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1. INTRODUCTION

We are here concerned with the capacitances Co and C, of the filters
of the type shown in Fig. 1 (as well as the realization of such filters),adjusted
to provide a maximally-flat n-pole transfer function. Before treating the specific
filters, the elements of the Darlington method will be set down.

The Darlington synthesis procedure gives

it
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where F(p) = F(Jw) = ey/e; is the transfer function and where Z{p) is the input
impedance to a lossless network terminated in Ro as shown in Fig. 2. The re-

flection coefficient p{p) is given by
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Given F(p), Ry, and Rys o(plo(-p) may be calculated as

(5 - 2)(p + 2)(® - 20)(0 + 22) -
olplp(-p) =2 - METRIR TR (3)

(p = pip+2) - po)(p + 1) ...

where H2 is a constant multiplier and where P + 27 and p - 2y refer to a zero in
the left half-plane and its negative, respectively.

The poles and zeros of p(p) are chosen from those of Eq. (3). The poles
of po{p) are those lying in the left half-plane. The zeros of p(p) are selected

in complex-conjugate pairs and either a zero or its negative, but not both, are

taken. Thus,
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in which each ¥ sign indicates a choice. From Eq. (2) we find

7 D“N
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(5)
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after which the network is synthesized as an input impedance.

2. THE MAXIMALLY-FLAT LOW-PASS FILTER

For the low-pass filter of unity radian bandwidth,

Ee/ By + 32):!2
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F{p)F{-p) = (6)

where the positive sign is used for n even and the negative sign for n odd.

Thus,
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where

_ MRle
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is the transmission coefficient -~ it is the ratio of actual to maximum possible

pover dissipation in the load Ry, at w = O.

The poles of Eq. (7) lie with equal angular spacing on the unit
circle. The zeros lie similarly on a circle of radius (1 - T>l/2n. Using
Ry/(Ry + Rp)

F(p) = (9)
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P +Db, 1P

+ e o e + blp + l

we have
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The ¥ multiplier leads to the dual networks. In order that we get =
ladder having a shunt capacitance as a leading element, the positive sign must

be chosen. Then,

2p™ + {by.q + an_l)pnwl + .00 + (by + )0+ {1 +/1=-T)
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The first term of the continued-fraction expansion gives CO as

Co = (12)
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The number bn 1 is the negative of the sum of the real parts of the pole

positions of p(p). Thus
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The capacitance CO is a maximum when a 1 is & maximum. This implies

that we teke the zeros of p(p) all in the left half-plane to give

[ (1)

By substituting for T in Eq. (11) at p = O, it is found that Eq. (11)
is self consistentfor Rlz RE but not for RlS R2, Since in general the Dar-
lington procedure gives a ratio }R]_/R2 equal to the ratio R2/Rl for oppesite

choices of the zeros of p{p), we therefore conclude
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Cn may be found by simply reversing the network such that R2 becomes

the source and Rl the load.
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The ratio of Cp to CO for Rlz R2 can easily be found from preceding

expressions. This ratio, after substituting for T (valid only for n odd) be-
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For R;SR,, reverse the subscripts in Eq. (17) and reverse the signs of
the factors to the 1/n power. Eq. {17) is plotted in Fig. 3 for a few values
of n.

Of particular interest are limiting expressions of the preceding re=-
lations. Then, resistance exists at only one end of the network as when the
network is driven with an ideal current generator. Using power series expan-

sions where necessary, we get

b

Lim R.C =
1 b (18)

-1
Rg - 00 n

s
Limaﬁ% :i n odd

c n
0
Rl/R2“Dw



6=

The most important conclusion to be drawn from Fig. 3 is the rapidity
with which the ratio Cn/CO reaches its limiting value as the ratio R2/Rl departs
from unity.

The value of RoCp is plotted as a function of n (unity bandwidth) in
Fig. 4 which assumes Ry-»® . The rapidity with which the value approaches the
Bode limit of n/2 (for a rectangular band of unity bandwidth) should be noted.
Of course, the maximally-flat function does not have such a very impressive
behavior in this regard if the bandwidth is defined at the one or two db fre-
quency rather than the three db frequency,although the Bode limit is approached
with n regardless of the tolerance bandwidth used as a criterion. However, if
n is at all large, the one and three db frequencies are almost negligibly dif-
ferent--for example, for n = 5, the one db frequency is 0.874 when the three db
frequency is unity. If for this example the one db frequency had been used to
define the bandwidth rather than the three db frequency, the capacitance Co
would still only be about fourteen percent less than the Bode limit. A curve
based on the one db bandwidth is shown dotted in Fig. 4. This second curve
is also characteristic of maximally-flat filters with some types of optimum
mismatch in that something other than the half-power bandwidth is used as a
criterion.

The purpose of the curves of Fig. L4 is not to demonstrate that the
maximally-flat function is an exceptionally efficient function. In fact, in
terms of the Bode 1limit, it is appreciably inferior to filters based upon
Chebyshev functions. However, the mathematics of maximally-flat functions
are considerably simpler than those associated with Chebyshev functions which
makes the maximally-flat function excelient for practical purposes. (For
example, even though relsatively poor, constant-k filters are widely used be-
cause they are so easy to design. Unfortunately, constant-k filter theory

assumes at least an approximate image impedance match). In addition, many
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problems are very poorly solved using Chebyshev functions, for example, those
requiring a fairly linear phase function of frequency or those involving tran-
sient behavior. Such problems are better solved (although still perhaps not
best solved) using maximally-flat functions where the concept of the Bode limit
is not especially pertinent.

The limiting values of Cy and C, for T-—+0 must be handled with caution,
particularly if the limiting case is approached by allowing either the source
or the load resistance to become zero. For example, if Ry is fixed and T is
caused to become very smell by reducing Ry, Egs. (15) and (16) show that both
Co and C, increase without bound while their ratio tends to a constant 1/n.
Although such increasingly large capacitance values are not surprising when
associated with a vanishingly small source or load resistance, the phenomenon

must be carefully handled when deriving optimum mismatch conditions.

3. FILTER DESIGN

The input admittance of the network is given by Eq. (11). We shall
restrict our interest to cases when RlZ Ro. If one need have Rl-<. R2’ he can
design the netwecrk for R]_E:R2 and then turn the network end for end.

Since the zeros of the reflection coefficient lie on a circle of radius

i/2n

(1-m) ,end since we have chosen only the left half-plane zeros of p(p) as

belonging to the input admittance (in order to maximize Co)g we have

o1 = By (3 - T
2/2
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Then, Eq. {11) tecomes
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The coefficients b, ; are found from the positions of the poles of p(p)
on the unit circle in the left half-plane. In order that Eq. (20) expand into

partial fractions and give the desired network, it is necessary that

bpp = (b, )% (21)

e

which somewhat simplifies obtaining the polynomial representing the poles of
the transfer function. Another simplification is given by observing that these
polynomials are symmetric. Some of the polynomials are

n=1 p+1

n =2 p2+ (2)1/2 p+1
: p3 + 2p2 +2p + 1

i

3
(22)
n=h pt+ 2.6132p5 + 3.41p2 + 2.6132p + 1

n=5: pd+ 3.236p" + 5.236p3 + 5.236p° + 3.236p + 1

The synthesis amounts to putting the input admittance of Eq. (20) into
numerical terms and expanding it intoc a continued fraction. Then, the element
values are easily identified. It is important to note that except for the lower
values of n, a high order of numerical accuracy must be maintained in obtaining
the continued-fraction expansion -- in other words, slide~rule accuracy is not
sufficient. A desk calculator is required for the unsymmetric network for n
equal to or larger than five, even five-place logarithms not being adequate.

Two very important special cases of Eq. (20) are worth individual

study. For the matched case where Rl = R2 =R, T is unity and Eq. {20) becomes
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When le-m), the form of Eq. (20) is indeterminant. Therefore, limit-
ing values must be obtained as
Lim RlEL - (1 - T)k/erzl= %13 Ry (24)
Rl-bw

in which case Eq. (20) becomes
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L. OPTIMIZATION PROCEDURES

There exist almost as many optimum filters as there exist students of
the subject for the simple reason that there are so many criteria that can be
used in specifying some '"best" filter. It is the purpose here to point out a
few of the various criteria that admi£ of optimization and work out some of the
more promising ones--of course, all as associated with the maximally-flat function.
The half-power bandwidth of the maximally-flat filter is given through
a modification of Eq. (15) as

26,

B - _ 26
ba1 G2 % (1 - T)l/zn] (26

The product BT is a power gain times bandwidth product. Its maximiza-
tion under certain restraints is of obvious importance to students of filter
theory. However, to the designer of vacuum-tube amplifiers, the product Qﬁf
may be of more interest--it is the product of bandwidth and voltage gain rather

than bandwidth and power gain. There is no reason to suspect that the maximization
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of BT and Q/f give the same networks. More generally, one might maximize some
product of the form B‘I‘k where k is a weighting factor describing the importance
of having a large output at w = O.

The produgt BTk is obtained by multiplying Eq. (26) by Tk, However,
unless the source or load impedsnce is specified, there can exist no optimum
situation--it is the product of resistance and capacitance rather than resis-
tance alone or capacitance alone that is important. Therefore, if R.C. is also

170
used as a parameter in Eq. (26), a more meaningful relation to study is

ar®

OBTk = ’ R1>R, (27)

banE S - T)l/an]

where Rl has been assumed larger than R

RlC

2a-this obviously gives a larger value

to Eq. (27) than when R, is larger than R,.

Eq. (27) has a maximum of infinity at T = O unless k>1. Thus, rela-
tively heavy weighting must be given to T in order to find a unique optimum.
The maximum value of Eq. (27) can be found in the usual manner by setting its

derivative with respect to T equal to zero. The result 1s the relation

(1 -7t : "> Fo
0 B To ’ (28)
1+ k>1
2kn(l - T,)
where TO is the optimum value of T.
If one were interested in having a large value of R2 as well as a
large value of Cy, one should meximize the relation
. z'rk“l[z - T . 201 - T)l/2]
RoCoBT™ = (29)

bnmll} -(1 - T)l/zn]
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The optima for the examples above (as well as similar optima in general)
are rather broad. Therefore, determining the optimum mismatch to a high accuracy
with the subsequent requirement for precision network elements is not necessary.

So far, we have specified optimum criteria only for the half-power
bandwidth; that is, a bandwidth specified by the frequency where the output from
the filter is three decibels below that at @ = 0. It is possible to obtain an
additional set of criteria using a prescribed tolerance bandwidth. In this, the
insertion power ratio is used. This ratio, for a filter with unity half-power

bandwidth is

Poy 1+ a2
= (32)
.P2 T
which is a minimum of unity at w = 0 only if Ry = R2° A sketch of this ratio is
given in Fig. 5. Let the bandwidth B' be defined at the frequency where
P20/P2 = 1/B where it is necessary that B<T. Then,
1l/2n
B - (2/p - 1)/ (33)

One can use the bandwidth B' in the preceding relations rather than

the bandwidth B. With this modification, Egs. (27) and (30) become

ork(1/p - 1)1/2"“‘ R\ >R,

R CoB'TE = ) (34)
bn-l[l S - T>1/2n] T>p
yr¥(T/8 - 1)1/ 2n R, R,

(RyCo + RC_JB'TE = (35)

— J
l/n
bnal[} -{1-1) / _J T>p
which, because T cannot be smaller than B, has a maximum for a finite T for

all positive values of the weighting k incliuding zero. It would appear
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reasonable to use a weighting of zero in the above relations because B is a
parameter that can be specified.
The general optimization relation corresponding to Eq. (34) is
1
(1 - To)l/an = (36)
(To - B8)/(1 - 1)
2nk(l - B/Ty) + 1

1+

An example will be drawn from this relation for n = 3, B = 0.5, and
k = 0. One gets Ty = 0.565 giving the surprisingly large resistance ratio
Rl/R2 = 4.87. The tolerance bandwidth is B' = 0.712 and RlCO = T7.71. Also,
RiCpB' = 5.49. The matched filter having the same tolerance bandwidth has
R,C, = 1.406 and RiCyB = 1.0. Evidently, the advantages of an appreciable

mismatch are rather impressive.

5. EXAMPLES

The five-pole matched filter with Ry = R2 and with unity half-power
bandwidth is shown in Fig. 6a. This can be compared to the similar constant-k
filter shown in Fig. 6b. Values are in ohms, henrys, and farads.

As a second example, let us obtain the circuit for the optimum three-
pole mismatched filter having an optimum TO as given by Eq. (36) and the example
following that equation. If Rp is normalized to one ohm, the input admittance

is

0.41028p3 + 0.T76743p2 + 0.72117p + O.34045
T(p) = (37)

0.25908p2 + 0.484EOP + O.34OLS

The corresponding network is shown in Fig. Ta which can be compared
to the matched maximally-flat filter shown in Fig. Tb (which is also a constant-k

filter section).
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FIG. 5. INSERTION POWER RATIO AND DEFINITION
OF BANDWIDTH.
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FIG. 6. COMPARISON OF MAXIMALLY-FLAT AND
CONSTANT-k FIVE-POLE FILTERS.
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FIG. 7. COMPARISON OF OPTIMUM AND MATCHED
THREE - POLE FILTERS.
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