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CHAPTER I

Introduction

In recent years, rapid development of modern biomarker research and continuous

growth of public interest in early prevention and treatment of cancer have resulted

in an increased use of early detection programs (screening). These developments

have led to a dramatic increase in the incidence of early stage diagnoses, most of

which would have never happened within the patient’s lifespan without screening

(overdiagnosis).

Screening interventions interact with the latent disease progression process. First,

the diagnostic test sensitivity increases as the disease progresses and becomes easier

to detect. Second, early detection advances the diagnosis by the amount of the so-

called lead time (Zelen and Feinleib, 1969) which adds to the patient’s survival, and

the disease presents at an earlier stage with more favorable clinical characteristics.

Third, slower progressing diseases are easier to catch by the test (length-bias, Zelen

and Feinleib (1969)) while they are still latent, while aggressively developing disease

usually results in diagnosis due to symptoms (clinical diagnosis) rather than the test

(screening diagnosis). As a result of the diagnostic intervention, the population is

split into less aggressive diseases diagnosed by the test (length bias) and the more

aggressive ones missed by the test (anti-length bias, Zelen (2004)).

1
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To improve cancer control policy under limited resources, a quantitative mea-

sure of the effectiveness of cancer screening and treatment interventions is needed.

Two dimensions define the success of cancer control interventions: the population

dimension (cancer incidence, distribution of the disease presentation at diagnosis,

cancer mortality) and the subject-specific level (subject’s prognosis based on clinical

information available at diagnosis and knowledge of the disease heterogeneity and

utilization of screening in the population from which the subject was sampled).

One way to assess the benefit of screening is via randomized screening trials.

However, such trials need to recruit a lot of patients for a long period of time to

be able to have sufficient power to compare outcomes. They are also conditional on

specific screening patterns, and the results cannot be generalized to other populations

without use of modeling.

The randomized clinical trial (RCT) is the gold standard to evaluate treatment

effects. Randomization is believed to be a tool to obtain a conservative test in the

presence of confounding, unbiased under the null hypothesis (Schumacher et al.,

1987; Gail et al., 1984; Struthers and Kalbfleisch, 1986). However, as we show in this

study, dependent on the model, the estimated treatment effects could be biased (not

necessarily conservatively) if important covariates are not controlled for specifically

in a model-based analysis.

These consideration lead us to pursue a statistical modeling approach to evaluate

cancer screening and treatment interventions. Investigators from the Cancer Inter-

vention and Surveillance Modeling Network (CISNET, http://cisnet.cancer.gov/), of

which we are part of, use statistical modeling to study the effects of cancer control

interventions on population trends in incidence (Etzioni et al., 1999, 2002; Draisma

et al., 2003; Davidov and Zelen, 2004; Tsodikov et al., 2006) and mortality (Berry
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et al., 2005; Lee and Zelen, 2008). Other researchers (Parker et al., 2006) developed

statistical models to study disease progression and survival for screened detected

patients. The challenge of modeling is that a shallow statistical model cannot ex-

plain the observed phenomena and the results cannot be generalized to populations

under different screening patterns. Complex simulations on the other hand are over-

parameterized and need to rely on many ad-hoc parameter specifications based on

outside sources and literature. Our approach is to use mechanistic statistical mod-

eling in conjunction with statistical inference methods to leverage the precision and

confidence of statistical methodology and the explanatory and predictive power of

mechanistic models.

The objective of this dissertation is to develop quantitative measures of the im-

pact of early detection followed by treatment on clinical outcomes and to evaluate

the success of the combined screening and treatment interventions. We extend our

previous work on marginal and stage/grade specific incidence model (Tsodikov et al.,

2006; Chefo and Tsodikov, 2009) and build a joint hierarchical family of models of

prostate cancer from the point of onset to the point of death. Using the models we

study the heterogeneity induced by screening interventions in the population, and

its interaction with treatments applied at diagnosis of the disease as they affect the

clinical and disease outcomes such as disease prognosis and cancer mortality. Our

models are statistical in nature and are fit to observed population and subject-level

data before predictions are made.

The rest of the dissertation is divided as follows:

• Chapter 2. We assess how the the early detection of cancer affects

the outcome from clinical trials.
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Cancer-specific survival measured from the point of diagnosis is the most com-

mon endpoint in cancer clinical trials and observational studies. Early detection

of cancer leads to variability of the point of diagnosis advanced by the amount

of the so-called lead time, a random variable. Estimated treatment effects by

the proportional hazards (PH) model may be biased if this variability is ignored.

Three distinct problems studied in this chapter are of interest with this specific

model misspecification mechanism: (1) How the true multiplicative treatment

effect differs in screened vs. unscreened populations; (2) How they are estimated

using a misspecified model (PH); (3) How the bias and standard errors can be

corrected using a meta-analytic approach that does not require the raw data.

To address these questions we use a joint cancer incidence and survival modeling

approach and illustrate it using simulation and real prostate cancer data. To

reduce the dependence on raw data, a small treatment effect approximation to

the asymptotic inference with a misspecified PH model is pursued.

• Chapter 3. We develop an analytic joint statistical model of cancer

incidence, presentation at diagnosis, and progression.

We develop a statistical model for the natural history of the disease and its

interaction with screening. The model can be decomposed into four major com-

ponents: (1) The marginal incidence model with age at prostate cancer diagnosis

as an endpoint. Its outcome is the prostate cancer incidence as a functional of

the distributional characteristics of screening utilization process operating in

the population. (2) A model of disease presentation at diagnosis (stage and

grade of the disease). The disease presentation at diagnosis can be considered
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a multivariate mark to the point process of diagnoses of prostate cancer in the

population. Combined with the marginal incidence model this model gives a

marked point process model describing the stage and grade (Z) specific inci-

dence. The model predicts the probability of being diagnosed with a specific

stage and grade at cancer incidence. (3) The disease progression model is the

main contribution of this chapter. It defines the probability of disease progres-

sion for the early detected patient after the screening diagnosis. Understanding

this model is critical for measuring how the early treatment intervention enabled

by the early diagnosis favorably affects the patient’s prognosis. For patients de-

ciding to defer treatment, the model gives an assessment of the risk of disease

progression under watchful waiting (conservative management of the disease).

Treatment effects built into the progression model define the benefit by way of

preventing the development of more advanced stages of the disease, the so-called

stage shift.

• Chapter 4. We develop an analytic joint statistical model of survival

post-diagnosis and cancer mortality in the presence of screening and

treatment interventions.

We apply the models developed in Chapter 3 to characterize the heterogeneity

of the prostate cancer patient population and describe the latent disease char-

acteristics for the US male population. This information is used as a frailty for

modeling survival post-diagnosis adjusted for the lead-time and length bias, and

to adequately describe the treatment effects in the situation of variable point

of diagnosis modulated by screening operating in the population. We then
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synthesize all the models into the mortality model by integrating out the inter-

mediate outcomes of cancer diagnosis, stage, grade, treatment and survival. We

also estimate the risks of potential adverse events for prostate-specific antigen

(PSA)-detected patients given the prognostic factors at the time of diagnosis.

The model is also used to estimate the treatment efficacy of radiotherapy and

radical prostatectomy against watchful waiting and study how treatment effects

are influenced by the early detection programs. All analyses use data from the

Surveillance, Epidemiology and End Results (SEER) database.

In our final chapter, we summarize the strengths and the limitations of our current

approach and discuss the direction for future research.



CHAPTER II

Treatment Effect under Early Detection of Cancer

2.1 Introduction

Cancer is one of the top five causes of death in the US and in many developed

countries. To reduce cancer mortality and cancer burden, combined use of the early

detection and more effective treatments has become the major trend of cancer inter-

ventions. Rapid development of modern biomarker research in recent years makes

cancer screening tests more sensitive than ever, and we are seeing cancers that were

never detectable before. Early detection advances cancer diagnosis by the amount

of the lead time, a random variable. This results in over-diagnosis of the disease,

increasing cancer incidence and seemingly improved survival from the point of diag-

nosis even if treatment is not effective.

The most common approach in cancer clinical trials and observational studies is

to use the proportional hazards (PH) model to estimate the multiplicative treatment

effect. The model is fitted to cancer-specific survival time measured from the point

of diagnosis.

Suppose the PH model is a valid one in an unscreened population. Then in the

screened population, the PH model is misspecified because cancer-specific survival

includes an additive random lead time effect. When the effect of the lead time is

7
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integrated out, the model changes its form because the link function of the PH model

is a nonlinear one. Model misspecification, including one induced by random effects,

received considerable attention in the literature. Kempthorne (1977) and Fienberg

(1980) showed that collapsing a contingency table results in a biased estimator for a

binary response outcome. Gail et al. (1984) further summarized asymptotic biases

for common models in the exponential family GLMs when important covariates were

omitted. They showed that the asymptotic bias is not zero unless the model is linear

or exponential. Similar effects were observed with the PH models for failure time

data. Lagakos and Schoenfeld (1984) demonstrated how ignored covariates result in

a reduced power of the log-rank test; Schumacher et al. (1987) and Gail et al. (1984)

showed a conservative bias in the proportional hazards setting and Struthers and

Kalbfleisch (1986) studied biased treatment effect under a misspecified PH model

when the true model is accelerated failure time or when an important PH covariate

is omitted.

In this study, we build on the studies of a general misspecified PH model by

assessing the bias of the variance estimator, deriving a small treatment effect Taylor

approximation, developing a meta-analytic correction of the biases, and studying a

specific misspecification pattern associated with ignoring the heterogeneity induced

by the early detection of cancer.

1. We will study the true multiplicative effect. In the correctly specified PH model,

the true hazard ratio is independent of time. We assume that this model op-

erates in an unscreened population. When the model is misspecified, in the

screened population, the true hazard ratio becomes time dependent. We will

study the direction and the magnitude of the difference between the two multi-

plicative effect measures in Section 2.4.
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2. It is a common practice to fit the PH model regardless of whether patients

are recruited in the screening era or not. We will study the bias measuring

the difference between the true hazard ratio in the unscreened population and

what the PH estimator is consistent for under screening, in Section 2.5. Note

that because PH model is misspecified for the screened population, it estimates

neither the unscreened hazard ratio nor the true time-dependent hazard ratio

under screening correctly.

3. Correct estimation of the treatment effect can be accomplished by fitting the

right model to raw survival data. However, obtaining raw data from a series of

international clinical trials is a logistical challenge. Besides, the correct model

reproducing treatment effects in the presence of lead time is a subject of sci-

entific debate. Alternatively, we propose a simplified meta-analytic approach

that allows us to approximately correct the bias without using raw data from

the clinical trial. We assume that covariate effects (treatment) are small, and

approximate the bias in point estimates and standard errors up to the first order

term. Characteristics of the unscreened population and the distribution of the

lead time necessary to perform the correction are estimated using large sample

cancer registry data and cancer incidence models, and are assumed known in a

relatively small sample analysis of a clinical trial. This leads to an approximate

correction for the bias in Section 2.6

2.2 The model, notation, assumptions and preliminaries

Let g, G, λ, Λ denote the density (pdf), the survival function (sf), the hazard

function (hf), and the cumulative hazard function (chf) of the true model, respec-

tively. We assume that the true model is a departure from a PH model explained by
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unobserved heterogeneity summarized by a frailty random variable (r.v.) W , possi-

bly a vector. Given W , the baseline survival distribution is represented by the pdf

f , sf F , hf h, and chf H. The effect of treatment r.v. Z is modeled via an expo-

nential predictor θ(β, z) = exp(βz), where β is a vector of regression coefficients.

For example, Z may represent a binary treatment assignment in a clinical trial, dose

of the treatment agent, or generally any set of variables characterizing the specific

treatment of the disease.

At the complete data level (given W ) the model is

(2.1) λ(t|Z,W ) = θ(Z)h(t|W ), G(t|Z,W ) = F (t|W )θ(Z), g = λG, Λ = − logG.

The misspecified PH model is an average of the complete data model (2.1)

(2.2) λ(t|Z) = E{λ(t|Z,W )|Z, T > t}, G(t|Z) = E{G(t|Z,W )|Z},

where expectations are taken over the conditional distribution of W , given Z, and T

is the survival time being modeled.

In the sequel, for brevity, we will suppress the arguments t, Z,W of the functions

such as λ(t|Z,W ) or h(t|W ), and assume that they are evaluated at the true β0 unless

noted otherwise and explicitly. Also, we will use explicit notation for conditional

expectations introduced in Tsodikov (2003). Define a relative expectation as

(2.3) E(µ||ν) =
E(µν)

E(ν)

for any functions µ and ν of some random variables. The notation is motivated by

the representation

(2.4) E{µ(X)|A} =
E{µ(X)1A(X)}

E{1A(X)}
,

where X is a random variable, A is a measurable event, 1A is an indicator of the

event (=1 if X ∈ A, and 0 otherwise), and E{1A(X)} = Pr{A}. We arrive at (2.3)
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by substituting a general function ν for 1A(X) in (2.4), and observing that (2.3) is

still a conditional expectation. Indeed, the right part of (2.3) is an integral of µ(x)

over some (conditional) probability measure Pν,X built using r.v. X and the function

ν

E{µ(X)||ν} =

∫
µ(x)Pν,X(dx), Pν,X(dx) =

ν(x) Pr{dx}∫
ν(x) Pr{dx}

.

Note that the probability measure Pν,X(dx) represents a length-biased distribution

of X so that the relative expectation could be written as a conditional expectation

referring to the condition characterizing the length biased sampling of X. However,

this interpretation is irrelevant when no length biased sampling is actually going on

in the data. We use the relative expectation to avoid defining an artificial length

biased sampling scheme with the only purpose of wanting to use conventional con-

ditional expectation notation for some expressions that look like the right part of

(2.3). Besides we use convenient algebra associated with (2.3) as described in the

Appendix. The convenience of this notation is that it explicitly expresses a condi-

tional expectation through unconditional ones without having to define a random

variable that induces the conditional probability measure. For example, instead of

conditioning on T > t when averaging the hazard function among survivors at t in

(2.2), we can write explicitly using (2.3),

(2.5) λ(t|Z) = E{λ(t|Z,W )||G(t|Z,W ), Z} = E{λ||G,Z} = θE{h||F θ, Z}.

Here E{µ||ν, Z} is interpreted as (2.3) where all expectations are conditional on

r.v. Z in the usual sense. Note that for any non-random ν, or when µ = µ(X),

and ν = ν(Y ), and X⊥Y , we have E(µ||ν) = E(µ). Under the PH model h and F

in (2.5) are non-random, so E{h||F θ, Z} = h leading to the natural PH expression

λ = θh.
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Presented in Appendix are useful properties of the relative expectation (2.3) and

its derivatives that will be used throughout the paper.

Of primary interest in the example will be a model misspecification induced by

the lead time. Lead-time measures how much a clinical diagnosis due to symptoms

is advanced as a result of early detection by a screening test. With W playing the

role of the lead time, we have the specific model

(2.6) h(t|W ) = h(t−W )1{t>W}.

Note that this simple expression implies a number of important assumptions.

1. In the absence of screening when diagnosis occurs clinically due to symptoms

(CDx), the model is characterized by a non-random baseline hf h(t). When

patient’s diagnosis is advanced by screening by the amount of the lead time W ,

survival during the lead time is guaranteed as patients do not die before they

develop symptoms. Hence their hf is zero during the lead time as specified by

the 1{T>W} term in (2.6). In the sequel we will omit 1{T>W} for brevity assuming

that h(t|W ) = 0, t ≤ W .

2. In the presence of screening, survival time distribution cannot be exponential,

because h(t|W ) cannot be a constant in t unless it is uniformly zero.

3. For the same reason, h cannot be a decreasing function of t without being

uniformly zero.

4. The support of survival time in the presence of screening is affected by the

missing variable W . This is a key distinction of model (2.6) from other mis-

specification models considered in the literature.

5. In a screened population, some patients are still detected clinically either be-
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cause they were not screened, or because their cancer was missed by screening.

Such patients by definition have W = 0 with probability 1, hence the distribu-

tion of W has a mass at 0 (see Figure 2.1, top right). Expression (2.6) presumes

that survival of an early detected patient can be decomposed into the survival to

the point when the patient would be detected clinically, plus the survival of the

unscreened patient. In (2.6) the survival pattern post projected point of CDx

(represented by the form of baseline hf h) is the same as without screening.

The bias and variance meta-analytic correction will be based on the following

simplifying assumptions.

Assumption II.1.

1. Random variables Z and W are independent Z⊥W ;

2. Censoring is independent of W ;

3. True treatment effects β0 are small so a first order Taylor approximation with

respect to β0 can be used.

While not essential for theoretical expressions, Assumption II.1 allows one to

adjust reports based on the PH model analysis using knowledge of first three moments

of Z only, without having to hypothesize multivariate distributions of Z, W and the

survival time, by meta-analysis. Having to specify the multivariate distributions

would defeat the purpose of meta-analysis essentially requiring a fit of the correct

mixed model to raw data or a poorly justified guess.

2.3 Lead-time

Distribution of the lead-time W is a crucial piece of input for the analysis of this

paper. It is estimated in Tsodikov et al. (2006) from population and cancer incidence
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data amassed in the Surveillance, Epidemiology, and End Results (SEER) cancer

registry (www.seer.cancer.gov). Let λI(a |x) be the hazard function (incidence rate)

of cancer diagnosis at age, A = a, for a person born in year x. Cancer development

passes through the disease-free state and the pre-clinical state before being detected

or censored without a diagnosis. The subject’s age at tumor onset AO represents the

duration of the disease-free stage. The duration of latent cancer growth in the pre-

clinical stage is given by the delay time ξD = A− AO, a backward recurrence time,

represented by the period between cancer onset at the age of AO and its diagnosis

at the age of A. Given onset time, cancer diagnosis is a result of two competing

risks, the time to detection by screening, ξSDx, and the time to clinical diagnosis due

to symptoms of the disease, ξCDx, so that the delay time is ξD = min(ξSDx, ξCDx).

The time ξCDx is referred to as the sojourn time. Conditional ξCDx given screen

diagnosis, is stochastically larger than the unconditional one, due to the length bias.

If the unconditional ξCDx is exponential then the conditional will be larger by a

factor of 2 by the lack of memory property and symmetry. Suppose A = {a1, a2 . . . }

are random ages when the subject is screened (a screening schedule). We have used

a two-stage model for the screening schedule point process A. Let λ1S(a, t) be the

hazard of the first Prostate-Specific Antigen (PSA) test for a man of age a in year t.

Then the probability that a man born in year x will not be tested by the age of a is

(2.7) G1S(a |x) = exp

{
−
∫ a

0

λ1S(ξ, x+ ξ)dξ

}
.

We assume that in men who already had their first PSA tests, secondary tests

{a2, a3 . . . } form a non-homogeneous Poisson process with intensity λ2S(a, t). Both

intensities of PSA testing λ1S and λ2S are treated as known bivariate functions es-

timated by approximating the output of a random schedule generator developed by

the National Cancer Institute (NCI) Mariotto et al. (2007).
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The survival function GSDx(ξ |x,AO) representing the probability of no screening

diagnosis for a subject born in year x, with tumor onset at the age of AO, and delay

time since onset ξ is derived in Tsodikov et al. (2006) as

GSDx(ξ |x,AO) = G1S(AO + ξ |x) + [1−G1S(AO |x)]G2SDx(ξ |x,AO, AO) +∫ ξ

0

[1− α(ζ)]f1S(AO + ζ |x)G2SDx(ξ − ζ |x,AO + ζ, AO)dζ,(2.8)

where α is age-dependent screening sensitivity, and

(2.9)

G2SDx(ξ |x, a, AO) = exp

{
−
∫ ξ

max(AO−a,0)
λ2S(a+ ζ, x+ a+ ζ)α(ζ + a− AO)dζ

}
,

and
∫ b
a

= 0 for any b ≤ a. The above expressions are a result of averaging over A and

the Bernoulli outcomes of screening tests with probability of success α within the

subject, given AO. Using conditional independence of the competing risks of cancer

diagnosis by screening and clinically, given age at tumor onset AO, we have

(2.10) λI(a |x) = − d

da
log E

{
GCDx(a− AO |x,AO)GSDx(a− AO |x,AO)

}
,

where GCDx is the survival function of the sojourn time.

This model was fitted by maximizing a parametric likelihood for incidence rates.

The joint distribution (pdf) of the lead time W = ξCDx − ξSDx, a forward recur-

rence time, and age at diagnosis A is given by

fLT (w, a|x) =

∫ a

0

fO(y|x)fCDx(a− y + w|x, y)

 GSDx(a− y|x, y), w = 0

fSDx(a− y|x, y), w > 0

 dy,

where fO is a pdf of the age at onset, and fCDx, fSDx are pdfs corresponding to sf

GCDx, GSDx, respectively. Expression under the integral is a joint pdf of age at onset

y, screen diagnosis at a, and potential clinical diagnosis at a+ w.
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Finally, the conditional lead-time distribution used in this paper is obtained from

the joint one

(2.11) fLT (w|a, x) =
fLT (w, a|x)

fI(a|x)
,

where fI is the pdf corresponding to the cancer incidence rate λI . Shown in Figure

2.1 is a representative lead time distribution for a 65 year old patient diagnosed in

1995 predicted by the incidence model Tsodikov et al. (2006).

2.4 The true multiplicative treatment effect of a misspecified model

Assuming that in the reference group corresponding to no treatment θ(zref) = 1,

let θ(Z) represent the hazard ratio in the correctly specified PH model (the one

without screening)

(2.12) λ(t|Z) = θ(Z)h(t).

In the the mis-specified model (2.5) the hazard ratio is time dependent

(2.13) θt =
λ|θ(Z)
λ|θ=1

=
θE{h||F θ, Z}
E{h||F,Z}

.

Define a correction factor, the true multiplier m(t |θ) characterizing the effect of

model misspecification on the hazard ratio

(2.14) m(t | θ) =
θt
θ

=
E{h||F θ, Z}

E{h||F}
.

When the treatment is effective (i.e. θ < 1), m(t | θ) > 1 implies that the actual

treatment effect is smaller than θ, so the effect is conservatively attenuated. On the

other hand, m(t | θ) < 1 means that the actual treatment effect is larger than θ0 so

the effect is anti-conservatively attenuated.

Key to the properties of the multiplier are given by the following two lemmas.
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Lemma II.2. The logarithmic derivative of the multiplier is proportional to the

relative covariance between the negative baseline cumulative hazard -H = logF and

the baseline hf h.

(2.15)
∂ logm(t | θ)

∂θ
=

Cov
{
−H, h

∣∣∣∣F θ, Z
}

E
{
h
∣∣∣∣F θ, Z

} .

The result follows from (2.36) in the Appendix.

Lemma II.3. A version of Chebyshev’s inequality (See Shea (1979)). Let u(x) and

v(x) be functions and W be a random variable such that E{u(W )}, E{v(W )}, and

E{u(W )v(W )} exist. Then

1. if u and v are both nonincreasing or both nondecreasing then

Cov(u(W )v(W )) ≥ 0

2. if one of u and v is nonincreasing and the other nondecreasing then

Cov(u(W )v(W )) ≤ 0

3.

Cov(u(W )v(W )) = 0

if and only if at least one of u and v is a constant.

The following observations follow immediately from (2.14). When m(t | θ) = 1,

there is no bias, θt = θ. Clearly, m(t | θ) = 1 uniformly in t when there is no treatment

effect (θ = 1). Also, m(t | θ) → 1 as t → 0, indicating that there is no bias at the

start of follow up.

When the baseline hazard h, is an increasing function, u(x) = h(t|x) = h(t−x)1t>x

is decreasing in x while v(x) = −H(t − x) is increasing. By Lemmas II.2, II.3 the
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logarithmic derivative is negative so m(t | θ) is a decreasing function of θ. This

implies that θt is biased conservatively toward the null hypothesis θ = 1. Indeed

since m(t | 1) = 1, in the left neighborhood of θ = 1 we have m(t | θ) > 1, and

consequently 1 > θt > θ at least when θ is close to 1. Alternatively, when θ > 1

(treatment is harmful) we still have attenuation towards the null as θ > θt > 1.

With small treatment effects when θ is close to 1 (2.15) gives the departure of the

multiplier from 1. Indeed, expanding m(t|θ) around β = 0 we have

m(t|θ) = m(t|θ)|θ=1 +
∂m(t|θ)
∂θ

∣∣∣∣
θ=1

(θ − 1) + o(1)

⇒ m(t|θ)− 1 ≈
[
∂ logm(t|θ)

∂θ

]
θ=1

(θ − 1).

It is important to note that u(x) cannot be made an increasing function of x,

because u(x) = 0 for x ≥ t by definition, and h is nonnegative. If, for the sake of

argument, this were possible, then by Lemma II.3 we would have optimistic (anti-

conservative) bias with decreasing hazard. Also, under the same fantasy, by the last

statement of Lemma II.3 and the fact that H cannot be a constant, exponentially

distributed survival in the absense of screening (h = Const) would be the only case

of no bias uniformly in t. The unbiasedness under exponential survival would hold

regardless of the size of the treatment effect by virtue of (2.14). None of these

scenarios can take place because h(t|x) = 0, x ≥ t. However, they help understand

the behavior of m under non-monotonic h. Generally, when h is non-monotonic,

the direction of the bias term defined by the multiplier, m(t|θ), depends on the

shape of the hazard function h, and the distribution of the lead time W . Averaging

over W will weigh increasing and decreasing areas of h against each other as they

contribute to the opposite behavior patterns of m. The result will depend on the

weights provided by the form of the pdf of W , conditional on survival up to t.
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For cancers where cure is a possibility, such as prostate cancer, the hazard function

typically increases initially but turns into decreasing one eventually, as with any cure

model h(t) → 0 as t → ∞. Note that over-diagnosed cancers contribute greatly to

the chance of ’cure’.

The treatment in a screened population may appear more efficient than it actually

is, dependent on the time t when the effect is evaluated. Shown in Figure 2.1 is the

multiplier behavior for a unimodal baseline hazard function for various values of θ of

the treatment effect and under the lead time distribution shown in the upper right

corner of the figure as estimated in Tsodikov et al. (2006) and outlined in Section

2.3. Note that there is one point in the follow-up time around 18 years when the

true average multiplicative treatment effect is unbiased.

The behavior of the bias described in this section is more complicated than in the

case of misspecification induced by ignored PH covariates (Lagakos and Schoenfeld,

1984; Gail et al., 1984; Struthers and Kalbfleisch, 1986; Schumacher et al., 1987)

that always leads to a conservative bias. This is because in the latter case the mixed

effect is not in the argument of the possibly non-monotonic h.

2.5 Estimating treatment effects using a misspecified PH model

2.5.1 Assessing the bias of point estimates

In Section 2.4, we studied how the true treatment effect is modified by the early

detection. However, when the effect is estimated by the misspecified PH model, the

PH estimator is generally consistent for some hazard ratio that is neither the true

underlying hazard ratio θ0, nor the average true hazard ratio θt. The estimators will

depend on the duration of the study τ . We assume that τ is non-random and marks

the right extreme of the time to censoring. Denote by θ∗(τ), β∗(τ) the large sample

limits of the estimators θ̂, β̂ based on fitting the misspecified PH model.
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Figure 2.1: A comparison of the true treatment effect without screening θ0 = eβ0 under the PH
model (2.12) vs. the time-dependent true treatment effect θt under screening (2.13).
Top left: Baseline hazard function h. Top right: The distribution (pdf with mass at
zero) of the lead time W . Bottom: The true multiplier, a ratio (2.14) of the true effect
under screening averaged over the lead time to the effect without screening.
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Let X be time to event (failure or censoring) measured from observed diagnosis

(CDx or SDx whichever comes first), and δ = 1failure is an indicator of failure (=1

if failure, =0 if censoring). The data is represented as a sample of independent

triplets (Xi, δi, zi), i = 1 · · ·n, where z is a vector of treatment covariates, and Z

the corresponding random vector. For an individual i define the counting processes

Yi(t) = I(Xi ≥ t), Ni(t) = I(Xi ≤ t, δi = 1). Define an empirical analog of the

relative expectation E{Z||θ(β)GS}, where G,S are the true survival functions for

time to failure and censoring, respectively, as

(2.16) Ê{Z||θ(β), Y } =

∑n
j=1 zjYj(t) exp(βzj)∑n
j=1 Yj(t) exp(βzj)

.

The score function for the partial likelihood PL (Cox, 1972) can be written as

(2.17) Un(τ, β) =
d logPL(τ, β)

dβ
=

n∑
i=1

∫ τ

0

{
zi − Ê{Z||θ(β), Y }

}
dNi(t),

where β is the regression coefficient (an arbitrary argument), and τ is the duration

of the study. By the (uniform) law of large numbers

1

n

n∑
i=1

ziYi(t)θ(β, zi)
p→ E{Zθ(β)GS}

1

n

n∑
i=1

Yi(t)θ(β, zi)
p→ E{θ(β)GS}(2.18)

1

n

∫ τ

0

n∑
i=1

zidNi(t)
p→
∫ τ

0

E{ZgS}dt

Ê{Z||θ(β), Y } p→ E{Z||θ(β)GS},

where G,S, g are parameterized by the true β0, and β is a placeholder for the MLE

of β, the solution to the score equation. Using (2.18), after a little algebra, the large

sample limit of the normalized score function 1
n
Un(τ, β) (2.17) can be written as

(2.19) U∗(τ, β|β0) =

∫ τ

0

E{gS}E
{
Z
∣∣∣∣gS
θ(β)GS

}
dt,
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where E
{
Z
∣∣∣∣B
A

}
= E{Z||B} −E{Z||A}. Notation aside, this expression is the same

as in Struthers and Kalbfleisch (1986). As noticed in Section 2.2, multiplying a

condition by a non-random quantity does not change the relative expectation (2.3).

Therefore under the PH model conditioning on gS and on θGS are equivalent be-

cause λ = θh, g = λG, and h is non-random, and the difference E
{
Z
∣∣∣∣gS
θ(β)GS

}
is

uniformly zero when β = β0, a reflection of the fact that the PH estimation equation

is consistent (Andersen and Gill, 1982). Under a misspecified PH model, the maxi-

mum partial likelihood estimator (MPLE), β̂(τ) solving (2.17)=0 will be consistent

for β∗(τ, β0), the solution of the score equation (2.19)=0. Generally, the MPLE es-

timator from the misspecified PH model, β̂(τ), is biased β∗(τ, β0) 6= β0. It is easy

to verify that β̂ is unbiased under the null hypothesis β0 = 0. This follows from the

fact that in this case θ0 = 1, and the conditions gS = hFS and θGS = FS are both

independent of Z, and the relative expectations in the difference E
{
Z
∣∣∣∣gS
θ(β)GS

}
in

(2.19) are equal (at β = β0 = 0) to the unconditional E{Z} making the difference

zero. In other words when θ0 = 1 then β = 0 is the solution to t he score equation

(2.19)=0.

Note that if β0 6= 0 even under exponential baseline survival β0 still does not

satisfy (2.19) because of the implicit presence of 1{T>W} in h making it dependent

on W through the support of survival times. Explicitly, in this case

g = θhE{I{W<t}F
θ|Z} 6= θhG = θhE{F θ|Z},

and consequently E{Z||θGS} 6= E{Z||λGS} = E{Z||gS}, all because of the indica-

tor function resulting in G = E{F θI{W<t}|Z}+ Pr{W ≥ t|Z}.
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2.5.2 Small treatment effect approximation for point estimates

By definition the function β∗(β0) is obtained by solving U∗(β|β0) = 0 with respect

to β (dependence on τ is suppressed for brevity). Hence, taking derivative with

respect to β0 we have

(2.20)
∂U∗(β|β0)

∂β

dβ∗(β0)

dβ0
+
∂U∗(β|β0)

∂β0

∣∣∣∣
β=β∗(β0)

≡ 0,

where ≡ is uniform equality with respect to β0. Expanding β∗(β0) around β0 = 0

and keeping in mind that β∗(0) = 0 we get

(2.21) β(β0) = β∗
′
(0)β0 + o(β0),

where the prime stands for a partial derivative with respect to β0. The first order

approximation is

(2.22) β(β0) ≈ β0 × β∗
′
(0)

def
= β0 ×m∗(τ).

The PH multiplier, m∗(τ) = β∗
′
(τ, 0), describes the departure of β∗ from β0.

m∗(τ) = 1,m∗(τ) > 1, and m∗(τ) < 1 indicate that the effect is unbiased, overesti-

mated, or underestimated, respectively. Combining (2.20) and (2.21) we obtain

(2.23) m∗ = −∂U
∗(β|β0)/∂β0

∂U∗(β|β0)/∂β

∣∣∣∣
β=β0=0

.

Taking derivatives in (2.23) using (2.19), Lemma II.6 in the Appendix, and under

Assumption II.1 we get after a little algebra

(2.24)

m∗(τ) = 1−
∫ τ

0

E{fS}Var{Z||S}E
{
H
∣∣∣∣fS
FS

}
dt

[∫ τ

0

E{fS}Var{Z||S}dt
]−1

.

Here V ar(Z) is thought of as the covariance matrix if Z is a vector. By Lemma II.5

and (2.38) in the Appendix

E
{
H
∣∣∣∣fS
FS

}
=

Cov{h,H||FS}
E{h||FS}
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indicating that the behavior of m∗ is also governed by the covariance of instanta-

neous and cumulative hazards conditional on survival up to t (compare with Section

2.4). Note that if censoring does not depend on the treatment covariates Z, S will

cancel from (2.24), and the bias will not depend on the censoring distribution. The

PH multiplier m∗ is a multiplicative modifier of β0. In terms of hazard ratio, we ex-

pect the limit treatment effect estimated by the PH model to be θ∗(τ) ≈ θ
m∗(τ)
0 . For

a population under screening, the estimator obtained from the PH model is biased

with respect to either the underlying treatment effect θ0 or the actual treatment effect

θt represented by (2.13). Given θ0, the relationship between true and large sample

quantities h(t), λ(t), θt, and θ∗(τ) is displayed in Figure 2.2. The large-sample limit

of PH estimated hazard ratio θ∗(τ) depends on the distributions of the underlying

survival from the clinical diagnosis, and the lead time (2.24). The PH multiplier also

depends on the duration of the study.

2.5.3 Measuring the bias of variance estimated by the PH model

Using the general setting of the M-estimation (Van der Vaart (2000), Chapter 5)

and assuming regularity conditions hold, we have

√
n(β̂(τ)− β(τ, β0))

d→ N (0,Σ∗(τ, β0)) ,

where β̂(τ) is the MLE under a misspecified PH model and

(2.25) Σ∗(τ, β0) =

[
∂2E{`}
∂β∂βT

]−1
E

[
∂`1
∂β

∂`1
∂βT

] [
∂2E{`}
∂β∂βT

]−1
,

is the covariance matrix, ` = logPL, `1 is a contribution of one observation to the

likelihood, and the expression is evaluated at β = β∗(τ, β0), the limit in probability of

PH-model based solution. The weak convergence result stated above is valid despite

the presense of ‘nuisance’ estimator Ê{Z|θ(β), Y } in the profile score function (2.17)
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Figure 2.2: True and large-sample characteristics in screened and unscreened populations under
various shapes of the baseline hazard. Left: The baseline hazard in the unscreened
population h(t) and its counterpart under screening λ(t) averaged over the lead time W
as in (2.5). Right: True hazard ratio in the unscreened population θ0, its time-dependent

counterpart under screening θt, and θ∗(τ) ≈ θm
∗(τ)

0 representing the large-sample limit
of the PH-estimated hazard ratio under screening. τ is the duration of the study; t ≤ τ
is a point in follow-up time. Note that the misspecified PH model produces a biased

estimate θ̂(τ)
p→ θ∗(τ) of the average true hazard ratio θt under screening. Computation

of m∗ is done under the Assumption II.1 approximation.
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that can be verified directly. The information matrix is defined as

I(τ) = −∂
2E{`}
∂β∂βT

.

Using the corollary to Lemma II.6 in the Appendix we have

(2.26) I =
∂U∗

∂β
=

∫ τ

0

E{gS}Var{Z||θ(β)GS}dt,

the information matrix estimated when the misspecified PH model is fitted to the

data. Proceeding similar to Section 2.5.1, after some algebra, the variance of the

individual score in the middle of the sandwich (2.25) is

(2.27) Σ∗1
def
= E{U∗1U∗T1 } =

∫ τ

0

E{gS}
[
Var{Z||gS}+ E2

{
Z
∣∣∣∣gS
θ(β)GS

}]
,

where U∗1 = ∂`1/∂β. If the model is correctly specified, Σ∗(τ, β) = I−1(τ) because

I = Σ∗1. Indeed, similar to the discussion after the score equation (2.17), under

the PH model or under the null hypothesis, the relative expectation difference term

in the right part of (2.27) is zero, and relative variances in (2.27) and (2.26) are

equal. However, generally the correct variance of the misspecified model is given

by I−1Σ∗1I
−1 6= I−1, and the variance reported as I−1(τ) using the PH model is

incorrect.

2.5.4 Small treatment effect approximation for the variance

Now, consider the variance (2.25) under the small treatment effect Assumption

II.1. Using the lemmas presented in the Appendix we have the expansions

E{gS} = E{fS}+ E{ZfS}[1− E{H||f}]β0 + o(β0)

Var{Z||gS} = Var{Z||S}+ [1− E{H||f}]M3{Z||S}β0 + o(β0)

E2
{
Z
∣∣∣∣gS
θ(β)GS

}
= o(β0)(2.28)

Var{Z||θSG} = Var{Z||S}+ [m∗ − E{H||f}]M3{Z||S}β0 + o(β0),
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where the multiplier m∗ is given by (2.24), and Mk is a central moment of order k

(2.39).

Define

I0 =

∫ τ

0

E{fS}Var{Z||S}dt,

I1 =

∫ τ

0

M3{Z||S}E{fS}[1− E{H||f}]dt,

I2 =

∫ τ

0

E{ZfS}Var{Z||S}[1− E{H||f}]dt,

I3 =

∫ τ

0

M3{Z||S}E{fS}E
{
H
∣∣∣∣f
F

}
dt,(2.29)

I4 =

∫ τ

0

E{fS}Var{Z||S}E
{
H
∣∣∣∣f
F

}
dt.

I5 =

∫ τ

0

M3{Z||S}E{fS}dt,

The after some algebra we get the expansion for the variance in the form

(2.30) Σ∗ = I−10 − I−10 [I1 + I2 + 2I3 − 2I5I4I
−1
0 ]I−10 β0 + o(β0).

Note that for the PH model, a similar but simpler exercise gives the following variance

approximation

(2.31) Σ∗ = I−10 − I−10 [I1 + I2]I
−1
0 β0 + o(β0).

There are at least two scenarios when the PH variance is unbiased. Naturally, if

the true model is PH (no misspecification), then I3 = I4 = 0, and (2.30) and (2.31)

are equivalent. A non-trivial fact, however, is that when Z is not skewed, i.e. when

M3{Z||S} = 0, then I1 = I3 = I5 = 0, (2.30) and (2.31) are also equivalent and

equal to

(2.32) I−10 − I−10 I2I
−1
0 β0 + o(β0).

Also, when censoring is independent of the covariates, it is easy to see that (2.31)
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and (2.30) are the same so that the PH model based variance is correct up to the

first order of β.

2.6 The meta-analytic correction

We have shown that estimators in the PH model are generally biased under mis-

specification. To correct the bias, we consider a meta-analytic framework to restore

the adjusted hazard ratio θ0 from the results of reported studies without access to

raw patient-level data. Let ŝ2i be the sample variance of the estimated treatment

effect coefficients, β̂i, in study i and ωi be the weight assigned to that study where

ωi = 1/ŝ2i , i=1 · · · k. If the distribution of the treatment covariate is not symmet-

ric, the reported sample variance needs to be corrected as well as discussed in the

sections 2.5.3, 2.5.4. The meta-analytic estimate β̂ is obtained as a weighted average

of study-specific β̂i with weights inversely proportional to the sample variance of the

estimates. The combined point estimator β̂ and variance σ̂2/n is

β̂ =

∑
ωiβ̂i∑
ωi

σ̂2

n
=

1∑
ωi
.

(2.33)

Since the MPLE estimator from the PH model, β̂, is a consistent estimator of

β∗(τ, β0), approximately, by the Continuous Mapping Theorem, θ̂0(τ) = exp([β̂/m∗(τ)]z)

is also a consistent estimator for θ0 (subject to approximating Assumptions II.1). Let

σ2 denote the variance of β̂. By the Delta method, we will have

√
n(β̂0 − β∗(τ, β0))

d→ N
(
0, σ2

)
⇒
√
n(θ̂0(τ)− θ0)

d→ N

(
0,

[
1

m∗(τ)
e

β∗
m∗(τ)

]2
σ2

)
The 95% confidence interval for θ0 is

(2.34) θ̂0(τ)± 1.96

[
1

m∗(τ)
e

β̂
m∗(τ)

]
σ̂√
n
.



29

Alternatively, one could exercise the correction of each study first, and then pro-

vide a meta-analytic estimate based on the corrected individual study estimates.

This is preferable if studies being combined have different durations.

2.7 Simulation study

We used simulations to study the accuracy of the PH multiplier under small

treatment effect assumption. Sensitivity analyses were also conducted to evaluate

how the shape of the baseline hazard and the magnitude of the treatment effect affect

the estimated hazard ratios.

We adopted a 2×2 design to estimate the hazard ratio of the treatment group

versus the control group using the PH model for both the unscreened and the screened

populations. For the unscreened population, the survival time was calculated from

the time of clinical diagnosis to time of death. For the screened population, a random

lead time W was generated using the distribution displayed in Figure 2.1 and was

added to the survival time in agreement with the specific convolution model (2.6).

Under the PH assumption, a pre-specified treatment effect θ0 = exp(β0) was applied

to treatment group characterized by the z = 1 value of the dummy variable. Survival

times from the clinical diagnosis were drawn from Weibull distributions for increasing

and decreasing baseline hazards, or from a cure model distribution for a changing

baseline hazard. Survival functions of Weibull and cure model distributions were

parameterized using median, m, and shape, s, parameters, and the treatment effect

θ0, as defined in the following equation

Gweibull(t|θ0) = exp

{
− log(2)θ0

(
t

m

)s}
Gcure(t|θ0) = exp

{
−θ0

(
1− exp

{
− log(2)

(
t

m

)s})}
.(2.35)
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Hazard Ratios were estimated using the PH model. Subjects with survival times

longer than τ were censored. Adjusted hazard ratios were calculated using the PH

multiplier defined in (2.24) and were compared with the true result. Two hypothetical

treatment groups with the sample size of 500 each were used. For one replicate

survival data in the treatment and control group was generated under no screening

and under screening. Hazard ratios θ0 (no screening) and θ∗(τ) (under screening)

were estimated by the PH model applied to both sets of the data. To obtain an

approximately unbiased estimate of θ0 under a misspecified model, the log hazard

ratio estimate under screening θ̂(τ) was adjusted by dividing it by the small-sample

approximated multiplier m∗(τ) given by (2.24). The r.v. Z was taken to represent

treatment assignment in a 1:1 ratio by simple randomization, a Bernoulli(0.5) r.v.

Censoring was assumed to be independent of Z so S cancels from (2.24). Baseline

distribution characteristics H and f were assumed to be known externally. The

experiment was repeated for various study durations τ . Shown in Figure 2.3 are the

results of a study to assess the quality of the proposed adjustment based on the small

treatment effect approximation. The left part of the figure shows three scenarios of

varying shape of the baseline hazard function without screening vs. under screening

(averaged over W ). The right part of the figure shows hazard ratios estimated or

predicted under different study durations represented by the x-axis. The wiggly

polygon curves in the right part of the figure give estimated hazard ratios without

screening (the bottom curve), and the one under screening showing a departure

upwards. The smooth curves (a line at y = θ0 in the case of no screening) going

through the polygons represent an average or a large sample limit of the respective

PH estimate. In the case of screening, the latter is given by the exponentiated

solution of (2.19)=0 with respect to β under the true β0, H, S. The top dashed curve
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Table 2.1: Empirical vs. approximate variance (θ0 = 0.5, τ=15, n=10000)

Proportion of the
treatment group 0.3 0.5

Simulation Simulation
result result

(×10−4) (×10−4)

Increasing h(t), Weibull m=5, s=1.5

Näıve variance 7.45 6.04
Sandwich variance 7.42 6.00
Approximated variance 6.93 5.68

Decreasing h(t), Weibull m=5, s=0.9

Näıve variance 9.62 7.49
Sandwich variance 9.61 7.48
Approximated variance 9.31 7.50

Non-monotonic h(t), Cure m=3, s=2

Näıve variance 12.52 9.65
Sandwich variance 12.55 9.68
Approximated variance 11.30 8.90

shows hazard ratio under screening predicted as θ
m∗(τ)
0 with the multiplier m∗(τ)

obtained from the approximation (2.24). It is clear from Figure 2.3 that the bias

correction using the approximation to the multiplier is reasonably accurate except

perhaps in the case of large treatment effects (small θ0).

We also conducted a simulation study to compare the difference between the

corrected variance, Σ∗, and the variance reported by the PH model using the inverse

of information matrix. Having generated a large sample of 10000 we found that when

the treatment is effective (i.e. θ0 < 1), the difference between the adjusted and naive

variance is quite small (< 1%) regardless of the treatment allocation ratio (table

2.1).

2.8 Example: Radical prostatectomy vs. watchful waiting for prostate
cancer

Radical prostatectomy is an invasive surgical procedure to remove the prostate

gland. It is one of the most common treatments for patients with localized prostate
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Figure 2.3: Quality of the small treatment effect approximation for the misclassification bias.
Left:Shapes of the baseline hazard function without screening h vs. under screening
λ. Middle and right column: Variable polygons and smooth curves going through them
correspond to PH model estimated and average hazard ratios at various study dura-
tions τ . The lines at y = θ0 correspond to a simulation without screening (W = 0 with
probability 1). The dashed curve showing a departure upwards particularly with small
θ0 (large beneficial treatment effect) is the hazard ratio under screening predicted using
the approximation (2.24) for the multiplier.
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cancer. Three studies, one from Europe (Bill-Axelson et al., 2005) and two from the

United States (Tewari et al., 2006; Albertsen et al., 2007), have looked at large groups

of localized prostate cancer patients. All patients in these three studies were newly

diagnosed and many of them must have been subjected to the Prostate-Specific Anti-

gen (PSA) tests, especially those diagnosed in the United State after 1990. Relative

effects of radical prostatectomy vs. watchful waiting (conservative management) on

the disease-specific survival were estimated using PH models. Assuming that the

study cohorts are similar to patients in the Surveillance, Epidemiology, and End

Results (SEER) registry data, and that the recruitment is following the pattern of

cancer incidence in the SEER population, we recovered the underlying treatment ef-

fects θ0 for radical prostatectomy vs. watchful waiting using the methods described

in Section 2.6. Distribution of the lead time was obtained from the marginal inci-

dence model (Tsodikov et al., 2006) fitted to SEER data, and assumed known. The

baseline hazard was obtained from a PH analysis of SEER data before the year of

1988 when PSA was introduced, and assumed known for prediction of the multiplier.

The lead time and survival distributions depend on age, A, and year of diagnosis,

Y . Therefore we incorporated age and calendar time as covariates into the lead time

and into the baseline survival characteristics essentially by tabulating their distribu-

tions for all combinations of A and Y . We then exploit the fact that we kept the

development general with respect to how h(t|W ) depends on W . Therefore, we can

redefine the vector W to include A, Y in addition to the lead time. Essentially this

means that all expectations over W turn into expectations over W,A, Y , and the

key expressions of the paper are valid with this understanding. These expectations

were taken with respect to the lead time conditional on A, Y , and then over the

empirical distribution of A, Y specified using SEER data and the calendar period of
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Table 2.2: Estimated and predicted relative risks of radical prostatectomy vs. watchful waiting

Study Reported RR(95%C.I.) RR(95%C.I.)
from PH model after correction

Bill-Axelson et al. (2005, NEJM) 0.56 (0.36-0.88) 0.51 (0.24-0.77)
Tewari et al. (2006, J. Urology) 0.37 (0.25-0.55) 0.35 (0.21-0.50)
Albertsen et al. (2007, J. Urology) 0.29 (0.16-0.52) 0.23 (0.07-0.39)
Combined result from meta-analysis 0.41 (0.31-0.53) 0.37 (0.26-0.51)

the respective study. The results of the predicted true underlying treatment effects

from all the three studies as well as the combined estimate using meta-analysis are

summarized in table 2.2.

This analysis indicates under-estimated treatment effects by major clinical studies.

However, the correction appears to be relatively modest, 6-26% relatively to the

corrected one. Note that the corrected hazard ratio refers to the survival time from

clinical diagnosis (the point of diagnosis by symptoms), for which there is no direct

data if the patient is screen detected while asymptomatic.

2.9 Discussion

When screening is operating in the population targeted by clinical trials, the PH

model is misspecified due to the fact that the time of diagnosis is advanced by a

random and unobserved amount, the lead time, as patients are detected before they

develop symptoms of the disease. This type of misspecification is special because

patients do not die before they develop symptoms (during the lead time) meaning

that the support of the survival time is random.

While early detection might enhance the treatment effect (i.e. interact with treat-

ment), we have conservatively assumed that screening is of no real benefit, and we

asked the narrow question of what the implications of misspecification might be in

this situation and how they can be reversed or at least reduced without access to
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raw data.

We have shown that even with proper randomization, evaluating the treatment

effect in clinical trials recruiting from a population under screening could result in

biased estimates. The bias is a function of the duration of the study, the shape of

baseline hazard, the lead time distribution in the population under screening, the

distribution of time to censoring if it varies by treatment group, and the size of the

true treatment effect.

Unlike the bias from omitting important covariates in the PH model, the bias

from ignoring early detection is not always conservative. To correct the treatment

effect estimated by the misspecified PH model, we propose a meta-analytic frame-

work based on a study of bias and variance of a general misspecified PH model. To

be able to provide a correction in the absence of raw data we entertained a small

treatment effect approximation that simplified the formulas and reduced the com-

plexity of information needed to launch the correction. Simulation results suggest

the correction we proposed is robust and accurate in realistic scenarios of modest

treatment effects.

We also found that the PH model is correct at estimating the variance if the

distribution of treatment covariates is not skewed. At the same time under no cir-

cumstances other than absence of screening can the PH model point estimate of the

treatment effect be unbiased.

This study also shows that a correction of the treatment effects observed in the

screening era is possible using population models of cancer that provide an estimate

of the distribution of the lead time. This distribution was assumed to be known

throughout the paper. This is a natural assumption since population models are

fitted to big populations while the survival study of this paper concerns much smaller
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groups of cancer patients only.

A number of simplifying assumptions were unavoidable. We disregard stage pro-

gression between screening and clinical diagnosis in a small fraction of patients. We

did not incorporate the interaction between treatment and early detection result-

ing in the perceived benefit of screening to the population. Last but not least, as

we focused on the lead time bias, the length bias for screen-detected cancers and

anti-length bias for cancers missed by screening were ignored. The latter can be

recognized from (2.6) that implies, for example, that h(t|W = 0) apply equally to

a patient from an unscreened population or to a patient from a population under

screening who is detected due to symptoms with zero lead time. Length bias ex-

hibits itself in that screening is more likely to catch slower growing tumors that

spend longer times without symptoms. As a result tumors detected by screening

have better prognosis than tumors missed by screening. For this reason a patient

with W = 0 from an unscreened population generally has better prognosis than a

screened patient with W = 0 whose cancer was missed by screening. This effect can

be incorporated by allowing more complicated forms of h(t|W ) such as h(t−W,W ),

where the second W models dependence on the lead time on top of the convolution

effect. The same recipe could be used to generally model baseline survival post clini-

cal diagnosis as being correlated with the lead time. Note that we intentionally kept

the development of the theoretical sections of the paper general with respect to the

form of h(t|W ) to incorporate such scenarios.

To avoid massive over-treatment of cancer patients, screen-detected patients with

good prognosis may be placed on deferred treatment regimen. Screening and treat-

ment would then eventually represent a dynamic cancer control strategy designed to

preserve the mortality benefit while reducing over-treatment. Joint dynamic models
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need to be developed to analyze the combined screening and treatment interventions.

2.10 Appendix

2.10.1 Properties of relative expectation

Lemma II.4. Let µ, ν be some functions of random variables independent of a

parameter θ. Then

(2.36)
∂

∂θ
log E

{
µ
∣∣∣∣νθ} =

Cov{µ, log ν||νθ}
E{µ||νθ}

.

Proof proceeds straightforwardly by differentiation and using the definition (2.3).

Lemma II.5. Let µ, ν, and ξ be some functions of random variables. Define

(2.37) E {µ| |νξ } = E{µ||ν} − E{µ||ξ}.

Then

(2.38) E {µ| |ννξ } = −Cov{µ, ξ||ν}
E{ξ||ν}

.

Proof. Using the definition (2.3) of the relative expectation we get the left part

of (2.38) as a difference of two fractions. Bringing them to a common denominator

and gividing numerator and denominator by E(ν), and again using (2.3), we arrive

at the right part of (2.38).

Lemma II.6. Let µ be some function of random variables, Z be some random vari-

able, and θ = eβZ. Define the central relative moment of Z of kth order as

(2.39) Mk(Z||µ) = E
{

[Z − E{Z||µ}]k
∣∣ |µ}

Then if µ does not depend on β

(2.40)
∂k

∂βk
E{Z||θµ} = Mk+1(Z||θµ).
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Proof. The proof proceeds by induction, uses straightforward differentiation and

the fact that M1(Z||θµ) = 0. As a corollary, we have

∂

∂β
E{Z||θµ} = Var(Z||θµ).

Lemma II.7. Let µ = µ(β0, Z,W ), where Z,W are r.v.s, and β0 is a parameter.

Then

(2.41)
∂

∂β0
E{Z||µ} = Cov

{
Z,
∂ log(µ)

∂β0

∣∣∣∣|µ}.
Proof by straightforward differentiation.



CHAPTER III

Predicting Cancer Progression and the Null Hypothesis of
Treatment Effect under Screening

3.1 Introduction

Deciding whether, or how, to treat cancer for a newly diagnosed prostate cancer

patient is difficult because a large fraction of patients are over-diagnosed and if

left untreated would never die from the disease. Quantifying potential risks of the

disease progression would provide valuable information to help patients and doctors

make informed decisions to manage cancer. With screening in place, patients are

detected earlier in a less advanced stage showing longer survival from the point of

diagnosis even in the absence of any treatment benefit, which greatly complicates

treatment decisions. Because the risk of cancer detection is correlated with the latent

cancer growth process, patient heterogeneity at diagnosis varies dependent on the

utilization of screening in the population from which the patient is sampled. Thus,

the construction of a disease progression prognosis for the patient depends on joint

modeling of the cancer development and heterogeneity in the population and the

subject-specific risk of cancer progression within the patient given the information

on his latent heterogeneity available through clinical and demographic characteristics

observed at diagnosis.

Since the introduction of PSA test in 1988, the wide spread use of screening

39
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programs resulted in profound dynamics of cancer incidence and its presentation

at diagnosis. In the PSA era survival post-diagnosis has “improved” counteracting

the effect of increased incidence (Nicholson and Harland, 2002). The severity of

the disease at diagnosis (stage and grade) has also enjoyed a favorable shift. Due

to overdiagnosis there is an increase in the probability of “cure” in prostate cancer

(Draisma et al., 2003; Tsodikov et al., 2006; Draisma et al., 2009). Neither lead-time

nor overdiagnosis can be directly observed so their estimation requires modeling.

Parker et al. (2006) developed a competing-risks model to estimate the prostate

cancer survival for screen-detected prostate cancer. While the model by Parker et al.

(2006) adjusts for the lead-time, it conditions on stage and grade at diagnosis. Since

stage and grade at diagnosis are themselves affected by screening, it is difficult to

generalize the results to populations with different screening utilization patterns.

Also, the model does not incorporate a progression mechanism and cannot predict

the chance that cancer will become metastatic or high-grade if left untreated before

symptoms appear, a piece of information important for treatment decisions.

The general problem that has not been addressed is that of the null hypothesis of

treatment effect when patients are recruited from populations under variable patterns

of screening. Consider the same patient run through two scenarios: screening and

no screening under the hypothesis of no treatment benefit. Despite being under

the null hypothesis we will have different survival post-diagnosis, different stage

and grade of the disease at diagnosis in the two scenarios, and it is not trivial to

formulate the treatment effect in this setting. However, because we are picturing the

same patient running through both scenarios, and because screening is not curative

without the treatment effect, the age at which symptoms appear (CDx) and survival

past that point is the same in both runs. For a screen-detected patient, at the



41

point of observed screening diagnosis (SDx), the future cancer history resulting in

the onset of symptoms, CDx, and a possibly more advanced stage and grade at that

point, represents a multivariate random outcome. This outcome is the same under

the null hypothesis of treatment effect or under the assumption that patient is not

treated and is blinded to the fact of cancer diagnosis that we call the counterfactual

ignored screening scenario (iS). Needless to say, the iS scenario is never observed in

practice. Note that patients on conservative management or active surveillance are

not equivalent to iS because of self-selection, subsequent monitoring, and medicine

they still receive while on the regimen. It is clear that the null hypothesis of treatment

effect is that of the same joint distribution of age, stage and grade at CDx, and same

survival post CDx where CDx is understood as the point of observed diagnosis for

the patient detected by symptoms, and a counterfactual CDx under the iS scenario

for the screen-detected patient. We will give a rigorous definition later.

To address the problems mentioned above we propose a joint model for the disease

presentation at SDx and real or counterfactual CDx. We build upon the “marginal”

stage and grade specific incidence model describing disease presentation at the ob-

served point of diagnosis (either CDx or SDx, but not both on the same patient).

We will use our model to describe prostate cancer related risks for the general

US male population and the potential adverse events for a PSA-detected man given

information at the time of diagnosis. The details of the model are discussed in sec-

tion 3.2 and the expressions for key natural history events are explained in section 3.3.

Finally, we provide predictions for natural history events using population data and

the results are shown in section 3.4.
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3.2 Natural history model

The natural history model is based on the classical three-state chronic disease

model. The disease progresses through three states, disease-free state, pre-clinical

state, and clinical state. The disease is chronic and the transitions are irreversible.

On top of that there is a finer characterization of cancer progression through stage

(Localized vs. Metastatic) and grade (Low vs. High). The model is partially specified

and does not assume any specific mechanism of progression through stage and grade.

The duration of the disease-free state is represented by the age at tumor onset,

described by the random variable Y . We assume there is no prostate cancer before

the age of 50, so the age origin in the model resides at 50.

The pre-clinical state in the absence of screening measures the time period be-

tween tumor onset and detection via clinical symptoms appearing (clinical diagnosis,

CDx). This duration is called the sojourn time. In the presence of screening, can-

cer may be detected while it is still asymptomatic by the screening test (screening

diagnosis, SDx). Time to the two types of diagnosis TCDx and TSDx, respectively,

represent competing risks originating at the age of Y . The clinical state describes

the survival time Ts from the time of diagnosis (CDx or SDx) to the time of cancer-

specific death. The structure of the chronic disease three-state model are shown in

figure 3.1. Our approach is to build a series of hierarchical models to describe prostate

cancer incidence, presentation at diagnosis (Z = Stage and Grade), progression, and

survival.

3.2.1 Marginal incidence model

The marginal incidence model describes the risk of being diagnosed with prostate

cancer at age aI either clinically (CDx) or by PSA screening tests (SDx). In our
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Tumor onset

(y)

State 1
Disease free

TCDx (sojourn time)

Toc (time to  other cause of death) 

Y (time to onset)
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Ts (survival time) 
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Man turns 50 (birth)

(0)

Tumor diagnosis

(aI)

Die from prostate cancer

(aM)

Chronic Disease Three-State Model

Natural history event
(Age at event)

Figure 3.1: Structure of the chronic disease three-state model
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previous paper, the prostate cancer incidence for x birth cohort (a cohort of men

turning 50 in year x) can be written as a complex mixture model (Tsodikov et al.,

2006) where missing data include the age at onset y, the screening schedule, and the

detection process. The p.d.f. of cancer diagnosis given birth year x can be written

as

(3.1) fI(aI |x) =

∫ aI

0

fo(y|x)fI(aI − y|x, y) dt

where fo is the unconditional pdf of age at tumor onset, and fI(aI − y|x, y) is the

pdf of age at cancer diagnosis given birth year x and tumor onset time y. Under

competing risks, fI(aI − y|x, y) can be split into two crude densities,

fI(aI − y|x, y) = f cCDx(aI − y|x, y) + f cSDx(aI − y|x, y)

where

f cCDx(aI − y|x, y) = fCDx(aI − y|x, y)GSDx(aI − y|x, y)

and

f cSDx(aI − y|x, y) = fSDx(aI − y|x, y)GCDx(aI − y|x, y).

Here fCDx(aI − y|x, y) and GCDx(aI − y|x, y) are the p.d.f. and survival function

(s.f.) of TCDx, the sojourn time distribution, and fSDx(aI − y|x, y) and GSDx(aI −

y|x, y) are the p.d.f and s.f. of TSDx, time to PSA diagnosis, respectively computed as

an average over the point process of screening schedule and the outcomes of screening

tests. Distributional characteristics of the schedule process (intensity of utilization

of screening in the population) was estimated in Mariotto et al. (2007). Integrating

out the age at tumor onset y, we have the unconditional p.d.f. of age at diagnosis aI

fI(aI |x) = f cCDx(aI |x) + f cSDx(aI |x).
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Note that the unconditional p.d.f fCDx(aI |x) is a function of the age of the subject

while the conditional p.d.f fCDx(aI − y|x, y) is a function of the delay time defined

as tD = aI − y. Detailed expressions can be found in Tsodikov et al. (2006).

3.2.2 Z-specific incidence model

We use r.v. Z to denote four possible combinations of binary stage and grade

classifications (Localized/Reginal Stage, Low Grade)=LL, (Localized/Reginal Stage,

High Grade)=LH, (Distant Stage, Low Grade)=DL, (Distant Stage, High Grade)=DH.

Disease stage is dichotomized into the local-regional (LR) stage and distant (D) stage.

Disease grade is divided into well or moderate (WM) differentiated (low grade) and

poorly differentiated or undifferentiated (PU) disease (high grade). Generally, Z can

be any multivariate mark on the cancer incidence process. The Z-specific incidence

model describes the probability of being diagnosed with prostate cancer at a certain

age and with specific stage and grade z. Conditional on birth year x, age of tumor

onset y, and age of tumor diagnosis aI , the probability of being diagnosed with stage

and grade z was modeled using mixed multinomial logit model (Chefo and Tsodikov,

2009). Missing data include the delay time between tumor onset and diagnosis (a

backward recurrence time) and the mode of diagnosis. Calendar time and age are

treated as fixed effects covariates. Using the Z-specific incidence model we predict

the conditional (multinomial) distribution of z, fI(z|x, aI) given the cohort x, inci-

dent age aI . Note that fI(z|x, aI) is a conditional average over and tumor onset age

Y , and the mode of diagnosis IScr =1 if SDx and =0 if CDx. Using the model we

can update the distribution of Y given the information available at diagnosis.

The conditional distribution of the age of tumor onset Y can be written as
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Y ∼ fI(y|x, aI , z) =
fI(aI , z, y|x)

fI(aI , z|x)
=

fI(z|x, aI , y)fI(aI |x, y)fo(y|x)∫ aI
0
fI(z|x, aI , y)fI(aI |x, y)fo(y|x) dy

.

The conditional distribution of stage and grade z at diagnosis can be written as

fI(z|x, aI) =
fI(aI , z|x)

fI(aI |x)
=

∫ aI
0
fI(z|x, aI , y)fI(aI |x, y)fo(y|x) dy

fI(aI |x)
.

The Z-specific incidence is given by

(3.2) λI(aI , z|x) = λI(aI |x)fI(z|x, aI),

where λI(aI |x) is the marginal incidence, and fI(z|x, aI) serves as a factor partition-

ing it into the z-specific components.

3.2.3 Lead-time

Lead-time measures the amount of time the point of diagnosis is advanced due to

screening. It represents the period between SDx and real or counterfactual CDx. For

a clinically detected patient, the lead-time is zero, and its distribution has a mass

at zero reflecting the proportion of CDx among all diagnoses. It is an important

factor in cancer survival presenting a guaranteed survival benefit (patients cannot

die before symptoms appear). For an incident patient with characteristics (x, aI , z),

the updated distribution of lead-time is

fLT (s|x, aI , z) =
fLT (s, aI , z|x)

fI(aI , z|x)
,
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where

(3.3)

fLT (s, aI , z|x) =

∫ aI

0

fo(y|x)fI(z|x, aI , y)


GSDx(aI − y|x, y), (s = 0)

fSDx(aI − y|x, y), (s > 0)

fCDx(aI−y+s|x, y) dy,

fI(aI , z|x) =

∫ aI

0

fI(z|x, aI , y)fI(aI |x, y)fo(y|x) dy.

The expressions above integrate the subject’s history over the unobserved age at

onset and mode of diagnosis. The history includes onset, observed diagnosis SDx

or CDx, presentation z at observed diagnosis, and counterfactual CDx if observed

diagnosis is SDx). Lead-time equal to 0 implies that the person had a CDx while

lead-time > 0 means that the person had an SDx.

3.2.4 Disease progression model and the null hypothesis of treatment effect

The disease progression model estimates the probability of disease progression

during the lead-time in the absence of treatment. Let the vector

VIScr = (aIScr , zIScr)

be the disease presentation at diagnosis indexed by the mode of diagnosis. For a

screen-detected patient we have V1 at the observed SDx and V0 at the counterfac-

tual CDx. Note that as a result of the Z-specific incidence model (3.2) we have a

model for the marginal distribution of V when the mode of diagnosis IDx is random

(unobserved).

Disease progression between SDx and CDx can be characterized by the transi-

tional distribution fV (V0|V1, x) describing the p.d.f. of the disease presentation at

counterfactual CDx (V0) conditional on the observed presentation V1 at SDx and the
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birth cohort x. We can expand fV as

(3.4) fV (V0|V1, x) = fLT (tLT |a1, z1, x, tLT > 0)pb(z0|z1, tLT ),

where the lead-time tLT for the disease detected by the test

fLT (tLT |·, tLT > 0) =
fLT (tLT |·)

1− fLT (0|·)

is conditional on SDx that is equivalent to a positive lead-time, tLT > 0. Here

pb(z0|z1, tLT ) are the baseline progression probabilities. While generally, pb may de-

pend on the lead-time, in the data analysis example we assume they are independent

of tLT . This gives a set of unknown parameters pb(z0 = j|z1 = i) = pbij, where i ≤ j,

i, j = 1, . . . , 4 go over the four categories of stage and grade z, that is summarized as

a progression probability matrix (PPM) in (Table 3.1). The fact that i ≤ j reflects

the assumption that cancer cannot regress.

The main difficulty in estimating the PPM is rooted in the fact that CDx and

SDx are not observed on the same subject. So there is no direct subject-specific data

on the disease progression.

To estimate the PPM, we first formulate the null hypothesis of treatment effect.

Under the null hypothesis of treatment effect the baseline PPM probabilities pb are

not affected by treatment applied at the point of SDx. If treatment had an effect,

the baseline probabilities pbs would be transformed by a categorical regression model

with treatment as a covariate and pb corresponding to the baseline of no treatment.

In the extreme, treatment applied at the point of SDx may completely prevent cancer

progression in which case PPM would be an identity matrix (stage and grade are

frozen at SDx and carry over unchanged to the point CDx). This introduces the so-

called stage-shift resulting in distant stages being prevented by screening when cancer

is detected while it is still localized and progression is arrested by treatment. It is this
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stage shift assumption that is at the root of the mortality benefit of screening (and

treatment) assumed in many models of cancer mortality in the presence of screening.

Now consider two model predictions in the following two counterfactual scenarios:

1. z-specific Incidence λI(a, z|¬S) under no screening (¬S, zero screening sensitiv-

ity); and

2. the model predicted z-specific incidence λI(a, z|iS) as if screening were ignored

(iS) and the patient was left undiagnosed until his lead-time expired.

While the first scenario does not involve the PPM and is expressed by the z-specific

incidence model prediction (3.2) under zero screening sensitivity, the second coun-

terfactual scenario uses PPM to predict stage and grade at the end of the lead-time.

The absence of the stage-shift is expressed as the equality

(3.5) λI(a, z|¬S) ≡ λI(a, z|iS),

where ≡ denotes a uniform equality over a, z represents the first part of the null

hypothesis of the treatment effect. The equality (3.5) represents the first part of the

null hypothesis of treatment effect where λI(a, z|iS) is computed using the baseline

probabilities pb. In the case of more general progression models, not necessarily

formulated in terms of PPM, (3.5) still represents the first part of the null hypothesis

expressing the general equivalence of ignored screening iS, zero screening sensitivity,

and zero treatment effect. In other words there is no difference between no screening,

screening with zero sensitivity, or screening combined with ineffective treatment as

far as the disease presentation at real or counterfactual CDx goes.

The second part of the null hypothesis is the similar equality for cancer mortality

that remains beyond the scope of the present paper.
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To estimate the PPM we treat (3.5) as an equation for the unknown pb parameters.

The idea is to deduce the disease progression model from the marginal one by making

the two counterfactual predictions as close as possible. The target function to be

minimized for the estimate of the disease progression model, l, can be written as the

Poisson likelihood ”distance” (3.6) between the two predictions by treating one of

them as ”observed” data (¬S), and the other as expected (iS).

Conditional on the birth year, x:

(3.6) l =
∑
a

∑
t

∑
z

P (a, t, z) {λI(a, z|¬S) log λI(a, z|iS)− λI(a, z|iS)}

where P (a, t, z) is the population count with age a, stage and grade z, in calendar

year t, and λe is deduced from the corresponding joint pdf

f(a, z|iS) = f(a, z, SDx|iS) + f(a, z, CDx|iS)

=

∫ a−

0

∑
z1≤z

f(a1, z1|S)fLT (a− a1|z1, a1)pb(z|z1, a− a1)da1

+f(a, z|S)× fLT (0|a, z).

The latter expression represents an incident cancer under iS as either a real CDx

with zero lead-time (second term) or a counterfactual one in which case possible

presentations at SDx prior to the counterfactual CDx are entertained in the first

term of the sum, analogous to backward Markov equations.

Standard errors of the estimates are obtained by bootstrap.

The progression model was fitted to SEER data. Only 5% to 6% patients progress

in stage/grade respectively in the localized stage, low grade group at SDx. No

progression from the best category (local stage and low grade) to the worst category

(distant stage and high grade) is observed, perhaps due to the long time frame

required for such a big transition compared to the lead-time. Local stage high grade
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Table 3.1: Results of Estimated Progression Probability Matrix (PPM) and 95% C.I.

Counterfactual
Clinical Diagnosis

Stage/Grade LR/L(1) LR/H(2) D/L(3) D/H(4)

LR/L(1) pb11=0.893 pb12=0.051 pb13=0.056 pb14=0
(0.879,0.906) (0.039,0.062) (0.049,0.064) (0,0)

Screening LR/H(2) 0 pb22=0.717 0 pb24=0.283
Diagnosis (0.676 0.757) (0.243 0.324)

D/L(3) 0 0 pb33=1 pb34=0
(1,1) (0,0)

D/H(4) 0 0 0 1

Stage: LR=Local/Regional, D=Distant. Grade: L=Low(WM), H=High(PU).

patients are more likely to progress. About 28% potentially progress to distant

stage. There is no grade progression in the distant stage patients likely because their

lead-time is too short for the grade to change.

3.2.5 Survival model

The survival model G describes the time spent in the clinical state conditional on

the age of incidence aI , year of diagnosis t, (t = x+ aI), and stage and grade z.

Two adjustments were made in survival model during the PSA era. First, lead-

time adjustment was made to make sure survival times are always measured from the

time of clinical diagnosis to time of death implying a guaranteed lead-time benefit.

Additionally, survival is conditional on the stage and grade at the time of the clinical

diagnosis, the latter being unobserved if the patient is screened-detected. The stage

and grade progression during the lead-time was described by the disease progression

model in section 3.2.4.

The survival function from the time of diagnosis to time of death (ts) can be
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written as

G(ts|x, aI , z) = GLT (ts|x, aI , z)

+fLT (0|x, aI , z)Gb(ts|x, aI , z)

+

∫ ts

0+

∑
z0≥z

pb(z0|z)fLT (s|x, aI , z)Gb(ts − s|x, aI + s, z0) ds(3.7)

where Gb is the baseline survival function measuring survival time from the clinical

diagnosis to death.

All three terms on the right represent mutually exclusive possibilities. The first

term is a survival function of the lead-time GLT that represents guaranteed survival

up to ts if the lead-time is at least as large as ts, i.e. the patient does not die from the

disease before he develops symptoms. The second term is the survival contribution

of symptomatic diagnoses with the probability of clinical diagnosis (the probability

of lead-time is zero) as the weight. The last term represents cancer progression or

non-progression from the presentation at SDx to projected CDx, and survival with

possibly a more advanced stage thereafter.

3.3 Predictions

We use our model to predict key population and subject-specific characteristics

of prostate cancer.

3.3.1 Natural history of Prostate Cancer in US

We present population predictions of major natural history events such as lifetime

risk, mean age at event, and mean time between events. In this study, we look at

scenarios under the null hypothesis of no treatment.
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Cancer onset

Conditional on birth year x, let fo be the p.d.f. of Y , the time from birth to

tumor onset (age at tumor onset), and GOC be the s.f. for TOC , the time from birth

to other causes of death. Let y and a∞ denote the age at tumor onset and the

maximal lifetime, respectively. The lifetime risk of tumor onset can be written as a

crude cumulative probability of tumor onset Y occurring before death due to other

causes (OC). The mean age of tumor onset is computed as a conditional expectation

of Y given that the onset does occur.

• lifetime risk

∫ a∞

0

fo(y|x)Goc(y|x)dy

• mean age

(3.8)

∫ a∞
0

yfo(y|x)Goc(y|x)dy∫ a∞
0

fo(y|x)Goc(y|x)dy

Cancer diagnosis

Using the definition described in 3.2.1, let the crude density f cCDx(aI |x) correspond

to clinical diagnosis given birth year x and age of diagnosis aI . The lifetime risk and

the mean age of clinical diagnosis (CDx) under early detection can be computed

using the the cumulative crude probability and the conditional expectation similar

to (3.8). Conditional on birth year x, let f cCDx(aI , z ∈ D|x) be the joint crude density

that represents incidence at age aI with distant stage and fI(aI |x) = f cCDx(aI |x) +

f cSDx(aI |x) be the p.d.f. of the overall incidence at age aI . Replacing f cCDx(aI |x) in

equation (3.9) with f cCDx(aI , z ∈ D|x) and fI(aI |x) = f cCDx(aI |x) + f cSDx(aI |x), we
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have the lifetime risk and mean age for metastatic clinical diagnosis (Met CDx) and

overall diagnosis (CDx or SDx), respectively.

1. Clinical diagnosis (CDx)

• lifetime risk

∫ a∞

0

f cCDx(aI |x)Goc(aI |x)daI

• mean age

(3.9)

∫ a∞
0

aIf
c
CDx(aI |x)Goc(aI |x)daI∫ a∞

0
f cCDx(aI |x)Goc(aI |x)daI

2. Metastatic clinical diagnosis (Met CDx)

• lifetime risk ∫ a∞

0

f cCDx(aI , z ∈ D|x)Goc(aI |x)daI

• mean age

(3.10)

∫ a∞
0

aIf
c
CDx(aI , z ∈ D|x)Goc(aI |x)daI∫ a∞

0
f cCDx(aI , z ∈ D|x)Goc(aI |x)daI

3. Screening diagnosis (SDx) or clinical diagnosis (CDx)

• lifetime risk

∫ a∞

0

fI(aI |x)Goc(aI |x)daI

• mean age

(3.11)

∫ a∞
0

aIfI(aI |x)Goc(aI |x)daI∫ a∞
0

fI(aI |x)Goc(aI |x)daI
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4. Mean years from onset to tumor diagnosis

The time from tumor onset to tumor diagnosis aI − y is called the delay time

(tumor age). For the unscreened population, the delay time is the same as the

sojourn time, TCDx. For screened the population, the delay time is the minimum

of TCDx and TSDx. Mean years from onset to tumor diagnosis can be computed

as a conditional expectation of the delay time given cancer diagnosis within the

lifetime.

(3.12)

∫ a∞
0

(aI − y)
∫ a∞
y

fo(y|x)f(aI − y, z|x, y)Goc(aI |x)daIdy∫ a∞
0

∫ a∞
y

fo(y|x)f(aI − y, z|x, y)Goc(aI |x)daIdy

where

f(aI − y, z|x, y) =



f cCDx(aI − y|x, y), CDx.

f cCDx(aI − y, z ∈ D|x, y), Met CDx.

fI(aI − y|x, y), CDx or SDx.

Cancer death

Conditional on birth year x, the marginal survival function GM(aM |x) of age aM

at cancer-specific death (s.f. of mortality) can be written using the convolution of

stage/grade specific incidence and survival distributions equation (3.13).

GM(aM |x) =

∫ aM

0

fI(aI |x)
∑
z

fI(z|x, aI)G(aM − aI |x, aI , z)daI

+GI(aM |x).(3.13)

The first part of the equation describes the probability of a man who has prostate

cancer diagnosed at the age aI (before age aM) with stage and grade z at the time
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of diagnosis, to survive at least (aM − aI) years after the diagnosis. The second part

of the equation represents the probability for a man who has never been diagnosed

with prostate cancer. Similar to equations (3.8), we can compute lifetime risk and

mean age of prostate caner death.

• lifetime risk

∫ a∞

0

fM(aM |x)Goc(aM |x)daM

• mean age

(3.14)

∫ a∞
0

aMfM(aM |x)Goc(aM |x)daM∫ a∞
0

fM(aM |x)Goc(aM |x)daM

3.3.2 Risk of adverse events for local-regional screen-detected patients

In this section we provide subject-specific predictions for a PSA-detected man

diagnosed with localized-regional stage.

Let ai and zi, i = 0, 1 denote age and stage/grade at CDx and SDx, respectively.

For a man diagnosed by the PSA test, the disease presentation at CDx is unobserved.

Conditional on the disease presentation at SDx (a1, z1) and the fact that the patient

was detected by screening, the p.d.f. of the lead-time distribution is

(3.15) fLT (s|x, a1, z1 ∈ LR, TLT > 0) =
fLT (s|x, a1, z1 ∈ LR)

1− fLT (0|x, a1, z1 ∈ LR)
,

where s = a0 − a1, a0 ≥ a1 is the lead-time argument (section 3.2.3). Also the

probability of stage and grade progression during the lead-time can be estimated

using the PPM (Table 3.1).

1. Clinical diagnosis (CDx)

Conditional on birth year x and age at diagnosis a1, the lifetime risk of coun-
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terfactual CDx can be presented by the crude probability

(3.16)

∫ a∞

a+1

fLT (a0 − a1|x, a1, z1 ∈ LR, TLT > 0)Goc(a0|x)da0.

The event of counterfactual CDx defines the cancer as a relevant one (as opposed

to overdiagnosed) that would eventually present symptoms without screening.

2. Metastatic clinical diagnosis (Met CDx)

For the same man, the lifetime risk of metastatic clinical diagnosis is calculated

as follows

(3.17)∫ a∞

a+1

fLT (a0 − a1|x, a1, z1 ∈ LR, TLT > 0)pb(z0 ∈ D|z1 ∈ LR)Goc(a0|x)da0.

3. Prostate cancer death

In addition to the potential clinical diagnosis, the chance that the man dies

from prostate cancer in his lifetime can be expressed using the survival time

ts measured from the age of cancer diagnosis a1 to age of cancer death aM

(ts = aM − a1) as discussed in section 3.2.5. Conditional on SDx (TLT > 0), the

survival function for the PSA-detected man at the age of a1 and with stage/grade

z1 is

G(ts|x, a1, z1) = GLT (ts|x, a1, z1 ∈ LR)

+

∫ ts

0+

∑
z0≥z1

pb(z0|z1 ∈ LR)fLT (s|x, a1, z1 ∈ LR)Gb(ts − s|x, a1 + s, z0) ds.

Similarly, the lifetime risk of prostate cancer specific death is given by the crude

probability
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(3.18)

∫ a∞

a1

f(aM − a1|x, a1, z1 ∈ LR)Goc(aM |x)daM

3.4 Data analysis and results

Our analysis was performed using the SEER9 database from 1973 to 2000 which

contains more than 350,000 cases of prostate cancer from 9 registries: Atlanta, Con-

necticut, Detroit, Hawaii, Iowa, New Mexico, San Francisco-Oakland, Seattle-Puget

Sound, and Utah. Parameters (except the PPM) in our model were estimated using

maximum likelihood methods. Distributions entering the z-specific incidence model

were estimated in our previous study (Tsodikov et al., 2006; Chefo and Tsodikov,

2009).

Predictions of key prostate cancer population characteristics in US are summa-

rized in Table 3.2. Numbers listed on the table are averages over the 50-84 age

window (a typical age interval for SEER-based statistics) and 1975 to 2000 calendar

year window.

On average, the lifetime risk of a man developing prostate cancer is 20%. Among

men who develop prostate cancer, their average age at tumor onset is 72 years. If

there were no screening, the average lifetime risk of prostate cancer clinical diagnosis

with any stage and with distant stage would be 10% and 1%, respectively. Both

groups have same average age at diagnosis of 81. Under screening, the average life-

time risk of CDx, Met CDx, and any diagnosis are 6%, 1%, and 15%, respectively.

The average age at diagnosis is 80 for a clinically detected case and 75 for any mode

of diagnosis. The mean time from onset to diagnosis is 6-7 years for CDx, 3-4 years
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Table 3.2: Predictions of key prostate cancer natural history events

Mean years
Lifetime risk(%) Mean age(years) from onset

Cancer onset 20 72
Cancer diagnosis
- CDx 10a/6b 81a/80b 7a/6b

- Metastatic CDx 1a/ 1b 81a/80b 4a/3b

- SDx or CDx 15 75 6
Cancer death 4a/ 4b 81a/81b 10a/10b

a, b indicates events under scenarios without and with screening, respectively.

for Met CDx, and 6 years for SDx or CDx cases. The average delay time (time from

the tumor onset to diagnosis) is shorter for Met CDx patients compared with the

average time from all cases (i.e. 7 vs. 4 years under no screening scenario). This

observation indicates that our partially specified model favors heterogeneity in tumor

aggressiveness, and more aggressive tumors are detected earlier due to their shorter

latency times. Also under the screening scenario, the lifetime risk of CDx is smaller

because some of them would be diagnosed earlier by screening. The lifetime risk of

death from prostate cancer is 4%. Among those men who die from prostate cancer,

the average age of death is 81 years old and it takes about 10 years from the tumor

onset. Without any treatments, the risks of cancer death are about the same for

screened and unscreened population.

In Table 3.3, we provide projected risks of adverse events for men diagnosed by

PSA with local-regional stage prostate cancer in 2000 using SEER data. The pre-

dictions are stratified by disease grade (low vs. high) and age groups.

For a PSA-detected local-regional stage prostate cancer case, the probability of

CDx within his lifetime is about 59% to 93% depending on the age at diagnosis.
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Table 3.3: Lifetime risk of adverse events for local-regional screened-detected patients

Metastatic
Stage/Grade Age group Clinical diagnosis clinical diagnosis Prostate cancer death

50-54 93 6 28
55-59 90 5 29
60-64 86 5 30

LR/L 65-69 80 5 30
70-74 74 4 28
75-79 66 4 24
80-84 59 3 17

50-54 90 30 60
55-59 90 26 63
60-64 86 24 62

LR/H 65-69 80 23 59
70-74 74 21 53
75-79 66 19 45
80-84 59 16 33

Regardless of the grade at disease detection, patients diagnosed at a younger age are

more likely to develop symptoms and be detected clinically within their lifetime. Risk

of being diagnosed with metastatic disease clinically or the risk dying from prostate

cancer within lifetime are also decreasing by age of diagnosis. For high grade PSA-

detected patients, the chance of being dignossed later with metastatic disease if left

untreated is almost 5 times higher when compared with low grade patients (16-30%

in high grade vs. 3-6% in low grade). They have about twice the chance of dying

from the prostate cancer in their lifetime (33-60% in high grade vs. 17-28% in low

grade).

3.5 Discussions

We presented an analytical statistical model for the joint disease presentation

at potentially two diagnoses per subject, SDx and CDx, the latter being counterfac-

tual. The model combines explicit mechanistic assumptions with a partially specified

disease progression mechanism.
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We formulated the null hypothesis of the treatment effect on the stage-shift as the

equality of stage/grade-specific cancer incidence predictions under two counterfactual

scenarios of zero screening sensitivity and ignored screening applied to the PSA era.

This understanding allowed us to devise an estimation procedure for the progression

probabilities for the screen-detected cancer patient despite the absence of longitudinal

observations of cancer progression within the subject.

The model is explicit enough as it shows the points where treatment may have

an effect. The model can be used to relax the traditional stage-shift assumption by

incorporating the treatment effect into a nominal or ordinal model for the progression

probability matrix. Another point of application of treatment effects is the treatment

by lead-time interaction and the treatment main effect acting on the survival function

of time post counterfactual CDx resulting in a complex frailty model. Estimation

of such treatment effects would require fitting the model jointly to survival and

incidence data.

The minimization of the distance between the two counterfactual incidence pre-

dictions to estimate the PPM will not exactly satisfy (3.5). In our data analysis, the

quality of the approximation is good for all practical purposes. The fact that only an

approximate model is available is a consequence of an independent model formula-

tion for the progression probabilities and the marginal V that could be inconsistent

with each other. The alternative would be to define the latent cancer growth and

progression process explicitly and fit it to the observed data. However, the mech-

anism of prostate cancer progression (i.e. whether cancer progresses in grades or

whether the grade is fixed at onset) is very much under debate by cancer biologists.

In addition strong unjustified assumptions would have to be made to assure identifi-

ability of the complex latent process model from the aggregate observed population
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data. Pursuing a robust partially specified model and leaving the exact mechanism

of cancer progression open seems to be a better approach.

Nevertheless, some elements of mechanistic modeling of the mechanism of tumor

growth and cancer detection may be worth pursuing. For example, in table 3.2,

the met CDx patients have a shorter delay time compared with all CDx patients

(i.e. 4 vs. 7 years under no screening scenario). This suggests that more aggressive

tumors tend to be detected earlier. The model could include the heterogeneity of

tumor growth rates in some form. This indicates that the so-called early onset

prostate cancers (cancer diagnosed before 55) may represent a subset enriched with

aggressive tumors in line with some recent genetics research targeting such patients

in search for markers of the aggressive disease.



CHAPTER IV

Mortality Model for Prostate Cancer

4.1 Introduction

There is growing interest in cancer screening programs. The goal of any screening

program is to diagnose patients early so they would be detected in a more favorable

stage and have better prognosis for treatment. The effect however cannot be eval-

uated directly using patient-specific data because of the favorable shift in stage of

the disease and survival post-diagnosis that would be occurring with screening even

if treatment were of no benefit. Prostate-specific antigen (PSA) test was approved

by the U.S. Food and Drug Administration (FDA) in year 1988 and it is commonly

used by physicians in routine physical exams to screen for prostate cancer in men at

risk. However, survival benefit is a matter of debate. Although USA prostate can-

cer mortality has dropped more than 30 percent since early 1990, coincidently after

the introduction of PSA, there has long been a controversy and speculations on the

survival benefit of prostate cancer screening. Several ecological studies conducted

in United State and Europe found no conclusive evidence to prove the association

between the intensity of PSA screening and mortality reduction (Shaw et al., 2004;

Collin et al., 2008). One way to assess whether PSA screening contribution to recent

mortality decline is by conducting randomized screening trials. Such trials require

63
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large amount of patients and long term follow-up to be able to have sufficient power

to compare outcomes. Three large-scale randomized screening trials, the Prostate,

Lung, Colorectal and Ovary cancer trial (PLCO) conducted by National Cancer

Institute (NCI) in United State, the European Randomized Screening for Prostate

Cancer (ERSPC), and the Comparison Arm for ProtecT study in UK (CAP, 2009),

are on-going to test whether PSA screening tests reduce the mortality of prostate

cancer but it is still too early to make final conclusions. Interim results from PLCO

found no effect of prostate cancer screening (Andriole et al., 2009) while ERSPC

showed some survival benefit from screenings (Schroder et al., 2009). Besides a sta-

tistical convenience approach of testing for benefit in a screening trial will make the

effect estimate specific to the trial populations and its generalizability to populations

with a different pattern of screening would be a challenge.

The questions can be addressed by statistical modeling. Mathematical and sim-

ulation models have been developed in the past to evaluate screening programs.

Oftentimes cancer progression is modeled using a semi-Markov stochastic process.

Lee and Zelen (2008) developed a general probability model and used it to assess

the role of screening programs in breast cancer mortality. The model derives the

benefit of screening from more favorable stage distribution of screen-detected cases

vs. the clinically diagnosed cases. The assumption that stage at screening diagnosis

(SDx) determines the prognosis has been referred to as the stage-shift. In prostate

cancer, watchful waiting is a legitimate ”treatment” option for patients whose per-

ceived chance of dying from prostate cancer is low. The stage-shift is essentially

an interaction effect between early detection and curative treatment based on the

assumption that the treatment applied at SDx prevents stage progression, and a

patient who would be in an advanced stage at clinical diagnosis (CDx) is prognosti-
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cated using early stage survival having been detected at an early stage by screening.

This assumption may be problematic particularly if the patient receives no curative

treatment on watchful waitings.

This paper was motivated by the following refinements of the general stage-shift

mortality model:

1. We wanted to use cancer registry data, where screening schedules are unob-

served, to specify the inputs for the prediction of mortality. Therefore, we treat

screening schedules as an unobserved point process with known distribution.

This makes the mortality prediction a functional of screening policy as condi-

tioning on intermediate outcomes is avoided.

2. The prediction of survival for a patient detected with cancer is based on updat-

ing the distribution of this patient’s natural history of the disease conditional

on age, stage and grade observed at diagnosis, recognizing that the mode of

diagnosis (SDx, or CDx) is not observed in SEER data. Treatment effects in-

teract with the latent natural history.

3. We used an categorical model for treatment allocation based on patient’s infor-

mation available at diagnosis that modeled treatment patterns over time.

4. We provide a flexible stage-shift approach to modeling and estimating the chance

of stage progression between SDx and the counterfactual CDx (one that would

occur if the results of screening were ignored). Patients who progress in stage

or grade by the end of the lead time will have advanced stage/grade survival.
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One dimension of the screening and treatment interaction is how the treatment

affects the stage-shift and the chance of cancer progression.

Section 4.2 will describe the main elements of the mortality model. In Section 4.3

we apply the model to analyze US prostate cancer mortality. Finally, Section 4.4

will discuss the significance of our model and potential problems encountered using

current approach.

4.2 Model

4.2.1 Basic Model

Our basic model used the classical three-state chronic disease model. Three states,

disease-free state, pre-clinical state, and clinical state, represent the progression of

the natural history of the disease, and transitions are irreversible. The disease pro-

gression with respect to stage and grade is only partially specified as will be described

in Section 4.2.4. The disease-free state is measured from the time a man turns fifty

to the time of the tumor onset. For population under screening, the screening diag-

nosis and the clinical diagnosis are two competing risks operating at the pre-clinical

state. The pre-clinical state is calculated from time of tumor onset to time of clinical

diagnosis or screening diagnosis whichever comes first. The clinical state describes

the survival time from the time of diagnosis to the time of death or last follow up.

4.2.2 Mortality Model

Conditional on birth year x, cancer mortality is a hazard function, λM , of the age

at prostate cancer death, aM . By definition,

λM(aM |x) =
fM(aM |x)

GM(aM |x)

where fM(aM |x) is the probability density function (p.d.f.) and GM(aM |x) is the sur-

vival function (s.f.). For a man from the birth cohort x, the probability of surviving
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from prostate cancer at age aM can be written as

GM(aM |x) =

∫ aM

0

fI(aI |x)
∑
z

fI(z|x, aI)
∑
Tx

fTx(Tx|x, aI , z)G(aM − aI |x, aI , z, Tx)daI

+GI(aM |x)(4.1)

The first part of the equation describes the probability for the man, who had

prostate cancer diagnosed at the age aI (before age aM) with stage and grade z,

received treatment Tx at the time of diagnosis, and survived at least (aM −aI) years

after the diagnosis. The second part of the equation represents the probability for the

man who has never been diagnosed with prostate cancer. Mortality is a convolution of

five models addressing the development of the disease under screening and treatment

interactions: Marginal incidence(section 3.2.1), Z-specific incidence (section 3.2.2),

treatment(section 4.2.3), disease progression between SDx and counterfactual CDx

(section 4.2.4), and survival models (section 4.2.5). The latter two models are used to

specify the s.f. G in equation 4.1 describing survival time post real or counterfactual

CDx conditional on stage and grade at that point .

4.2.3 Treatment Model

The treatment model describes the probability of receiving a certain treatment

combination at the time of cancer diagnosis. Using SEER data, we classified treat-

ments into three major categories: Conservative Management (CM), Radiation Ther-

apy (RT), and Radical Prostatectomy (RP). Hormone Therapy (HT) is commonly

used as an adjuvant therapy following one of those three primary treatments, RT

most commonly. Note that HT information is not available in cancer registries,

hence we used a two-stage model to predict treatment allocations. In the first

stage, we modeled the probability of receiving one of the three treatments defined

in SEER data conditional on birth year x, age of diagnosis aI , and grade using
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multinomial logit model. In the second stage, we conditioned on the treatment

obtained from the first stage, birth year x, age of diagnosis aI , and grade and

used logistic regression to model the probability of receiving the additional adju-

vant hormone therapy. The second stage model was fitted to CaPSURE data (

http://urology.ucsf.edu/capsure/overview.htm)

By combining first and second stage, we can obtain the probability of actual treat-

ment received given birth year x, age of diagnosis aI , and grade.

4.2.4 Disease Progression Model

The disease progression model estimates the probability of disease progression

during the lead time in the absence of treatment. Assuming no stage and grade

regression, the disease presentation at the end of the lead time is given by a set

of baseline transition probabilities, pbs, that can be summarized as a progression

probability matrix (PPM) (Table 3.1).

The impact of treatment can be introduced into the transition probabilities pb

using a cumulative logit (k > 2) or a logistic regression (k = 2) model working

with a row of the PPM matrix. In the logistic regression model, let pb be the

baseline transition probability, and ηTx be the treatment effect (odds) on the baseline

transition probability. The transition probability given the treatment effect is

(4.2) pij = Pr(z0 = j|z1 = i, Tx) =
pbijηTx

pbij(ηTx − 1) + 1
, j > i,

where z0,1 is stage-grade response at CDx, and SDx, respectively.

In the cumulative logit model, let cpb be the cumulative baseline transition proba-
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bility. The cumulative transition probability given the treatment effect is

cpij = p(z0 ≤ j|z1 = i, Tx) =
cpbij/ηTx

cpbij(1/ηTx − 1) + 1
, j ≥ i(4.3)

and pij = cpij − cpi(j−1).

When there is no treatment effect on the probabilities (i.e. ηTx = 1), pij = pbij.

When the treatment effect is really large (i.e. ηTx → 0), then PPM will become an

identity matrix corresponding to the full stage-shift when the stage and grade carry

over from the screening diagnosis to the counterfactual clinical diagnosis.

4.2.5 Survival Model

The survival model G describes the time spent in the clinical state conditional

on the age of incidence aI , year of diagnosis t, (t = x + aI), stage and grade Z,

and treatment Tx. As discussed in our earlier paper (Lee and Tsodikov, 2010), the

estimated treatment effect using the Cox PH model is biased under early detection

(with random lead time added to the survival time). In this paper, we propose two

approaches to assess the treatment efficacy using the full likelihood while accounting

for the heterogeneity and survival biases induced by the early detection.

Generalized Stage-shift Model

The Generalized stage-shift model is motivated by the traditional stage-shift

model by allowing disease progression during the lead time. Two adjustments were

made in the survival model during the PSA era. First, lead time adjustment was

made to make sure survival times are always measured from the time of clinical

diagnosis to time of death implying a guaranteed lead time benefit. Additionally,

survival is conditional on the stage and grade at the time of the clinical diagnosis,

the latter being unobserved if the patient is screened-detected. Three treatment ef-

fects were investigated in the model. The treatment main effect θTx describes how
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treatment affects post-lead time survival. The treatment effect applied to the dis-

ease progression (ηTx) measures how treatment prevents stage and grade progression

during the lead-time. Finally, even if the patient progresses during the lead time,

the one treated earlier is still better off than the one treated close to the point of

symptoms, and this is represented by the treatment by lead-time interaction effect,

θTx×LT in the s.f. G post real or counterfactual CDx. We did not model treatment

by early detection interaction effects in distant stage at CDx because the predicted

conditional lead time was too short to have an effect.

G(ts|aI , t, z, Tx) = GLT (ts|aI , t, z)

+fLT (0|aI , t, z)Gb(ts|aI , t, z, Tx)

+

∫ ts

0+

∑
z0≥z

Pr(z0|z, Tx)fLT (s|aI , t, z)Gb(ts − s|aI + s, t, z0, Tx) ds(4.4)

and

Gb(ts − s|aI + s, t, z0, Tx, s) = G0(ts|aI , t, z0)θAgeθTxθTx×LT

where G0 is the model under a reference group under conservative management.

Calibration Model

An alternative approach to the Generalized stage-shift model is the Calibration

model. Similar to the stage-specific incidence model we use the delay time as a

frailty. Additionally, we use the mean lead time predicted given information ob-

served at diagnosis as a covariate for s.f. G. The latter aspect has motivated the

name “calibration” by analogy with measurement error models. With this model

integrating over future latent development is avoided which makes the computation

a little faster. The modeled treatment effects are conceptually similar to the Gener-

alized Stage-Shift Model. For instance, this model includes the treatment by expected

lead time interaction effect to assess the benefit of treatment under early detection.
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Replacing the latent lead time with the expected lead time allows us to avoid making

any assumptions on disease progression. The main treatment effect operates on the

survival time regardless of the mode of diagnosis.

ELT =

∫ ∞
0

s fLT (s|aI , t, z)ds

G(ts|aI , t, z, Tx) = G0(ts|aI , t, z0, Tx0)θAgeθSurrogateθTxθTx×ELT .(4.5)

4.3 Data Analysis and Results

Our analysis was performed using SEER9 database from 1973 to 2000 and pa-

rameters were estimated using maximum likelihood methods. It contains more than

350,000 cases of prostate cancer from 9 registries: Atlanta, Connecticut, Detroit,

Hawaii, Iowa, New Mexico, San Francisco-Oakland, Seattle-Puget Sound, and Utah.

All observed or predicted rates were adjusted for the US 2000 population age distri-

bution obtained from the Human Mortality Database(HMD), Max Plank Institute

for Demographic Research (2009). Figure 4.1 shows the observed and expected US

prostate cancer incidence λI(aI |x) by calendar year for men over 50. Prostate cancer

incidence showed an increasing trend over time before the PSA era followed by the

surge resulting from increased use of PSA tests after year 1988.

Figure 4.2 shows the predicted stage and grade distribution fI(z|aI , x) at diag-

nosis. The majority of prostate cancer patients are likely to be diagnosed in lo-

cal/regional stage and with low grade (WM). Getting older increases the chance of

being diagnosed in advanced stage. For patients diagnosed at the same age, those

who are diagnosed more recently have more favorable stage and grade distributions.
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Figure 4.1: Observed and expected incidence by year.
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Figure 4.3 and 4.4 show the probabilities of receiving particular treatments as used

by the model, by age of diagnosis, year of diagnosis, and grade using the multinomial

logit model. As seen in Figure 4.3, older patients are more likely to get conservative

management while younger patients tend to receive more aggressive treatments such

as radical prostatectomy (RP) or radio therapy (RT). The trends are similar for

both low and high grade patients. Figure 4.4 shows that the use of conservative

management (CM) was gradually decreasing over the years while radio therapy (RT)

became more popular in recent years. More radical prostatectomy procedures were

performed around year 95. This trend is more dramatic in low grade patients than

it is in high grade patients. Figure 4.5 shows use of hormone therapy (HT) stratified

by the primary treatment received, year of diagnosis, and grade (logistic regression

model). Use of hormone therapy increased in recent years particularly after RT.

Figure 4.6 shows the estimated mean lead time conditional on age, year, stage, and

grade at the time of diagnosis. The highest mean lead time occurs in men diagnosed

in localized stage at around the age of 70, in year 1992. Local/regional disease

patients have much longer mean lead time than distant stage patients. Regressing

lead time on stage is therefore essential. Within each stage, there are only small

differences between lower and higher grade patients.

Table 4.1 and 4.2 showed the estimated treatment effect under early detection

stratified by stage and grade. Assuming other covariates being equal, Radical Prosta-

tectomy (RP) is associated with a substantial reduction of the hazard of prostate-

specific death (65% - 86% in the Generalized Stage-shift Model, and 56% - 89% in

the Calibration model). Applying the cumulative logit formula in equation (4.3), the

Generalized stage-shift model showed that RP reduced the probability of disease pro-

gression especially in local-regional high grade patients (LR/L to LR/H from 5.1%
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Figure 4.3: Distribution of SEER treatment by age of diagnosis and grade.
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Figure 4.4: Distribution of SEER treatment by year of diagnosis and grade.
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Figure 4.5: Distribution of Hormone Therapy (HT) by year of diagnosis and grade.
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to 0.7%, LR/L to D/L from 5.6% to 0.6%, and L/H to D/H from 28% to 0%) but no

additional survival post lead-time benefits from treating patients early were found

as a result of variable selection. The result from the Calibration model also supports

the evideince of the RP by early detection benefit. Each additional year of mean

lead time predicted at the time of diagnosis will lower the hazard by additional 9%

to 24% for patients treated with RP.

Similar to RP, Radiotherapy (RT) worked better for local-regional stage high

grade patients (HR=0.53 and 0.56 in Generalized stage-shift model and Calibration

model, respectively), and it had an additional survival benefit by treating patient

early. Advancing treatment by each year will reduce the hazard of dying from the

prostate cancer by additional 3%. However, it has no advantage on preventing disease

progression according to table 4.1. In Calibration model, a moderate RT early detec-

tion interaction effect was found in local-regional stage patients (HR=0.82 and 0.89

for LR/L and LR/H, respectively). For Local regional stage low grade patients, the

combination of negative main treatment effect and the postive treatment expected

lead time interaction effect might be interpretated as the trend of Radiotherapy effect

improving with calendar time into the PSA era.

Figure 4.7 shows the observed and expected age-adjusted US prostate cancer mor-

tality for men over 50 using our models. The US prostate caner mortality increased

slightly from year 1980 to year 1990 and decreased more than 30% since. Both mor-

talities using survival function estimated from the Generalized stage-shift model and

the Calibration model predicted the US mortality well. As shown in table 4.1 and

4.2, a decrease in mortality resulted from increased uses of screening and advanced

treatments in recent years. Other conditions held equal, treating patients earlier may

further improve survival by preventing disease progression or increasing survival post
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Table 4.1: Estimated treatment effects by stage and grade in Generalized stage-shift model

Hazard ratio (HR)

LR/L LR/H D/L D/H

Treatment main effect, θTx
RT vs. CM 1.07 0.53 0.96 1.10
RP vs. CM 0.35 0.19 0.14 0.28

Treatment effect on
disease progression, ηTx
RT vs. CM 1.00 1.00 N/A N/A
RP vs. CM 0.11 0.00 N/A N/A

Treatment lead time
interaction, θTx×LT
RT vs. CM 1.00 0.97 N/A N/A
RP vs. CM 1.00 1.00 N/A N/A

Table 4.2: Estimated treatment effects by stage and grade in Calibration model

Hazard ratio (HR)

LR/L LR/H D/L D/H

Treatment main effect, θTx
RT vs. CM 1.40 0.56 0.96 1.36
RP vs. CM 0.46 0.19 0.11 0.12

Treatment expected lead time
interaction, θTx×ELT
RT vs. CM 0.82 0.89 N/A N/A
RP vs. CM 0.76 0.91 N/A N/A

Surrogate
Expected lead time 0.99 0.96 N/A N/A
Delay time 1.12 1.17 1.18 0.51
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the lead time in selected groups of patients.

4.4 Discussions

We have presented a hierarchical family of models synthesized into a causal model

for cancer mortality linking the mortality endpoint with the population trends of

treatment and screening utilization. The model is an analytical model based on

a mechanistic description of the history of disease development, partially specified

disease progression mechanism, and its interaction with screening and treatment. It

provides an assessment of the benefit of screening and treatment for US prostate

cancer mortality and explains the mortality decline in the PSA era.

We developed an estimate of survival adjusted for the lead time and the disease

progression between the point of screening diagnosis and the counterfactual clinical

diagnosis. Length-biased sampling is reflected in our conditional lead time distribu-

tion given the disease presentation at diagnosis. We were able to vary the stage-shift

assumptions of the early detection program by addressing the disease progression

after the screening diagnosis. This allowed us to question the traditional stage-shift

assumption that stage and grade at the time of screening diagnosis carries over to

the time of projected clinical diagnosis.

Both survival models we proposed were able to explain the mortality decline re-

sulting from the combined effect of screening and treatment for prostate cancer. A

more mechanistic model, the Generalized stage-shift model, is more specific about

how the treatment effect is helped by early detection. Because this model operates

on the counterfactual CDx scenario, it can be used to assess the effects of deferred

treatment of prostate cancer in early stage patients. There might be other selection
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effects that can be incorporated into the more mechanistic Stage-shift model. One

example is a possible length biased effect on s.f. G post real or counterfactual CDx.

For the purpose of reproducing the population mortality and survival trends, the

Calibration model does an equally good job and is slightly less complex computa-

tionally.

We have shown that treatment and early detection effects were varied by treat-

ment types and the clinical characteristics of the disease. Answering how and when

to treat patients will be the key to help patients, physicians and policy makers make

the best decision to improve treatment outcomes while managing the quality of life

and to achieve overall cost-effectiveness. This avenue can be explored by incorpo-

rating dynamic deferred treatment regimen into the mechanistic models such as the

Generalized Stage-shift model.



CHAPTER V

Discussion

The goal of any early detection program is to diagnose and treat patients early to

improve the prognosis of disease and improve treatment. While screening interven-

tion might enhance treatment and improve the survival outcome and quality of life

in some patients, it also has a profound impact on heterogeneity and the meaning of

clinical variables for newly diagnosed patients. Analyzing data using such a dynamic

population could be challenging.

Our study is motivated by the controversy of the benefit of PSA screening. We

propose an analytic joint statistical model based on the classical three-state chronic

disease model to assess the benefit of screening and treatment on US prostate cancer

mortality. We are able to relax the traditional stage-shift assumption and present

a new approach to estimate disease progression probabilities without direct within-

subject observations. We also develop an estimate of survival adjusted for the lead

time and the disease progression between the point of screening diagnosis and the

counterfactual clinical diagnosis. This allows us to quantify the stage-shift and the

treatment effect explicitly and model interaction between treatment and early de-

tection. The model can be applied to describe the latent natural history disease

characteristics and help newly diagnosed patients make decisions on cancer manage-

84
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ment based on information given at the time of the diagnosis.

In the study, we also demonstrate how the early detection affects the clinical

survival outcome and show how evaluating treatment effect using patients recruited

from screened population could lead to bias. In addition, we study the direction of

the bias and propose a meta-analytic approach to correct the bias.

While our study provides innovative methods and interesting findings, there are

limitations in the current approach. For example, the disease progression probability

in our model does not depend on the lead-time. This means that the probability of

disease progression after the screening diagnosis is the same no matter how far in

advance the disease is detected. Further study is needed to validate this assumption

and to develop new methods to include lead-time into the current setting.

We also make simplifying assumptions to study the lead-time bias on treatment

effect. Length bias, disease progression, and associated treatment effects are ignored

and should be incorporated in our future setting.

To fight cancer and reduce the burden of cancer, it is important to continue

searching for more effective treatments and utilizing early detection programs. Cur-

rently, treatments are mainly evaluated using randomized clinical trials (RCT) and

other follow-up studies, while the early detection of the disease and its benefits are

evaluated using population data, observational studies, and screening trials. How-

ever, estimating benefits from a single data source and study design are vulnerable

to population heterogeneity due to unmeasured or unknown factors and selection

effects. For example, cancer registries (i.e. SEER) have less detailed representa-

tion of disease-specific clinical characteristics while clinical databases often miss on

population based processes, including utilization of diagnostic tests in the specific

population from which the study group was recruited. Besides, limited availability
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of raw data from RCT often provide only a summary measure of the observed effect

and its variability obtained by using a statistical convenience model.

We believe that it is not possible to generate valid predictions of treatment effec-

tiveness while restricting the analysis to a particular study design or dataset. We

need to continue to develop new methodology based on the joint analysis of multiple

sources of data under various study designs providing information on heterogeneity,

unmeasured factors, and treatment outcomes.

Last but not least, the mechanistic models presented in this thesis are amenable to

the introduction of dynamic deferred treatment regimen. The paradigm of detecting

and treating cancer as early as possible is definitely not adequate in prostate cancer

because of the massive overdiagnosis of the disease and diminished quality of life due

to treatment. A sensible strategy of balancing the risks, quality of life, and costs

lies in making treatments dynamic and deferring treatment until some indication of

disease progression. Providing the mechanistic basis for disentangling the causality

of such studies is an exciting future development for the proposed models.
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