
Parameter estimation in several classes of

non-Markovian random processes defined by

Stochastic Differential Equations

by

Robert Charles Reiner, Jr.

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Statistics)

in The University of Michigan
2010

Doctoral Committee:

Associate Professor Anna Amirdjanova, Co-Chair
Professor Vijay Nair, Co-Chair
Professor Tailen Hsing
Assistant Professor Erhan Bayraktar



In loving memory of my father, Robert Charles Reiner, Sr 9/7/5

ii



ACKNOWLEDGEMENTS

I would like to thank all of the people who have so greatly effected my life over the

last five years. Most importantly my wife and best friend Mandy Izzo. It isn’t clear

what or where I would be without her, but it is obvious to everyone who knows both

of us that that place would not be healthy; emotionally, physically nor sanitarily.

My mother Colleen Reiner has provided continual support that has kept me on a

path that has so far worked out quite well and she too has had a great influence on

the man I have become. My sister, Colette Verkuil continues to awe me with her

achievements and makes me try to be me best.

While I have made many friends since arriving in Ann Arbor, my two compatriots,

Jason Goldstick and Adam Rothman have been with me every step of the process

and this program would have been a much quieter, more boring, though undoubtedly

more sober place. I owe a large part of my sanity to both of them.

My two advisors have offered continual, valuable advice and two different but greatly

influential outlooks. Anna Amirdjanova always reminds me of the beauty of mathe-

matics while Vijay Nair points out the equal beauty in applicability. They have both

shaped me in countless ways.

Finally, though I lost him the third day of my first semester here in Ann Arbor,

my father, Robert Reiner Sr, will always be both my toughest critic as well as my

biggest supporter. His words and opinions will live on in me for the rest of my days.

iii



TABLE OF CONTENTS

DEDICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

CHAPTER

I. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Stochastic differential equations . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Stochastic Calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Stochastic differential equations driven by Volterra processes . . . . . . . . . 4
1.4 Parameter estimation for stochastic differential equations . . . . . . . . . . . 5
1.5 Analysis of a certain integral functional of Brownian motion . . . . . . . . . 6
1.6 Moment estimation methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.7 Outline of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

II. Parameter estimation in one-dimensional Stochastic Differential Equations 9

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 Existence and uniqueness of solutions . . . . . . . . . . . . . . . . . . . . . . 17
2.4 Maximum Likelihood estimation . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.4.1 Maximum likelihood estimator when drift is a polynomial in θ. . . 19
2.4.2 Case of linear drift . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.4.3 Properties of Maximum Likelihood Estimate . . . . . . . . . . . . . 21
2.4.4 Discretization of MLE . . . . . . . . . . . . . . . . . . . . . . . . . 25

III. Parameter estimation in multi-dimensional Stochastic Differential Equa-
tions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.3 Existence and uniqueness of solutions . . . . . . . . . . . . . . . . . . . . . . 38
3.4 Maximum Likelihood estimation . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.4.1 Maximum likelihood estimator when drift is a polynomial in θ. . . 53
3.4.2 Case of linear drift . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.4.3 Properties of Maximum Likelihood Estimate . . . . . . . . . . . . . 55

IV. Parameter estimation in Integrals of functions of Brownian Motion . . . . 58

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.2 Preliminaries and Problem Statement . . . . . . . . . . . . . . . . . . . . . . 60

iv



4.2.1 Notation and Definitions . . . . . . . . . . . . . . . . . . . . . . . . 60
4.2.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.3 Estimation of θ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.3.1 Moments of Xt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.3.2 Non-identically distributed observations . . . . . . . . . . . . . . . 68
4.3.3 Identically distributed observations . . . . . . . . . . . . . . . . . . 70

4.4 Simulation Studies on θ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.4.1 Non-identically distributed observations . . . . . . . . . . . . . . . 74
4.4.2 Identically distributed observations . . . . . . . . . . . . . . . . . . 75

4.5 Estimation of TD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.6 Simulation Studies on TD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

V. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

v



LIST OF FIGURES

Figure

4.1 Sample path Xt for θ = 0.5, 1, 1.5 and 2 . . . . . . . . . . . . . . . . . . . . . . . . 59

4.2 Simulation results with respect to θ . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.3 Simulation results with respect to n . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.4 Expected value of TD with 95% prediction intervals, D = 10 . . . . . . . . . . . . . 83

4.5 Sample distribution of TD, D = 5, θ = 0.5 . . . . . . . . . . . . . . . . . . . . . . . 84

4.6 Sample distribution of TD, D = 5, θ = 1.0 . . . . . . . . . . . . . . . . . . . . . . . 85

4.7 Sample distribution of TD, D = 5, θ = 1.5 . . . . . . . . . . . . . . . . . . . . . . . 86

4.8 Sample distribution of TD, D = 5, θ = 2.0 . . . . . . . . . . . . . . . . . . . . . . . 87

4.9 Sample distribution of TD, D = 10, θ = 0.5 . . . . . . . . . . . . . . . . . . . . . . 88

4.10 Sample distribution of TD, D = 10, θ = 1.0 . . . . . . . . . . . . . . . . . . . . . . 89

4.11 Sample distribution of TD, D = 10, θ = 1.5 . . . . . . . . . . . . . . . . . . . . . . 90

4.12 Sample distribution of TD, D = 10, θ = 2.0 . . . . . . . . . . . . . . . . . . . . . . 91

vi



CHAPTER I

Introduction

1.1 Stochastic differential equations

This thesis consists of two topics devoted to parameter estimation of solutions

of stochastic evolution equations driven by Gaussian processes. The two problems,

however, use vastly different inference methods: maximum likelihood approach de-

rived by stochastic calculus techniques for Volterra processes in the first problem and

method of moments and simulation-based tools in the second problem. We study

certain stochastic differential equations of the form

dXt = f(Xt, Yt, t, θ1)dt+ g(Xt, Yt, t, θ2)dYt,

where (Yt) is a given Gaussian process with known covariance kernel, and f and g are

some known “drift” and “volatility” functions which depend on unknown parameters

of interest (θ1, θ2). In this general form, the model can be endowed with a very rich

and flexible structure (both in terms of memory properties and the shape of finite-

dimensional distributions), yet allows for a short and intuitive dynamical description,

making it attractive for potential applications.

In this work, we first consider the case of a non-semimartingale Y driving the

dynamics of X, where Y is a Gaussian random field with covariance structure of

the form
∫ t

0

∫ s
0
K(t, u)K(s, v)dudv for a general Volterra kernel K. Next we study a

1
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monotone increasing integral functional of a standard Brownian motion, which can

be formally regarded as a solution to the degenerate stochastic differential equation

with g ≡ 0. In both cases the resulting process Xt is generally non-Markovian,

which makes the problems interesting from mathematical viewpoint and useful in

many applications where Markov assumption is impractical.

Volterra processes are one of the most recent additions to the field of continuous

Gaussian processes and represent generalizations of the popular fractional Brownian

motion (fBm), originally introduced by Kolmogorov under the name of a Wiener

spiral. However, the properties and use of the fBm as a modelling tool were relatively

unknown until Mandelbrot’s seminal 1968 paper [37], in which the fBm received its

modern name. Fractional Brownian motion’s important difference from the classical

Brownian motion is the generally non-Markovian nature of the fBm. Each fBm has

an associated Hurst parameter, H (named after hydrologist Harold Hurst), where

H ∈ (0, 1) and the correlations between increments of the fBm are defined to die

out at the polynomial rate (H controls the degree of the polynomial decay). When

H < 1
2
, fractional Brownian motion exhibits short-range dependence, when H > 1

2
,

it exhibits long-range dependence, and H = 1
2

corresponds to the standard Brownian

motion case.

Further generalizations, bifractional [22, 53, 58] and multifractional [7] Brownian

motions, have been made to the fractional Brownian motion to allow for multidimen-

sional and time-varying Hurst index. However, a much more powerful generalization

of all of the above processes, called Volterra process, has appeared in the literature

relatively recently. Volterra process is defined as a stochastic integral of a time-

dependent deterministic kernel with respect to a standard Brownian motion, where

the form of the integral (Volterra) kernel can be kept very general.
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On the other hand, researchers have long been interested in the study of cer-

tain integral functionals of Brownian motion in connection with various physical,

financial and engineering applications. For example, studies of the integral of the

absolute value of a standard Brownian motion go back to the work of Cameron and

Martin [9] and Kac [24]. It is interesting that the famous Feynman-Kac formula,

relating solutions of certain parabolic partial differential equations to Laplace trans-

forms of the solutions to stochastic differential equations, was introduced by Kac

in 1949 [25] while trying to describe the distribution of the integral of the absolute

value of Brownian motion. Apart from analytical beauty, the formula found immense

computational uses for analysts and practitioners alike. More recently, a similar in-

tegral functional of Brownian motion was studied by Lachal and distributions of the

integral process and of the first exit time from a bounded interval were derived (see

[31, 32] for details).

1.2 Stochastic Calculus

While Brownian motion and its generalizations have been around for quite some

time, the mathematical framework for stochastic calculus has only been around for

the past 60 years. From the initial work of Itô and Skorohod, there have been many

advancements. While the calculus for Brownian motion is well understood, it was not

until the turn of the millennia [60, 2] that fractional Brownian motion’s stochastic

calculus began to be placed on solid mathematical footing. Since that time, stochas-

tic integration with respect to fractional Brownian motion has been developed by

many authors (see for example [4, 20]).
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Most of the work done on Volterra process has taken place over the last decade.

From the introduction of stochastic calculus for general Gaussian processes [16, 42,

3, 14, 36, 51], the general theory has advanced parallel to that of fractional Brownian

motion (which seems to be a driving force behind a lot of the development). More re-

cent work on stochastic integration with respect to Gaussian processes [15, 39, 10] has

done much to complete the basic framework. Volterra processes themselves were in-

troduced in their current form by Decreusefond in 2002 [13]. Since then, equivalence

of processes [5, 6], integration [23, 30], and simulation [23] have all been discussed.

A major tool that is used throughout this thesis is that of Russo-Vallois calculus

[54]. This concept of integration and quadratic variation has seen recent applications

to finance, and seems, at the moment, to be the only tractable way to advance. The

Russo-Vallois calculus has been used in stochastic differential equations driven by

fractional Brownian motion [55, 18, 19, 17], and can be used in the extension to

stochastic differential equations that are driven by Volterra processes.

1.3 Stochastic differential equations driven by Volterra processes

Stochastic differential equations (SDEs) arise naturally in many physical and bi-

ological experiments. In fact, Brown’s original observations of a particle suspended

in liquid are best described using the famous Langevin equation (rather than the

Brownian motion itself) due to friction, or viscosity, of the fluid. However, until

as recently as 2002 non-semimartingale structure of the fractional Brownian motion

prevented researchers from studying stochastic differential equations driven by frac-

tional Brownian motion, until first results establishing existence and uniqueness of
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strong solutions to these equations appeared in [43].

Extension of the above theory of stochastic differential equations to the case of

SDEs driven by Volterra processes is the next natural step towards development

of non-martingale tools needed for successful study of complex dynamical processes

seen in practice. In that direction, in Chapter II, using Russo-Vallois calculus, we

prove the existence and uniqueness of solutions to the SDEs driven by a general class

of Volterra processes.

1.4 Parameter estimation for stochastic differential equations

A natural question that arises when observing any processes is statistical in-

ference. The estimation of a drift coefficient in stochastic differential equations is

one of particular interest. Estimation in stochastic differential equations driven by

Brownian motion is well surveyed in [48]. The estimation of stochastic differential

equations driven by fractional Brownian motion has also been solved in many cases

[27, 8, 28, 49]. Again, however, the general problem, using Volterra processes, has

not been investigated (with the exception of a degenerate differential equation [23]).

In Section 2.4 we derive maximum likelihood estimators of a drift parameter,

derive their properties and partially address the practical concern that solutions of

most SDEs are observed only at discrete times rather than on a continuous scale. In-

tuition for suitable time-discretized versions of the estimator naturally builds on the

road map designed by Neuenkirch and Nourdin in [41] but requires departure from

the use of many useful identities valid under fractional differentiation and fractional
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integration of the integral kernel associated with the fBm. In Chapter III we study

the SDE dynamics and parameter estimation in the multiparameter setting, when

the driving process is a Volterra random field.

1.5 Analysis of a certain integral functional of Brownian motion

Chapter IV is devoted to the study of an integral functional of a standard Brow-

nian motion (Bt) of the form

Xt =

∫ t

0

(B2
s )
θds,

where θ is an (unobserved) parameter. This choice of the process is motivated by

physical properties of many degradation processes (in the absence of catastrophic

failures) which have continuous and monotone increasing random trajectories. In

many applications one is interested in estimating the time to failure of various devices,

such as time to cross some threshold, D > 0. It is natural to study the “time to

failure” random variable TD defined by

TD := inf{t > 0 : Xt = D}.

We first estimate θ based on observing several paths of the process X, and then

estimate the entire distribution of TD through simulation.

1.6 Moment estimation methods

While maximum likelihood estimation is the gold standard of frequentist infer-

ence procedures, there are many circumstances where a simple approach of matching

sample moments with analytically known variable moments is preferable. In some
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situations, the computation of the likelihood of the data can be an arduous task

impossible without computers, while the matching of moments can be elementary.

In other cases, like those we will be dealing with, the computation of the likelihood

is intractable. Since we will be dealing with integral functionals of Brownian motion,

the computation of the likelihood proves to difficult. However, since Brownian mo-

tion is a simple Markovian Gaussian process, deconstructing the integral to compute

moments will prove not as challenging. In addition to method of moment methods,

we will recall the generalized method of moment estimation procedure of Hansen

[21]. This method is perfect for one of the data setups we consider in that we have

two moment conditions but only a single parameter to be estimated. Since the pa-

rameter is over-identified, we utilize an optimal distance metric to determine the

most efficient estimate of the parameter of all estimates made be the two moment

conditions.

All of the moment conditions rely on the law of large numbers to ensure that

the sample averages will converge to the average of the random variable. All of the

method of moment estimators also rely on the observations being independent and

identically distributed to compute these sample averages. In specialized cases we

consider a situation where all of the processes are observed at the same time. For

these cases we use the method of moments estimators. However, a more general

case where the observations are not made all at the same time is also considered.

We still assume independence of observations, but now the observations clearly do

not have the same distribution. For this situation we introduce a new estimator

based on the more general Kolmogorov law of large numbers. This estimator, called

the asymptotic method of moments estimator, similarly relies on the fact that only
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for the true value of the parameter will the sample average converge to population

average, but in this case, the sample observations are the difference between each

observation of a path and the expected value of that observation. We find that this

new estimator performs quite well even for small samples.

1.7 Outline of the thesis

In Chapter 2 we introduce Volterra processes as well as stochastic differential

equations driven by them. After developing an estimator of a drift parameter, we es-

tablish several asymptotic properties of the estimator as well as indicate a discretized

estimator whose convergence would depend on knowledge of the specific form of the

Volterra processes covariance. Chapter 3 extends the results in Chapter 2 to the

multi-parameter setting. After establishing existence and uniqueness of solutions to

differential equations driven by a multi-parameter Volterra process, an estimator is

introduced and a form of consistency is proven. In Chapter 4 we consider an integral

functional of Brownian motion and estimate several quantities of interest associated

with it. We introduce the concept of an asymptotic method of moments estimator

to allow us to utilize the moment conditions derived for a general data observation

setup. Finally, in Chapter 5 we conclude the thesis by describing both advantages

and shortcomings of the work as well as future directions for both projects.



CHAPTER II

Parameter estimation in one-dimensional Stochastic
Differential Equations

2.1 Introduction

Advancements in parameter estimation for stochastic differential equations driven

by Gaussian processes has always been directly preceded by related advancements

in stochastic calculus. While the stochastic calculus and parameter estimation in

the case of Brownian motion noise has been well studied (see for example [45] and

the references therein), the stochastic calculus for fractional Brownian motion was

not well established until the late 1990’s (see for example [60, 2]). Once this ex-

tension of stochastic calculus was made, parameter estimation of stochastic differ-

ential equations driven by fractional Brownian motion followed relatively quickly

([27, 29, 26, 44]). Interestingly though, existence and uniqueness results of solutions

to these stochastic differential equations were developed after the initial parameter

estimation work ([43]).

Just as fractional Brownian motion generalized Brownian motion greatly in that

it allowed for non-Markovian dynamics, Volterra processes allow for considerably

more flexibility than fractional Brownian motion. While both Brownian motion

and fractional Brownian motion are examples of Volterra processes, the fairly gen-

eral conditions on the kernels that define Volterra processes through an integral

9
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relationship to Brownian motion allow for much more complex Gaussian processes.

Volterra processes themselves were introduced in their current form by Decreuse-

fond in 2002 [13]. The latest extensions of stochastic calculus to general Gaussian

processes [16, 42, 3, 14, 36, 51] and specifically the more recent work on stochas-

tic integration with respect to Gaussian processes [15, 39, 10] has allowed for more

analysis to be done with Volterra processes. Since then, equivalence of processes

[5, 6, 46], integration [23, 30], and simulation [23] have all been investigated.

In this chapter we discuss a stochastic differential equation in one dimension

driven by a general class of Gaussian processes, estimation of a drift parameter in the

equation as well as properties of this estimator. We first introduce Volterra processes,

the stochastic calculus we use to work with these processes, establish results on the

existence and uniqueness to the stochastic differential equations that are driven by

Volterra processes as well as give conditions, critical for our parameter estimation

method, that martingales associated with a given class of Volterra processes exist.

In Section 2.4 we define our maximum likelihood estimator of a drift parameter

for stochastic differential equations of a given general form based on continuous

observations of a path, and then we establish asymptotic results for this estimator in

certain specific cases. Finally, we lay a groundwork towards estimating the parameter

in a more general scenario where the path of the processes is observed only on a

discretized mesh.

2.2 Preliminaries

In this chapter, we will adopt the following notation :

• f ′x will represent df
dx

• The function 1 will represent the function that is identically equal to 1.
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The extension of the stochastic calculus we will use requires growth conditions of the

random processes, namely Hölder continuity.

Definition II.1. A function φ : [t1, t2] ⊂ R→ R where t1 < t2, is Hölder continuous

of index α ∈ R+ (also called α-Hölder continuous) if

i) φ is continuous.

ii) ‖φ(·)‖[t1,t2],α <∞ where

‖φ(·)‖[t1,t2],α = sup
s1 6=s2, t1≤s1,s2≤t2

|φ(s1)− φ(s2)|
|s1 − s2|α

.

We let Cα([t1, t2]) denote the space of all α-Hölder continuous functions on the

interval [t1, t2].

Directly following Decreusefond [13], we will use the following framework for the

1 parameter Volterra processes. Let us consider T = [0, T ] ⊂ R+ or T = R+. Fix

γ > 0. Let ‖·‖2 be the standard norm in L2(T). Assume Kγ : T × T → [0,∞) is a

deterministic function such that the following three conditions hold:

(C1) Kγ(0, t) = 0 for all t ∈ T and Kγ(t, t′) = 0 for t < t′.

(C2) There exist constants C and γ > 0 such that for all t, t′ ∈ T∫
T

(Kγ(t, s)−Kγ(t′, s))
2
ds ≤ C ‖t− t′‖2γ

2 .

(C3) Kγ is injective as a transformation of functions in L2(T):

(Kγf)(t) =

∫
T

Kγ(t, s)f(s)ds, f ∈ L2(T).

Let (Ω,F , (Ft),P) be a filtered, complete probability space. We then define 1

parameter Volterra processes as follows.
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Definition II.2 (Volterra Process). A mean-zero, 1-parameter Gaussian random

field, V γ = {V γ
t }t∈T with covariance

(2.1) R(t, t′) = E [V γ
t V

γ
t′ ] =

∫
T

Kγ(t, s)Kγ(t′, s)ds.

where kernel Kγ satisfies conditions (C1)-(C3) is called a 1-parameter Volterra pro-

cess.

We assume our probability space is large enough to allow us to express the process

V γ as

(2.2) V γ
t (ω) =

∫
T

Kγ(t, s)dBs(ω).

where B = {Bt}t∈T is a standard 1-dimensional Brownian process. Below, several

examples of Volterra processes are provided.

Example 2.2.1 (Standard Brownian motion). Let

K(t, t′) = 1[0,t](t
′).

Then V γ, with γ = 1
2
, is a standard Brownian motion with covariance

R(t, t′) = t ∧ t′.

Example 2.2.2 (1-dimensional fractional Brownian motion). Let

K(t, t′) =
(t− t′)H− 1

2

Γ(H + 1
2
)
F

(
1

2
−H,H − 1

2
, H +

1

2
, 1− t

t′

)
1[0,t](t

′),

where (see [1]) F (a, b, c, t) is the Gauss hypergeometric function. Then V γ, with γ =

H, is fractional Brownian motion with Hurst parameter H ∈ (0, 1) and covariance

R(t, t′) =
1

2

(
t′2H + t2H − |t− t′|2H

)
.
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Example 2.2.3 (1-dimensional Ornstein-Uhlenbeck process). Let

K(t, t′) = eθ(t−t
′)1[0,t](t

′).

Then V γ, with γ = 1
2
, is the Ornstein-Uhlenbeck process, i.e.,

dV γ
t = θV γ

t dt+ dBt.

Example 2.2.4 (Multifractal Brownian motion). LetH ∈ Cr(R; (0, 1)) with supt∈RH(t) <

r, for some r ∈ (0, 1) and

K(t, t′) =
1

C1H(t)

(
(t− t′)H(t)− 1

2
+ − (−t′)H(t)− 1

2
+

)
, t, t′ ∈ R.

Then V γ, with γ = inft∈RH(t), is the multifractal Brownian motion of Benassi et al

[7].

Example 2.2.5 (Logarithmic Brownian motion). Let β > 0 and define

ε2(r) =
β

r

[
log

(
1

r

)]−β−1

,

and

K(t, t′) = ε(t− t′)1[0,t](t
′) t, t′ ∈ [0, 1).

Then V γ is the logarithmic Brownian motion of Mocioalca and Viens [39]. This is a

very interesting Volterra process since, for example when β = 1, it can exhibit longer

range dependence than any fractional Brownian motion with any Hurst index.

By condition (C1), V γ is adapted to the natural filtration of B. Condition (C2)

implies that K(t, ·) ∈ L2(T) for all t ∈ T and thus V γ is well defined. Using

Kolmogorov’s criterion, we see that condition (C2) also guarantees that there exists

a Hölder continuous modification of V γ of index β for all β < γ. To emphasize this

property, we denote a Volterra process which has a Hölder continuous modification

of index less than or equal to γ by V γ.
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The primary notion of stochastic integration we use is that of Russo-Vallois [54].

Since, in general, Volterra processes are not semimartingales, the standard stochastic

calculus does not apply. We first define ucp convergence.

Definition II.3. A family of processes
(
H

(ε)
t

)
converge to the process (Ht) in the

uniform convergence in probability on each compact interval (ucp) sense if

sup
t∈[0,T ]

∣∣∣H(ε)
t −Ht

∣∣∣ P−→ 0 as ε→ 0 ∀ T ≥ 0,

denoted as:

lim-ucp
ε−→0

H
(ε)
t = Ht.

Now, we define the forward integral as follows (the backward, symmetric integrals

and brackets are similarly defined and can be found in [54]):

Definition II.4. Let X = (Xt)t∈[0,T ] and Y = (Yt)t∈[0,T ] be two stochastic processes

with continuous paths. The (Russo-Vallois) forward integral
∫ t

0
Ysd

−Xs, is defined

by

lim-ucp
ε−→0

ε−1

∫ t

0

Ys
(
X(s+ε)∧T −Xs

)
ds

provided the limit exists. Similarly, the (Russo-Vallois) backward integral
∫ t

0
Ysd

+Xs

is defined by

lim-ucp
ε−→0

ε−1

∫ t

0

Ys
(
Xs −X(s−ε)∨0

)
ds,

and the (Russo-Vallois) symmetric integral
∫ t

0
Ysd

◦Xs is defined by

lim-ucp
ε−→0

(2ε)−1

∫ t

0

(
Y(s+ε)∧T + Ys)

) (
X(s+ε)∧T −Xs

)
ds

provided each limit exists.

Due to the Hölder continuity of Volterra precesses, we will be able to relate the

integral of Russo-Vallois to that of Young ([59]) defined here.



15

Definition II.5 (Young’s integral). We say that the integral∫ t′

t

f(s)dg(s)

exists, with value I, in the sense of Young if the sum

N∑
i=1

f(si) (g(ti)− g(ti−1))

where t = t0 ≤ s1 ≤ t1 ≤ . . . ≤ tN−1 ≤ sN ≤ tN = t′, differs from I by at most ε

when all the lengths ti − ti−1 are less than δ where ε→ 0 as δ → 0

Critical to the estimation method we will employ is the existence of a martingale

associated with a given Volterra process. The following martingale representation

result, analogous to the one found in [34] for fractional Brownian sheets, defines these

martingales as well as establishes a sufficient condition for their existence.

Theorem II.6. Let X = (Xt)t∈T be a continuous mean-zero 1-parameter Gaussian

random process with the covariance function R, i.e.

R(t, t′) = E [XtXt′ ] .

For arbitrary continuous curves C : T → R and ∀t ∈ T, suppose that there exists a

family of kernels ktC : [0, t)→ R such that

(2.3)

∫∫
[0,t)×[0,t′)

ktC(s)k
t′

C (s′)R(ds, ds′) =

∫
[0,t∧t′)

C(s)kt∧t′C (s)ds, ∀t, t′ ∈ T

where a ∧ b := min(a, b). Define the process NC = (NCt )t∈T by:

(2.4) NCt =

∫
[0,t)

ktC(s)dXs.

Then NC = (NCt )t∈T is a 1-parameter Gaussian martingale with variance

(2.5)
〈
NC
〉
t

=

∫
[0,t)

C(s)ktC(s)ds.
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Moreover, for all C, C̃ ∈ C(T,R),

N C̃t =

∫
[0,t)

qC,C̃(s)dNCs(2.6)

where

qC,C̃t =
d
〈
NC, N C̃

〉
t

d 〈NC〉t
(2.7)

with

〈
NC, N C̃

〉
t

=

∫∫
[0,t)2

ktC(v)ktC̃(s
′)R(ds, ds′).(2.8)

Proof.

It is clear that (NCt , t ∈ T) is a centered Gaussian process starting from 0 at t = 0.

From Eq. (3.1) and Eq. (3.10), we have

E
[
NCt N

C
t′

]
=

∫∫
[0,t)×[0,t′)

ktC(s)k
t′

C (s′)R(ds, ds′)

=

∫
[0,t∧t′)

C(s)kt∧t′C (s)ds

=
〈
NC
〉
t∧t′ .

Thus NCz has independent increments, and (NCt , t ∈ T) is a 1-parameter Gaussian

martingale.

Now, let C, C̃ ∈ C(T,R) be arbitrary. Then, since both

NCt =

∫
[0,t)

ktC(s)dXs

and

N C̃t =

∫
[0,t)

ktC̃(s)dXs
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are martingales, defining f , dependent on both C and C̃ as

f(t) =
d
〈
NC, N C̃

〉
t

d 〈NC〉t
a.s.

we have necessarily that

N C̃t =

∫
[0,t)

f(s)dNCs

and to show the dependence of f on both C and C̃, we denote

f(t) = qC,C̃ =
d
〈
NC, N C̃

〉
t

d 〈NC〉t
.

2.3 Existence and uniqueness of solutions

In this section we will prove the existence and uniqueness of stochastic differential

equations driven by Volterra processes in the case where the Hölder continuity index,

γ, is in (1
2
, 1].

First, recall a useful result for ordinary differential equations.

Theorem II.7 ([55]). Let b, σ : [0,∞)×R→ R, and g ∈ Cγ(R), where 1
2
< γ ≤ 1.

Suppose that b is globally Lipschitz in t and x, and σ ∈ C1(R) with σ, σ′t, σ
′
t globally

Lipschitz in t and x. Then for every T > 0 and γ > β > 1 − γ, the ordinary

differential equation

dx(t) = b(t, x(t))dt+ σ(t, x(t))dg(t) t ∈ (0, T ),(2.9)

x(0) = x0,

has a unique solution in Cβ([0, T ]), where the integration is in the framework of

Young [59].
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We also recall the following proposition which relates Russo-Vallois calculus to

that of Young.

Proposition II.8 ([52]). Let X, Y be two real processes indexed by [0, T ] whose

paths are, respectively, a.s. in Cα([0, T )] and Cβ([0, T ]), with α, β > 0 and α+β > 1.

Then the three integrals
∫ ·

0
Y d+X,

∫ ·
0
Y d−X, and

∫ ·
0
Y d ◦X exist and coincide with

the Young integral
∫ ·

0
Y dX

We can now state the main result of this section.

Theorem II.9. Let b, σ : [0,∞) × R → R, and V γ a Volterra process where 1
2
<

γ < 1. Suppose b is globally Lipschitz in t and x, and σ ∈ C1(R) with σ, σ′t, and σ′x

globally Lipschitz in t and x. Then for every T > 0 and γ > β > 1−γ, the stochastic

differential equation

dXt(ω) = b(t,Xt(ω))dt+ σ(t,Xt(ω))d−V γ
t (ω), t ∈ [0, T ](2.10)

X0(ω) = Z(ω)

has a unique solution in Cβ([0, T )] with probability 1.

Proof. First, we note that since V γ ∈ Cβ([0, T ]) for every index β < γ, and σ is

Hölder continuous with index 1, β + 1 > 1, and therefore by Proposition II.8∫ t

0

σ(s,Xs)d
−V γ

s =

∫ t

0

σ(s,Xs)dV
γ
s

almost surely, where the last integral is Young’s integral. Then the result follows

directly from Theorem II.7 applied path-wise.

2.4 Maximum Likelihood estimation

This section concerns estimation of a drift parameter for a stochastic differential

equation of the following form:

(2.11) dXt = A(t,Xt, θ)dt+ σ(t)dV γ
t
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where V γ is a 1-parameter Volterra process of index γ, θ ∈ Θ ⊂ R and σ(t) is a

positive non-vanishing function on [0, T ].

2.4.1 Maximum likelihood estimator when drift is a polynomial in θ.

Theorem II.10. Under the assumptions of Theorem II.6 and Theorem II.9, let V γ

be a 1-parameter Volterra process with covariance function R, where

R(t, t′) = E [V γ
t V

γ
t′ ] =

∫ t∧t′

0

Kγ(t, s)Kγ(t′, s)ds

where Kγ(t, s), 0 ≤ s < t ≤ T is a deterministic kernel. Define the process X =

(Xt)t∈[0,T ] by the equations

dXt = A(t,Xt, θ)dt+ σ(t)dV γ
t , t ∈ (0, T )

X0 = ξ a.s.

where A(t, x, θ) =
∑p

i=0 ai(t, x)θi and σ (a positive non-vanishing function on [0, T ])

are known functions but θ ∈ Θ ⊂ R is unknown. Assuming that the function kt1(s),

defined by Eq. (3.1) with C(s) = 1, ∀s, is smooth enough so that
kt1(s)

σ(s)
∈ Cβ(R) where

β + γ > 1, the maximum likelihood estimator, θ̂T , of θ is given by:

(2.12) θ̂T = argmax
θ∈Θ

∫ T

0

(
p∑
i=0

Ji(t)θ
i

)
dUt −

1

2

∫ T

0

(
p∑
i=0

Ji(t)θ
i

)2

d 〈N∗〉t

where

〈N∗〉t =

∫
[0,t)

kt1(s)ds,(2.13)

Ut =

∫
[0,t)

kt1(s)

σ(s)
dXs,(2.14)

Ji(t) =
d

d 〈N∗〉t

∫
[0,t)

kt1(s)
ai(s,Xs)

σ(s)
ds i ∈ {0, 1, . . . , p}.(2.15)

Proof. Let Qθ(t) be as defined as:

Qθ(t) =
d

d 〈N∗〉t

∫ t

0

kt1(s)
A(s,Xs, θ)

σ(s)
ds t ∈ [0, T ].
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Also, defining N∗t and 〈N∗〉t as

N∗t =

∫ t

0

kt1(s)dV γ
s , 〈N∗〉t =

∫
[0,t)

kt1(s)ds

by Theorem II.6, N∗t is the fundamental martingale associated with V γ
t . Defining Ut,

as above, by

Ut =

∫ t

0

kt1(s)

σ(s)
dXs

the process U = {Ut; 0 ≤ t ≤ T} is an (Ft)-semimartingale with the decomposition

Ut =

∫ t

0

Qθ(s)d 〈N∗〉s +

∫ t

0

kt1(s)dV γ
s .

Let PT
θ be the measure induced by the process {Xt; 0 ≤ t ≤ T} when θ is the true

parameter. We then get that the Radon-Nikodym derivative of PT
θ with respect to

PT
0 is given by:

dPT
θ

dPT
0

= exp

{∫ T

0

Qθ(t)dUt −
1

2

∫ T

0

Q2
θ(t)d 〈N∗〉t

}
Let LT (θ) denote the Radon-Nikodym derivative

dPTθ
dPT0

. Each element of the set of

maximum likelihood estimators (MLE), θ̂T , is defined by the relation:

LT (θ̂T ) = sup
θ∈Θ

LT (θ).

Note that we have

Qθ(t) =
d

d 〈N∗〉t

∫ t

0

kt1(s)
A(s,Xs, θ)

σ(s)
ds

=
N∑
i=0

(
θi

d

d 〈N∗〉t

∫ t

0

kt1(s)
ai(s, Ys)

σ(s)
ds

)

=
N∑
i=0

Ji(t)θ
i.

Then,

(2.16) ln (LT ) (θ) =

∫ T

0

(
N∑
i=0

Ji(t)θ
i

)
dUt −

1

2

∫ T

0

(
N∑
i=0

Ji(t)θ
i

)2

d 〈N∗〉t .
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Thus the MLE satisfies

θ̂T ∈ argmax
θ∈Θ


∫ T

0

(
N∑
i=0

Ji(t)θ
i

)
dUt −

1

2

∫ T

0

(
N∑
i=0

Ji(t)θ
i

)2

d 〈N∗〉t

 .

2.4.2 Case of linear drift

A specific case of interest is when the drift function, A(t,Xt, θ), is linear in θ, i.e.

(2.17) A(t, x, θ) = a0(t, x) + θa1(t, x).

In this case, the MLE is unique and has the following analytic expression for the

MLE directly from Eq. (2.16).

Corollary II.11. Under the assumptions of Theorem II.10, and using the same

notation, when the drift term A(t, x, θ) is given by Eq. (2.17) the MLE, θ̂T , of θ is

given by:

(2.18) θ̂T =

∫ T
0
J1(t)dUt −

∫ T
0
J0(t)J1(t)d 〈N∗〉t∫ T

0
J2

1 (t)d 〈N∗〉t
,

where 〈N∗〉t, Ut and Ji are given by Eq. (2.13)-Eq. (2.15) respectively.

2.4.3 Properties of Maximum Likelihood Estimate

Here we prove several properties for the maximum likelihood estimator, θ̂T of θ

from Eq. (2.11) in the linear case discussed in Corollary II.11. Specifically we prove

that under certain assumptions our estimator is strongly consistent, a law of iterated

logarithm holds, as well as a central limit theorem.

Theorem II.12. The MLE, θ̂T given by Eq. (2.18), is strongly consistent provided∫ T

0

J2
1 (t)d 〈N∗〉t →∞ a.s. [Pθ0 ] as T →∞.
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Proof. Let θ0 be the true parameter. Then, since

dUt = (J0(t) + θ0J1(t)) d 〈N∗〉t + dN∗t ,

we have

dPT
θ

dPT
θ0

= exp

{
(θ − θ0)

∫ T

0

J1(t)dN∗t −
1

2
(θ − θ0)2

∫ T

0

J2
1 (t)d 〈N∗〉t

}
.

Following this representation of the Radon-Nikodym derivative, we obtain that

θ̂T − θ0 =

∫ T
0
J1(t)dN∗t∫ T1

0
J2

1 (t)d 〈N∗〉t
.

Thus

(2.19) GT ≡
∫ T

0

J1(t)dN∗t , T ≥ 0

is a local martingale with the quadratic variation process

(2.20) 〈G〉T =

∫ T

0

J2
1 (t)d 〈N∗〉t →∞ a.s.

and thus, by the strong law of large numbers for square-integrable martingales,

(Corollary 1, p. 144 in [35]]),

GT

〈G〉T
→ 0 w.p. 1.

Hence, θ̂T − θ0 = GT
〈G〉T
→ 0 w.p. 1.

For the next theorem, we recall a result on the law of iterated logarithm for local

martingales.

Theorem II.13 ([33], Théorème 3, Translated from French). If M is a local mar-

tingale with locally integrable paths,

E

[
sup
t
|Mt −Mt−|

]
<∞,
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and

〈M〉t →∞ a.s. P as t→∞,

then

lim sup
t→∞

Mt√
2 〈M〉t ln (ln (〈M〉t))

= 1 a.s. P.

Now, we establish a law of iterated logarithm for the estimator Eq. (2.18).

Theorem II.14 (Law of iterated logarithm). Under the assumptions of Theorem

II.12, we have that

lim sup
T→∞

(θ̂T − θ0)×

2 ln
(

ln
(∫ T

0
J2

1 (t)d 〈N∗〉t
))

∫ T
0
J2

1 (t)d 〈N∗〉t

−
1
2

= 1 a.s. [Pθ0 ]

where 〈N∗〉t is given by Eq. (2.13), J1 is given by Eq. (2.15), θ̂T is given by Eq. (2.18),

and where θ0 ∈ Θ is the true parameter.

Proof. Using the notation from Theorem II.12, namely GT the local martingale

given by Eq. (2.19) with its corresponding quadratic variation process 〈G〉T given by

Eq. (2.20), we have again that

(2.21) θ̂T − θ0 =
GT

〈G〉T
.

From Theorem II.13, we have that

(2.22) lim sup
T→∞

GT√
2 〈G〉T log log 〈G〉T

= 1 a.s. [Pθ0 ].

Since, by Eq. (2.21)

GT√
2 〈G〉T log log 〈G〉T

=
GT

(
θ̂T − θ0

)
√

2 〈G〉T log log 〈G〉T
× 〈G〉T

GT

=

√
〈G〉T

(
θ̂T − θ0

)
√

2 log log 〈G〉T
,
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then, Eq. (2.22) implies

lim sup
T→∞

√
〈G〉T

(
θ̂T − θ0

)
√

2 log log 〈G〉T
= 1 a.s. [Pθ0 ].

Theorem II.15. Assume that functions a1(t, x) and σ(t) are such that

Gt =

∫ t

0

J1(s)dN∗s

is a local continuous martingale and that there exists a normalizing function It, t ≥ 0

s.t.

I2
T 〈GT 〉 = I2

T

∫ T

0

J2
2 (t)d 〈N∗〉t → η2, in probability as T →∞,

where IT → 0 as T →∞ and η is a random variable such that P(η > 0) = 1. Then

(ITGT , I
2
T 〈GT 〉)→ (ηZ, η2) in distribution as T →∞,

where the random variable Z has the standard Normal distribution and Z ⊥⊥ η.

Proof. Follows from the central limit theorem for martingales (see, for example, [47]).

Theorem II.16. Under the assumptions of Theorem II.15,

I−1
T (θ̂T − θ0)→ Z

η
in distribution as T →∞

where Z is a standard Normal random variable and Z ⊥⊥ η

Proof. We note that

I−1
T (θ̂T − θ0) =

ITGT

I2
T 〈RT 〉

,

and the desired result follows immediately from Theorem II.15.
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2.4.4 Discretization of MLE

The above maximum likelihood estimator, θ̂T is based on continuously observing

the process Xt. In any practical application this is an unreasonable requirement.

Typically one could at best assume to observe the process at a mesh of time points.

As such we would like to develop a consistent estimator based only on the discrete

set of observations. Assuming that we have n + 1 observations equally spread over

the interval [0, T ] (including the observation X0 = 0), and introducing the notation

tk = kT
n

, for k = 0, . . . , n, we assume that a0(t,Xt) ≡ 0, and have the following

partially discretized estimator:

(2.23) θ̄n =

∑n−1
m=0 J1(tm)

(
Utm+1 − Utm

)∑n−1
m=0 |J1(tm)|2

(
〈N∗〉tm+1

− 〈N∗〉tm
) .

Now, consider the two semi-martingales

An =

∫ tn

0

J1(s)dUs =

∫ T

0

J1(s)dUs,

Bn =
n−1∑
m=0

J1(tm)
(
Utm+1 − Utm

)
.

Since

〈B〉n =
n−1∑
m=0

|J1(tm)|2
(
〈N∗〉tm+1

− 〈N∗〉tm
)
,

we have

θ̂n =
An
〈A〉n

and θ̄n =
Bn

〈B〉n
.

The following proposition, a generalization of Proposition 5 from [57], gives condi-

tions for the partially discretized estimator, θ̄ to converge to the maximum likelihood

estimator, θ̂.

Proposition II.17. If there exist constants α, γ > 0 such that

(C1)
nα 〈A−B〉n
〈B〉n

is almost surely bounded for n large
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(C2)
An −Bn

〈B〉n
converges to 0 almost surely as n→∞.

then

lim
n→∞

|θ̂n − θ̄n| = 0 a.s.

Proof. We have

(2.24) θ̂n − θ̄n =
An
〈A〉n

− Bn

〈B〉n
=
An −Bn

〈B〉n
+

An
〈A〉n

〈B〉n − 〈A〉n
〈B〉n

.

Using condition (C2) it is clear that we only have to show

An
〈A〉n

〈B〉n − 〈A〉n
〈B〉n

a.s.−−−→
n→∞

0.

Now, consider

〈B〉n − 〈A〉n
〈B〉n

.

We have, almost surely for large n∣∣∣∣〈B〉n − 〈A〉n〈B〉n

∣∣∣∣ =
| 〈B − A,B + A〉n |

〈B〉n

≤ | 〈B + A〉n |
1
2 | 〈B − A〉n |

1
2

〈B〉n
by Hölder’s inequality

≤

(
| 〈A〉n |

1
2 + | 〈B〉n |

1
2

)
| 〈B − A〉n |

1
2

〈B〉n
by Minkowski’s inequality

≤
√

2 (| 〈A〉n |+ | 〈B〉n |)
1
2 | 〈B − A〉n |

1
2

〈B〉n

≤
√

2 (| 〈A〉n + 〈B〉n |)
1
2 |K 1

2n−
α
2 | 〈B〉n |

1
2

〈B〉n
for some constant K > 0 by (C1)

=
√

2Kn−α
|〈A〉n + 〈B〉n|

1
2

| 〈B〉n |
1
2

.
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Let Kn−α = ε. Then, ∣∣∣∣〈B〉n − 〈A〉n〈B〉n

∣∣∣∣ ≤ √2ε

∣∣∣∣ 〈A〉n〈B〉n
+ 1

∣∣∣∣ 1
2

⇔
(〈B〉n − 〈A〉n

〈B〉n

)2

≤ 2ε

( 〈A〉n
〈B〉n

+ 1

)
⇔

(〈B〉n − 〈A〉n
〈B〉n

)2

− 2ε
〈A〉n
〈B〉n

+ 2ε+ ε2 ≤ 4ε+ ε2

⇔
(〈B〉n − 〈A〉n

〈B〉n

)2

+ 2

(〈B〉n − 〈A〉n
〈B〉n

)
ε+ ε2 ≤ 4ε+ ε2

⇔
(〈B〉n − 〈A〉n

〈B〉n
+ ε

)2

≤ 4ε+ ε2

⇔
∣∣∣∣〈B〉n − 〈A〉n〈B〉n

+ ε

∣∣∣∣ ≤ √4ε+ ε2 ∀ε

⇔ 〈B〉n − 〈A〉n
〈B〉n

a.s−−−→
n→∞

0.

Since An
〈A〉n

= θ̂n and θ̂ is strongly consistent and thus a.s. bounded for large n, we

have our desired result.

The next logical step, a fully discretized estimator of the form:

(2.25) θ̃n =

n−1∑
m=0

J̃1(tm)
(
Ũtm+1 − Ũtm

)
n−1∑
m=0

J̃1(tm)
(
〈N∗〉tm+1

− 〈N∗〉tm
) ,

where

J̃1(tm) =
d

d 〈N∗〉tm

m−1∑
l=0

kz1(tl)a1 (Xtl) (tl+1 − tl) ,

Ũtm =
m−1∑
l=0

kz1(tl)
(
Xtl+1

−Xtl

)
,

can not, as yet, be generally shown to converge to θ̂ since this convergence depends

directly on the specific form of the kernels defining the Volterra process and its

associated fundamental martingale. The estimator given in Eq. (2.25) has been
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previously shown to converge in the case of fractional Brownian motion by Tudor

and Viens[57].



CHAPTER III

Parameter estimation in multi-dimensional Stochastic
Differential Equations

3.1 Introduction

The development of estimation in stochastic differential equation with multi-

parameter Gaussian noise has received considerably less attention than problems

concerning 1-parameter noise. Part of the reason for this is the lack of full develop-

ment of martingale theory in multiple parameters. Due to the loss of total ordering,

even the definition of martingale requires extra care. However, utilizing strong mar-

tingales associated with the Volterra process, a maximum likelihood estimator can

be defined and using sectorial limits, several asymptotic properties of this estima-

tor can be established. Another difficulty that is overcome is proving the existence

and uniqueness of a strong solution to the stochastic differential equation in the

multi-parameter Volterra noise case.

In this chapter, after carefully defining strong martingales in the hyper-plane,

existence of a solution to the stochastic differential equation is shown, a maximum

likelihood estimator is defined and strong consistency of the estimator is established.

3.2 Preliminaries

First, we introduce the following notation (again where , means ‘is denoted as’):

29
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• f ′t will represent df
dt

, or if f is a function of several variables, i.e. f(s, t, u), then

f ′(1) , f ′s, f
′
(2) , f ′t etc.

• For t1, t2 ∈ Rd, ti = (ti1, t
i
2, . . . , t

i
d), i = 1, 2, s = (s1, . . . , sd) ∈ Rd and f : Rd →

R

– When it exists,∫ t2

t1
f(s)ds ,

∫ t21

t11

· · ·
∫ t2d

t1d

f(s1, . . . , sd)dsd . . . ds1.

– If t1i < t2i for all i = 1, . . . , d, then

[t1, t2] , [t11, t
2
1]× · · · × [t1d, t

2
d].

Due to the fact that we will be taking limits in a plane, we need to define exactly how

this limit is to be interpreted. Because of the underdevelopment of general multi-

parameter martingale and random processes limit theorems, we will use simpler

sectorial limits.

Definition III.1 (Sectorial Limits). For d ∈ N, let
∏

d be the collection of all

permutations of {1 . . . d}. For any f : Rd
+ → R and any π ∈ ∏d, define, for any

s ∈ Rd and fixed t ∈ (R×∞)d

π − lim
s→t

f(s) , lim
sπ(1)→tπ(1)

· · · lim
sπ(d)→tπ(d)

f(s),

if it exists. We say f has sectorial limits at t if π − lims→t f(s) exists for all π ∈∏d.

If all the limits are the same, we denote the common limit (the sectorial limit) as

lim
s t

f(s).

An additional difficulty in dealing with processes in a d-parameter space is that

we need to consider how we can define increments of the process. To that end, we

first define partial ordering.



31

Definition III.2 (Partial Ordering). Let a = (a1, . . . , ad), b = (b1, . . . , bd) ∈ Rd
+ be

arbitrary. We say

i. a 4 b if and only if ai ≤ bi for all i = 1, . . . , d.

ii. a ≺ b if and only if ai < bi for all i = 1, . . . , d.

iii. af b , (min(a1, b1), . . . ,min(ad, bd)).

iv. ag b , (max(a1, b1), . . . ,max(ad, bd)).

We can now define a dth dimensional increment of a random process in the hyper-

plane.

Definition III.3 (Increment). Let X = {Xt, t ∈ Rd
+} be a d-dimensional process,

and let t1 = (t11, t
1
2, . . . , t

1
d), t

2 = (t21, t
2
2, . . . , t

2
d) ∈ Rd

+ be such that t1 ≺ t2. Then, we

define the increment X((t1, t2]) as:

X((t1, t2]) =
2∑

i1=1

· · ·
2∑

id=1

(−1)d−
∑d
j=1 ijX

t
i1
1 ,t

i2
2 ,...,t

id
d

.

In particular, when d = 1, X((t1, t2]) = Xt21
− Xt11

and when d = 2, X((t1, t2]) =

Xt21,t
2
2
−Xt11,t

2
2
−Xt21,t

1
2

+Xt11,t
1
2
.

For the complete probability space (Ω,F ,P) in Rd
+, we will require our filtration to

satisfy the following standard conditions:

Definition III.4. We say that filtration {Ft, t ∈ Rd
+} satisfies the conditions (F1)-

(F4) if:

(F1) For all t1, t2 ∈ Rd
+ where t1 4 t2, Ft ⊂ Ft2 ,

(F2) F0 contains all the P-null sets of F ,

(F3) For all t1 ∈ Rd
+, Ft1 =

⋂
t1≺t2 Ft2 ,
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(F4) For each t1 ∈ Rd
+, the collection {F i

t1}di=1 are conditionally independent given

Ft1 , where F i
t1 is defined by:

F i
t1 =

∨
t2∈Ji

Ft2 = σ

 ⋃
t2∈Ji

Ft2

 where Ji = Ri−1
+ × {t1i } ×Rd−i

+ .

Definition III.5 (Quadratic Variation). If Xt is a continuous process, then X’s

quadratic variation, denoted 〈X〉t is defined by:

〈X〉t (ω) = lim
4tk→0

∑
tk4t

(
Xtk+1

(ω)−Xtk(ω)
)
,

where the {tk} form a partition over [0, t].

d-parameter martingales are defined similarly to 1 parameter martingales.

Definition III.6 (d-parameter martingale). Let (Ft)t∈Rd+
be a filtration satisfying

(F1)-(F4). The process X = {Xt, t ∈ Rd
+} is called a d-parameter martingale with

respect to (Ft) if:

i) For each t ∈ Rd
+, Xt is adapted to Ft and integrable.

ii) For each t1 4 t2, E [Xt2|Ft1 ] = Xt1 a.s..

To use a multi-parameter version of Theorem II.6, we will need to deal with more

restrictive processes than martingales called strong martingales.

Definition III.7 (d-dimensional strong martingale). Let X = {Xt, t ∈ Rd
+} be a

process such that Xt is integrable for all t ∈ Rd
+ and let filtration (Ft)t∈Rd+ satisfy

(F1)-(F4). Then X is called a d-dimensional strong martingale with respect to (Ft)

if:

i) X is adapted to (Ft),

ii) X vanishes on all axes (i.e. Xt = 0 a.s. ∀ t = (0, . . . , 0, ti, 0, . . . , 0), ti ∈ Rd
+, i =

1, . . . , d),
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iii) E
[
X((t1, t2])

∣∣∣∨d
i=1 F i

t1

]
= 0 a.s. ∀ t1 ≺ t2.

The following proposition gives a sufficient condition for a Gaussian process to

have independent increments.

Proposition III.8. If X = {Xt, t ∈ Rd
+} is a d-parameter Gaussian random field

with covariance

E [Xt1Xt2 ] = 〈X〉t1∧t2 ∀ t1, t2 ∈ Rd
+.

Then X has independent increments.

Proof. Let t1, t2, t3, t4 ∈ Rd
+ where ti = (ti1, t

i
2, . . . , t

i
d) for i = 0, 1, 2, 4 be such that

t1 ≺ t2, t3 ≺ t4 and there exists a j ∈ {1, 2, . . . , d} such that t2j < t3j . Then we have

E
[
X((t1, t2])X((t3, t4])

]
=

= E

[(
2∑

i1=0

· · ·
2∑

id=0

(−1)d−
∑d
j=1 ijX

t
i1
1 ,...,t

id
d

)(
4∑

k1=2

· · ·
4∑

kd=2

(−1)d−
∑d
l=1 klX

t
k1
1 ,...,t

kd
d

)]

=
2∑

i1=0

· · ·
2∑

id=0

4∑
k1=2

· · ·
4∑

kd=2

(−1)2d−(
∑d
j=1 ij+

∑d
l=1 kl)E

[
X
t
i1
1 ,...,t

id
d

X
t
k1
1 ,...,t

kd
d

]
=

2∑
i1=0

· · ·
2∑

id=0

4∑
k1=2

· · ·
4∑

kd=2

(−1)
∑d
j=1 ij+

∑d
l=1 kl 〈X〉

t
i1
1 ∧t

k1
2 ,...,t

ij
j ,...,t

id
d ∧t

kd
d

= 0.

Now, since X is Gaussian, X has independent increments.

As an example, let d = 2. Then X((t1, t2]) = Xt21,t
2
2
−Xt11,t

2
2
−Xt21,t

1
2

+ Xt11,t
1
2
. Let

t1, t2, t3, t4 ∈ R3
+ where ti = (ti1, t

i
2) for i = 0, 1, 2, 4 be such that t1 ≺ t2, t3 ≺ t4 and,
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with out loss of generality, t21 < t31. Then,

E
[
X((t1, t2])X((t3, t4])

]
=

= E
[(
Xt21,t

2
2
−Xt11,t

2
2
−Xt21,t

1
2

+Xt11,t
1
2

)(
Xt41,t

4
2
−Xt31,t

4
2
−Xt41,t

3
2

+Xt31,t
3
2

)]
= E

[
Xt21,t

2
2
Xt31,t

4
2

]
− E

[
Xt21,t

2
2
Xt31,t

4
2

]
− E

[
Xt21,t

2
2
Xt41,t

3
2

]
+ E

[
Xt21,t

2
2
Xt31,t

3
2

]
− E

[
Xt11,t

2
2
Xt31,t

4
2

]
+ E

[
Xt11,t

2
2
Xt31,t

4
2

]
+ E

[
Xt11,t

2
2
Xt41,t

3
2

]
− E

[
Xt11,t

2
2
Xt31,t

3
2

]
− E

[
Xt21,t

1
2
Xt31,t

4
2

]
+ E

[
Xt21,t

1
2
Xt31,t

4
2

]
+ E

[
Xt21,t

1
2
Xt41,t

3
2

]
− E

[
Xt21,t

1
2
Xt31,t

3
2

]
+ E

[
Xt11,t

1
2
Xt31,t

4
2

]
− E

[
Xt11,t

1
2
Xt31,t

4
2

]
− E

[
Xt11,t

1
2
Xt41,t

3
2

]
+ E

[
Xt11,t

1
2
Xt31,t

3
2

]
= 〈X〉t21,t22∧t42 − 〈X〉t21,t22∧t42 − 〈X〉t21,t22∧t32 + 〈X〉t21,t22∧t32
− 〈X〉t11,t22∧t42 + 〈X〉t11,t22∧t42 + 〈X〉t11,t22∧t32 − 〈X〉t11,t22∧t32
− 〈X〉t21,t12∧t42 + 〈X〉t21,t12∧t42 + 〈X〉t21,t12∧t32 − 〈X〉t21,t12∧t32
+ 〈X〉t11,t12∧t42 − 〈X〉t11,t12∧t32 − 〈X〉t11,t12∧t32 + 〈X〉t11,t12∧t32

= 0.

Using Proposition III.8, and following the exact same proof as for Theorem II.6,

we have the multiple parameter version of the associated martingale representation

theorem.

Theorem III.9. Let X = (Xt)t∈T be a continuous mean-zero d-parameter Gaussian

random process with the covariance function R, i.e.

R(t, t′) = E [XtXt′ ] .

For arbitrary continuous curves C : T → R and ∀t ∈ T, suppose that there exists a

family of kernels ktC : [0, t)→ R such that

(3.1)

∫∫
[0,t)×[0,t′)

ktC(s)k
t′

C (s′)R(ds, ds′) =

∫
[0,t∧t′)

C(s)kt∧t′C (s)ds, ∀t, t′ ∈ T,
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where af b := min(a, b). Define the process NC = (NCt )t∈T by:

(3.2) NCt =

∫
[0,t)

ktC(s)dXs.

Then NC = (NCt )t∈T is a d-parameter strong Gaussian martingale with variance

(3.3)
〈
NC
〉
t

=

∫
[0,t)

C(s)ktC(s)ds.

Moreover, for all C, C̃ ∈ C(T,R),

N C̃t =

∫
[0,t)

qC,C̃(s)dNCs ,(3.4)

where

qC,C̃t =
d
〈
NC, N C̃

〉
t

d 〈NC〉t
,(3.5)

with

〈
NC, N C̃

〉
t

=

∫∫
[0,t)2

ktC(v)ktC̃(v
′)R(dv, dv′).(3.6)

The definition of Volterra processes in d parameters will again rely on the growth

condition of Hölder continuity. We recall the following definition of Hölder continuity

in d dimensions.

Definition III.10. A function φ : [t1, t2] ⊂ Rd → R where t1 ≺ t2, is Hölder

continuous of index α = (α1, . . . , αd) ∈ Rd
+ (also called α-Hölder continuous) if

i) φ is continuous.

ii) For all 1 ≤ i ≤ d,
∥∥φ(t11, . . . , t

1
i−1, ·, t1i+1, . . . , t

1
d

∥∥
[t1i ,t

2
i ],αi

<∞ where

∥∥φ(t11, . . . , t
1
i−1, ·, t1i+1, . . . , t

1
d)
∥∥

[t1i ,t
2
i ],αi

= sup
u6=v, t1i≤u,v≤t2i

|φ(t11, . . . , t
1
i−1, u, t

1
i+1, . . . , t

1
d)− φ(t11, . . . , t

1
i−1, v, t

1
i+1, . . . , t

1
d)|

|u− v|αi .
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iii) ‖φ‖[t1,t2],α <∞, where

‖φ‖[t1,t2],α = sup
u≺v

|φ((u, v])|∏d
i=1 |ui − vi|αi

where u = (u1, . . . , ud) and v = (v1, . . . , vd).

We let Cα([t1, t2]) denote the space of all α-Hölder continuous functions on the

interval [t1, t2]. Next, we denote the space Cα([t1, t2]) equipped with the norm

‖x‖[t1,t2],α,∞ = ‖x‖∞+ sup
t11≤u1≤t21

‖x(u1, ·)‖[t12,t
2
2],α2

+ sup
t21≤u2≤t22

‖x(·, u2)‖[t11,t
2
1],α1

+‖x‖[t1,t2],α

by Cα,∞([t1, t2]).

For a fixed C > 0, we let

Cα,C([t1, t2]) = {φ ∈ Cα([t1, t2]) : ‖φ‖[t1,t2],α ≤ C},

and for a fixed a ∈ R, we let

Cα,C([t1, t2], a) = {φ ∈ Cα,C([t1, t2]) : φ(t) = a}.

Finally, for φi ∈ Cαi([t
1
i , t

2
i ]), i = 1, 2, we let

Cα,∞,C,φ1,φ2([t1, t2]) =

{
x ∈ Cα,∞([t1, t2]) : x(t11, ·) = φ1, x(·, t12) = φ2,

‖x‖[t1,t2],α ≤ C,

sup
t11≤u1≤t21

‖x(u1, ·)‖[t12,t
2
2],α2
≤ C,

sup
t12≤u2≤t22

‖x(·, u2)‖[t11,t
2
1],α1
≤ C

}
.

For the multi-parameter version of Volterra processes, let γ = (γ1, . . . , γd) ∈ Rd
+.

We define the multi-parameter kernel, Kγ : [0, T ]d × [0, T ]d → [0,∞) as follows:

Kγ(t1, t2) =
d∏
i=1

Kγi(t1i , t
2
i ),
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where t1, t2 ∈ [0, T ]d, and for each i ∈ {1, . . . , d}, Kγi satisfies conditions (C1)-(C3)

(see p. 11).

Finally, we define a d parameter Volterra sheet.

Definition III.11 (d-parameter Volterra sheet). A centered, d-parameter Gaussian

random field, V γ = {V γ
t }t∈[0,T ]d with integral representation

(3.7) V γ
t =

∫
[0,T ]

Kγ(t, s)dBs,

where B = {Bt}t∈[0,T ] is a standard d-dimensional Brownian sheet is called a d-

parameter Volterra process.

We note that V γ has a.s. γ-Hölder continuous paths. Using the Kolmogorov-

Chentsov Theorem, we need only show that, for all t1 ≺ t2 where t1, t2 ∈ [0, T ]d,

E
[(
V γ
(
(t1, t2]

))p] ≤ C[(t21 − t11) · · · (t2d − t1d)]1+α

for some constants C, α > 0 and p ≥ 2.

We have, with s = (s1, . . . , sd),

E
[(
V γ
(
(t1, t2]

))2
]

= E

(∫
[0,T ]d

d∏
i=1

(
Kγi(t2i , si)−Kγi(t1i , si)

)
dBs

)2


=

∫
[0,T ]d

d∏
i=1

(
Kγi(t2i , si)−Kγi(t1i , si)

)2
ds

=
d∏
i=1

(∫
[0,T ]

(
Kγi(t2i , si)−Kγi(t1i , si)

)2
dsi

)

≤
d∏
i=1

Ci(t
2
i − t1i )2γi .

Since V γ ((t1, t2]) has a mean-zero Normal distribution, we have the following relation

of moments:

E
[(
V γ
(
(t1, t2]

))p]
= CpE

[(
V γ
(
(t1, t2]

))2
] p

2
.
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Thus, the desired result holds. We note that this also shows that in the 1-parameter

case, V γ has a.s. γ-Hölder continuous paths.

3.3 Existence and uniqueness of solutions

In this section we prove the existence and uniqueness of a strong solution to the

stochastic differential equation whose drift parameter we will be estimating. From

this point on, for simplicity, we will only be concerned with the two parameter case

(d = 2). Extending all of the following results to any dimension d ∈ N is direct.

As in the 1 parameter case, we first need a result on the non-random differential

equation where we have Hölder continuity growth conditions.

Proposition III.12. Let β1, β2 ∈
(

1
2
, 1
]

and α1, α2 be such that βi > αi > 1−βi. Let

g ∈ CR2,β and b, σ : R3 → R such that b is bounded and Lipshitz in each dimension,

and σ is bounded and has bounded third derivatives. Then for every K > 0 and

t1, t2 ∈ R2, t1 ≺ t2, there exists an ε0 > 0, independent of t1, t2, such that for every

φi ∈ Cαi,K([t1i , t
2
i ]), i = 1, 2, the operator

F : Cα,∞,K,φ1,φ2([t1, t1 + ε0])→ Cα,∞,K,φ1,φ2([t1, t1 + ε0]),

defined by

(Fx)u,v = φ1(u)+φ2(v)+

∫ u

t11

∫ v

t12

b(s1, s2, xs1,s2)ds1ds2+

∫ u

t11

∫ v

t12

σ(s1, s2, xs1,s2)dg(s1, s2),

is a contraction.
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Proof. First,∥∥∥∥∥
∫ ·
t11

∫ ·
t12

b(s1, s2, xs1,s2)ds2ds1

∥∥∥∥∥
[t1,t2],α,∞

=

=

∥∥∥∥∥
∫ ·
t11

∫ ·
t12

b(s1, s2, xs1,s2)ds2ds1

∥∥∥∥∥
∞

+ sup
t11≤u1≤t21

∥∥∥∥∥
∫ ·
t11

∫ ·
t12

b(s1, s2, xs1,s2)ds2ds1

∥∥∥∥∥
[t12,t

2
2],α2

+ sup
t12≤u2≤t22

∥∥∥∥∥
∫ ·
t11

∫ ·
t12

b(s1, s2, xs1,s2)ds2ds1

∥∥∥∥∥
[t11,t

2
1],α1

+ sup
u≺v

∣∣∣∫ v1

u1

∫ v2

u2
b(s1, s2, xs1,s2)ds2ds1

∣∣∣
|v1 − u1|α1|v2 − u2|α2

≤ ‖b‖∞ (t22 − t12)(t21 − t11) + sup
t11≤u1≤t21

sup
t12≤u2,v2≤t22

∣∣∣∫ u1

t11

∫ v2

u2
b(s1, s2, xs1,s2)ds2ds1

∣∣∣
|v2 − u2|α2

+ sup
t12≤u2≤t22

sup
t11≤u1,v1≤t21

∣∣∣∫ u2

t12

∫ v1

u1
b(s1, s2, xs1,s2)ds1ds2

∣∣∣
|v1 − u1|α1

+ ‖b‖∞ sup
u≺v

|v1 − u1||v2 − u2|
|v1 − u1|α1|v2 − u2|α2

≤ ‖b‖∞ (t21 − t11)(t22 − t12) + ‖b‖∞ sup
t11≤u1≤t21

sup
t12≤u2,v2≤t22

(u1 − t11)|v2 − u2|
|v2 − u2|α2

+ ‖b‖∞ sup
t12≤u2≤t22

sup
t11≤u1,v1≤t21

|v1 − u1|(u2 − t12)

|v1 − u1|α1

+ ‖b‖∞ (t22 − t12)(t21 − t11)

≤ ‖b‖∞ (t21 − t11)1−α1(t22 − t12)1−α2
(
(t21 − t11)α1(t22 − t12)α2 + (t21 − t11)α1 + (t22 − t12)α2 + 1

)
.(3.8)

Using Eq. (3.18) p. 773 from Reference [56], we have

∥∥∥∥∥
∫ ·
t11

∫ ·
t12

σ(s1, s2, xs1,s2)dg(s1, s2)

∥∥∥∥∥
[t1,t2],α,∞

(3.9)

≤ ‖σ(·, ·, x)‖[t1,t2],α,∞ ‖g‖[t1,t2],β (t21 − t11)β1−α1(t22 − t12)β2−α2

×
(
(t21 − t11)α1(t22 − t12)α2 + (t21 − t11)α1 + (t22 − t12)α2 + 1

)
.
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Now,

‖σ(·, ·, x)‖[t1,t2],α,∞ = ‖σ‖∞ + sup
t11≤u1≤t21

‖σ(u1, ·, xu1,·)‖[t12,t
2
2],α2

+ sup
t12≤u2≤t22

‖σ(·, u2, x·,u2)‖[t11,t
2
1],α1

+ sup
u≺v

|σ(·, ·, x)((u, v])|
|v1 − u1|α1|v2 − u2|α2

= ‖σ‖∞ + sup
t11≤u1≤t21

sup
t12≤u2,v2≤t22

|σ(u1, u2, xu1,u2)− σ(u1, v2, xu1,v2)|
|u2 − v2|α2

+ sup
t12≤u2≤t22

sup
t11≤u1,v1≤t21

|σ(u1, u2, xu1,u2)− σ(v1, u2, xv1,u2)|
|u1 − v1|α1

+ sup
u≺v

|σ(·, ·, x)((u, v])|
|v1 − u1|α1 |v2 − u2|α2

.

we have

σ(u1, u2, xu1,u2)− σ(u1, v2, xu1,v2) =

= (u2 − v2)

∫ 1

0

σ′(2) (u1, λu2 + (1− λ)v2, λxu1,u2 + (1− λ)xu1,v2) dλ

+ (xu1,u2 − xu1,v2)

∫ 1

0

σ′(3) (u1, λu2 + (1− λ)v2, λxu1,u2 + (1− λ)xu1,v1) dλ,

|σ(u1, u2, xu1,u2)− σ(u1, v2, xu1,v2)| ≤|u2 − v2|
∥∥σ′(2)

∥∥
∞

+ |xu1,u2 − xu1,v2 |
∥∥σ′(3)

∥∥
∞

≤|u2 − v2|
∥∥σ′(2)

∥∥
∞

+ |u2 − v2|α2 ‖xu1,·‖[t12,t
2
2],α2

∥∥σ′(3)

∥∥
∞
,

so

|σ(u1, u2, xu1,u2)− σ(u1, v2, xu1,v2)|
|u2 − v2|α2

≤|u2 − v2|1−α2
∥∥σ′(2)

∥∥
∞

+ ‖xu1,·‖[t12,t
2
2],α2

∥∥σ′(3)

∥∥
∞
,

and

sup
t11≤u1≤t21

sup
t12≤u2,v2≤t22

|σ(u1, u2, xu1,u2)− σ(u1, v2, xu1,v2)|
|u2 − v2|α2

≤

≤ (t22 − t12)1−α2
∥∥σ′(2)

∥∥
∞

+ sup
t11≤u1≤t21

‖xu1,·‖[t12,t
2
2],α2

∥∥σ′(3)

∥∥
∞
,
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similarly

sup
t12≤u2≤t22

sup
t11≤u1,v1≤t21

|σ(u1, u2, xu1,u2)− σ(v1, u2, xv1,u2)|
|u1 − v1|α1

≤

(t21 − t11)1−α1
∥∥σ′(2)

∥∥
∞

+ sup
t12≤u2≤t22

‖x·,u2‖[t11,t
2
1],α1

∥∥σ′(3)

∥∥
∞
.

Next

σ(·, ·, x)((u, v]) =

= (v2 − u2)

∫ 1

0

σ′(2)(v1, λv2 + (1− λ)u2, λxv1,v2 + (1− λ)xv1,u2)dλ︸ ︷︷ ︸
=a

+ (xv1,v2 − xv1,u2)

∫ 1

0

σ′(3)(v1, λv2 + (1− λ)u2, λxv1,v2 + (1− λ)xv1,u2)dλ︸ ︷︷ ︸
=b

− (v2 − u2)

∫ 1

0

σ′(2)(u1, λv2 + (1− λ)u2, λxu1,v2 + (1− λ)xu1,u2)dλ︸ ︷︷ ︸
=c

− (xu1,v2 − xu1,u2)

∫ 1

0

σ′(3)(u1, λv2 + (1− λ)u2, λxu1,v2 + (1− λ)xu1,u2)dλ︸ ︷︷ ︸
=d

,

so

|σ(·, ·, x)((u, v])| ≤ |a− c|+ |b− d|,

and
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|a− c| ≤|(v2 − u2)(v1 − u1)
∥∥σ′′(2,1)

∥∥
∞

+

+ |(v2 − u2)
∥∥σ′′(2,3)

∥∥
∞

∫ 1

0

λ(xv1,v2 − xu1,v2) + (1− λ)(xv1,u2xu1,u2)dλ

≤|v2 − u2||v1 − u1|α1×

×
(∥∥σ′′(2,1)

∥∥
∞
|v1 − u1|1−α1 +

∥∥σ′′(2,3)

∥∥
∞

sup
t11≤u1≤t21

‖x·,u1‖[t11,t
2
1],α1

)

|b− d| ≤
∣∣∣∣(xv1,v2 − xv1,u2 − xu1,v2 + xu1,u2)×

×
∫ 1

0

σ′(3)(v1, λv2 + (1− λ)u2, λxv1,v2 + (1− λ)xv1,u2)dλ

+ (xu1,v2 − xu1,u2)

∫ 1

0

σ′(3)(v1, λv2 + (1− λ)u2, λxv1,v2 + (1− λ)xv1,u2)

− σ′(3)(u1, λv2 + (1− λ)u2, λxu1,v2 + (1− λ)xu1,u2)dλ

∣∣∣∣
≤|v2 − u2|α2|v1 − u1|α1 ‖x‖[z1,z2],α

∥∥σ′(3)

∥∥
∞

+ |v2 − u2|α2 ‖xu1,·‖[z1
2 ,z

2
2 ],α2
×

×
(

(v1 − u1)

∫ 1

0

∫ 1

0

σ′′(3,1)(µv1 + (1− µ)u1,

λv2 + (1− λ)u2,

µ(λxv1,v2 + (1− λ)xv1,u2)

+ (1− µ)(λxu1,v2 + (1− λ)xu1,u2))dµdλ

+

∫ 1

0

((λxv1,v2 + (1− λ)xv1,u2)− (λxu1,v2 + (1− λ)xu1,u2))×

×
∫ 1

0

σ′′(3,3)(µv1 + (1− µ)u1,

λv2 + (1− λ)u2,

µ(λxv1,v2 + (1− λ)xv1,u2)

+ (1− µ)(λxu1,v2 + (1− λ)xu1,u2))dµ
)
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≤|v2 − u2|α2 |v1 − u1|α1 ‖x‖[t1,t2],α

∥∥σ′(3)

∥∥
∞

+ |v2 − u2|α2|v1 − u1| ‖xu1,·‖[t12,t
2
2],α2

∥∥σ′′(3,1)

∥∥
∞

+ |v2 − u2|α2 ‖xu1,·‖[t12,t
2
2],α2

∥∥σ′′(3,3)

∥∥
∞
×

×
∫ 1

0

λ(xv1,v2 − xu1,v2) + (1− λ)(xv1,u2 − xu1,u2)dλ

≤|v2 − u2|α2 |v1 − u1|α1

(
‖x‖[t1,t2],α

∥∥σ′(3)

∥∥
∞

+ |v1 − u1|1−α1 sup
t11≤u1≤t21

‖xu1,·‖[t12,t
2
2],α2

∥∥σ′′(3,1)

∥∥
∞

+ sup
t11≤u1≤t21

‖xu1,·‖[t12,t
2
2],α2

sup
t12≤u2≤t22

‖x·,u2‖[t11,t
2
1],α1

∥∥σ′′(3,3)

∥∥
∞

)
.

So,

sup
u≺v

|σ(·, ·, x)((u, v])|
|v1 − u1|α1|v2 − u2|α2

≤(t21 − t11)1−α1(t22 − t12)1−α2
∥∥σ′′(2,1)

∥∥
∞

+ (t22 − t12)1−α2
∥∥σ′′(2,3)

∥∥
∞

sup
t11≤u1≤t21

‖x·,u1‖[t11,t
2
1],α1

+ ‖x‖[t1,t2],α

∥∥σ′(3)

∥∥
∞

(3.10)

+ |v1 − u1|1−α1 sup
t11≤u1≤t21

‖xu1,·‖[t12,t
2
2],α2

∥∥σ′′(3,1)

∥∥
∞

+ sup
t11≤u1≤t21

‖xu1,·‖[t12,t
2
2],α2

sup
t12≤u2≤t22

‖x·,u2‖[t11,t
2
1],α1

∥∥σ′′(3,3)

∥∥
∞
.

Thus, from Eq. (3.8), Eq. (3.9) and Eq. (3.10), Fx ∈ Cα,∞([t1, t2]) if x ∈

Cα,∞([t1, t2]) and there exists an ε1 > 0 small enough such that Fx ∈ Cα,∞,2K,φ1,φ2([t1, t1+

ε1]) if x ∈ Cα,∞,2K,φ1,φ2([t1, t1 + ε1]).

Now, to bound ‖σ(·, ·, x)− σ(·, ·, x)‖[t1,t2],α for x, y ∈ Cα,∞,K,φ1,φ2([z1, z1 + ε1]), we
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consider

σ
(
t21, t

2
2, xt21,t22

)
− σ

(
t21, t

2
2, yt21,t22

)
︸ ︷︷ ︸

=A

−
(
σ
(
t11, t

1
2, xt21,t12

)
− σ

(
t11, t

1
2, yt21,t12

))
︸ ︷︷ ︸

=B

−
(
σ
(
t11, t

2
2, xt11,t22

)
− σ

(
t11, t

2
2, yt11,t22

))
︸ ︷︷ ︸

=C

+
(
σ
(
t11, t

1
2, xt11,t12

)
− σ

(
t11, t

1
2, yt11,t12

))
︸ ︷︷ ︸

=D

. Noting that

A =
(
xt21,t22 − yt21,t22

)∫ 1

0

σ′(3)

(
t21, t

2
2, λxt21,t22 + (1− λ)yt21,t22

)
dλ,

B =
(
xt21,t12 − yt21,t12

)∫ 1

0

σ′(3)

(
t21, t

1
2, λxt21,t12 + (1− λ)yt21,t12

)
dλ,

C =
(
xt11,t22 − yt11,t22

)∫ 1

0

σ′(3)

(
t11, t

2
2, λxt11,t22 + (1− λ)yt11,t22

)
dλ,

D =
(
xt11,t12 − yt11,t12

)∫ 1

0

σ′(3)

(
t11, t

1
2, λxt11,t12 + (1− λ)yt11,t12

)
dλ,
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we have,

A−B − C +D =

=

(
xt21,t22 − yt21,t22 −

(
xt21,t12 − yt21,t12

)
−
(
xt11,t22 − yt11,t22

)
+
(
xt11,t12 − yt11,t12

))∫ 1

0

σ′(3)

(
t21, t

2
2, λxt21,t22 + (1− λ)yt21,t22

)
dλ︸ ︷︷ ︸

=A′

+
(
xt21,t12 − yt21,t12

)∫ 1

0

(
σ′(3)

(
t21, t

2
2, λxt21,t22 + (1− λ)yt21,t22

)
− σ′(3)

(
t21, t

1
2, λxt21,t12 + (1− λ)yt21,t12

))
dλ

+
(
xt11,t22 − yt11,t22

)∫ 1

0

(
σ′(3)

(
t21, t

2
2, λxt21,t22 + (1− λ)yt21,t22

)
− σ′(3)

(
t11, t

2
2, λxt11,t22 + (1− λ)yt11,t22

))
dλ

−
(
xt11,t12 − yt11,t12

)∫ 1

0

(
σ′(3)

(
t21, t

2
2, λxt21,t22 + (1− λ)yt21,t22

)
−σ′(3)

(
t11, t

1
2, λxt11,t12 + (1− λ)yt11,t12

))
dλ︸ ︷︷ ︸

=D′

.

We also see that
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D′ =
(
xt11,t12 − yt11,t12

)∫ 1

0

(
σ′(3)

(
t21, t

2
2, λxt21,t22 + (1− λ)yt21,t22

)
− σ′(3)

(
t21, t

1
2, λxt21,t12 + (1− λ)yt21,t12

)
− σ′(3)

(
t11, t

2
2, λxt11,t22 + (1− λ)yt11,t22

)
+ σ′(3)

(
t11, t

1
2, λxt11,t12 + (1− λ)yt11,t12

))
dλ

−
(
xt11,t12 − yt11,t12

)∫ 1

0

(
σ′(3)

(
t21, t

2
2, λxt21,t22 + (1− λ)yt21,t22

)
− σ′(3)

(
t21, t

1
2, λxt21,t12 + (1− λ)yt21,t12

))
dλ

−
(
xt11,t12 − yt11,t12

)∫ 1

0

(
σ′(3)

(
t21, t

2
2, λxt21,t22 + (1− λ)yt21,t22

)
− σ′(3)

(
t11, t

2
2, λxt11,t22 + (1− λ)yt11,t22

))
dλ.

We can rewrite A−B − C +D as follows
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A−B − C +D = A′

+
((
xt21,t12 − yt21,t12

)
−
(
xt11,t12 − yt11,t12

))
×

×
∫ 1

0

(
σ′(3)

(
t21, t

2
2, λxt21,t22 + (1− λ)yt21,t22

)
−σ′(3)

(
t21, t

1
2, λxt21,t12 + (1− λ)yt21,t12

))
dλ︸ ︷︷ ︸

=B′

+
((
xt11,t22 − yt11,t22

)
−
(
xt11,t12 − yt11,t12

))
×∫ 1

0

(
σ′(3)

(
t21, t

2
2, λxt21,t22 + (1− λ)yt21,t22

)
−σ′(3)

(
t11, t

2
2, λxt11,t22 + (1− λ)yt11,t22

))
dλ︸ ︷︷ ︸

=C′

+
(
xt11,t12 − yt11,t12

)∫ 1

0

(
σ′(3)

(
t21, t

2
2, λxt21,t22 + (1− λ)yt21,t22

)
− σ′(3)

(
t21, t

1
2, λxt21,t12 + (1− λ)yt21,t12

)
− σ′(3)

(
t11, t

2
2, λxt11,t22 + (1− λ)yt11,t22

)
+ σ′(3)

(
t11, t

1
2, λxt11,t12 + (1− λ)yt11,t12

))
dλ.



48

Since

σ′(3)

(
t21, t

2
2, λxt21,t22 + (1− λ)yt21,t22

)
− σ′(3)

(
t21, t

1
2, λxt21,t12 + (1− λ)yt21,t12

)
= (t22 − t12)

∫ 1

0

σ′′(3,2)

(
t21, µt

2
2 + (1− µ)t12,

µ
(
λxt21 + (1− λ)yt21,t22

)
+ (1− µ)

(
λxt21,t12 + (1− λ)yt21,t12

))
dµ

+
(
λ
(
xt21,t22 − xt21,t12

)
+ (1− λ)

(
yt21,t22 − yt21,t12

))
×

×
∫ 1

0

σ′′(3,3)

(
t21, µt

2
2 + (1− µ)t12,

µ
(
λxt21 + (1− λ)yt21,t22

)
+ (1− µ)

(
λxt21,t12 + (1− λ)yt21,t12

))
dµ,

and

σ′(3)

(
t11, t

2
2, λxt11,t22 + (1− λ)yt11,t22

)
− σ′(3)

(
t11, t

1
2, λxt11,t12 + (1− λ)yt11,t12

)
= (t22 − t12)

∫ 1

0

σ′′(3,2)

(
t11, µt

2
2 + (1− µ)t12,

µ
(
λxt11 + (1− λ)yt11,t22

)
+ (1− µ)

(
λxt11,t12 + (1− λ)yt11,t12

))
dµ

+
(
λ
(
xt11,t22 − xt11,t12

)
+ (1− λ)

(
yt11,t22 − yt11,t12

))
×

×
∫ 1

0

σ′′(3,3)

(
t11, µt

2
2 + (1− µ)t12,

µ
(
λxt11 + (1− λ)yt11,t22

)
+ (1− µ)

(
λxt11,t12 + (1− λ)yt11,t12

))
dµ,

we can now rewrite A−B − C +D as follows
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A−B − C +D =

= A′ +B′ + C ′

+
(
xt11,t12 − yt11,t12

) (
t22 − t12

)
×

×
∫ 1

0

[ ∫ 1

0

(
σ′′(3,2)

(
t21, µt

2
2 + (1− µ)t12,

µ
(
λxt21,t22 + (1− λ)yt21,t22

)
+ (1− µ)

(
λxt21,t12 + (1− λ)yt21,t12

))
− σ′′(3,2)

(
t11, µt

2
2 + (1− µ)t12,

µ
(
λxt11,t22 + (1− λ)yt11,t22

)
+(1− µ)

(
λxt11,t12 + (1− λ)yt11,t12

)))
dµ

]
dλ︸ ︷︷ ︸

=D′′

+
(
xt11,t12 − yt11,t12

)
×

×
∫ 1

0

[(
λ
(
xt21,t22 − xt21,t12

)
+ (1− λ)

(
yt21,t22 − yt21,t12

))
×

×
∫ 1

0

σ′′(3,3)

(
t21, µt

2
2 + (1− µ)t12,

µ
(
λxt21,t22 + (1− λ)yt21,t22

)
+ (1− µ)

(
λxt21,t12 + (1− λ)yt21,t12

))
dµ

−
(
λ
(
xt11,t22 − xt11,t12

)
+ (1− λ)

(
yt11,t22 − yt11,t12

))
×

×
∫ 1

0

σ′′(3,3)

(
t11, µt

2
2 + (1− µ)t12,

µ
(
λxt11,t22 + (1− λ)yt11,t22

)
+(1− µ)

(
λxt11,t12 + (1− λ)yt11,t12

))
dµ

]
dλ︸ ︷︷ ︸

=E′′

.
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We can rewrite E ′′ as:

E ′′ =
(
xt11,t12 − yt11,t12

)
×

×
∫ 1

0

[ (
λx
(
[t11, t

2
1]× [t12, t

2
2]
)

+ (1− λ)y
(
[t11, t

2
1]× [t12, t

2
2]
))
×

×
∫ 1

0

σ′′(3,3)

(
t21, µt

2
2 + (1− µ)t12,

µ
(
λxt21,t22 + (1− λ)yt21,t22

)
+(1− µ)

(
λxt21,t12 + (1− λ)yt21,t12

))
dµ

]
dλ︸ ︷︷ ︸

=E′′′

+
(
xt11,t12 − yt11,t12

)
×

×
∫ 1

0

[(
λ
(
xt11,t22 − xt11,t12

)
+ (1− λ)

(
yt11,t22 − yt11,t12

))
×

×
∫ 1

0

[
σ′′(3,3)

(
t21, µt

2
2 + (1− µ)t12,

µ
(
λxt21,t22 + (1− λ)yt21,t22

)
+ (1− µ)

(
λxt21,t12 + (1− λ)yt21,t12

))
− σ′′(3,3)

(
t11, µt

2
2 + (1− µ)t12,

µ
(
λxt11,t22 + (1− λ)yt11,t22

)
+(1− µ)

(
λxt11,t12 + (1− λ)yt11,t12

))]
dµ

]
dλ︸ ︷︷ ︸

=F ′′′

.

Now, we see

|A′| ≤ ‖x− y‖[z1,z2],α |t21 − t11|α1|t22 − t12|α2
∥∥σ′(3)

∥∥
∞
,

|B′| ≤
∥∥∥x·,t12 − y·,t12∥∥∥[t11,t

2
1],α1

|t21 − t11|α1

(
|t22 − t12|

∥∥σ′′(3,2)

∥∥
∞

+

+
∥∥σ′′(3,2)

∥∥
∞

∫ 1

0

λ(xt21,t22 − xt21,t12) + (1− λ)(yt21,t22 − yt21,t12)

)
,
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similarly

|C ′| ≤
∥∥∥xt11,· − yt11,·∥∥∥[t12,t

2
2],α2

|t22 − t12|α2

(
|t21 − t11|

∥∥σ′′(3,2)

∥∥
∞

+

+
∥∥σ′′(3,2)

∥∥
∞

∫ 1

0

λ(xt21,t22 − xt11,t22) + (1− λ)(yt21,t22 − yt11,t22)

)
,

|D′′| ≤|xt11,t12 − yt
1
1, t

1
2|(t22 − t12)(t21 − t11)

∥∥σ′′′(3,2,1)

∥∥
∞

+ |xt11,t12 − yt
1
1, t

1
2|
∥∥σ′′′(3,2,3)

∥∥
∞

(t22 − t12)×

×
∣∣∣∣ ∫ 1

0

∫ 1

0

µ(λxt21,t22 + (1− λ)yt21,t22) + (1− µ)(λxt21,t12 + (1− λ)yt21,t12)

− µ(λxt11,t22 + (1− λ)yt11,t22)− (1− µ)(λxt11,t12 + (1− λ)yt11,t12)dµdλ

∣∣∣∣,
|E ′′′| ≤|xt11,t12 − yt11,t12|

∥∥σ′′(3,3)

∥∥
∞

∣∣∣∣∫ 1

0

(λx((t1, t2]) + (1− λ)y((t1, t2]))dλ

∣∣∣∣ ,
|F ′′′| ≤|xt11,t12 − yt11,t12|

∥∥σ′′′(3,3,1)

∥∥
∞

(t21 − t11)×

×
∫ 1

0

λ(xt11,t22 − xt11,t12) + (1− λ)(yt11,t22 − yt11,t12)dλ

+ |xt11,t12 − yt11,t12|
∥∥σ′′′(3,3,3)

∥∥
∞

∫ 1

0

[
λ(xt11,t22 − xt11,t12) + (1− λ)(yt11,t22 − yt11,t12)×

×
∫ 1

0

µ
(
λxt11,t22 + (1− λ)yt11,t22

)
+ (1− µ)

(
λxt11,t12 + (1− λ)yt11,t12

)]
dµdλ.

Thus, if x, y ∈ Cα,∞,K,φ1,φ2([t1, t1 + ε1]) then there is a constant, C, based on K, the

bounds σ and the bounds on σ’s derivatives, such that

(3.11) ‖σ(·, ·, x)− σ(·, ·, x)‖[t1,t2],α ≤ C × ‖x− y‖[t1,t2],α .

Thus, from Eq. (3.8), Eq. (3.9) and Eq. (3.11), there exists an ε2, independent of t1

and t2, such that

(3.12) ‖Fx− Fy‖[t1,t1+ε2],α,∞ ≤ δ ‖x− y‖[t1,t1+ε2],α,∞

for some δ ∈ (0, 1). Thus, if we let ε0 = min(ε1, ε2), we have that

F : Cα,∞,K,φ1,φ2([t1, t1 + ε0])→ Cα,∞,K,φ1,φ2([t1, t1 + ε0])
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is a contraction.

Theorem III.13. Under the same assumptions as Proposition III.12, the ordinary

differential equation

(3.13) dx(t) = b(t, x(t))dt+ σ(t, x(t))dg(t), x(0) = x0 ∈ R,

has a unique solution in Cβ([0,T]) where β = (β1, β2).

Proof. We now iteratively apply the result of Proposition III.12 in each direction in

turn to have the global existence of a unique solution on

[0, ε]× [0, ε]
by Proposition III.12−−−−−−−−−−−→ [0, 2ε]× [0, ε]

...

by Proposition III.12−−−−−−−−−−−→ [0, T1]× [0, ε]

by Proposition III.12−−−−−−−−−−−→ [0, T1]× [0, 2ε]

...

by Proposition III.12−−−−−−−−−−−→ [0, T1]× [0, T2].

Uniqueness follows directly from Eq. (3.12).

We now state the desired 2-parameter result.

Theorem III.14. Let (V γ
t )t∈T be a 2-dimensional Volterra process with γ-Hölder

paths where γ = (γ1, γ2) ∈
(

1
2
, 1
]2

and let αi, βi be such that 1
2
< βi < γi, and

βi > αi > 1 − βi i = 1, 2, . . . , d. Let b and σ satisfy the same hypothesis as in the

above proposition. Then the ordinary differential equation

(3.14) dXt = b(t,Xt)dt+ σ(t,Xt)dVt, X0 = x0 ∈ R,

has a unique solution in Cβ([0,T]) with probability 1, where β = (β1, . . . , βd).
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Proof. Since αi +βi > 1 for all i ∈ {1, . . . , d}, the integral
∫ t

0
f(t)dVt is almost surely

well defined for f ∈ Cα([0,T]). Then the result follows directly from Theorem III.13

applied point-wise.

3.4 Maximum Likelihood estimation

As in Chapter II, this section will concern estimating parameters for stochastic

differential equations of the following form:

dXt = A(t,Xt, θ)dt+ σ(t)dV γ
t ,

where V γ is a 2-parameter Volterra process, θ ∈ Θ ⊂ R and σ(t) is a positive,

non-vanishing function on [0, T ] = [0, T1]× [0, T2].

First, we define the fundamental 1-parameter martingales associated with Kγ1

and Kγ2 . If V γi , i = 1, 2, is the 1-parameter Volterra process defined by Kγi i = 1, 2,

then N∗,iti , defined by

N∗,iti =

∫ ti

0

ksi1 dV
γi
si

i = 1, 2,

where ksi1 is the kernel defined in Eq. (3.1) with C(s) = 1, for all s, for V γi i = 1, 2,

is the fundamental 1-parameter martingale associated with V γi i = 1, 2.

Next, let

kt1(s) = kt11 (s1)kt21 (s2).

Then, using Theorem III.9, with s = (s1, s2),

N∗t =

∫ t

0

kt1(s)dV γ
s

is the fundamental strong 2-parameter Gaussian martingale associated with V γ.

3.4.1 Maximum likelihood estimator when drift is a polynomial in θ.

We have the following result on the maximum likelihood estimate of θ.
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Theorem III.15. Under the assumptions of Proposition III.12 and Theorem III.14,

let V γ be a 2-parameter Volterra process. Define the process X = (Xt)t∈[0,T ] by the

equations

dXt = A(t,Xt, θ)dt+ σ(t)dV γ
t , t ∈ (0, T )

X0 = ξ a.s.

where A(t,Xt, θ) =
∑p

i=0 ai(t1, t2, Xt1,t2)θi and σ (a positive non-vanishing function

on [0, T ]) are known functions and θ ∈ Θ ⊂ R. Assuming σ is bounded and has

bounded third derivatives, the maximum likelihood estimator, θ̂T , of θ is given by:

argmax
θ∈Θ

∫ T

0

Qθ(t)dUt −
1

2

∫ T

0

Q2
θ(t1, t2)d

〈
N∗,1

〉
t1
d
〈
N∗,2

〉
t2
,

where

Qθ(t1, t2) =
d

d 〈N∗,1〉t1
d

d 〈N∗,2〉t2

∫ t1

0

∫ t2

0

kt1,t21 (s1, s2)
A(s1, s2, Xs1,s2 , θ)

σ(s1, s2)
ds2ds1,

and

Ut1,t2 =

∫ t1

0

∫ t2

0

Qθ(s1, s2)d
〈
N∗,2

〉
s2
d
〈
N∗,1

〉
s1

+N∗t1,t2 .

Proof. We let PT
θ be the measure induced by the process {Xt; 0 4 t 4 T} when θ is

the true parameter. We then have that the Radon-Nikodym derivative of PT
θ with

respect to PT
0 is given by:

dPT
θ

dPT
0

= exp

{∫ T

0

Qθ(t)dUt −
1

2

∫ T

0

Q2
θ(t1, t2)d

〈
N∗,1

〉
t1
d
〈
N∗,2

〉
t2

}
.

Thus, the log-likelihood function is given by

lT (θ) =

∫ T

0

Qθ(t)dUt −
1

2

∫ T

0

Q2
θ(t1, t2)d

〈
N∗,1

〉
t1
d
〈
N∗,2

〉
t2
,

and the MLE is given by

θ̂T = argmax
θ∈Θ

lT (θ).
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3.4.2 Case of linear drift

A specific case of interest is when the drift function, A(t,Xt, θ) is linear in θ, i.e.

A(t,Xt, θ) = a0(t,Xt) + θ a1(t,Xt).

In this case, we have an analytic expression for the MLE as given in the following

corollary.

Corollary III.16. Under the assumptions of the above Theorem, when the drift term

is linear in θ, the MLE, θ̂T , of θ is given by:

θ̂T =

∫ T2

0

∫ T1

0
J1(t1, t2)dUt1,t2 −

∫ T1

0

∫ T2

0
J0(t1, t2)J1(t1, t2)d 〈N∗,1〉t1 d 〈N∗,2〉t2∫ T2

0

∫ T1

0
J2

1 (t1, t2)d 〈N∗,1〉t1 d 〈N∗,2〉t2
,

where

Ji(t1, t2) =
d

d 〈N∗,1〉t1
d

d 〈N∗,2〉t2

∫ t1

0

∫ t2

0

kt1,t21 (s1, s2)
ai(s1, s2, Xs1,s2)

σ(s1, s2)
ds2ds1.

Proof. We see directly that in the linear case,

Qθ(t) = J0(t) + J1(t) · θ

Thus, the likelihood equation is∫ T

0

J1(t)dUt −
∫ T2

0

∫ T1

0

(J0(t1, t2) + θ J1(t1, t2))J1(t1, t2)d
〈
N∗,1

〉
t1
d
〈
N∗,2

〉
t2

= 0,

and therefore, the MLE θ̂T is given by

θ̂T =

∫ T2

0

∫ T1

0
J1(t1, t2)dUt1,t2 −

∫ T1

0

∫ T2

0
J0(t1, t2)J1(t1, t2)d 〈N∗,1〉t1 d 〈N∗,2〉t2∫ T2

0

∫ T1

0
J2

1 (t1, t2)d 〈N∗,1〉t1 d 〈N∗,2〉t2
.

3.4.3 Properties of Maximum Likelihood Estimate

While there are considerably less multi-parameter martingale results available, we

have, using sectorial limits, the following strong law of large numbers.
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Lemma III.17. Assume X is a strong, 2-parameter martingale with 〈X〉·,∞ =

〈X〉∞,· =∞ a.s.. Then

lim
t ∞

Xt

〈X〉t
= 0 a.s..

Proof. Fix t1. Then by Corollary 1, p. 144 in [35]],

lim
t2→∞

Xt1,t2

〈X〉t1,t2
= 0 a.s.

⇒ lim
t1→∞

lim
t2→∞

Xt1,t2

〈X〉t1,t2
= 0 a.s..

Similarly, with π2 : (1, 2) 7→ (2, 1),

π2 − lim
t→∞

Xt

〈X〉t
= 0 a.s..

Thus the desired result is shown.

Now, we show that the estimator is sectorially strongly consistent (i.e. if θ0 is the

true parameter, limT ∞ θ̂T − θ0 = 0 a.s.).

Theorem III.18. The MLE, θ̂T , is sectorially strongly consistent provided∫ T

0

J2
1 (t)d

〈
N∗,1

〉
t1
d
〈
N∗,2

〉
t2
→∞ a.s. [Pθ0 ] as T→∞.

Proof. Let θ0 be the true parameter. Then, since

dUt = (J0(t) + θ0J1(t)) d
〈
N∗,1

〉
t1
d
〈
N∗,2

〉
t2

+ dN∗t ,

we have

dPT1
θ

dPT1
θ0

= exp

{
(θ − θ0)

∫ T

0

J1(t)dN∗t −
1

2
(θ − θ0)2

∫ T

0

J2
1 (t)d

〈
N∗,1

〉
t1
d
〈
N∗,2

〉
t2

}
.

Following this representation of the Radon-Nikodym derivative, we obtain that

θ̂T1 − θ0 =

∫ T
0
J1(t)dN∗t∫ T

0
J2

1 (t)d 〈N∗,1〉t1 d 〈N∗,2〉t2
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Thus

(3.15) RT ≡
∫ T

0

J1(t)dN∗t

is a strong 2-parameter martingale with the quadratic variation process

(3.16) 〈R〉T =

∫ T

0

J2
1 (t)d

〈
N∗,1

〉
t1
d
〈
N∗,2

〉
t2
,

and the result follows directly from Corollary III.17.



CHAPTER IV

Parameter estimation in Integrals of functions of Brownian
Motion

4.1 Introduction

In this chapter, we consider statistical inference based on observing a process,

Xt = X(t; θ) defined by the following stochastic differential equation

dXt = f(Bt; θ)dt X0 = 0.

This stochastic differential equation is not of the form considered in earlier chapters

where there is a non-random drift component and a random volatility component.

The problem in this chapter is motivated by the need to develop degradation models

where the degradation process has non-decreasing sample paths.

Degradation data occur in the analysis of survival and reliability data where one

observes how the performance of a subject or device changes over time. The increased

availability of sensor technology has made it possible to collect and analyze data on

how devices “age” over time. This is becoming more common in the monitoring

and maintenance of expensive systems, sometimes called predictive or condition-

based maintenance [12]. In time, one can anticipate such techniques being used with

patients’ health care as we move even more to electronic medical records.

Most of the literature in longitudinal data analysis, growth curves, and even

58
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degradation models assume that the data at each point in time are Gaussian. For

example, Brownian motion with linear drift has been used to model degradation

data in reliability applications. Part of the reason for the popularity of this model

is that the time-to-failure, defined as the first-passage time of the process over a

certain threshold, has been developed and is known to follow an inverse-Gaussian

distribution [11]. Nair and Wang [40] and others have considered time-transformed

versions of this process that accommodates more complex degradation shapes.

But one disadvantage with these models is that they do not have non-decreasing

sample paths (degradation levels), which is common in many applications. The

methods developed in this section is a first effort at addressing this problem. We

consider processes that are integrals of positive powers of the Brownian motion with

zero mean. Specifically, the process is Xt =
∫ t

0
(B2

s)
θ
ds. We observe Xjtk for different

devices or subjects at time points tk1 , . . . , tkj . The goal is to make inference about

θ and the distribution of the underlying “time-to-failure” TD = inf{t : X(t) = D}

for some fixed D, including prediction of the conditional distribution to failure given

past observations of Xt.
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Figure 4.1: Sample path Xt for θ = 0.5, 1, 1.5 and 2
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4.2 Preliminaries and Problem Statement

4.2.1 Notation and Definitions

For simplicity of presentation, we will adopt the following notation (again,means

‘is denoted as’):

1. Vµ,σ will be a Normal random variable with mean µ and standard deviation σ.

2. For θ > 0, Yt , (B2
t )
θ
.

3. For θ > 0,

(4.1) Xt ,
∫ t

0

Ytds =

∫ t

0

(
B2
s

)θ
ds.

4. For D > 0, define TD as

(4.2) TD = inf
t≥0
{t : Xt = D} .

5. U is a Chi-square random variable with 1 degree of freedom. The density

function of U is

fU(u) =
e−

u
2√

2πu
.

6. Uλ is a non-central Chi-square random variable with 1 degree of freedom and

non-centrality parameter λ > 0. The density function of Uλ is

fUλ(u) =
1

2
e−

u+λ
2

(u
λ

)− 1
4
I− 1

2
(
√
λu).

where Ia(y) is the modified Bessel function of the first kind (see for example [1])

given by

Ia(y) =
(y

2

)a ∞∑
j=0

(
y2

4

)j
j!Γ[a+ j + 1]

.

Note that (
Vµ,σ
σ

)2

∼ Uλ with λ =
(µ
σ

)2

.
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We will make use of the following two propositions that analytically define fractional

moments of the two above random variables.

Proposition IV.1. If U is a Chi-Square random variable with 1 degree of freedom

for any θ > 0, we have

(4.3) E
[
U θ
]

=
Γ
[
θ + 1

2

]
2θ√

π
.

Proof. Recall the density of a Chi-square random variable with 1 degree of freedom

is

(4.4) fU(u) =
e−

u
2√

2πu
.

By direct calculation we have

E
[
U θ
]

=

∫ ∞
0

uθfU(u)du

=

∫ ∞
0

uθ
e−

u
2√

2πu
du

=

∫ ∞
0

u(θ+ 1
2)−1 e−

u
2

Γ
[
θ + 1

2

]
2θ+

1
2

(
Γ
[
θ + 1

2

]
2θ+

1
2

√
2π

)
du

=

(
Γ
[
θ + 1

2

]
2θ+

1
2

√
2π

)∫ ∞
0

u(θ+ 1
2)−1 e−

u
2

Γ
[
θ + 1

2

]
2θ+

1
2

du︸ ︷︷ ︸
=1

=
Γ
[
θ + 1

2

]
2θ√

π
.

We also have the following more general result.

Proposition IV.2. If Uλ is a non-central Chi-Square random variable with 1 degree

of freedom and non-centrality parameter λ > 0, for any θ > 0 we have

(4.5) E
[
U θ
λ

]
=

2θ e−
λ
2 Γ
[
θ + 1

2

]
1F1

(
1
2

+ θ, 1
2
, λ

2

)
√
π

,
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where 1F1(a; b; z) is the Confluent Hypergeometric Function of the First Kind (see

for example [1]).

Proof. Recall the density of a non-central Chi-Square random variable with 1 degree

of freedom and non-centrality parameter λ is

(4.6) fUλ(u) =
1

2
e−

u+λ
2

(u
λ

)− 1
4
I− 1

2
(
√
λu).

Thus we have,

E
[
U θ
λ

]
=

∫ ∞
0

uθfU(u)du

=

∫ ∞
0

uθ
1

2
e−

u+λ
2

(u
λ

)− 1
4

(√
λu

2

)− 1
2 ∞∑
j=0

(
λu
4

)j
j!Γ[j + 1

2
]
du

=
∞∑
j=0

1

2
1
2

+2j
e−

λ
2

λj

j!Γ
[
j + 1

2

] ∫ ∞
0

uθ+j−
1
2 e−

1
2da︸ ︷︷ ︸

=2
1
2 +j+θΓ[ 1

2
+j+θ]

= 2θ
∞∑
j=0

(
λ
2

)j
e−

λ
2

j!

Γ
[
j + θ + 1

2

]
Γ
[
j + 1

2

]
= 2θ ∗ e−

λ
2

Γ
[
θ + 1

2

]
Γ
[

1
2

] ∞∑
i=0

(
1
2

+ θ
)
j(

1
2

)
j

(
λ
2

)j
j!︸ ︷︷ ︸

=1F1( 1
2

+θ, 1
2
,λ
2 )

,

where

(a)n = a(a+ 1)(a+ 2) · (a+ n− 1),

and 1F1(a; b; z) is defined as in [1].

Remark IV.3. Eq. (4.5) reduces to Eq. (4.3) when λ = 0, i.e. for θ > 0,

E
[
U θ
λ=0

]
= E

[
U θ
]
.

The processes that will be dealt with in this chapter are integrals of Brownian

Motion. We recall its definition.
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Definition IV.4 (Brownian Motion). Standard Brownian motion on the positive

real line, denoted {Bt, 0 ≤ t ≤ ∞}, is a continuous random process defined by the

following four properties:

1. B0 = 0.

2. Bt is almost surely continuous.

3. Bt has independent increments, i.e. for 0 ≤ s ≤ t ≤ u ≤ v, Bv−Bu and Bt−Bs

are independent random variables.

4. For t ≥ s ≥ 0, Bt −Bs ∼ N (0, σ2 = t− s).

4.2.2 Problem Statement

We are concerned with estimating a parameter in the following simple differential

equation:

(4.7) dXt =
(
B2
t

)θ
dt with X0 = 0

As stated above, {Xt, t ≥ 0} is the following continuous, monotonically non-decreasing

random process

Xt ,
∫ t

0

(
B2
s

)θ
ds

for a fixed θ > 0. We will also be concerned with estimating the first passage time

of the process, i.e. the time at which the process first equals a given fixed level,

D > 0, which we will denote as TD. Since the process starts at zero and is almost

surely increasing, this time is unique for each path of the process. Unfortunately we

are not able to directly estimate TD based on observations, so we will instead follow

the approach of first estimating θ based on observations of Xt, and then, through

simulation, estimate TD.
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Thus, our first estimation problem concerns θ. We will consider two different

observation setups.

• Non-identically distributed observations

We will first consider a general situation where we observe n independent paths

of Xt once each. The times that each path is observed may not be the same

across the n different paths.

• Identically distributed observations

Second we will consider a simpler sub-case where we again observe n independent

paths of Xt once each, but now all n processes are observed at the same time.

The primary difficulty that must be overcome in the more general case is that the

observations are not identically distributed.

Once we obtain an estimate of θ, we can easily simulate many paths ofXt, compute

TD for each one of them and by using the sample average, obtain an estimate of

TD. In fact, through this method, we will actually be obtaining an estimate of the

distribution of TD, which we will be able to use to provide prediction intervals based

on the simulations.

4.3 Estimation of θ

4.3.1 Moments of Xt

Due to the complexity of the process Xt, the approach of maximum likelihood

estimation of θ, which requires knowledge of the probability distribution of Xt, is

intractable. However, through direct computation, the first two moments of Xt can

be analytically obtained, which leads us to several moment-based estimators. To this

end, we have the following proposition:
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Proposition IV.5. For a fixed θ > 0 and t > 0, the first two moments of XT are

given by:

E [Xt] =
Γ
[
θ + 1

2

]
2(θ + 1)

√
π

(2t)θ+1.

(4.8)

E
[
(Xt)

2] =
4θΓ[θ+ 1

2 ]
2
Γ[θ+1]Γ[2θ+ 3

2 ]
πΓ[3θ+ 5

2 ](θ+1) 3F2

({
θ +

1

2
, θ +

1

2
, θ + 1

}
,

{
1

2
, 3θ +

5

2

}
, 1

)
t2(θ+1).

(4.9)

Proof. We first prove Eq. (4.8). We have

E [Xt] = E

[∫ t

0

(
B2
s

)θ
ds

]
=

∫ t

0

E
[(
B2
s

)θ]
ds.

Now,

E
[(
B2
s

)θ]
= E

[(
V 2

0,
√
s

)θ]

= E

((√sV0,
√
s√
s

)2
)θ


= sθE
[(
V 2

0,1

)θ]
= sθE

[
U θ
]

=
Γ
[
θ + 1

2

]
√
π

(2s)θ,

where the last line follows from Eq. (4.3). Thus,

E [Xt] =

∫ t

0

Γ
[
θ + 1

2

]
√
π

(2s)θds

=
Γ
[
θ + 1

2

]
2(θ + 1)

√
π

(2t)θ+1.
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Now we prove Eq. (4.9). First we notice that

E
[
(Xt)

2] = E

[(∫ t

0

Ysds

)2
]

= E

[∫ t

0

∫ t

0

YsYs′ds
′ds

]
= E

[
2

∫ t

0

∫ t

0

1[s′<s]YsYs′ds
′ds

]
by symmetry

= 2E

[∫ t

0

∫ s

0

YsYs′ds
′ds

]
= 2

∫ t

0

∫ s

0

E [YsYs′ ] ds
′ds.(4.10)

For s′ < s, we have

E [YsYs′ ] =

∫ ∞
−∞

E [YsYs′|Bs′ = a] P (Bs′ = a) da

=

∫ ∞
−∞

(a2)θE [Ys|Bs′ = a] P
(
V0,
√
s′ = a

)
da.

Now,

E [Ys|Bs′ = a] = E

[(
V 2
a,
√
s−s′

)θ]
= E

[(
(s− s′)U2

λ

)θ]
with λ =

a2

s− s′

= (s− s′)θE
[(
U2
λ

)θ]
=

(s− s′)θ2θ e−
λ
2 Γ
[
θ + 1

2

]
1F1

(
θ + 1

2
, 1

2
, λ

2

)
√
π

= (2(s− s′))θ e−
λ
2

∞∑
n=0

Γ
[
θ + 1

2
+ n
]

Γ
[

1
2

+ n
] (

λ
2

)n
n!

.
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Thus,

E [YsYs′ ] =

∫ ∞
−∞

(a2)θ

(
(2(s− s′))θ e−

λ
2

∞∑
n=0

Γ
[
θ + 1

2
+ n
]

Γ
[

1
2

+ n
] (

λ
2

)n
n!

)(
1√
2πs′

e−
a2

2s

)
da

=
(2(s− s′))θ√

2πs′

∞∑
n=0

Γ
[
θ + 1

2
+ n
]

Γ
[

1
2

+ n
]
n!

∫ ∞
−∞

(a2)θ e
− a2

2(s−s′)−
a2

2s′

(
a2

2(s− s′)

)n
da︸ ︷︷ ︸

=2
1
2 +θ( s′s )

θ+ 1
2 +n

(s−s′)θ+
1
2 Γ[θ+ 1

2
+n]

=
4θ(s− s′)2θ+ 1

2√
πs′

(
s′

s

)θ+ 1
2
∞∑
n=0

Γ
[
θ + 1

2
+ n
]2

Γ
[

1
2

+ n
] (

s′

s

)n
n!︸ ︷︷ ︸

=
Γ[θ+ 1

2 ]
2

√
π 2F1(θ+ 1

2
,θ+ 1

2
, 1
2
, s
′
s )

(4.11)

=
4θ(s− s′)2θ+ 1

2 Γ
[
θ + 1

2

]2
π
√
s′

(
s′

s

)θ+ 1
2

2F1

(
θ +

1

2
, θ +

1

2
,
1

2
,
s′

s

)
,

where 2F1(a; b; z) is the Hypergeometric Function (see for example [1]). Now, from

Eq. (4.11), we have∫ s

0

E [YsYs′ ] ds
′ =

4θ
√
πsθ+

1
2

∫ s

0

(s′)θ(s− s′)2θ+ 1
2

∞∑
n=0

Γ
[
θ + 1

2
+ n
]2

Γ
[

1
2

+ n
] (s′)n

snn!
ds′

=
4θ

√
πsθ+

1
2

∞∑
n=0

Γ
[
θ + 1

2
+ n
]2

Γ
[

1
2

+ n
]
snn!

∫ s

0

(s′)θ+n(s− s′)2θ+ 1
2ds′︸ ︷︷ ︸

=
s
3θ+ 3

2 +n
Γ[θ+1+n]Γ[2θ+ 3

2 ]
Γ[3θ+ 5

2 +n]

=
4θs2θ+1Γ

[
2θ + 3

2

]
√
π

∞∑
n=0

Γ
[
θ + 1

2
+ n
]2

Γ [θ + 1 + n]

Γ
[
3θ + 5

2
+ n
]

Γ
[

1
2

+ n
] 1

n!︸ ︷︷ ︸
Γ[θ+ 1

2 ]
2
Γ[θ+1]

√
πΓ[3θ+ 5

2 ]
3F2({θ+ 1

2
,θ+ 1

2
,θ+1},{ 1

2
,3θ+ 5

2},1)

=
4θs2θ+1Γ

[
θ + 1

2

]2
Γ [θ + 1] Γ

[
2θ + 3

2

]
πΓ
[
3θ + 5

2

] ×(4.12)

× 3F2

({
θ +

1

2
, θ +

1

2
, θ + 1

}
,

{
1

2
, 3θ +

5

2

}
, 1

)
,

where 3F2({a1, a2, a3}; {b1, b2}; z) is a Generalized Hypergeometric Function (see for
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example [1]). Finally, we have∫ t

0

∫ s

0

E [YsYs′ ] ds
′ds =

=
4θΓ

[
θ + 1

2

]2
Γ [θ + 1] Γ

[
2θ + 3

2

]
πΓ
[
3θ + 5

2

] ×

× 3F2

({
θ +

1

2
, θ +

1

2
, θ + 1

}
,

{
1

2
, 3θ +

5

2

}
, 1

)∫ t

0

s2θ+1ds

=
4θΓ

[
θ + 1

2

]2
Γ [θ + 1] Γ

[
2θ + 3

2

]
πΓ
[
3θ + 5

2

] ×

× 3F2

({
θ +

1

2
, θ +

1

2
, θ + 1

}
,

{
1

2
, 3θ +

5

2

}
, 1

)
t2(θ+1)

2(θ + 1)
.

Thus

E
[
(Xt)

2] = 2

∫ t

0

∫ s

0

E [YsYs′ ] ds
′ds

=
4θΓ[θ+ 1

2 ]
2
Γ[θ+1]Γ[2θ+ 3

2 ]
πΓ[3θ+ 5

2 ](θ+1) 3F2

({
θ +

1

2
, θ +

1

2
, θ + 1

}
,

{
1

2
, 3θ +

5

2

}
, 1

)
t2(θ+1).

(4.13)

4.3.2 Non-identically distributed observations

Asymptotic Method of Moments

The first estimator we develop is based on observing n independent paths of Xt,

where each path is observed once at different times, {Xi,ti}ni=1, ti > 0 for all i.

Though the expected value of each observation is different (i.e. the observations are

independent but not identically distributed), through the use of the Kolmogorov Law

of Large numbers and Kronecker’s lemma, we develop an estimator that is almost

surely consistent. We recall the following Corollary:

Corollary IV.6 (Corollary 7.4.1 [50]). Let {Xn, n ≥ 1} be an independent sequence

of random variables satisfying E [X2
n] < ∞. Suppose we have a monotone sequence
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bn ↑ ∞. If ∑
k

V ar

(
Xk

bk

)
<∞

then

Sn − E [Sn]

bn

a.s.−−→ 0,

where

Sn =
n∑
k=1

Xk.

In particular, we have

(4.14) lim
n→∞

∑n
i=1 Xi,ti − E [Xti ]

n
= 0 a.s.

Thus, using an approach similar to the method of moments, we have the following

estimator of θ. We consider only situations where t > 5 and θ ≥ 0.1 to ensure a well

defined estimator.

Definition IV.7. Assuming that we have n paths of Xt, each observed once at a

different time ti (ti > 5), we define θ̂ as

(4.15) θ̂ = arg
θ>0

{∑n
i=1Xi,ti − E [Xti ]

n
= 0

}
.

Properties of θ̂

We first establish establish properties for the asymptotic method of moments

estimator θ̂. The first property, consistency, is direct based on the definition of the

estimator.

Proposition IV.8. Assuming θ̂ is defined as in Eq. (4.15), we have

θ̂
a.s.−−→ θ as n→∞.
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Due to the fact that we assume that the observations are not made at a fixed,

common time, we are dealing with independent but not identically distributed ran-

dom variables. The standard central limit theorem does not apply, and we must

appeal to a more general result; namely Lyapunov’s condition. We recall that if, for

a collection of independent, mean-zero random variables {Xi}ni=1, we can show there

exists a δ > 0 such that

lim
n→∞

1

s2+δ
n

n∑
i=1

E
[
|Xi|2+δ

]
= 0

where s2
n =

∑n
i=1E [X2

i ], then ∑n
i=1Xi

sn

D−→ N(0, 1).

The process does not easily allow for calculation of non-integer moments, and due

to the convexity of the absolute value, we must use the fourth moment (i.e. δ = 2)

if we would like to appeal to this condition. While the computations are currently

untenable, there certainly appears to be evidence of convergence based on numerical

calculations for serval various values of the parameter. This leads us to believe

that the variance of our estimator decreases as a linear function of n, and based

on the computed variances, we expect this estimator to preform well even with few

observations.

4.3.3 Identically distributed observations

Method of Moment estimators, θ̂1 and θ̂2

Here, we will assume a slightly simpler estimation problem. We still suppose that

we observe n independent paths of Xt where each path is observed once, but now we

assume that each path is observed at the same time. From the law of large numbers,
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we have

lim
n→∞

1

n
·

n∑
i=1

Xt,i = E [Xt] ,

and lim
n→∞

1

n
·

n∑
i=1

(Xt,i)
2 = E

[
(Xt)

2] .
The simplest estimators based on n independent observations of Xt for a fixed and

common t > 0 are method of moments estimators based on the first two moments.

Directly from the above proposition, we can define these estimators. Again, we will

require t > 5 and θ ≥ 0.1 to ensure the estimators are well defined.

Definition IV.9. Assume, for a fixed t > 5 and unknown θ ≥ 0.1, that {Xt,i}ni=1 is

an independent collection of n observations of the process defined in Eq. (4.1). Define

• θ̂1 as the value of θ that solves

1

n
·

n∑
i=1

Xθ
t,i = E [Xt] ,

• θ̂2 as the value of θ that solves

1

n
·

n∑
i=1

(
Xθ
t,i

)2
= E

[
(Xt)

2] .
We note that θ̂ defined by Eq. (4.15) is identical to θ̂1 when the observations are

all made at the same time.

Generalized Method of Moment Estimator, θ̂G

Since we are interested in estimating the single parameter θ, and we have two

moment conditions, θ is overidentified, and we can use the generalized method of

moment (GMM) approach. Though around since the early 1950’s, GMM began to
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be used more heavily in the early 1980’s following Peter Hansen’s work on the asymp-

totic properties of the GMM estimator [21]. The idea of the GMM is that since there

are more moment equations than unknowns, no one value of the parameter (or more

in more general cases, parameters) can satisfy all equations. In this situation, we

have a vector valued function of an observation and the parameter θ, f(X, θ) such

that E [f(X, θ)] = 0. We seek the value of θ that comes closest to satisfying the

equations. Defining the concept of closeness however is where the critical step is

made.

Definition IV.10 (W-norm). For a positive semi-definite k × k matrix W, define

the W-norm ‖ · ‖W as

‖a‖W = a′Wa

Defined in [38], we will use the following 2-step estimation procedure, where we

again only observe the process for t > 5 and θ ≥ 0.1 to ensure the estimators are

well defined:

Definition IV.11 (Two-stage GMM estimation). First define a preliminary estimate

θ̂p by choosing W = Ik:

θ̂p = argmin
θ∈Θ

‖fn(θ)‖W

where

fn(θ) =
1

n

n∑
i=1

f(Xi, θ)

Second, this estimate of θ is used to approximate the ideal W with Ŵ∗:

Ŵ∗ =

(
1

n

n∑
i=1

f(xi, θ)f(xi, θ)
′

)−1
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and third, the final estimate is obtained, θ̂G by minimizing the distance using Ŵ∗:

θ̂G = argmin
θ∈Θ

‖fn(θ)‖Ŵ∗

For our particular problem, the natural choice for f is:

(4.16) f(Xt, θ) =

 Xt − E [Xt]

(Xt)
2 − E

[
(Xt)

2]


We use Ŵ∗ since it approximates W∗ defined as

W∗ = E [f(X, θ)f(X, θ)′]
−1

As will be shown in the next section, were we able to use W∗ as our W, the estimators

asymptotic variance would be minimized. Since W∗ depends on the parameter we

are trying to estimate however, we must use a consistent estimator of it instead.

Properties of θ̂1, θ̂2 and θ̂G

The method of moment estimators, θ̂1 and θ̂2, can be rewritten as GMM estimators

who are the results of a single moment condition. While these two estimators are not

the result of an over-identified parameter, the results derived for the GMM estimator,

θ̂G hold for these estimators as well (though in some cases, the proof is considerably

more direct when they are considered as traditional method of moment estimators).

For our GMM estimator, while our choice of W is not the most efficient one, we still

have several desirable asymptotic properties of θ̂G.

Theorem IV.12 (Consistency). [Theorem 1.1 p.13, [38]] For a fixed t > 0,

θ̂G − θ P−→ 0 as n→∞

The consistency of the estimate does not actually depend on the choice of the

weighting matrix W. In fact, θ̂p from Definition IV.11 is asymptotically consistent.
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The choice of W does however effect the asymptotic variance of the estimate. We

first recall the following central limit theorem from Reference [38].

Theorem IV.13 (Asymptotic Normality). [Theorem 1.2 p.19, [38]] Let F n(θ) =

dfn
dθ

(θ). Assuming there exists a vector F such that

F n(θ)
P−→ F as n→∞

and defining V = (W∗)−1, we have, for a fixed t > 0 and any choice of weighting

matrix W,

√
n
(
θ̂ − θ

)
d−→ N(0, σ2)

where σ2 is defined as:

(F ′WF )−1F ′WVWF (F ′WF )−1

As noted in [38], it is clear that choosing W = W∗ = V−1 would minimize the

asymptotic variance. However, as noted in the definition of the GMM estimator θ̂, we

do not know θ. Since θ̂p is a consistent estimator of θ, Ŵ∗ is a consistent estimator

of W∗, and thus θ̂G is asymptotically efficient. It must be noted that since any initial

choice of W in step 1 of Definition IV.11 leads to an efficient (but different) estimator

θ̂G, θ̂G is really an element of the class of all asymptotically efficient estimators. This

class consists of a unique estimator for every initial choice of positive semi-definite

2× 2 weighting matrix W.

4.4 Simulation Studies on θ

4.4.1 Non-identically distributed observations

Due to the fact that this estimation problem does not have a current standard

method, there is no estimator to compare to our estimator θ̂. For these simulation

studies several parameter values were considered. In each case, 100 simulations were
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conducted, with each simulation considering estimating θ based on n = 20, 4060 or

80 observations. The values of θ considered were θ = 0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75

and 2. For each value of θ, due to the complexity of the process, the variance of the

estimator is intractable, so parametric bootstrap standard errors are provided. We

θ̂ (s.e.(θ̂))
θ n = 20 n = 40 n = 60 n = 80

0.25 0.2328 (0.1010) 0.2280 (0.0865) 0.2456 (0.0714) 0.2356 (0.0617)
0.50 0.4782 (0.1256) 0.4958 (0.0896) 0.4868 (0.0690) 0.4858 (0.0619)
0.75 0.7350 (0.1333) 0.7514 (0.0890) 0.7490 (0.0794) 0.7365 (0.0636)
1.00 0.9520 (0.1484) 0.9905 (0.1039) 0.9980 (0.0875) 0.9897 (0.0838)
1.25 1.2100 (0.1570) 1.2168 (0.1238) 1.2283 (0.0990) 1.2336 (0.0829)
1.50 1.4483 (0.2000) 1.4704 (0.1450) 1.4753 (0.1134) 1.4853 (0.0939)
1.75 1.6912 (0.2094) 1.7115 (0.1343) 1.7267 (0.1477) 1.7352 (0.1033)
2.00 1.9134 (0.2576) 1.9444 (0.1901) 1.9666 (0.1575) 1.9710 (0.1381)

Table 4.1: Estimated values and standard errors for dependent observations

can see from Table 4.1 and Figure 4.2 that the bias as well as the standard error

increases as θ increases for a fixed value of n. Additionally, and not surprisingly, from

Table 4.1 and Figure 4.3 we see that, for a fixed θ, the bias and the standard error of

θ̂ decreases as n increases. This is not surprising since we know that the estimator is

both consistent and asymptotically Normal, thus the standard error must decreases

as a function of n.

4.4.2 Identically distributed observations

For each of the three estimators in this simplified setup, 100 simulations were run

with on four different levels of the sample size (n = 10, n = 50, n = 100 and n = 500)

and twenty levels of θ (θ = 0.1, 0.2, . . . , 2). We again can not compute the variance of

the estimator so we report the parametric bootstrap standard errors. For the GMM

estimator, the preliminary estimate (θ̂p) was also recorded. The mean estimate as

well as sample standard deviation for each case are shown in the tables below.

The simulations indicate that depending on the circumstances, different estima-
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Figure 4.2: Simulation results with respect to θ
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θ θ̂1 θ̂1 θ̂p θ̂G
0.1 0.104 (0.022) 0.105 (0.024) 0.104 (0.022) 0.102 (0.014)
0.2 0.207 (0.059) 0.224 (0.097) 0.204 (0.068) 0.196 (0.041)
0.3 0.323 (0.132) 0.333 (0.148) 0.329 (0.120) 0.304 (0.061)
0.4 0.455 (0.221) 0.689 (0.160) 0.400 (0.149) 0.384 (0.073)
0.5 0.551 (0.236) 0.675 (0.172) 0.656 (0.207) 0.458 (0.099)
0.6 0.598 (0.227) 0.675 (0.201) 0.725 (0.205) 0.531 (0.145)
0.7 0.987 (0.182) 0.714 (0.230) 0.763 (0.218) 0.628 (0.168)
0.8 0.985 (0.210) 0.713 (0.262) 0.810 (0.257) 0.682 (0.197)
0.9 1.055 (0.261) 0.813 (0.313) 0.848 (0.282) 0.751 (0.221)
1.0 1.103 (0.297) 0.855 (0.338) 0.903 (0.305) 0.810 (0.240)
1.1 1.091 (0.331) 0.931 (0.342) 0.953 (0.349) 0.917 (0.276)
1.2 1.186 (0.373) 1.065 (0.345) 1.002 (0.317) 0.945 (0.242)
1.3 1.186 (0.426) 1.092 (0.345) 1.110 (0.331) 1.044 (0.252)
1.4 1.321 (0.415) 1.225 (0.349) 1.201 (0.329) 1.138 (0.261)
1.5 1.410 (0.408) 1.320 (0.341) 1.265 (0.304) 1.194 (0.215)
1.6 1.493 (0.385) 1.372 (0.307) 1.394 (0.293) 1.293 (0.234)
1.7 1.529 (0.394) 1.430 (0.308) 1.461 (0.321) 1.379 (0.241)
1.8 1.644 (0.379) 1.518 (0.290) 1.624 (0.340) 1.516 (0.254)
1.9 1.763 (0.379) 1.651 (0.312) 1.614 (0.278) 1.523 (0.197)
2.0 1.804 (0.376) 1.676 (0.276) 1.698 (0.305) 1.623 (0.220)

Table 4.2: Average moment estimates and (standard errors) for n = 10

θ θ̂1 θ̂1 θ̂p θ̂G
0.1 0.100 (0.008) 0.100 (0.009) 0.100 (0.011) 0.099 (0.006)
0.2 0.201 (0.025) 0.202 (0.032) 0.199 (0.025) 0.198 (0.015)
0.3 0.303 (0.042) 0.315 (0.072) 0.302 (0.060) 0.298 (0.023)
0.4 0.409 (0.081) 0.660 (0.121) 0.394 (0.087) 0.394 (0.031)
0.5 0.530 (0.170) 0.652 (0.143) 0.564 (0.138) 0.493 (0.047)
0.6 0.614 (0.169) 0.664 (0.155) 0.680 (0.147) 0.575 (0.067)
0.7 0.938 (0.159) 0.654 (0.170) 0.741 (0.138) 0.673 (0.095)
0.8 0.999 (0.196) 0.769 (0.199) 0.783 (0.159) 0.758 (0.090)
0.9 1.044 (0.230) 0.881 (0.240) 0.847 (0.187) 0.850 (0.130)
1.0 1.064 (0.247) 0.939 (0.245) 0.954 (0.209) 0.948 (0.143)
1.1 1.120 (0.285) 0.996 (0.267) 1.033 (0.241) 1.043 (0.159)
1.2 1.103 (0.279) 1.104 (0.231) 1.156 (0.222) 1.151 (0.184)
1.3 1.287 (0.306) 1.241 (0.219) 1.221 (0.234) 1.212 (0.199)
1.4 1.308 (0.327) 1.292 (0.243) 1.300 (0.220) 1.272 (0.185)
1.5 1.462 (0.308) 1.401 (0.244) 1.373 (0.240) 1.358 (0.209)
1.6 1.574 (0.280) 1.532 (0.236) 1.479 (0.231) 1.447 (0.194)
1.7 1.672 (0.266) 1.601 (0.218) 1.597 (0.248) 1.517 (0.223)
1.8 1.717 (0.301) 1.668 (0.256) 1.653 (0.249) 1.606 (0.227)
1.9 1.828 (0.314) 1.783 (0.283) 1.757 (0.285) 1.691 (0.257)
2.0 1.844 (0.314) 1.777 (0.253) 1.826 (0.266) 1.759 (0.233)

Table 4.3: Average moment estimates and (standard errors) for n = 50
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θ θ̂1 θ̂1 θ̂p θ̂G
0.1 0.099 (0.007) 0.099 (0.008) 0.099 (0.008) 0.100 (0.004)
0.2 0.198 (0.016) 0.198 (0.021) 0.203 (0.018) 0.198 (0.011)
0.3 0.301 (0.036) 0.314 (0.074) 0.297 (0.041) 0.297 (0.017)
0.4 0.403 (0.058) 0.653 (0.109) 0.404 (0.073) 0.394 (0.023)
0.5 0.524 (0.120) 0.625 (0.113) 0.552 (0.138) 0.493 (0.036)
0.6 0.618 (0.151) 0.635 (0.130) 0.642 (0.111) 0.589 (0.048)
0.7 0.975 (0.161) 0.693 (0.169) 0.740 (0.127) 0.686 (0.057)
0.8 0.973 (0.179) 0.767 (0.168) 0.829 (0.141) 0.782 (0.077)
0.9 0.965 (0.190) 0.818 (0.198) 0.858 (0.152) 0.882 (0.096)
1.0 0.974 (0.197) 0.891 (0.208) 0.990 (0.168) 0.995 (0.107)
1.1 1.093 (0.236) 1.066 (0.175) 1.061 (0.160) 1.075 (0.119)
1.2 1.171 (0.270) 1.161 (0.178) 1.152 (0.162) 1.157 (0.123)
1.3 1.266 (0.282) 1.273 (0.180) 1.247 (0.212) 1.247 (0.159)
1.4 1.357 (0.279) 1.352 (0.198) 1.360 (0.203) 1.347 (0.173)
1.5 1.466 (0.284) 1.434 (0.190) 1.433 (0.167) 1.416 (0.164)
1.6 1.513 (0.281) 1.515 (0.211) 1.536 (0.201) 1.517 (0.196)
1.7 1.624 (0.270) 1.624 (0.246) 1.621 (0.194) 1.588 (0.200)
1.8 1.725 (0.250) 1.694 (0.206) 1.719 (0.207) 1.676 (0.202)
1.9 1.816 (0.237) 1.777 (0.205) 1.765 (0.228) 1.699 (0.213)
2.0 1.937 (0.267) 1.880 (0.223) 1.888 (0.208) 1.829 (0.209)

Table 4.4: Average moment estimates and (standard errors) for n = 100

θ θ̂1 θ̂1 θ̂p θ̂G
0.1 0.100 (0.003) 0.100 (0.004) 0.100 (0.003) 0.100 (0.002)
0.2 0.200 (0.007) 0.200 (0.009) 0.200 (0.009) 0.200 (0.004)
0.3 0.299 (0.014) 0.299 (0.021) 0.299 (0.019) 0.300 (0.008)
0.4 0.398 (0.026) 0.660 (0.070) 0.405 (0.032) 0.399 (0.010)
0.5 0.504 (0.046) 0.591 (0.078) 0.497 (0.053) 0.500 (0.015)
0.6 0.621 (0.086) 0.599 (0.084) 0.619 (0.058) 0.600 (0.018)
0.7 0.940 (0.116) 0.673 (0.108) 0.709 (0.069) 0.697 (0.027)
0.8 0.923 (0.123) 0.774 (0.093) 0.792 (0.083) 0.798 (0.037)
0.9 0.935 (0.138) 0.877 (0.118) 0.891 (0.079) 0.889 (0.041)
1.0 0.992 (0.163) 0.996 (0.087) 0.993 (0.080) 0.991 (0.049)
1.1 1.082 (0.147) 1.094 (0.074) 1.091 (0.078) 1.084 (0.057)
1.2 1.171 (0.169) 1.199 (0.088) 1.184 (0.074) 1.181 (0.059)
1.3 1.295 (0.137) 1.293 (0.079) 1.289 (0.079) 1.285 (0.070)
1.4 1.378 (0.127) 1.381 (0.084) 1.392 (0.090) 1.388 (0.084)
1.5 1.491 (0.123) 1.494 (0.102) 1.491 (0.095) 1.478 (0.100)
1.6 1.577 (0.118) 1.569 (0.092) 1.573 (0.083) 1.555 (0.086)
1.7 1.690 (0.107) 1.679 (0.093) 1.678 (0.109) 1.645 (0.108)
1.8 1.792 (0.107) 1.781 (0.110) 1.781 (0.114) 1.750 (0.114)
1.9 1.880 (0.123) 1.862 (0.116) 1.862 (0.115) 1.827 (0.120)
2.0 1.991 (0.111) 1.977 (0.111) 1.985 (0.117) 1.942 (0.126)

Table 4.5: Average moment estimates and (standard errors) for n = 500
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tors are preferable. As in the more general case, each estimator becomes more accu-

rate and more precise as n increases, as well as for lower values of θ. For the largest

sample size simulations (i.e. n = 500) all estimators appear to preform equally well.

Interestingly, the bias effect is considerably greater in this simplified situation than

in the general case. When each path is observed at a different time, a more accurate

estimate can be made using significantly less observations.

4.5 Estimation of TD

As stated before, the primary value of interest is the first time the process Xt

passes some fixed threshold. We can set the threshold to represent the level at which

some object fails, and then TD represents the failure time. While this stopping

time is a random variable that is a function of θ, the analytic computation of the

density of TD is even more involved than that of θ̂, so again we cannot attempt to

find a maximum likelihood estimator even once we have a consistent estimator of θ.

However, we can still rely on the strong law of large numbers to develop an estimator

of TD.

If, for a fixed D > 0, we consider n independent paths of Xt, since the resulting

stopped times {TD,i}ni=1 are independent and identically distributed draws of the

non-negative random variable TD, we have the following law of large numbers result

(4.17) lim
n→∞

1

n

n∑
i=1

TD,i = E [TD] a.s.

Thus using the strong law of numbers yet again to drive the estimation, we define

T̂D as follows:

Definition IV.14. Once we have obtained a consistent estimator for θ, for a fixed

D, we simulate n independent paths of Xt. For each of these processes, we calculate
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the first time the path crosses the threshold D, TD,i for i = 1, . . . , n. We then define

T̂D as:

(4.18)
1

n

n∑
i=1

TD,i = T̂D

As with the asymptotic method of moments estimator of θ, θ̂, by definition of the

estimator we directly have almost sure consistency of our estimator.

Since our estimator is the average of n i.i.d. observations of the same random

variable, TD, we can also directly appeal to the central limit theorem. In fact, we

have the following result.

Proposition IV.15. For a fixed D > 0, we consider n observations of the random

variable TD. With σ2
TD

= V ar(TD), we have

√
n
(
T̂D − E [TD]

)
∼ N

(
0, σ2

TD

)
Of course there are two practical concerns for our estimator. First, we are esti-

mating θ with θ̂, but since our estimate is almost surely consistent, this presents no

problems to the asymptotic Normality of the estimator. Second, we are also esti-

mating σTD with the sample standard deviation, but again since n is limited only by

computational power and the sample standard deviation is an unbiased consistent

estimator of the population standard deviation, our asymptotic central limit theorem

result holds.

A second quantity concerning TD that we are interested in is a prediction interval

of TD. In particular, since there is not only variation in TD for a fixed θ, but also

variation in θ̂, we must incorporate both variations in prediction. To this end, once

an estimate of θ is calculated, θ̂, we then simulate data using θ̂ as the true θ many

times. We obtain a collection of new estimates {θ∗i }. From each of these estimates
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we again simulate data, this time estimating TD. Combining the two estimation

problems allows us to combine the variation in both problems to obtain a prediction

interval for TD.

4.6 Simulation Studies on TD

For this simulation study, we imagine that we have already calculated an estimate

of θ. We then simulate n paths of the process Xt and compute our estimate T̂D. Since

our method is based on simulations we do not have to limit ourselves to supposing

that we have a small number of observed stopped times, and thus the only limit in

the number of paths is computational. For the purposes of comparison, we obtain

an estimate of TD for D = 5 and D = 10, θ = 0.5, 1, 1.5 and 2 for n = 100 and

n = 200. We do this simulation 100 times and report the average estimate as well

as the parametric bootstrap standard error. Again, since by using this method of

estimation, we not only arrive at an estimate of E [TD], but also its distribution,

we present the estimates to the distribution as histograms below. For the sample

distribution of TD as well as the sample standard deviation computation, we use

2000 sample paths to compute the histogram of stopped times. Using the sample

distribution of the mean stopped time, we construct bootstrap prediction intervals

by identifying the values for which 2.5% and 97.5% of the observations fall below.

For all the simulations we run the paths to t = 20. While this is long enough to

ensure over 99% of the processes stop, since there is, for any t, a nonzero probability

that TD > t, no matter what value we chose to stop the processes, there will always

be a chance that a few do not stop.

For the prediction intervals, we see that when both forms of variation (variation

in estimating θ as well as variation in TD) are combined, the resulting intervals are
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quite wide. However, the same trend that we observe when predicting T̂D exists here

as well; namely that the interval decreases as θ increases.

ExTD (s(TD))
D = 5 D = 10

θ n = 2000 n = 2000

0.5 5.213146 (1.848930) 8.393804 (3.090153)
1.0 4.729977 (2.482036) 6.498354 (3.382244)
1.5 4.195491 (2.577465) 5.456557 (3.135371)
2.0 3.780593 (2.432531) 4.627412 (3.053394)

Table 4.6: Sample means of TD and sample standard deviations
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Figure 4.4: Expected value of TD with 95% prediction intervals, D = 10

4.7 Conclusion

There were two main difficulties to overcome when considering estimating θ based

on finite observations of paths. The first difficultly, the intractability of the maximum

likelihood estimate was able to be solved using moment estimators. Though the
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Figure 4.5: Sample distribution of TD, D = 5, θ = 0.5
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Figure 4.6: Sample distribution of TD, D = 5, θ = 1.0



86

0 5 10 15
0

20

40

60

80

100

120

140

T

F
re

qu
en

cy

Figure 4.7: Sample distribution of TD, D = 5, θ = 1.5
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Figure 4.8: Sample distribution of TD, D = 5, θ = 2.0
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Figure 4.9: Sample distribution of TD, D = 10, θ = 0.5
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Figure 4.10: Sample distribution of TD, D = 10, θ = 1.0
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Figure 4.11: Sample distribution of TD, D = 10, θ = 1.5
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Figure 4.12: Sample distribution of TD, D = 10, θ = 2.0
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process is complex, the moments are relatively easy to compute (when compared

to attempts to compute the distribution of the process) and thus this opens up

various moment methods. The general case where the observations are made on

independent paths at different times interestingly produces a better estimate. Were

the data to have been collected at the same time, and we were then forced into

the identically observed estimation situation, we would have to consider what value

we thought θ would be to decide which estimate we should use. From the above

tables, there are some clear parameter regimes where the GMM estimator performs

significantly better than the simpler method of moment estimators. When θ ≤ 0.5

(which corresponds to situations where the original Brownian motion is not being

inflated by θ), the GMM estimator has a standard error about half of all the other

estimates. Though this difference becomes less important as n increases, it would

make a large difference when the number of observations is moderate. Conversely,

for large values of θ, the method of moments estimator based on the first moment

(θ̂1) has the smallest bias. While for small n, the GMM estimator still has a smaller

standard error, the values are more comparable, and in light of the bias, θ̂1 would be

the recommended estimator. Computationally, θ̂1 is the easiest to compute, though

not significantly more so than θ̂2 or θ̂p. Due to the generally good performance of θ̂2

and θ̂p, if no a priori range for θ can be established, both θ̂2 and θ̂p can be reliably

used for any number of paths and value of θ.

The second difficulty that is presented by this estimation problem is that we can

not take advantage of multiple observations on the same path. Some applications lend

themselves to more easily providing many observations from few paths. However, the

non-Markovian property of the process causes any estimation procedure that is based

on the moments to fail. Since all of the above estimates require the observations to be
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independent, and the definition of the process causes there to be strong dependence

of observations on the same path, this third setup can not be solved using moments

without knowing something on the covariance between two points on the same path.



CHAPTER V

Summary

Using completely different techniques we have derived estimators for two distinct

types of processes that are solutions to stochastic evolution equations driven by

Gaussian processes. In both cases, the observed processes were non-Markovian, and

in both cases analytical calculation of the distribution of the process was intractable.

Concerning the stochastic differential equations driven by Volterra processes, the

first step needed for inference was establishing the stochastic calculus as well as

ensuring the existence and uniqueness of solutions to the differential equations. The

primary tool used was a Girsanov-type transformation that allowed utilization of the

associated martingale to the Volterra process to compute the maximum likelihood

estimator.

The generality of Volterra processes allows for much more exotic dependence

structures than that of fractional Brownian motion, while these processes still share

enough in common so that no matter which Volterra process is driving the stochas-

tic differential equation, we can still define an estimator that has several desirable

properties. In the one parameter case, we have not only consistency, but a central

limit theorem and a law of iterated logarithm associated with our estimate. In the

multi-parameter case, while we can not establish as many properties due to the limi-

94
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tations of the multi-parameter martingale theory, we are still able to establish a type

of consistency for our estimator.

The estimators defined in both Chapter 2 and Chapter 3 depend on continuous

observation of the process; a practically impossible assumption. In the one parameter

case, steps are taken toward the definition of a discretized estimator based on a finite

number of observations, but unfortunately a completely discretized estimator can

only be established on a case by case basis (i.e. the form of the Volterra process

kernel must be known at least asymptotically to ensure convergence of the fully

discretized estimator).

Another unrealistic assumption in practice is that we know the form of both

the drift function as well as the two kernels associated with the Volterra process.

Unfortunately neither of these problems is yet easy to address. As with the study of

fractional Brownian motion, the establishment of an estimator is preceding a method

to estimate the specific Gaussian noise, and as such we must still assume we have a

specific noise if we wish to conduct any inference.

There are several directions that future work will hopefully take. First, the deriva-

tion of the associated kernels for a Volterra process other than Brownian motion and

fractional Brownian motion is ongoing. The difficulty is finding the kernel from The-

orem II.6, which requires solving a complex integral equation. A second direction of

future research is concerning the estimation of a volatility parameter. In the infer-

ence of Chapter 2 and Chapter 3, the volatility was assumed to be a know function,

and in some cases a known constant. Of particular interest would be estimating the

volatility function if it is assumed to be a nonconstant function but follows some

known form.

For the problem concerning the functional of Brownian motion and the estimation
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of the failure time, the analytic form of the distribution of TD is not yet known.

However, since we can directly compute the first two moments of the processes, we

can establish several different estimators (depending on the setup of the observations)

that allow us to then compute a bootstrap estimate of both the expected time to

failure as well as a prediction interval associated with it.

As in the previous chapters, we were able to establish properties for our estimators.

In all cases we show that our estimates are consistent, and for the estimators of θ, we

either prove a central limit theorem or indicate the direction needed to go to prove

the asymptotic result. Our primary estimate of θ, θ̂, performs very well even when

we only have 20 observations, and in the simplified observation setup, we introduce

and analyze the generalized method of moment estimation as a way of getting as

much information as possible out of our data using both moment conditions.

There are several observational setups that are realistic but for which we can not

develop an estimator. Since it may be practically easier to observe a few devices

several times, we would like to be able to estimate θ in a case were we observe few

paths of the process, but we observe each path several times. Additionally, we would

like to be able to directly estimate the mean of TD based on the observations instead

of having to use bootstrap methods.

As before, there are several directions future work can take for this problem. Of

obvious interest is finding any method for estimating the density of the process, and

the density of TD, other than the currently available one of simulation. Were we to

have many more moments analytically, we could construct an approximate density as

a weighted sum of the moments, but due to the increasing complexity of computing

these moments, this seems unrealistic. Since the pair (Xθ
t ,Bt) is a Markov process

in two dimensions, we could explore the methods used in the work by Lachel [32]
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and try to apply them to our problem. A second important direction of study is to

understand the covariance between two points on a single path so that we can again

consider the case where we observe few paths many times each.

For both projects, there are both theoretical and practical considerations that

must be balanced. While a purely theoretical estimator can be developed in some

cases, applying this estimator to real-world data situations forces us to weigh com-

plexity of the estimator with the gain in accuracy our complex estimator adds. As

seen in Chapter 4, there are many circumstances where the simpler estimator does not

only match the performance of the complex estimator, it in fact beats it. Furthering

the theory of stochastic differential equations must be fettered by its applicability.

While in the situations presented in Chapters 2 and 3 there is no such “simple” esti-

mator, it is still vital to be sure that the estimators developed are at least somewhat

practical.
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[51] F. Russo. Stochastic calculus with respect to continuous finite quadratic variation processes.
Stochastics and stochastics reports, 70:1–40, 2000.

[52] F. Russo and G. Trutnau. Some parabolic PDEs whose drift is an irregular random noise in
space. The Annals of Probability, 35(6):2213–2262, 2007.

[53] F. Russo and C. A. Tudor. On bi-fractional Brownian motion. Stochastic Processes and their
Applications, 116:830–856, 2006.

[54] F. Russo and P. Vallois. Forward, backward and symmetric stochastic integration. Probab.
Theory Relat. Fields, 97:403–421, 1993.
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