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ABSTRACT

In this thesis we discuss several aspects of ultracold atomic systems and their

applications to quantum simulation. These topics cover a degenerate gas near a Fes-

hbach resonance, superfluids in an optical lattice, trapped-ion quantum computation

and simulation.

We study a degenerate Fermi gas when the interaction is tuned from the Bose-

Einstein Condensation (BEC) side to the Bardeen-Cooper-Schrieffer (BCS) side, in-

vestigating effects due to population and mass imbalance. We identify various phases

and find that an superfluid shell can be observed within a trap because of the mass

mismatch.

We study a Fermi gas in a quasi-two-dimensional geometry formed by optical lat-

tices. A two-channel model is proposed to describe the BEC-BCS crossover physics.

We find the higher-band excitations cannot be neglected and contribute to the closed

channel as effective Feshbach “dressed molecules”. This model predicts a decrease

in the cloud size as the interaction is tuned from the BCS side to the BEC side.

To investigate superfluidity of bosons in an optical lattice, we calculate the mo-

mentum distribution related to the time-of-flight (TOF) interference patterns at

finite temperature. We find that a distinct bimodal distribution of the TOF image is

presented as long as superfluids emerge, and hence can be used as a reliable signature

indicating onset of superfluidity.

We propose a large-scale quantum computer architecture by stabilizing a single

xiv



large linear ion chain in a linear trap geometry. By confining ions in an anharmonic

linear trap with nearly uniform spacing between ions, we show that high-fidelity

quantum gates can be realized in large linear ion crystals under the Doppler tem-

perature based on coupling to a near-continuum of transverse motional modes with

simple shaped laser pulses.

Finally, we demonstrate the trapped ion quantum simulation of the Ising model.

Through control of the laser detuning, various coupling networks can be realized.

We give a detailed discussion of the frustrated nature in three-ion cases and show

the achievable phases as the the system size grows. A comparison of our calculation

and experimental data is presented.

xv



CHAPTER I

Introduction

1.1 Motivation

For decades ultracold atomic systems have drawn intense attention for their po-

tential applications to quantum simulation and information science. The idea of

quantum simulation is motivated by R. Feynman’s 1982 conjecture [1], in which he

suggested that a wide range of quantum many-body phenomena might be imitated by

certain classes of quantum systems, and that if so, it would be possible to construct

a universal quantum computer that approximates various quantum mechanical sys-

tems and even the physical world. Atomic systems, owing to their exceptional optical

or magnetic accessibility, parametric controllability, fine isolation from environment

within certain time scales, and low-temperature strongly-correlated behavior, make

themselves a promising candidate for quantum many-body simulation. To continue

exploring possible applications and making realistic progress, it is essential for us to

first understand the general behavior of such systems and how these behaviors can

be manipulated and engineered.

For a many-body system to reach a regime where quantum behaviors dominate,

thermal effects must be suppressed. This is the major reason why ultracold physics

comes into play. In 1924, S. N. Bose and A. Einstein predicted the Bose-Einstein

1
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Condensation (BEC) for bosons cooled below a critical temperature. Many exotic

phenomena, such as superconductivity in solids and superfluidity in helium-3 and

helium-4, were explored and found to be intimately related to occurrence of con-

densates (for general materials, see, e.g., [2]). The first BEC of an atomic gas was

realized by E. Cornell and C. Wieman for rubidium 87Rb atoms (bosons) in 1995 [3].

Due to the fermionic nature and weak interaction among fermion pairs, the BEC of

a Fermi gas required a fairly restrictive temperature condition, and therefore was not

observed until 2003 when D. S. Jin’s group realized a potassium 40K condensate [4]

by means of the so-called Feshbach resonance [5, 6]. These achievements are good

examples of quantum simulation by ultracold atomic systems, which can be appropri-

ately manipulated in order to present condensation and superfluidity as in helium-4

for the boson cases, as well as fermion cases such as helium-3 and superconductivity

in superconductors.

Optical lattices make another example showing extraordinary controllability. They

are formed from the interference of one or more pairs of counter-propagating laser

beams, which set up an effective periodic potential structure in space. They pro-

vide a testbed that resembles the actual crystalline solids, thus making simulation

of solid-state physics possible within ultracold atoms (for reviews, see, e.g., [7, 8]).

Other applications of optical lattices include realization of low-dimensional geome-

tries [9–12] and scalable quantum computation [13].

Compared to the neutral atoms, trapped ions bear the advantage of stronger

Coulomb interaction. In the context of quantum computation, they show faster gate

speeds for quantum operation, longer coherence time, and better accessibility includ-

ing individual ion transportation, cooling, state preparation and measurement. At

present, trapped ions are regarded as the most advanced system for future implemen-
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tation of a quantum computer. However, the scalability issue is still a challenging

task [14, 15]. Searching for a solution is a necessary step toward practical use.

This thesis is motivated by the possibilities of using ultracold atoms and trapped

ions in quantum simulation. Up to the present these systems have demonstrated

convincing potential through numerous experimental findings and theoretical con-

siderations. This field promises to remain active for decades to come, not only

because continuing efforts are needed to ultimately realize a quantum computer, but

also due to its close connection to many other important topics, for example, high-Tc

superconductivity [16–18] and quantum Hall effects [19, 20].

1.2 Background

In this section, we set the stage for this thesis by briefly reviewing the basic

concepts associated with the systems of interest, including (a) the crossover physics

in a Fermi gas from the BEC regime to the Bardeen-Cooper-Schrieffer (BCS) regime,

(b) optical lattices and the Hubbard model, and (c) trapped ion computation basics.

More discussion can be found in corresponding chapters and references therein.

1.2.1 Quantum simulation with neutral gases: BEC-BCS crossover

This subject deals with a collection of interacting Fermi atoms being cooled to

quantum degeneracy, where a macroscopic fraction of them can occupy the same

quantum state. This is understood as the BEC for bosonic species. However, due to

the Pauli exclusion principle, the occupancy of the same state for individual fermions

is forbidden unless they form pairs and can then be considered as composite bosons.

One can imagine a scenario where two fermions are tightly bound so that their two-

body wavefunction can be regarded as a single wavepacket and their internal degrees

of freedom are not important. This corresponds to the case where the interspacing
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between wavepackets is much larger than the size of the two-body wavefunction. It

can be expected that these two-body molecules condense like bosons when they are

cooled below a critical temperature. We call this regime the BEC side in the language

of BEC-BCS crossover physics (the left panel of Fig. 1.1). The other limiting case

is that in which the fermions are only weakly attracting, a situation studied in the

context of superconductivity by J. Bardeen, L. N. Cooper, and J. R. Schrieffer in

1957 [21]. In superconductivity, electrons form pairs, so-called Cooper pairs, in

the presence of a weak inter-attraction mediated by crystal vibrations (phonons).

According to the BCS theory, the favored ground state is that in which fermions

form pairs in momentum space (and condense below the critical temperature). Their

two-body wavefunctions extend in space and significantly overlap with each other.

This scenario is thus called the BCS side (the right panel of Fig. 1.1).

The intermediate region is then defined when the two tightly bound fermions

on the BEC side start to dissociate, or the overlap of the two-body wavefunctions

on the BCS side diminishes (the middle panel of Fig. 1.1). More precisely, the

BEC-BCS crossover occurs when the binding energy characterizing the molecular

state is comparable to the Fermi energy associated with the (loose paired) individual

fermions. At this region, called the unitary region, the crossover physics of the

Fermi systems should show unique properties, neither entirely bosonic nor fermionic

in nature; interesting behaviors can be expected and merit exploration.

The continuous change from the BEC side to the BCS side can be done through

the Feshbach resonances, which occur when a two-particle scattering state (called an

open channel) resonates with a bound state (called a closed channel). Consider two

spin-1/2 fermions in a colliding process and treat them in a basis of singlet (S = 0)

and triplet (S = 1) states. (In current experiments on 6Li atoms, for example, the
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BEC

Cooper pairs

BCS

Strongly interacting pairsComposite bosons

Figure 1.1: Illustration of BEC-BCS crossover. Two spin types are represented in different colors.
On the BEC side, two spin species form deep-bound molecules (composite bosons). One the BCS
side, the fermions are loosely bound and paired in the momentum space. In the middle region the
effective scattering length diverges, signaling a strong interaction between atoms.

two spin states correspond to
∣∣F = 1/2, mF = 1/2

〉
and

∣∣F = 1/2, mF = −1/2
〉
.)

Suppose there is a bound state in the S = 0 channel (closed channel) close to

the scattering continuum in the S = 1 channel (open channel). The two colliding

fermions, with a propagating wavefunction, have a chance to be captured in the near-

resonant bound state, and then dissociate again in a time-scale t ∼ �/ΔE, where

ΔE is the energy difference between the bound state and the lowest eigenket of the

scattering continuum. The interaction is thus effectively modified. Note that ΔE

can be controlled continuously by an external magnetic field due to the Zeeman shift.

The interaction of atoms under consideration is through collision, and for spin-1/2

fermions can be characterized by the s-wave scattering length as. The magnitude

and sign of as indicate the strength and whether the effective interaction is repulsive

(as > 0) or attractive (as < 0), respectively. For a Fermi gas near a Feshbach

resonance, the s-wave scattering length is given by [22, 23]

as = abg(1− W

B − B0

), (1.1)

where abg is the background scattering length, W is the resonance width, and B0 is

the magnetic field such that ΔE is exactly tuned to 0, i.e. on resonance. We can

see that as flips sign when B passes through B0 and diverges exactly on resonance,

indicating that in this region the atoms are strongly interacting. On resonance the
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2-body
bound state

Zeeman
splitting

Figure 1.2: Energy diagram for a Feshbach resonance. The closed channel potential with a bound
state is coupled to the scattered state continuum of the open channel. The degree of resonance can
be adjusted by a magnetic field through Zeeman effects.

system shows some unique properties [24, 25] due to the singularity of the interaction

range, which means the only length scale is set by the interspacing of the atoms

(∼ n−1/3, where n is the number density).

Recent efforts along this line of research focus on magnetized Fermi gas, in which

the two spin species have unequal populations [26–33]. At zero temperature, it can

be expected that the formation of (s-wave) pairs normally takes the same numbers

of opposite spin particles and the remainder should be left unpaired. Therefore

the magnetized Fermi gas usually consists of both superfluid and normal fermion

parts. The actual mechanism is in fact more subtle because the discrepancy in

the Fermi surfaces leads to suppression of Cooper pairing. Other possibilities of

“nontrivial” pairing mechanisms have been proposed, including the breached-pair

phase [31, 34, 35] and the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state [31, 35–37],

which may contribute to stable or meta-stable ground states by finite magnetization.

The mass ratio of the two species serves as an additional tunable parameter, and it

is introduced when two types of fermionic atoms (elements) are mixed. More details

can be found in Chapter II.
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1.2.2 Quantum simulation with optical lattices

Optical lattices are an important example in ultracold atomic physics. They are

formed by the interference of pairs of counter-propagating laser beams at different

angles. By tuning the intensity of lasers and the incident angles, one is able to control

the barrier depth and the lattice constant, i.e. the site spacing. Here we briefly

explain the working mechanism of optical lattices. We use a semi-classical point

of view by treating the laser beams as a classical electromagnetic field. Consider

an atom whose transition behavior can be described by a two-level system (Fig.

1.3) sitting in the interference pattern of the laser field, i.e. a standing wave field:

E(x) = ẑE0 cos k0x cosωt with ẑ the polarization direction and k0 = 2π/λ, where

λ is the laser wavelength. Classically the dipole force is given by the gradient of

the optical field dp
dt

= −∇V , where V = −d · E. Quantum mechanically, this

corresponds to
〈
dp
dt

〉
= −tr(ρ∇V ) = −x̂k0 sin k0x2Re(ρ12E0

〈
2
∣∣d∣∣1〉) cosωt, where ρ

is the density matrix and the overline denotes a time average under the rotating

wave approximation. For a stationary state we can use a standard quantum optics

approach (see e.g. [38]), assuming the amplitude of the coherence term ρ12 is slowly

varying in the rotating frame with the laser frequency. We obtain ρ12E0

〈
2
∣∣d∣∣1〉 =

�eiωt iΩ0 cos k0x
iδ+Γ/2

[
1

2(1+s)

]
, where s = 1

2

Ω2
0 cos

2 k0x

δ2+(Γ/2)2
, the Rabi frequency Ω0 ≡

〈
2

∣∣d∣∣1〉E0

�
,

and Γ is the decay rate due to spontaneous emissions and collision losses (Γ � δ).

Typically the detuning δ ≡ ω − ω0 is much greater than the Rabi frequency Ω0 so

that s is negligible as well as Γ. The force is then given by

〈dp
dt

〉
= x̂�k0δ sin 2k0x

Ω2
0

2δ2
. (1.2)

Note that the force flips sign as the detuning does. Atoms being blue (red) detuned,

δ > 0 (δ < 0), are pushed towards the nodes (anti-nodes) of the laser field. This
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Figure 1.3: Two-level configuration for a neutral atom interacting with the laser field. In this
illustration the spontaneous emission is neglected.

force is conservative, so that a potential can be defined by

V = −�δ
Ω2

0

2δ2
sin2 k0x. (1.3)

We have also assumed that the Doppler broadening has negligible effects, which is

justified by the fact that the speed of atoms is much smaller than δ/k0. Otherwise, a

dissipative part of the optical force arises and this mechanism contributes to so-called

Doppler cooling.

As more laser beams are applied in perpendicular directions, an egg crate-shaped

lattice is formed. More complicated lattices such as triangular and hexagonal ones

can be formed by adjusting the axial directions of the standing waves. Further, one

can increase the lattice depth along a certain direction to shut down the tunneling

so that atoms can only be confined in a tube or a layer structure. This provides an

ideal platform for studying the effects of dimension [9, 12, 39, 40].

Hubbard Model – Here we give a brief derivation of the famous Hubbard model,

an approximation proposed by J. Hubbard to describe the physics of conduction and

insulation behaviors in metals or crystals [41]. From the previous discussion we learn

that in an optical lattice the periodic barrier can be described by

Vop(x) = V0 sin
2 π

d
x, (1.4)
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where V0 is the lattice depth and d = λ/2 the lattice constant. The Hamiltonian in

the second quantization form reads

H =

∫
dxψ†(x)

[
p2

2m
+ Vop(x)

]
ψ†(x) + U0

∫
dxψ†(x)ψ†(x)ψ(x)ψ(x), (1.5)

where ψ(x) is the field operator and U0 =
4π�2a
m

accounts for the interaction between

particles. Without the interaction, the periodic potential suggests that one make

use of the Bloch state basis φm,k (k the crystal momentum and m the band index)

and a set of the Wannier functions can be constructed from it. We then rewrite the

field operator as ψ(x) =
∑

m,R am,Rwm,R(x), where wm,R is the mth band Wannier

function centered at the site R = nd (n an integer) and am,R is the particle destruction

operator. Note that by definition wm,R = 1√
N

∑
k∈BZ e

−ikRφm,k(x) (BZ denotes the

first Brillouin zone). Then in the Hamiltonian (1.5) the non-interacting term H0 =

p2

2m
+ Vop becomes

H0 →
∑

m,m′,R,R′
a†m,Ram′,R′

1

N

∑
k,k′∈BZ

eikR−ik
′R′

∫
dxφ∗

m,k(x)H0φm′,k′(x)

=
∑
R,R′

a†m,Ram,R
1

N

∑
k

εm,ke
ik(R−R′), (1.6)

where we have used the fact that
∫
dxφ∗

m,k(x)H0φm′,k′(x) = εm,kδm,m′δk,k′ with εm,k

the eigen-spectrum of the mth band.

Under certain circumstances suggested by current experiments [42–44], a simpli-

fication can be made by only taking the lowest band into consideration if higher

band excitations are negligibly populated. This should be the case when (1) the gas

is dilute so that the first band is not fully occupied, (2) the particle interaction is

well separated from the energy bandgap, and (3) the thermal fluctuation is unable

to excite population to higher bands. This first-band approximation will be used in

our discussion below, and the indexing subscript m will be dropped hereafter.
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Normally εk is obtained exactly by numerically solving the matrix elements of H0

through diagonalization. However we can make a guess for the form of εk. We recall

that k is the crystal momentum and therefore εk = εk+2π/d, which is supposed to

be an even function. Keeping only the lowest order of the Fourier components εk 	

−t cos kd, we get H0 → −t∑R a
†
RaR+1. This term describes a particle transferring

from one site to its neighbor, a process called hopping, with energy lowered by

−t. This guess turns out to be a fairly good approximation when compared to the

numerical evaluation of εk.

The interaction term then becomesH1 = U
∑

R a
†
Ra

†
RaRaR with U = U0

∫
dx

∣∣w(x)∣∣4.
Here we have used the fact that the Wannier function is relatively localized so that

the off-site contribution can be neglected. Combining the hopping term and the

interaction yields the Hubbard model:

H = −t
∑
R

a†RaR+1 + U
∑
R

a†Ra
†
RaRaR. (1.7)

As mentioned earlier, the Hubbard model was originally proposed to describe elec-

tron transport behaviors in solids. It shows very rich phases and has been intensively

studied in the context of optical lattices both for fermions and bosons [7, 8, 42, 45].

Many studies have been made focusing on the superfluid (SF) to Mott insulator

(MI) transition. At zero temperature, general features suggest that the particles

condense and show superfluidity when the hopping term dominates the on-site inter-

action; once the interaction is much stronger, the tunneling to other sites is turned

off so that each site contains only an integer number of particles, corresponding to

a special insulating phase called a Mott insulator [46]. Because any experimental

investigation of this system must be performed at a finite temperature, the identifi-

cation of a superfluid in an optical lattice is an essential step to distinguish different

phases [44, 47–49]. This is normally done by time-of-flight spectroscopy. A detailed
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discussion on the time-of-flight interference patterns will be presented in Chapter IV.

1.2.3 Quantum computation and simulation with trapped ions

Ultracold neutral atoms are usually considered as an ensemble rather than individ-

ually. Because the overall Hilbert space is extremely high-dimensional, any relevant

quantity, or “information” from the the quantum-computing point of view, is usu-

ally treated as a continuous variable. Ions, on the contrary, can be well separated

from each other due to their Coulomb interaction, and hence can be conveniently

manipulated individually. They are easily stabilized in space by electrical methods

and have stronger coupling through collective vibrations. For each ion, two of the

electronic hyperfine states can be effectively employed as a two-level system, called a

quantum bit (qubit). Meanwhile the vibrational modes, when coupled to the qubit

degree of freedom by optical means, serve as a “quantum bus” that entangles distant

information. Such systems provide a “digitized” version of Hilbert space for quan-

tum information and simulation purposes. Note that any arbitrary Hamiltonian can

be “digitized” to a series of fundamental k-local operations in an asymptotic sense

[50, 51]. An important issue is to reach a sufficiently high fidelity while performing

universal quantum gate operation. The study of the required fidelity in quantum

computation is known as quantum error correction theory (see, e.g., [52]).

Ions can be contained in a varying electrical field such as a radio-frequency (RF)

trap. A so-called Paul trap, which is commonly used to confine a one-dimensional

ion array, typically consists of two RF wires providing transverse confinement and

segmental-structured DC electrodes, in parallel with the RF wires, providing axial

trapping. When ions are cooled and then stabilized around their equilibrium, small

vibrations can be expected at a finite temperature and can be decomposed into the

canonical normal modes.
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Step 1: on ion m Step 2: on ion n Step 3: on ion m

Figure 1.4: Graphical representation for a Cirac-Zoller gate.

The first proposal of a trapped ion quantum gate was by J. I. Cirac and P. Zoller

in 1995 [53]. The concept is summarized as follows. Consider a trapped ion array

on which individual ions can be addressed by laser beams. Suppose the qubit is

encoded into two hyperfine levels
∣∣g〉 and

∣∣e0〉 for each ion, and then the motional

modes define a series of sidebands
∣∣qubit〉 ⊗ ∏

k

∣∣nk〉 with nk = 0, 1, 2, · · · as the

phonon number of the kth mode. For this protocol to work, every motional mode

has to be pre-cooled to the ground state and only the center-of-mass (CM) mode

will be excited by the laser beam. When the beam acting on the mth ion is turned

on with its frequency detuned by δ = −ωCM from the spacing ω, a π pulse causes

the populations in states
∣∣g〉

m

∣∣1〉 and
∣∣e0〉m∣∣0〉 (where

∣∣0〉 and
∣∣1〉 refer to the Fock

basis of the CM mode) to be inverted, leaving other states unaltered (Fig. 1.4,

Step 1). A second similar procedure is applied to the nth ion except that the laser

couples the state
∣∣g〉

n

∣∣1〉 to an auxiliary excited state
∣∣e1〉n∣∣0〉. This can be done for

example by using differently polarized lights to selectively couple different excited

states. This procedure does not involve the states
∣∣g〉

n

∣∣0〉 and
∣∣e1〉n∣∣1〉 (so they will

be unchanged) but will cause a sign difference in the overall state of the two ions

and the phonon depending on whether or not
∣∣g〉

n

∣∣1〉 is populated (Fig. 1.4, Step

2). A final step is to apply Step 1 again to the mth ion (Fig. 1.4, Step 3). This step

destroys a phonon if any has been created during previous steps and restores the
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Figure 1.5: Graphical representation for a Sørensen-Mølmer gate. A bichromatic filed is applied
with two frequencies summed up to 2ωeg. Because both frequencies are detuned off the energy levels,
the transitions occur only when two photons are absorbed or emitted. Different paths interfere with
each other and eliminate the dependence of phonon population. (Figure from [55].)

system back to the motional ground state. We explicitly show the overall operation

as follows (see [53] Eq. (3)):

I II III∣∣g〉
m

∣∣g〉
n

∣∣0〉 → ∣∣g〉
m

∣∣g〉
n

∣∣0〉 → ∣∣g〉
m

∣∣g〉
n

∣∣0〉 → ∣∣g〉
m

∣∣g〉
n

∣∣0〉∣∣g〉
m

∣∣e0〉n∣∣0〉 → ∣∣g〉
m

∣∣e0〉n∣∣0〉 → ∣∣g〉
m

∣∣e0〉n∣∣0〉 → ∣∣g〉
m

∣∣e0〉n∣∣0〉∣∣e0〉m∣∣g〉n∣∣0〉 → −i∣∣g〉
m

∣∣g〉
n

∣∣1〉 → i
∣∣g〉

m

∣∣g〉
n

∣∣1〉 → ∣∣e0〉m∣∣g〉n∣∣0〉∣∣e0〉m∣∣e0〉n∣∣0〉 → −i∣∣g〉
m

∣∣e0〉n∣∣1〉 → −i∣∣g〉
m

∣∣e0〉n∣∣1〉 → −∣∣e0〉m∣∣e0〉n∣∣0〉.
(1.8)

This exactly corresponds to a Controlled-Phase-Flip (CPF) gate. This Cirac-Zoller

gate, however, is sensitive to the temperature because it requires the ground state of

the “quantum bus” motional mode. The “quantum bus” sideband must be resolved

from other modes, requiring a certain amount of time and hence setting a speed limit

to gate operations. Further, the gate must operate in the Lamb-Dicke regime η � 1,

characterized by the Lamb-Dicke parameter η ∼ √
�/(mωCM)/λ where λ is the laser

field wavelength; otherwise the needed laser intensity (Rabi frequency) will depend

on the noisy motional state and result in decoherence.

In 1999, A. Sørensen and K. Mølmer proposed a two-qubit gate [54, 55] based on
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a bichromatic field with frequencies ω1 = ωeg− (ν− δ) and ω2 = ωeg+(ν− δ), tuned

close to the red and blue sidebands of a resolvable motional mode ν, respectively.

As shown in Fig. 1.5, because every laser field is detuned far from those levels, only

two photon processes have significant contributions. In the weak-field coupling limit

(n only changing by 1), one can achieve [54]

∣∣gg〉 → cos θ
∣∣gg〉+ i sin θ

∣∣ee〉∣∣ee〉 → cos θ
∣∣ee〉 + i sin θ

∣∣gg〉∣∣ge〉 → cos θ
∣∣ge〉− i sin θ

∣∣eg〉∣∣eg〉 → cos θ
∣∣eg〉− i sin θ

∣∣ge〉.
(1.9)

This can be transformed to a CPF gate up to single-qubit phase shifts when θ =

π/4. Here θ ≡ Ω̃τ/2 with τ the gate operation time and Ω̃ ≡ − (Ωη)2

2δ
with the

Rabi frequency Ω and the Lamb-Dicke parameter η. Note that Ω̃ is independent of

the phonon number n shown in Fig. 1.5. This is due to a cancellation of phonon

dependence that occurs when the paths indicated in the left panel of Fig. 1.5 interfere

with each other, eliminating the ground-state requirement of the “quantum bus”

mode. The Sørensen-Mølmer scheme can be formulated in a general field coupling

case without restricting Δn = ±1, and understood as one of quantum gates utilizing

the geometrical phase [56]. A similar idea was proposed independently by G. Milburn

et al. in 2000 [57], in which a state-dependent force was applied to the qubits; the

force displaced a qubit in the (motional) momentum/coordinate phase space and

followed a closed loop back to the original situation. An additional (geometrical)

phase was gained proportional to the area enclosed by the state-dependent loop.

The above schemes still need to operate on a single “quantum bus” mode and hence

restrict the gate speed. Several proposals have been made using fast pulses [58, 59]

and faster transverse modes with pulse shaping techniques [60, 61].
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Although trapped-ion quantum gates have been demonstrated, constituting a fun-

damental step for arbitrary “digital” quantum simulation, trapped ion systems are in-

trinsically suitable for spin model quantum simulation. The two-qubit gate is closely

related to the Ising-type interaction H ∼ Θijσ
z
i ⊗σzj , where the Pauli matrix σzi rep-

resents the ith spin and the coupling Θij can be controlled for example through the

state-dependent force in Milburn’s scheme [57, 62–64]. With more sophisticated laser

arrangement, Heisenberg-type interaction can also be realized [62, 65]. A complete-

graph network with Ising-type interaction is generated by simply shining a laser

field on the ions all together. In this case, the applied laser detuning determines

the strength of coupling between every pair of spins. Further, one can simulate an

external field by adding a magnetization term Bi�σi, which can be effectively done

through direct rotation of each ion’s internal state. This line of research provides a

natural way to study fundamental quantum many-body problems such as Ising and

Heisenberg models, which quickly become intractable to classical computing as the

size grows.

1.3 Thesis Outline

This thesis consists of several studies of quantum many-body systems with ultra-

cold atoms and trapped ions. The structure is outlined as follows.

In Chapter II, we consider an ultracold Fermi gas with population and mass

imbalance between two spin species through a Feshbach resonance. The crossover

behavior from the BEC to the BCS side is studied. We map out the phase diagrams

in a potential trap, and find a shell structure formed by superfluid and different

normal-phase layers. To provide a qualitative description for the shell structure, we

calculate the in-trap population density profiles. The work presented in this chapter
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is published in [66].

In Chapter III, we study the BEC-BCS crossover for a quasi-two-dimensional

Fermi gas confined in a layer formed by an optical lattice across a wide Feshbach

resonance. We consider two effective two-dimensional models within the mean-field

level, and calculate the zero-temperature cloud size and population density profiles.

The first single-channel model, using a lowest-band approximation and neglecting

the molecular degree of freedom, predicts a constant cloud size for arbitrary inter-

action. The second two-channel model, taking the point of view that multiple-band

excitations dress the effective interaction so that dressed molecules are allowed to

form, shows a decrease in the cloud size from the BCS to BEC side. This qualitative

discrepancy between the two models indicates that the inclusion of dressed molecules

is essential for a mean-field description of quasi-two-dimensional Fermi systems, es-

pecially on the BEC side of the Feshbach resonance. The work presented in this

chapter is published in [67].

Chapter IV discusses ultracold bosons in an optical lattice. We study finite tem-

perature behaviors across the normal-superfluid transitions, for both noninteracting

and strongly interacting cases. To make direct comparison with experimental out-

comes of time-of-flight imaging, we calculate the momentum-space density profiles of

a condensate on top of thermal contributions, including the consideration of a global

harmonic trap. We show that the appearance of a clear bimodal distribution in the

interference patterns sets a qualitative and universal signature for the onset of BEC.

Further, the momentum distribution can also be applied to extract the condensate

fraction, which may serve as a promising thermometer in such a system. The work

presented in this chapter is published in [49, 68].

In Chapter V, we propose a large-scale quantum computer architecture by sta-
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bilizing a large linear ion chain in a very simple trap geometry. By confining ions

in an anharmonic linear trap with nearly uniform spacing between ions, we show

that high-fidelity quantum gates can be realized in large linear ion crystals under

the Doppler temperature based on coupling to a near-continuum of transverse mo-

tional modes with simple shaped laser pulses. The work presented in this chapter is

published in [69].

In Chapter VI, we discuss a quantum Ising-magnet emulator based on trapped

ions. The Ising-type network can be built by applying a bichromatic laser field with

a frequency beatnote detuning. We investigate the phases of ground spin config-

urations for small systems by scanning the detuning through motional modes and

increasing the effective external field. We demonstrate even for small systems, the

trapped ion Ising network shows rich competing phases. For three ions, we present

nearly-adiabatic time evolution calculations and discuss close connections between

frustration and entanglement. Part of the work on three-ion calculations presented

in this chapter is included in a recent paper [70] submitted for publication.



CHAPTER II

Ultracold Fermi Gas with Spin Population and Mass

Imbalance

2.1 Overview

Recent advances in understanding the degenerate Fermi gas have raised strong

interest in population imbalance of two spin species [26–32, 34, 35, 71–78]. The

experiments suggest a phase separation picture with a superfluid core surrounded by

a shell of normal gas [27–29, 32]. This picture has been confirmed by a number of

theoretical calculations of the atomic density profiles in the trap [30, 71–78]. Feshbach

resonances between different atomic species with unequal mass have been reported

in a Bose-Fermi mixture [79, 80] and in a Fermi-Fermi mixture [81–84], motivating

study of a strongly interacting Fermi gas with both mass and population imbalance

between the two components. There has been a considerable amount of theoretical

work in this direction [66, 85–93].

As part of these contributions, our work investigates the properties of a trapped

strongly interacting Fermi gas with mass and population imbalance. We map out

its zero temperature phase diagram in a harmonic trap (generally anisotropic) as a

function of a few universal parameters. Compared with the equal-mass case, the two-

species Fermi mixture (6Li-40K mixture for instance) shows a very different picture

of phase separation: it supports a superfluid shell state in the intermediate trap

18
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region, with normal gases of different characters filling the center and the edge of the

trap. This unusual phase separation picture with non-monotonic superfluid order

parameter in space only occurs for trapped fermions with unequal mass. We provide

an intuitive explanation for the phenomenon, and show how to detect it by measuring

the atomic density profiles. This superfluid shell state is not simply connected in

space, so it may support interesting vortex structure under rotation of the trap.

The structure of this chapter is outlined as follows. In Sec. 2.2 we briefly summa-

rize the formalism for describing an ultracold Fermi gas, where a two-channel model

and a simplified single-channel model are discussed. We adapt our formalism to in-

clude the trap effect, and then generalize our discussion by considering population

and mass imbalance. In Sec. 2.3 we show the calculated phase diagrams and in-trap

density profiles. For the shell structure of various phases we also present a qualitative

explanation.

2.2 Formalism

2.2.1 Basic Hamiltonian: two-channel model

To describe a Fermi gas near a Feshbach resonance, the Hamiltonian should in-

clude contributions from both open and closed channels, and is thus called a two-

channel model. Explicitly, it is given by [94, 95]

H − μN =
∑
σ,k

(εk − μ)a†k,σak,σ +
∑
q

(γ + εq/2− 2μ)b†qbq

+
(
g/

√
V
)∑

k,q

(b†qa−k+q/2,↑ak+q/2,↓ + h.c.) (2.1)

+
(
U/V

) ∑
k,k′,q

a†k+q/2,↑a
†
−k+q/2,↓a−k′+q/2,↓ak′+q/2,↑,

where εk ≡ �k2

2m
is the kinetic energy, μ is the chemical potential, and ak,σ (bq) are the

annihilation operators of the open channel fermions (the closed channel molecules)
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with k (q) the momentum of the atom (molecule) and σ =↑, ↓ denoting the atomic

hyperfine states, i.e. spins. Here N =
∑

σ,k a
†
k,σak,σ + 2

∑
q b

†
qbq is the total number

of atoms, V is the quantization volume, γ is the bare detuning determined by the

magnetic field offset from the resonance point, g is the bare atom-molecule coupling

rate accounting for the mixing of two channels, and the bare scattering rate U ac-

counts for the interaction of atoms. However, we encounter a so-called ultraviolet

divergence problem when dealing with the atom-atom interaction due to its spatial

δ-function behavior. We need the three bare parameters to be renormalized to the

physical quantities Up, gp, γp. They are related through the standard renormalization

relations: U = ΓUp, g = Γgp, γ = γp − Γg2p/Uc, where Γ ≡ (1 + Up/Uc)
−1 with Uc ≡

−V−1
∑

k(2εk)
−1, Up = 4π�2abg/m, g2p = 4π�2abgWμco/m, and γp = μco(B−B0); μco

is the magnetic moment difference between the two channels; abg is the background

scattering length; W is the resonance width; B0 represents the resonance point (see

Eq. (1.1)).

2.2.2 Single-channel model

Several works have shown that the two-channel model can be characterized by a

dimensionless parameter [33, 96]:

γ̄ ≡ ma2bgW
2μ2

co

EF
. (2.2)

When γ̄ is large (�1, called wide-resonance), in accordance with current experi-

ments with 6Li and 40K, the closed channel population is negligible. Therefore, after

adiabatic elimination of the molecular modes bq, the Hamiltonian can be greatly

simplified to a single-channel model [96–100]

H − μN =
∑
σ,k

(εk − μ)a†k,σak,σ +
(
Ueff/V

) ∑
k,k′,q

a†k+q/2,↑a
†
−k+q/2,↓a−k′+q/2,↓ak′+q/2,↑

(2.3)
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with modified parameters: Ueff = Us(1 + Us/Uc)
−1 where Us = 4π�2as/m with

as = abg(1− W
B−B0

), and N =
∑

k,σ a
†
k,σak,σ.

2.2.3 Effects of traps and the local-density approximation

The above Hamiltonians (2.1) and (2.3) do not explicitly include consideration of

external potentials. In a real experimental setup, particles are always contained in a

global trap. The overall wavefunction must be modified by the spatial variation of

the potential, complicating the analysis. Therefore, we adopt a semi-classical point

of view, called the Thomas-Fermi approximation or the local-density approximation

(LDA), to give a qualitative and approximate quantitative description accounting

for the trap effect. The LDA treats every local portion (sub-system) of the entire

system as a uniform gas characterized by a local chemical potential μ(r). Note

that when a small number of particles δn is added to the sub-system associated

with a local chemical potential μ(r), the energy gain is δE = [μ(r) + V (r)]δn. At

equilibrium δE/δn = 0, yielding μ(r) = μ(r0) − V (r) with r0 the coordinate of the

potential reference. This approximation is valid as long as the relevant energy scale

set by the chemical potential is much greater than the potential variation, a criterion

satisfied by most current experimental situations of interest. For a harmonic trap

with frequency ω, this criterion means μ(r0) � �ω [101]. Then the number density

n(r) can be locally determined by only a single parameter μ(r0) but must satisfy

the overall number constraint N =
∫
ddrn(r) (the superscript d = 3 denotes the

dimension for our present case).

From the LDA point of view, the role played by the trap is nothing but a spatial

“display” of phases of the corresponding chemical potential μ(r). If different phases

are observed within a range of μ accessible to a particular experimental condition,

there must be a shell structure in space in three dimensional cases. In reality, the
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clear interface between two distinct phases will be rounded off for a finite-sized system

when the surface energy is considered.

2.2.4 Fermi gases with population and mass imbalance

Here we present a description of a Fermi gas that includes both population and

mass imbalance between two species. The results should apply to a fermion-fermion

mixture, e.g., a 6Li-40K gas. Here we only consider the case where the heavy atoms

carry one spin and the light atoms carry the opposite. For simplicity, we also assume

that the resonance is wide so that a strongly interacting Fermi gas can be described

by the the single-channel Hamiltonian (c.f. Eq. (2.3)):

H =
∑
k,σ

(εkσ − μσ)a
†
k,σak,σ (2.4)

+
(
Ueff/V

) ∑
q,k,k′

a†q/2+k,↑a
†
q/2−k,↓aq/2−k′,↓aq/2+k′,↑

where εkσ = k2/(2mσ) with mσ denoting the mass of species σ (� = 1), V is

the quantization volume, and a†k,σ is the fermionic creation operator for the (k, σ)

mode. The effective atom-atom interaction rate Ueff is determined by the scat-

tering length as through 1/Ueff = 1/Us − V−1
∑

k 1/(2εk) with Us = 4πas/(2mr)

(mr = m↑m↓/(m↑ + m↓) is the reduced mass). Under the LDA, μ↑ = μr + h,

μ↓ = μr − h, μr = μ− V (r), where V (r) =
∑

i=x,y,z βir
2
i /2 is the harmonic trapping

potential, which, without loss of generality, has been assumed to be the same for

the two components. The chemical potential μ at the trap center and the chemical

potential imbalance h are determined from the total atom number N = N↑+N↓ and

the population imbalance p =
(
N↑ −N↓

)
/N through number equations given below.

From the mean-field approach, we set Δ ≡ V−1
∑

k,q

〈
aq/2−k,↓aq/2+k,↑

〉
δq0, and

hence the second term in the Hamiltonian (2.4) becomes Ueff

[∑
k(Δa

†
ka

†
k + h.c.)−

V∣∣Δ∣∣2], allowing the Hamiltonian (2.4) to be diagonalized. In this formalism, we
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neglect the FFLO state with condensation at non-zero pair momenta. (The FFLO

state can be stabilized only within a narrow parameter region on the BCS side

[31, 35].) The thermodynamic potential Ω = −T ln[tr(e−H/T )] at the temperature T

can be written as [71, 72]

Ω = −V |Δ|2 /Ueff +
∑
k

[εkr − μr −Ek] (2.5)

−T
∑
k

ln
[(
1 + e−Ek↑/T

) (
1 + e−Ek↓/T

)]
where Ek↑,↓ = Ek ∓ (h + αεkr) with Ek ≡ √

(εkr − μr)2 +Δ2, εkr ≡ k2/(4mr), and

α ≡ (m↑ −m↓)/(m↑ +m↓).

In the case with balanced populations and masses for both spins, i.e. h = 0 and

α = 0, and in homogeneous space with μ constant, we recover the conventional BCS

theory and can identify Δ as the excitation energy gap. The minimum of Ω can be

found by solving ∂Ω/∂Δ = 0, which leads to the famous gap equation:

1

Ueff
= − 1

V
∑
k

1− 2f(Ek)

2Ek
, (2.6)

where the Fermi distribution f(E) ≡ 1/
(
1 + eE/T

)
.

Instead of taking the gap equation approach, we search for the global minimum of

the thermodynamical potential Ω with respect to the variational parameter Δ. The

reason is that with more complexity added to the question by traps and spin/mass

mismatch, ∂Ω/∂Δ = 0 does not necessarily correspond to a global minimum but also

can be an unstable fixed point or a metastable state [71, 72]. The values of μ and

h are determined from the two number equations Nσ =
∫
d3rnrσ integrated over the

trap. The local atomic density nrσ, derived from the thermodynamic potential Ω as

∂Ω/∂μσ = −nrσV, has the expression

nrσ =
1

V
∑
k

[u2kf(Ek,σ) + v2kf(−Ek,−σ)], (2.7)
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where the parameters u2k = (Ek + (εkr − μr))/(2Ek), v
2
k = (Ek − (εkr − μr))/(2Ek).

The above mean-field formalism is also identical to the G0G diagram scheme if we

interpret Δ at finite temperature as the total gap including contributions from both

the order parameter and the pseudogap associated with the pair fluctuations [71, 72,

78].

If one of the energies E±,k has one or two zero(s) in k-space, it signals the pres-

ence of the type-I or type-II breached-pair (Sarma) states [31, 34, 35, 71, 72, 102]

(called the BP1 or BP2 states, respectively). The BP states represent a spatially

homogeneous superfluid, but they differ from the conventional BCS states by a phase

separation in the momentum space and by a topological change of the Fermi surface

for the excess fermions.

2.3 Results and Discussion

We calculate the phase diagram of the trapped fermions in terms of several di-

mensionless universal parameters. For that purpose, the unit of energy is chosen to

be the Fermi energy EF at the center of the trap for N non-interacting fermions with

an effective mass of 2mr and with equal population for the two components. Under

the LDA, one finds EF = (3N
√
βxβyβz)

1/3/
√
2mr from this definition. The trapping

potential V (r) has the dimensionless form V (r)/EF =
∑

i r̃
2
i , where the normalized

coordinates r̃i ≡ ri/Ri and Ri ≡
√

2EF/βi is the Thomas-Fermi radius along the ith

direction. The momentum k and the temperature T are measured in the units of

kF ≡ √
2(2mr)EF and TF ≡ EF/kB, respectively. The system properties then only

depend on four dimensionless parameters kFas, T/TF , the population imbalance p,

and the mass mismatch α. In the following calculation, we take α = 0.74 corre-

sponding to the 6Li-40K mixture. In a typical configuration with the atom number
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Figure 2.1: The zero temperature phase diagrams for trapped 6Li-40K mixture near a Feshbach
resonance. The phases include the BCS superfluid state (SF), the breached pair phase of type 1
(BP1), the normal mixture (NMK or NMLi, with

40K or 6Li in excess, respectively), and the normal
polarized (single-component) states (NPK or NPLi). The phases are shown versus the population
imbalance p and the normalized trap radius r̃.

N = 5× 106, βx/� = βy/� = 49.6 Hz/μm2, and βz/� = 1.95 Hz/μm2 [29], the above

units have the values TF = 604 nK, kF = 5.09 μm−1, Rx = Ry = 56.5 μm and

Rz = 285 μm.

In Fig. 2.1, we map out the zero-temperature phase diagrams for trapped fermions

as a function of the population imbalance p at several characteristic interaction

strengths kFas. The system shows a rich picture of phase separation in the trap.

First, on the BCS side of resonance with (kFas)
−1 = −1 (Fig. 2.1(a)), even in the

equal population case (p = 0), we cross four different phases from the trap center

to the edge. The trap center is occupied by a normal mixture state with the heavy

fermions (40K) in excess (denoted as NMK), which is surrounded by a shell of BCS

superfluid phase (denoted as SF). Farther out, there is a shell of a normal mixture
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but now with the light fermions (6Li) in excess (denoted as NMLi). The trap edge

is occupied by the single component normal gas of light fermions (denote as NPLi).

The system behavior is significantly more complicated than in the equal-mass case

[30, 71–78], where instead of several phases, there is only one superfluid phase over

the whole trap in the corresponding configuration. Note that under the LDA, as

one moves out from the trap center, the chemical potential monotonically decreases,

while the superfluid order parameter is apparently not a monotonic function in the

mass-imbalance case. The superfluid only occurs in an intermediate shell. We will

give some explanations for this unusual phenomenon later.

Continuing with the phase diagram, if we increase the population of the heavy

fermions, the central NMK region grows, while the SF, NMLi, and the NPLi phase

regions shrink and finally all disappear at a critical population imbalance. After

that, the trap edge is occupied by a single component normal gas of heavy fermions

(denoted as NPK). If we increase the population of light fermions, the reverse hap-

pens. The central NMK region shrinks and finally disappears at a critical population

imbalance, and the superfluid shell evolves into a superfluid core.

On resonance (Fig. 2.1(b) with (kFas)
−1 = 0) the superfluid phase region becomes

significantly larger. The normal mixture region NMLi at the intermediate shell com-

pletely disappears, in contrast to the equal mass case where there is always such a

mixed shell [71, 72]. Moving on to the BEC side of resonance with (kFas)
−1 = 0.2

(Fig. 2.1(c)), the type-I breached pair phase (BP1) appears at an intermediate shell

between the SF and NPLi phases, but only when the light fermions are in excess.

Compared with the equal mass case [71, 72], the critical kFas for the appearance of

the BP1 state is significantly shifted towards the resonance point. Another notable

feature at this value of (kFas)
−1 is that when the heavy fermions are in excess, the
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superfluid shell is not surrounded by a normal gas anymore. All the normal compo-

nents are pushed to the central core. Further into the BEC side with (kFas)
−1 = 0.5

(Fig. 2.1(d)), the normal mixture at the trap center finally disappears for any pop-

ulation imbalance, and we regain the picture of a superfluid core surrounded by a

shell of normal gas. The BP1 phase region at the intermediate shell grows as one

expects, but again it only appears when the light fermions are in excess.

A remarkable feature from the above phase diagrams is that the superfluid forms

a shell structure in space, which separates different types of normal states at the

trap center and at the edge. This feature is qualitatively different from the equal

mass case. Now we would like to understand in more detail how this feature arises.

We know that the phase is determined by the global minimum of the thermody-

namic potential Ω as a function of the gap Δ, under certain values of the chemical

potentials μr and h at the trap position r. As one moves out from the trap center,

μr monotonically decreases as μr = μ − r̃2 (in units of EF ) while h remains the

same. In Fig. 2.2(a), we show Ω as a function of Δ at several different values of

the normalized radius r̃ (thus with differing μr). The values of h and μ(r̃ = 0) are

taken to be typical ones for which there is a superfluid shell structure in the phase

diagram. The potential Ω typically has a double-well structure. At the trap center

(the lowest curve with r̃ = 0), the trivial well with Δ = 0 is deeper, corresponding

to a normal state. As one moves out, both wells are lifted, but with different speeds.

At a lower critical value of r̃ (which is 0.38 for the configuration in Fig. 2.2(a)), the

two wells become equally deep. Above this value, the global minimum jumps to the

nontrivial well with Δ �= 0, signaling a first-order phase transition to the superfluid

state. As one moves farther out, the nontrivial well approaches the trivial well, and

at an upper critical value of r̃ (0.81 in Fig. 2.2(a)) the two wells merge, indicating
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a second-order phase transition from the superfluid to the normal state. Hence the

potential Ω varies non-monotonically with μr, leading to the superfluid shell state

only at the intermediate region.

The above picture is established from the calculation of Ω. We can also give an

intuitive explanation for the superfluid shell state. Note that except in the deep BEC

side with a very strong coupling, it is always more favorable for the fermions to pair

up when the mismatch of the Fermi surfaces of the two components decreases. As

one changes the chemical potential μr by moving out from the trap center, for non-

interacting fermions the radius of the Fermi surface in the momentum space kσF (r̃)

decreases as kσF (r̃) =
√
2mσ(μσ − r̃2) (in the standard unit) for the component σ.

So kσF (r̃) for the heavy fermions decreases faster with increasing r̃. This qualitative

statement should be true also for interacting fermions as interaction will not change

the rough trend. Thus we can imagine two situations as depicted in Figs. 2.2(b)

and (c). If at the trap center, the Fermi surface of the heavy fermions (40K) has

a smaller radius kσF (r̃ = 0) (Fig. 2.2(b)), the mismatch of the two Fermi surfaces

monotonically grows as one increases r̃. Therefore the pairing superfluid, if any, can

only form a core at the center. On the other hand, if the Fermi surface of the heavy

fermions has a larger radius kσF (r̃ = 0) (which is the case when 40K are in excess),

the mismatch of the Fermi surfaces is minimized at an intermediate region (see Fig.

2.2(c)), so the superfluid only forms near that region and thus takes the shape of a

spherical shell. This explains an important qualitative feature of the phase diagram

in Fig. 2.1. From this qualitative picture, we expect even when the LDA ceases

to be a good approximation, the topology of the superfluid shell may persist, albeit

with a shape possibly distorted by the surface tension. As one moves further to the

BEC side, the Fermi surface mismatch (and thus the above mechanism) becomes
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Figure 2.2: (a) The thermodynamical potential Ω shown as a function of the order parameter Δ
(both in the unit of EF ) at different trap positions (different chemical potentials) characterized by
the normalized radius r̃. The other parameters are p = 0.2, T = 0, and (kFas)

−1 = 0. The two
solid curves bound a region corresponding to the SF phase, where the global minimum of Ω is at
a nonzero Δ. (b) and (c) Schematic illustration of the radius of the Fermi surfaces kσF for the two
components as a function of the normalized trap radius r̃. In (b), one can only have a superfluid
core at the trap center, while in (c), one in general has a superfluid shell in the intermediate region.

less important, and finally it becomes irrelevant which component is in excess. The

superfluid then always forms a core at the trap center where there is a larger atomic

density (Fig. 2.1(d)).

To detect the phase diagram of Fig. 2.1 in general and the superfluid shell state

in particular, one can measure the atomic density profiles in the trap. The real-

space density profiles for the polarized Fermi gas have been measured in several

experiments [27–29, 32]; particularly, in [32] they show how to reconstruct the full

density profile from the column integrated signal. We calculate the density profiles

for several characteristic configurations of phase separation (Fig. 2.3). Fig. 2.3(a)

is for the resonance case with a small population imbalance p = 0.2 and at zero

temperature. The superfluid shell (where the densities for the two components are

equal) is clearly visible, separating two normal regions. From the inside normal

state to the superfluid, the heavy (light) fermion densities jump down (up). This

jump is consistent with the first-order phase transition picture established from the
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Figure 2.3: The atomic number densities nσ (in the unit of nF ≡ k3F /(3π
2)) shown versus the

normalized trap radius r̃. The solid (dashed) curves are for the 40K (6Li) atoms, respectively. The
inserts of (a) and (b) show the amplified tails of the density profiles. The other parameters are:
(a)T = 0, resonance, and p = 0.2, (b) T = 0.1TF , resonance, and p = 0.2, (c) T = 0, (kFas)

−1 = −1
(BCS side), p = −0.4, (d) T = 0, (kF as)

−1 = 0.2 (BEC side), p = 0.3.

thermodynamic potential Ω shown in Fig. 2.2(a). From the superfluid shell to the

outside normal regions, the atomic densities drop continuously (consistent with the

second-order phase transition picture in Fig. 2.2(a)). There is a small region in the

NMLi state, and outside is a tail for the NPLi region. In Fig. 2.3(b), we show the

finite temperature density profiles (T = 0.1TF ) with otherwise the same parameters

as in Fig. 2.3(a). The profiles become slightly more smooth (as one expects), but the

jump from the inside normal to the superfluid shell is still clearly visible. Note that as

pointed out in [71, 72], the densities are no longer equal for the BCS superfluid state

at finite T since quasiparticle excitations carry population imbalance. Fig. 2.3(c)

shows the density profiles on the BCS side. There are jumps in the density profiles

from the superfluid shell to both the inside and outside regions of normal states. Fig.

2.3(d) shows the profiles on the BEC side, still with a superfluid shell, but no normal

region outside the shell (no tails with unequal densities). On the BEC side, there is

also a region of the BP1 state when the light atoms are in excess. The BP1 state
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is difficult to detect from the real-space density profile, but can be unambiguously

observed using the momentum-space profile of the minority component [102].

2.4 Chapter Summary

In this chapter, we have discussed the BEC-BCS crossover in an ultracold Fermi

gas across a Feshbach resonance with unequal populations and masses. The gas

shows various phases such as superfluids, normal fully polarized phases, normal mix-

tures, and breached-pair phases. Different phases separate by forming shell struc-

tures within a trap. The formation of superfluid cores or shells can be intuitively

understood by considering the intersection of Fermi surfaces. We calculate the in-

trap density profiles, which should be experimentally detectable quantities. We also

anticipate that the formation of a superfluid shell will lead to interesting vortex be-

haviors. Our prediction of superfluid shells is also supported by other work [89–91].



CHAPTER III

BCS-BEC Crossover in a Quasi-two-dimensional Fermi Gas

3.1 Overview

Interest in low-dimensional Fermi systems has recently revived due to experimen-

tal developments of cooling and trapping atoms in optical lattices [9–12, 44, 103, 104]

and on atom chips [105]. With the aid of magnetic Feshbach resonances, these tech-

niques provide a fascinating opportunity of creating quasi-low-dimensional Fermi

systems with controllable atomic interaction. This opens a possibility for BEC-BCS

crossover behavior to be investigated in lower dimensions. This line of research has

potential applications closely connected to high-Tc superconductivity [106, 107] and

the quantum Hall effect [19, 20].

In three-dimensional (3D) Fermi systems, a single-channel model [97–99] and a

two-channel model [94, 95] are employed to describe degenerate behaviors, and both

give a consistent description around a wide Feshbach resonance (see Chapter II).

This agreement between single- and two-channel models is rooted in the fact that the

closed-channel (Feshbach molecule) population is negligible near a wide resonance,

so that it makes no significant difference to explicitly include (as in the two-channel

model) or neglect (as in the single-channel model) the molecular degree of freedom. In

this chapter, we first start with a single-channel point of view, using an effective two-

32
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dimensional (2D) Hamiltonian with renormalized atom-atom interaction (model 1)

[39, 108, 109]. Next, a more general model is proposed with renormalized interaction

between atoms and dressed molecules (model 2) [110]. The dressed molecules mainly

come from population of atoms in the excited levels along the strongly confined axial

direction near a Feshbach resonance [110, 111].

In this work, we consider a quasi-2D gas contained in a weak radial trap, i.e., an

inhomogeneous (harmonic) layer under the mean-field (MF) approximation and the

local density approximation (LDA). The above two models are employed to calculate

the in-trap density profiles and the cloud size at zero temperature. We compare the

results of the two models and find significant differences. For model 2, we show that

the cloud size continuously decreases from the BCS side to the BEC side as one tunes

across the Feshbach resonance. This picture is in agreement with the intuition that

fermions form composite bosons on the BEC side: the bosonic wavefunctions allow

spatial overlapping, so that the cloud should shrink in size. On the contrary, model

1 fails to describe this crossover behavior by predicting a constant cloud size and

identical density profile for all magnetic field detunings. This discrepancy implies

that the MF results given by model 1 are unreliable, even at a qualitative level.

Given this qualitative discrepancy and the problem associated with model 1 for

description of the two-body ground state of the system [112], it is likely that the

oversimplification is rooted in the model itself instead of the MF approximation.

The quasi-2D geometry can be realized by strongly confining the fermions along

the axial (z) direction in an optical lattice. They form a series of quasi-2D pancake-

shaped clouds when a weak harmonic trapping potential is applied on the radial

(x-y) plane [12, 104]. Each such pancake-shaped cloud can be considered as a quasi-

2D Fermi gas when the axial confinement is strong enough to turn off inter-cloud
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tunneling. The strong anisotropy of trapping potentials introduces two different

orders of energy scales, with one characterized by �ωz and the other by �ω⊥, where

ωz (ω⊥) are the trapping frequencies in the axial (radial) directions. The separation

of these two energy scales (ωz � ω⊥) allows us to first deal with the axial degrees of

freedom and derive an effective 2D Hamiltonian, leaving the radial degrees of freedom

for later treatment.

The structure of this chapter is outlined as follows. In Sec. 3.2 and Sec. 3.3 we

present a single-channel model and a more general two-channel model, respectively,

as well as the calculation results, which are compared and discussed at the end of

Sec. 3.3.

3.2 Model 1 with Renormalized Atom-atom Interaction

The effective 2D Hamiltonian for model 1 is obtained by assuming that the

renormalized atom-atom interaction can be characterized with an effective 2D scat-

tering length, with the latter derived from the exact two-body scattering physics

[39, 108, 109]. Thus, for a wide Feshbach resonance where the Feshbach-molecule

population is negligible, we can write down an effective Hamiltonian only in terms of

2D fermionic operators ak,σ and a
†
k,σ, with (pseudo) spin σ and transverse momentum

k = (kx, ky). The model 1 Hamiltonian takes the form [39, 106–109]

H1 =
∑
k,σ

(εk − μ)a†k,σak,σ

+
V eff1

L2

∑
k,k′,q

a†k,↑a
†
−k+q,↓ak′,↓a−k′+q,↑, (3.1)

where εk = �
2k2/(2m) is the 2D dispersion relation of fermions with mass m, μ is

the chemical potential, and L2 is the quantization area. The bare parameter V eff
1

is connected with the physical one V eff1p through the 2D renormalization relation
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[
V eff1

]−1
=

[
V eff
1p

]−1−L−2
∑

k(2εk+�ωz)
−1 (�ωz is from the zero-point energy), and

V eff
1p = V eff1p (as, az) depends on the 3D scattering length as and the characteristic

length scale for axial motion az ≡ √
�/(mωz) according to the expression given in

[39, 108–110]. Notice that the chemical potential μ can be a function of the radial

coordinate r = (x, y) under LDA. In the following discussion, we choose �ωz as the

energy unit so that μ, V eff
1 , and εk = a2zk

2/2 become dimensionless.

By introducing a dimensionless BCS order parameter (normalized by �ωz) Δ ≡

(V eff1 /L2)
∑

k

〈
ak,↓a−k,↑

〉
, we get the zero temperature thermodynamic potential den-

sity

Ω = − Δ2

V eff
1

+
1

L2

∑
k

(εk − μ−Ek), (3.2)

where Ek =
√
(εk − μ)2 +Δ2 is the quasi-particle excitation spectrum. The ultra-

violet divergence of the summation over k cancels with the renormalization term

in
[
V eff
1

]−1
. The gap and number equations can be obtained respectively from

∂Ω/∂Δ2 = 0 and n = −∂Ω/∂μ (n = N/L2 is the density of particles), leading

to

1

V eff1p (as, az)
=

ln
(−μ+

√
μ2 +Δ2

)
4πa2z

, (3.3)

n =
μ+

√
μ2 +Δ2

2πa2z
. (3.4)

Notice that Eq. (3.3) can be rewritten as F (as, az) = −μ +
√
μ2 +Δ2, where the

function F absorbs all the dependence on as and az. Thus, by substituting this

expression into Eq. (3.4), we get a closed form for the number equation,

n =
1

πa2z

[
F (as, az)

2
+ μ

]
. (3.5)

Now we take into account the harmonic trapping potential U(r) = (ω⊥/ωz)2r2/(2a2z)

in the radial plane by writing down the position-dependent chemical potential μ(r) =



36

μ0−U(r), where μ0 is the chemical potential at the trap center. It can be easily shown

that the spatial density profile is now a parabola, n(r) = (ω⊥/ωz)2(R2
TF−r2)/(2πa4z),

with the Thomas-Fermi cloud size RTF =
√
2μ0az(ωz/ω⊥). Assigning the condition

that the total number of particles in the trap is fixed at N =
∫
n(r)d2r, the cloud

size takes the constant value RTF = RBCS ≡ √
2ωz/ω⊥N1/4az, which is independent

of the 3D scattering length as. In fact, as one varies the scattering length as, the

chemical potential at the trap center μ0 is adjusted accordingly such that an identical

density profile is maintained.

This result of a constant cloud size is obviously inconsistent with the picture of a

BCS-BEC crossover in quasi-two dimensions. In fact, in a typical experiment with

az (∼ μm) much greater than the atom-atom interaction potential Re (∼nm), the

scattering of atoms in this quasi-2D geometry is still 3D in nature. In particular,

fermions will form tightly bound pairs on the BEC side of the Feshbach resonance as

they do in 3D. Thus, in the BEC limit when fermion pair size apair � az and binding

energy |Eb| � �ωz, the system essentially behaves like a weakly interacting gas of

point-like bosons, for which one would expect a vanishingly small cloud size in the

loosely confined radial plane [108, 113].

The MF result of a finite cloud size in the BEC limit from model 1 indicates a finite

interaction strength between paired fermions, no matter how small they are in size.

This conclusion can be extracted directly from the number equation (3.5), which can

be written in the form μ = nπa2z − F (as, az)/2. In the BEC limit, the second term

on the right-hand side represents one half of the binding energy, while the first term

indicates a finite interaction energy per fermion pair since it is proportional to the

number density. As a comparison, the actual equation of state one should expect for

fermion pairs must take the form as for a quasi-2D Bose gas in the weakly interacting
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limit [108]

μB ≈ 3nazas, (3.6)

in which case the quasi-2D gas is treated as a 3D condensate with the ground state

harmonic oscillator wave function in the z-direction.

The interaction strength between paired fermions can also be derived by writing

a Bose representation for this system, where the fermionic degrees of freedom are

integrated out in the BEC limit [114]. This Bose representation leads to a 2D effective

Hamiltonian for bosonic field φ(r),

Heff =

∫
dr

[
φ†(r)

(
−�

2∇2

4m
+ 2U(r)

)
φ(r)− g2

2
|φ(r)|4

]
, (3.7)

where the quartic term characterizes the bosonic interaction. Within the stationary

phase approximation, the interaction strength g2 is calculated by the leading diagram

of a four-fermion process with four external boson lines and four internal fermion

propagators, leading to [114]

g2 = 2
∑
p,ω

Λ4
0(p)G

2
0(p, ω)G

2
0(−p,−ω). (3.8)

Here Λ0 = (−p2/m + |Eb|)χ0(p) is the boson-fermion vertex, χ0(p) is the Fourier

transform of the relative wave function χ0(r) of two colliding fermions in the s-wave

channel, and G0(p, ω) = (iω−p2/2m−|Eb|/2)−1 is the free propagator for fermions.

After summing over momentum p and Matsubara frequency ω, we can directly show

that g2 indeed takes a constant value, being independent of the binding energy |Eb|

of paired fermions and hence the 3D scattering parameter as. Thus, we conclude that

the MF theory based on model 1 fails to recover the picture of a weakly interacting

Bose gas of paired fermions in the BEC limit, and cannot be directly applied to

describe the BCS-BEC crossover in quasi-two dimensions.
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3.3 Model 2 with Inclusion of Dressed Molecules

Having shown the problem associated with model 1, we next consider model 2 by

taking into account the axially excited states via inclusion of dressed molecules. As

derived in [110], the effective 2D Hamiltonian takes the form (also in units of �ωz),

H2 =
∑
k,σ

(εk − μ) a†k,σak,σ +
∑
q

(εq
2

+ λb − 2μ
)
d†qdq

+
αb
L

∑
k,q

(
a†k,↑a

†
−k+q,↓dq + h.c.

)
+

Vb
L2

∑
k,k′,q

a†k,↑a
†
−k+q,↓a−k′,↓ak′+q,↑, (3.9)

where d†q (dq) denotes the creation (annihilation) operator for dressed molecules with

radial momentum q, and λb, αb, and Vb are the 2D effective bare detuning, atom-

molecule coupling rate, and background interaction, respectively. These parameters

can be related to the corresponding 3D parameters by matching the two-body physics

[110]. By introducing the order parameter Δ ≡ αb 〈d0〉 /L+ (Vb/L
2)
∑

k 〈ak,↓a−k,↑〉,
we obtain the MF gap and number equations,

1

V eff
2p (2μ)

=
ln
(
−μ+

√
μ2 +Δ2

)
4πa2z

, (3.10)

n =
μ+

√
μ2 +Δ2

2πa2z
+ 2Δ2

∂[V eff
2,p (x)]−1

∂x

∣∣∣∣∣
x=2μ

, (3.11)

where the inverse of effective interaction is connected with the 3D physical parameters

through [110][
V eff
2p (x)

]−1

=

[
Vb +

α2
b

x− λb

]−1

+
1

L2

∑
k

1

2εk + �ωz

=

√
2π

a2z

[(
Up +

g2p
x− γp

)−1

− Sp(x) + σp(x)

]
. (3.12)

Here Up = 4πabg/az, g
2
p = μcoWUp/(�ωz), and γp = μco(B − B0)/(�ωz) are 3D

dimensionless physical parameters, where abg is the background scattering length, μco
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is the difference in magnetic moments between the two channels, W is the resonance

width, and B0 is the resonance point. The functions in Eq. (3.12) take the form

Sp(x) =
−1

4
√
2π

∫ ∞

0

ds

[
Γ(s− x/2)

Γ(s+ 1/2− x/2)
− 1√

s

]
, (3.13)

σp(x) =
ln |x|
4π

√
2π
, (3.14)

where Γ(x) is the gamma function.

Figure 3.1: The BCS-BEC crossover behavior of a uniform quasi-2D Fermi gas at zero temperature,
showing (a) the chemical potential μ, (b) the gap Δ, both in unit of �ωz, and (c) the dressed-
molecule fraction nb/n. Notice that the results for 6Li (solid) and those for 40K (dashed) almost
coincide as plotted as functions of az/as, indicating a universal behavior around the resonance point.
Furthermore, significant difference between model 1 (gray) and model 2 (black) can be observed
in (b) and (c), which shows that model 1 is oversimplified at unitary and on the BEC side of the
resonance. The parameters used in these plots are ωz = 2π × 62 kHz, and na2z = 0.001.

Using this model 2 Hamiltonian, we first consider a uniform quasi-2D Fermi gas

with a fixed number density n, where the inhomogeneity in the radial plane is ne-

glected. In this case, the gap and number equations (3.10) and (3.11) need to be

solved self-consistently for a given magnetic field. A typical set of results for both 6Li
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Figure 3.2: The Thomas-Fermi cloud size of a quasi-2D Fermi gas of 6Li over a wide BCS-BEC
crossover region. Here, results from model 2 (solid) are compared with those from model 1 (dashed).
All curves are normalized to the cloud size of a noninteracting Fermi gas RBCS. Notice that the
results of model 2 recover the correct pictures in the BCS and BEC limits, in clear contrast to
the model 1 prediction of a flat line. Parameters used for these two plots are ωz = 2π × 62 kHz,
ω⊥ = 2π× 20 Hz, and the total particle number N = 104. For reference, the results for an isotropic
3D Fermi gas with the same total particle number is also plotted (dotted), where a single-channel
model and a two-channel model are both incorporated to give indistinguishable predictions.

and 40K are shown in Fig. 3.1, indicating a smooth crossover from the BCS (right)

to the BEC (left) regimes. Here results obtained from model 2 (black) are compared

with those from model 1 (gray). In this figure and the following calculation, we use

the parameters abg = −1405a0, W = 300 G, μco = 2μB for 6Li, and abg = 174a0,

W = 7.8 G, μco = 1.68μB for 40K, where a0 and μB are Bohr radius and Bohr

magneton, respectively.

There are two major points that need to be emphasized in Fig. 3.1. First, when

plotted as functions of the inverse of 3D scattering length az/as, the results for 6Li

(solid) and 40K (dashed) are very close, manifesting the near resonance universal

behavior. Second, the results from model 1 and model 2 are significantly different,

especially on the BEC side of the resonance. In particular, the dressed-molecule

fraction in model 2 is already sizable (∼ 0.16) at unitary, and becomes dominant on

the BEC side of the resonance (see Fig. 3.1(c)). This result is another indication of
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the inadequacy of model 1, where the dressed-molecule population is always assumed

to be negligible.

Next, we impose a radial harmonic trap U(r) and calculate the Thomas-Fermi

cloud size for a fixed number of particles in the trap N =
∫
2πn(r)rdr, as shown

in Fig. 3.2. The most important feature of Fig. 3.2 is that the cloud size given

by model 2 (solid) is no longer a constant as predicted by model 1 (dashed). On

the contrary, by crossing the Feshbach resonance, the cloud size decreases from the

limiting value RBCS of a noninteracting Fermi gas in the BCS limit, and approaches

to the 3D results (dotted) in the BEC limit. This trend successfully recovers the

corresponding physics in both the BCS and the BEC limits. In addition, we also

find that for a given number of particles in the trap, the curve trend is insensitive to

the radial trapping frequency ω⊥ within the experimentally accessible region. (The

ω⊥ = 2π × 10 Hz and 2π × 50 Hz results, not shown, coincide with the 2π × 20

Hz line and are hardly distinguishable within the figure resolution.) Considering

the fact that there is a scaling relation between ω⊥ and N such that the physics is

only determined by N(ω⊥/ωz)2, this insensitivity to the radial trapping frequency

suggests that the experimental measurement has a rather wide range of tolerance on

the number of atoms.

In Fig. 3.3 we show the number density and the dressed-molecule fraction distri-

bution along the radial direction for various values of az/as. A typical case in the

BCS regime is shown in the top panel of Fig. 3.3, where the dressed-molecule fraction

is vanishingly small, and model 1 and model 2 predict similar cloud sizes and num-

ber density distributions. The middle panel shows the case at unitary. As compared

with model 1, notice that the cloud is squeezed in model 2, and the dressed-molecule

fraction increases to a sizable value. The bottom panel shows a typical case in the
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Figure 3.3: The in-trap number density (the solid lines) and dressed-molecule fraction (the dashed
lines) distribution along the radial direction of a quasi-2D Fermi gas of 6Li, obtained from model
2 (a-c) and model 1 (d-f). The top panels correspond to the case of az/as = −1 (BCS side), the
middle panels to the case of az/as = 0 (unitary), and the bottom panels to the case of az/as = 1
(BEC side). The parameters are ωz = 2π × 62 kHz, ω⊥ = 2π × 20 Hz, and N = 104.

BEC regime, where the cloud is squeezed further in model 2 as the dressed-molecule

fraction becomes significant. Notice that the results of model 2 successfully describe

the BCS-BEC crossover, in clear contrast to the outcome of model 1.

3.4 Chapter Summary

In summary, we have considered the BCS-BEC crossover of a quasi-2D Fermi gas

across a wide Feshbach resonance. We have analyzed two effective Hamiltonians

and compared predictions of zero temperature cloud size and in-trap number density

distribution from the MF approach and LDA. Using model 1 with renormalized atom-

atom interaction, we show that the cloud size remains a constant value through

the entire BCS-BEC crossover, which is inconsistent with the picture of a weakly

interacting Bose gas of fermion pairs in the BEC limit. On the other hand, model

2 with renormalized interaction between atoms and dressed molecules predicts the
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correct trend of cloud size change. Based on this qualitative comparison, it can be

concluded that the inclusion of dressed molecules is essential to describe the BCS-

BEC crossover in quasi-low dimensions [110, 111].



CHAPTER IV

Characteristics of Bose-Einstein Condensation in an Optical

Lattice

4.1 Overview

During recent years there has been significant interest in ultracold atomic gases in

optical lattices, partly stimulated by the possibility of simulating strongly correlated

many-body systems [8, 115]. With extraordinary controllability, ultracold atomic

gases in lattices provide a promising experimental platform to help tackle important

problems across multiple disciplines. A problem which has drawn great attention over

the past decade is the emergence of condensation and superfluid order in an optical

lattice, as well as how the superfluid order transfer into other ordered states. With

current technology, condensation and superfluidity are obtained for both Bose and

Fermi gases in optical lattices, so that various phase transitions can be investigated

[42, 44].

To experimentally investigate these phase transitions, present techniques with

ultracold atomic gases rely heavily on detection based on the time-of-flight imaging,

where the interference pattern and its visibility appear to be signatures of Bose

condensation within an optical lattice [42]. Recent studies show that even for a

thermal lattice gas above the BEC transition temperature Tc, interference peaks with

observable visibility are still present [47–49]. This thermal visibility can be large for

44
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an ideal Bose gas in a homogeneous lattice, which could make the condensation

signal ambiguous [47]. However, for practical systems with atomic interaction and

an inhomogeneous global trap, the thermal visibility becomes significantly smaller

[48, 49], and the appearance of sharp interference peaks is still associated with the

BEC transition. It is also suggested [49] that the bimodal structure of the atomic

momentum distribution in the first Brillouin zone, combined with the interference

peaks, provides an additional unambiguous signal for Bose condensation in an optical

lattice. A very recent experiment used the onset of the bimodal distribution and the

associated condensate fraction to identify the superfluid-to-Mott-insulator transition

point [40].

In this chapter, we provide a detailed study of a Bose gas in a three-dimensional

(3D) inhomogeneous optical lattice, both below and above the BEC transition tem-

perature. We discuss several properties including the visibility, the width of the

interference peak, and the momentum distribution of the resulting interference pat-

tern. The main results are as follows. First, all the quantities mentioned above can

characterize the BEC transition for experimental systems with interacting atoms in

an inhomogeneous optical lattice. The large thermal visibility applies only to some

particular parameters which are not directly responsible for current experiments. In

the case when the thermal visibility is large, a substantial variation of the peak width

or the appearance of a bimodal structure for the atomic momentum distribution may

work as a better signature for the condensation transition. Second, below the BEC

transition temperature, the visibility and the peak width become insensitive to the

system temperature, and hence cannot be applied as a practical thermometer. To

fill this gap, the bimodal structure of the atomic momentum distribution gives a

way to extract the condensate fraction through the bimodal fitting. The resulting
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condensate fraction provides a sensitive indicator of the system temperature, and

hence may serve as a potential thermometer for this important system.

The structure of this chapter is organized as follows. In Sec. 4.2, we first consider

the situation of free bosons in an optical lattice within a global harmonic trap,

and investigate the general behavior of the interference visibility and the atomic

momentum distribution. In the absence of interaction, the problem is significantly

simplified such that exact solutions are available. These exact solutions are valuable

first for qualitative understanding of the system and its properties, and secondly

for direct comparison with experiments when the Feshbach resonance technique is

applied to turn off the atomic interaction. After studying the free Bose gas, we

extend our discussion in Sec. 4.3 to the case of interacting bosons, where effects of the

global harmonic trap and the interaction have to be taken into account together. In

order to deal with the trap, we adopt the local density approximation (LDA), which

works well when the interaction energy scale is significantly larger than the trapping

energy scale (this condition is typically valid for current experiments). Restricting

our discussion to weakly interacting bosons away from the Mott region, we apply

the Hartree-Fock-Bogoliubov-Popov (HFBP) approximation to deal with the atomic

interaction [45, 116, 117]. The HFBP method can provide a reliable description

except in a narrow region around the BEC transition temperature [116, 118]. Taking

into account the effect of the global trap, this questionable region only corresponds

to a thin shell in three dimensions, and its influence on the global properties is small.

Therefore, we expect that the HFBP method can give reliable results for the atomic

momentum distribution and the condensate fraction.
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4.2 Ideal Bose Gas in an Inhomogeneous Optical Lattice

4.2.1 Formalism

In this section, we discuss an ideal Bose gas in an inhomogeneous optical lattice

with a global harmonic trap. For completeness, we briefly review the formalism [49]

before presenting detailed results. We consider atoms in a cubic lattice with an

additional spherically symmetric harmonic trap [119]. The Hamiltonian takes the

form

H =

∫
d3rΨ†(r)

[
−�

2∇2
r

2m
+ Vop(r) + V (r)

]
Ψ(r), (4.1)

where Ψ represents the bosonic field operator, m is the atomic mass, Vop(r) ≡

V0
∑

i=x,y,z sin
2(πri/d) is the optical lattice potential with lattice spacing d, and

V (r) ≡ mω2r2/2 is the global harmonic trapping potential. In practice, the global

harmonic trap V (r) typically varies much more slowly than the optical lattice poten-

tial Vop(r), so the Hamiltonian can be separated into two parts with fast and slow

variations, respectively. The fast-varying part can be diagonalized by introducing

the expansion of bosonic field operators

Ψ(r) =
∑
R

w(r−R)aR, (4.2)

where w(r) is the Wannier function associated with the lattice potential Vop(r), aR

is the annihilation operator on site R, and the summation is over all lattice sites.

After transforming to momentum space, the Fourier components of Ψ(r), w(r), and

aR satisfy the following relation

Ψ(k) = w(k)ak. (4.3)
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Representing the fast- and slow-varying components of H in terms of ak and aR,

respectively, the original Hamiltonian Eq. (4.1) can be written as

H =
∑

k∈1BZ

εka
†
kak +

∑
R

V (R)a†RaR, (4.4)

where the summation over quasi-momentum k is restricted to the first Brillouin zone

(1BZ). Here we assume that the lattice depth V0 is strong enough that the band

gap is large and atoms are confined to the lowest band with dispersion relation

εk = −2t
∑

i=x,y,z cos(kid). The tunneling rate t can be well estimated by t ≈

(3.5/
√
π)V

3/4
0 exp(−2

√
V0), where the recoil energy ER ≡ �

2π2/(2md2) is used as

the energy unit [111].

In principle, the resulting Hamiltonian Eq. (4.4) can be directly diagonalized for

arbitrary V (R). However, the numerical calculation is usually very heavy in three

dimensions due to the presence of a large number of lattice sites. In this case, the

diagonalization process can be significantly simplified by noticing that the indices k

and R in Eq. (4.4) are reminiscent of the coordinate and the momentum variables

in quantum mechanics. This observation allows us to write down a first quantization

Hamiltonian corresponding to Eq. (4.4) in momentum space, where R is replaced

by the momentum gradient −i∇k [49, 120–122]. The resulting effective Hamiltonian

thus takes the form

Heff = −1

2
mω2∇2

k + εk, (4.5)

which represents free bosons with effective mass m∗ ≡ �
2/(mω2) in a periodic poten-

tial εk with period |G| = 2π/d along all three principal directions. Furthermore, since

∇2
k and εk are separable, this Hamiltonian can be reduced to three one-dimensional

problems which require much less effort to solve. Notice that the properties of this

effective Hamiltonian depend only on the ratio �
2ω2/(tER), which suggests that the
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variation of ω and V0 can be scaled to each other by fixing the dimensionless pa-

rameter �2ω2/(V
3/4
0 e−2

√
V0), where ER is used as the energy unit. In this section, we

will keep V0 fixed (V0 = 10ER) and look at changes in the system properties under

variation of the global trapping frequency ω. With different lattice barriers V0, one

can directly read out the result by simply re-scaling ω to keep �
2ω2/(V

3/4
0 e−2

√
V0)

fixed (a smaller barrier thus corresponds to a larger effective trapping frequency).

The quasi-momentum distribution 〈a†kak〉 is then given by the square of the eigen-

state wave functions φn(k) of Heff , where the expectation value is obtained by aver-

aging over all eigenstates n with a Bose distribution factor g(En) = 1/ exp[β(En −
μ)− 1]. Here, En is the corresponding eigenenergy, μ is the chemical potential, and

β = 1/(kBT ) is the inverse temperature. Taking into account the presence of the

Wannier function in Eq. (4.3), the atomic real momentum distribution is

n(k) = 〈Ψ†(k)Ψ(k)〉 = |w(k)|2〈a†kak〉

= |w(k)|2
∑
n

g(En)|φn(k)|2. (4.6)

For a free gas, this momentum distribution remains unchanged during expansion, so

that the signal from the time-of-flight image taken along a crystallographic axis, say

z direction, is just the columnar density

n⊥(kx, ky) =
∫
n(k)dkz. (4.7)

4.2.2 Interference patterns

Using the technique sketched above, we show in Fig. 4.1 the calculation results

for the column-integrated momentum distribution as recorded by the time-of-flight

images, both below and above the BEC transition temperature Tc. In these plots, we

choose parameters close to those for a typical experiment of 87Rb atoms, where the
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Figure 4.1: Calculated column-integrated momentum density profile near the first Brillouin zone
measured through the time-of-flight imaging, taking for two different trapping frequencies at various
temperatures. Parameters chosen in these plots are close to those for a typical experiment of 87Rb,
with lattice depth V0 = 10ER and a total number of particles N = 105. The global harmonic
trapping frequencies are ω = 2π × 10 Hz for (a)-(c), and 2π × 60 Hz for (d)-(f).
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lattice depth V0 = 10ER, and the total number of particles N = 105. For this finite

system, the transition temperature Tc is determined by requiring that the number of

atoms in the ground state is of the order of 1 when T > Tc and increases by orders

of magnitude when T crosses Tc. Since the total atom number satisfies N � 1, the

transition is actually very sharp, and Tc is well defined by the requirement above.

From Fig. 4.1, it is apparent that for the case of a very weak global trap (ω =

2π × 10 Hz), the interference peaks are clearly visible even above the transition

temperature. However, the BEC transition is still evident from the time-of-flight

images, as the interference peaks become much sharper when T falls below Tc. For

the case with a stronger global trap (ω = 2π × 60 Hz, which is close to the value

in experiments), the interference peaks become blurred when T > Tc (although one

can still read some pattern). Once the temperature is tuned below Tc, the interferece

patterns undergo a dramatic change and regain sharp peaks.

These figures show qualitatively that a Bose condensation transition should be

visible with the time-of-flight images. To obtain a more quantitative description,

however, it is desirable to have some single-value indicators which change sharply

across the BEC transition so that one can characterize this phase transition by

measuring the indicators. As possible candidates, we next discuss in detail two

quantities: including the visibility of the interference pattern (Sec. 4.2) and the

peak width associated with the atomic momentum distribution (Sec. 4.2.4). While

both quantities can signal the BEC transition in a reasonably strong global trap, the

peak width is a more accurate indication when the global trap becomes weaker. After

the condensation transition, both of these two indicators become very insensitive to

the variation of the system temperature, so they do not provide a good thermometer.

Instead, we suggest measuring the condensate fraction from the bimodal fitting to
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Figure 4.2: The visibility as a function of temperature around the BEC transition temperature Tc

for various values of trapping frequencies. Other parameters are the same as those used in Fig. 4.1
with V0 = 10ER and N = 105. Remind that the variation of V0 is equivalent to that of ω, with a

fixed value of �2ω2/(V
3/4
0 e−2

√
V0).

the central interference peak, as discussed in Sec. 4.2.5. The measured condensate

fraction changes continuously with the temperature, thus giving a good indicator for

estimation of temperature in this important system.

4.2.3 Visibility

The visibility of the interference pattern is introduced in [43]. It is defined as the

intensity contrast of two characteristic points on the interference pattern [43]

v =
nA⊥ − nB⊥
nA⊥ + nB⊥

, (4.8)

where nA⊥ and nB⊥ are (column-integrated) atomic intensities at sites A and B, respec-

tively, as shown in Fig. 4.1(a). The point A represents the position of the secondary

peak while B is along the circle of the secondary peaks where the intensity takes

its minimum value. The visibility defined in this way is clearly independent of the

Wannier function [the pre-factor in Eq. (4.3)].

The temperature dependence of the visibility v, especially crossing the BEC tran-

sition, is shown in Fig. 4.2 for various values of trapping frequencies. For a very weak
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trap (ω = 2π × 10 Hz), the visibility is fairly high (v > 0.8) even with temperature

considerably larger than Tc. Thus in the limit of a vanishing ω, our result is consis-

tent with those in [47] for free bosons in a homogeneous lattice (without the global

trap). However, for large trapping frequencies, as pointed out in [48], the visibility

becomes significantly smaller when T > Tc, leading to a more substantial drop across

the BEC transition. With a trapping frequency around ω = 2π×60 Hz, the visibility

jumps should be evident to observe, as shown in Fig. 4.2. However, the transition

is stretched over a wide range of temperatures (the visibility begins to drop starting

from a temperature significantly below Tc, see Fig. 4.2), which may make the deter-

mination of the transition point from the visibility less accurate. Notice that with

the scaling relation, a smaller barrier V0 corresponds to a larger effective trapping

frequency ω. Therefore with a shallower lattice, the change in visibility across the

BEC transition becomes larger for free bosons.

For the system temperature above Tc, there is no long-range coherence in the

atomic cloud, so the finite visibility of the interference pattern is induced by resid-

ual short-range thermal correlations. To understand the different behavior of the

visibility, we calculate the short-range thermal correlation function around the trap

center with different global trapping potentials. The real space correlation function

is defined as

C(R) =
〈Ψ†(0)Ψ(R)〉√〈Ψ†(0)Ψ(0)〉〈Ψ†(R)Ψ(R)〉 , (4.9)

with R = 0 indicating the trap center. In Fig. 4.3, we show the correlation functions

both below and above Tc for different trapping frequencies. Notice that for weak

trapping potentials [see, e.g., Fig. 4.3(a)], the correlation function extends to several

lattice sites at temperatures above Tc, indicating the presence of thermal short-

range coherence. As the trapping frequency increases, the correlation length for a
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Figure 4.3: Correlation functions around the trap center indicating real space coherence below
(for a superfluid, SF) and above (for a thermal gas, TG) the BEC transition temperature, with
trapping frequencies (a) ω = 2π × 10 Hz, (b) 2π × 60 Hz, and (c) 2π × 120 Hz. Curves in each
panel are taken at, from top to bottom, 0.9Tc(solid), 0.95Tc(solid), 1.0Tc(dotted), 1.05Tc(dashed),
and 1.1Tc(dashed), respectively. Parameters used in these plots are V0 = 10ER and N = 105. For
reference, the characteristic length of the single particle ground state wavefunction adjusted by
effective mass (L ≡ √

�/m∗ω) are (in unit of the lattice constant) (a) L = 3.80, (b) L = 1.55, and
(c) L = 1.09, respectively.

thermal gas decreases as presented in Fig. 4.3(b) and 4.3(c), consistent with the

disappearance of interference peaks as shown in Fig. 4.2(f).

4.2.4 Momentum-space density profile and the peak width

Up to now, we have discussed the visibility characterizing the contrast of the

interference pattern. In this subsection, we introduce another single-value quantity,

the peak width, which characterizes the sharpness of the interference peak. We

notice that while the visibility does not undergo a sudden change across the BEC
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transition when the global trap is weak, the width of the central interference peak,

by contrast, always shrinks sharply when the condensation takes place. Therefore,

the peak width is always a good indicator of the BEC transition independent of the

strength of the global trap.

To introduce the peak width, we first look at the atomic momentum distribution,

which gives detailed information about the system. From Eq. (4.3), the momentum

distributions in other Brillouin zones are simply copies of the distribution in the

first Brillouin zone weighted by the given Wannier function, so it suffices to study

the atomic momentum profile in the first Brillouin zone. In Fig. 4.4, we plot the

column-integrated momentum distribution along one crystallographic axis (e.g., the

x-axis) passing through the center of the first Brillouin zone. It is clear that while

the density profile is a thermal distribution when T > Tc, a bimodal structure starts

to appear when a non-zero condensate fraction emerges in the lattice, characterized

by a sharp peak at the center of the momentum space surrounded by a flat thermal

distribution. The signal of this structural change becomes significant as soon as the

system crosses the BEC transition [see Fig. 4.4(b) and (e)].

In order to characterize the sharpness of the atomic momentum distribution in

the first Brillouin zone, we introduce the peak width as a single-value parameter. For

this purpose, we first define the middle value of n⊥(kx, ky) within the first Brillouin

zone:

nmid ≡ 1

2

[
max

(kx,ky)∈1BZ
+ min

(kx,ky)∈1BZ

]
n⊥(kx, ky). (4.10)

In the simplest terms, the peak width w is measured as the radius in momentum

space where the (column-integrated) atomic density n⊥(kx, ky) first falls to this mid-

dle value nmid. In Fig. 4.5, we show the peak width as a function of temperature for

various trapping frequencies. Notice that the central peak width decreases monoton-
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Figure 4.4: Momentum space columnar density along the x-axis in the first Brillouin zone. The
left and right panels correspond to the cases of trapping frequencies ω = 2π × 10Hz and 2π ×
60Hz, respectively. Notice that while a thermal distribution is present above Tc [(c) and (f)], a
clear bimodal structure starts to appear for temperatures slightly below Tc with only precentral
condensate fractions [n0 ∼ 0.14 in (b) and ∼ 0.09 in (e)]. Here, the solid curves represent the total
momentum density profile, and the dashed curves represent the momentum density profile of the
normal component. Parameters used in these plots are V0 = 10ER and N = 105.
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Figure 4.5: The peak width (defined in the text) within the first Brillouin zone, taking across
the transition temperature for various values of trapping frequencies. Notice that the sharp and
substantial change around Tc occurs for all cases hence serves as a distinctive signature of BEC
transition. Parameters used in these plots are V0 = 10ER and N = 105.

ically with temperature, and most importantly undergoes a sharp and substantial

change when crossing the transition temperature. This distinct feature is universal

for all trapping frequencies, and hence can provide a clear criterion for the phase

transition. However, as will be discussed later, the sharpness of the change of central

peak width around Tc is guaranteed only for ideal Bose gases. In the presence of

atomic interaction, the variation of central peak width may be more flat and extended

over a wider range of temperatures.

4.2.5 The condensate fraction as a measure of temperature

From the discussion above, we notice that after the condensation transition, both

the visibility and the peak width become almost flat with variation in temperature,

as evident in Figs. 4.2 and 4.5. This means that it is hard to get any informa-

tion about the temperature of the system from the measured values of visibility and

peak width. Since temperature is one of the most important quantities for the ther-

modynamics of the system, it is desirable to have some experimentally measurable

indicator which gives a good estimate of the temperature. The momentum density
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Figure 4.6: The condensate fraction as a function of temperature below the BEC transition. By
extracting n0 from the momentum distribution as shown in Fig. 4.4(a-b) and (d-e), temperatures
of such cases can be determined correspondingly (triangles). Parameters used in this figure are
V0 = 10ER and N = 105.

profile in principle gives a great deal of information, but it is not a single-value quan-

tity, making it less suitable for direct comparison at different temperatures or for

different systems. To overcome this drawback, we note that below Tc, the atomic

momentum distribution in the first Brillouin zone always shows a bimodal structure,

which actually gives a robust signal for the condensation transition. Furthermore,

from the measured momentum density profile, one can always do a bimodal fitting to

deduce the atomic fractions in the condensate and in the thermal parts, respectively.

The measured condensate fraction can thus serve as a good estimate for the system

temperature. In Fig. 4.6, we show the calculated condensate fraction as a function

of temperature for this system with two different global trapping frequencies. Notice

that the condensate fraction n0 changes steadily and monotonically as the temper-

ature T varies. From the curve n0(T ) (Fig. 4.6), one can estimate the temperature

T through the experimentally measurable n0. Therefore, the condensate fraction

n0 gives a single-value quantity which can serve as a criterion for the condensation

transition (with n0 > 0), as well as an indicator of the system temperature.
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4.3 Interacting Bose Gas in an Inhomogeneous Optical Lattice

In this section, we discuss the more general and practical case where the atoms

in an inhomogeneous optical lattice have collisional interactions with each other.

Many qualitative features discussed in the last section remain valid in the interacting

case. However, the atomic interaction indeed brings up several different properties

at a quantitative level. In this section, the emphasis of our discussion is on these

differences.

Taking the interaction into account, the time-of-flight images are expected to be

modified in two major ways. First, the repulsive interaction between atoms will tend

to broaden their spatial distribution in a trap, and hence narrow the corresponding

momentum distribution. Second, during the time-of-flight expansion, the remnant

atomic interaction transforms the interaction energy into kinetic energy, in particular

in the early stage of expansion. As a consequence, the momentum distribution tends

to be wider in the final images. The images also become slightly blurred due to the

scattering of different interference peaks in momentum space during the expansion.

In this section, we will discuss both these points.

For an interacting Bose gas in an inhomogeneous optical lattice, exact solutions

as in the non-interacting case can no longer be constructed. Instead, we use the local

density approximation (LDA) to treat the inhomogeneity induced by the global trap.

When the interaction energy is much larger than the trap energy, each local region of

the global trap behaves like a homogeneous system with interacting atoms in a pure

optical lattice. The interaction in this local homogeneous lattice is then analyzed

under the Hartree-Fock-Bogoliubov-Popov (HFBP) scheme [116, 118]. The validity

of this approach is supported by the following considerations. First, the LDA works
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well for a large number of atoms in a weak harmonic trap, which is the case for

the parameter ranges considered below. Second, the HFBP method should be able

to provide a reliable description of weakly interacting Bose systems, except for the

region close to a phase transition (associated with the BEC or the Mott transition).

For an atomic gas in a global harmonic trap away from the Mott transition, such a

questionable region corresponds only to a thin shell in space, and its contribution to

the global properties is far less significant.

Under the LDA, we consider an interacting Bose system with a spatially dependent

Hamiltonian

H =
∑
k

(εk − μ)a†kak +
U

2

∑
k,k′,q

a†k+qa
†
−kak′+qa−k′ , (4.11)

where εk is the dispersion relation defined above, μ ≡ μ(r) is the local chemical

potential, and U ≡ Ubg

∫ |w(r)|4d3r is the on-site interaction rate. For a typical

experiment with 87Rb, Ubg is related to the s-wave background scattering length as =

5.45 nm by Ubg = 4π�2as/m, and U takes the approximate form U ≈ 3.05V 0.85
0 (as/d),

with energy units of the recoil energy ER [43]. According to the standard HFBP

approach, we separate the bosonic operators into two parts:

ak = ψ0 + δk; a†k = ψ0 + δ†k, (4.12)

where ψ0 ≡ 〈a†0〉 ≡ 〈a0〉 represents the condensate component, and δk is the fluctu-

ation around it. After performing the substitution for ak and a†k into the original

Hamiltonian Eq. (4.11), terms that are cubic and quartic in δ†k and δk will be present.

These terms are reduced to quadratic forms under the HFBP approximation by em-

ploying Wick’s theorem. As a result, we obtain a quadratic effective Hamiltonian
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Heff

Heff ≈
(
ε0 − μ+

Un0

2

)
n0

+
∑
k

[εk − μ+ 2U(ntot − n0)] δ
†
kδk

+
Un0

2

∑
k

(
δ†kδ

†
−k + δkδ−k + 4δ†kδk

)
. (4.13)

Here, ε0 = −6t is the energy at the band bottom with t the tunneling rate defined

above, n0 = ψ2
0 is the per site density of the condensate fraction, and ntot is the total

number of particles per site. In order to derive the expression above, the saddle point

condition is employed to make the coefficients of terms linear in δ vanish, leading to

the saddle point equation

μ(r) = ε0 − Un0 + 2Untot. (4.14)

This equation must be solved self-consistently with the number constraint ntot =

−∂Ω/∂μ, where Ω = −(1/β) lnTr(eβHeff ) is the thermodynamic potential. This

constraint leads to the number equation

ntot = n0 +
∑
k 	=0

1

2

[
εk − ε0 + Un0

Ek

coth

(
βEk

2

)
− 1

]
, (4.15)

where Ek =
√

(εk − ε0 + Un0)2 − U2n2
0 is the quasiparticle dispersion relation.

By fixing the number density per site at the trap center, we can solve Eqs. (4.14)

and (4.15) self-consistently to obtain the chemical potential at the trap center μ0.

This result, together with the LDA relation μ(r) = μ0 − V (r), allows us to calculate

μ(r), and hence the condensate fraction n0(r) and quasi-momentum distribution of

the non-condensate part nk 	=0(r) at arbitrary position in the trap. The overall non-

condensate quasi-momentum distribution can thus be obtained by integrating over

the whole global trap. For the condensate component, it should be emphasized that
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n0 leads to a delta function at zero momentum, which is an artificial result of LDA.

In order to overcome this artifact, one needs to consider explicitly the broadening

of the condensate momentum distribution due to the presence of the harmonic trap.

This can be done by the following procedure. First, we calculate the condensate

fraction distribution n0(r) over the trap. The condensate wave function then can

be well approximated by ψ0(r) =
√
n0(r) under the Thomas-Fermi approximation

[123]. The condensate component of the quasi-momentum distribution is thus given

by the Fourier transform of the wave function ψ0(r). Second, by adding this con-

densate contribution to that from the normal part, and multiplying by the Wannier

function square |w(k)|2 as in Eq. (4.6), we get the resulting momentum-space density

distribution.

As in the case of an ideal Bose gas, we next discuss several characteristics of the

momentum-space density distribution. In Sec. 4.3.1 and 4.3.2, we discuss the influ-

ence of interaction on the atomic momentum distribution inside the trap, especially

the associated visibility and the peak width. Then, we calculate in Sec. 4.3.3 the

condensate fraction as a quantitative measure of the system temperature. Lastly, in

Sec. 4.3.4, we analyze the interaction effect during the time-of-flight expansion, and

conclude that this effect does not significantly change the characteristics discussed

above.

4.3.1 Visibility of the interference pattern

We show in Fig. 4.7 the visibility of the interference pattern as a function of

temperature across the BEC transition. Since the presence of interaction sets another

energy scale, the system is not determined by the single parameter of �2ω2/(tER),

as in the ideal gas case. Instead, we consider various combinations of lattice barriers

and trapping frequencies.
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Figure 4.7: The visibility as a function of temperature around the BEC transition temperature Tc

for (a) V0 = 10ER and (b) ω = 2π × 60 Hz. The number density per site at the trap center is set
as ntot = 1, and the total number of particles in the trap is N ∼ 104.
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From Fig. 4.7(a), we observe that independent of the strength of the global trap,

the thermal visibility with T � Tc remains small (with v around or below 0.4). This

result is significantly different from the case of an ideal Bose gas, where the thermal

visibility can be close to unity for a very weak global trap. After crossing the BEC

transition, the visibility clearly increases so that for an interacting Bose gas, a high

visibility signifies that the atomic cloud is in the condensate region. However, for a

strong global trap (with ω ∼ 2π×120 Hz for instance), the variation of the visibility

is not sharp at the transition point, but continues into a fairly wide region below Tc.

Thus in this case it becomes less accurate to use the jump in visibility to determine

the BEC transition temperature.

Another feature we can read from Fig. 4.7(a) is the convergent behavior of visi-

bility for a thermal gas with the same lattice potential but various values of trapping

frequency. This behavior can be understood from the overall quasi-momentum dis-

tribution

nk =

∫
d3rnk(r) = 4π

∫ ∞

0

drnk(r)r
2, (4.16)

where the integration is over the whole trap. Under the LDA, the spatial dependence

on number density is only through the chemical potential nk(r) = ñk(μ(r)); hence

the integration can be rewritten as

nk = 4π
( m

2ω2

)3/2
∫ 0

μ0

εñk(ε)d
√
ε. (4.17)

For a thermal gas with a certain number density and chemical potential at the trap

center, the function ñk(ε) and hence the integration over ε in the equation above

is fixed. Thus all the trap can do is to re-scale the quasi-momentum distribution

by a factor of ω−3. For a given optical lattice characterized by a Wannier function,

the momentum-space density profile of a thermal gas for various values of ω takes
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the same shape; hence all signatures we can read from it must remain unchanged.

Notice that since the LDA approach is reliable for all parameter ranges discussed

here (with ω � 2π × 120 Hz), we conclude that this result is the effect of a strong

interaction compared to the trapping potential, which cannot be smoothly connected

to the non-interacting results.

In Fig. 4.7(b), we show the visibility for different lattice depths with a fixed

strength of the global trap. With lower lattice depths, the thermal visibility increases.

For V0 = 4ER, for instance, the visibility varies almost linearly with temperature near

the condensation transition (for T from 0.5Tc to 1.2Tc), and a high thermal visibility

remains (with v ∼ 0.7 − 0.8) even when T crosses Tc. This flat behavior makes it

difficult to use visibility to detect the condensate region and to identify the transition

point for interacting atoms in a shallow lattice.

4.3.2 Momentum-space density profile and the peak width

Having discussed the visibility of interference peaks, we next focus on the mo-

mentum distribution in the first Brillouin zone. In Fig. 4.8, we show the column-

integrated momentum density profile along one of the crystallographic axes (say,

the x-axis). Similar to the case of an ideal Bose gas, a clear bimodal structure

appears for temperatures below Tc even when the condensate fraction is still small

[see Fig. 4.8(b) with n0 ∼ 9%]. Therefore, the momentum distribution and its

bimodal structure sets an unambiguous criterion for the BEC transition, especially

when supplemented with the interference pattern from the lattice structure.

To characterize the sharpness of the central peak, we still use the peak width

defined above as a single-value parameter. As shown in Fig. 4.9, the peak width

significantly reduces across the BEC transition, so a sharp peak with a small width

sets a clear indicator that the system is in the condensate region. This conclusion is
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Figure 4.8: Momentum space columnar density along the x-axis in the first Brillouin zone, where
clear bimodal structures appear for temperatures below Tc. Here, the solid curves are the total
momentum density profile, and the dashed curves are the momentum density profile of the normal
component. The trapping frequency used in these plots is ω = 2π× 60 Hz, and the number density
per site is unity at the trap center.

qualitatively consistent with the case of an ideal Bose gas as discussed in Sec. 4.2.4.

For an ideal Bose gas, the peak width always has a sharp and large jump at the BEC

transition point. For an interacting Bose gas, this jump becomes less sharp under

certain circumstances. From Fig. 4.9, we notice that the jump of the peak width

remains sharp across Tc for weak global traps or for lower lattice depths. However,

in a stronger global trap with a higher lattice depth, the decrease of the peak width

takes place over a wider range of temperatures, which makes it less accurate for

locating the transition point. If one compares Figs. 4.7 and 4.9, it is interesting to

note for that for a weak optical lattice, even when the visibility becomes too flat to

show a phase transition, the variation of the peak width remains fairly sharp enough

to serve as an indicator of the condensation transition.
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Figure 4.9: The peak width within the first Brillouin zone, taking across the transition temperature
for (a) V0 = 10ER and (b) ω = 2π× 60 Hz. The number density per site is unity at the trap center.
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4.3.3 The condensate fraction

Similar to the ideal Bose gas, when one moves into the condensate region, the

visibility and the peak width become insensitive to the variation of temperature.

However, the condensate fraction appears to be a monotonic function of temperature

and can be used as a convincing thermometer (Fig. 4.10). In experiments, the

condensate fraction can be measured through direct bimodal fitting to the momentum

density profiles. In Fig. 4.10 we show the condensation fraction as a function of

temperature under different lattice barriers. First note that the condensate fraction

does not approach unity even when the temperature is down to zero. This result is

significantly different from the case of an ideal Bose gas, where at zero temperature

all the atoms form a pure condensate. This discrepancy at zero temperature is due to

quantum depletion (of the ground state), which always plays a role in an interacting

gas. In the zero temperature limit the HFBP approximation used here reduces to

the Bogoliubov approach, which has intrinsically taken into account the contribution

of quantum depletion. In Fig. 4.11, we show the in-trap zero temperature quantum

depletion fraction for various lattice barrier depths. With a higher lattice barrier

V0, we find that the quantum depletion fraction becomes more significant, consistent

with our expectation. In fact, in the case with no optical lattice, the condensate

fraction should be small at zero temperature for a weakly interacting dilute gas

(with a small gas parameter). In the opposite limit, when the lattice barrier tends

to the critical value for the Mott transition, the condensate fraction should deplete

to zero. When the quantum depletion is dramatic, the HFBP is no longer a good

approximation. However, for the parameter ranges discussed above, even with V0 =

12ER, the condensate fraction (∼ 70%) still dominates at zero temperature, assuring

the validity of the HFBP approximation used throughout this section.



69

Figure 4.10: The condensate fraction as a function of temperature below the BEC transition, for an
interacting Bose gas in an optical lattice with ω = 2π× 60 Hz and different lattice barriers V0. The
number density per site is unity at the trap center. By comparing with the momentum distribution
as shown in Fig. 4.8, temperatures of such a system can be determined correspondingly (triangles).

Figure 4.11: The in-trap quantum depletion fraction as as a function of the lattice barrier V0. The
trapping frequency is ω = 2π × 60 Hz. The number density per site at the trap center is unity.
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Figure 4.12: The number and condensate density distribution along the radial direction away from
the trap center. Two different temperatures are considered as in (a) T = 0.1Tc, and (b) T = 0.8Tc.
The solid curves correspond to the overall density profiles and the dashed curves to the condensate
portions. The trapping frequency used here is ω = 2π × 60 Hz. The total number of particles Ntot

and the number of condensate particles N0 are respectively (a) V0 = 6ER(red): Ntot = 0.54× 104,
N0 = 0.50 × 104; V0 = 10ER(black): Ntot = 1.3 × 104, N0 = 1.0 × 104; (b) V0 = 6ER(red):
Ntot = 2.5× 104, N0 = 2.8× 102; V0 = 10ER (black): Ntot = 2.3× 104, N0 = 6.7× 102.
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Another interesting feature of the condensate fraction plotted in Fig. 4.10 is the

crossing behavior of the two curves for different V0 at finite temperature. For a

homogeneous gas with a certain number density, one would expect a more severe

depletion (both quantum and thermal) from the condensate for the higher V0 case,

since both temperature and interaction should play relatively more significant roles.

However, this simple trend becomes more complicated in a trapped case. In fact,

due to the presence of a global trap, thermal wings emerge at the edge of the trap at

finite temperature, while the condensate portion peaks at the trap center. When one

calculates the overall condensate fraction, an integration over the whole trap should

take the thermal wings into account, and the result will depend on how much the

thermal part contributes to the total number. To show this more explicitly, we plot

the in-trap number and condensate density profiles in Fig. 4.12 with a fixed total

number density at the trap center. At a lower temperature T = 0.1Tc, the thermal

contribution is negligible, so it is apparent that a higher depletion is observed for

higher barriers, as shown in Fig. 4.12(a). At a higher temperature T = 0.8Tc, the

thermal part becomes significant and one observes a more extended thermal tail in

the lower barrier case with V0 = 6ER, as shown in Fig. 4.12(b). This greater thermal

contribution to the total number makes the condensate part relatively smaller and

leads to a smaller condensate fraction. Therefore, the crossing behavior of n0 as

shown in Fig. 4.10 is a consequence of the different distributions of the condensate

and the thermal portions in an inhomogeneous global trap.

4.3.4 Interaction effects during the time-of-flight expansion

Up to now, we have calculated the atomic momentum distribution inside the trap

and have neglected modification of this distribution caused by the atomic interaction

during the time-of-flight expansion. During the expansion of the atomic cloud, the
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initial interaction energy is transferred to the kinetic energy, which tends to broaden

the momentum distribution [124]. This influence is most evident for the condensate

part, due to its high number density and narrow initial momentum distribution. The

influence on the momentum distribution of the thermal and the non-condensate part

is negligible, as confirmed by experiments [48], since this part has a broad initial

momentum distribution already, and the weak atomic collisions are unlikely to cause

any significant modification. In the following, we only discuss influence of the atomic

collisions on the condensate part of the momentum distribution.

After turnoff of the optical lattice and the confining potential, the atomic cloud

undergoes a free expansion in space, and the expansion of the condensate part can

be well described by a time dependent Gross-Pitaevskii (TDGP) equation

i�∂tΨ(r, t) =

(
−�

2∇2
r

2m
+ U |Ψ(r, t)|2

)
Ψ(r, t). (4.18)

The initial condition Ψ(r, t = 0) (t is the expansion time) is given by the equilibrium

condensate wave function inside the optical lattice and global trap, which has been

calculated with the method detailed in the above. Note that only for the condensate

part we use the TDGP to evolve its momentum distribution.

It is easier to understand the consequence of this evolution by looking at the

TDGP equation in the momentum space. The Fourier transform of Eq. (4.18) gives

i�∂tΨk(t) =
�
2k2

2m
Ψk(t)

+U
∑
k′,q

Ψ†
−k+q(t)Ψ−k′+q(t)Ψk′(t). (4.19)

Clearly without atomic collisions (the U term), the momentum distribution |Ψk(t)|2

remains unchanged. The atomic collisions transfer a pair of atoms from momenta

(k′,−k′ + q) to (k,−k + q), modulating the overall momentum distribution.
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Central Peak

2nd Peak

Figure 4.13: Illustration of the scattering between atoms from different peaks (the central and the
secondary). This process leads to blurring of the interference peaks with a characteristic blurring
pattern.

To understand the consequence of the collision induced momentum transfer, we

note that the initial condensate momentum distribution has a number of peaks,

one in each Brillouin zone. As the central peak in the first Brillouin zone (with

k close to zero) is the highest one, the scattering of pairs of atoms around the

first peak satisfying the momentum conservation has the largest contribution to the

collision effect. Around the central peak, the wave function Ψk(t) has approximate

spherical symmetry, and the evolution of the momentum distribution around the

central peak by the TDGP equation has been calculated and shown in [49]. The

condensate peak becomes somewhat lower and broader; however, its width is typically

still significantly less than the width of the thermal cloud, and a bimodal structure

of the momentum distribution remains clearly visible. Thus the collision during

the time-of-flight expansion has some quantitative influence on the peak width we

calculated before, but the effect is not large and should not change the qualitative

discussions in the last sections. In particular, as the bimodal structure remains

clearly observable, we do not expect that the condensate fraction measured through

the bimodal fitting to the momentum distribution has any significant change due to
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the collision effect during the expansion.

Taking into acount effects of the next order, the atom in the central peak can

collide with another atom in the secondary peak, and scatter to other directions in

momentum space. The momentum difference between the central peak and the sec-

ondary peak is given byG (G is related to the lattice constant d through |G| = 2π/d),

so the kinetic energy difference corresponds to a large energy scale �
2|G|2/(2m),

which is typically larger than the interaction strength during the expansion (the lat-

ter can be estimated by Un (t), where n (t) is the instantaneous atomic density at

the collision). Therefore, to be effective, the collisions need to satisfy momentum

conservation as well as an approximate energy conservation in momentum space. As

a consequence, for atoms with incoming momenta around 0 and G (corresponding

to the central and the secondary peaks, respectively), the outgoing atoms are cen-

tered around a spherical surface in the momentum space as shown in Fig. 4.13 (with

momenta (k′,−k′ +G), where k′2 + (−k′ +G)2 ≈ |G|2). The sphere has origin at

k = G/2 and a radius of |G|/2. This collision effect causes some blurring of the orig-

inal peaks. Since the scattered atoms are dominantly around a sphere in momentum

space, the blurring caused by scattering yields some characteristic momentum dis-

tribution pattern. Experimentally, by looking at such a pattern, one may measure

and constrain the magnitude of collision effects during the time-of-flight expansion.

At high orders, there could also be scattering between different secondary peaks

as well as scattering between the central and even higher order peaks. Although

this scattering can change some of quantities we calculate before, we expect these

modifications to be small.
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4.4 Chapter Summary

In summary, we have discussed ideal and interacting Bose gases in an inhomo-

geneous optical lattice within a global harmonic trap. By explicitly calculating the

momentum distribution, we have studied several possible signatures of the BEC

transition in a lattice based on the common detection technique of time-of-flight

imaging. For parameters of relevance to the current experiments, a large visibility, a

substantial decline of the peak width, and the appearance of a bimodal structure for

the central peak can all be used as signals of the condensation transition as one de-

creases the temperature. For some other parameters, the thermal visibility could be

significant, and in such a case the latter two criteria will work better. In particular,

the appearance of a bimodal structure for the momentum distribution is a robust

signal associated with the condensation transition in both free space and lattice (in

the lattice case, the interference peaks give further information about the underlying

lattice structure).

After the condensation transition, both the visibility and the peak width become

insensitive to variation in temperature, so they cannot serve as practical thermome-

ters. Instead, one may measure the condensate fraction by a bimodal fitting to the

atomic momentum distribution. The condensate fraction changes steadily with tem-

perature, and may work as a good experimental indicator of the system temperature

by comparing with the results from theoretical calculations.



CHAPTER V

Large-scale Quantum Computation in an Anharmonic

Linear Ion Trap

5.1 Overview

Trapped atomic ions have been regarded as one of the most attractive candidates

for the realization of a quantum computer, owing to their long-lived internal qubit

coherence and strong laser-mediated Coulomb interaction [14, 15, 53, 125, 126]. Soon

after J. I. Cirac and P. Zoller’s first two-qubit gate proposal using trapped ions in

1995 [53], a first two-qubit logic gate was also implemented by C. Monroe et al.

between the quantized motional mode and the internal state of a single ion [127].

A first two-ion logic gate was realized in 2003 by F. Schmidt-Kaler et al. based on

the Cirac-Zoller protocol [128]. Various improved protocols have been presented to

eliminate cumbersome experimental requirements. For example, in quantum gates

based on spin-dependent forces, the information of internal states is not directly

transferred to a specific motional mode, thus eliminating the dependence on the noisy

thermal states [54, 57, 129]; based on fast pulses, a quantum gate can be operated

orders of magnitude faster than the trap period, and can work outside the Lamb-

Dicke regime [58, 59, 130]. Other proposals suggest using more strongly confined

transverse modes, relaxing the cooling requirement considerably [60]; arbitrary-speed

gate operation can be achieved through design of laser pulse shapes [59–61]. In

76
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addition to the development of the quantum gate technology, other experimental

achievements include realization of entangled states up to eight particles [131, 132],

creation of a six-atom ‘Schrödinger cat’ state [133], entanglement of two distant ionic

qubits [134], and quantum teleportation [135, 136].

A next-step mission is to increase the number of ion qubits. This, however, is not

a simple task because a large-scale system introduces increasing complications such

as trap architecture and growth in number of sidebands. The relevant discussion is

in Sec. 5.2, and this work is presented to overcome possible difficulties.

The structure of this chapter is outlined as follows. Sec. 5.2 briefly discusses

the scalability issue by summarizing major difficulties in large-scale quantum com-

puting, and the proposals presented from other groups. In Sec. 5.3 we propose

an architecture using an anharmonic trap potential to stabilize a uniform ion crys-

tal, meanwhile making the gate designing problem “translationally symmetric”. In

Sec. 5.4 we demonstrate implementation of a transverse-mode two-qubit gate using

a pulse shaping scheme [60, 61]. Sec. 5.5 discusses possible sources of error and

estimate their effects.

5.2 Scalability

The linear RF (Paul) trap has been the workhorse for ion trap quantum comput-

ing, with atomic ions laser-cooled and confined in one-dimensional crystals [14, 15,

53, 125] (although there are proposals for the use of two-dimensional crystals in a

Penning trap [137] or an array of microtraps [138]). However, scaling the linear ion

trap up to large numbers of ions poses significant difficulties [14, 125]. As more ions

are added to a harmonic axial potential, a structural instability causes the linear

chain to buckle near the middle into a zigzag shape [139, 140], and the resulting
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low-frequency transverse modes and the off-axis RF micromotion of the ions makes

gate operation unreliable and noisy. Further, most of the logic gate proposals rely

on the resolved-sideband limit, i.e. the internal states must be only coupled to a

specific motional mode [53, 54, 57, 129]. Even in a linear chain with many ions,

the increasingly complicated motional mode spectrum makes it difficult to resolve

individual modes for quantum gate operations, and to sufficiently laser cool many

low-frequency modes. One approach is to operate with small linear ion chains and

multiplex the system by shuttling ions between multiple chains through a maze of

trapping zones, but this requires complicated electrode structures and exquisite con-

trol of ion trajectories [14, 141]. Another promising approach is through mediation

with photons, the so-called quantum networking, which connects an arbitrary num-

ber of small ion traps through optical methods. However this relies on very efficient

quantum interfacing technology [142, 143].

We propose a new approach to ion quantum computation in a large linear architec-

ture based on several ideas. First, we claim that an anharmonic axial trap provided

by static electrode potentials can more easily stabilize a single linear crystal con-

taining a large number of ions. By making the chain uniform, the gate design prob-

lem becomes more independent of the location in a trap. Second, tightly-confined

and closely-spaced transverse phonon modes can mediate quantum gate operations

more robustly at relatively high temperature. Meanwhile, rather than going to the

resolved-sideband limit, transverse-mode gates take all modes into consideration and

a systematic method is developed to design such gates. Third, gate operations on

the large ion array exploit the local character of the laser-induced dipole interaction

that is dominated by nearby ions only. This simplifies to a great extent the design

complexity [69].
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Figure 5.1: Linear architecture for large scale quantum computation, where lasers address individual
ions and couple to local modes of the ions, while the edge ions are continuously Doppler laser-cooled.
In a large ion chain, more efficient sympathetic cooling could be achieved with cooling ions sparsely
distributed in the ion chain.

5.3 Anharmonic Architecture

The proposed ion architecture is illustrated in Fig. 5.1. It is a large linear array

where the strong confinement in the transverse (x, y) direction is provided by the

ponderomotive Paul trap with an effective potential of the form V (x, y) = (mω2
xx

2+

mω2
yy

2)/2, where m is the mass of each ion. The ions are initially Doppler cooled,

with a number of ions at the edges of the chain continuously Doppler cooled in order

to overwhelm any heating that occurs during the gate operation. The middle portion

and majority of the ion chain is used for quantum computation. Given an appropriate

axial static potential V (z) from the axially-segmented electrodes, we assume these

computational ions are distributed nearly uniformly, with a neighboring distance of

about ∼ 10μm. This enables efficient spatial addressing with focused laser beams

along the transverse direction for quantum gate operations.

When the axial potential takes the conventional harmonic form V (z) = mω2
zz

2/2,

the ion array is subject to the well-known zigzag transition unless the trap anisotropy

is at least ωx,y/ωz > 0.77N/
√
logN [14, 140, 144], where N is the number of ions. As

N becomes large, this structural instability occurs first at the minimal distance at the
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trap center due to the spatial inhomogeneity of the ion distribution. When the ions

under a similar trap anisotropy are instead uniformly spaced by neighboring distance

d0, it is easy to see that the linear structure is always stable even for an infinite chain

so long as ω2
x,y > 7ζ(3)e2/(2md30) ≈ 4.2e2/(md30), where ζ(l) is the Riemann Zeta

function and e is the charge of each ion. Therefore, a large linear structure can

be more easily stabilized so long as static potentials from the trap electrodes are

designed to accommodate equally-spaced ions. The uniformity of the distribution is

critical for scaling because the minimum ion spacing can be kept constant to avoid

the zigzag transition, while at the same time the maximum ion spacing does not

grow, as is required for operating entangling gates efficiently across the whole chain

(described below).

To illustrate the general method, we here consider an explicit example with a quar-

tic potential V (z) = α2z
2/2+α4z

4/4 that can be realized with a simple five-segment

electrode geometry as shown in Fig. 5.2(a). Under a quartic trap V (z), the axial equi-

librium position zi of the ith ion can be obtained by solving the force balance equa-

tions ∂U/∂zi = 0, where U =
∑

i [V (zi) + V (x, y)] +
∑

i<j e
2/ |ri − rj | is the overall

potential including the ions’ mutual interactions. We optimize the dimensionless

ratio B = |α2/e
2|2/3(α2/α4) characterizing the axial potential to produce a nearly-

uniformly spaced crystal. To be concrete, we consider an array of 120 ions, with

10 ions at each edge continuously laser cooled and 100 qubit ions in the middle for

coherent quantum gate operation. We solve the equilibrium positions of all the ions

under V (z) and minimize the variance in ion spacing sz =

√
1

100

∑110
i=11

(
Δzn −Δzn

)2
for the qubit ions, where Δzn is the distance between the nth and (n + 1)th ion in

the chain and Δzn denotes its average. The variance in spacing is shown in Fig.

5.2(b) as a function of the parameter B. The value of sz is fairly insensitive to B
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and reaches a minimum when B ≈ −6.1. Here, the distribution of ion spacing zn

is shown in Fig. 5.2(c), which is remarkably homogeneous for the qubit ions even

though we have optimized just one control parameter: sz/Δzn deviates by only 3%

over the entire crystal. In this configuration, if we take Δzn = 10 μm for atomic

Yb+ ions, we only need a transverse center-of-mass frequency ωx,y/2π > 221 kHz

to stabilize the linear structure. In this paper, we actually take ωx/2π = 5 MHz,

as is typical in experiments [64], and such transverse confinement would be able to

stabilize linear chains with thousands of ions under an optimized quartic potential.

We note that the ion spacing can be made even more uniform by adding higher order

multipole potentials.

5.4 Gate Design

We now describe quantum gate operations with this large ion chain, mediated

by many transverse phonon modes. Given the equilibrium positions of the ions, we

can efficiently determine all axial and transverse phonon modes. We then apply a

spin-dependent laser force, with the resulting interaction Hamiltonian [59, 61]

H =
∑
n

�Ωn(t)σ
z
n cos(

∣∣Δk
∣∣qn + μt), (5.1)

where the transverse displacement qn of the nth ion in the x direction is expressed in

terms of phonon modes ak with eigenfrequency ωk and the normal mode matrix bkn

by qn =
∑

k b
k
n

√
�/(2mωk)(a

†
ke
iωkt + ake

−iωkt). The normal mode matrix bkn and its

eigenfrequency ωk are determined by solving the eigen-equations
∑

nAinb
k
n = ω2

kb
k
i ,

where Ain ≡ ∂2U/∂xi∂xn are calculated at the ions’ equilibrium positions zi. In

Eq. (5.1), σzn is the Pauli spin operator for the nth ion, Ωn(t) denotes the Rabi

frequency of the laser pulse on the nth ion with detuning μ from the qubit resonance,

and the effective laser momentum kick Δk is assumed to be along the transverse x
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Figure 5.2: (a) Sample five-segment linear ion trap with voltages Vi(i = 1, 2) to produce a quartic
axial potential. The ions are confined in the central segment. (b) The variance of the ion spacings
sz in a linear quartic trap as a function of the trap parameter B that characterizes the ratio of
quadratic to positive-quartic nature of the potential. (c) The distribution of the ion spacing at the
optimum value B = −6.1. The computational ions are within the dashed lines, where the spacing
is essentially uniform.



83

direction. (For twin-beam stimulated Raman laser forces and hyperfine state qubits,

the effective laser kick carries momentum along the difference wavevector Δk ≡
k1−k2 of the two beams.) Due to the strong transverse confinement, the Lamb-Dicke

parameter ηk ≡ |Δk|√�/(2mωk) � 1, and the Hamiltonian H can be expanded as

H = −∑
n,k �χn(t)g

k
n(a

†
ke
iωkt + ake

−iωkt)σzn with gkn = ηkb
k
n and χn(t) = Ωn(t) sinμt

(the effect of higher-order terms in the Lamb-Dicke expansion will be estimated in

Sec. 5.5). The corresponding evolution operator is given by [61]

U(τ) = exp

[
i
∑
n,k

[αkn(τ)a
†
k + αk∗n (τ)ak]σ

z
n + i

∑
m<n

φmn(τ)σ
z
mσ

z
n

]
, (5.2)

where αkn(τ) =
∫ τ
0
χn(t)g

k
ne
iωktdt characterizes the residual entanglement between ion

n and phonon mode k and φmn(τ) = 2
∫ τ
0
dt2

∫ t2
0
dt1

∑
k g

k
mg

k
nχm(t2)χn(t1) sinωk(t2−

t1) represents the effective qubit-qubit interaction between ions m and n.

For a two-qubit gate on an ion pair i and j, we direct laser light exclusively on

these two ions (Ωi(t) = Ωj(t) ≡ Ω(t) and all other Ωn(t) = 0), and the evolution

operator reduces to the standard controlled π-phase (CP) gate for αkn(τ) = 0 and

φjn(τ) = π/4. For a large ion crystal, the residual entanglement with the motional

modes cannot be eliminated completely, but we can minimize the resulting gate

infidelity by optimizing the laser pulse shape Ω(t) [61]. Assuming each phonon

mode k is cooled to temperature Tk, the infidelity of the CP gate from the residual

motional entanglement is given by δF = [6 − 2(Γi + Γj) − Γ+ − Γ−]/8 [61], where

Γi(j) = exp[−∑
k |αki(j)(τ)|2β̄k/2], Γ± = exp[−∑

k |αki (τ) ± αkj (τ)|2β̄k/2], and β̄k =

coth(�ωk/kBTk).

To minimize the gate infidelity δF , we break the laser pulse on the two ions into

uniform segments of constant intensity as shown in Fig. 5.3(b) and optimize the

values Ω(i) (i = 1, . . . ,M) over M equal-time segments [61] (see Appendix A). The
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τ τ

τt

Figure 5.3: (a) The gate infidelity δF as a function of the laser detuning μ from the qubit resonance,
with optimized Rabi frequencies over M = 5 equal segments of the laser pulse. Different curves
correspond to different gate times. The 120 transverse phonon modes are all distributed within the
narrow frequency range indicated by the two vertical lines. (b) The shape of the laser pulse ηΩ (in
units of ωx) that achieves the optimal fidelity (with δF = 8.5×10−6), at the detuning shown by the
arrow in (a) (with (μ−ωx)/ωx = 9.3× 10−3) and the gate time τ = 500τ0. The dashed (or dotted)
lines represent the approximate optimal solutions of the laser shape where only 4 (or 8) ions (from
the 59th to 62nd or the 57th to 64th, respectively) are allowed to vibrate and all the other ions are
fixed in their equilibrium positions. This approximation does not significantly change the optimal
laser pulse shape compared to that of the exact solution (represented by the solid line) where all
ions are allowed to vibrate, so the gate is essentially local and the gate complexity does not depend
on the crystal size. (c) The relative response of the ions for the gate shown in (b) (characterized

by the largest spin-dependent shift
∣∣∣q(m)

n

∣∣∣ during the gate time τ). We take a relative unit where∣∣∣q(m)
n

∣∣∣ for the target ions haven been normalized to 1. The fast decay of the response as one moves

away from the target ions (59th and 62nd) shows that the gate involves vibration of only local ions.
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control of Ω (t) from one segment to the next can easily be accomplished with optical

modulators. (Alternatively, we can modulate the detuning μ of the laser pulse as a

control parameter.) After optimization of Ω(i), the infidelity δF is shown as a function

of the detuning μ in Fig. 5.3(a) for M = 5 segments. For this example, we perform

a CP gate on the 59th and 62nd ions in this 120-ion chain. With an appropriate

choice of Ω(i) and μ, the infidelity can be made negligible (well below 10−5). For this

calculation, we assume Doppler cooling for all modes and take gate times τ in the

range 50τ0 to 500τ0 where τ0 = 2π/ωx = 0.2μs is the period of transverse harmonic

motion. The gate can certainly be faster with stronger laser beams (there is no speed

limit), and with a faster gate, the control becomes easier as the gate becomes more

localized (Fig. 5.3).

Interestingly, we use only a few control parameters (M = 5 segments) to perform

a high-fidelity gate that involves excitation of hundreds of transverse phonon normal

modes. This is possible because the gate has a local character where the contribution

to the CP gate comes primarily from the spin-dependent oscillations of the ions close

to the target ions. To show this, we plot the response of each ion in Fig. 5.3(c) during

the gate operation. Note that the displacement qn of the nth ion is spin-dependent

during the gate, and we can use its largest magnitude
∣∣∣q(m)
n

∣∣∣ over the gate time τ

to characterize the response of ion n, as is shown in Fig. 5.3(c). The ion response

decays very fast from the target ions (59th and 62nd in this case) and can be safely

neglected after a distance of a few ions. Thus during a gate, only the motion of

ions near the target ions is important, and the other ions largely remain in their

equilibrium positions. The resultant control parameters from this approximation are

almost identical to those shown in Fig. 5.3(b). Owing to the local character of the

gate, the complexity of a gate operation does not depend on the chain size, and we
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can perform gates in parallel on ions in different regions of a large chain.

As we use primarily the quasi-local phonon modes for the gate operations, we

assume only local entangling gates where the distance between the target ions is small

compared with the length of the whole ion chain. (For distant quantum computing,

gate operations can be implemented through the aid of a series of mediate local SWAP

gates.) Recent studies have shown that with only nearest-neighbor entangling gates

in a two-dimensional (2D) lattice, the error threshold for fault-tolerant computation

can still be very good, close to the level of one percent [145, 146]. In a one dimensional

(1D) ion chain, if we perform gates with distance up to
√
N (which is still relatively

local compared with the size N of the ion chain), this simulates a 2D system, and

the error threshold for this case should be as least as good as the 2D case with

nearest neighbor entangling gates. Moreover, in the 1D case, it is even possible

to perform fault-tolerant quantum computing with only next-to-nearest-neighbor

entangling gates [147, 148], albeit with a more demanding threshold.

5.5 Other Imperfections

We now discuss several sources of noise for gates in a large ion crystal and show

that their effects are negligible. First, the axial ion modes have large phonon oc-

cupation numbers under Doppler cooling alone, and the resulting thermal spread in

position along the axial direction can degrade the effective laser interaction. For ex-

ample, the lowest axial mode in a 120-ion chain of Yb+ ions with a spacing z ∼ 10μm

has a frequency of only ωL0/2π = 9.8 kHz and a mean thermal phonon number

n0 ≈ γ/ωL0 ≈ 103 under Doppler laser cooling (radiative half-linewidth γ/2π = 10

MHz). We assume the quantum gate laser beams are directed along the transverse

direction with an axial Gaussian laser profile Ω (z) ∝ e−(z/w)2 centered on each ion.
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The beam waist is taken as w = z/2.5 ≈ 4μm so that the cross-talk error proba-

bility between adjacent ions is Pc = e−2(z/w)2 < 10−5. The position fluctuation δzn

of the nth ion causes the effective Rabi frequency to fluctuate, resulting in a gate

infidelity δF1 ≈ (π2/4)
(
δΩn/Ω̄n

)2 ≈ (π2/4) (δzn/w)
4. The fluctuation δzn can be

calculated exactly from summation of contributions of all the axial modes, and its

value is almost independent of the index n for the computational ions (see Appendix

B). Under Doppler laser-cooling, δzn ≈ 0.26μm and the corresponding infidelity is

δF1 = 4.4 × 10−5. The position fluctuation of the ions may also lead to anhar-

monic ion motion, whose contribution to the gate infidelity can be estimated by

δF2 ∼ (δzn/z)
2 ∼ 6.8 × 10−4. Finally, in the transverse direction we estimate the

infidelity caused by higher-order expansions in the Lamb-Dicke parameter. As all

the transverse modes have roughly the same frequency ωk ≈ ωx, the effective Lamb-

Dicke parameter for the transverse modes is ηx = |Δk|√�/2mωx ≈ 0.038 for Yb+

ions at ωx/2π = 5 MHz, with each mode containing a mean thermal phonon number

n̄x ≈ 2.0 under Doppler cooling. The resultant gate infidelity is estimated to be

δF3 ≈ π2η4x (n̄
2
x + n̄x + 1/8) ≈ 7×10−4 [56, 60]. Note finally that sideband cooling is

possible in the transverse direction as all the modes have nearly the same frequency,

thus reducing the gate infidelity due to transverse thermal motion by another order

of magnitude.

5.6 Chapter Summary

In summary, we have shown through explicit examples and calculations that it

is feasible to stabilize large linear ion crystals where the gate complexity does not

increase with the size of the crystal and the gate infidelity from thermal fluctuations

can be made negligibly small under routine Doppler cooling. The results suggest
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a realistic prospect for realization of large scale quantum computation in a simple

linear ion architecture.



CHAPTER VI

Quantum Simulation of Ising Magnets with Trapped Ions

6.1 Overview

Recently there has been considerable interest in quantum simulation based on

trapped ions. The ion trap system has been found suitable for implementation

of various many-body Hamiltonians, such as the spin models [62–65], the Bose-

Hubbard model [65, 149], the spin-boson models [150], neural networks [151], the

quantum phase transitions of polaritons [152] and Bose-Einstein condensation of

phonons [153]. For simulation of the Ising models, the utility of ion trap systems has

been demonstrated for N = 2 ions [63], and quite recently for N = 3 ions [70]. The

three-ion case is the smallest network that shows frustration, i.e., competing inter-

actions that cannot satisfy every bond energetically. Scaling up to a large frustrated

network is possible. As it has been reported that frustration can lead to complexity

of magnetic orders [154, 155] and plays an important role in exotic materials such as

quantum spin liquids and spin glasses [156–159], this line of research will help our

understanding of the intractable frustration mechanism.

In this chapter we discuss the “analog” quantum simulation for Ising-type mag-

nets, in contrast with the “digital” version based on quantum gate operations. When

the whole ion array is simultaneously illuminated by the same laser field in order to

89



90

create state-dependent forces, one or more collective motional modes are driven ac-

cording to the internal state of each ion. For example, given that all ions are in the

spin-up state and hence share a force along the same direction, they are all equally

pushed so that the center-of-mass (CM) mode is excited. In general, as the mo-

tional modes are excited, relative (geometrical) phases are then developed between

different ions. In a sense, the relative phase between any two spins accounts for the

“coupling” between them, and the temporal behavior of the spins can be described

by an effective Hamiltonian constituted by these “couplings”. In this work we dis-

cuss an effective Ising model, in which every two ions are coupled so that the overall

system forms a complete graph, with each spin represented by a node and the cou-

pling represented by an edge connecting two spins. By tuning the beatnote detuning

frequency of the bichromatic field, various coupling patterns (sign and strength of

edges) can be realized.

The structure of this chapter is outlined as follows. In Sec. 6.2 we derive the

effective Ising-type Hamiltonian following procedures similar to those discussed in

Chapter V. In Sec. 6.3 we explicitly calculate the coupling intensities for three-ion

cases. In some parameter regions the network is frustrated. We map out the spin

phases and show the “phase diagrams” as a transverse field is simulated and tuned

up. To provide a comparison, in Sec. 6.4 we summarize the experimental results

reported in [70]. Sec. 6.5 discusses larger Ising networks. As richer phases (spin

orders) are observed, we find an interesting “transition”, i.e. the ground-state spin

order change, due to competing interactions. We present a brief discussion on its

scaling properties.
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6.2 Formalism

We follow the same operation scheme as in Chapter V, by considering an ion

chain illuminated by bichromatic laser beams with frequency detuning μ and a

wavevector difference Δk along the operating mode direction, which is chosen to

be the transverse (x) direction in our approach. This arrangement results in spin-

dependent forces with frequency μ. The corresponding Hamiltonian is given by

H =
∑

n �Ωnσ
z
n cos(

∣∣Δk
∣∣qn + μt), where Ωn is the Rabi frequency of the laser

pulse on the nth ion; σzn is the Pauli spin operator, and qn is the transverse dis-

placement in the x-direction of the nth ion. In the interaction picture we express

qn =
∑

k b
k
n

√
�/(2Mωk)(a

†
ke
iωkt + ake

−iωkt) in terms of the normal phonon modes ak

with mode frequency ωk and the corresponding mode vectors bk. Under the rotating

wave approximation and within the Lamb-Dicke limit ηk ≡ ∣∣Δk
∣∣√�/(2Mωk) � 1,

the Hamiltonian becomes H = −�
∑

n,k ηkΩn(t)b
k
n(a

†
ke
iωkt + ake

−iωkt)σzn sinμt, which

leads to the evolution operator

U(τ) = exp

[
i
∑
n,k

[αkn(τ)a
†
k + αk∗n (τ)ak]σ

z
n + i

∑
m,n

φmn(τ)σ
z
mσ

z
n

]
. (6.1)

Here αkn(τ) = ηkΩnb
k
n

∫ τ
0
eiωkt sinμtdt characterizes the residual entanglement be-

tween the internal state of the nth ion and the collective phonon mode k; φmn(τ) =

ΩmΩn
∫ τ
0
dt2

∫ t2
0
dt1

∑
k η

2
kb
k
mb

k
n sinμt2 sin μt1 sinωk(t2−t1) represents the effective qubit-

qubit interaction between ions m and n. In contrast to the pulse shaping in Chapter

V, we do not require temporal variation in Ωm,n and treat them as a constant pulse

with a period τ . Therefore the above two integrals can be carried out and results
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read

αkn(τ) =
ηkb

k
nΩn

μ2 − ω2
k

[μ− eiωkτ (μ cosμτ − iωk sinμτ)], (6.2)

φmn(τ) = ΩmΩn
∑
k

η2kb
k
mb

k
n

μ2 − ω2
k

[μ sin(μ− ωk)τ

μ− ωk
− μ sin(μ+ ωk)τ

μ+ ωk

+
μ sin 2μτ

2ωk
− ωkτ

]
. (6.3)

As mentioned above, αkn(τ) accounts for the unwanted entanglement of qubits

and phonons during quantum simulation. We discuss the asymptotic behaviors in

the “slow” regime, when the laser field is far detuned from each mode compared

to the sideband Rabi frequency, i.e. ηkΩn/
∣∣μ − ωk

∣∣ � 1. In this case the phonon

contribution becomes negligible, and the evolution 6.1 can be factorized. As time

increases, the first three terms in the square brackets of Eq. (6.3) are bounded and

ωkτ becomes dominant. By comparing with the standard form U(τ) = e
−iHeffτ/�,

we obtain an effective Ising Hamiltonian with

Heff = �

∑
m,n

Jmnσ
z
mσ

z
n + �

∑
n,ξ

Bn,ξσ
ξ
n (6.4)

where

Jmn = ΩmΩn
�

2M

∣∣Δk
∣∣2∑

k

bkmb
k
n

μ2 − ω2
k

. (6.5)

Here we have included an effective term due to an external “magnetic field” in Hamil-

tonian (6.4): �
∑

n,ξBn,ξσ
ξ
n (ξ = x, y, z), which can be simulated by applying single-

qubit rotation laser beams. In this work, we only consider that all the ions share the

same fields, i.e. Ωm = Ωn = Ω and Bn,ξ = Bξ. (More complex configurations can be

achieved by inclusion of multiple laser detunings and/or partial addressing.) Then

the ground state for the simulated Hamiltonian only depends on two free parameters,

the laser detuning μ and the ratio between the characteristic strength of coupling

Jrms and B with Jrms ≡
√

∑
m<n

∣∣Jmn

∣∣2
N(N−1)/2

.
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Figure 6.1: Coupling coefficients and ratio as a function of the normalized detuning μ̃.

For N = 2, there is only one bond, whose coupling can be either positive (anti-

ferromagnetic, AFM) or negative (ferromagnetic, FM). The sign changes when the

detuning μ crosses the motional modes ωk. Simulation with N = 2 was first demon-

strated by A. Friedenauer et al. [63]. Coupling complexity of the Ising network

increases when more and more ions are added. For N = 3, the network presents a

simplest structure having competing interactions and shows frustration properties,

which have been studied by K. Kim et al. very recently [70].

6.3 Three-ion Network

In this section we consider a three-ion string trapped in a harmonic trap V (r) =

1
2
m[ω2

x(x
2 + y2) + ω2

zz
2]. The three normal modes are represented by the mode

vectors b1 = 1√
6
[ 1, −2, 1 ]� (zigzag mode), b2 = 1√

2
[ 1, 0, −1 ]� (tilt mode),

b3 = 1√
3
[ 1, 1, 1 ]�(center-of-mass, CM, mode) with the eigen-frequencies ω1 =√

ω2
x − 12

5
ω2
z , ω2 =

√
ω2
x − ω2

z , ω3 = ωx, respectively. The three-ion Ising network

is then characterized by the nearest-neighbor interaction J12 = J23 and the next-

nearest-neighbor one J13. In Fig. 6.1(a), we plot the two couplings against the

normalized dimensionless laser detuning μ̃ ≡ μ2−ω2
x

ω2
z

. Note that the couplings diverge

when the detuning is on resonance with each mode (μ̃ =-2.4, -1, 0), and may change
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Detuning Coupling Type Frustration Spin configuration

μ̃ < −2.4 Short (AFM)
∣∣↓↑↓〉, ∣∣↑↓↑〉

−2.4 < μ̃ < − 16
9 Short (AM)

√ ∣∣↓↓↓〉, ∣∣↑↑↑〉
− 16

9 < μ̃ < −1 Long (AFM)
√ ∣∣↓↓↑〉, ∣∣↑↓↓〉, ∣∣↑↑↓〉, ∣∣↓↑↑〉

−1 < μ̃ < 0 FM
∣∣↓↓↓〉, ∣∣↑↑↑〉

μ̃ > 0 AFM
√ ∣∣↓↑↓〉, ∣∣↑↓↑〉

Table 6.1: Coupling pattern and the corresponding ground spin configurations for the three-ion
network. The coupling pattern is classified into types: all bonds are ferromagnetic (FM), anti-
ferromagnetic (AFM), and hybrid with the nearest-neighbor coupling stronger than the next-
nearest-neighbor (Short), or the opposite (Long). FM or AFM in parentheses denotes the type
of the stronger bond. Note that when approaching the CM mode (μ̃ → 0±), the two couplings are
asymptotically identical and introduce extra degeneracy.

sign across the resonant points. The ratio J12
J13

= 8(μ̃+1)
μ̃+8

, however, is a smooth function

of μ̃, as shown in Fig. 6.1(b), which plays a role as the only parameter controlling

the “coupling pattern” of the network.

Note that the Hamiltonian (6.4) without an external field has a Z2 symmetry so

that the ground state is at least 2-fold degenerate and can be a superposition of all

possible ground-state configurations. In Table 6.1, we show the coupling patterns

and the associated ground spin configurations. Frustration occurs when not every

bond can be satisfied energetically, and can usually lead to high degeneracy in general

for a big network. In the three-ion case, frustration is observed in the blue-detuned

region of the CM mode (μ̃ > 0), and emerges alternatively when μ̃ is tuned down

passing each mode. An unusual point is presented at μ̃ = −16
9

∼ −1.78, where

the ratio J12/J13 = −1, indicating a balance of competition of the two interactions.

This special point remains in a larger odd-number network. We will discuss some

interesting properties in Sec. 6.5.

When a transverse external field B = Bx̂ is turned up, the spins start to rotate

tending to align with the field. We plot the probability of having FM order PFM =

P↑↑↑ + P↓↓↓ for a ground state of Hamiltonian (6.4) in Fig. 6.2. Note that in a long-

range Ising model, a second-order phase transition into a paramagnetic state can
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Figure 6.2: Phase diagram showing the projection (probability) of the ground state to the FM order
component. (Jrms ≡

√
(2J2

12 + J13)/3)

be observed in the thermodynamic limit. However in a small system, as expected,

the “transition” is still quite smooth. Another noticeable transition takes place at

μ̃ ∼ 1.78 as mentioned above. At B = 0, the transition is due to a strict level

crossing but the crossing is avoided at B �= 0. The scaling properties of the energy

gap or other relevant orders are interesting problems for quantum phase transitions,

which will be discussed in Sec. 6.5.

Generally speaking, although frustration does not necessarily lead to high degen-

eracy (e.g. −2.4 < μ̃ < −1.78 in our three-spin case), they have close connections

because of the competing interactions. A ground manifold of a frustrated Hamil-

tonian with no external field can be spanned by various competing configurations,

which can be a set of product states. As a transverse field is turned on and hence

introduces noncommuting contributions, different manifolds can be mixed. Once the

field is gradually removed (staying adiabatic) without breaking the symmetry of the

original Hamiltonian, it normally ends up with entangled states. In the experimental

demonstration [70], we start with the ground state
∣∣+++

〉
with

∣∣+〉 ≡ 1
2
(
∣∣↑〉+ ∣∣↓〉)
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in the strong field limit H ∼ ∑
iBσ

x
i . Next, the Ising Hamiltonian comes in with B

kept strong, and then we ramp B down to zero through a specific path. As mentioned

earlier, the Ising Hamiltonian has a Z2 symmetry so that the resultant state should

involve superposition of two Z2-symmetric states, given that the adiabatic path is

perfectly unbiased. However, macroscopically such entanglement is always lost and

collapses to a classical (product) state with a biased order, the so-called spontaneous

symmetry breaking. We can mimic this effect by applying an additional symmetry

breaking field Bz along z-direction, which, however, must be kept sufficiently small

so as not to interfere with the frustrated mechanism. To be more precise, since Bzσ
z
i

commutes with the no-field Hamiltonian (6.4), Bz can be made small to stay in the

same frustrated ground manifold of the specific polarization direction, but needs to

be large enough to lift (separate) the non-favored polarization manifold.

The adiabatic path is designed as follows. We initialize the state in
∣∣+++

〉
and

turn on the system at B � Jrms. We then linearly tune up the symmetry breaking

field from 0 to Bz. Keeping Bz unchanged, ramp B down exponentially to nearly 0.

In Fig. 6.3, we show the time-evolution curves as B is turned down exponentially.

We calculate the fidelity of the final state
∣∣ψf〉 with FFM =

∣∣〈↑↑↑ |ψf
〉∣∣2, FW =∣∣〈ψW |ψf

〉∣∣2 with
∣∣ψW 〉

= 1√
3
(
∣∣↑↑↓〉 + ∣∣↑↓↑〉 +

∣∣↓↑↑〉), and Fψ+ =
∣∣〈ψ+|ψf

〉∣∣2 with∣∣ψ+
〉
= 1√

2
(
∣∣↑↑↓〉 +

∣∣↓↑↑〉). In Fig. 6.3(a), we deal with a uniform AFM three-

ion network whose ground state should be a superposition of two W-type states

and hence has 6-fold degeneracy. This situation is highly frustrated because every

bond has equal probability of not being satisfied energetically. Through the time

evolution, the Z2 symmetry is broken and a polarized W-state is obtained with a

very high fidelity. However, this uniform AFM network cannot be realized perfectly

in experiments because J12 = J13 > 0 only occurs on resonance with the CM mode.
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Figure 6.3: Time evolution of the probability of each component for (a) J12 = J13 = 1kHz, (b)
J12 = −1kHz, J13 = −2kHz, (c) J12 = −1kHz, J13 = 2kHz, (d) J12 = −1kHz, J13 = 0.8kHz. The
components with significant probabilities are pointed out by binary numbers where 1 → ∣∣↑〉 and

0 → ∣∣↓〉. About the evolution path, first keep B = B0 = 10kHz (x direction) and increase Bz (z
direction) from 0 to 1kHz within T1 = 0.1ms; then keepBz = 1kHz and followB(t) = B0 exp(−t/T2)
with T2 = 0.2ms. Only the evolution curves for the final step are shown here.
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Figure 6.4: (a) The theoretical phase diagram (same as Fig. 6.2). Indicated by the vertical arrows
are the evolution paths for case (b) to case (f). (b–f) The time evolution curves for each basis
component. The scattered points correspond to the experimental data; the dashed curves corre-
spond to the instantaneous (absolutely adiabatic) ground states, and the solid curves correspond
to theoretical finite-speed evolution. (Figure from [70].)

The resultant state will deviate from the W-state very fast when μ̃ is away from

0. Despite that, the final state remains W-type entangled (through entanglement

witness measurement, see Sec. 6.4) even when FW is far below unity. Another

“frustration-assisted” entangled state is shown in Fig. 6.3(c); we find it belongs to

the two-qubit entanglement class because it is a direct product of a single qubit and

a two-qubit Bell state.

6.4 Experimental Comparison

In this section we summarize the experimental results of [70]. The Ising network

is realized on a linear chain of three171Yb+ ions within a three-layer Paul trap [64].

The Ising spin is represented by two-level hyperfine states 2S1/2|F = 1, mF = 0〉 and
2S1/2|F = 0, mF = 0〉 (separated by 2π × 12.6GHz) for each ion. In the current

experimental setup, the trapping frequencies are chosen as ωz = 2π × 1.49MHz and
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Figure 6.5: Entanglement witness measurements as |B|/J is ramped down for (a) FM and (b) AFM
regions (see Fig. 6.4). A negative value indicates entanglement. Here, |J13/J12| ∼ 0.85. The blue
dots correspond to the experimental data for (a) the GHZ witness and (b) the W-type witness. The
dashed curves correspond to the absolutely adiabatic evolution and the solid curves correspond to
the theoretical finite-speed ramping. For (a), the experimental data for the GHZ fidelity FFM (see
Sec. 6.3) is plotted in green dots. (F > 0.5 indicates entanglement.) (Figure from [70].)

ωx = 2π×4.33MHz. To check the validity of the quantum simulation of Hamiltonian

(6.4), we probe the population of each component for a time-evolving state instan-

taneously. In Fig. 6.4 (b–f) we show the experimental curves corresponding to the

evolution paths indicated by Fig. 6.4(a) at different laser detuning μ̃. Figs. 6.4(b),

(d) and (e) correspond to the frustration parameter regions. In Fig. 6.4(b) where

the coupling is AFM-type with J2 ∼ 0.8J1, in the end of the evolution six compo-

nents out of the total eight, excluding the two FM-type components, are picked up,

signaling the emergence of the W-type state. (The difference in population in these

six components mainly comes from J1 �= J2.) By contrast, Fig. 6.4(c) shows the FM

case; only the FM-type components emerge. In Figs. 6.4(d) and (e), the experimen-

tal curves reveal that the ground state has multiple degeneracy (due to frustration)

and the population roughly lies in these degenerate components equally. In Figs.

6.4(f) where the network becomes non-frustrated. The dominance of a specific spin

order is obvious.

As the AFM-type coupling has been realized in the ground state manifold (as
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Figure 6.6: The effect of a symmetry breaking field Bz in the FM region (a-c) and AFM region
(d-f). Panel (a), (b) and (d), (e) show the population in different components of the resultant
state, without and with a symmetry breaking field, respectively. The probabilities P0, P1, P2, P3

corresponding the projection of the state to the σz eigen-component(s) of 0, 1, 2, 3 ↑’s (number of
up-spins). Panel (c) and (d) show the instantaneous entanglement witness during the ramp. The
blue (red) dots correspond to no-field (finite-field) cases. (Figure from [70].)

in Figs. 6.4(b)), the same-magnitude FM-type coupling can be also implemented

effectively, by following the highest excited manifold (and reversing the sign of the

transverse field as well). A comparison between these two cases is shown in Fig.

6.5, where the entanglement of the GHZ- and W-type is detected under the FM

and AFM situations, respectively. The entanglement witness for the GHZ-type is

given by WGHZ = 9/4 − Ĵ 2
z − ∏

i σ
x
i , where Ĵz ≡ 1

2

∑
i σ

z
i , and for the W-type

WW = 4 +
√
5 − 2(Ĵ 2

x + Ĵ 2
y ) [131, 160]. The experimental data and the theoretical

curves agree qualitatively.

To show the effects of the symmetry breaking field BZ discussed in Sec. 6.3, we

add this field during the time evolution to study the above FM and AFM cases. To

keep adiabaticity, the field is turned on and then linearly increased to a finite value
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of Bz while the transverse field B is ramped down. We measure the probability

of each number of up-spins for the final state, and detect the entanglement change

with the ramp as shown in Fig. 6.6. For the FM case, we can see the ground state

switches from the GHZ-type (equal probability in P0 and P3) to a product state (P3

only) when Bz is introduced. It is confirmed by looking at the entanglement witness,

which indicates that the entanglement is lost with time by inclusion of Bz. By

contrast, in the AFM case the final state (with no symmetry breaking field) should

be approaching to a superposition of two W-states, and become closer to a single W-

state (P2 dominates). In this situation, the bipartite spin-squeezing witness operator

WSS ≡ (Ĵ 2
z +

3
4

)2−4
〈Ĵz〉2−(Ĵ 2

x +Ĵ 2
y − 3

2

)2
is taken instead ofWW because theWSS-

measurement is less sensitive to errors [160]. It also shows that the entanglement

remains in the presence of Bz, in agreement with the discussion in Sec. 6.3.

6.5 Multiple-ion Network

As more ions are added to the Ising network, the number of edges (couplings)

grows as fast as N(N − 1)/2 ∼ O(N2), and the dimension of the Hilbert space

grows even faster, as 2N . However, the strength and sign on each edge are uniquely

determined by the laser frequency detuning μ if the same bichromatic laser field is

applied. This means the controllability to achieve arbitrary coupling is somewhat

limited. Nevertheless, the multiple-ion networks show a rich zoo of phases. In Table

6.2, we list all ground-state spin orders for odd numbers of ions less than 10. For

convenience of discussion, we rescale the laser detuning by labeling the motional

modes (from lowest to highest modes) by integers (from 1 to N) and using a linear

scaling (between two integers) for detunings located between two modes. (For ex-

ample, μ = ω2+
3
4
(ω3−ω2) → μ′ = 2.75.) For even numbers of ions, the variation of
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N = 3 N = 5 N = 7 N = 9
Spin order Trans. Pt. Spin order Trans. Pt. Spin order Trans. Pt. Spin order Trans. Pt.

010 01010 0101010 010101010

000 00000 0000000 000000000

001 00001 0000001 000000001

000 00110 0111110 011111110

010 01001 0100110 010011010

01110 0100101 010100101

00000 0100010 010111010

00011 0000000 000000000

00000 0001110 000011100

01010 0110001 001100010

0111110 010001101

0000000 011000110

0000111 000000000

0000000 010100001

0101010 011010001

000011110

011100001

001111100

000000000

000001111

000000000

010101010

1.45 1.07
1.18
1.23

1.007
1.023
1.041
1.205

3.001
3.113

5.183

1.0005
1.0015
1.0033
1.1703

5.0006
5.0049
5.0215
5.0488

3.0074
3.0363
3.1061

7.1386

- Mode 1

- Mode 2

- Mode 3

- Mode 4

- Mode 5

- Mode 6

- Mode 7

- Mode 8

- Mode 9

- Mode 1

- Mode 2

- Mode 3

- Mode 4

- Mode 5

- Mode 6

- Mode 7

- Mode 1

- Mode 2

- Mode 3

- Mode 4

- Mode 5

3.26

- Mode 1

- Mode 2

- Mode 3

Table 6.2: Ground spin configurations for odd numbers of ions. For the spin order indicated in
binary numbers, only one specific component is shown. The real ground states should be super-
positions of all possible configurations that can be transformed from this specific component by
Z2 transformation and reflection with respect to the middle ion. Among rows, the thick borders
between different spin configurations indicate the separation due to motional modes; the dashed
borders indicate the change of spin order due to competing interactions, with similar coupling pat-
terns, between modes. The number beside a dashed border shows the corresponding (rescaled)
detuning μ′ (see text).
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spin orders is relatively less rich than in odd-number cases due to perfect reflection

symmetry of the left and right parts of the ion chain, and hence is not discussed

here.

An interesting feature can be observed between the second- and third-highest

modes for odd-number cases, namely the change of the spin order from FM to a kink

order, i.e., two different FM orders on two sides of the ion chain. The change to a

kink order occurs in the three-ion case when the Short-FM couplings compete with

the Long-AFM type (see Table 6.2 and Fig. 6.2). When a transverse field is turned

on, the two configurations are mixed and gradually aligned to the field direction. In

Fig. 6.7 we plot the “order parameter” PFM − PK at different (rescaled) detunings

and fields. Along the x-axis where B/Jrms is negligibly small, the abrupt change

of the spin order indicates a strict level-crossing. The phase boundary is blurred

by increasing B. But as more ions are added, the interface becomes sharper and

sharper, signaling the closing of the energy gap between the ground state and the

excited states (see Fig. 6.8). By fitting the energy gap with increasing N , we

obtain ΔE ∝ ( B
NJrms

)
N−1

2 for small B, which is a signature for a first-order quantum

phase transition. This transition boundary develops extremely fast as N grows into a

distinct interface even for a small system (forN = 13), in contrast to the conventional

phase transitions, which usually show only crossover behaviors for such small systems.

Interestingly, the FM-order region in Fig. 6.7 shrinks too as N grows. The width

of the rescaled detuning along B = 0, measuring the distance from the strict level-

crossing point (the endpoint of the interface on the μ′-axis) to the motional mode

on the left-hand side, can be fitted by the relation Δμ′ ∼ 1.45N−1.07. This special

phase transition thus cannot be discussed in the thermodynamic limit in our simple

simulation model.
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(b) N=5

(c) N=7

(d) N=9

(e) N=11

(f) N=13

(a) N=3

Figure 6.7: Phase diagrams of odd numbers of ions. (x-axis: the rescaled detuning μ′; y-axis:
B/Jrms; color-axis: PFM − PK with PFM and PK are the projection (probability) of the ground
state to the FM- and kink-order components, respectively.)
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FM Kink

Figure 6.8: Level crossing at the FM-Kink transition. Two FM ground states intersect with two
Kink ground states with an energy gap raised by the transverse field.

6.6 Chapter Summary

In this chapter we have explicitly demonstrated the quantum simulation of Ising-

type magnets in a trapped ion system. Through controlling the laser beatnote de-

tuning frequency, various coupling patterns can be realized on the Ising networks.

We have given a detailed discussion on frustration of the three-ion network. We have

presented a “phase diagram” of the spin order as the detuning and the external field

change. For comparison with the experimental data, we perform the nearly-adiabatic

time evolution calculation. When the coupling changes, the no-field ground states

are in general superpositions of different product states and hence entangled. To dis-

tinguish different types of entanglement (e.g. GHZ- or W-type) in different coupling

regions, we add a symmetry breaking field during the evolution. Our theoretical

results are confirmed by experimental observation [70].

For large networks, richer spin phases can be found. Certain spin orders pre-

existent in the small networks are also observed in a larger system. This allows us

to investigate scaling properties of such orders. Frustration leads to an interesting

transition that takes place in the case of odd numbers of ions: the change in the spin

order from the ferromagnetic to a kink state. The phase boundary develops into a
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first-order transition very fast as N grows, even for a small system (N ≤ 13).



CHAPTER VII

Conclusions

7.1 Summary

In this thesis we have investigated several interesting problems in the field of

ultracold atomic systems, and discussed potential applications by engineering these

systems to study fundamental quantum many-body problems. For an ultracold Fermi

gas, our study reconstructs the conventional superfluidity and superconductivity that

have been studied in different scenarios such as helium-3 or -4 and superconductors,

and may help in understanding high-Tc superconductivity [16–18], quantum Hall

effects [19, 20], and quark matter [161, 162]. By introducing optical lattices, we are

able to simulate general lattice problems. Trapped ions are employed for universal

digital quantum simulation, in which each step is performed by a one- or two-qubit

operation. Another application is to simulate the Ising or Heisenberg model in an

“analog” way. This allows us to directly study the quantum phase transitions and

frustrated physics.

We have discussed 3D and quasi-2D Fermi gases in the context of the BEC-BCS

crossover, and demonstrated the mean-field calculation at zero-temperature. For 3D

cases, Bose-condensation and superfluidity have been extensively investigated, and

attention in the field has turned to spin imbalanced Fermi gases or more complicated

107
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cases. In particular, motivated by recent advances in observation of the Feshbach

resonances between different species of atoms like boson-fermion [79, 80] and fermion-

fermion mixtures [81–84], we have studied the mass effects in the ultracold fermion-

fermion mixture, focusing on conventional BCS pairing and superfluidity, as well as

the BEC-BCS crossover behavior. The Cooper pairing of two spins strongly relies

on the closeness of the two Fermi surfaces. The energy characterized by the gap Δ

associated with the formation of pairs has to compete with the differential chemical

potential h. Under the local density approximation (LDA), the Fermi surfaces are

profiled in quadratic curves in a harmonic trap. In an equal-mass scenario, the trap

center has a higher number density so that the superfluid core usually emerges. The

mass mismatch introduces different curvatures of the two Fermi surfaces kσF (r̃) =√
2mσ(μσ − r̃2). When the heavy species is in excess, the two Fermi surfaces might

have a large discrepancy at the trap center (so that Cooper pairing is suppressed)

but become comparable near the trap edge (so that a superfluid phase tends to

appear), leading to a superfluid shell enclosing a normal-state core. This feature of

forming a superfluid shell is not notable in the equal-mass case. We anticipate that

the properties of such superfluid shells may be interesting because of the nontrivial

topology.

A quasi-2D Fermi gas can be prepared in a deep one-dimensional optical lattice

(strong plain standing waves) where the inter-layer tunneling is shut off. It seems

intuitively valid that in the strong confinement limit, the higher-band excitations

(with respect to the strong trap) would be suppressed. From this assumption we

have derived a single-channel model with renormalized atomic interaction across

the Feshbach resonance [106, 108, 109]. We have shown that the detail for the

renormalized interaction is not important, and the single-channel model leads to the
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result that the in-trap density profiles of the gas are invariant. The single-channel

model also predicts a constant cloud size over the entire BEC-BCS crossover scope.

This result is counter-intuitive and violates the bosonic nature when the gas is tuned

to the BEC side. Previous work [110, 112] has suggested a two-channel point of view,

where the closed (Feshbach molecule) channel is included and the couplings of atom-

atom, atom-molecule, molecule-molecule are “dressed” by higher-band excitations

that we originally neglected in the single-channel model. Therefore, to be precise the

closed channel corresponds to including effective “dressed molecules” by summing

all the contributions from higher bands. From this two-channel model, we have

calculated relevant properties and observed a shrinking cloud size when the gas is

tuned from the BCS side to the BEC side. This result confirms the suggestion of

[110, 112] that the higher-band excitations even in the strong trap limit cannot be

neglected. Further, this two-channel model provides a quantitative description of the

cloud size; its validity can be verified by future experiments.

As a considerable amount of work has focused on the quantum (superfluid to

Mott insulator) and thermal phase transitions in an optical lattice, we discuss the

signature for identifying superfluidity in such systems. At present, the time-of-flight

spectroscopy is commonly used for this purpose [47, 48]. Because the condensed

particles are strongly correlated and show distinct interference peaks, we explicitly

calculate the momentum density distribution and the interference profiles by taking

into consideration the atomic interaction strength and the global (but weak) trap.

We claim that the interference profiles can reveal a wealth of information. First,

a bimodal distribution, i.e. a sharp peak on top of relatively flat thermal tails, is

a robust feature as long as a condensate is present. Other quantities such as the

visibility and the peak width can be read out, signaling the onset of superfluidity
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under some circumstances. Most notably, below the critical temperature where the

thermal tail itself is not reliable in determining the temperature, the condensate

fraction can be extracted by fitting the bimodal distributions, and serves as a good

supplementary thermometer.

Regarding trapped ion quantum computation, as so many proposals have been

successfully realized with a small number (< 15) of ions (qubits), it seems that a

next milestone is a direct demonstration of quantum power, i.e., the ability to handle

problems that are intractable by classical means. Scaling of the system is an obstacle

to be overcome, owing to the increasing technical challenges as more ions are added

to a one-dimensional array. We propose a large-scale architecture by stabilizing a

uniform ion crystal within an anharmonic potential. We demonstrate realization of

high-fidelity transverse quantum gates for which the temperature requirement can be

reached by simply Doppler cooling. The gate design is through a systematic shaping

of the laser pulse, making the gate operation arbitrarily fast. We find that the two-

qubit operation involves only neighboring ions, with irrelevant ions “frozen” in space.

This implies that the gate implementation does not have scaling difficulties. Further,

concurrent multiple gate operations at different locations do not interfere with each

other, so that parallel computing is possible.

Finally we have discussed the Ising magnet simulation based on trapped ion sys-

tems [62–65]. The effective Hamiltonian can be realized by illuminating all the ions

with the same laser field. Various coupling patterns can be implemented by choos-

ing the laser beatnote detuning across motional modes, yielding an Ising magnet

network. We have explicitly investigated the three-ion case, which is the simplest

network that shows frustrated behaviors. In a recent experimental work [70], the

validity of such simulation (for three ions) has been confirmed. We have discussed
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the close connection of frustration due to competing interactions and entanglement

in highly degenerate systems. When this simulation applies to larger Ising networks,

much richer phases can be found. In general, the study of the scaling properties helps

us understand how a quantum phase transition develops towards the thermodynamic

limit. We discuss a particular example observed for only odd numbers of ions, where

the spin order changes suddenly with the laser detuning. This “transition” is due to

the competing interactions, and already shows clear evidence of a first-order phase

transition even for a small system (≤ 13).

In conclusion, successful quantum simulation relies on several important aspects:

first, the similarity of two “inter-simulatable” physical systems [1]; second, the arbi-

trariness (controllability) of the physical simulator; third, good isolation from noisy

environments; and finally, the initial preparation to encode information and faithful

measurement to retrieve information. In this thesis, although our discussion focuses

mainly on the first two aspects, we have demonstrated that ultracold atomic sys-

tems are “inter-simulatable” with a wide range of many-body problems, and have an

exceptional controllability through optical and magnetic manipulation.

7.2 Future Directions

As the BEC-BCS crossover for a spin polarized Fermi gas has become accessi-

ble in current experiments, recent attention has focused on unequal-mass mixtures.

Although we anticipate that our mean-field calculation should provide at least a qual-

itatively correct picture, other work suggests unusual properties beyond the mean-

field point of view. For example, in the BCS regime, correlations beyond the mean

field introduce a nontrivial mass dependence on the superfluid gap [163]. In the BEC

regime, several studies reveal that the mass ratio plays a crucial role in the dimer-
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dimer interaction [164, 165]. To further study these nontrivial properties, inclusion

of higher order fluctuations will be necessary. One direction of interest which has

been raised quite recently is the trap asymmetry between two species [166–168]. At

the mean-field level, our approach should easily generalize to include this factor. An-

other important topic concerns the p-wave superfluid phases with s-wave short-range

interactions in a spin polarized (equal-mass) Fermi gas [169].

For trapped ion quantum computing, in addition to the quantum gate implemen-

tation presented in this thesis, there have been considerable efforts and achievements

in realizing certain interesting many-body states [131–133]. These states have great

significance for, e.g., measurement-based quantum computation [170]. However, so

far experimental demonstration exists only for small numbers of ions and for certain

simple entangled states such as GHZ states. We hope to generalize our proposed

method by laser pulse shaping and look for a systematic way to implement complex

many-body entangled states such as cluster states. Regarding quantum simulation,

the Ising coupling patterns in our proposed model are controlled through a single

parameter, the laser detuning, and therefore the arbitrariness is restricted. As more

complicated laser fields are engineered, one can expect that the controllability of

interactions can be increased. It has been reported that a certain Ising-coupled net-

work has a close connection to the NP-complete problem [171]. The engineering of

such interactions will be an important step toward addressing NP-hard problems.
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APPENDIX A

Segmental Pulse Shaping

In this appendix we explicitly show the procedures for designing a two-qubit

gate by the segmental-pulse shaping scheme. As discussed in Chapter V, the com-

putational infidelity of the controlled-phase (CP) gate from the residual motional

entanglement is given by [61]

δF = [6− 2(Γi + Γj)− Γ+ − Γ−]/8, (A.1)

where

Γi(j) = exp[−∑
k |αki(j)(τ)|2β̄k/2],

Γ± = exp[−∑
k |αki (τ)± αkj (τ)|2β̄k/2],

(A.2)

with β̄k = coth �ωk

kBTk
and αki (τ) = ηkb

k
i

∫ τ
0
dtΩ(t)eiωkt sinμt (τ is the gate time). Our

purpose is to chop Ω(t) into M equal segments, i.e. Ωn(t) = Ωm =constant when

t ∈ [τm−1, τm) for m = 1, 2, · · · ,M and τm ≡ mτ/M , and minimize δF over a real

vector X ≡ (Ω1,Ω2, · · · ,ΩM )�. This can be done fully numerically; however, it can

be greatly simplified by a quadratic minimization method. To see this, we need an

asymptotic expression for δF when it is nearly unity, which corresponds to αki(k) being

small, so that one can expand ex = 1 − x + O(x2) in those Γ’s with x containing

αki(j)’s to the second order. The infidelity then reads

δF 	 1

8

∑
k

β̄k
[|αki |2 + |αkj |2 + |αki (τ) + αkj (τ)|2/2 + |αki (τ)− αkj (τ)|2/2

]
. (A.3)
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…
…

Pmm’
Qm

Figure A.1: Integration area for φij(τ). Each piece has a contribution weighted by the corresponding
ΩmΩm′ .

DefineGk
im = ηkb

k
i

∫ τm
τm−1

eiωkt sinμtdt, constructing a vector Gk
i ≡ (Gk

i1, G
k
i2, · · · , Gk

iM)�.

It can then be written that αki = Gk
iX and

∑
k β̄k

∣∣αki ∣∣2 = X�AiX , where the matrix

A is defined as Aimm′ =
∑

k β̄kG
k
imG

k∗
im′ . Similarly,

∑
k β̄k

∣∣αki ± αki
∣∣2/2 = X�A±X

with A±
mm′ =

∑
k β̄k(G

k
im ±Gk

im)(G
k∗
im′ ± Gk∗

im′). Note that Ai(j) and A± can be eval-

uated numerically in no time because Gk
im has an analytical form (omitted here).

Then we have δF = X�AX with A = (Ai + Aj + A+ + A−)/8.

Note that the above minimization must be performed under the constraint φij =

π/4, where

φij(τ) = 2

∫ τ

0

dt2Ω(t2)

∫ t2

0

dt1Ω(t1)
∑
k

η2kb
k
i b
k
j sinμt2 sin μt1 sinωk(t2 − t1).

This integration is performed over the shaded area in Fig. A.1. Define the partitioned

parts of the integration

Pmm′ ≡ 2

∫ τm

τm−1

dt2

∫ τm′

τm′−1

dt1
∑
k

η2kb
k
i b
k
j sin μt2 sinμt1 sinωk(t2 − t1)

and

Qm ≡ 2

∫ τm

τm−1

dt2

∫ t1

τm−1

dt1
∑
k

η2kb
k
i b
k
j sin μt2 sinμt1 sinωk(t2 − t1),
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which can both be evaluated analytically (omitted). Then φij(τ) can be rewritten

as φij =
∑

m>m′ Pmm′ΩmΩm′ +
∑

mQmΩ
2
m = X�BX . The matrix B is symmetrized

with Bmm′ = Bm′m ≡ Pmm′/2 +Qmδmm′ .

We use the method of Lagrange undetermined multipliers, intending to minimize

a modified infidelity δF � ≡ X�AX + λX�BX . From ∂δF �/∂X� = 0, we get

a generalized eigenvalue equation AX = λBX , which can be easily solved by a

standard numerical method.
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APPENDIX B

Thermal position fluctuation for trapped ions along the

axial direction

We address individual ions through focused laser beams which typically take a

Gaussian shape along the axial (z) direction with Ωn(z) ∝ e−z
′2
n /w

2
, where z′n =

z − zn is centered at the equilibrium position zn of the nth ion. At the Doppler

temperature, the ions have significant thermal fluctuation in their positions along

the z direction, which leads to an effectively fluctuating laser amplitude Ωn(z) and

induces infidelity in the gate operation. This position fluctuation influences both the

single-bit and the two-bit operations in the same way. To quantify the gate error

caused by this fluctuation, let us consider a spin-flip gate operated on the nth ion

as a typical example. For a spin-flip with a π−pulse, the gate fidelity is given by

F1 = sin2(Ω̄nτ + δΩnτ) ≈ 1 − (π2/4)(δΩn/Ω̄n)
2, where Ω̄n is the expectation value

of the Rabi frequency (Ω̄nτ = π/2 for a spin-flip gate), and δΩn is its fluctuation

caused by the position fluctuation of the ion. From Ωn(z) ∝ e−z
′2
n /w

2 ≈ 1 − z′2n /w
2

around the equilibrium position, the gate infidelity δF1 ≡ 1− F1 = (π2/4) (δzn/w)
4,

where δzn ≡
(
z′4n − z′2n

2
)1/4

characterizes the thermal position fluctuation of the nth

ion along the axial direction.

The phonon modes are in thermal equilibrium under the Doppler temperature

T , with their density operator given by ρm =
∏

k

∑
{nk} Pk |nk〉 〈nk|, where Pk =
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Figure B.1: The axial position fluctuation δzn is plotted along the ion chain, which is about 0.26μm
(averaged) for the computational ions (n from 11 to 110).

n̄nk
k / (n̄k + 1)nk+1 is the probability of having nk phonons in the kth mode, and

n̄k = kBT/(�ωk) is the average phonon number. From z′2n = tr(z′2n ρm) and z′4n =

tr(z′4n ρm), we explicitly have δzn =
√
�/2m

[√
2
∑

k

(
bz,kn

)2
(2n̄k + 1) /ωz,k

]1/2
where

ωz,k and bz,kn denote the eigen-frequencies and eigen-matrices of the axial modes.

For our example of a 120-ion chain (see Chapter V) with the Doppler temperature

kBT/� = 62MHz for the Yb+ ions, the resultant position fluctuation δzn is plotted

in Fig. B.1 for all the ions. One can see that for the computational ions (n from

11 to 110), δzn ≈ 0.26 μm with its value almost independent of the ion index. The

position fluctuation is still significantly smaller than the ion spacing (≈ 10 μm),

which ensures a tiny gate infidelity δF1 as discussed in Chapter V.
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observation of the superfluid phase transition in ultracold Fermi gases. Nature, 442(7098):
54–58, July 2006. ISSN 0028-0836. doi: 10.1038/nature04936.

[30] Masudul Haque and H. T. C. Stoof. Pairing of a trapped resonantly interacting fermion
mixture with unequal spin populations. Phys. Rev. A, 74(1):011602(R), Jul 2006. doi: 10.
1103/PhysRevA.74.011602.

[31] Daniel E. Sheehy and Leo Radzihovsky. BEC-BCS crossover in “magnetized” Feshbach-
resonantly paired superfluids. Phys. Rev. Lett., 96(6):060401, Feb 2006. doi: 10.1103/
PhysRevLett.96.060401.



122

[32] Y. Shin, M. W. Zwierlein, C. H. Schunck, A. Schirotzek, and W. Ketterle. Observation of
phase separation in a strongly interacting imbalanced Fermi gas. Phys. Rev. Lett., 97(3):
030401, Jul 2006. doi: 10.1103/PhysRevLett.97.030401.

[33] Daniel E. Sheehy and Leo Radzihovsky. BEC-BCS crossover, phase transitions and phase
separation in polarized resonantly-paired superfluids. Annals of Physics, 322(8):1790–1924,
August 2007. ISSN 0003-4916. doi: 10.1016/j.aop.2006.09.009.

[34] Michael McNeil Forbes, Elena Gubankova, W. Vincent Liu, and Frank Wilczek. Stability
criteria for breached-pair superfluidity. Phys. Rev. Lett., 94(1):017001, Jan 2005. doi: 10.
1103/PhysRevLett.94.017001.

[35] C.-H. Pao, Shin-Tza Wu, and S.-K. Yip. Superfluid stability in the BEC-BCS crossover.
Phys. Rev. B, 73(13):132506, Apr 2006. doi: 10.1103/PhysRevB.73.132506.

[36] Peter Fulde and Richard A. Ferrell. Superconductivity in a strong spin-exchange field. Phys.
Rev., 135(3A):A550–A563, Aug 1964. doi: 10.1103/PhysRev.135.A550.

[37] A. I. Larkin and Y. N. Ovchinnikov. Nonuniform state of superconductors. Zh. Eksp. Teor.
Fiz., 47:1136–1146, 1964. [Sov. Phys. JETP, 20:762, 1965].

[38] Pierre Meystre. Atom Optics. Springer, 1st edition, 2001. ISBN-10: 0387952748.
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[58] J. J. Garćıa-Ripoll, P. Zoller, and J. I. Cirac. Speed optimized two-qubit gates with laser
coherent control techniques for ion trap quantum computing. Phys. Rev. Lett., 91(15):157901,
Oct 2003. doi: 10.1103/PhysRevLett.91.157901.
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[93] M. Iskin and C. A. R. Sá de Melo. Fermi-Fermi mixtures in the strong-attraction limit. Phys.
Rev. A, 77(1):013625, Jan 2008. doi: 10.1103/PhysRevA.77.013625.

[94] M. Holland, S. J. J. M. F. Kokkelmans, M. L. Chiofalo, and R. Walser. Resonance superflu-
idity in a quantum degenerate Fermi gas. Phys. Rev. Lett., 87(12):120406, Aug 2001. doi:
10.1103/PhysRevLett.87.120406.

[95] Y. Ohashi and A. Griffin. BCS-BEC crossover in a gas of Fermi atoms with a Feshbach
resonance. Phys. Rev. Lett., 89(13):130402, Sep 2002. doi: 10.1103/PhysRevLett.89.130402.

[96] Roberto B. Diener and Tin-Lun Ho. The condition for universality at resonance and direct
measurement of pair wavefunctions using RF spectroscopy. arXiv:cond-mat/0405174v2, 2004.
URL http://arxiv.org/abs/cond-mat/0405174v2.

[97] A. J. Leggett. Modern Trends in the Theory of Condensed Matter. Springer-Verlag, Berlin,
1980.

[98] P. Nozières and S. Schmitt-Rink. Bose condensation in an attractive fermion gas: From weak
to strong coupling superconductivity. J. Low Temp. Phys., 59(3):195–211, May 1985. doi:
10.1007/BF00683774.



126
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