CYC1 and HAP4 is regulated by MIG1)

and our proposed model can exploit such relationship in order to gain more statistical

power. Finally, the significance of the rProtein Synthesis genes can be explained by

growth dependent expression of these genes and the fact that ESR represses the

expression of many protein synthesis genes Hohmann and Mager (2003).

2.6 Discussion

Finding significant subnetworks and pathways that are involved in certain biolog-

ical phenomena has been the focus of many new studies. The main challenge is to

formulate the null and alternative hypotheses that consider the change in the expres-

sion levels of the genes as well as the change in the network structure in response

to environmental factors. In this chapter, we proposed a model-based approach for

testing the significance of biological pathways using the underlying gene network and

studied graph theoretic properties of the model. Our approach uses external infor-

mation available about the underlying network and it hence depends on availability

and quality of such data. The method proposed in this chapter, incorporates the

weighted adjacency matrix of the network through a latent variable model and uses

a flexible mixed linear representation. We discussed that the inference based on this

method depends on the choice of the contrast vector and proposed a choice that offers

improvement in power of the test compared to the GSEA method of Subramanian
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Figure 2.7: Significant pathways in Galactose utilization. Significant pathways have been marked with
RED ovals.

et al. (2005). The simulation studies and the analysis of the yeast galactose uti-

lization pathway reveal the ability of the proposed method in identifying significant

pathways that are otherwise difficult to distinguish. Although the focus of this chap-
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ter was on testing the significance of subnetworks in the two population inference

problem, the proposed method provides a general framework for studying a variety

of phenotypes including analysis of time series mRNA data and the change in the

network over time. More generally, different correlation structures among observa-

tions can be implemented in the mixed linear model and therefore, different types of

data can be modeled using this framework. Considering parameters for environment

factors and gene-gene and gene-environment interactions is also a straight forward

extension of the proposed model.

The model presented in this chapter relies on two main assumptions: (a) The

relationship between the expression levels of genes in the network can be represented

linearly using the influence matrix of the network and (b) that the data follows a

normal distribution. Although the first assumption is a crucial part of this analysis,

the second assumption can be relaxed using the Generalized Mixed Linear Model

(GMLM) framework. However, this would make the computational aspects of the

problem more challenging.

The growth of information available on the underlying biological networks calls for

effective methods that can utilize such information efficiently and requires extensions

of statistical methods appropriate for studying of network structures. The model

presented in this chapter requires external information on the weighted adjacency

matrix of the network. Although more data is becoming available on gene and

protein networks, many available network data only include the binary association

among genes (network topology) and do not include information about the strength

or direction of associations among genes. The problem of estimating the weighted

adjacency matrix of the network, which is related to estimation of the covariance

matrix, is of separate interest and is beyond the scope of this chapter. Chaudhuri
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et al. (2007) propose an efficient algorithm for estimating the association among

genes when the topology of the network is known. The method proposed in this

chapter can also be extended to the cases where only partial information about the

network is available.



CHAPTER III

Network Enrichment Analysis in Complex Experiments

3.1 Introduction

Recent advances in high throughput technologies have facilitated the simultaneous

study of components of complex biological systems. Microarray technologies provide

information about the expression levels of virtually all genes in the genome of a

given specie; the patterns of changes in these expressions over large groups of genes

can determine how living organisms respond to their environment. However, genes

interact with each other in an orchestrated fashion and analysis of individual genes

without taking into account their interactions (single gene analysis) may result in

reduced efficiency and bias. We provide next an overview of two classes of methods

that aim to overcome this shortcoming and discuss advantages and disadvantages of

each of the methods.

3.1.1 Background

Two classes of models have been investigated by researchers in order to account

for interactions among components of biological systems in the differential analysis of

genes and proteins. The first approach, known as gene set analysis, is to consider the

joint effect of biologically related groups of genes. By performing gene set analysis,

one can hope that when the combined effect of genes in a set is considered, the inter-

39
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actions among the genes are preserved and hence the resulting inference procedure

implicitly includes such interactions. In addition, while individual genes may not

show important changes of expression, the combined effect of changes in expressions

of genes in a set (e.g. a genetic pathway) could unveil important changes in the

state of the system. Hence, methods of gene set analysis offer improvements in both

power, as well as interpretability of inference procedures. Examples of methods for

gene set analysis include the Gene Set Enrichment Analysis (GSEA) of Subramanian

et al. (2005) and its variants (Tian et al., 2005; Efron and Tibshirani, 2007), which

use a permutation-based procedure in order to evaluate the significance of gene sets.

The second class of methods aims to directly incorporate available information

about interactions among genes and proteins into differential analysis. Gene networks

are efficient tools to represent and model interactions among genes (Rahnenführer

et al., 2004) and have been used to improve the performance of differential analy-

sis methods. Ideker et al. (2001) used integrated genomic and proteomic analysis

of perturbed networks to discover interactions among genes. This was followed by

proposing a method to test the significance of subnetworks through a permutation-

based method (Ideker et al., 2002). Recently, Wei and Li (2007) and Wei and Pan

(2008) have proposed Markov random field models to incorporate the network infor-

mation in the differential analysis of genes. In these methods, connected genes in the

networks are assumed to have “similar” expression levels and a Bayesian framework

is developed using mixture models to evaluate whether each gene is differentially

expressed.

A number of methods have recently been developed to combine the advantages

of incorporating network information with strengths of enrichment analysis. San-

guinetti et al. (2008) considered a mixture model on graphs (MMG) to account for
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network information in proteomic data and used a simple percolation algorithm to

define submodules. In Chapter II, we discussed a method that incorporates net-

work information through a latent variable model and used the framework of mixed

linear models (MLM) to test whether a priori defined gene sets are differentially

expressed. They considered two special classes of networks, namely directed acyclic

graphs (DAGs), as well as sub-stochastic graphs and proposed a test statistic for the

two-class inference problem (e.g. treatment and control).

The above models can all be viewed as attempts to incorporate the spatial cor-

relation caused by the gene network into the analysis of differentially expressed

genes. Another important aspect of gene expression is the dynamic behavior of

genes in response to environmental conditions (Gasch et al., 2000; Gasch and Werner-

Washburne, 2002). The changes in gene expression levels over time may reveal unique

features of biological systems that are not evident from studying gene expressions

at a single time point. The temporal correlation among gene expressions can also

be utilized to improve the efficiency of finding differentially expressed genes. Exam-

ples of models for time course gene expression data include Hong and Li (2006) and

Yoneya and Mamitsuka (2007). Spatio-temporal models for gene expression analy-

sis combine the advantages of both models. Wei and Li (2008) recently proposed

a hidden spatio-temporal Markov random field model to account for both tempo-

ral correlation among expression levels, as well as spatial correlation among genes

represented by the gene networks.

3.1.2 Outline

Currently available methods, reviewed above, focus either on incorporating net-

work information for performing single gene analysis, or on gene set enrichment

analysis for simple experimental conditions; e.g. treatment and control. Since meth-
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ods of enrichment analysis are based on permutations tests (e.g. Ideker et al., 2002;

Subramanian et al., 2005; Tian et al., 2005; Efron and Tibshirani, 2007), their exten-

sion to complex experimental settings, including the presence of temporal correlation

among observations, is not straightforward.

In this chapter, I generalize the framework of Chapter II in order to develop a

flexible framework for analysis of gene sets in complex experimental conditions, while

incorporating the known network information. In particular, I

(a) propose a generalization of the network influence to analyze arbitrary networks

with both directed, and undirected edges,

(b) exploit the flexibility of mixed linear models to develop a general inference

procedure that can be used to analyze changes in biological pathways in complex

experiments, including experiments with multiple factors together with time

course data, and

(c) describe an inference framework for simultaneous tests of multiple hypotheses

for analysis of pathways in complex experiments.

In addition, in order to estimate the parameters of the resulting mixed linear

model, I propose an iterative algorithm based on the block-relaxation technique

(de Leeuw, 1994), which will be the basis for developing a distributed algorithm for

estimation of model parameters in Chapter VII. Finally, we study the effect of noise

in the underlying network information, e.g. when interactions among genes or the

associated weights are estimated, and establish conditions under which the proposed

inference procedure is asymptotically insensitive to such noise. Through analysis of

simulated, as well as real, data examples, we illustrate the small sample properties

of the proposed inference procedure and show that the model performs well in the
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presence of limited samples (the application discussed in Section 3.4 has a single

sample per experimental condition and time point, and includes 3 time points) and

also exhibits good performance in the analysis of small gene sets.

The remainder of the chapter is organized as follows: in Section 3.2, the modeling

framework is introduced and the mixed linear model representation is presented.

The material in Sections 3.2.1 and 3.2.2 generalize the framework of Chapter II to

analysis of general networks in complex experiments. Estimation and inference issues

are discussed in Sections 3.2.3 and 3.2.4, respectively, and the asymptotic analysis

of performance under noisy network information is presented in Section 3.2.5. The

performance of the model is evaluated through simulation studies in Section 3.3. In

particular, it is shown that while the performance of enrichment methods deteriorates

in presence of temporal correlation, the proposed model can effectively handle the

additional correlation. Finally, in Section 3.4, data from yeast environmental stress

response (ESR) experiment of Gasch et al. (2000) are used to discover pathways that

are differentially expressed in response to these stress factors. Section 3.5 summarizes

the main findings and discusses some future research directions.

3.2 Model and Methods

Consider p genes whose expression data D is organized in a p× n matrix, where

each column of D represents a realization of the expression levels of genes in the

study. In general, assume that there are K different experimental conditions and

each of k = 1, · · · , K conditions are studied in Jk time points. Further, assume that

for each combination of experimental condition and time, there exists njk samples.

Let n =
∑K

k=1

∑Jk
j=1 njk and denote by Y an arbitrary column of the expression

matrix D. In other words, Y consists of the expression levels of genes in the study
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for a given time point of a specific experimental condition.

3.2.1 The Latent Variable Model

In order to incorporate the network structure into the model, we represent the

gene network by a directed graph G = (V,E) with vertex set V , and edge set E.

The edge set is captured in the p×p weighted adjacency matrix of the graph A, with

positive and negative entries. Each nonzero element in the adjacency matrix, Aij,

represents a directed edge whose weight corresponds to the strength of association

between the two vertices i and j. Undirected graphs correspond to a special case,

where Aij = Aji. As in Chapter II, we represent the gene network by a directed

graph G − (V,E) with vertex set V and edge set E, and adapt the latent variable

model of Chapter II.

In most applications, the available network information comes in the form of

the adjacency matrix, which determines the association between each gene and its

immediate neighbors in the graph. On the other hand, the influence matrix represents

the effect of each gene on all the other genes in the network and is given by Λ =∑∞
r=0A

r, where A0 = Ip. In Chapter II, we showed that for the case of directed

acyclic graphs, the relationship between Λ and A is given by Λ = (I−A)−1. We also

show that if the adjacency matrix of the network is sub-stochastic, i.e. its eigenvalues

are smaller than 1 in magnitude, the above relationship between A and Λ still holds.

This approach can also be adapted to define a latent variable model for chain graphs,

where the network consists of undirected subgraphs that are connected by directed

edges having no directed cycles (see e.g. Lauritzen, 1996). However, general gene

networks, with both directed and undirected edges, may not satisfy the requirements

of any of the above special classes of graphs. Therefore, an alternative approach is

required to define the influence of the network for general graphs.
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We start by normalizing the adjacency matrix A, by dividing its entries Aij by

the corresponding row sum of the absolute values
∑p

j=1 |Aij|. Formally, let

(3.1) L(ζ)ij =
Aij

(
∑p

j=1 |Aij|) + ζ
, for some ζ > 0.

Then by Gershgorin’s Disk Theorem (see e.g. Friedberg et al., 1996), the matrix L

is sub-stochastic, and therefore, using the results in Lemma II.1, for each ζ > 0 we

get Λ = (I − L(ζ))−1. Taking the limit, we get

Λ = lim
ζ→0

(I − L(ζ))−1.

This implies that, for general networks, the influence matrix of the graph can be

defined as Λ = (I − L)+, where L represents the normalized adjacency matrix with

ζ = 0 and (I − L)+ denotes the Moore-Penrose pseudo-inverse of I − L.

The normalization in (3.1) is motivated by the definition of the covariance matrix

in Markov random fields (see e.g. Rue and Held, 2005). For undirected graphs with

only positive weights in A, the matrix I − L also corresponds to a version of the

Laplacian matrix of the graph (see e.g. Chung, 1997). Simulation studies show that

small values of ζ (e.g. ζ ≈ 0.01) do not affect the outcome of the analysis, and

Λ = (I − L(ζ))−1 can be used to define the influence matrix.

3.2.2 Mixed Linear Model Representation

As a generalization of the model in Chapter II, consider the gene expression matrix

of the previous section with K experimental conditions, Jk, k = 1 · · ·K time points

and njk observations at each combination of condition and time point. Let Y, γ

and ε represent the rearrangement of vectors Y , γ and ε into np× 1 column vectors.
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Then, using the framework of mixed linear models, we can write

Y = Ψβ + Πγ + ε

ε ∼ Nnp(0,R), R = diag (R)(3.2)

γ ∼ Nnp(0,G), G = σ2
γInp

Here β and γ are fixed and random effect parameters, and Ψ and Π are the corre-

sponding design matrices of dimensions np×Kp and np× np, respectively.

The precise form of these matrices depends on whether the influence matrix Λ

can change over time or over different experimental conditions (see Harbison et al.

(2004) for examples of changes in regulatory networks in different experimental con-

ditions). To account for such changes in interactions among genes, let Λ(jk) denote

the influence matrix of the network in condition k and time point j. The changes

in network influence over time or in different experimental conditions can then be

directly incorporated in the model by replacing the matrix Λ by the corresponding

matrix Λ(jk) in design matrices Ψ and Π, for fixed and random effect components in

the mixed linear model of equation (3.2). Using this notation, Π is a block diagonal

matrix with Λ(jk) on the diagonal, while Ψ is defined based on the setting of the

experiment. More specifically, suppose χ is the design matrix of the linear regression

model for a single gene, corresponding to K experimental conditions and J time

points. The matrix Ψ is then defined by replacing each χjk with χjkΛ
(jk). In the

special case of Λ(jk) = Λ, the matrices Ψ and Π are defined as

Ψ = χ⊗ Λ

Π = In ⊗ Λ(3.3)

where ⊗ denotes the Kronecker product of two matrices. Examples of the use of the
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mixed linear model for different experimental conditions are provided in Sections 3.3

and 3.4.

This model provides a general framework for evaluating changes in gene expres-

sions in different experimental conditions over time. The structure of the experiment

may be fairly complex, corresponding to a factorial design or a block design (Kerr

and Churchill, 2001b,a; Yang and Speed, 2002). Examples of such designs arise in the

experiments of Gasch et al. (2000), Causton et al. (2001) and Gasch and Werner-

Washburne (2002). Further, the model facilitates the specification of correlations

caused by both the gene network, as well as temporal dependence among gene ex-

pressions. In fact, using the covariance matrices R and G, a variety of correlation

structures can be modeled (in Section 3.4, we provide detailed definition of design

and covariance matrices for the analysis of yeast ESR data). In addition, the pro-

posed model allows researchers to investigate the patterns of changes of expressions

in different experimental conditions, and to study the expression profiles of gene sets

over time, which could provide additional cues to the behavior of biological systems.

Such experiments are not easily analyzed using the permutation-based enrichment

analysis methods.

3.2.3 Parameter Estimation

It is easy to see that for the mixed linear model of equation 3.2 W ≡ Var(Y) =

σ2
γΠΠ′ + R and the maximum likelihood estimate of β is given by (Searle, 1971):

(3.4) β̂ = (Ψ′Ŵ−1Ψ)
−1

Ψ′Ŵ−1Y

These estimates depend on estimates of the variance components, σ2
γ and R, which

are usually estimated via Restricted Maximum Likelihood (REML).

Lindstrom and Bates (1988) provided details of the Newton-Raphson and EM
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algorithms for estimation of parameters of MLM and presented evidence in favor

of the former method. They also presented a method of reducing the dimension

of the matrices involved in the calculation by breaking down the matrices Ψ and

Π into smaller sub-matrices in case of repeated measures data. In dealing with

specific problems, it may be possible to further reduce the dimension of these matrices

by taking advantage of their structure and sparsity patterns. However, the size of

the parameter vector and dimensions of the matrices involved in the calculations

increase with the number of genes p. As a result, traditional methods available for

estimation of parameters of MLM prove inefficient in mixed linear models for large

gene networks. Therefore, estimation of MLM parameters in (3.2) requires efficient

estimation procedures. Algorithm 1, which is a block-relaxation type algorithm

(de Leeuw, 1994), makes the estimation of parameters tractable by partitioning the

parameter space into smaller subspaces. To simplify the notation, we denote by θ =

(θε,θγ) the vector of all variance parameters used to define R and G i.e. R = R(θε)

and G = G(θγ). Oberhofer and Kmenta (1974) proved the convergence of this

algorithm under certain assumption on the estimates of the variance components.

In fact, using the strict convexity of the negative log-likelihood function for mixed

linear models, and the general theory of iterative algorithms (de Leeuw, 1994), it

can be shown that this algorithm converges to the maximum likelihood estimates of

the MLM parameters, provided the estimates of the covariance components result

in a positive definite covariance matrix, and Ψ has full column rank. For the model

presented here this is achieved if the variance components are estimated using the

REML estimation criterion.

To further speed up the estimation process, one can also partition the estimation

further over the subnetworks, which results in partitioning over both parameter, as
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Algorithm 1 Block-Relaxation Algorithm for MLM Parameters

1. Find an initial estimate of β̂
(0)

(e.g. using OLS)
2. Repeat until convergence m = 1, 2, · · ·

2.1. e := e(m+1) = Y −Ψβ̂
(m)

2.2. θ̂
(m+1)

= argmaxθ − 1
2

{
logdet (W(θ)) + e′W−1(θ)e

}
2.3. β̂

(m+1)
= (Ψ′W−1(θ̂

(m+1)
)Ψ)

−1

Ψ′W−1(θ̂
(m+1)

)Y

well as observation spaces. It can be shown that, under specific conditions, estimates

from such partitioning converge to the maximum likelihood estimates of the model

parameters. We discuss one such algorithm in Chapter VII.

3.2.4 Inference

A variety of hypotheses about fixed effect parameters of mixed linear models can

be tested by considering tests of the form:

(3.5) H0 : lβ = 0 vs. H1 : lβ 6= 0

Here l is in general any linear combination of β’s which meets the estimability re-

quirement of Searle (1971). An example of such vectors is a contrast vector, which

satisfies the constraint 1′l = 0. In the following discussion, any linear combination

of β’s satisfying the estimability requirement is referred to as a contrast vector. In

the setting of multiple experimental conditions, this inference framework allows tests

of hypotheses of significance of parameters for each experimental condition, as well

as tests of significant changes in responses of gene sets over time. More generally,

different combinations of parameters can be tested using this framework, which allow

researchers to fully investigate the behavior of gene sets of particular interest.

In Chapter II, we showed that for any given 1× p indicator vector b determining

a specific subnetwork or gene set, the vector (bΛ · b)β includes the effects of all

the nodes in b on each other, but it is not affected by any node outside the set
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of nodes indexed by b (here · denotes the Hadamard or componentwise product of

two vectors). In words, bΛ introduces the influence of genes indexed by b on each

other, while the componentwise product with b excludes the effects of nodes not in

b. The change in Λ in response to different experimental conditions or over time can

be incorporated into this contrast vector by substituting Λ by the influence matrix

of the specific time and experimental conditions, Λ(jk). Hence the contrast vector

l is formed by replacing in the general formula the influence matrix of the network

under the specific conditions. As an example, suppose Λ(j) represents the influence

matrix of the network at time j, j = 1, · · · , J and β = (β(1)′ , · · · ,β(J)′)′. Then the

change in the expression levels of genes in the subnetwork indexed by b from time j

to j + 1 can be tested using

l = (0, · · · , 0,−bΛ(j) · b, bΛ(j+1) · b, 0, · · · , 0)

Letting C = (Ψ′W−1Ψ)
−1

, the significance of individual contrast vectors in (3.5)

can be tested using the following Wald test statistic:

(3.6) T =
lβ̂√
lĈl′

Under the null hypothesis, T follows approximately a t-distribution whose de-

grees of freedom ν can be estimated using the Satterthwaite approximation method

(McLean and Sanders, 1988)

ν =
2(lĈl′)

2

τ ′V τ

where τ = ∂
∂θ
lCl′, and V is the empirical covariance matrix of θ.

When analyzing complex experiments, often multiple contrast vectors of interest

are considered for a specific subnetwork. In such situations, (3.6) can be used to test

the significance of the contrast vector corresponding to each hypothesis of interest.
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The resulting p-values should then be adjusted for the total number of hypotheses

tested amongst different subnetworks. Alternatively, one can combine these contrast

vectors into a contrast matrix L, where each row of L includes one of the contrast

vectors. The significance of the subnetwork can then be tested using the following

test statistic:

(3.7) F =
β̂
′
L′(LĈL′)−1Lβ̂

q

where q is the rank of L. Under the null hypothesis of Lβ = 0, F has an F-

distribution with q and η degrees of freedom. To estimate η using the Satterthwaite

approximation method, one first needs to find matrices P and D such that LCL′ =

PDP ′ (the eigen-decomposition of LCL′). Then, denoting the mth row of L by lm,

η is calculated using:

η =


2E
E−q E > q

0 o.w.

where

E =

q∑
m=1

νm
νm − 2

I{νm>2}, νm =
2D2

m

τ ′mKτm
.

The proposed F-test for the analysis of complex experiments reduces the number

of hypotheses tested and offers a hierarchical testing approach. In particular, al-

though some subnetworks may not show significant change with regard to individual

hypotheses, the combined significance of the subnetwork due to multiple sources of

differential expression may result in overall significance of the subnetwork. It is then

possible to test the significance of individual hypotheses, in case the overall F-test

for the subnetwork is significant. We illustrate this hierarchical testing procedure in

Sections 3.3 and 3.4.
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3.2.5 Uncertainty in Network Information

The method for network-based analysis of gene sets proposed here requires knowl-

edge of interactions among genes and proteins, as well as the corresponding associa-

tion weights. In addition, to fully exploit the strength of the proposed methodology

in testing the changes in the network structure, as well as the expression levels of

genes, the adjacency matrix of the network should be available for different exper-

imental conditions and time points. However, available network information may

be noisy, and available resources often only determine the presence of interactions

among genes, and do not provide information on the strength of associations. There-

fore, it may be necessary to estimate the network information. Estimation of gene

networks from high throughput observations is an important problem in systems bi-

ology and of independent interest (see Chapter IV for a review of related literature).

It is important to note that since the network information is used in both estimation

of parameters, as well as inference, to prevent unidentifiability and bias, the obser-

vations used for estimation of the underlying network should be independent from

those used for analysis of differential expression.

In this section, we analyze the effect of uncertainty in the network information,

by studying the asymptotic properties of the proposed test statistic. Our main

result concerns the general case of error in network information in the case of a

two-population test, described in Chapter II. We also discuss the special case of

estimating association weights, when the structure of the network is known.

In the following, we denote the available adjacency matrix of the network by Ã and

use the notation ‖A‖ and ‖A‖F to represent the matrix norm and Frobenius norm

of A, respectively. Also, let dAi denote the weighted in-degree of node i according to

the adjacency matrix A: dAi =
∑

j |Aij|.
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Theorem III.1. Suppose Ã = A + ∆A, where ‖∆A‖ = oP (1), and assume that

mini d
Ã
i ≥ 1.1 Then, (3.6) is an asymptotically most powerful unbiased test for (3.5).

Proof. We consider here the special case where ΛC = ΛT = Λ and only one gene set,

the whole network, is tested. This implies that b = 1′ and the proposed network

contrast vector bΛ ·b reduces to bΛ (the general case of ΛC 6= ΛT and b 6= 1′ follows

from a similar argument).

First, recall that for directed acyclic graphs (DAGs), Λ =
∑∞

r=0A
r, and for general

graphs, Λ =
∑∞

r=0 Lr, where L = D−1
A A and DA = diag(dAi ). Then Ã = A + ∆A

implies that for DAGs

(3.8) Λ̃ =
∞∑
r=0

Ãr =
∞∑
r=0

Ar +
∞∑
r=0

∞∑
s=1

Ar∆s
A ≡ Λ + ∆Λ, ‖∆Λ‖ = oP (1).

Similarly, for general graphs, we have

L̃ = D−1

Ã
Ã = D−1

Ã
(A+ ∆A) ≡ L+ ∆L

where

‖∆L‖ ≤ ‖D−1

Ã
‖‖∆A‖ = 1/(min

i
dÃi )‖∆A‖ = oP (1)

ex hypothesis. An argument similar to (3.8) implies that the following expression

also holds for general graphs

(3.9) Λ̃ = Λ + ∆Λ, ‖∆Λ‖ = oP (1)

Now, using the results in Chapter II, the test statistic in (3.6) can be written as

(3.10) T =
b(Ȳ T − Ȳ C)√

b(n−1
1 + n−1

2 )(σ̂2
γΛ̃Λ̃′ + σ̂2

εIp)b
′

where Ȳ T and Ȳ C represent the average expression of genes in the two experimen-

tal conditions and n1 and n2 represent the corresponding sample sizes. The test

1Note that mini d
Ã
i ≥ 1 implies that the network is connected. However, the case of disconnected networks is an

straightforward extension, as the networks can be analyzed separately.
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statistic in (3.10) represents the likelihood ratio test for testing the null hypothesis

in (3.5), which is asymptotically most powerful unbiased, provided correct network

information is given. Therefore, to establish the result, it suffices to show that the

effect of error in the network information is asymptotically negligible. However, since

the numerator of the test in (3.10) does not depend on the network information, it

suffices to show that the denominator is a consistent estimator.

To establish the consistency of estimates of the variance components, note that the

negative log-likelihood function (up to a constant) for the two-population problem

is given by

(3.11) `(θ) = n−1

n∑
i=1

logdet (Wi) + n−1

n∑
i=1

r′iW
−1
i ri,

where ri = Yi − Ȳ C , i = 1, . . . , n1, ri = Yi − Ȳ T , i = n1 + 1, . . . , n and θ is the vector

of variance components. Then, using the fact that for the two-class problem with

constant, but noisy network information Wi = Var(Yi) = σ2
γΛ̃Λ̃′ + σ2

εIp, we get

(3.12) `(θ; Λ̃) = logdet (σ2
γΛ̃Λ̃′ + σ2

εIp) + n−1

n∑
i=1

r′i(σ
2
γΛ̃Λ̃′ + σ2

εIp)
−1
ri.

Using (3.9) we can then approximate `(θ; Λ̃) with its one-term Taylor expansion

around Λ

(3.13) `(θ; Λ̃) = `(θ; Λ) + ‖∆Λ‖ trace [(∇Λ`(θ; Λ))′∆Λ/‖∆Λ‖] + o(‖∆Λ‖2)

where ∇Λ`(θ; Λ) is the gradient of ` with respect to Λ (see e.g. Dattorro (2005)-

Appendix D for details on directional derivatives and approximations for functions

of matrices).

But, for square positive definite matrices we have ∇ logdet(X) = X−1∇X and

∇X−1 = −X−1∇XX−1. Hence, noting that ∇ΛΛΛ′ = (Λ′ + Λ), by the chain rule
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and after some algebra, we can write

∇Λ`(θ; Λ) = σ2
γ(σ

2
γΛΛ′ + σ2

εIp)
−1(Λ′ + Λ)

−n−1σ2
γ

n∑
i=1

r′i(σ
2
γΛΛ′ + σ2

εIp)
−1

(Λ′ + Λ)(σ2
γΛΛ′ + σ2

εIp)
−1
ri.

Denote by τ 2 = σ2
ε/σ

2
γ and Γ = ∆Λ/‖∆Λ‖, and let

g(θ) = trace
[
Γ′(ΛΛ′ + τ 2Ip)

−1(Λ′ + Λ)
]

(3.14)

−n−1σ−2
γ

n∑
i=1

r′i(ΛΛ′ + τ 2Ip)
−1

Γ′(Λ′ + Λ)(ΛΛ′ + τ 2Ip)
−1
ri.

Replacing (3.14) in (3.13) then gives

`(θ; Λ̃) = `(θ; Λ) + ‖∆Λ‖g(θ) + o(‖∆Λ‖2).

However,

|g(θ)| ≤ | trace
(
Γ′(ΛΛ′ + τ 2Ip)

−1(Λ′ + Λ)
)
|

+n−1σ−2
γ

n∑
i=1

r′i(ΛΛ′ + τ 2Ip)
−1

Γ′(Λ′ + Λ)(ΛΛ′ + τ 2Ip)
−1
ri

≡ i + ii.

Using von Neumann’s inequality for the matrix trace (see e.g. Mirsky, 1975), and

the relationship between singular values and matrix norms, we get

i ≤
p∑
j=1

κ[j]([Λ
′ + Λ]Γ′)κ[j]([ΛΛ′ + τ 2Ip]

−1)

≤ pκ[1]([Λ
′ + Λ]Γ′)κ[1]([ΛΛ′ + τ 2Ip]

−1)

≤ pκ[1](Λ
′ + Λ)κ[1](Γ)κ[1]([ΛΛ′ + τ 2Ip]

−1)

where κ[j](A) denotes the j-th largest singular value of A. But, by definition,

κ[1](Γ) = 1. Moreover, by construction, κ[1](Λ
′ + Λ) is bounded by say M , and

κ[1]([ΛΛ′ + τ 2Ip]
−1) = 1/(λ[p](ΛΛ′) + τ 2), where λ[p](ΛΛ′) is the smallest eigenvalue

of ΛΛ′ and hence is positive (by definition of Λ). This implies that i < 2pM/τ 2.
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On the other hand,

ii ≤ σ−2
γ ‖(ΛΛ′ + τ 2Ip)

−1
Γ′(Λ′ + Λ)(ΛΛ′ + τ 2Ip)

−1‖n−1

n∑
i=1

r′iri

≤ σ−2
γ ‖(ΛΛ′ + τ 2Ip)

−1‖2‖Γ′‖‖(Λ′ + Λ)‖‖n−1

n∑
i=1

r′iri

< σ−2
γ 2τ−4Mn−1

n∑
i=1

r′iri = 2τ−2σ−2
ε ME(‖ri‖2) w.p.1,

where the last step follows from the strong law of large numbers. This implies that

provided the variance components are non-zero, with probability one g(θ) is bounded,

and hence ‖∆Λ‖g(θ) = oP (1). This in turn implies that `(θ; Λ̃) = `(θ; Λ) + oP (1).

Denote by E the event [`(θ; Λ̃) = `(θ; Λ)]. Then conditioning on E , the estimates of

the variance components are found by minimizing the negative log-likelihood function

with true network information, which is a convex function of variance components.

M-estimation results in Haberman (1989) imply that P(θ̂ = θ|E) = 1 and hence,

θ̂ →P θ as Ã→P A. However, this further implies that as Ã→P A, the denominator

of the test statistic in (3.6) converges to the true value, and the result follows.

Remark III.2. In the general case of complex experiments, the estimates of the fixed

effects are also dependent on the network information. A similar result will then

follow upon deriving the asymptotic distribution of the numerator of the test statistic

in (3.6). In Section 3.3.3, we provide empirical evidence in support of the insensitivity

of the proposed inference framework to the presence of noisy network information.

The above theorem guarantees that as long as the error is small in magnitude,

the network-based inference procedure correctly determines the significance of the

gene sets. In other words, a necessary condition for the proposed method to work in

presence of noise in the network information is that ‖∆A‖ = oP (1). As mentioned

earlier, the problem of estimation of network structure for directed, as well as undi-
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rected, networks is an important problem in multivariate statistics and researchers

have studied asymptotic properties of network estimation for different classes of prob-

lems. Here, we consider a special case of the problem of estimating high dimensional

networks, where the structure of the network is known, and the problem is reduced

to estimating association weights among genes. The following corollary shows that

the proposed network-based gene set analysis procedure is not sensitive to the esti-

mation noise in this setting. It is important to note that the conditions of this result

only limit the degree of nodes in the graph and no constraint is required on the total

number of nodes in the graph. In the following, di represents the unweighted in-

degree of node i: the number of neighbors of i in undirected graphs and the number

of parents of i in directed graphs.

Corollary III.3. Let G be a DAG or an undirected graph, with p nodes and adjacency

matrix A. Assume that maxi(di) = nb for some 0 < b < 1 and
∑

i∈G(di) = na for

some a > 0. Further, assume that the structure (or skeleton) of the network is known,

but the network information is obtained by estimating the association weights from an

independent sample of size n. Then, the test statistics in (3.6) is an asymptotically

unbiased most powerful test for (3.5).

Proof. By Theorem III.1, it suffices to show that ‖Â−A‖ = oP (1). First, assume that

G is a DAG. Then, by the results in Chapter IV, to find the association weights one

needs to regress each node on the set of the parents of that node. Since maxi(di) =

o(n), without loss of generality, we can assume that maxi(di) < n, and therefore

regular regression can be used to estimate the weights. The asymptotic normality of

regression estimators then implies that each non-zero entry of the adjacency matrix

converges with an exponential rate to the true value. Bonferroni’s inequality and

the fact that the total number of edges in the graph is a polynomial function of the



58

sample size imply that ‖Â− A‖ = oP (1).

For undirected graphs, we note that partial correlations between each node i and

its neighbors nei can be recursively estimated using the following formula:

ρi,j|nei =
ρi,j|nei\h − ρi,h|nei\hρj,h|nei\h√
(1− ρ2

i,h|nei\h)(1− ρ
2
j,h|nei\h)

However, Corollary 1 of Kalisch and Bühlmann (2007) implies that if maxi(di) < n−4

estimated partial correlations converge to true values with an exponential rate. An

argument similar to the case of DAGs then implies that ‖Â − A‖ = oP (1) and the

result follows.

3.3 Performance Analysis

In this section, we evaluate the small sample properties of the proposed inference

procedure, through several simulation studies. In all settings, data are generated from

a mixed linear model, where the Gaussian noise has an AR(1) correlation structure.

We consider different combination of mean and network information, and investigate

the effects of temporal correlation, as well as noise in the network information.

3.3.1 Multiple Experimental Conditions

The first simulation depicts the real data example of Section 3.4, which corre-

sponds to analysis of responses of yeast cells to environmental stress factors. The

network consists of a directed graph with 7 subnetworks and a total of 220 nodes.

Each subnetwork in turn consists of a 4-level binary tree and a “hub” node. There are

also 3 gateway genes that connect the subnetworks together. The adjacency matrix

of the graph is considered to remain constant in different experimental conditions

and different time points. The model includes changes in gene expressions under
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Table 3.1: Parameter settings for the first simulation study.
Subnetwork Non-zero Mean Parameters

1 –
2 α2 = 2
3 α2 = 1, δ2 = 1
4 α2 = 1, α3 = 1
5 α2 = 1, δ3 = 1
6 α2 = 1, α3 = 1, δ2 = 1
7 α2 = 1, α3 = 1, δ2 = 1, δ3 = 1

different experimental conditions and different time points. Specifically,

EY11 = Λµ

EY1k = Λ(µ+ δk), k = 2, 3(3.15)

EYjk = Λ(µ+ αj + δk), j, k = 2, 3

The settings of parameters in the first simulation are given in Table 3.1. Table 3.2

includes the estimated powers of the t-tests for different mean parameters, as well as

powers of the F-test, for the overall significance of the subnetwork, estimated from 100

replications 2 with n = 1 observations at each combination of experimental condition

and time point. To prevent redundancy, the contrast matrix L (see Section 3.2.4)

consists only of contrast vectors used for the main effects (the parameters in the first

4 columns of the Table 3.2).

It can be seen from these results that when the model is correctly specified, the

proposed inference procedure offers high power for detecting non-zero parameters,

while maintaining close to nominal significance levels for non-significant parameters.

3.3.2 Effect of Temporal Correlation

The second simulation setting aims to illustrate the effects of temporal correla-

tion, as well as changes in the network structure, in different experimental conditions.

2Simulation replicates are obtained by generating data sets according to the same model with different realizations
of the random vectors ε and γ)
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Table 3.2: Estimated powers of t-test and F-test for the first simulation study. The first four columns
of the table represent the powers for testing the significance of the mean parameters (α2, δ2, α3 and δ3
respectively). The powers for testing equality of main effects (α2 = α3 and δ2 = δ3) are given in the next
two columns of the table. Entries in bold represent result of potential interest.

Individual Parameters (t-test) Subnetwork
Subnetwork α2 δ2 α3 δ3 α2 − α3 δ2 − δ3 (F-test)

1 0.006 0.06 0.03 0.14 0.01 0.10 0.12
2 1.00 0.10 0.02 0.09 1.00 0.13 1.00
3 0.99 1.00 0.03 0.05 0.99 1.00 1.00
4 0.98 0.09 1.00 0.07 0.02 0.08 1.00
5 0.99 0.08 0.02 1.00 0.99 1.00 1.00
6 0.99 1.00 1.00 0.05 0.01 1.00 1.00
7 1.00 0.99 1.00 1.00 0.00 0.01 1.00

Since gene set enrichment analysis methods do not directly incorporate complex ex-

periments, we consider a simple experimental design, including two experimental

conditions. However, to illustrate the effect of temporal correlation, we consider the

case where data are generated over 5 time points with no replicates. The temporal

correlation among observations is generated using an AR(1) process with autocorre-

lation parameter φ. We consider a network consisting of 4 non-overlapping subnet-

works (as described in the first simulation) regulated by 3 hub genes. The correlation

among genes in each subnetwork is controlled by a single parameter ρ, with different

values in distinct subnetworks and experimental conditions. The parameter settings

for this simulation are given in Table 3.3.

Table 3.3: Parameter settings for the second simulation study. αi and ρi, i = 1, 2 correspond to the ith
experimental condition.

Subnet Mean Parameters Correlation Parameters

1 α1 = α2 = 1 ρ1 = ρ2 = 0.2
2 α1 = 1, α2 = 2 ρ1 = ρ2 = 0.2
3 α1 = α2 = 1 ρ1 = 0.2, ρ2 = 0.7
4 α1 = 1, α2 = 2 ρ1 = 0.2, ρ2 = 0.7

Given the true values of the parameters, the test statistic in (3.6) has a normal

distribution, with means 0 and lβ under the null and alternative hypotheses, respec-

tively. Hence, it is possible to calculate the true asymptotic powers of rejecting the

null hypotheses for each of the subnetworks in this simple setting. Figure 3.1 includes
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Figure 3.1: Estimated and true powers for tests of subnetworks in Simulation 2.

the estimated powers of tests using GSEA and the proposed network-based method

(NetGSA), based on 100 replications, along with the true asymptotic powers of the

corresponding tests. It can be seen that when the parameters are clearly insignificant

or demonstrate strong significance (Subnetworks 1 and 4), both methods correctly

determine the significance of the test. However, in less extreme scenarios (e.g. Sub-

networks 2 and 3), the presence of temporal correlation along with the small sample

size (n = 1) prevent GSEA from correctly determining the statistical significance

of subnetworks. On the other hand, by accounting for the temporal correlation,

NetGSA offers considerable improvement over GSEA.

Table 3.4 includes the details of estimated and true powers of tests of significance

of subnetworks considered in Simulation 2. In order to investigate the effect of the

sample size n on the power of the tests, we also consider the case of 10 independent

samples for each experimental condition (n = 10). Powers of the tests with n = 10
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are presented in Table 3.5. This table indicates that estimated powers of the proposed

NetGSA method are more consistent with the values of the true powers for larger

sample sizes. In addition, the presence of temporal correlation prevents the GSEA

method from distinguishing the significance of subnetwork 2 even with larger sample

sizes.

Table 3.4: Powers of second simulation study with n = 1. Entries in bold represent result of potential
interest.

φ
0 0.2 0.4 0.6

Subnetwork 1 GSEA 0.00 0.00 0.00 0.00
NetGSA 0.00 0.01 0.04 0.08
True Power 0.05 0.05 0.05 0.05

Subnetwork 2 GSEA 0.06 0.05 0.01 0.00
NetGSA 0.90 0.92 0.85 0.75
True Power 0.94 0.90 0.83 0.73

Subnetwork 3 GSEA 0.96 0.87 0.79 0.58
NetGSA 0.15 0.35 0.29 0.35
True Power 0.42 0.36 0.31 0.26

Subnetwork 4 GSEA 1.00 1.00 1.00 1.00
NetGSA 0.99 1.00 1.00 0.99
True Power 1.00 1.00 0.99 0.99

Table 3.5: Powers of second simulation study with n = 10. Entries in bold represent result of potential
interest.

φ
0 0.2 0.4 0.6

Subnetwork 1 GSEA 0.00 0.00 0.00 0.00
NetGSA 0.00 0.02 0.00 0.06
True Power 0.05 0.05 0.05 0.05

Subnetwork 2 GSEA 0.06 0.04 0.03 0.05
NetGSA 1.00 1.00 1.00 1.00
True Power 1.00 1.00 1.00 1.00

Subnetwork 3 GSEA 0.95 0.96 0.87 0.61
NetGSA 1.00 1.00 0.98 0.96
True Power 0.99 0.99 0.99 0.98

Subnetwork 4 GSEA 1.00 1.00 1.00 1.00
NetGSA 1.00 1.00 1.00 1.00
True Power 1.00 1.00 1.00 1.00

3.3.3 Uncertainty in Network Information

In Section 3.2.5, we showed that the proposed inference procedure is asymptot-

ically insensitive to small noise in the network information, in case of the simple

two-class problems. We also argued that similar results can be expected in more
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complex experiments. Here we provide empirical evidence for the robustness of the

proposed method to noise in the network information in presence of temporal cor-

relation, by considering the simulation settings of Section 3.3.2, with n = 1. The

settings of mean and correlation parameters are identical to those in Table 3.3. In

addition, the temporal correlation is fixed at φ = 0.4. In each case, the data are

generated according to the mixed linear model with the true network information,

and estimation and inference is carried out using a perturbed version of the network

information. The network information is perturbed by adding an i.i.d. uniform ran-

dom variable U ∼ Uni[−ν, ν] to each non-zero entry of the adjacency matrix; ν is

hence the level of random noise in the network. Figure 3.2 illustrates the estimated

and the true powers for different levels of noise ν. It can be seen that even with

small sample sizes (n = 1), the estimated powers are similar to the expected ones,

and the powers with noisy network information are similar to those obtained in the

absence of noise (ν = 0). The results of this simulation indicate that the proposed

method is robust to small levels of noise (e.g. up to ∼ 30%). In addition, the effect

of noise is mainly significant in the case of Subnetwork 3, where the difference in the

two populations is mainly due to the changes in the network information.

3.3.4 Changes in the Network in Complex Experiments

Our final simulation setting aims to further illustrate the effect of change in the

weighted adjacency matrix of the graph in complex experiments. We consider a

model with separate intercept and slope parameters, for each of the three treatment

conditions. In other words,

EYkj = Λ(k)αk + Λ(k)δktj, j, k = 1, 2, 3, t = (5, 15, 30).

We consider the directed graph of the first simulation setting, but here we allow for
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Figure 3.2: Estimated and true powers for tests of subnetworks in Simulation 3 for different values of
random noise.

changes in both the adjacency matrix of subnetworks, as well as the mean parameters.

For illustration purposes, the adjacency matrix of each subnetwork (and hence its

influence matrix) is considered to be a function of a single parameter ρ with values

in (−1, 1), and entries of the adjacency matrix may attain different values in each of

the three treatment conditions. Based on the latent variable model, as ρ increases,

genes in the network would have higher effects on their neighbors. In this setting,

subnetworks 2 and 6 only include changes in the fixed effect parameters. Subnetworks

1 and 7 have moderate changes in the fixed effect parameters coupled with changes in

associations among genes. In subnetwork 3, the association among genes is the only

source of change. Finally, the parameters of subnetwork 5 are designed so that the

individual change in the parameters is not significant; however, the combined effect

of changes in intercept and slope parameters is expected to be significant. Table 3.6

shows the settings of the parameters for this simulation.

Table 3.7 includes the estimated powers of F and t-tests. It can be seen that
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Table 3.6: Significant parameters for the fourth simulation study. Unlisted parameters: αnull = 1, δnull =
0.02 and ρnull = 0.2).

Significant Parameters
Subnetwork Mean Influence Matrix

1 α3 = 2 ρ3 = 0.7
2 α3 = 3 –
3 – ρ3 = 0.7
4 – –
5 α3 = 1.5, δ3 = 0.04 –
6 δ3 = 0.10 –
7 δ3 = 0.06 ρ3 = 0.7

Table 3.7: Estimated powers of F-test and t-test for the fourth simulation setting. Entries in bold represent
results of potential interest.

Individual Parameters (t-test) Subnetwork
Subnetwork α1 − α2 δ1 − δ2 α1 − α3 δ1 − δ3 α2 − α3 δ2 − δ3 (F-test)

1 0.102 0.094 0.991 0.066 0.975 0.098 0.982
2 0.099 0.081 0.983 0.073 0.988 0.091 0.991
3 0.091 0.085 0.343 0.052 0.355 0.102 0.409
4 0.103 0.082 0.121 0.080 0.122 0.100 0.029
5 0.122 0.138 0.467 0.213 0.447 0.253 0.900
6 0.131 0.112 0.100 0.989 0.161 0.958 0.961
7 0.121 0.150 0.365 0.900 0.364 0.856 0.992

powers of tests are higher than the significance level of 0.05 in cases where no changes

are present. This may be attributed to the small sample size (n = 1). In such cases,

family-wise error rates could provide more conservative inference. It can also be

seen that the tests are sensitive to changes in the fixed effect parameters, as well

as associations among genes, and the (positive) change in associations magnifies the

change in the fixed effect parameters. Estimated powers for subnetwork 5 indicate

that even if the individual effects are not strongly significant (low estimated powers

of t-test for intercept and slope), their combined effect, represented by the power of

the F-test, can be significant.

3.4 Yeast Environmental Stress Response (ESR)

The ability to respond to environmental changes is important for competitive

fitness and survival of living organisms; understanding the response of cells to en-

vironmental changes can provide clues to molecular mechanisms that regulate gene
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Table 3.8: Setting of parameters in the yeast ESR experiment
Experiment Time points

Mild Heat Shock (29C to 33C) 5, 15, 30 min after 33C
Mild Heat Shock with 1M sorbitol at 29C and 33C 5, 15, 30 min after 33C
Mild Heat Shock with 1M sorbitol at 29C 5, 15, 30 min after 33C

expression in response to these changes (Causton et al., 2001). Cells respond to

environmental stress factors through a complicated process that is often observable

at the expression levels of a large class of genes. Gasch et al. (2000) studied the

response of yeast Saccharomyces cerevisiae to a wide range of environmental stress

factors, and observed the expression levels of genes in the yeast genome over differ-

ent time intervals. Experimental settings included responses to temperature shocks,

toxic chemicals and osmotic changes.

To illustrate the proposed network-based model, we selected a subset of the data

available from Gasch et al. (2000). This particular set of experiments studies the

response of yeast cells to mild heat shock at different levels of osmolarities (different

amounts of sorbitol in the environment). The gene expressions were obtained at

three different time points after the cells were resuspended at the final temperature.

Table 3.8 provides the detailed settings of the experiment.

In order to apply our proposed network-based method, we need external infor-

mation on the weighted adjacency matrix of the underlying gene network. YeastNet

is a publicly available database, which includes genes whose functional interactions

are verified by integrating a large number of available genomic and proteomic data

sets (Lee et al., 2007). The result of this integration is a network of ∼ 102, 000

interactions among ∼ 5, 900 genes, covering 95% of known yeast genes. However,

YeastNet only provides information on the topology of the network (connections be-

tween genes) and does not include the strengths of association of gene interactions.

Different methods can be used to efficiently calculate association strengths of gene
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interactions, when the topology of the network is known (see e.g. Chaudhuri et al.,

2007). The gene expression data provided in Gasch et al. (2000) includes additional

experiments independent of those studied in this section, which can be used to de-

rive association weights. Following connections to graphical models, we estimate the

association weight of each edge by the partial correlation coefficient of the corre-

sponding pair of genes (after correcting for time dependence). However, since the

additional data do not reflect the same experimental settings, it is not possible to

estimate separate influence matrices for different combinations of time and experi-

mental conditions, and hence we ignore this variability. Using additional samples,

one could calculate the influence matrix of the network for each of the 9 combinations

of experimental conditions and time points, and incorporate these matrices in the

design matrices for fixed and random effect parameters.

We are interested in determining pathways that are perturbed in response to

the combinations of heat shock and variable osmolarities, as well as those whose

expression profiles exhibit significant changes over time. To determine biologically

relevant pathways, we use information on gene functions provided in the data set

from Gasch et al. (2000), derived from the Gene Ontology (Ashburner et al., 2000).

We define genetic pathways of interest by combining genes with similar functions into

gene sets. Pathways with at least 5 genes are considered, and a total of 73 pathways

and 2784 genes (p = 2784) with known functions are included in our analysis.

Since there are no replicates available in this data set, it is not possible to include

any interaction terms in the model. Hence, we use the model in (3.16) to analyze

the variations in gene expressions over time, and in response to different levels of
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sorbitol in the environment.

EY11 = Λµ

EY1k = Λ(µ+ δk), k = 2, 3(3.16)

EYjk = Λ(µ+ αj + δk), j, k = 2, 3

Here αj and δk represent the change from the baseline condition for jth time and

kth experimental conditions and the temporal correlation among gene expressions is

taken into account via an AR(1) model.3

The design matrices Ψ and Π are 9p×5p and 9p×9p matrices and the covariance

matrix of Y is also 9p×9p. In particular, denoting by φ be the AR(1) parameter and

by σ2
ε and σ2

γ the variance components for ε and γ, the vector of variance parameters

is θ = (σ2
γ, σ

2
ε , φ). Then using the notation of Section ??, G = σ2

γI9p, Π = In ⊗ Λ,

and R = σ2
εI3 ⊗R, where

R =


I φI φ2I

φI I φI

φ2I φI I

 .
Finally, the design matrix for the fixed effect parameters is set up using (3.3)

with χ the design matrix for a single gene according to the model in (3.16), using

Ψ = χ⊗ Λ. Specifically,

Ψ′ =



Λ Λ Λ Λ Λ Λ Λ Λ Λ

Λ Λ Λ

Λ Λ Λ

Λ Λ Λ

Λ Λ Λ


3The model in (3.16) is a simplification of EYjk = Λ(αj + δk), j, k = 1, 2, 3, where to reduce the number of

parameters, the baseline case of j = k = 1 is represented with a single parameter µ.
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Figure 3.3: Network of yeast genes considered in the analysis of ESR. Red solid diamonds and empty
circles represent genes in significant and nonsignificant pathways, respectively. The plot is drawn using
cytoscape 2.6 (www.cytoscape.org).

Using the FDR procedure of Benjamini and Hochberg (1995) with q∗ = 0.05, 47

pathways show significant changes in response to the experimental conditions and/or

over time. Figures 3.3 and 3.4 depict the gene network of yeast and some of the

significant pathways, respectively. Figure 3.3 provides a general overview of the whole

network where the edges between the nodes are removed and the genes are classified

into significant and nonsignificant in order to illustrate the pattern of differential

expression throughout the network (clusters of significant and nonsignificant genes

point to the corresponding pathways). Figure 3.4 looks more closely at some of

the significant pathways with different degrees of connectivity, and both positive

and negative associations among genes. Genes that appear to be isolated are in

fact connected to the pathway through other genes that have been omitted when

displaying each subnetwork separately.

Gasch et al. (2000) reported that about 900 genes showed significant changes of

expression in response to environmental stress factors (over all experimental set-

file:www.cytoscape.org
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a) Cell Cycle

b) Secretion

c) Signaling

d) Respiration

Figure 3.4: Selected significant pathways considered in analysis of yeast ESR. Solid orange edges indicate
positive interactions and dashed blue edges represent negative associations among genes. Plots are drawn
using cytoscape 2.6.

tings). They also classified the expression levels of these genes into two dominant

patterns of expressions. The first set included about 600 genes, which were repressed

in ESR, while the rest of genes were induced in ESR. Based on this analysis, genes

repressed in ESR are involved in growth-related processes, various aspects of RNA

metabolism, nucleotide biosynthesis, secretion, as well as the genes encoding ribo-

somal proteins. On the other hand, many genes induced in ESR are considered to

offer cellular protection during stressful conditions, such as heat and osmotic shocks

which were considered in our analysis. Some of these processes include Carbohy-

drate Metabolism, Cell Wall Modifications, Protein Folding And Degradation, DNA

Damage Repair, Fatty Acid Metabolism, Metabolite Transport and Intracellular Sig-

nalling (see Gasch et al. (2000) for more details on the functions of genes repressed
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and induced in ESR).

Classification of genes by their functions is facilitated through our network-based

enrichment analysis approach, and many of the processes reported in Gasch et al.

(2000) are also found significant based on our proposed method. Moreover, exami-

nation of the estimated fixed effects allows us to study the pattern of expression of

the significant pathways over time and under different levels of sorbitol.

Tables 3.9 includes the list of significant pathways in analysis of yeast ESR data,

along with the p-values from the corresponding F-test. Table 3.10 provides a list of

pathways that show changes of expression over time, as well as pathways that have

different expression patterns in different experimental conditions (sorbitol levels). In

this table, 24 pathways show significant changes of expression over time, 29 pathways

correspond to the change in sorbitol level, and 12 pathways provide evidence for both

type of changes. This analysis reveals new features of environmental stress response,

by determining which pathways are activated in response to different changes in the

cell’s environment. Pathways whose expression levels do not change in response to

sorbitol levels, are only activated in response to heat shock, an obvious example

of such pathways being the Heat Shock Response. On the other hand, pathways

that only demonstrate significant changes in response to sorbitol level are activated

when the osmolarity level of the cell’s environment is perturbed. Pathways that

demonstrate changes in response to both types of changes include both induced and

repressed pathways under ESR. Secretion, DNA Replication, rRNA Processing and

Amino Acid Metabolism are examples of pathways that are repressed in the ESR,

while different carbohydrate and fatty acid metabolism pathways as well as Oxidative

Stress Response are induced under ESR.

Figure 3.5 provides an alternative view of the changes of expressions in response
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to environmental stress. In this plot, the average standardized expression levels of

pathways, based on the value of the test statistics for each of the significant pathways,

is displayed. The pathways are divided into induced and suppressed, based on their

value of test statistic at time t = 5. As observed by Gasch et al. (2000), it can be seen

that the change in the expression levels in response to environmental stress factors

is transient. The average expression levels of experiments that include change in

sorbitol level (k = 2, 3) are similar. However, these levels are different from the first

experimental setting, where no sorbitol is present. Repressed pathways demonstrate

a slight delay in the decline in transcription level. Gasch et al. (2000) characterized

this as a feature of the second group of genes repressed in the ESR. Figure 3.5

also reveals that presence of sorbitol further reduces the expression level of genes.

This is true for both induced and repressed pathways. It is important to note that,

should the experiment included additional samples, more interesting analyses about

interactions among heat shock and change of osmolarity would also be possible.

Figure 3.5: Average expression profile of significant pathways. Red and blue lines represent induced and
suppressed pathways, respectively (positive and negative values at the first observation time), and solid,
dashed and dotted lines indicate the first, second and third experimental conditions.

3.5 Conclusion

In this chapter, we extended the modeling framework of Chapter II to incorporate

available information on general networks into the analysis of gene sets in complex
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Table 3.9: Significant pathways in the analysis of yeast environmental stress response (ESR) data.
Pathway Name P-Value (F-test) Pathway Size

1 PROTEIN SYNTHESIS 0 286
2 TRANSPORT 0 143
3 SECRETION 0 126
4 CELL CYCLE 0 97
5 CYTOSKELETON 0 83
6 LIPID METABOLISM 0 63
7 AMINO ACID BIOSYNTHESIS 0 60
8 DNA REPAIR 0 58
9 DNA REPLICATION 0 57
10 MEIOSIS 0 52
11 PROTEIN GLYCOSYLATION 0 51
12 PROTEIN FOLDING 0 40
13 RRNA PROCESSING 0 38
14 VACUOLAR PROTEIN TARGETING 0 38
15 GLYCOLYSIS 0 36
16 MATING 0 34
17 SUGAR METABOLISM 0 27
18 SPORULATION 0 22
19 AMINO ACID METABOLISM 0 21
20 AMINO ACID BIOSYNTHESIS 0 19
21 PYRIMIDINE BIOSYNTHESIS 0 12
22 STRESS RESPONSE 0 12
23 METHIONINE BIOSYNTHESIS 0 11
24 SALT TOLERANCE 0 8
25 GLYCEROL METABOLISM 0 6
26 HEAT SHOCK RESPONSE 0 6
27 TREHALOSE METABOLISM 0 6
28 AMINO ACID METABOLISM 0 5
29 B-VITAMIN BIOSYNTHESIS 0 5
30 HIGH OSMOLARITY 0 5
31 RESPIRATION 0.0001 30
32 PHOSPHOLIPID METABOLISM 0.0001 22
33 SPHINGOLIPID METABOLISM 0.0001 9
34 CHROMATIN STRUCTURE 0.0003 47
35 OXIDATIVE STRESS RESPONSE 0.0003 14
36 PURINE BIOSYNTHESIS 0.0006 18
37 CELL ORGANIZATION 0.0016 76
38 MRNA EXPORT 0.0028 9
39 RNA PROCESSING 0.0035 9
40 TRNA PROCESSING 0.0042 35
41 PYRIMIDINE METABOLISM 0.005 8
42 SIGNALING 0.0075 58
43 DRUG RESISTANCE 0.0078 11
44 TOXIN RESISTANCE 0.0122 26
45 ENDOCYTOSIS 0.0152 18
46 ATP SYNTHESIS 0.0163 20
47 PROTEIN TARGETING 0.017 66

experiments, including multiple factors and time course data. The framework utilizes

mixed linear models and can handle changes in the network structure. Further, it

can also be adapted to handle non-Gaussian data, using the framework of generalized

mixed linear models (GLMM).

One of the challenges in analyzing gene expression data using the proposed model

is the computational burden of the estimation process. Standard packages for solving

mixed linear models cannot handle problems with large vectors/matrices of observa-

tions and parameters, without determining a specific independence structure. In this
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Table 3.10: Analysis of ESR data: Pathways with significant changes over time and in response to sorbitol
Change over time Change in response to sorbitol

Pathway Pathway
Pathway Name Size Pathway Name Size

1 PROTEIN SYNTHESIS 286 1 TRANSPORT 143
2 TRANSPORT 143 2 SECRETION 126
3 SECRETION 126 3 CELL CYCLE 97
4 LIPID METABOLISM 63 4 CELL ORGANIZATION 76
5 DNA REPAIR 58 5 LIPID METABOLISM 63
6 DNA REPLICATION 57 6 AMINO ACID BIOSYNTHESIS 60
7 RRNA PROCESSING 38 7 DNA REPLICATION 57
8 GLYCOLYSIS 36 8 MEIOSIS 52
9 MATING 34 9 PROTEIN GLYCOSYLATION 51
10 SUGAR METABOLISM 27 10 PROTEIN FOLDING 40
11 PHOSPHOLIPID METABOLISM 22 11 RRNA PROCESSING 38
12 AMINO ACID METABOLISM 21 12 GLYCOLYSIS 36
13 ATP SYNTHESIS 20 13 TRNA PROCESSING 35
14 ENDOCYTOSIS 18 14 RESPIRATION 30
15 PURINE BIOSYNTHESIS 18 15 SUGAR METABOLISM 27
16 OXIDATIVE STRESS RESPONSE 14 16 TOXIN RESISTANCE 26
17 STRESS RESPONSE 12 17 PHOSPHOLIPID METABOLISM 22
18 METHIONINE BIOSYNTHESIS 11 18 SPORULATION 22
19 PYRIMIDINE METABOLISM 8 19 AMINO ACID BIOSYNTHESIS 19
20 SALT TOLERANCE 8 20 PURINE BIOSYNTHESIS 18
21 GLYCEROL METABOLISM 6 21 OXIDATIVE STRESS RESPONSE 14
22 HEAT SHOCK RESPONSE 6 22 DRUG RESISTANCE 11
23 TREHALOSE METABOLISM 6 23 MRNA EXPORT 9
24 AMINO ACID METABOLISM 5 24 RNA PROCESSING 9

25 SPHINGOLIPID METABOLISM 9
26 GLYCEROL METABOLISM 6
27 TREHALOSE METABOLISM 6
28 AMINO ACID METABOLISM 5
29 HIGH OSMOLARITY 5

chapter, we proposed an iterative algorithm based on block-relaxation for estimating

the parameters of the model. This algorithm can be extended to further partition

the parameter space and to also partition the set of observations over subnetworks

(estimation over subnetworks).

The proposed methodology provides a flexible framework for studying the changes

in expressions of sets of genes and allows systematic testing of such changes as the

experimental conditions vary. It is important to note that this model requires ex-

ternal information about the underlying gene network, as well as information on the

strength of association between genes. An increasing number of publicly available

data sets offer information about the structure of the gene network (the 0-1 adjacency

matrix) with different degrees of reliability. However, less information is available

about the strength and direction of these connections. An attractive feature of the

proposed network-based gene set analysis framework is its robustness to small noise
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in the network information. However, bias in the network information can result in

both type I and II errors. The problem of estimation of (directed and undirected)

gene networks is an important problem in systems biology, and of independent in-

terest. It is however important to note that bias may result from using the same set

of gene expression data in order to both estimate the underlying network, and test

the significance of pathways.

Availability

Matlab codes for the proposed network-based gene set analysis (NetGSA) in the

case of two-class inference problem are available at:

http://www.stat.lsa.umich.edu/∼shojaie/.

An R-package (netGSA) for the general problem is currently being developed and

will be made available through R-CRAN upon completion.

http://www.stat.lsa.umich.edu/~shojaie/


CHAPTER IV

Penalized Likelihood Methods for Estimation of Directed
Acyclic Graphs

4.1 Introduction

Graphical models are efficient tools for the study of statistical models through a

compact representation of the joint probability distribution of the underlying random

variables. The nodes of the graph represent the random variables, while the edges

capture the relationships among them. Both directed and undirected edges are used

to represent interactions among random variables. However, there is a conceptual

difference between these two types of graphs: while undirected graphs are used to

represent conditional independence, directed graphs often represent causal relation-

ships (see Pearl, 2000). Directed acyclic graphs, also known as Bayesian networks,

are a special class of directed graphs, where all the edges of the graph are directed

and the graph has no cycles. Such graphs are the main focus of this chapter and

unless otherwise specified, any reference to directed graphs in the sequel refers to

directed acyclic graphs.

Directed graphs are used in graphical models and belief networks and have been

the focus of research in the computer science literature (Pearl, 2000). Important

applications involving directed graphs also arise in the study of biological systems,

including cell signalling pathways and gene regulatory networks (Markowetz and

76
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Spang, 2007).

Estimation of directed graphs is an NP-hard problem, and estimation of the direc-

tion of edges may not be possible due to observational equivalence (see Section 4.2).

Most of the earlier estimation methods include greedy algorithms that search through

the space of possible graphs. A number of methods are available for estimating di-

rected graphs with small to moderate number of nodes. The max-min hill climbing

algorithm (Tsamardinos et al., 2006), and the PC-algorithm (Spirtes et al., 2000) are

two such examples. However, the space of directed graphs grows super-exponentially

with the number of nodes (Robinson, 1977), and estimation using search-based meth-

ods, especially in high dimensional settings, becomes impractical. Bayesian methods

(e.g Heckerman et al., 1995) are also computationally very intensive and therefore

not particularly appropriate for high dimensional settings. Recently, Kalisch and

Bühlmann (2007) proposed an implementation of the PC-algorithm with polynomial

complexity in high dimensional sparse settings. When the variables inherit a natu-

ral ordering, estimation of directed graphs is reduced to estimating their structure

or skeleton (see Section 4.3). Applications with a natural ordering of variables in-

clude estimation of causal relationships from temporal observations, estimation of

transcriptional regulatory networks from gene expression data, and settings where

additional experimental data can determine the ordering of variables. Examples of

such applications are given in Section 4.6.

For Gaussian random variables, conditional independence relations among ran-

dom variables are represented using an undirected graph, known as the conditional

independence graph. The edges of this graph represent conditional dependencies

among random variables, and correspond to non-zero elements of the inverse co-

variance matrix, also known as the precision matrix. Different penalization methods
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have been recently proposed to obtain sparse estimates of the precision matrix. Mein-

shausen and Bühlmann (2006) considered an approximation to the problem of sparse

inverse covariance estimation using the lasso penalty. They showed under a set of

assumptions, that their proposed method correctly determines the neighborhood of

each node. Banerjee et al. (2008) and Friedman et al. (2008b) explored different

aspects of the problem of estimating the precision matrix using the lasso penalty,

while Yuan and Lin (2007) considered other choices for the penalty. Rothman et al.

(2008) proved consistency in Frobenius norm, as well as in matrix norm, of the `1-

regularized estimate of the precision matrix when p� n, while Lam and Fan (2009)

extended their result and considered estimation of matrices related to the precision

matrix, including the Cholesky factor of the inverse covariance matrix, using general

penalties. Penalization of the Cholesky factor of the inverse covariance matrix has

been also considered by Huang et al. (2006) and Levina et al. (2008), who used the

lasso penalty in order to obtain a sparse estimate of the inverse covariance matrix.

This method is based on the regression interpretation of the Cholesky factorization

model and therefore requires the variables to be ordered a priori.

In this chapter, I consider the problem of estimating the skeleton of directed

acyclic graphs, where the variables exhibit a natural ordering. The known ordering

of variables is exploited to reformulate the likelihood as a function of the adjacency

matrix of the graph, which results in efficient algorithm for estimation of structure

of directed graphs using penalized likelihood methods. Although the results of this

chapter are presented for the case of Gaussian observations, the proposed method

can also be applied to non-Gaussian observations, provided the underlying causal

mechanisms in the network are linear (see Section 4.2.2).
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4.2 Representation of Directed Acyclic Graphs

4.2.1 Background and notation

Consider a graph G = (V,E), where V corresponds to the set of nodes with p

elements and E ⊂ V × V to the edge set. The nodes of the graph represent random

variables X1, . . . , Xp and the edges capture the associations among them. An edge

is called directed if (j, i) /∈ E whenever (i, j) ∈ E, and undirected when (i, j) ∈ E if

and only if (j, i) ∈ E. We denote by pai the set of parents of node i and for j ∈ pai,

we denote j → i. The skeleton of a directed graph is the undirected graph that is

obtained by replacing directed edges in E with undirected ones. Finally, throughout

this chapter, we represent E using the adjacency matrix A of the graph; i.e. a p× p

matrix whose (j, i)th entry is non-zero if there is an edge between nodes j and i.

The estimation of directed graphs is a challenging problem due to the so-called

observational equivalence with respect to the same probability distribution. More

specifically, regardless of the sample size, it may not be possible to infer the direction

of causation among random variables from observational data. As an illustration,

consider the simple graph in the right panel of Fig. 4.1. Reversing the direction of

all edges of the graph results in a new graph, which is isomorphic to the original

graph, and hence not distinguishable from observations alone.

Figure 4.1: Simple directed acyclic graphs. Left: Illustration of observational equivalence in directed
graphs, Right: A simple directed graph

The second challenge in estimating directed graphs is that conditional indepen-

dence among random variables may not reveal the skeleton. The notion of conditional

independence in directed graphs is represented using the concept of d-separation
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(Pearl, 2000), or equivalently, the moral graph, obtained by removing the directions

of the edges and marrying the parents of each node (Lauritzen, 1996). Therefore, es-

timation of the conditional independence structure reveals the structure of the moral

graph, which includes additional edges between parents of each node. For instance,

X2 and X3 are connected in the moral graph of the simple graph in the left panel of

Fig. 4.1.

4.2.2 The latent variable model

The causal effect of random variables in a directed acyclic graph are often ex-

plained using structural equation models (Pearl, 2000). In particular,

(4.1) Xi = fi(pai, Zi), i = 1, . . . , p.

where the random variables Zi are the latent variables representing the unexplained

variation in each node. To model the association among the nodes, we consider a

simplification of (4.1) with fi being linear. More specifically, let ρij represent the

effect of node j on i for j ∈ pai, then

(4.2) Xi =
∑
j∈pai

ρijXj + Zi, i = 1, . . . , p.

In the special case where the random variables are Gaussian, equations (4.1) and

(4.2) are equivalent, in the sense that ρij are the coefficients of the linear regression

model of Xi on Xj, for j ∈ pai. It is known in the normal case that ρij = 0, if

j /∈ pai.

Consider the simple graph in the right panel of Fig. 4.1; denoting the influence

matrix of the graph by Λ, (4.2) can be written in compact form as X = ΛZ, where
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for the simple example above, we have

Λ =


1 0 0

ρ12 1 0

ρ12ρ23 ρ23 1

 .

Let the latent variables Zi be independent with mean µi and variance σ2
i . Then,

E(X) = Λµ and Σ = Var(X) = ΛDΛT, where D = diag (σ2
i ) and ΛT denotes the

transpose of the matrix Λ.

In Chapter II, we established the relationship between the influence matrix Λ,

and the adjacency matrix A of the graph, and showed that in the case of directed

acyclic graphs Λ = (I −A)−1. In Section 4.3, we exploit this relationship to directly

formulate the problem of estimating the skeleton of the graph.

Remark IV.1. The result of Lemma II.3 and the fact that Σ = ΛDΛT imply that for

any directed acyclic graph, ifDii > 0 for all i, then Σ is full rank. More specifically, let

φj(Σ) denote the jth eigenvalue of matrix Σ. Then, φmin(Σ) > 0, or φmax(Σ−1) <∞.

Similarly, since Σ−1 = Λ−
T
D−1Λ−1, full rankness of Λ implies that φmin(Σ−1) > 0, or

equivalently φmax(Σ) <∞. This result also applies to all subgraphs of a graph.

The properties of the proposed latent variable model established in Lemma II.3

are independent of the choice of probability distribution. In fact, since the latent

variables Zi in (4.2) are assumed independent, given the entries of the adjacency

matrix, the distribution of each random variable Xi in the graph only depends on

the values of pai. Therefore, regardless of the choice of the probability distribution,

the joint distribution of the random variables is compatible with G (Pearl, 2000,

p. 16). Therefore, based on the equivalence of conditional independence and d-

separation, if the joint probability distribution of random variables on a directed

graph is generated according to the latent variable model (4.2), zeros of the adjacency
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matrix, A, determine conditional independence relations among random variables.

As mentioned before, under the normality assumption, the latent variable model is

equivalent to the general structural equation model. Although we focus on Gaussian

random variables in the remainder of this chapter, the estimation procedure proposed

in Section 4.3 can be applied to a variety of other distributions, if one is willing to

assume the linear structure in (4.2).

4.3 Penalized Likelihood Estimation of Directed Graphs

4.3.1 Problem formulation

Consider the latent variable model of Section 4.2.2 and denote by X the n × p

data matrix. We assume, without loss of generality, that the Xi’s are centered and

scaled, so that µi = 0 and σ2
i = 1, i = 1, . . . , p.

Denote by Ω ≡ Σ−1 the precision matrix of a p-vector of Gaussian random vari-

ables and consider a general penalty function J(Ω). The penalized estimate of Ω is

then given by

(4.3) Ω̂ = argmin
Ω�0

{− logdet (Ω) + trace (ΩS) + λJ(Ω)},

where S = n−1X TX denotes the empirical covariance matrix and λ is the tuning

parameter controlling the size of the penalty. Applications in biological and social

networks often involve sparse networks. It is therefore desirable to find a sparse

solution for (4.3). This becomes more important in the small n, large p setting,

where the unpenalized solution is unreliable. The lasso penalty and the adaptive lasso

penalty (Zou, 2006) are singular at zero and therefore result in sparse solutions. We

consider these two penalties in order to find a sparse estimate of the adjacency matrix.

However, the optimization algorithm proposed here can also be used with other

choices of penalty function, if the penalty is applied to each individual component
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of the adjacency matrix.

Using the latent variable model of Section 4.2.2, and the relationship between

the covariance matrix and the adjacency matrix of directed graphs established in

Lemma II.1, the problem of estimating the adjacency matrix of the graph can be

directly formulated as an optimization problem based on A. Specifically, if the

underlying graph is directed, and the ordering of the variables is known, then A is a

lower triangular matrix with zeros on the diagonal. Let A = {A : Aij = 0, j ≥ i}.

Then using the facts that det(A) = 1 and σ2
i = 1, A can be estimated as the solution

of the following optimization problem

(4.4) Â = argmin
A∈A

[trace {(I − A)T(I − A)S}+ λJ(A)].

In this chapter, we consider the general weighted lasso problem, where

(4.5) J(A) =
∑

i,j=1:p,j<i

wij|Aij|.

The lasso and adaptive lasso problems are special cases of this general penalty. In

the case of the lasso, wij = 1. In the original proposal of Zou (2006), the weights for

the adaptive lasso are obtained by setting wij = |Ãij|−γ, for some initial estimate of

the adjacency matrix Ã and some power γ. We consider the following modification

of the original weights

(4.6) wij = 1 ∨ |Ãij|−γ.

where the initial estimates Ã are obtained from the regular lasso estimates, and x∨y

represents the maximum of x and y. Aside from the truncation of weights from

below, which is implemented to facilitate the study of asymptotic properties, the

main difference between the adaptive lasso penalty using (4.6) and the proposal of

Zou (2006) is the use of the lasso estimates to construct the weights. In Sections
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4.4 and 4.5, we show that this modification, which could also be considered a two-

stage or hybrid lasso penalty, results in improvements in terms of both asymptotic

properties, as well as numerical performance, over the regular lasso penalty.

The objective function for both the lasso and adaptive lasso problems is convex.

However, since the `1 penalty is non-differentiable, these problems can be reformu-

lated using matrices A+ = max(A, 0) and A− = −min(A, 0). To that end, let W be

the p× p matrix of weights for the adaptive lasso, or the matrix of ones for the lasso

estimation problem. Problem (4.4) can then be formulated as:

(4.7)

min
A+,A−�0

trace {S(I − A+ + A−)T(I − A+ + A−) + λ(A+ + A−)W + ∆(A+ + A−)1u+},

where � 0 is interpreted componentwise, ∆ is a large positive number and 1u+ is the

indicator matrix for upper triangular elements of a p× p matrix, including the diag-

onal elements. The last term of the objective function, i.e. trace {∆(A+ + A−)1u+},

prevents the upper triangular elements of the matrices A+ and A− to be nonzero.

Problem (4.7) corresponds to a quadratic optimization problem with non-negativity

constraints and can be solved using standard interior point algorithms. However,

such algorithms do not scale well with dimension and are only applicable if p ranges

in the hundreds. In Section 4.3.2, we present an alternative formulation of the prob-

lem, which leads to considerably more efficient algorithms.

4.3.2 Optimization algorithm

Consider again the problem of estimating the adjacency matrix of directed graphs

with the general weighted lasso penalty. Let ai be the ith row of matrix A, and denote

by l- the set of indices up to l− 1, i.e. l- = {j : j = 1, . . . , l− 1}. Then (4.4) can be
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written as

(4.8) Â = argmin
A∈A

{
p∑
i=1

(aiSai
T − 2aiSi + λ|ai|Wi)

}
.

It can be seen that the objective function in (4.8) is separable and therefore it

suffices to solve the optimization problem over each row of matrix A. Then, taking

advantage of the lower triangular structure of A and noting that A11 = 0, solving

(4.8) is equivalent to solving the following p− 1 optimization problems

(4.9) Âi,i- = argmin
θ∈Ri−1

{
θTSi-,i-θ − 2Si,i-θ + λ

i−1∑
j=1

|θj|wij

}
, i = 2, . . . , p.

In addition, Si-,i- = n−1(Xi-)
TXi- and Si,i- = n−1(Xi)TXi- , and hence the problem in

(4.9) can be reformulated as the following `1-regularized least squares problems

(4.10) Âi,i- = argmin
θ∈Ri−1

{
n−1‖Xi −Xi-θ‖

2
2 + λ

i−1∑
j=1

|θj|wij

}
, i = 2, . . . , p.

The formulation in (4.10) indicates that the ith row of matrix A includes the co-

efficient of projection of Xi on Xj, j = 1, . . . , i − 1, which is in agreement with

the discussion in Section 4.2.2. It also reveals a connection between estimation of

the underlying graphs and the neighborhood selection approach of Meinshausen and

Bühlmann (2006): when the underlying graph is directed, the approximate solution

of the neighborhood selection problem is exact, if the regression model is fitted on

the set of parents of each node instead of all other nodes in the graph.

Using (4.10), the problem of estimating directed graphs can be solved very effi-

ciently. In fact, it suffices to solve p−1 lasso problems for estimation of least squares

Algorithm 2 Penalized likelihood estimation of directed graphs

1. Given the ordering O, order the columns of observation matrix X in increasing order.
2. For i = 2, 3, . . . , p,

2.1. Denote y = Xi, X = Xi- . Given the weight matrix W , let w = Wi,i- , and solve

Âi,i- = argmin
{
n−1‖y −Xθ‖22 + λi

∑i−1
j=1 |θj |wj

}
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coefficients, with dimensions ranging from 1 to p−1. To solve these problems, we use

the efficient pathwise coordinate optimization algorithm of Friedman et al. (2007),

implemented in the R-package glmnet. The proposed procedure is summarized in

Algorithm 2.

4.3.3 Analysis of computational complexity

As mentioned in the introduction, the space of all possible directed graphs is

super-exponential in the number of nodes and hence it is not surprising that the

PC-algorithm, without any restriction on the space, has exponential complexity.

Kalisch and Bühlmann (2007) recently proposed an efficient implementation of the

PC-algorithm for sparse graphs; its complexity when the maximal neighborhood size

q is small, is bounded with high probability by O(pq). Although this is a considerable

improvement over the original algorithm, in many applications it can become fairly

expensive. For instance, gene regulatory networks and signaling pathways include

many hub genes, which lead to large values for q.

The reformulation of the directed graph estimation problem in (4.10) requires

solving p − 1 lasso regression problems. The cost of solving a lasso problem com-

prised of k covariates and n observations using the pathwise coordinate optimization

algorithm is O(nk); hence, the total cost of estimating the adjacency matrix of the

graph is O(np2), which is the same as the cost of calculating the empirical covari-

ance matrix S. Moreover, the formulation in (4.10) includes a set of non-overlapping

sub-problems. Therefore, for problems with very large number of nodes and/or ob-

servations, the performance of the algorithm can be further improved by parallelizing

the estimation of these sub-problems. The adaptive lasso version of the problem is

similarly solved using the modification of the regular lasso problem proposed in Zou

(2006), which results in the same computational cost as the regular lasso problem.
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Figure 4.2: Comparison of CPU time for estimation of DAGs with different p and n. Results for PC-
algorithm, lasso and adaptive lasso are presented.

To evaluate the performance of these algorithms, we compared the average CPU

time, over 10 simulation runs, for estimation of directed graphs with different number

of nodes, p = 100, 1000, and different sample sizes, n = 100, 1000. The computational

time for the PC-algorithm increases with larger values of the average neighborhood

size and the significance level α. Therefore, to control the computational complex-

ity of the PC-algorithm, these parameters are set to 5 and 0 · 01, respectively. In

addition, in order to compare equivalent quantities, we only consider the CPU time

that the PC-algorithm requires for estimation of the graph skeleton. The results of

this simulation study are given in Figure 4.2. It can be seen that, while for small

to moderate values of p, i.e. p = 100, the computation time for the PC-algorithm

is comparable to the time for the penalized likelihood algorithm, in a graph with

p = 1000 and n = 1000, the average CPU time for the PC-algorithm could be up to

two order of magnitudes larger than the equivalent time for Algorithm 2.

4.4 Asymptotic Properties

4.4.1 Preliminaries

Next, we establish theoretical properties of the lasso and adaptive lasso estimates

of the adjacency matrix of directed graphs. Asymptotic properties of the lasso-type
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estimates with fixed design matrices have been studied by a number of researchers

(Knight and Fu, 2000; Zou, 2006; Huang et al., 2008), while random design ma-

trices have been considered by Meinshausen and Bühlmann (2006). On the other

hand, Rothman et al. (2008) and Lam and Fan (2009) among others have studied

asymptotic properties of estimates of covariance and precision matrices.

As discussed in Section 4.3.2, the problem of estimating the adjacency matrix of

a directed graph is equivalent to solving p−1 non-overlapping penalized least square

problems described in (4.10). In order to study the asymptotic properties of the

proposed estimators, we focus on the asymptotic consistency of network estimation,

i.e. the probability of correctly estimating the network structure, in terms of type

I and type II errors. We allow the total number of nodes in the graph to grow as

an arbitrary polynomial function of the sample size, while assuming that the true

underlying network is sparse.

4.4.2 Assumptions

Let X = (X1, . . . , Xp) be a collection of p zero-mean Gaussian random variables

with covariance matrix Σ, and let X and S be defined as in Section 4.3.1. To simplify

the notation, denote by θi = Ai,i- the entries of the ith row of A to the left of the

diagonal. Further, let θi,I be the estimate for the ith row, with values outside the

set of indices I set to zero; i.e., θi,I ≡ Ai,i- and Ai,j = 0, j /∈ I.

The following assumptions are used in establishing the consistency of network

estimation:

(A-0) For some a > 0, p = p(n) = O(na) as n→∞, and there exists a 0 ≤ b < 1 such

that maxi∈V card (pai) = O(nb) as n→∞. 1

1When there are no ambiguities, we suppress the dependency of p = p(n) and the set of nodes in graph (V = V (n))
on n.
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(A-1) There exists ν > 0 such that for all n ∈ N and all i ∈ V , Var (Xi | Xi-) ≥ ν.

(A-2) There exists δ > 0 and some ξ > b (with b defined above) such that for all i ∈ V

and for every j ∈ pai, |πij| ≥ δn−(1−ξ)/2, where πij is the partial correlation

between Xi and Xj after removing the effect of the remaining variables.

(A-3) There exists Ψ < ∞ such that for all n ∈ N and every i ∈ V and j ∈ pai,

‖θj,pai‖2 ≤ Ψ.

(A-4) There exists κ < 1 such that for all i ∈ V and j /∈ pai,
∣∣∣∑k∈pai

sign(θ
i,pai
k )θ

j,pai
k

∣∣∣ <
κ.

Assumption (A-0) determines the permissible rates of increase in the number of

variables and the neighborhood size, as a function of n, (A-1) prevents singular or

near singular covariance matrices, and (A-2) guarantees that true partial correlations

are bounded away from 0.

Assumption (A-3) limits the magnitude of the shared ancestral effect between

each node in the network and any of its parents. This is less restrictive than the

equivalent assumption for the neighborhood selection problem, where the effects

over all neighboring nodes are assumed to be bounded. In fact, in the case of gene

regulatory networks, empirical data indicate that the average number of upstream-

regulators per gene is less than 2 (Leclerc, 2008). Thus, the number of parents of

each node is small, while each hub node can affect many downstream nodes.

Assumption (A-4) is referred to as neighborhood stability and is equivalent to the

irrepresentability assumption of Huang et al. (2008). It has been shown that the

lasso estimates are not in general variable selection consistent if this assumption is

violated. Huang et al. (2008) considered the adaptive lasso estimates with general

initial weights and proved their variable selection consistency under a weaker form
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of irrepresentability assumption, referred to as adaptive irrepresentability. We will

show that when the initial weights for the adaptive lasso are derived from the regular

lasso estimates as in (4.6), the assumption of neighborhood stability, as well as the

less stringent assumption (A-3) are not required for establishing variable selection

consistency of the adaptive lasso. This relaxation in assumptions required for variable

selection consistency, is a result of the consistency of the regular lasso estimates, and

the special structure of directed graphs. However, similar results can be obtained

for the adaptive lasso estimates of the precision matrix, as well as regression models

with fixed and random design matrices, under additional mild assumptions.

4.4.3 Asymptotic consistency of directed graph estimation

We start with a technical lemma that is a consequence of the Karush−Kuhn−Tucker

conditions for the general weighted lasso problem and is used in the proof of Theo-

rems IV.5 and IV.7.

Lemma IV.2. Let θ̂i,I be the general weighted lasso estimate of θi,I, i.e.

(4.11) θ̂i,I = argmin
θ:θk=0,k /∈I

{
n−1‖Xi −X θ‖2

2 + λ

p∑
k=1

|θk|wik

}
.

Define

Gj(θ) = −2n−1X T

j (Xi −X θ),

and let wi be the vector of initial weights in the adaptive lasso estimation problem.

Then a vector θ̂ with θ̂k = 0, ∀k /∈ I is a solution of (4.11) iff ∀j ∈ I, Gj(θ) =

− sign (θ̂j)wijλ if θ̂j 6= 0 and |Gj(θ)| ≤ wijλ if θ̂j = 0. Moreover, if the solution is

not unique and |Gj(θ)| < wijλ for some solution θ̂, then θ̂j = 0 for all solutions of

(4.11).

Proof. The proof of the lemma is identical to the proof of Lemma (A.1) in Mein-

shausen and Bühlmann (2006), except for inclusion of general weights wij, and is
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therefore omitted.

Our first result studies the variable selection consistency of the lasso estimate. In

this theorem, (i) corresponds to sign consistency, (ii) and (iii) establish control of

type I type II errors, and (iv) addresses the consistency of network estimation. We

denote by Ê the estimate of the edge set of the graph, and by x ∼ y the asymptotic

equivalence between x and y.

Theorem IV.3. Suppose that (A-0)-(A-4) hold and λ ∼ dn−(1−ζ)/2 for some b <

ζ < ξ and d > 0. Then for the lasso estimate there exist constants c(i), . . . , c(iv) > 0

such that for all i ∈ V , as n→∞

(i) P
{

sign (θ̂
i,pai
j ) = sign (θ

i,pai
j ) for all j ∈ pai

}
= 1−O

{
exp (−c(i)n

ζ)
}

,

(ii) P (p̂ai ⊆ pai) = 1−O
{

exp (−c(ii)n
ζ)
}

,

(iii) P (pai ⊆ p̂ai) = 1−O
{

exp (−c(iii)n
ζ)
}

, and

(iv) P(Ê = E) = 1−O
{

exp (−c(iv)n
ζ)
}

.

Proof. The proof of this theorem follows from arguments similar to those presented

in Meinshausen and Bühlmann (2006) with minor modifications and replacing con-

ditional independence for undirected graphs with d-separation for directed graphs,

and is hence omitted.

The next result establishes similar properties for the adaptive lasso estimates,

without the assumptions of neighborhood stability. The proof of Theorem IV.5

makes use of the consistency of sparse estimates of the Cholesky factor of covariance

matrices, established in Theorem 9 of Lam and Fan (2009). For completeness, we

restate a simplified version of the theorem for our lasso problem, for which σi =

1, i = 1, . . . p, and the eigenvalues of the covariance matrix are bounded (see Remark
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IV.1). Throughout this section, we denote by s the total number of nonzero elements

of the true adjacency matrix A.

Theorem IV.4 (Lam and Fan 2009). If n−1(s+1) log p = o(1) and λ = O
{

(log p/n)1/2
}

,

then ‖Â− A‖F = Op

{
(n−1s log p)

1/2
}

.

It can be seen from Theorem IV.4 that the lasso estimates are consistent as long

as n−1(s + 1) log p = o(1). To take advantage of this result, we replace (A-0) with

the following assumption

(A-0′) For some a > 0, p = p(n) = O(na) as n→∞. Also, maxi∈V card (pai) = O(nb)

as n→∞, where sn2b−1 log n = o(1) as n→∞.

Assumption (A-0′) further restricts the number of parents of each node and also

enforces a restriction on the total number of nonzero elements of the adjacency

matrix. Condition sn2b−1 log n = o(1), implies that b < 1/2. Therefore, although

the consistency of the adaptive lasso in Theorem IV.5 is established without making

any further assumptions on the structure of the network, it is achieved at the price

of requiring higher degree of sparsity in the network. We now state the main result

regarding variable selection consistency of adaptive lasso. The theorem only requires

assumptions (A-0′), (A-1) and (A-2), and assumptions (A-3) and (A-4) are no longer

required.

Theorem IV.5. Consider the adaptive lasso estimation problem, where the initial

weights are calculated using regular the lasso estimates of the adjacency matrix of

the graph in (4.10). Suppose (A-0′), (A-1) and (A-2) hold and λ ∼ dn−(1−ζ)/2 for

some b < ζ < ξ and d > 0. Also suppose that the initial lasso estimates are found

using a penalty parameter λ0 that satisfies λ0 = O
{

(log p/n)1/2
}

. Then, there exist

constants c(i), . . . , c(iv) > 0 such that for all i ∈ V , as n → ∞, (i)-(iv) in Theorem
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IV.3 hold.

Proof. To prove (i), note that by Bonferroni’s inequality, and the fact that card (pai) =

o(n) as n → ∞, it suffices to show that there exists some c(i) > 0 such that for all

i ∈ V and for every j ∈ pai, P
{

sign (θ̂
i,pai
j ) = sign (θ

i,pai
j )

}
= 1−O

{
exp (−c(i)n

ζ)
}

as n→∞.

Let θ̂i,pai(β) be the estimate of θi,pai in (4.11), with the jth component fixed at a

constant value β,

(4.12) θ̂i,pai(β) = argmin
θ∈Θβ

{
n−1‖Xi −X θ‖2

2 + λ

p∑
k=1

|θk|wk

}
,

where Θβ ≡ {θ ∈ Rp : θj = β, θk = 0, k /∈ pai}. Note that for β = θ̂
i,pai
j , θ̂i,pai(β)

is identical to θ̂i,pai . Thus, if sign (θ̂
i,pai
j ) 6= sign (θij), there would exist some β with

sign (β) sign (θij) ≤ 0 such that θ̂i,pai(β) is a solution to (4.12). Since θij 6= 0,∀j ∈ pai,

it suffices to show that for all β with sign (β) sign (θij) < 0, with high probability,

θ̂i,pai(β) can not be a solution to (4.12).

Without loss of generality, we consider the case where θij > 0; θij < 0 can be shown

similarly. Then if β ≤ 0, from Lemma IV.2, θ̂i,pai(β) can be a solution to (4.12) only

if Gj(θ̂
i(β)) ≥ −λwij. Hence, it suffices to show that for some c(i) > 0 and all j ∈ pai

with θij > 0,

(4.13) P
[
sup
β≤0
{Gj

(
θ̂i(β)

)
< −λwij}

]
= 1−O

{
exp (−c(i)n

ζ)
}

as n→∞.

Define, Ri(β) = Xi −X θ̂i(β). Then for every j ∈ pai we can write

(4.14) Xj =
∑

k∈pai\{j}

θ
j,pai\{j}
k Xk + Zj,

where Zj is independent of {Xk; k ∈ pai\{j}}. Then by (4.14),

Gj

(
θ̂i(β)

)
= −2n−1ZT

jRi(β)−
∑

k∈pai\{j}

θj,pai\{j}2n−1XkTRi(β).
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By Lemma IV.2, it follows that for all k ∈ pai\{j}, |Gk

(
θ̂i(β)

)
| = |2n−1XkTRi(β)| ≤

λwik, and hence,

(4.15) Gj

(
θ̂i(β)

)
≤ −2n−1ZT

jRi(β) + λ
∑

k∈pai\{j}

|θj,pai\{j}|wik.

Using the fact that |θj,pai\{j}| ≤ 1, it suffices to show that

(4.16)

P

sup
β≤0
{−2n−1ZT

jRi(β)} < −λ
∑
k∈pai

wik

 = 1−O
{

exp (−c(i)n
ζ)
}

as n→∞,

or equivalently, P
[
infβ≤0 {2n−1ZT

jRi(β)} < λ
∑

k∈pai
wik

]
= O

{
exp (−c(i)n

ζ)
}

as

n→∞.

It is shown in Lemma A.2. of Meinshausen and Bühlmann (2006) that for any

q > 0, there exists c(i) > 0 such that for all j ∈ pai with θij > 0,

(4.17) P
[

inf
β≤0
{2n−1ZT

jRi(β)} ≤ qλ

]
= O

{
exp (−c(i)n

ζ)
}

as n→∞.

(4.18) P
[

inf
β≤0
{2n−1ZT

jRi(β)} > qλ

]
= 1−O

{
exp (−c(i)n

ζ)
}

as n→∞.

However, by definition wik ≥ 1 and therefore,
∑

k∈pai
wik ≥ card (pai) ≥ 1, and (i)

follows from (4.18).

To prove (ii), note that the event p̂ai * pai is equivalent to the event that there

exists a node j ∈ i-\pai such that θ̂ij 6= 0. In other words, denoting the latter event

by D, P (p̂ai ⊆ pai) = 1− P (D).

(4.19) P (p̂ai ⊆ pai) = 1− P
(
∃j ∈ i-\pai : θ̂ij 6= 0

)
.

Let card(E : Ξ) denote the number of elements in set E that satisfy the condition Ξ.

Let E denote the event
[
∃j ∈ i-\pai : θ̂ij 6= 0

]
. However, by Lemma IV.2, and
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since wij ≥ 1,

P (D) = P
(
∃j ∈ i-\pai : |Gj(θ̂

i,pai)| ≥ wijλ
)

≤ P
{
∃j ∈ i-\pai : |Gj(θ̂

i,pai)| ≥ qλ and wijλ ≤ qλ for some q ≥ 1
}

≤ P
(
∃j ∈ i-\pai : wij ≤ q for some q ≥ 1

)
.

But wij = 1∨ |θ̃ij|−γ, with θ̃ij the lasso estimate of the adjacency matrix from (4.10).

Hence, letting F be the event that there exists j ∈ i-\pai such that wij ≤ q for some

q > 0, and using Lemma IV.2 we can write

P (F) = P
(
∃j ∈ i-\pai : |θ̃ij| ≥ q−1/γ for some q ≥ 1

)
≤ P

(
∃j ∈ i-\pai : |θ̃ij| ≥ q′ for some q′ > 0

)
≤ P

(
∃j ∈ i-\pai : θ̃ij 6= 0

)
= P

(
∃j ∈ i-\pai : |Gj(θ̃

i,pai)| ≥ λ0
)
.

Since card (pai) = o(n), we can assume, without loss of generality, that card (pai) <

n, which implies that θ̃i,pai is an almost sure unique solution to (4.11) with I = pai.

Let E =
{

maxj∈i-\pai
|Gj(θ̃

i,pai)| < λ0
}
. Then conditional on the event E , it follows

from the first part of Lemma IV.2 that θ̃i,pai is also a solution of the unrestricted

weighted lasso problem (4.11) with I = i-. Since θ̃
i,pai
j = 0, ∀j ∈ i-\pai, it follows

from the second part of Lemma IV.2 that θ̃ij = 0, ∀j ∈ i-\pai. Hence,

P
(
∃j ∈ i-\pai : θ̃ij 6= 0

)
≤ 1− P(E) = P

{
max

j∈i-\pai

|Gj(θ̃
i,pai)| ≥ λ0

}
,(4.20)

where Gj(θ̃
i,pai) = −2n−1X T

j (Xi −X θ̃i,pai).

Since card (V ) = O(na) for some a > 0, Bonferroni’s inequality implies that to

verify (ii) it suffices to show that there exists a constant c(ii) > 0 such that for all

j ∈ i-\pai,

(4.21) P
(
|Gj(θ̃

i,pai)| ≥ λ0
)

= O
{

exp (−c(ii)n
ζ)
}

as n→∞,
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For j ∈ i-\pai one can write Xj =
∑

l∈pai
θ
j,pai
l Xl +Rj,

Xj =
∑
l∈pai

θ
j,pai
l Xl +Rj

where Rj ∼ N(0, σ2
j ), σ

2
j ≤ 1 and Rj is independent from Xl, l ∈ pai. Similarly, with

Ri satisfying the same requirements as Rj, we get Xi =
∑

k∈pai
θ
i,pai
k Xk +Ri.

Xi =
∑
k∈pai

θ
i,pai
k Xk +Ri

Denote by Xpai the columns of X corresponding to pai and let θpai be the column

vector of coefficients with dimension card (pai) corresponding to pai. Then,

P
{
|Gj(θ̃

i,pai)| ≥ λ0
}

= P
{
| − 2n−1X T

j (Xi −X θ̃i,pai)| ≥ λ0
}

= P
[
| − 2n−1{Xpaiθ

j,pai
pai

+Rj}
T{Xpai(θ

i,pai
pai
− θ̃i,pai

pai
) +Ri}| ≥ λ0

]

Therefore,

P
{
|Gj(θ̃

i,pai)| ≥ λ0
}
≤ P

{
| − 2n−1(θi,pai

pai
− θ̃i,pai

pai
)

TX T

pai
Xpaiθ

j,pai
pai
| ≥ λ0/3

}
+

P
{
| − 2n−1(θi,pai

pai
− θ̃i,pai

pai
)

TX T

pai
Rj| ≥ λ0/3

}
+

P
{
| − 2n−1(Xpaiθ

j,pai
pai

+Rj)
TRi| ≥ λ0/3

}
≡ I + II + III.

Let 1pai denote a vector of 1’s of dimension card (pai). Then using the fact that

|θj,pai
l | ≤ 1, for all l ∈ pai, we can write

I ≤ P
{

2‖θi,pai
pai
− θ̃i,pai

pai
‖∞n−1(Xpai1pai)

TXpai1pai ≥ λ0/3
}
.

Then X T

pai
Xpai ∼ Wcard (pai)(Σpai , n) where Wm(Σ, n) denotes a Wishart distribu-

tion with mean nΣ. Hence, from properties of the Wishart distribution, we get

(Xpai1pai)
TXpai1pai ∼W1(1T

pai
Σpai1pai , n).
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Since pai also forms a directed acyclic graph, the eigenvalues Σpai are bounded

(see Remark IV.1), and hence

(4.22) 1T

pai
Σpai1pai ≤ card (pai)φmax(Σpai).

Therefore, if Z ∼ χ2
1, then n−1(Xpai1pai)

TXpai1pai is stochastically smaller than

card (pai)φmax(Σpai)Z. On the other hand, by Theorem IV.4,

‖A− Ã‖F = Op

{
(n−1s log p)

1/2
}
,

and hence,

(4.23) ‖θi,pai
pai
− θ̃i,pai

pai
‖∞ = Op

{
(n−1s log p)

1/2
}
.

Noting that card (pai) = O(nb), b < 1/2 and p = O(na), a > 0, (4.22) and (4.23)

imply that

‖θi,pai
pai
− θ̃i,pai

pai
‖∞ card (pai)φmax(Σpai) = Op

{
(sn2b−1a log n)

1/2
}
.

By (A-0′), sn2b−1 log n = o(1) and hence by Slutsky’s Theorem and properties

of the χ2-distribution, there exists c(I) > 0 such that for all j ∈ i-\pai, I =

O
{

exp (−c(I)n
ζ)
}

as n→∞.

Using a similar argument,

II ≤ P
(

2n−1‖θi,pai
pai
− θ̃i,pai

pai
‖∞|1paiX

T

pai
Rj| ≥ λ0/3

)
.

But columns of Xpai have mean zero and are all independent of Rj, hence it suffices

to show that there exists c(II) > 0 such that for all j ∈ i-\pai and for all k ∈ pai,

(4.24)

P
{

2n−1‖θi,pai
pai
− θ̃i,pai

pai
‖∞ card (pai)|XkTRj| ≥ λ0/3

}
= O

{
exp (−c(II)n

ζ)
}

as n→∞.

By (4.23) and (A-0′), the random variable on the left hand side of (4.24) is stochas-

tically smaller than 2n−1|XkRj|. By independence of Xk and Rj, E(XkRj) =
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0. Also, using Gaussianity of both Xk and Rj, there exists g < ∞ such that

E{exp (|XkRj|)} ≤ g. Since λ0 = O{(log p/n)1/2}, by Bernstein’s inequality (Van der

Vaart and Wellner, 1996), P(2n−1|XkRj| > λ0/3) ≤ exp(−c(II)n
ζ) for some c(II) > 0

and hence (4.24) is satisfied.

Finally, for III we have

P
{
| − 2n−1(Xpaiθ

j,pai
pai

+Ri)
TRj| ≥ λ0/3

}
= P

{
| − 2n−1XiTRj| ≥ λ0/3

}
,

and using the Bernstein’s inequality we conclude that there exists c(III) > 0 such that

for all j ∈ i-\pai and for all k ∈ pai, III = O
{

exp (−c(III)n
ζ)
}

as n → ∞. The

proof of (ii) is then complete by taking c(ii) to be the minimum of c(I), . . . , c(III).

To prove (iii), note that P (pai ⊆ p̂ai) = 1 − P
(
∃j ∈ pai : θ̂ij = 0

)
, and let E ={

maxk∈i-\pai
|Gj(θ̂

i,pai)| < λwij

}
. It then follows from an argument similar to the

proof of (ii) that conditional on E , θ̂i,pai is an almost sure unique solution of the

unrestricted adaptive lasso problem (4.11) with I = i-. Therefore,

P
(
∃j ∈ pai : θ̂ij = 0

)
≤ P

(
∃j ∈ pai : θ̂ij = 0

)
+ P (Ec) .

From (i), there exists a c1 > 0 such that P
(
∃j ∈ pai : θ̂ij = 0

)
= O{exp (−c1n

ζ)}

and it was shown in (ii) that P (Ec) = O{exp (−c2n
ζ)} for some c2 > 0. Thus (iii)

follows from Bonferroni’s inequality.

The claim in (iv) follows from (ii) and (iii), and Bonferroni’s inequality as p =

O(na).

4.4.4 Choice of the tuning parameter

Both lasso and adaptive lasso estimates of the adjacency matrix, depend on the

choice of the tuning parameter λ. Different methods have been proposed for selecting

the value of the tuning parameter, including cross validation (Rothman et al., 2008)
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and the Bayesian information criterion (Yuan and Lin, 2007). However, choices of

λ that result in the optimal classification error do not guarantee a small error for

network reconstruction. We propose next a choice of λ for the general weighted lasso

problem with weights wij. Let Z∗q denote the (1− q)th quantile of standard normal

distribution, and define

(4.25) λi(α) = 2n−1/2Z∗ α
2p(i−1)

.

The following result establishes that such a choice controls the probability of falsely

joining two distinct ancestral sets, defined next.

Definition IV.6. For every node i ∈ V , the ancestral set of node i, ANi consists of

all nodes j, such that j is an ancestor of i or i is an ancestor of j or i and j have a

common ancestor k.

Theorem IV.7. Under the assumptions of Theorems IV.3 and IV.5 above, for

the lasso and adaptive lasso, respectively, for all n ∈ N the solution of the gen-

eral weighted lasso estimation problem with tuning parameter determined in (4.25)

satisfies

P(there exists i ∈ V : ÂN i * ANi) ≤ α.

Proof. We first show that if ANi ∩ ANj = ∅, then i and j are independent. Since

Σ = ΛΛT and Λ is lower triangular,

(4.26) Σij =

min (i,j)∑
k=1

ΛikΛjk.

We assume without loss of generality that i < j. The argument for j > i is similar.

Suppose for all k = 1, . . . , i, that Λik = 0 or Λjk = 0, then by (4.26) i and j are

independent. However, by Lemma II.1, Λjk is the influence of kth node on j, and

this is zero only if there is no path from k to j. If i is an ancestor of j, we have
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Σij 6= 0. On the other hand, if there is no node k ∈ i- such that k influences both

i and j, i.e. k is a common ancestor of i and j, then for all k = 1, . . . , i we have

ΛikΛjk = 0 and the claim follows.

Using Bonferroni’s inequality twice and Lemma IV.2, we get

P(∃i ∈ V : ÂN i * ANi) ≤ pmax
i∈V

P
(
∃j ∈ i-\ANi : j ∈ p̂ai

)
≤ p(i− 1) max

i∈V,j∈i-\ANi
P (j ∈ p̂ai)

≤ p(i− 1) max
i∈V,j∈i-\ANi

P
{
|Gj(θ̂

i,ANi)| ≥ λwij

}
.

However, by definition wij ≥ 1, and hence it suffices to show that

(4.27) (i− 1)p max
i∈V,j∈i-\ANi

P
{
|Gj(θ̂

i,ANi)| ≥ λ
}
≤ α.

Note that Gj(θ̂
i,ANi) = −2n−1X T

j (Xi − X θ̂i,ANi) and Xj is independent of Xk for

all k ∈ ANi. Therefore, conditional on XANi , Gj(θ̂
i,ANi) ∼ (0, 4R2/n), where R2 =

n−1‖Xi−X θ̂i,ANi‖2
2 ≤ n−1‖Xi‖2

2 = 1, by definition of θ̂i,ANi and the fact that columns

of the data matrix are scaled.

It follows that for all j ∈ i-\ANi, P
{
|Gj(θ̂

i,ANi)| ≥ λ | XANi
}
≤ 2{1−Φ(n1/2λ/2)},

where Φ is the cumulative distribution function for standard normal random vari-

able. Using the choice of λ proposed in (4.25), we get P
{
|Gj(θ̂

i,ANi)| ≥ λ | XANi
}
≤

α{(i− 1)p}−1, and the result follows.

Theorem IV.7 is true for all values of p and n, but it does not provide any guarantee

for the probability of false positive error for individual edges in the graph. We also

need to determine the optimal choice of penalty parameter λ0 for the first phase of

the adaptive lasso, where the weights are estimated using the lasso. Since the goal

of the first phase is to achieve prediction consistency, cross validation can be used

to determine the optimal choice of λ0. On the other hand, it is easy to see that
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the error-based proposal in (4.25) satisfies the requirement of Theorem IV.4 and can

therefore be used to define λ0. It is however recommended to use a higher value of

significance level in estimating the initial weights, in order to prevent an over-sparse

solution.

4.5 Performance Analysis

4.5.1 Preliminaries

In this section, we consider examples of estimating directed graphs of varying

number of edges from randomly generated data. To randomly generate data, one

needs to generate lower-triangular adjacency matrices with sparse nonzero elements,

ρij. However, in order to control the computational complexity of the PC-algorithm,

we use the random directed graph generator in the R-package pcalg (Kalisch and

Bühlmann, 2007), which generates graphs with given values of the average neigh-

borhood size. The sparsity levels of graphs with different sizes are set according to

the theoretical bounds in Section 4.4, as well as the recommendations of Kalisch and

Bühlmann (2007) for the neighborhood size. More specifically, we use an average

neighborhood size of 5, while limiting the total number of true edges to be equal to

the sample size n.

Different measures of structural difference can be used to evaluate the performance

of estimators. The structural Hamming distance represents the number of edges that

are not in common between the estimated and true graphs, i.e. shd = card (Ê\E) +

card (E\Ê), where Ê and E are defined as in Theorem IV.3. The main drawback

of this measure is its dependency on the number of nodes, as well as the sparsity of

the network. The second measure of goodness of estimation considered here is the

Matthew’s correlation coefficient, which is commonly used to assess the performance
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of binary classification methods (Baldi et al., 2000), and is defined as

(4.28) mcc =
(tp× tn)− (fp× fn)

{(tp + fp)(tp + fn)(tn + fp)(tn + fn)}1/2
,

where tp, tn, fp and fn denote the total number of true positive, true negative,

false positive and false negative edges, respectively. The value of (4.28) ranges from

−1 to 1 with larger values corresponding to better fits, and −1 and 1 representing

worst and best fits, respectively. Finally, in order to compare the performance of

different estimation methods with theoretical bounds established in Section 4.4.3,

we also report the values of true and false positive rates.

The performance of both the PC-algorithm, as well as our proposed estimators

based on the choice of tuning parameter in (4.25), vary with different values of

significance level α. In the following experiments, we first investigate the appropriate

choice of α for each estimator. We then compare the performance of the estimators

with an optimal choice of α. The results reported in this section are based on

estimates obtained from 100 replications; further to offset the effect of numerical

instability, we consider an edge present only if |Âij| > 10−4.

4.5.2 Estimation of directed graphs from normally distributed observations

We begin with an example that illustrates the differences between estimation of

directed graphs and conditional independence graphs. The first two images in Fig.

4.3 represent a randomly generated directed graph of size p = 50 along with the

gray-scale image of the average precision matrix estimated based on a sample of size

n = 100 using the graphical lasso algorithm (Friedman et al., 2008b). The image

is obtained by calculating the proportion of times that a specific edge is present in

100 replications. To control the probability of falsely connecting two components

of the graph, the value of the tuning parameter for the graphical lasso is defined
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Figure 4.3: True directed graph along with estimates from Gaussian observations. The gray scale represents
the percentage of inclusion of edges.

based on the error-based proposal in Banerjee et al. (2008, Theorem 2). It can

be seen that the conditional independence graph has many more edges, 8% false

positive rate compared to 1% for the lasso and adaptive lasso, and does not reveal

the true structure of the underlying directed graph. Therefore, although methods

of estimating conditional independence graphs are computationally efficient, they

should not be used in applications, like estimation of gene regulatory networks, where

the underlying graph is directed.

In simulations throughout this section, the sample size is fixed at n = 100, and

estimators are evaluated for an increasing number of nodes, p = 50, 100, 200. Figure

4.4 shows the mean and standard deviation of the Hamming distances, expressed

in base 10 logarithmic scale, for estimates based on the PC-algorithm, as well as

the proposed lasso, and adaptive lasso methods for different values of the tuning

parameter α and different network sizes. It can be seen that for all values of p and

α, the adaptive lasso estimate produces the best results, and the proposed penalized

likelihood methods outperform the PC-algorithm. This difference becomes more

significant as the size of the network increases.

As mentioned in Section 4.2, it is not always possible to estimate the direction

of the edges of a directed graph and therefore, the estimate from the PC-algorithm

may include undirected edges. Since our penalized likelihood methods assume knowl-
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Figure 4.4: Logarithm, in base 10, of the Hamming distances for estimation of directed graph from normal
observations. Results of the PC-algorithm (black solid), lasso (black dashes) and adaptive lasso (gray
dot-dashes) are shown.

edge of the ordering of variables and estimate the structure of the network, in the

simulations considered here, we only estimate the skeleton of the network using the

PC-algorithm. We then use the ordering of the variables to determine the direc-

tion of the edges. The performance of the PC-algorithm for estimation of partially

completed directed graphs may therefore be worse than the results reported here.

In our simulation results, observations are generated according to the linear struc-

tural equation model (4.2) with standard normal latent variables and ρij = ρ = 0 · 8.

Additional simulation studies with different values of σ and ρ indicate that changes

in σ do not have a considerable effect on the performance of the proposed models. On

the other hand, as the magnitude of ρ decreases, the performance of the proposed

methods, as well as the PC-algorithm deteriorates, but the findings of the above

comparison remain unchanged.

The above simulation results suggest that the optimal performance of the PC-

algorithm is achieved when α = 0 · 01. The performance of the lasso and adaptive

lasso methods is less sensitive to the choice of α; however, a value of α = 0 ·10 seems

to deliver more reliable estimates. In addition, our extended simulations indicate

that the performance of the adaptive lasso does not vary significantly with the value

of power γ and therefore we present the results for γ = 1.
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Figure 4.3 represents images of estimated and true directed graphs created based

on the above considerations for tuning parameters for p = 50. Similar results were

also observed for larger values of p, p = 100, 200, and are excluded due to space

considerations. Plots in Fig. 4.5 compare the performance of the three methods

with the optimal settings of tuning parameters, over a range of values of p. It can

be seen that the values of mcc confirm the above findings based on the Hamming

distance. On the other hand, false positive and true positive rates only focus on one

aspect of estimation at a time and do not provide a clear distinction between the

methods.

As mentioned in Section 4.2, the representation of conditional independence in

directed graphs adapted in our algorithm, is not restricted to normally distributed

random variables; if the underlying structural equations are linear, the method pro-

posed in this chapter can correctly estimate the underlying graph. In order to assess

the sensitivity of the estimates to the underlying distribution, we performed two sim-

ulation studies with non-Normal observations. In both simulations, observations were

generated according to a linear structural model. In the first simulation, the latent

variables were generated from a mixture of a standard normal and a t-distribution

with 3 degrees of freedom, while in the second simulation, a t-distribution with 4

degrees of freedom was used. The performance of the proposed algorithm for non-

normal observations was similar to the case of Gaussian observations, with the adap-

tive lasso providing the best estimates, and the performance of penalized methods

improving in sparse settings.

4.5.3 Sensitivity to perturbations in the ordering of the variables

Algorithm 2 assumes a known ordering of the variables. The superior performance

of the proposed penalized likelihood methods in comparison to the PC-algorithm may
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Figure 4.5: mcc, fp and tp for estimation of directed graph from normal observations. Results for the
PC-algorithm (black solid), lasso (black dashes) and adaptive lasso (gray dot-dashes) are given.

be explained by the fact that additional information about the order of the variables

significantly simplifies the problem of estimating directed graphs. Therefore, when

such additional information is available, estimates using the PC-algorithm suffer from

a natural disadvantage. However, as the underlying network becomes more sparse,

the network includes fewer complex structures and it is expected that the ordering

of variables should play a less significant role.

Next, we study the performance of the proposed methods, as well as the PC-

algorithm in problems where the ordering of variables is unknown. To this end, we

generate normally distributed observations from the latent variable model of Section

4.2.2. We then randomly permute the order of variables in the observation matrix

and use the permuted matrix to estimate the original directed graph. Figure 4.6

illustrates the performance of the three methods for choices of α described in Section

4.5.2. It can be seen that for small, dense networks, the PC-algorithm outperforms

the proposed methods. This is expected since the change in the order of variables

causes the proposed algorithm to include unnecessary moral edges, while failing

to recognize some of the existing associations. On the other hand, as the size of

the network and correspondingly the degree of sparsity increase, the local structures

become simpler and therefore the ordering of the variables becomes less crucial. Thus,
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Figure 4.6: mcc, fp and tp for estimation of directed graph with random ordering. Results are given for
the PC-algorithm (black solid), lasso (black dashes) and adaptive lasso (gray dot-dashes).

the performance of penalized likelihood algorithms is improved compared to that of

the PC-algorithm. For the high dimensional sparse case, where the computational

cost of the PC-algorithm becomes more significant, the penalized likelihood methods

provide better estimates.

4.6 Real Data Application

4.6.1 Analysis of cell signalling pathway data

Sachs et al. (2003) carried out a set of flow cytometry experiments on signaling

networks of human immune system cells. The ordering of the connections between

pathway components were established based on perturbations in cells using molecular

interventions and we consider the ordering to be known a priori. The data set includes

p = 11 proteins and n = 7466 samples.

Friedman et al. (2008b) analyzed this data set using the graphical lasso algorithm.

They estimated the graph for a range of values of the `1 penalty and reported mod-

erate agreement, around 50% false positive and false negative rates, between one of

their estimates and the findings of Sachs et al. (2003). True and estimated signaling

networks using the PC-algorithm, with α = 0 · 01, and the lasso and adaptive lasso

algorithms, with α = 0 · 1, along with the corresponding performance measures are

given in Fig. 4.7. The estimated network using the PC-algorithm includes a number
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Figure 4.7: Known and estimated networks for human cell signalling data. True and false edges are marked
with solid and dashed arrows, respectively.

of undirected edges. As in the simulation studies, we only estimate the structure of

the network using the PC-algorithm and determine the direction of edges by enforc-

ing the ordering of nodes. It can be seen that the adaptive lasso and lasso provide

estimates that are closest to the true structure.

4.6.2 Transcription regulatory network of E-coli

As we discussed in Chapters II and III, transcriptional regulatory networks play

an important role in controlling the gene expression in cells and incorporating the

underlying regulatory network results in more efficient estimation and inference.

Kao et al. (2004) proposed the network component analysis method to infer tran-

scriptional regulatory network of Escherichia coli, E-coli. They also provided whole

genome expression data over time, with n = 24, as well as information about the

known regulatory network of E-coli.

In this application, the set of transcription factors are known a priori and the goal

is to find connections among transcription factors and regulated genes through anal-

ysis of whole genome transcriptomic data. Therefore, the algorithm proposed in this

chapter can be used by exploiting the natural hierarchy of transcription factors and

regulated genes. Kao et al. (2004) provide gene expression data for 7 transcription

factors and 40 regulated genes, i.e. p = 47. Figure 4.8 presents the known regu-
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Figure 4.8: Known and estimated transcription regulatory network of E-coli. Large gray nodes indicate
the transcription factors, and true and false edges are marked with solid and dashed arrows, respectively.

latory network of E-coli along with the estimated networks and the corresponding

performance measures using the PC-algorithm, lasso and adaptive lasso. The values

of α are set as in Section 4.6.1. The relatively poor performance of the algorithms

in this example can be partially attributed to the small sample size. However, it is

also known that no single source of transcriptomic data is expected to successfully

reveal the regulatory network and better estimates are obtained by combining differ-

ent sources of data. It can be seen that the PC-algorithm can only detect one of the

true regulatory connections, and both lasso and adaptive lasso offer significant im-

provements, mostly due to the considerable drop in the false negative rate, from 97%

for the PC-algorithm to 63% for the adaptive lasso. In this case, lasso and adaptive

lasso estimates are very similar, and the choice of the best estimate depends on the

performance evaluation criterion.

4.7 Discussion

The penalized likelihood methods for estimation of the structure of directed acyclic

graphs proposed in this chapter are derived based on the assumption that the vari-

ables inherit a natural ordering. These methods are applicable in a number of bio-
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logical applications, where the ordering of the variables is known a priori, including

estimation of transcriptional regulatory networks from gene expression data and

reconstruction of causal networks from temporal observations. However, simulation

studies indicate that the correct ordering of variables becomes less crucial for estimat-

ing high dimensional sparse graphs, and the methods proposed in this chapter may

be an efficient alternative for search-based methods of estimating directed graphs.



CHAPTER V

Estimation of Graphical Granger Causality Using the
Truncating Lasso Penalty

5.1 Introduction

A critical problem in systems biology is to discover causal relationships among

components of biological systems. Gene regulatory networks, metabolic networks

and cell signalling networks capture causal relationships in cells. Discovery of causal

relationships may be only possible through carefully designed experiments, which

can be challenging. However, gene regulation is carried out by binding of protein

products of transcription factors to cis-regulatory elements of genes. Such regulatory

mechanisms are evident if the expression levels of gene X is affected by changes in

expression levels of gene Y . Therefore, time course gene expression data can be

used to discover causal relationships among genes and construct the gene regulatory

network.

Different methods have been developed to infer causal relationships from time

series data, including dynamic Bayesian Networks (Murphy, 2002) and Granger

causality (Granger, 1969). In dynamic Bayesian Networks (DBNs) the state space of

Bayesian Networks is expanded by replicating the set of variables in the network by

the number of time points. Cyclic networks are then transformed to DAGs by break-

ing down cycles into interactions between variables at two different time points. Ong

111



112

et al. (2002) and Perrin et al. (2003) among others have applied Bayesian networks

to infer causal relationships among components of biological systems.

On the other hand, the concept of Granger causality states that geneX is Granger-

causal for gene Y if the autoregressive model of Y based on past values of both genes

is significantly more accurate than the model based on Y alone. This implies that

changes in expression levels of genes could be explained by expression levels of their

transcription factors. Therefore, statistical methods can be applied to time-course

gene expression observations to estimate Granger causality among genes.

Exploring Granger causality is closely related to analysis of multivariate vector

autoregressive (VAR) models, which are widely used in econometrics. Yamaguchi

et al. (2007) and Opgen-Rhein and Strimmer (2007) employed VAR models to learn

gene regulatory networks, while Fujita et al. (2007) proposed a sparse VAR model

for better performance in cases when the number of genes, p is large compared to the

sample size, n. Similar sparse models have also been considered by Mukhopadhyay

and Chatterjee (2007).

Zou and Feng (2009) compared the performance of DBNs and Granger causality

methods for estimation of causal relationships and concluded that the performance

of the two approaches depend on the length of the time series as well as the sample

size. The findings of Zou and Feng (2009) emphasizes the need for sparse models in

cases where the sample size is small. In particular, when p� n, penalized methods

often provide better prediction accuracy. Arnold et al. (2007) applied the lasso (or

`1) penalty to discover the structure of graphical models based on the concept of

Granger causality and studied the relationship between different key performance

indicators in analysis of stock prices.

Asymptotic and empirical performances of the lasso penalty for discovery of graph-
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ical models have been studied by many researchers and a number of extensions of the

original penalty have been proposed (we refer to these variants of the lasso penalty

as “lasso-type” penalties). Meinshausen and Bühlmann (2006) showed that the lasso

penalty does not achieve variable selection consistency unless the so-called irrepre-

sentability assumption holds. To overcome the shortcomings of the lasso penalty,

Zou (2006) proposed the adaptive lasso penalty, and showed that for fixed p, if

appropriate weights are used, the adaptive lasso penalty can achieve variable selec-

tion consistency even if the irrepresentability assumption is violated. In fact, as we

showed in Chapter IV, if initial weights are derived from regular lasso estimates, the

adaptive lasso penalty is also consistent for variable selection in high dimensional

sparse settings.

In Chapter IV, we discussed the representation of the joint probability distribu-

tion of random variables in graphical models on directed acyclic graphs (DAGs).

We also proposed a penalized likelihood approach, using both lasso and adaptive

lasso penalties, for estimation of the skeleton of DAGs and discussed the asymptotic

properties of the resulting estimators.

The lasso estimate of the graphical Granger model may result in a model in which

X is considered to influence Y in a number of different time lags. Such a model is

hard to interpret and inclusion of additional covariates in the model may result in

poor model selection performance. Lozano et al. (2009) have recently proposed to

use a group lasso penalty (Yuan and Lin, 2007) in order to obtain a simpler Granger

graphical model. The group lasso penalty takes the average effect of X on Y over

different time lags and considers X to be Granger-causal for Y if the average effect

is significant. However, this results in significant loss of information, as the time

difference between activation of X and its effect on Y is ignored. Moreover, due
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to the averaging effect, the sign and magnitude of effects of the variables on each

other can not be determined from the group lasso estimate. Hence, whether X is an

activator or a suppressor for Y and/or the magnitude of its effect remain unknown.

In this chapter, I propose a novel truncating lasso penalty for estimation of graph-

ical Granger models. The proposed penalty has two main features: (i) it automati-

cally determines the order of the VAR model, i.e. the number of effective time lags

and (ii) it performs model simplification by reducing the number of covariates in the

model. I propose an efficient iterative algorithm for estimation of model parameters,

provide an error-based choice for the tuning parameter and prove the consistency

of the resulting estimate, both in terms of sign and magnitude of the effects, as

well as, variable selection properties. The proposed method is applied to simulated

and real data examples, and is shown to provide better estimates than alternative

penalization methods.

The remainder of the chapter is organized as follows. Section 5.2, starts with a

discussion of review of the concept of graphical Granger causality. The proposed

truncating lasso penalty and asymptotic properties of the estimator are discussed in

section 5.2.2, while the optimization algorithm is presented in section 5.2.4. Results

of simulation studies are presented in section 5.3.1 and applications of the proposed

model to time course gene expression data on E-coli and human cancer cell line

(HeLa cells) are illustrated in sections 5.3.2 and 5.3.3, respectively. A summary of

findings and directions of future research are discussed in section 5.4.
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5.2 Model and Methods

5.2.1 Graphical Granger Causality

Let X1:T = {X}Tt=1 and Y 1:T = {Y }Tt=1, be trajectories of two stochastic processes

X and Y up to time T and consider the following two regression models:

(5.1) Y T = AY 1:T−1 +BX1:T−1 + εT

(5.2) Y T = AY 1:T−1 + εT

Then X is said to be Granger-causal for Y if and only if the model 5.1 results in

significant prediction improvement over model 5.2. Graphical Granger models extend

the notion of Granger causality among two variables to p variables. More generally,

let X1, . . . , Xp be p stochastic processes and denote by X the rearrangement of these

stochastic processes into a vector time series, i.e.

(5.3) Xt = (X t
1, . . . , X

t
p)

T

We consider models of the form

(5.4) XT = A1XT−1 + . . . AT−1X1 + εT .

In the graphical Granger model, X t
j is said to be causal for XT

i if the corresponding

coefficient, Ati,j is statistically significant. In that case, there exists an edge X t
j → XT

i

in the graphical model with T × p nodes.

Such a model corresponds to a DAG with T × p variables, in which the ordering

of the set of p-variate vectors X1, . . . ,XT is determined by the temporal index and

the ordering among the elements of each vector is arbitrary. Lasso-type estimates of

DAGs can therefore be used in the context of graphical Granger models in order to

select causal effects of variables on each other. The model in (5.4) is also equivalent to
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vector autoregressive (VAR) models, which have been used for estimation of graphical

Granger causality by a number of researchers, including Arnold et al. (2007).

5.2.2 Truncating Lasso for Graphical Granger Models

Consider a graphical model with p variables, observed over T time points, and

let d be the order of the VAR model or the effective number of time lags (in (5.4)

d = T −1). As in section Chapter IV, let X t denote the design matrix corresponding

to t-th time point, and X t
i be its i-th column.

The truncating lasso estimate of the graphical Granger causality is found by solv-

ing the following estimation problem for i = 1, . . . , p:

(5.5) argmin
θt∈Rp

n−1‖X T
i −

d∑
t=1

X T−tθt‖2
2 + λ

d∑
t=1

Ψt

p∑
j=1

|θtj|wtj

Ψ1 = 1, Ψt = M I{‖A(t−1)‖0<p2β/(T−t)}, t ≥ 2

where M is a large constant, and β is the allowed false negative rate, determined by

the user. The choice of β and the properties of the resulting estimator are discussed

in the remainder of this section.

To illustrate the main idea behind the truncating lasso penalty, we begin by

examining the regular lasso estimate of the graphical Granger model. Using the

above notation, the general weighted lasso estimate of the graphical Granger model is

found by solving the following p non-overlapping `1-regularized least square problems

for i = 1, . . . , p:

(5.6) argmin
θt∈Rp

n−1‖X T
i −

d∑
t=1

X T−tθt‖2
2 + λ

T−1∑
t=T−d

p∑
j=1

|θtj|wtj

The weighted lasso penalty suffers from two limitations. Firstly, the order of the

VAR model, d is often unknown and therefore is set to T−1. Hence there are p(T−1)

covariates in the weighted lasso estimation problem. Moreover, the weighted lasso
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estimate may potentially include edges from different time points of variable Xj to

any given variable Xi. To overcome these problems, Lozano et al. (2009) proposed

to use the group lasso estimate, in which the values of coefficients of each variable

over the past time points are grouped. The drawback of group lasso penalty is that

information on the time lag between activation of gene j and its effect on gene i is

lost. Moreover, the resulting estimate does not provide consistent information about

the magnitude and sign of the interaction. Thus, important questions including the

activation or inhibition effect of Xj on Xi can not be answered.

The proposed truncating lasso penalty addresses the above shortcomings of the

regular lasso penalty, while preventing the loss of information which occurs if the

group lasso penalty is used. The truncating effect of the proposed penalty (imposed

by Ψt) is motivated by the rationale that the number of effects (edges) in the graph-

ical model decreases as the time lag increases. Consequently, if there are fewer than

p2β/(T − t) edges in the (t− 1)st estimate, all the later estimates are forced to zero.

Hence, the truncating lasso penalty provides an estimate of the order of the under-

lying VAR model. In addition, by applying this penalty the number of covariates in

the model is reduced as the coefficients for effects of genes on each other after the

estimated time lag are forced to zero.

The following result indicates that the proposed truncating lasso penalty provides

a desirable estimate of the graphical Granger causality. In particular, we show that

the resulting estimate is consistent for variable selection (i.e. the correct edges are

estimated with increasing probability, as the sample size increases). Moreover, the

magnitude and signs of the effects are consistently estimated. A more detailed version

of the theorem, including assumptions and a sketch of the proof is given in the

Appendix.
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Theorem V.1 (Consistency of Truncating Adaptive Lasso). Let s be the total num-

ber of true edges in the graphical Granger model and suppose that for some a > 0,

p = p(n) = O(na) and |pai| = O(nb), where sn2b−1 log n = o(1) as n → ∞. More-

over, suppose that there exists ν > 0 such that for all n ∈ N and all i ∈ V ,

Var
(
XT
i |XT−d:T−1

1:p

)
≥ ν and there exists δ > 0 and some ξ > b such that for every

i ∈ V and for every j ∈ pai, |πij| ≥ δn−(1−ξ)/2, where πij is the partial correlation

between Xi and Xj after removing the effect of the remaining variables.

Assume that λ ∼ dn−(1−ζ)/2 for some b < ζ < ξ and d > 0, and the initial

weights are found using lasso estimates with a penalty parameter λ0 that satisfies

λ0 = O(
√

log p/n). Also, for some large positive number g, let

Ψt = g exp (nI{‖A(t−1)‖0 < p2β/(T − t)})( i.e. M = gen).

Then if true causal effects diminish over time, there exists a solution of the truncating

adaptive lasso penalty and constants c(i) − c(iv) that satisfy the following:

(i) Type I error: pr (p̂ai ⊆ pai) = 1− β −O
{

exp (−c(i)n
ζ)
}

(ii) Type II error: pr (pai ⊆ p̂ai) = 1−O
{

exp (−c(ii)n
ζ)
}

(iii) Order of VAR: pr
{
d̂ = d

}
= 1− β −O

{
exp (−c(iii)n

ζ)
}

(iv) Direction of influence: For i, j = 1, . . . , p, t = 1, . . . T − 1,

pr
{

sign (Âtij) = sign (Atij)
}

= 1−O
{

exp (−c(iv)n
ζ)
}

Proof. If β = 0, inclusion of the true causal effect, exclusion of incorrect effects and

consistency of signs and magnitudes of effects follow from Theorem IV.5. Since β

has no effect on the probability of false positive, this proves (ii) and (iii). For any

given β > 0, suppose t0 is the smallest t for which ‖A(t−1)‖0 < p2β/(T − t). Then
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for t < t0 Ψt = 1 and has no effect on the estimate. Let t ≥ t0. Then using

the KKT conditions, a coefficient is included in the weighted lasso estimate only

if |2n−1(X t
j )

T
(X T

i − X tθt)| > Ψtλwtj. However, (X t
j )

T
(X T

i − X tθt) is stochastically

smaller than (X t
j )

TX T
i , which is in turn a polynomial function of n. On the other

hand, λ and wtj are also polynomial functions of n, whereas Ψt increases exponentially

as n → ∞. Hence, for all j = 1, . . . , p and t ≥ t0, there exists an n such that

|2n−1(X t
j )

T
(X T

i − X tθt)| < Ψtλwtj and therefore, At = 0, t ≥ t0. However, since the

number of true causal effects diminish over time, the total number of true edges in

time lags t ≥ t0 is less than β. This proves the first part of (i).

Finally, to prove that the order of VAR is correctly estimated, i.e. d = t0 − 1, we

consider two complementary events: d < t0 − 1 and d > t0 − 1. Prior to t0, false

positives occur with exponentially small probability, hence, the probability that d <

t0−1, is negligible. On the other hand, d > t0−1 only if true edges are not included

in Ât0 and as a result ‖Â(t0−1)‖0 < p2β/(T−t0). But false negatives occur if true edges

vanish in the adaptive lasso estimate. However, adaptive lasso finds the true edges

with exponentially large probability, hence, P(d < t0 − 1) ≥ 1 − β − O(exp(−cnd))

for constants c and d. This completes the proof.

5.2.3 Choice of the Tuning Parameter

Estimation of the graphical Granger model using the truncating lasso penalty

requires selection of two parameters, λ and β. As mentioned in the previous section,

β is the allowed rate of false negatives. Therefore, selection of β can be based on the

cost of false negatives in the specific problem at hand, as well as the sample size; as

with any other statistical test, as sample size increases, smaller values of β can be

considered. A practical strategy for selecting β is to first find the lasso (or adaptive

lasso) estimate and select β so that the desired false negative rate is achieved.
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The second parameter, λ is common in all penalized estimation methods. We

propose the following error-based choice for selection of λ. Let Z∗q be the (1− q)-th

percentile of the standard normal distribution and consider:

(5.7) λ = 2n−1/2Z∗α
2dp2

it then follows from Theorem IV.7 that for any value of n, this choice of λ controls

a version of false positive rate at the given level of α, provided that columns of the

design matrix are scaled so that n−1XiTXi = 1. In section 5.3.1, we evaluate the

performance of the proposed method for a range of values of α, and show that the

performance is not heavily influenced by that choice.

5.2.4 Algorithm and Computational Complexity

In the previous section, we discussed that the truncating lasso estimate of the

graphical Granger model in (5.5) is found by solving p weighted lasso problems.

However, the optimization problem in (5.5) is non-convex and can not be solved

directly, especially since the truncating factor Ψt depends on the values of the coef-

ficients at the previous time points. Here we propose an iterative Block-Relaxation

algorithm (de Leeuw, 1994), which can be efficiently used to estimate the parameters

of the model.

The main idea of the algorithm is to further break down each of the p sub-problems

into d weighted lasso problems, starting with the observations at the most recent time

lag, T −1. This iterative process is continued by calculating the truncating factor Ψt

at each t = 1, . . . , d based on the values of the coefficients at the previous time points

and solving a weighted lasso problem over p variables at each time point. Algorithm

3 outlines the above iterative procedure for finding the estimates of the graphical

Granger model.
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Unlike the (adaptive) lasso problem, the objective function of the truncating lasso

problem is non-convex. Therefore, a global minimum for the resulting optimization

problem may not exist. However, the following result shows that the proposed algo-

rithm always converges, although the accumulation point may be a local minimum.

Lemma V.2. Algorithm 3 converges to a (local) minimizer of the (adaptive) trun-

cating lasso estimation problem.

(Sketch of the Proof). Although the overall objective function is non-convex, each

sub-problem is a weighted lasso problem and is therefore convex. It is also known

that with high probability, the solution of the lasso problem is unique (see Osborne

et al., 2000). On the other hand, each subproblem is obtained by a (continuous)

projection mapping from Rd×p to Rp. The lemma follows from the results of de Leeuw

(1994).

Both lasso as well as adaptive lasso problems include d × p covariates in each

penalized regression problem. Therefore, using the shooting Algorithm of Friedman

et al. (2008a) (implemented in the R-package glmnet), estimation of the (adaptive)

lasso problem requires O(nd2p2) operations. On the other hand, partitioning over

time points reduces the computational burden of each subproblem to O(ndp2). From

the general theory of Block-Relaxation algorithms (see de Leeuw, 1994), it can be

Algorithm 3 Iterative Algorithm for Estimation of Truncation Lasso

Repeat for k = 1, 2, . . . (until convergence)
1. For t = 1, . . . , d

1.1. Calculate Ψt based on estimates in t′ = 1, . . . , t− 1
1.2. Using the most recent estimate Ât

′
, find:

Rt = X T −
∑d
t′=1,t′ 6=t Â

t′X T−t′

2. For i = 1, . . . , p, let r := Rti
2.1. Using the shooting Algorithm, solve

argmin
{
n−1‖r −

∑d
t=1 X T−tθt‖22 + λ

∑d
t=1 Ψt

∑p
j=1 |θtj |wtj

}
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shown that Algorithm 3 has at least a linear convergence rate. However, in our

extensive simulation studies, the algorithm often converges in less than 10 iterations,

and for large values of d, may require less time than the lasso estimate.

5.3 Results

5.3.1 Simulation Studies

We evaluate the performance of the proposed truncating lasso penalty, as well

as the lasso and adaptive lasso penalties in reconstructing the Granger graphical

models from time series observations. Two sets of simulation studies are performed,

in which 20 independent and identically distributed (i.i.d.) observations for 20 genes

are generated according to a VAR model of order 2 (d = 2). In both simulations,

a Gaussian noise with standard error of σ = 0.2 is added to the observations and

the time series includes 10 time points. In the first simulation study, we enforce the

autoregulatory interactions, by including an edge from X t−1
i to X t

i for all genes i.

This implies that the expression level of each gene is influenced by its expression

level at the previous time point. Autoregulatory interactions are included randomly

in the second simulation study.

Figures 5.1, 5.2 and 5.3 illustrate the performance of lasso (lasso), adaptive

lasso (Alasso), truncating lasso (Tlasso) and truncating adaptive lasso (TAlasso)

estimators in the simulation studies. Figure 5.1 provides a graphical illustration

of the estimated networks and the effect of the truncating penalty. As it can be

seen, both lasso and adaptive lasso estimates include additional edges beyond the

true order of the VAR model (indicated by small rectangles). On the other hand,

since the number of covariates (d × p) is much larger than the sample size n, these

estimators can not correctly distinguish some of the true edges. However, by reducing

the number of covariates through truncation, the truncating lasso penalty provides
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True

lasso

Alasso

Tlasso

TAlasso

Figure 5.1: Images of the adjacency matrix of estimated graphs for lasso, Alasso, Tlasso and TAlasso.
The gray-scale represent percentage of times where an edge is present in 50 simulations with α = 0.1. Images
on the left correspond to the performance of estimators over time, and images on the right represent the
cumulative estimate of the graphical model. Some false positives and negatives are marked with rectangles
and ovals.

improvements for both of these shortcomings. Similar results are obtained for the

second simulation study, and are excluded, due to the space limitation.

To measure the performance of the estimators, we consider average values, as well

as standard deviations, of three different performance criteria over 50 simulations:

(1) The Structural Hamming Distance (SHD) between the estimated graph and the

true network, which measures the total number of differences in edges of the

estimated graph compared to the true network,

(2) The F1 measure, which is the harmonic mean of precision (P) and recall (R)

for the estimated graphs, and

(3) The partial ROC curve, obtained by plotting the values of true positive rate

against the values of false positive rate.
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Figure 5.2: Mean and standard deviation of performance criteria for lasso, Alasso, Tlasso and TAlasso

in estimation of graphical model over time.
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Figure 5.3: Mean and standard deviation of performance criteria for lasso, Alasso, Tlasso and TAlasso

in estimation of graphical model, ignoring the time lag information.

In both simulations, the value of the tuning parameter for the penalty coefficient,

α, is varied from 0.01 to 0.2, while the value of the second tuning parameter for the

truncating lasso penalty, β is fixed at 0.1.

Figures 5.2 and 5.3 illustrate the performance of the above estimators in correctly

estimating the graphical model over time, in the first and second simulation studies,

respectively. It can be seen that in all cases, TAlasso provides the best estimate.

On the other hand, the advantage of Tlasso over Alasso diminishes in the absence

of autoregulatory interactions.

The above simulation studies provide additional evidence in favor of the adaptive

lasso procedure, and that the proposed truncation mechanism offers additional im-

provement for estimation of Granger causality over the regular version of the lasso

penalty. Additional simulation studies indicate that as the sample size increases,

lasso and adaptive lasso estimates can overcome the curse of dimensionality and
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hence the truncating lasso estimates offer less significant improvements. Also, in

simulations, where the time lag information is ignored, i.e. if only the structure

of the graphical models is considered, the performance of the proposed methods is

improved, but the comparative results obtained here remain unchanged.

5.3.2 Analysis of the Regulatory Network of E-coli

Kao et al. (2004) proposed to use Network Component Analysis to infer the tran-

scriptional regulatory network of Escherichia coli (E-coli). They also provided whole

genome expression data over 8 time points with different sample sizes, as well as in-

formation about the known regulatory network of E-coli. Figure 5.4 represents true

and estimated regulatory networks along with performance measures of both Alasso,

as well as TAlasso penalties. It can be seen that the rate of recall is improved in

the TAlasso estimate, resulting in a higher F1 measure. The improved performance

of the TAlasso penalty in comparison to the Alasso penalty, as well as the overall

performance of this estimator, further validate our numerical analysis.

For comparison, we also provide the estimated regulatory network using our im-

plementation of the group lasso penalty of Lozano et al. (2009) (grpLasso). It can

be seen that in comparison to TAlasso, grpLasso performs poorly in this example1.

5.3.3 Analysis of BioGRID Network in HeLa Cells

The genome-wide expression of cell cycle genes in human cancer cell lines (HeLa)

were analyzed by Whitfield et al. (2002). The authors performed different exper-

iments resulting in multiple mRNA time-course samples. Sambo et al. (2008) ex-

tracted a subset of 9 genes from the human cell cycle genes for which the regula-

tory network is already determined in the BioGRID database (www.thebiogrid.org).

1This may be due to the fact that our implementation does not achieve the optimal setting of parameters, or
other details not specified in Lozano et al. (2009).

file:www.thebiogrid.org
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Figure 5.4: Known transcription regulatory network of E-coli along with estimates based on Alasso,
TAlasso and grpLasso. True edges (True Positives in estimated networks) are marked with solid black
arrows, while False Positives are indicated by dashed red arrows.

The authors developed an algorithm for reverse engineering causal gene networks,

called CNET, and applied it to this data set. CNET is a search-based algorithm, which

searches over the space of possible graphs, in order to find the candidate graph with

the highest score.

This set of 9 genes was also analyzed by Lozano et al. (2009). Figure 5.5 rep-

resents the true regulatory network along with estimated networks using our pro-

posed TAlasso estimate, as well as the estimates based on the group lasso and CNET

methods. As with the other two groups, we used the third experiment of Whitfield

et al. (2002), consisting of 47 time points and we considered a maximum time lag

of d = 3. The estimates for group lasso and CNET were reconstructed based on the

plots presented by authors, ignoring autoregulatory interactions in the group lasso

estimate2. The best performance is achieved by the CNET algorithm and the authors

point out that this result is in line with the best performance obtained in simulated

data sets. The performance of the TAlasso method is slightly better than the group

lasso estimate. It is important to note that although penalization methods (group

lasso and truncating lasso) fail to perform as well as search-based algorithms like the

2There appears to be a typo in results of Lozano et al. (2009): The BioGRID network should be referred to as the
network in Figure 5b (instead of 5a in the paper). Also, the precision, recall and F1 measures based on the network
in Figure 5 are different from the values reported in the paper.



127

CCNA2

CCNB1

CCNE1
CDC2

CDC6

CDKN3

E2F1
PCNA

RFC4

Known Regulatory Network

CCNA2

CCNB1

CCNE1
CDC2

CDC6

CDKN3

E2F1
PCNA

RFC4

TAlasso
P= 0.3, R= 0.33, F1= 0.32

CCNA2

CCNB1

CCNE1
CDC2

CDC6

CDKN3

E2F1
PCNA

RFC4

grpLasso
P= 0.24, R= 0.44, F1= 0.3

CCNA2

CCNB1

CCNE1
CDC2

CDC6

CDKN3

E2F1
PCNA

RFC4

CNET
P= 0.36, R= 0.44, F1= 0.4

Figure 5.5: Known BioGRID network of human Hela Cell genes along with the estimates based on TAlasso,
grpLasso and CNET. True edges (True Positives in estimated networks) are marked with solid black arrows,
while False Positives are indicated by dashed red arrows.

CNET algorithm, they are computationally more efficient and can be used to analyzed

large networks, whereas search-based algorithm become intractable for analysis of

real-world biological networks.

It can be seen from Figure 5.5 that two of the correctly estimated edges, from

CCNA2 to CDC6 and E2F1, are shared in all three estimates and that all true

positives of TAlasso are also found by grpLasso. On the other hand, a number

of estimated edges not present in the BioGRID network are found in two or more

estimates. This may suggest that some of the estimated edges (e.g. the edge from

CCNA2 to CCNB1) may represent valid regulatory links that are not included in

the BioGRID data set. Validation of such hypotheses requires further investigations

and/or experimental studies.

A main advantage of the truncating lasso estimate is that it also provides infor-

mation on the time lag of regulatory effects of transcription factors on other genes.

Table 5.1 provides details of information on effective time lags of effects of genes in

the network. Such information provides valuable clues to the underlying regulatory

mechanism but is overlooked in the other two methods.
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5.4 Concluding Remarks

Estimation of gene regulatory networks is a crucial problem in computational

biology. Information conveyed from these networks can be exploited to improve es-

timation and inference procedures, in particular to determine which pathways are

involved in the cell’s response to environmental factors or in disease progression

(see Chapters II and III). Such information is also critical in drug development and

medicine. In this chapter, we proposed a novel penalization method, called truncat-

ing lasso, for estimation of gene regulatory networks based on the concept of Granger

causality. The proposed method can correctly determine the order of the underlying

time series, and uses that information to reduce the number of covariates. Such

reduction, in turn results in better false positive and false negative rates. Moreover,

the proposed method provides information on the time lags of regulatory effects of

genes on each other.

Granger causality is an intuitive concept and its underlying assumption (that

expressions of genes at each time point are only affected by expression levels at

previous times) can be justified in the study of biological systems. However, from a

technical point of view, it may be possible to reformulate the resulting autoregressive

model using different causal relationships. A more practical issue concerns the time

lags between observations: When observations are observed on coarse time intervals,

some of the underlying causal effects may not be distinguishable. The success of

Table 5.1: Time lag of regulatory effects of genes in the estimate of BioGRID network based on the TAlasso
algorithm.

Interaction Time lag Interaction Time lag

CCNA2 → CCNB1 1 CDC2 → CDC6 1
CDNK3 → CDC2 1 CDC2 → E2F1 2
CCNA2 → E2F1 1 CCNA2 → CDC6 2
CCNB1 → PCNA 1 E2F1 → CCNA1 2
CDC2 → CCNB1 1 RFC4 → CDC2 2
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reverse engineering algorithms, in particular penalization methods, requires repeated

time series observations over fine time grids.

The method proposed in this chapter offers significant improvements over both

lasso and adaptive lasso estimates, especially for small to moderate sample sizes. This

is achieve by excluding unnecessary covariates from the regression problem. Further

improvements may be possible by exploiting the stationarity of the stochastic process

in order to take advantage of full information provided in the time series, and should

be considered in the future.

Availability

The proposed truncating lasso method, as well as the penalized likelihood esti-

mation method of Chapter IV are implemented in the R-package ’grangerTlasso’

and is freely available at www.stat.lsa.umich.edu/∼shojaie.

http://www.stat.lsa.umich.edu/~shojaie/


CHAPTER VI

Dimension Reduction and Inference in High Dimensional
Networks Using Laplacian Eigenmaps

6.1 Introduction

As discussed in previous chapters, interactions among components of biological

systems play a crucial role in determining the state of the system. Therefore, incorpo-

rating available information about such interactions provides more efficient methods

of estimation and inference. In Chapter II, we reviewed two classes of approaches

that attempt to account for interactions among biological components. The first

approach, gene set analysis (Subramanian et al., 2005; Tian et al., 2005; Efron and

Tibshirani, 2007), is based on the idea that by assessing the significance of sets rather

than individual genes/proteins, interactions among them can be preserved. In addi-

tion, this method unveils the combined effect of sets of genes/proteins, which may

not be evident from tests of individual components. On the other hand, the second

approach, network-based analysis (Ideker et al., 2002; Wei and Li, 2007; Wei and

Pan, 2008; Sanguinetti et al., 2008), directly incorporates the interactions among

genes/proteins, in order to assess the significance of individual components. To com-

bine the advantages of both of these approaches, in Chapter II, we introduced a

model for incorporating the regulatory gene network, and developed an inference

framework for analysis of biological pathways. In Chapter III, we extended this

130
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framework, called NetGSA, to analyze general gene/protein networks, in complex

experimental conditions.

In the NetGSA framework, a global model is introduced with parameters for indi-

vidual genes/proteins, and the parameters are then combined appropriately in order

to assess the significant (or changes) in biological pathways. The test statistic pro-

posed in NetGSA has desirable properties, including efficiency and interpretability.

However, the main challenge in applying NetGSA to study the biological systems

in eukaryotes, in particular mammalians, results from the complexity of the genome

and the large number of genes and proteins that need to be simultaneously ana-

lyzed. This results in extensive computational time1. In addition, the number of

parameters (and hence the complexity of the models incorporated) is limited by the

available sample size. In this chapter, I propose a dimension reduction technique

for networks, based on Laplacian eigenmaps, with the goal of providing an optimal

low-dimensional projection for the space of random variables in each subnetwork.

We start by reviewing the Laplacian eigenmaps in Section 6.2, and establish their

connection to principal component analysis (PCA) for random variables on the graph.

Inference for significance of subnetworks (pathways) is discussed in Section 6.3, where

we introduce Laplacian eigenmaps with boundary conditions and use the group-lasso

penalty to formulate the inference problem as a penalized principal regression problem

on the graph. Results of applying the new methodology to simulated, as well as real,

data examples are presented in Section 6.4, and a summary and directions for future

research are given in Section 6.5.

1In Chapter III, we proposed an iterative algorithm for estimation of mixed linear model parameters. In the next
chapter, we will further extend this algorithm in order to develop a distributed estimation framework.
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6.2 Laplacian Eigenmaps

6.2.1 Preliminaries

Consider p genes (proteins or metabolites), whose expression data is given in the

form of an n×p matrix X, and let y denote the n×1 vector of treatment conditions.

For simplicity, here we consider the case of a two-class inference problem, which

implies that y only includes two classes (e.g. treatment and control). Extensions

to more general experimental settings are discussed in Section 6.5. Throughout

this chapter we assume that interactions among genes are given in the form of an

undirected (weighted) graph G = (V,E), with V the set of nodes in the graph and

E ⊆ V ×V its edge set. The edge set and the strength of associations among genes is

captured through the adjacency matrix of the graph A. Specifically, there is an edge

between genes i and j if the Aij (and hence Aji) is non-zero. In addition, we assume

that Aij ≥ 0. The gene sets of interest are defined based on common biological

function, co-regulation or chromosomal location, and the goal of this chapter is to

develop dimension reduction methods on networks, in order to assess the significance

of a priori defined gene sets (subnetworks) with minimal information loss.

6.2.2 Graph Laplacian and Eigenmaps

Laplacian eigenmaps are defined using the eigenfunctions of the graph Laplacian,

which is commonly used in spectral graph theory, computer science and image pro-

cessing. Applications based on Laplacian eigenmaps include image segmentation and

the normalized cut algorithm of Shi and Malik (2000), spectral clustering (Saerens

et al., 2004) and collaborative filtering (Fouss et al., 2004).

The Laplacian matrix and its eigenvectors have also been used in biological ap-

plications. Li and Li (2008, 2010) used the Laplacian matrix in order to define a
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network-penalty for variable selection on graphs, and Rapaport et al. (2007) used

the interpretation of Laplacian eigenmaps as a Fourier basis to propose supervised

and unsupervised classification methods.

Different definitions and representations have been proposed for the spectrum of

graph, and the results may vary depending on the definition of the Laplacian matrix

(see Chung, 1997, for a review). Here, we follow the notation of Chung (1997), and

consider the normalized Laplacian matrix of the graph. To that end, let D denote

the diagonal degree matrix for A, i.e. Dii =
∑

j Aij ≡ di, and define the Laplacian

matrix of the graph by

L = D−1/2(D − A)D−1/2.

The Laplacian matrix can be alternatively defined as

Lij =


1− Ajj

dj
j = i, dj 6= 0

− Aij√
didj

j ∼ i

0 o.w.

Chung (1997) shows that L is positive semidefinite (PSD) with eigenvalues 0 =

λ0 ≤ λ1 ≤ . . . ≤ λp−1 ≤ 2. The eigenvalues of L are known as the spectrum of G,

and optimize the Rayleigh quotient for L

(6.1)
〈g,Lg〉
〈g, g〉

=

∑
i∼j (f(i)− f(j))2∑

j f(j)2dj
,

It can be seen from (6.1), that the 0-eigenvalue of L is g = D1/21, corresponding to

the average over the graph G. The first non-zero eigenvalue of L, λ1 is the harmonic

eigenfunction of L and is given by

λ1 = inf
f⊥D1

∑
j∼i (f(i)− f(j))2∑

j f(j)2dj
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The eigenfunction corresponding to λ1 corresponds to the Laplace-Beltrami operator

on Reimannian manifolds. More generally,

λk = inf
f⊥DCk−1

∑
j∼i (f(i)− f(j))2∑

j f(j)2dj

where Ck−1 is the projection to the subspace corresponding to the first k − 1 eigen-

values.

6.2.3 Principal Component Analysis for Graphs

Previous applications of the graph Laplacian and its spectrum often focus on the

properties of the graph; however, the connection to the probability distribution of

the random variables on nodes of the graph have not been previously discussed.

In graphical models the undirected graph G among random variables corresponds

naturally to a Markov random field. In particular, when the expression data X

is Gaussian, the following result establishes a relationship between the Laplacian

eigenmaps and the principal components of the random variables defined on the

nodes of the graph.

Lemma VI.1. Assume that the random variables on the nodes of the graph are

jointly normally distributed. Then, the eigenfunctions of L correspond to the princi-

pal components of X, with the eigenfunction corresponding to the smallest non-zero

eigenvalue representing the leading principal component.

Proof. First note that the inverse covariance (or precision) matrix has the same non-

zero pattern as the adjacency matrix of the graph, with non-zero diagonal entries

equal to the inverse partial variance of each variable (see e.g. Rue and Held, 2005).

Then, using the conditional autoregression (CAR) model of Besag (1974, 1975), the

precision matrix is obtained by appropriately normalizing the adjacency matrix to be

positive definite (PD). The most common choice for normalization is to ensure that
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the precision matrix is diagonally dominant (see Rue and Held, 2005, for additional

details). However, as mentioned in the previous section, the Laplacian matrix is

PSD, which implies that for any ζ > 0, L̃ = L+ζIp is a positive definite matrix with

the same non-zero pattern as the adjacency matrix of the graph. This in turn implies

that, L̃ and L̃−1 correspond to the precision and covariance matrix of the random

variables X1, . . . , Xp defined on the nodes of the graph. Let L+ denote the Moore-

Penrose generalized inverse of L. Then, taking limit as ζ → 0, it can be seen that L

and L+ correspond to the precision and covariance matrix of X, respectively.

An alternative justification for the above result, for general probability distribu-

tions defined on graphs, can be given based on the problem of finding the optimal

embedding of graph G in a lower dimensional Euclidean space. For unweighted

graphs, this justification was given by Belkin and Niyogi (2003), using the unnorml-

ized version of the Laplacian matrix. We first consider the case of one dimensional

embedding. In this case, the goal is to find an embedding v = (v1, . . . , vp)
T that pre-

serves the distances among the nodes of the graph. Although no explicit assumption

about the joint probability distribution of the random variables is made, to justify

the relationship in Lemma VI.1, one needs to assume that the graph captures the

“similarity” among random variables, with nodes adjacent in the graph being similar

and the distance of the shortest path between two non-adjacent nodes defining their

similarity. The objective function of the embedding problem is then given by

Q =
∑
i,j

(vi − vj)2Aij.

However, Belkin and Niyogi (2003) show that Q = 2vT(D − A)v, and hence, the

optimal embedding is found by solving the following optimization problem

(6.2) argmin
vTDv=1

vT(D − A)v
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Setting u = D1/2v, (6.2) is equivalent to solving

argmin
‖u‖=1

uTLu

whose solution corresponds to finding the eigenvector corresponding to the smallest

eigenvalue of L. The more general problem of embedding into an m-dimensional

Euclidean space is solved similarly by finding the eigenvectors corresponding to the

m smallest eigenvalues of L.

Lemma VI.1 establishes the connection between the eigenvalues of the Laplacian

matrix and the principal components of the covariance matrix of random variables

defined on the graph. Based on this result, we can develop dimension reduction

algorithms that summarize the information in the entire biological network into few

feature vectors. Although the resulting dimension reduction method can be used

efficiently in classification (as in Rapaport et al., 2007), the eigenvalues of G do not

provide any information about significance of arbitrary subnetworks, and therefore

cannot be used to analyze the changes in individual pathways. In the next section,

we introduce a restricted version of Laplacian eigenmaps, and discuss the problem

of analysis of biological pathways.

6.3 Analysis of Pathways and PCR on Graph (GPCR)

6.3.1 Pathway Analysis

In Chapter II we argued that in order to analyze the effect of each pathway, the test

statistic needs to represent the “pure” effect of the pathway, without being influenced

by effects from external nodes. Using the framework of mixed linear models, this

was achieved through the network contrast vector defined in Lemma II.5. However,

in order to achieve dimension reduction, we need a method for analysis of pathways

that only incorporates local information at the level of each pathway, and possibly
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its neighbors. This is illustrated in the simple example of Figure 6.1.

Figure 6.1: Illustration of the pathway effect. Pathway of interest is marked with the dotted circle.

Using the connection of the Laplace operator in Reimannian manifolds to heat flow

(see e.g. Belkin and Niyogi, 2003), the problem of analysis of arbitrary subnetworks

can be translated as a heat equation with boundary conditions. It then follows

that in order to assess the “effect” of each subnetwork, the appropriate boundary

conditions should block the flow of heat at the boundary of the set. This corresponds

to insulating the boundary, also known as the Neumann boundary condition. For

the general heat equation τ(v, x), this boundary condition is given by

∂τ

∂v
(x) = 0

at each boundary point x, where v is the normal direction orthogonal to the tangent

hyperplane at x.

The problem of eigenvalues of subgraphs with boundary conditions is studied in

Chung (1997). In particular, let S be any (connected) subnetwork of G, and denote

by δS the boundary of S in G. The Neumann boundary condition states that for

every x ∈ δS,

(6.3)
∑

y:{x,y}∈δS

(f(x)− f(y)) = 0

The Neumann eigenfunctions of S are optimizers of the restricted Rayleigh quo-

tient, given by

λS,i = inf
f

sup
g∈Ci−1

∑
{t,u}∈S∪δS (f(t)− f(u))2∑

t∈S (f(t)− g(t))2 dt
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Figure 6.2: Illustration of the Neumann random walk. The dotted curve indicates the boundary of the
subnetwork.

where Ci−1 is the projection to the space of the first i− 1 eigenfunctions.

Chung et al. (1996) establish a connection between the Neumann boundary con-

ditions and a reflected random walk on the graph, and show that the Neumann

eigenvectors can be alternatively calculated from the eigenvectors of the transition

probability matrix of this reflected random walk, also known as the Neumann random

walk (see Chung, 1997, for additional details).

Let P̃ and P denote the transition probability matrix of the reflected random walk,

and the original random walk defined on G, respectively. Noting that P = D−1A, we

can extend the results of Chung (1997) as follows. For the general case of weighted

graphs, define the transition probability matrix of the reflected random walk by

(6.4) P̃ij =


Pij j ∼ i, i, j ∈ S

Pij +
AikAkj
did′k

j ∼ k ∼ i, k /∈ S

0 o.w.

where

d′k =
∑

i∼k,i∈S

Aki

denotes the degree of the node k in S. Then, the Neumann eigenvalues are given by

λi = 1− κi, where κi is the ith eigenvalue of P̃ .

The connection with the Neumann random walk also sheds light into the effect of

the proposed boundary condition on the joint probability distribution of the random
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variables on the graph. To illustrate this, consider the simple graph of Figure 6.2.

For the moment, suppose that the random variables X1, X2, X3 are Gaussian, and

the edges from X1 and X2 to X3 are directed. As discussed in Chapter II, the joint

probability distribution of the random variables on the graph is then given by linear

structural equation models:

X1 = γ1

X2 = γ2 ⇒ X = Λγ, Λ =


1 0 0

0 1 0

ρ1 ρ2 1


X3 = ρ1X1 + ρ1X2

Then the conditional probability distribution of X1 and X2 given X3, is then

Gaussian, with the inverse covariance matrix given by

(6.5)

 1 + ρ2
1 ρ1ρ2

ρ1ρ2 1 + ρ2
2


A comparison between (6.4) and (6.5) reveals that the proposed Neumann random

walk corresponds to conditioning on the boundary variables, if the edges going from

the set S to its boundary are directed. The reflected random walk, for the original

problem, therefore corresponds to first setting all the influences from other nodes

in the graph to nodes in the set S to zero (resulting in directed edges) and then

conditioning on the boundary variables.

6.3.2 Group-Penalized PCR on Graph

Using the Neumann eigenvectors of subnetworks, we now define a principal compo-

nent regression on graphs, which can be used to analyze the significance of pathways.

Let Nj denote the |Sj| ×mj matrix of the mj smallest Neumann eigenfunctions for
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Eigenvalues of Laplacian Proportion of Variance Explained

Figure 6.3: Laplacian eigenvalues. Left: eigenvalues of two simulated graphs. Right: proportion of variance
explained by non-zero eigenfunctions.

subgraph Sj. Also, let Xj be the n × |Sj| matrix of observations for the j-th sub-

network. An mj dimensional projection of the original data matrix Xj is then given

by

X̃j = XjNj.

Different methods can be used in order to determine the number of eigenfunctions

mj for each subnetwork. A simple procedure determines a predefined threshold for

the proportion of variance explained by each eigenfunction. These proportions can

be determined by considering the reciprocal of Neumann eigenvalues (ignoring the 0-

eigenvalue). Figure 6.3 gives an example of eigenvalues for the two simulated graphs

in Section 6.4.

The significance of subnetwork Sj is a function of the combined effect of all the

nodes, captured by the transformed data matrix X̃j. This combined effect can be

evaluated by imposing a group penalty on the coefficient of the regression of the

vector of experimental factors y on the transformed data matrices X̃j. Using the

group lasso penalty of Yuan and Lin (2006), we estimate the significance of the

subnetwork by solving the following optimization problem

(6.6) argmin
β
‖y −

J∑
j=1

X̃jβj‖+ γ
J∑
j=1

‖βj‖2
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where J is the total number of subnetworks considered.

The problem in (6.6) is solved using the R-package grplasso (Meier et al., 2008),

and the optimal value of the tuning parameter γ in (6.6) is determined by performing

k-fold cross validation, with the goal of minimizing the Bayesian information criterion

(BIC), with the degrees of freedom of the model estimated based on the number of

subnetworks with nonzero effects.

As a final remark, we note the problem in (6.6) can be reformulated as a group-

penalized regression problem in the original space. To see this, suppose that we

include all of the eigenfunctions for each subnetwork Sj and assume that there are

no overlaps amongst the subnetworks. Then, denoting the new vector of coefficients

as βj = Njβj, the problem in (6.6) can be written as

(6.7) argmin
β
‖y −Xβ‖+

J∑
j=1

‖βj‖Θj

where Θj is a diagonal matrix consisting of norms of Neumann eigenfunctions for Sj

and ‖u‖Λj = (
∑
u2
i θj,i)

1/2.

The formulation in (6.7) corresponds to a group-lasso penalized logistic regression

problem on the graph, where the groups are defined by subnetworks and the penalty

for each coefficient is given by the norm of the Neumann eigenfunction. Using this

formulation, asymptotic properties of the resulting estimators follow directly from

results established in the literature. An example of such properties includes the

consistency of the estimators in terms of the logistic loss function established in

Meier et al. (2008). In particular, suppose that β0 is the minimizer of the true risk

function, and β̂ is the estimate based on the group lasso penalized empirical risk

function, i.e.

β̂ = argmin
β

{
n−1

n∑
i=1

[−yiηβ(Xi) + log{1 + exp(ηβ(Xi))}] +
γ

n

J∑
j=1

‖βj‖Θj

}
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where

ηβ(x) = β0 +
J∑
j=1

Xi,j
Tβj

Following Meier et al. (2008), we make the following assumptions

(A1) For some constant 0 < ξ ≤ 0.5, ξ ≤ Pβ0 [Y = 1|x] ≤ 1− ξ for all x.

(A2) The matrix Σ = E[xxT] is non-singular

(A3) After normalizing the predictors so that E[xj
Txj] = I|Sj |, we assume

max
x

max
j
‖xj‖2 ≤ nL2

n

The following result establishes the consistency of the group lasso estimate.

Theorem VI.2. Let N0 be the number of non-zero group effects. Then assuming

(A1)-(A3), there exists constants C1, C2, C3, C4 and c1, c2 such that if the group sizes

are fixed, but the total number of groups J is allowed to diverge, and if C1(1 +

N2
0 )L2

n log(J) ≤ c1 and C1 log(J) ≤ λ ≤ c1(1 +N2
0 )L2

n then

P
{

E[ηβ̂ − ηβ0 ]2 ≥ c2(1 +N0λ)/n
}
≤ C2

{
log(n) exp(−λ/C3) + exp(−(C4L

2
n)−1)

}
Proof. The result follows directly from the material in Section 2.4 of Meier et al.

(2008) by reformulating the problem as a group-lasso problem on a graph, with the

original variables (i.e. columns of the original data matrix X).

6.4 Data Analysis

6.4.1 Simulation Study

To evaluate the performance of the proposed method, we generate a small net-

work of 80 genes, with 8 subnetwork. The expression levels of genes are generated

according to a normal distribution with mean µ. Under the null hypothesis, all mean

values are set to 1 and the association weight for all edges of the network equals 0.2
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Figure 6.4: Simulated networks for analysis of graph PCR method. Left: setting of parameters under null,
Right: setting of parameters under alternative.

(left panel of Figure 6.4). The setting of parameters under the alternative hypothesis

are given in Table 6.1, with µalt = 3.

Table 6.1: Setting of the parameters under the alternative hypothesis.
Subnetwork % µalt association weight (ρ)

1 0.05 0.2
2 0.20 0.2
3 0.50 0.2
4 0.80 0.2
5 0.05 0.6
6 0.20 0.6
7 0.50 0.6
8 0.80 0.6

The estimated powers of the tests for each of the subnetworks based on 200 sim-

ulation with n = 50 observations are given Figure in 6.5. It can be seen that while

the proposed GPCR method offers improvements over GSEA, especially in case of

subnetworks 3 and 6, it results in less accurate inference compared to NetGSA. This

is expected as GPCR only incorporates the local information about the association

among nodes in the graph, while NetGSA incorporates the global interaction infor-

mation, and is expected to be more efficient. However, GPCR becomes an attractive
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Figure 6.5: Results of simulation analysis for the graph PCR method.

alternative in high dimensional settings, and in particular in distributed analysis of

pathway effects. In addition, when the sample size is small, GPCR can be used to

reduce the dimension of the parameter space. This allows researchers to investigate

more complex hypotheses by including additional parameters for the effect of each

pathway.

6.4.2 Analysis of Yeast GAL Pathways

In Chapter II, we analyzed the pathways involved in Galactose utilization in

yeast based on the data from Ideker et al. (2001), and compared the performance of

the NetGSA and GSEA methods. The data includes a sample of 18 gene expression

values under two experimental conditions, (gal+) and (gal–), and interactions among

genes are also defined in Ideker et al. (2001). The interactions among genes, along

with significance of individual genes (based on single gene analysis) are given in

Figure 6.6, and the results of significance analysis based on NetGSA, GSEA and the

proposed GPCR are given in Table 6.2. As in the simulated example, the results of

this analysis indicate that GPCR results in improved efficiency over GSEA, while

failing to detect the significance of some of the pathways detected by NetGSA.
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Figure 6.6: Network of yeast genes involved in Galactose utilization. The shades of red color indicate the
significance of individual genes based on single gene analysis.

6.5 Conclusion

In this chapter, we proposed a principal component regression method for graphs,

called GPCR, using Laplacian eigenmaps with Neumann boundary conditions. The

proposed method offers a systematic approach for dimension reduction in networks,

with a priori defined subnetworks of interest. It can also incorporate both weighted

and unweighted adjacency matrices and can be easily extended for analysis of com-

plex experimental conditions using the framework of generalized linear models (GLMs).

This method can also be used to assess the effect of biological pathways in longitu-

dinal and time-course studies.

Our simulation studies, and the real data example indicate that the proposed
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Table 6.2: Significant pathways in Galactose utilization.
PATHWAY Size NetGSA GPCR GSEA

rProtein Synthesis 28 X
Glycolytic Enzymes 16
RNA Processing 75
Fatty Acid Oxidation 7 X X
O2 Stress 13
Mating, Cell Cycle 58
Vesicular Transport 19
Sugar Transport 2
Glycogen Metabolism 12
Stress 12 X X
Metal Uptake 4
Respiration 9 X
Gluconeogenesis 7
Galactose Utilization 12 X X X
Amino Acid Synthesis 30

GPCR method offers significant improvements over the methods of gene set analy-

sis. However, it does not achieve optimal powers in comparison to NetGSA. This

difference in power may be attributable to the mechanism of incorporating the net-

work information in the two methods: while NetGSA incorporates the full network

information, GPCR only account for local network information, at the level of each

subnetwork, and restricts the interactions with the rest of the network based on the

Neumann boundary condition. However, the efficiency of GPCR depends on the

performance of the group-lasso penalty, which is in turn governed by the choice of

the tuning parameter. It is well known that the optimal tuning parameter for classi-

fication does not correspond to the optimal choice of tuning parameter for variable

selection. Therefore, investigating other choices of tuning parameter, in particular

determining the tuning parameter based on the probability of false positive should

be a focus for future research.

Although our limited comparisons indicate that GPCR may not be as powerful

in detecting the significance of pathways as the full modeling framework of NetGSA,

GPCR could result in significant improvement in terms of computational time and
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memory requirements for analysis of high dimensional networks. In addition, the

reduction in the dimension resulting from GPCR facilitates the analysis of complex

experiments in the settings with small sample sizes.

Current analyses of asymptotic properties of group penalized estimators are often

focused on consistency of the parameters, which is not of main interest in our context.

Evaluating the performance of the proposed inference procedure requires establishing

variable selection consistency of the estimator in high dimensional settings. Finally,

it is crucial to investigate the effect of noise in the network information on the

performance of the proposed method.



CHAPTER VII

Iterative Algorithms for Estimation and Inference in High
Dimensional Networks

7.1 Introduction

Modern statistical applications often involve estimating a large number of param-

eters. Gene expression analysis, image analysis, and pattern recognition problems

are examples of such applications. Statistical analysis in such applications often

requires finding solutions to high dimensional optimization problems. This high-

lights the need for more efficient optimization algorithms that could take advantage

of recent developments in computing technology, in particular multi-processor com-

putes. In Chapter III an iterative algorithm based on block-relaxation was presented

for the estimation of mean and variance parameters in mixed linear models. Al-

though the convergence of this algorithm has been already established (Oberhofer

and Kmenta, 1974), in this chapter we use the theory of block-relaxation (BR) algo-

rithms (de Leeuw, 1994) to prove the convergence of this algorithm under less restric-

tive assumptions. In the remainder of this chapter, we start with a brief review of

the theory of block-relaxation in section 7.2. In Section 7.3, I extend the algorithm of

Chapter III, in order to propose a distributed version of the BR algorithm. Finally, in

Section 7.4, we discuss two possible extensions of this framework that can be used to

prove convergence of approximate iterative algorithms like quasi-likelihood methods

148
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for estimation of the parameters in generalized mixed linear models (GLMM).

7.2 Review of Block-Relaxation Algorithms

Following the notation in de Leeuw (1994), let f be a real-valued functional defined

on the product set Ω = Ω1⊗· · ·⊗ΩT , with Ωt ⊆ Rnt . Thus, throughout this chapter

we assume that the domain of f is a subset of Rn, where n =
∑T

t=1 nt, and its range

is R. The general form of block-relaxation algorithms is given in Algorithm 4. It has

been pointed out in de Leeuw (1994) that many iterative optimization algorithms in

statistics including the EM (Dempster et al., 1977) and the back-fitting or Gauss-

Siedel algorithms (Buja et al., 1989), are special cases of this general framework.

Algorithm 4 Block-Relaxation Algorithm

1. Find an initial estimate x(0) ∈ Ω
2. Repeat until convergence k = 1, 2, · · ·

2.1. x(k+1)
1 = argminx1∈Ω1

f(x1, x
(k)
2 , · · · , x(k)

T )
2.2. x(k+1)

2 = argminx2∈Ω2
f(x(k+1)

1 , x2, x
(k)
3 , · · · , x(k)

T )
...
2.T. x(k+1)

T = argminxT∈ΩT
f(x(k+1)

1 , x
(k+1)
2 , · · · , x(k+1)

T−1 , xT )

In general, it is possible to alternate through the subproblems in Algorithm 4 in

different orders. It is also possible (with a higher degree of difficulty) to extend some

of the results of this chapter accordingly, but for simplicity, we only consider the case

of sequential updating over subspaces. Let x(k) , (x
(k)
1 , · · · , x(k)

T ) and f (k) , f(x(k)).

Also denote by Ω0 the level set of f given by the initial estimate, i.e. Ω0 = {x ∈

Ω|f(x) 6 f (0)}. Let ∆t, t = 1, · · · , T be point to set maps from Ω to 2Ω, and define

Γft (x) , argmin{f(x̄)|x̄ ∈ ∆t(x)}

A number of results are available about the convergence of the sequence {f (k)} and

accumulation points of the sequence {x(k)}. In fact, if Ω0 is compact and f is con-

tinuous on Ω, it is easy to show that the sequence {f (k)} converges, {x(k)} has a
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convergent subsequence, and the accumulation points of {x(k)} all have the same

function value, f∞ (see Theorem 1 in de Leeuw, 1994). However, in order to charac-

terize the sequence {x(k)} and determine whether this sequence converges to a unique

minimizer of f , we need some additional conditions. The following theorem due to

Fiorot and Huard (1979) states the conditions required for global convergence of the

general block-relaxation algorithm.

Theorem VII.1. (Fiorot and Huard, 1979) If

• x ∈ ∆t(x) ∀x, t

• ∆t is continuous on Ω (i.e. both upper and lower semi-continuous)

• f has a unique minimum over ∆t(x) for all x and t

• Ω0 is compact

then,

• the sequence {x(k)} is asymptotically regular, i.e. ‖x(k+1) − x(k)‖ → 0

• each accumulation point of the sequence is a fixed point of each of the Γft

Algorithm 4 is based on a special class of block-relaxation methods, called cyclic

methods, where the parameters are updated in a specific order, in other words

x(k+1) ∈ ⊗Tt=1Γft (x
(k)). Also, for this algorithm we have:

(7.1)

∆t(x1, · · · , xt−1, xt+1, · · · , xT ) = {x ∈ Rnt|(x1, · · · , xt−1, x, xt+1, · · · , xT ) ∈ Ω}

Note that for this map,

xt ∈ ∆t(x1, · · · , xt−1, xt+1, · · · , xT ) if and only if (x1, · · · , xt−1, xt, xt+1, · · · , xT ) ∈ Ω.

Therefore, it is easy to see that the ∆t(x) as given in (7.1) satisfies the first two

conditions of Theorem VII.1.
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7.3 Distributed Estimation of MLM parameters

As discussed in Chapter III, the maximum likelihood estimates of the fixed effect

parameters in mixed linear models are given by:

β̂ = (Ψ′Ŵ−1Ψ)
−1

Ψ′Ŵ−1Y

where W = (σ2
γΠΠ′ + R(θε)).

It can be seen that β̂ depends on estimates of σ2
γ and θ2

ε , which are often estimated

using restricted maximum likelihood (REML). Although this estimation problem is

trivial for problems with relatively small number of parameters, application of mixed

linear models in high dimensional networks requires estimating a large number of

parameters and is often computationally intractable. The difficulty arises from the

following challenges: first, the computational complexity of the algorithm is in gen-

eral O((Kp)3), where K is the number of experimental conditions, and secondly, the

memory required for storing the design matrices Ψ and Π in ultra-high dimensional

problems surpasses available RAM on desktop computers. Thus, traditional methods

for estimation of MLM parameters can only handle a few hundred parameters. To

overcome these challenges, we present an iterative algorithm, based on an extension

of block-relaxation which breaks down the problem into smaller estimation problems

to achieve reasonable complexity and reduce the memory requirements. In addition,

this algorithm provides a method for partitioning over spaces of parameters, as well

as observations, by considering estimation over subnetworks and can be used as a

basis for distributed estimation of mixed linear model (MLM) parameters in high

dimensional networks.

The algorithm consists of three main steps:

(i) Partitioning the parameter space, to fixed effect parameters and variance com-
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ponents,

(ii) Partitioning the space of observations for distributed estimation of fixed effect

parameters β, and

(iii) Augmenting the parameter space, by adding estimation of random effect pa-

rameters, in order to achieve separability in estimation of variance components.

Below we elaborate on each of these steps, and provide theoretical justification for

convergence of the algorithm to maximum likelihood estimates.

7.3.1 Step 1: B-R Algorithm for estimation of MLM parameters

In Chapter III we presented a block-relaxation algorithm for estimation of MLM

parameters that separates the estimation of fixed effect parameters from variance

components. Here, we derive the conditions that are required to guarantee conver-

gence. We first restate the algorithm.

Algorithm 5 Block-Relaxation Algorithm for Estimation of MLM Parameters

1. Find an initial estimate of β̂(0) (e.g. using Ordinary Least Squares)
2. Repeat until convergence k = 1, 2, · · ·

2.1. e(k+1) = Y −Ψβ̂(k)

2.2. θ̂(k+1) = argmaxθ − 1
2

(
log |W(θ)|+ e(k+1)′W−1(θ)e(k+1)

)
2.3. β̂(k+1) = (Ψ′Ŵ−1(θ̂(k))Ψ)

−1
Ψ′Ŵ−1(θ̂(k))Y

Lemma VII.2. Suppose that the design matrix Ψ has full column rank and estimates

of variance components θ in each step of Algorithm 5 result in a positive definite (PD)

covariance matrix (i.e. ∃c ≥ 0 such that W (θ̂(k)) � cI, where A � B implies that

A−B is PD.). Then the algorithm converges to the maximum likelihood estimate of

the mean and variance parameters.

Proof. We prove the result by verifying the assumptions of Theorem VII.1. First
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note that the map ∆t(x) in the above algorithm is given by:

∆β(θ) = {β|(β, θ) ∈ Ω}

∆θ(β) = {θ|(β, θ) ∈ Ω}

where Ω = R × R+. This mapping is a special case of (7.1) and hence satisfies the

first two conditions of Theorem VII.1. Also, note that the sequence of optimization

problems in Algorithm 5 is equivalent to the maximum likelihood function for mixed

linear models. We next find conditions required for the third assumption of Theorem

VII.1. To show the uniqueness of the minimum in step 2.2 of the algorithm, let

f
(k+1)
−β (θ) , − log

∣∣W−1(θ)
∣∣+ e(k+1)′W−1(θ)e(k+1)

Then e(k+1)′W−1(θ)e(k+1) is an affine function of W−1, and − log |W−1(θ)| is a

strongly convex function of W−1. Therefore, f
(k+1)
−β is a strongly convex function

of W−1 and as a result, Ŵ(k+1)−1

and hence Ŵ(k+1) are uniquely determined. Then,

in order for θ to be the unique minimizer of f
(k+1)
−β (θ), W−1(θ) needs to be a bijec-

tion in θ; hence G = G(θγ) and R = R(θε) should be bijections. Then observe that

β̂(k+1) in step 2.3 of the algorithm is the solution of the stationary condition for the

following optimization problem:

(7.2) β̂(k+1) = argmin
β

{
β′(Ψ′Ŵ(k)−1

Ψ)β − 2β′Ψ′Ŵ(k)−1

Y
}

The objective function is a quadratic function of β which has a unique minimum if

Ψ′Ŵ(k)−1
Ψ is positive definite (PD). However, if Ŵ(k) is PD, we can write Ψ′Ŵ(k)−1

Ψ =

(LΨ)′(LΨ) where L is a upper-triangular matrix with positive diagonal elements.

Thus, Ψ′Ŵ(k)−1
Ψ is PD if and only if Ψ is full rank and Ŵ(k) is positive definite.

Therefore, the convergence of the algorithm requires the additional assumption that

the estimates of θ in step 2.2 of the algorithm result in a PD estimate of W, i.e.
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there exists a c > 0 such that Ŵ(k) � cI1. In that case, W−1(θ) would also be a

bijection.

Finally, to prove the last condition of the theorem, let τ = f(x). Then Ω0 = {x ∈

Ω|f(x) 6 f (0)} is the inverse image of the set Ξ0 = {τ ∈ R|τ 6 τ (0)}. If f(·) assumes

a minimum, τ ∗, on Ω, then Ξ0 = [τ ∗, τ (0)] which is closed and bounded and hence

compact. Continuity of the log-likelihood function implies Ω0 is also compact and

Theorem VII.1 is applicable.

The positive definiteness of W in step 2.2 can be achieved by adding the constraint

Ŵ−1 � CI for a large positive constant C. This results in a positive semi-definite

programming problem in terms of Ŵ−1. It is also possible to replace the objective

function in 2.2 with the restricted maximum likelihood (REML) function, which often

results in a positive definite estimate of W. However, this is not further pursued

here.

7.3.2 Step 2: Distributed Estimation of Fixed Effect Parameters β

It is easy to see that the estimation of fixed effect parameters β in Step 2.3 of

Algorithm 5 can be transformed into a simple multiple regression problem, using the

weighted least squares algorithm. In particular, if S is the Cholesky factor of W (k),

β can be found by solving the following equation:

β̂(k+1) = (Ψ̃′Ψ̃)
−1

Ψ̃′Ỹ

where Ψ̃ = S−1Ψ and Ỹ = S−1Y. It is important to note that, in case of directed

acyclic graphs (DAGs), S is directly computed based on the influence matrix of the

graph Λ.

1Oberhofer and Kmenta (1974) require the estimate of W to be also bounded above, i.e. Ŵ(k) � CI for some
C > 0.
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The problem of estimation of fixed effect parameters in each step of the algorithm

can therefore be solved using distributed methods for estimation of least squares

parameters (see e.g. Lange, 2004).

7.3.3 Step 3: Augmented Estimation of Variance Components θ

To complete the distributed algorithm, and provide an efficient method for esti-

mation of variance components, let v = (Y ′, β′, γ′)′. We then note that for mixed

linear models

p(v | θ) = p(Y | β, γ, θ)p(β, γ | θ)

On the other hand,

p(Y | β, γ, θ) = p(Y | β, γ, θε) = p(ε | θε)

and

p(β, γ | θ) = p(γ | θγ)

Therefore, given the vector of random effects γ, we have

(7.3) `(θ; y, β, γ) = `(θε; ε) + `(θγ; γ) + c

where ` represents the log-likelihood function. Equation (7.3) implies that given

the vector of random effects, the problem of estimation of variance components is

separable. This is particularly appealing as estimation of θγ and θε from current

estimates of γ and ε often involves simple optimization problems with closed-form

solutions. To complete this step, we note that given the residuals at iteration k

(r(k) = Y − Ψβ̂(k)), the estimates of the random effects γ can be found by solving

(see e.g. Demidenko, 2004):

(7.4) γ̂(k) = argmin
γ

n∑
i=1

‖r(k)
i − Λγi‖2 + σ̂2,(k−1)

γ γ′iγi
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The penalized regression problem in equation (7.4) can be solved using distributed

algorithms for regression, including the block-coordinate descent algorithm of Fried-

man et al. (2007). Given the estimates of the random effects, ε can be estimated

using the relationship between observations, latent variables and noise, explained in

Chapter II. Specifically,

ê(k) = r(k) − Λγ̂(k)

Finally, the estimates of variance components are found by solving the following

optimization problems:

σ̂2,(k)
γ = argmin

σ2

`(σ2; γ̂(k)), θ̂(k)
ε = argmin

θε

`(θε; ε̂
(k))

7.4 Approximate iterative algorithms

The algorithm in Section 7.3 provides an alternative method for optimizing com-

plex objective functions and is especially useful for distributed computing. However,

this algorithm requires the objective function to be readily available. When the cal-

culation of the objective function is expensive or even impractical, it may be possible

to estimate the function f(x) by a new function g(x) and obtain an estimate of the

optimal points by optimizing g over Ω (obviously, the set of optimal points of f

should be contained in the domain of g). An example of this method is estimation

of the parameters of generalized mixed linear models using the quasi-likelihood ap-

proach. In this section, we discuss the use of iterative algorithms for optimization of

the function g and study the conditions that are needed for convergence of solutions

of the iterative algorithm to the optimal points of f(x)2. Let f(x) = g(x) + r(x),

where g is a smooth function that can be easily minimized, and r is the remainder

function. The algorithm used in this section is the same as Algorithm 4 with f(x)
2The discussion here is mainly about the convergence of iterative algorithms and does not concern the asymptotic

properties of the resulting estimators.
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being replaced by g(x). In other words, in order to find the optima of f(x), the

function g(x) is minimized and the remainder function r(x) is not included in the

optimization. We first state our approximate iterative algorithm along with a special

case of Theorem VII.1 which is focused on strongly convex functions.

Algorithm 6 Approximate Block-Relaxation Algorithm

1. Approximate the function f(x) by g(x) such that f(x) = g(x) + r(x)
2. Find an initial estimate x(0) ∈ Ω and define Ω0

g = {x ∈ Ω|g(x) 6 g(x(0))}
3. Repeat until convergence k = 1, 2, · · ·

3.1. x(k+1)
1 = argminx1∈Ω1

g(x1, x
(k)
2 , · · · , x(k)

T )
3.2. x(k+1)

2 = argminx2∈Ω2
g(x(k+1)

1 , x2, x
(k)
3 , · · · , x(k)

T )
...
3.T. x(k+1)

T = argminxT∈ΩT
g(x(k+1)

1 , x
(k+1)
2 , · · · , x(k+1)

T−1 , xT )

Lemma VII.3. Let ∆t(x) be defined by (7.1). If

• f is strongly convex

• Ω0 is closed

then

• the sequence {x(k)} is asymptotically regular

• each accumulation point of the sequence is a fixed point of each of the Γft

Proof. Strong convexity of f implies uniqueness of the optimum points of each sub-

problem. Based on the previous argument about ∆t, it suffices to prove the last

condition of Theorem VII.1. Strong convexity implies that there exists an m > 0

such that

(7.5) ∇2f(x) � mI, ∀x ∈ Ω0

where A � B means that A − B is positive semi-definite (PSD). But for x, y ∈ Ω0
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we have

(7.6) f(y) = f(x) +∇f(x)′(y − x) +
1

2
(y − x)′∇2f(z)(y − x)

for some z on the line segment [x, y]3. Then, (7.5) implies that

1

2
(y − x)′∇2f(z)(y − x) ≥ m

2
‖y − x‖2

and hence

(7.7) f(y) ≥ f(x) +∇f(x)′(y − x) +
m

2
‖y − x‖2 x, y ∈ Ω0

which implies that Ω0 is bounded. Since Ω0 ⊆ Rn, and is closed and bounded, the

last condition is verified.

Remark VII.4. The first assumption of Lemma VII.8 (closedness of Ω0) is usually

verified by checking that all sublevel sets of f are closed. This is true if the domain

of f is Rn or if f(x)→∞ as x converges to the boundary of domain f .

Remark VII.5. Since the maximum eigenvalue of ∇2f(x) is a continuous function of

x on Ω0, boundedness of Ω0 implies that ∇2f is bounded above on Ω0 (Boyd and

Vandenberghe, 2004), i.e. there exist a constant M such that

(7.8) ∇2f(x) �MI, ∀x ∈ Ω0

The following two theorems (stated in de Leeuw, 1994) provide additional con-

vergence conditions, which are needed in the proof of our first convergence result.

In this section, we consider general iterative algorithms. To that end, let A be the

algorithmic map, i.e. x(k+1) = A(x(k)) and consider the following definition of a

general iterative algorithm

1. start at an arbitrary x(0) ∈ Ω
3The line segment [x, y] is defined by all convex linear combinations of x and y.
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2. if x(k) is a fixed point stop, otherwise, set x(k+1) = A(x(k)) and continue.

Theorem VII.6. (Meyer, 1976) If

• A is uniformly compact on Ω, i.e. there is a compact Ω̃ ⊆ Ω such that A(x) ⊆ Ω̃

• A is upper-semincontinuous or closed on Ω (with possible exception of the fixed

points of A). In other words, for any x ∈ Ω, where x is not a fixed point of A,

if yi ∈ A(xi) and yi → y and xi → x then y ∈ A(x)

• A is strictly monotonic on Ω, i.e. y ∈ A(x) implies f(y) < f(x) if x is not a

fixed point of A.

then all accumulation points of the sequence {x(k)} generated by the algorithm are

fixed points of A. Moreover, {x(k)} is asymptotically regular.

Theorem VII.7. (Ostrowski, 1966) If

• the iterative algorithm converges to x∞

• A is differentiable at x∞

• 0 < ρ = ‖DA(x∞)‖ < 1

then the algorithm is linearly convergent with rate ρ.

For the algorithms considered in this section, the map A is defined by the solution

of the stationary conditions for each of the subproblems. Therefore, in order to apply

the above theorem we need to add the extra assumption that g is differentiable

sufficiently many times.

To simplify the notation, we define the following variables for every two consecu-
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tive steps of the algorithm (k and k + 1)

x
(+)
t =

(
x

(k+1)
1 , · · · , x(k+1)

t−1 , x
(k+1)
t , x

(k)
t+1, · · · , x

(k)
T

)
x

(−)
t =

(
x

(k+1)
1 , · · · , x(k+1)

t−1 , x
(k)
t , x

(k)
t+1, · · · , x

(k)
T

)
x

(·)
t =

(
x

(k+1)
1 , · · · , x(k+1)

t−1 , xt, x
(k)
t+1, · · · , x

(k)
T

)
Based on this notation,

(7.9) x
(+)
t = A(x

(−)
t ) = argmin

xt∈Ωt

g
(
x

(·)
t

)
Lemma VII.8. Consider the sequence {x(k)} defined in Algorithm 6 and let ∆t(x)

be defined by 7.1. Also, let ρ be the linear rate of convergence of the algorithm, given

in Theorem VII.7. Denote by m and M the lower and upper bounds on the Hessian

of g. If

• g is strongly convex

• Ω0 is closed

• the relative change in r in every subspace Ωt is less than m2

8M
(1 − ρ)‖x − x∗‖

where x∗ denotes the minimizer of g

then

• the sequence {x(k)} is asymptotically regular

• each accumulation point of the sequence is a fixed point of each of the Γft

Proof. We need to show that the assumptions of Theorem VII.6 hold for Algorithm

6. The map A is defined by the solutions of the stationary conditions for each

of the subproblems in Algorithm 6. Strong convexity of g implies that A is strictly

monotone with respect to g, i.e. g(x
(+)
t ) < g(x

(−)
t ). Thus, for every x in Ω,A(x) ⊆ Ω0

g.
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On the other hand, strong convexity of g also implies that Ω0
g is bounded, which along

with closedness of Ω0
g imply that A is uniformly compact with Ω0

g playing the role

of Ω̃. Upper-semicontinuouity of A follows from its definition as the solution to

stationary conditions and the fact that this g is twice differentiable.

To show the third assumption of Theorem VII.6, we need conditions on g and r

that make A strictly monotone with respect to f (i.e. f(x
(+)
t ) < f(x

(−)
t )). But since

g is strongly convex, we have g(x
(+)
t ) < g(x

(−)
t ) unless x is a fixed point. Therefore,

if the increase in r is less than the decrease in g in each step of the algorithm, f will

be strictly monotone. In other words, it suffices to have

(7.10) r(x
(+)
t )− r(x(−)

t ) < g(x
(−)
t )− g(x

(+)
t )

By strong convexity of g the assumptions of Theorem VII.7 are satisfied and therefore

the algorithm converges linearly with rate ρ defined in Theorem VII.7, i.e.

g(x
(+)
t )− g(x∗) ≤ ρ

(
g(x

(−)
t )− g(x∗)

)
which implies

(7.11) g(x
(−)
t )− g(x

(+)
t ) ≤ (1− ρ)

[
g(x

(−)
t )− g(x∗)

]
However, (7.6) and (7.8) imply that

(7.12) g(x
(+)
t ) ≤ g(x

(−)
t ) +∇g(x

(−)
t )

′
(x

(+)
t − x(−)

t ) +
M

2
‖x(+)

t − x(−)
t ‖2

Minimizing both sides of 7.12 over x
(+)
t gives

g(x
(−)
t )− g(x∗) ≥ 1

2M
‖∇g(x)‖2

From a similar argument using the lower bound on the Hessian of g it can be seen

that (Boyd and Vandenberghe, 2004)

‖∇g(x)‖ ≥ m

2
‖x− x∗‖
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Therefore, to satisfy (7.10) it suffices to have

|r(x(+)
t )− r(x(−)

t )| < m2

8M
(1− ρ)‖x− x∗‖2

Since ‖x(−)
t − x∗‖ ≥ ‖x(−)

t − x(+)
t ‖, the required condition on r can be written as

(7.13)
|r(x(+)

t )− r(x(−)
t )|

‖x(+)
t − x(−)

t ‖
< c‖x(−)

t − x∗‖

and hence Theorem VII.6 is applicable.

The result in Lemma VII.8 holds for general block-relaxation algorithms. How-

ever, the condition on r given in this result is not easily verified as it requires the

knowledge of the minimizer of g. In order to improve this result, we consider here

a special class of block-relaxation algorithms, namely coordinate cyclic descent al-

gorithms, where every subproblem consists of optimization over a one-dimensional

parameter space. In other words, in this version of algorithm, Ωt ⊆ R and T = n.

We first state a result about the Lipschitz property of operators on lines.

Theorem VII.9. (Ostrowski, 1973) Let H(ω) be an operator mapping the interval

[l, u] into a normed linear space and suppose there exist a constant L ≥ 0 such that

lim sup
h→0

‖H(ω + h)−H(ω)‖
|h|

≤ L

Then H is Lipschitz continuous with constant L.

Lemma VII.10. Consider the sequence {x(k)} defined by the cyclic coordinate de-

scent version of Algorithm 6 and suppose that g is strongly convex and Ω0 is closed.

If

(7.14)
|r(x(+)

i )− r(x(−)
i )|

‖x(+)
i − x(−)

i ‖
<

m

2M
|∇ig(x

(−)
i )|

then
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• the sequence {x(k)} is asymptotically regular

• each accumulation point of the sequence is a fixed point of each of the Γft

Proof. The first two conditions of Theorem VII.6 are shown by the argument in

Lemma VII.8. We show that (7.14) implies (7.10). To that end, observe that (7.7)

implies that ∇2
iig(x

(−)
i ) ≤M and by and Theorem VII.9 we get

(7.15) |∇ig(x
(+)
i )−∇ig(x

(−)
i )| ≤M‖x(+)

i − x(−)
i ‖

In each iteration of cyclic coordinate descent, the function is minimized with respect

to the ith component and hence ∇ig(x
(+)
i ) = 0. Therefore (7.14) and (7.15) imply

that

(7.16) |r(x(+)
i )− r(x(−)

i )| < m

2
‖x(+)

i − x(−)
i ‖

2

Applying (7.6) to x
(+)
i and x

(−)
i and using the fact that if y is obtained by updating

the value of x along any descent direction, (y − x)∇g(y) ≤ 0 we get

(m/2)‖x(−)
i − x(+)

i ‖2 ≤ g(x
(−)
i )− g(x

(+)
i )

which proves the lemma.

7.5 Discussion

We discussed a special class of block-relaxation algorithms and provided condi-

tions for the convergence of these algorithms. As an example, we considered the

algorithm for estimating the parameters of mixed linear models used in Chapter III.

We showed that the convergence of this algorithm can be easily verified if the es-

timated covariance matrix is positive definite (which is often guaranteed if REML

equations are used for estimation of variance components). It is of special interest
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to study the convergence of the proposed algorithm for estimation of generalized

mixed linear models (GLMM) parameters based on the quasi-likelihood methods.

McCulloch (2003) provides a review of the algorithms used for estimation of GLMM

parameters and points out that the quasi-likelihood method with a second-order

Laplace approximation may not work well when the distribution of the data is far

from normal. Researchers have therefore considered higher order Laplace approxima-

tions (Breslow and Lin, 1995; Lin and Breslow, 1996; Raudenbush et al., 2000). The

theory provided here may provide a guide to the appropriate degree of approximation

in such problems.

The application of the models discussed in Chapters II and III to human gene

expression data sets requires algorithms that efficiently reduce the amount of mem-

ory required for computation. A potential extension of the algorithms considered in

this section is estimating the parameters of the model over subgraphs. More specifi-

cally, the idea of cycling through the parameter space may be used to cycle through

subgraphs which can result in considerable reduction in the required memory.



CHAPTER VIII

Concluding Remarks

In this work, I addressed several issues related to estimation and inference in

high dimensional networks, with a specific focus on analysis of biological systems.

The main goal of this dissertation was to develop a flexible and efficient inference

procedure that incorporates the available network information, and can be used to

test the significance of arbitrary subnetworks. Such a method can be used to assess

which biological pathways respond to changes in environmental conditions, or are

involved in disease initiation or progression.

The inference framework presented in the first part of this dissertation (Chap-

ters II and III) directly incorporates the available network information and can be

used to test the significance of arbitrary subnetworks. In addition, we showed that

this framework is robust to presence of random noise in the network information, and

hence is also able to incorporate estimated network information. The second part of

the dissertation (Chapters IV and V) was therefore devoted to estimating directed

graphs from observations using penalized likelihood methods. Finally, in the last part

of the dissertation, I addressed additional issues regarding estimation and inference

in high dimensional networks, including dimension reduction techniques for subnet-

works, using Laplacian eigenmaps with Neumann boundary conditions (Chapters VI)

165
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and distributed estimation of mixed model parameters in networks (Chapter VII).

The inclusion of network information results in more efficient inference procedures

compared to classical methods of analysis of biological components. This increase in

efficiency can be specifically important in the study of complex diseases. In addition,

complex diseases often result from changes in expression levels of many individual

components, and although the effect of individual components may be negligible, the

analysis of the combined effect of pathways using the methodology proposed in this

research might reveal new clues about the underlying genetic factors. Finally, the

proposed model also provides a general framework that can be used in problems that

involve additional correlation structures, different distributional assumptions and/or

interactions among genes and environments.

The modeling framework presented in this dissertation is a special case of a more

general class of models, where the response is modeled as a function of the design

variables X, and the underlying network structure G, i.e. y = f(X) + g(G) (see

Culp et al., 2009, for additional discussion). In this general model, the functions

f and g represent the relationship between the response with mean effects and the

correlation structure, respectively. Using this general framework, it is possible to

extend the model presented here to other applications, including analysis of social

networks and computer networks. A number of related problems may be of specific

interest when general models are considered. In the applications considered in this

work, we have focused on problems where the subnetworks of interest are defined

a priori. An interesting extension (which may be of specific interest in anomaly

detection) is to find the subnetworks that are perturbed, or in general different than

the rest of the nodes.

Throughout this work, we considered networks presented by general weighted ad-
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jacency matrices. This is specifically important in the study of biological systems;

gene regulatory networks include both inhibitors and suppressors which cause posi-

tive and negative associations among the nodes of the network. However, the nature

of interactions among components of biological system often involve additional levels

of complexity. For instance, genes, proteins and metabolites all play important roles

in carrying out cell functions, and interactions among these components are different

in nature. To handle these applications appropriately, it may be necessary to define

new graph-theoretical concepts, and to consider new models with multiple classes of

nodes and edges in the network.

Finally, it is important to note that the network view of systems may not fully

represent the complex nature of interactions among components. However, more

complex mechanistic methods (e.g. dynamical systems) require additional informa-

tion and experiments in order to determine the nature of interactions, and may be

computationally prohibitive in high dimensional settings. The increase in available

information about mechanisms of interactions among components of the system,

and improvements in computing power could justify the use of more sophisticated

mathematical models for the analysis of complex biological systems.



Bibliography

A. Alexa, J. Rahnenfuhrer, and T. Lengauer. Improved scoring of functional groups

from gene expression data by decorrelating GO graph structure. Bioinformatics,

22(13):1600–1607, 2006.

A. Arnold, Y. Liu, and N. Abe. Temporal causal modeling with graphical granger

methods. In Proceedings of the 13th ACM SIGKDD, pages 66–75, 2007.

M. Ashburner, C. Ball, J. Blake, D. Botstein, H. Butler, J. Cherry, A. Davis,

K. Dolinski, S. Dwight, J. Eppig, et al. Gene ontology: tool for the unification of

biology. The Gene Ontology Consortium. Nat Genet, 25(1):25–9, 2000.

J. S. Bader, A. Chaudhuri, J. M. Rothberg, and J. Chant. Gaining confidence in

high-throughput protein interaction networks. Nature Biotechnology, 2004.

P. Baldi, S. Brunak, Y. Chauvin, C. Andersen, and H. Nielsen. Assessing the accuracy

of prediction algorithms for classification: an overview. Bioinformatics, 16(5):412,

2000.

O. Banerjee, L. El Ghaoui, and d’Aspremont Alexandre. Model selection through

sparse maximum likelihood estimation for multivariate Gaussian or binary data.

Journal of Machine Learning Research, 9:485–516, 2008.

W. T. Barry, A. B. Nobel, and F. A. Wright. Significance analysis of functional

168



169

categories in gene expression studies: a structured permutation approach. Bioin-

formatics, 21(9):1943–1949, 2005. ISSN 1367-4803.

M. Belkin and P. Niyogi. Laplacian eigenmaps for dimensionality reduction and data

representation. Neural computation, 15(6):1373–1396, 2003.

Y. Benjamini and Y. Hochberg. Controlling the false discovery rate: a practical and

powerful approach to multiple testing. J. Roy. Statist. Soc. Ser. B, 57(1):289–300,

1995. ISSN 0035-9246.

J. Besag. Spatial interaction and the statistical analysis of lattice systems. Journal

of the Royal Statistical Society. Series B (Methodological), 36(2):192–236, 1974.

J. Besag. Statistical analysis of non-lattice data. The statistician, pages 179–195,

1975.

S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press,

2004.

N. Breslow and X. Lin. Bias correction in generalised linear mixed models with a

single component of dispersion. Biometrika, 82(1):81–91, 1995.

A. Buja, T. Hastie, and R. Tibshirani. Linear smoothers and additive models. Ann.

Statist, 17(2):453–555, 1989.

H. Causton, B. Ren, S. Koh, C. Harbison, E. Kanin, E. Jennings, T. Lee, H. True,

E. Lander, and R. Young. Remodeling of Yeast Genome Expression in Response

to Environmental Changes. Molecular Biology Of The Cell, 12(2):323–337, 2001.

S. Chaudhuri, M. Drton, and T. Richardson. Estimation of a covariance matrix with

zeros. Biometrika, 94(1):199–216, 2007.



170

F. Chung. Spectral graph theory. American Mathematical Society, 1997.

F. Chung, R. Graham, and S. Yau. On sampling with Markov chains. Random

Structures and Algorithms, 9(1-2):55–77, 1996.

M. Culp, G. Michailidis, and K. Johnson. On multi-view learning with additive

models. Annals Of Applied Statistics, 3(1):292–318, 2009.

J. Dattorro. Convex optimization & Euclidean distance geometry. Meboo Publishing

USA, 2005.

J. de Leeuw. Block-relaxation algorithms in statistics. In Information System and

Data Analysis, pages 308–325. Springer-Verlag, 1994.

E. Demidenko. Mixed models: theory and applications. Wiley-IEEE, 2004.

A. Dempster, N. Laird, D. Rubin, et al. Maximum likelihood from incomplete data

via the EM algorithm. Journal of the Royal Statistical Society, 39(1):1–38, 1977.

R. Diestel. Graph Theory. Springer-Verlag, 2006.

B. Efron and R. Tibshirani. On testing the significance of sets of genes. Annals of

Applied Statistics, 1(1):107–129, 2007.

J. Fiorot and P. Huard. Composition and Union of General Algorithms of Optimiza-

tion. Mathematical Programming Study, 10(1):69–85, 1979.

F. Fouss, A. Pirotte, J. Renders, and M. Saerens. A novel way of computing dis-

similarities between nodes of a graph, with application to collaborative filtering

and subspace projection of the graph nodes. In European Conference on Machine

Learning Proceedings, ECML. Citeseer, 2004.

S. H. Friedberg, A. J. Insel, and L. E. Spence. Linear Algebra. Prentice Hall, 1996.



171
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