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CHAPTER 1

Introduction

This thesis is focused on the theory of shifted Young tableaux and Schur P - and

Q-functions. More specifically, we construct a product structure on the set of shifted

Young tableaux, the shifted plactic monoid. This theory is analogous to that of the

plactic monoid of Lascoux and Schützenberger for ordinary Young tableaux. The

main applications are new formulations (and new proofs) of the shifted Littlewood-

Richarsdon rule and the rule for the Schur expansion of Schur P -functions, and a

shifted counterpart of the Lascoux-Schützenberger theory of noncommutative Schur

functions in plactic variables. We also present an application of the shifted plactic

monoid to prove a conjecture of Reiner, Stanton, and White regarding cyclic sieving

in the hyperoctahedral group.

In Chapter 2 we survey the classical theory of Young tableaux and symmetric

functions. The celebrated Robinson-Schensted-Knuth correspondence [20] is a bijec-

tion between words in a linearly ordered alphabet X = {1 < 2 < 3 < · · · } and pairs

of Young tableaux with entries in X. More precisely, each word corresponds to a

pair consisting of a semistandard insertion tableau and a standard recording tableau.

The words producing a given insertion tableau form a plactic class. A. Lascoux and

M. P. Schützenberger [13] made a crucial observation based on a result by D. E.

1
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Knuth [8]: the plactic classes [u] and [v] of two words u and v uniquely determine

the plactic class [uv] of their concatenation. This gives the set of all plactic classes

(equivalently, the set of all semistandard Young tableaux) the structure of a plac-

tic monoid P = P(X). This monoid has important applications in representation

theory and the theory of symmetric functions; see, e.g., [12].

The main results in this thesis are developed in Chapter 3, where we construct

and study a proper analog of the plactic monoid for (semistandard) shifted Young

tableaux, with similar properties and similar applications. The problem of developing

such a theory was already posed more than 20 years ago by B. Sagan [18]. Shifted

Young tableaux are certain fillings of a shifted shape (a shifted Young diagram associ-

ated with a strict partition) with letters in an alphabet X ′ = {1′ < 1 < 2′ < 2 < · · · };

see, e.g., [19]. M. Haiman [6] defined the (shifted) mixed insertion correspondence,

a beautiful bijection between permutations and pairs of standard shifted Young

tableaux; each pair consists of the mixed insertion tableau and the mixed record-

ing tableau. Haiman’s correspondence is easily generalized (see Section 3.4) to a

bijection between words in the alphabet X and pairs consisting of a semistandard

shifted mixed insertion tableau and a standard shifted mixed recording tableau. (We

emphasize that this bijection deals with words in the original alphabet X rather than

the extended alphabet X ′.) We define a shifted plactic class as the set of all words

which have a given mixed insertion tableau. Thus, shifted plactic classes are in

bijection with shifted semistandard Young tableaux. The following key property,

analogous to that of Lascoux and Schützenberger’s in the ordinary case, holds (The-

orem 3.8): the shifted plactic class of the concatenation of two words u and v depends

only on the shifted plactic classes of u and v. Consequently, one can define the shifted

plactic monoid S = S(X) in which the product is, again, given by concatenation. In
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analogy with the classical case, we obtain a presentation of S by the quartic shifted

Knuth (or shifted plactic) relations. So two words are shifted Knuth-equivalent if

and only if they have the same mixed insertion tableau.

Sagan [18] and Worley [28] have introduced the Sagan-Worley correspondence,

another analog of Robinson-Schensted-Knuth correspondence for shifted tableaux. In

the case of permutations, Haiman [6] proved that the mixed insertion correspondence

is dual to Sagan-Worley’s. In Section 4.1, we use a semistandard version of this

duality to describe shifted plactic equivalence in yet another way, namely: two words

u and v are shifted plactic equivalent if and only if the recording tableaux of their

inverses (as biwords) are the same.

The plactic algebra QP is the semigroup algebra of the plactic monoid. The

shape of a plactic class is the shape of the corresponding tableau. A plactic Schur

function Sλ ∈ QP is the sum of all plactic classes of shape λ; it can be viewed as

a noncommutative version of the ordinary Schur function sλ. This notion was used

by Schützenberger [21] to obtain a proof of the Littlewood-Richardson rule along

the following lines. It can be shown that the plactic Schur functions span the ring

they generate. Furthermore, this ring is canonically isomorphic to the ordinary ring

of symmetric functions: the isomorphism simply sends each Schur function sλ to its

plactic counterpart Sλ. It follows that each Littlewood-Richardson coefficient cλµ,ν is

equal to the coefficient of a fixed plactic class Tλ of shape λ in the product of plactic

Schur functions SµSν . In other words, cλµ,ν is equal to the number of pairs (Tµ, Tν)

of plactic classes of shapes µ and ν such that TµTν = Tλ.

We develop a shifted counterpart of this classical theory. The shifted plactic alge-

bra QS is the semigroup algebra of the shifted plactic monoid, and a (shifted) plactic

Schur P -function Pλ ∈ QS is the sum of all shifted plactic classes of a given shifted
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shape. We prove that the plactic Schur P -functions span the ring they generate, and

this ring is canonically isomorphic to the ring spanned/generated by the ordinary

Schur P -functions. Again, the isomorphism sends each Schur P -function Pλ to its

plactic counterpart Pλ. This leads to a proof of the shifted Littlewood-Richardson

rule (Corollary 3.22). Our version of the rule states that the coefficient bλµ,ν of Pλ in

the product PµPν is equal to the number of pairs (Tµ, Tν) of shifted plactic classes

of shapes µ and ν such that TµTν = Tλ, where Tλ is a fixed shifted plactic class

of shape λ. The first version of the shifted Littlewood-Richardson rule was given

by Stembridge [26]. In Lemma 3.25 we relate our rule to Stembridge’s by a simple

bijection.

It turns out that the shifted plactic relations are a “relaxation” of the ordinary

Knuth (= plactic) relations. More precisely, the tautological map u 7→ u that sends

each word in the alphabet X to itself descends to a monoid homomorphism S→ P.

By extending this map linearly, we obtain the following theorem (Corollary 3.26): For

a shifted shape θ, the coefficient gθµ of sµ in the Schur expansion of Pθ is equal to the

number of shifted plactic classes of shifted shape θ contained in a fixed plactic class

of shape µ. A simple bijection (Theorem 3.29) recovers a theorem of Stembridge [26]:

gθµ is equal to the number of standard Young tableaux of shape µ which rectify to a

fixed standard shifted Young tableau of shape θ.

In the classical setting, an approach developed by Schützenberger and his school

begins with the plactic monoid as the original fundamental object, and identifies each

tableau T with a distinguished canonical representative of the corresponding plactic

class, the reading word read(T ). This word is obtained by reading the rows of T

from left to right, starting from the bottom row and moving up. A word w such that

w = read(T ) for some tableau T is called a tableau word. By construction, tableau
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words are characterized by the following property. Each of them is a concatenation

of weakly increasing words w = ulul−1 · · ·u1, such that

(A) for 1 ≤ i ≤ l − 1, the longest weakly increasing subword of ui+1ui is ui.

For a tableau word w, the lengths of the segments ui are precisely the row lengths

of the Young tableau corresponding to w.

In Chapter 4 of this thesis, we develop an analog of this approach in the shifted

setting by taking the shifted plactic monoid as the fundamental object, and con-

structing a canonical representative for each shifted plactic class. Since shifted Young

tableaux have primed entries while the words in their respective shifted plactic classes

do not, the reading of a shifted Young tableau cannot be defined in as simple a man-

ner as in the classical case. Instead, we define the mixed reading word mread(T )

of a shifted tableau T as the unique word in the corresponding shifted plactic class

that has a distinguished special recording tableau. The latter notion is a shifted

counterpart of P. Edelman and C. Greene’s dual reading tableau [1].

A word w such that w = mread(T ) for some shifted Young tableau T is called

a shifted tableau word. Such words have a characterizing property similar to (A),

with weakly increasing words replaced by hook words (a hook word consists of a

strictly decreasing segment followed by a weakly increasing one). In Theorem 4.9

and Proposition 4.10, we prove that w is a shifted tableau word if and only if

(B) for 1 ≤ i ≤ l − 1, the longest hook subword of ui+1ui is ui.

For a shifted tableau word w, the lengths of the segments ui are precisely the row

lengths of the shifted Young tableau corresponding to w.

Also in Chapter 4, we lay down the machinery needed for the proofs of the main

results of Chapter 3. Building on the concept of standard decomposition tableaux
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introduced by W. Kraśkiewicz [9] and further developed by T. K. Lam [11], we

define a (shifted) semistandard decomposition tableau (SSDT) R of shifted shape λ

as a filling of λ by entries in X such that the rows u1, u2, . . . , ul of R are hook words

satisfying (B). We define the reading word of R by read(R) = ulul−1 · · ·u1, that is,

by reading the rows of R from left to right, starting with the bottom row and moving

up.

As a semistandard analog of Kraśkiewicz’s correspondence [9], we develop the

SK correspondence (see Definition 4.18). This is a bijection between words in the

alphabet X and pairs of tableaux with entries in X. Every word corresponds to a

pair consisting of an SSDT called the SK insertion tableau and a standard shifted

Young tableau called the SK recording tableau. We prove (Theorem 4.23) that the

mixed recording tableau and the SK recording tableau of a word w are the same.

Furthemore, we construct (see Theorem 4.17) a bijection Φ between SSDT and shifted

Young tableaux of the same shape that preserves the reading word: read(R) =

mread(Φ(R)). In light of the conditions (A) and (B) above, one can see that the

counterpart of an SSDT in the ordinary case is nothing but a semistandard Young

tableau.

In Chapter 5 we present a joint project with T. K. Petersen [15]. Here we use the

relationship between plactic equivalence and shifted plactic equivalence to prove a

conjecture of Reiner, Stanton, and White regarding the cyclic sieving phenomenon for

the set R(w0) of reduced expressions for the longest element in the hyperoctahedral

group. More specifically, R(w0) possesses a natural cyclic action given by moving

the first letter of a word to the end, and we show that the orbit structure of this

action is encoded by the generating function for the major index on R(w0).



CHAPTER 2

Young tableaux and Schur functions

2.1 Partitions and Ferrers shapes

A partition is a sequence λ = (λ1, λ2, . . . , λl) ∈ Zl such that λ1 ≥ λ2 ≥ · · · ≥

λl ≥ 0. Throughout this thesis we will assume that all the parts of a partition are

non zero, by virtue of the identification (λ1, . . . , λl) = (λ1, . . . , λl, 0). The (Ferrers)

shape of λ is a left-justified array of square cells in which the i-th row has λi cells.

We identify a partition λ with the Ferrers shape corresponding to λ. The size of λ

is |λ| = λ1 + λ2 + · · · + λl. We denote `(λ) = l, the number of rows. The conjugate

partition, denoted λ′, is the one corresponding to the transpose of the Ferrers shape

of λ. Equivalently, λ′i is the number of parts of λ that are greater than or equal to i.

To illustrate, the Ferrers shape of λ = (5, 3, 2) is shown below. We have |λ| = 10,

`(λ) = 3, and λ′ = (3, 3, 2, 1, 1).

.

We say that a shape λ contains a shape µ if when overimposing their upper left

corners, the shape µ is fully contained in λ. The skew shape λ/µ is then obtained by

removing the shape µ from the upper left corner of λ. Below is an example of the

7
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skew shape λ/µ, for λ = (5, 3, 2) and µ = (3, 1):

.

A horizontal strip is a (not necessarily connected) skew shape in which every column

contains at most one box. The following is an example of a horizontal strip:

.

2.2 Young tableaux

A (semistandard) Young tableau (SSYT) T of shape λ is a filling of a Ferrers

shape λ with letters from the alphabet X = {1 < 2 < · · · } such that:

• rows of T are weakly increasing;

• columns of T are strictly increasing.

If T is a filling of a shape λ, we write shape(T ) = λ. A skew semistandard Young

tableau of shape λ/µ is defined analogously. When necessary, we will refer to the

former as a straight–shape SSYT, and to the latter as a skew SSYT. The content

of a tableau T is the vector (a1, a2, . . .), where ai is the number of appearances of

the letter i in T . The reading word read(T ) of a tableau T is the word obtained by

reading each row from left to right, starting from the bottom row, and moving up.

Example 2.1. The semistandard Young tableau

T =
1 1 1 2 5
2 3 3
3 5

has shape λ = (5, 3, 2), content (3, 2, 3, 0, 2), and reading word read(T ) = 35 233 11125.
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A Young tableau of shape λ is called standard if it contains each of the entries

1, 2, · · · , |λ| exactly once. In other words, a standard Young tableau has content

(1, 1, . . . , 1).

2.3 Robinson-Schensted-Knuth insertion

Let X be the alphabet {1, 2, 3, . . .}.The Robinson-Schensted-Knuth (RSK) inser-

tion (see, e.g., [25]) is a remarkable algorithm which gives rise to a correspondence

between words in X and pairs of Young tableaux of the same shape, one of them

semistandard and one standard.

Definition 2.2 (RSK insertion). Let w = w1 . . . wn be a word in the alphabet X. We

recursively construct a sequence (P0, Q0), . . . , (Pn, Qn) = (P,Q) of pairs of tableaux,

where Pi is a semistandard Young tableau, and Qi is a standard Young tableau, as

follows. Set (P0, Q0) = (∅, ∅). For i = 1, . . . , n, insert wi into Pi−1 in the following

manner:

Insert wi into the first row, bumping out the smallest element a1 that is strictly

greater than wi. Now insert a1 into the next row, and continue, row by row. The

procedure terminates when the element ak bumped from row k is greater than or

equal to every element in the (possibly empty) row k + 1. In this case, ak is placed

at the right end of row k + 1, and the algorithm stops. The resulting tableau is

denoted Pi.

The shapes of Pi−1 and Pi differ by one box. Add that box to Qi−1, and write i

into it to obtain Qi.

We call P the insertion tableau and Q the recording tableau, and denote them

PRSK(w) and QRSK(w), respectively.

Example 2.3. The word w = 3152133125 has the following insertion and recording
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tableaux:

PRSK(w) =
1 1 1 2 5
2 3 3
3 5

, QRSK(w) =
1 3 6 9 10
2 5 8
4 7

.

Remark 2.4. If the word w is a permutation, then the insertion tableau P is also a

standard Young tableau. This is the original Robinson-Schensted insertion, which

was generalized by Knuth to arbitrary words. In fact, Knuth’s generalization, in-

volving biwords, is stronger than the definition we need to use herein.

arbitrary words. In fact, Knuth’s generalization is stronger, involving biwords,

but

Theorem 2.5 (see e.g. [25]). Let w be a permutation. Then PRSK(w−1) = QRSK(w).

Theorem 2.6 (see e.g. [25]). Let T be an SSYT. The insertion tableau of read(T )

is precisely T .

Edelman and Greene [1] define a dual reading tableau of shape λ in the following

way. First, label the cells of a shape λ with the integers 1, 2, . . . , n from left to right

in each row, beginning with the bottom row and moving upwards. Next, sort the

columns into increasing order. The steps are illustrated in the example below.

6 7 8 9 10
3 4 5
1 2

−→
1 2 5 9 10
3 4 8
6 7

Dual reading tableaux provide an alternative way of finding the reading word of an

SSYT, by the following lemma.

Lemma 2.7 (Edelman, Greene [1]). Let T be an SSYT of shape λ. The recording

tableau of read(T ) is precisely the dual reading tableau of shape λ.

Thus, read(T ) is the word corresponding to the pair (T,Q) under the RSK corre-

spondence, where Q is the dual reading tableau of the corresponding shape.

Knuth [8] has determined when two words have the same insertion tableau, as

follows.
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Theorem 2.8. Two words u and v have the same RSK insertion tableau if and only

if they are equivalent modulo the following relations:

(2.1) acb≡ cab for a ≤ b < c;

(2.2) bac≡ bca for a < b ≤ c;

One refers to equations (2.1) and (2.2) as the Knuth relations, or the plactic

relations. Thus, Theorem 2.8 says that two words are plactic equivalent if and only

if they have the same RSK insertion tableau.

2.4 Jeu de taquin

Jeu de taquin [20] is an important operation on skew tableaux introduced by M.–

P. Schützenberger. Two skew tableaux T and U are jeu de taquin equivalent if and

only if U can be obtained from T by a sequence of jeu de taquin slides of the form

b
a

↔ a b (a ≤ b) b
a

↔ a
b

(a < b)

Example 2.9. The skew tableaux

T =
1 1 1 2 5
2 3 3
3 5

and U =
1 1 2

2 3 3 5
1 3 5

are jeu de taquin equivalent, as can be seen from the following sequence of slides:

1 1 2
2 3 3 5

1 3 5
−→

1 1 2 5
2 3 3

1 3 5
−→

1 1 2 5
1 2 3 3
3 5

−→
1 1 1 2 5
2 3 3
3 5

.

Theorem 2.10 ([13]). Each jeu de taquin equivalence class contains exactly one

straight–shape SSYT.

The jeu de taquin rectification of a skew SSYT T , denoted rect(T ), is the unique

straight–shape SSYT in the jeu de taquin equivalence class of T .

The following two theorems link jeu de taquin and Robinson-Schensted insertion.
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Theorem 2.11. Two skew SSYT are jeu de taquin equivalent if and only if their

reading words are plactic equivalent.

Theorem 2.12. Let T be a skew SSYT. Then rect(T ) = PRSK(read(T )).

2.5 Greene’s Invariants

Greene [5] has described the words whose insertion (hence also recording) tableau

have a given shape λ. For a word w, define a subword of w as a word formed by a

subset of the letters of w (not necessarily consecutive), respecting the order of the

letters in w. Denote by Ik (resp., Dk) the maximum length of the union of k weakly

increasing (resp., strictly decreasing) disjoint subwords of w. The following example

illustrates this definition.

Let w = 3152133125. One can see that I1 = 5, using the subword 11125, and that

I2 = 8, using the pair of subwords 11125 and 233. Similarily, I3 = 10, D1 = 3, D2 = 6,

D3 = 8, D4 = 9, and D5 = 10. Clearly, Ik = Dl = 10 for all k ≥ 3, and l ≥ 5.

Theorem 2.13 ([5]). Let w be a word, and let λ be the shape of PRSK(w). Then for

all k ≥ 0, we have

Ik = λ1 + · · ·+ λk,

and

Dk = λ′1 + · · ·+ λ′k,

In the running example w = 3152133125, one can see that the shape of PRSK(w)

is λ = (5, 3, 2), agreeing with Theorem 2.13.

2.6 The plactic monoid

Using the Knuth relations (2.1) and (2.2), Lascoux and Schützenberger [13] in-

troduced a remarkable product structure for the set of SSYT, the plactic monoid.
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Definition 2.14. Two words u and v in the alphabet X = {1, 2, . . .} are plactic

equivalent (denoted u ∼ v) if they have the same RSK insertion tableau. By The-

orem 3.8, u and v are plactic equivalent if they can be transformed into each other

using the plactic relations (2.1) and (2.2).

A plactic class is an equivalence class under the relation ∼. The plactic class

containing a word w is denoted by 〈w〉. We can identify a plactic class with the

corresponding SSYT T = PRSK(w), and write 〈T 〉 = 〈w〉.

Definition 2.15. The plactic monoid P = P(X) is the set of plactic classes where

the product is given by concatenation, namely, 〈u〉〈v〉 = 〈uv〉. Equivalently, the

plactic monoid is generated by the symbols in X subject to the relations (2.1) and

(2.2).

Thus, the plactic monoid is precisely the quotient of the free monoid on the

letters 1, 2, . . . modulo the plactic relations. From this observation, one can see that

the product is well defined.

Alternatively, identifying each plactic class with the corresponding SSYT, we

obtain a notion of a (plactic) associative product on the set of SSYT.

Theorem 2.16 ([13]). Let T and U be SSYTs. The product TU in P can be de-

termined as follows. Construct a skew SSYT T t U by identifying the upper right

corner of T with the lower left corner of U . Then TU is the rectification of T t U .

Example 2.17. Let

T = 1 2
3 5

and U = 1 1 2 5
3 3

.

Then

TU = rect

 1 1 2 5
3 3

1 2
3 5

 =
1 1 1 2 5
2 3 3
3 5

.
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One can see that this is consistent with the definition of the plactic product, since

the plactic classes corresponding to T and U are, respectively, 〈3512〉 and 〈331125〉

(their reading words). The product of these two plactic classes is the plactic class

〈351233125〉 of their concatenation. By Example 2.3, the RSK insertion tableau of

this word is precisely TU .

The shape of a plactic class is defined as the shape of the corresponding SSYT.

Remark 2.18. We normally consider an infinite alphabet X, but a totally analogous

theory holds for any finite alphabet Xn = {1 < 2 < · · · < n}.

2.7 The ring of symmetric functions

Consider the ring Q[x1, x2, . . . , ] of polynomials in a (finite or infinite) set of inde-

terminates x1, x2, . . .. A symmetric function is a formal power series in Q[x1, x2, . . .]

of bounded degree that remains invariant under any permutation of the variables.

The symmetric functions form a ring, denoted Λ. Some examples of symmetric

functions are the following.

The complete homogeneous symmetric function hk is defined, for any integer k ≥ 1,

by

hk =
∑

a1≤a2≤···≤ak

xa1xa2 · · ·xak .

The elementary symmetric function ek is defined, for any integer k ≥ 1, by

ek =
∑

a1<a2<···<ak

xa1xa2 · · ·xak .

The power sum symmetric function pk is defined, for any integer k ≥ 1, by

pk =
∑
i≥1

xki .

For a partition λ = (λ1, λ2, . . . , λl), we define hλ = hλ1hλ2 · · ·hλl . Similarily, eλ =

eλ1eλ2 · · · eλl and pλ = pλ1pλ2 · · · pλl .
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Theorem 2.19 (See, e.g. [25]). As a ring, Λ is freely generated by the hk, the ek,

or the pk. In other words,

Λ = Q[h1, h2, · · · ] = Q[e1, e2, · · · ] = Q[p1, p2, · · · ].

The hλ (similarily, the eλ or the pλ) form a basis for Λ as a vector space, as λ

runs over all partitions.

2.8 Schur functions and the Littlewood-Richardson rule

For an SSYT T with content (a1, a2, . . .), we denote the corresponding monomial

by

xT = xa1
1 x

a2
2 · · · .

For example, the monomial of the SSYT in Example 2.1 is x3
1x

2
2x

3
3x

2
4.

For each partition λ, the Schur function is defined as the sum of the monomials

corresponding all SSYT of shape λ, namely,

sλ = sλ(x1, x2, . . .) =
∑

shape(T )=λ

xT .

Notice that s(k) = hk, and s1k = ek.

The skew Schur functions sλ/µ are defined similarly, for a skew shape λ/µ.

The following is an example of a Schur function in two variables:

Example 2.20. For λ = (3, 1),

sλ(x1, x2) = x3
1x2 + x2

1x
2
2 + x1x

3
2.

1 1 1
2

1 1 2
2

1 2 2
2

The Schur functions form a basis for the ring Λ of symmetric functions.

The Littlewood-Richardson coefficients cλµ,ν are of great importance in combina-

torics, algebraic geometry, and representation theory. They appear in the expansion
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of the product of two Schur functions,

sµsν =
∑
λ

cλµ,νsλ

and also in the Schur expansion of a skew Schur function (see e.g. [25, 7.15])

sλ/µ =
∑
ν

cλµ,νsν .

There are many combinatorial interpretations for these coefficients, such as the

following.

Theorem 2.21. Let λ, µ, and ν, be partitions, where λ contains both µ and ν. Fix

a standard Young tableau T of shape µ. The Littlewood-Richardson coefficient cλµ,ν is

equal to the number of skew standard tableaux of shape λ/ν whose rectification is T .

2.9 Plactic Schur functions and their applications

Lascoux and Schützenberger [13] have used the plactic monoid to define a non-

commutative analog of Schur functions. As an application, they gave a combinatorial

interpretation of the Littlewood-Richardson coefficients.

Definition 2.22. A plactic Schur function Sλ ∈ QP is defined as the sum of all

plactic classes of shape λ. More specifically,

Sλ =
∑

shape(T )=λ

〈T 〉.

Example 2.23. For λ = (3, 1) and a two–letter alphabet X2 = {1, 2}, we have:

(2.3)

S(3,1) = [2111] + [2112] + [2122].

1 1 1
2

1 1 2
2

1 2 2
2
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The plactic Schur functions Sλ are noncommutative analogs of the ordinary Schur

functions. For example, (2.3) is a noncommutative analog of

s(3,1)(x1, x2) = x3
1x2 + x2

1x
2
2 + x1x

3
2.

Theorem 2.24 ([13]). The map sλ 7→ Sλ extends to a canonical isomorphism be-

tween the algebras generated by the ordinary and plactic Schur functions, respectively.

As a result, the Sλ commute pairwise, span the ring they generate, and have the same

structure constants as the sλ. In particular,

(2.4) SµSν =
∑
λ

cλµ,νSλ.

The first application of Theorem 2.24 is (a proof of) the Littlewood-Richardson

rule. By taking the coefficient of the plactic class 〈T 〉 corresponding to a fixed SSYT

T of shape λ on both sides of (2.4), one obtains the following:

Corollary 2.25 (Littlewood-Richardson rule). Fix a plactic class 〈T 〉 of shape λ.

The Littlewood-Richardson coefficient cλµ,ν is equal to the number of pairs of plactic

classes 〈U〉 and 〈V 〉 of shapes µ and ν, respectively, such that 〈U〉〈V 〉 = 〈T 〉.

Example 2.26. Let us compute c31
3,1. For this, we fix the tableau word w = 4123

associated with the SSYT T = 1 2 3
4

. The three words in 〈T 〉 are 4123, 1423, and

1243. Note that the only one that can be written as uv where u and v are reading

words of shapes (3) and (1), respectively, is 1243, with u = 124 (associated to the

tableau U = 1 2 4 ) and v = 3 (associated to the tableau V = 3 ). We conclude

that c31
3,1 = 1.

A word w is called a tableau word if w = read(T ) for some SSYT T . The shape

of a tableau word is, by definition, the shape of the corresponding SSYT. With this

terminology, the Littlewood-Richardson rule can be restated in the language of words

as follows.
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Corollary 2.27. Fix a tableau word w of shape λ. The Littlewood-Richardson co-

efficient cλµ,ν is equal to the number of pairs of tableau words u, v of shapes µ, ν,

respectively, such that w ∼ uv.

2.10 Noncommutative Schur functions and box-adding operators

Fomin and Greene [3] have developed the theory of noncommutative Schur func-

tions which gives a general approach for finding Schur expansions of functions such

as skew Schur functions, stable Schubert and Grothendieck polynomials, and more.

Definition 2.28 (Noncommutative Schur function). Let u1, u2, . . . be a finite or

infinite sequence of elements of some associative algebra A over Q. For a partition λ,

define the noncommutative Schur function as

sλ(u) = sλ(u1, u2, . . .) =
∑
T

uT ,

where the sum runs over all SSYT T , and the noncommutative monomial uT is deter-

mined by read(T ), or by any other representative of the plactic class corresponding

to T . (In the case of an infinite alphabet, sλ(u) is an element of the appropriate

completion of the algebra A.)

The following theorem was obtained in [3].

Theorem 2.29. Assume that the elements u1, u2, . . . of some associative algebra

satisfy the relations

uiukuj = ukuiuj for i < j < k

ujuiuk = ujukui for i < j < k

ui+1ui(ui + ui+1) = (ui + ui+1)ui+1ui for i ≥ 1.
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Then the sλ(u) commute pairwise, and satisfy the Littlewood-Richardson rule:

sµ(u)sν(u) =
∑
λ

cλµ,νsλ(u).

Remark 2.30. The plactic relations (2.1)–(2.2) imply the relations in Theorem 2.29.

Corollary 2.31 (Noncommutative Cauchy identity [3]). Let u1, u2, . . . , un be as in

Theorem 2.29, and let x1, x2, . . . , xm be a family of commuting indeterminates, also

commuting with each of the uj. Then

(2.5)
∑
λ

sλ′(u)sλ(x) =
m∏
i=1

(
1∏

j=n

(1 + xiuj)

)
.

The analogous statement also holds when the xi, or uj, or both, are an infinite family.

Proof. We have

m∏
i=1

(
1∏

j=n

(1 + xiuj)

)
=

m∏
i=1

(∑
k≥0

xki
∑

a1>...>ak

ua1 . . . uak

)

=
m∏
i=1

∑
k≥0

xki ek(u).

The last step follows from the classical Cauchy identity (see e.g. [25, Theorem

7.12.1]) together with Theorem 2.29, since now the xi and the ek(u) form a com-

muting family of indeterminates. Note that for this reason, the ordering in the outer

products in equation (2.5) does not matter.

Definition 2.32 (Partial maps, cf. [3]). Let Y be a finite or countable set, and let

RY be the vector space formally spanned over R by the elements of Y. A linear map

u ∈ End(Y) is called a partial map in Y if the image u(p) of each element p ∈ Y is

either another element of Y or zero.

Definition 2.33 (Generalized skew Schur functions, cf. [3]). Let u1, u2, . . . , un be

partial maps in Y. For any g, h ∈ Y, define

(2.6) Fh/g(x1, . . . , xm) =

〈
m∏
i=1

(
1∏

j=n

(1 + xiuj)

)
g, h

〉
,
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where the formal variables xi commute with each other and with the uj, and the

noncommuting factors of the double product are multiplied in the specified order.

Here, 〈∗, ∗〉 denotes the inner product on RY for which the elements of Y form an

orthonormal basis.

Theorem 2.34 (Generalized Littlewood-Richardson Rule). Let the ui be partial maps

in Y satisfying the relations in Theorem 2.29. Then for any g, h ∈ Y, the polynomial

Fh/g defined by (2.6) is a nonnegative integer combination of Schur functions. More

specifically,

Fh/g(x1, . . . , xm) =
∑

chg,λ sλ(x1, . . . , xm),

where chg,λ is equal to the number of semistandard Young tableaux T of shape λ such

that uTg = h.

Proof. By the noncommutative Cauchy identity (Corollary 2.31),

Fh/g(x) =

〈∑
λ

sλ′(u)sλ(x)g, h

〉
=
∑
λ

〈sλ′(u)g, h〉sλ(x).

Consequently,

chgν = 〈sλ′(u)g, h〉,

which is precisely the number of semistandard Young tableaux T of shape λ such

that uTg = h.

As an application of this theory, one obtains another version of the Littlewood-

Richardson Rule.

Definition 2.35 (cf. [3]). The box-adding operators uj act on Ferrers shapes ac-

cording to the following rule:

uj(λ) =


λ ∪ {box in the j-th column} if this gives a valid shape;

0 otherwise.
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Here the columns are numbered from left to right, starting with j = 1 for the leftmost

column.

Example 2.36. We have

u2

( )
= and u3

( )
= 0.

The maps ui are partial maps on the vector space formally spanned by Ferrers

shapes, as the image of each ui is either a Ferrers shape or 0.

The product

A(x) =
1∏

j=n

(1 + xuj)

can be viewed as an operator that adds a horizontal strip to a fixed shape, each time

introducing a power of x that is determined by the length of the strip. Setting g = µ

we get ∏
i≥0

(
1∏

j=n

(1 + xiuj)

)
µ =

∏
i≥0

A(xi)µ =
∑
λ

∑
T

xTλ,

where the last sum is over all skew SSYT T of shape λ/µ. Therefore

Fλ/µ(x) =

〈∏
i≥1

A(xi)µ, λ

〉
=

∑
shape(T )=λ/µ

xT = sλ/µ(x),

the skew Schur function.

One can see that the box-adding operators ui satisfy the nil-Temperley-Lieb rela-

tions (cf. [3, Example 2.4]):

uiuj = ujui |i− j| ≥ 2,

uiui+1ui = ui+1uiui+1 = 0 i ≥ 1,

which implies that they also satisfy (2.1) and (2.2). Consequently, we can use Theo-

rem 2.34 to obtain an expansion of a skew Schur function in terms of Schur functions.

This leads to the following version of the Littlewood-Richardson rule.
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Corollary 2.37. The Littlewood-Richardson number cλµ,ν is equal to the number of

semistandard tableaux T of shape ν such that uT (µ) = λ, where, as before, uT is the

noncommutative monomial in u1, u2, . . . defined by any representative of the plactic

class associated with T , and each ui is interpreted as a box-adding operator.



CHAPTER 3

Shifted Young tableaux and Schur P -functions

3.1 Strict partitions and shifted diagrams

A strict partition is a finite sequence of integers λ = (λ1, λ2, . . . , λl) such that

λ1 > λ2 > · · · > λl > 0. The shifted diagram, or shifted shape of λ is an array

of square cells in which the i-th row has λi cells, and is shifted i − 1 units to the

right with respect to the top row. Throughout this thesis, we identify the shifted

shape corresponding to a strict partition λ with λ itself. The size of λ is |λ| =

λ1 + λ2 + · · ·+ λl. We denote `(λ) = l, the number of rows.

To illustrate, we show the shifted shape λ = (5, 3, 2), with |λ| = 10 and `(λ) = 3,

is shown below:

.

A shifted shape λ is said to contain a smaller shape µ, if after overimposing the

corresponding shifted diagrams by identifying their upper left corners, the shape of

µ is fully contained inside the shape λ. A skew shifted diagram (or shape) λ/µ is

obtained by removing a shifted shape µ from a larger shape λ containing µ.

A border strip is a skew shape which does not contain a 2 × 2 square. Unless

otherwise specified, a border strip is connected. The following are examples of a

23
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connected border strip and a disconnected one:

.

3.2 Shifted Young tableaux

A (semistandard) shifted Young tableau T of shape λ is a filling of a shifted shape λ

with letters from the alphabet X ′ = {1′ < 1 < 2′ < 2 < · · · } such that:

• rows and columns of T are weakly increasing;

• each k appears at most once in every column;

• each k′ appears at most once in every row;

• there are no primed entries on the main diagonal.

If T is a filling of a shape λ, we write shape(T ) = λ.

A skew shifted Young tableau is defined analogously.

The content of a tableau T is the vector (a1, a2, . . .), where ai is the number of

times the letters i and i′ appear in T .

Example 3.1. The shifted Young tableau

T =
1 1 2 3′ 4

4 5 5
6 9′

has shape λ = (5, 3, 2) and content (2, 1, 1, 2, 2, 1, 0, 0, 1).

A tableau T of shape λ is called standard if it contains each of the entries

1, 2, . . . , |λ| exactly once. In particular, standard shifted Young tableaux have no

primed entries. A standard shifted tableau has content (1, 1, . . . , 1).
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3.3 Sagan-Worley insertion

There are two main correspondences which can be viewed as shifted analogs of the

Robinson-Schensted-Knuth correspondence. They are the Sagan-Worley insertion

and the (Haiman) mixed insertion.

Sagan [18] and Worley [28] introduced the Sagan-Worley insertion, a remarkable

correspondence between permutations and pairs of shifted Young tableaux. The first

tableau is a shifted standard Young tableau and the second tableau is a semistandard

shifted Young tableau of content (1, 1, . . . , 1). (In other words, both tableaux are

“standard”, except that the second tableau is allowed to have primed entries.)

Definition 3.2 (Sagan-Worley insertion). Let w = w1 . . . wn be a permutation. We

recursively construct a sequence (T0, U0), . . . , (Tn, Un) = (T, U) of tableaux, where Ti

is a shifted semistandard Young tableau, and Ui is a shifted standard Young tableau,

similarly to the Robinson-Schensted insertion. Set (T0, U0) = (∅, ∅). For i = 1, . . . , n,

insert wi into Ti−1 in the following manner:

Insert wi into the first row of Ti−1 by bumping the smallest element a that is

greater than wi.

1. If a was not located in the main diagonal, insert a in the next row, using the

same procedure as above, and repeat.

2. If a is located in the main diagonal, insert it in the next column using the same

procedure as for inserting it in a row. Continue column-inserting the remaining

letters.

The insertion process terminates once a letter is placed at the end of a row or

column, bumping no new element. The resulting tableau is Ti.

The shapes of Ti−1 and Ti differ by one box. Add that box to Ui−1, and write i or
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i′ into it, depending on wether the last letter was row-inserted or column-inserted,

to obtain Ui.

We call T the Sagan-Worley insertion tableau and U the Sagan-Worley recording

tableau, and denote them PSW(w) and QSW(w), respectively.

Sagan-Worley insertion has been defined more generally as a correspondence be-

tween words in the alphabet X and pairs of tableaux, the first one being a shifted

semistandard Young tableau with no primed entries, and the second one being a

shifted semistandard Young tableau of content (1, 1, . . . , 1). We will not make use of

this in this thesis, but we refer the reader to the definition in [18].

3.4 Shifted mixed insertion

M. Haiman [6] has introduced (shifted) mixed insertion, a remarkable correspon-

dence between permutations and pairs of shifted Young tableaux.

The following is a semistandard generalization of shifted mixed insertion, which

we call semistandard shifted mixed insertion. It is a correspondence between words

in the alphabet X and pairs of shifted semistandard Young tableaux, one of them

standard. Throughout this paper we refer to semistandard shifted mixed insertion

simply as mixed insertion.

Definition 3.3 (Mixed insertion). Let w = w1 . . . wn be a word in the alphabet

X. We recursively construct a sequence (T0, U0), . . . , (Tn, Un) = (T, U) of tableaux,

where Ti is a shifted Young tableau, and Ui is a standard shifted Young tableau, as

follows. Set (T0, U0) = (∅, ∅). For i = 1, . . . , n, insert wi into Ti−1 in the following

manner:

Insert wi into the first row, bumping out the smallest element a that is strictly

greater than wi (in the order given by the alphabet X ′).
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1. if a is not on the main diagonal, do as follows:

(a) if a is unprimed, then insert it in the next row, as explained above;

(b) if a is primed, insert it into the next column to the right, bumping out the

smallest element that is strictly greater than a;

2. if a is on the main diagonal, then it must be unprimed. Prime it, and insert it

into the next column to the right.

The insertion process terminates once a letter is placed at the end of a row or column,

bumping no new element. The resulting tableau is Ti.

The shapes of Ti−1 and Ti differ by one box. Add that box to Ui−1, and write i

into it to obtain Ui.

We call T the mixed insertion tableau and U the mixed recording tableau, and

denote them Pmix(w) and Qmix(w), respectively.

Example 3.4. The word w = 3415961254 has the following mixed insertion and

recording tableaux:

Pmix(w) =
1 1 2 3′ 4

4 5 5
6 9′

Qmix(w) =
1 2 4 5 9

3 6 8
7 10

.

Both mixed insertion and Sagan-Worley insertion can be generalized to biwords,

namely two-rowed arrays in which the columns are arranged lexicographically, with

priority given to the element in the top row. In this setting, one inserts the elements

from the bottom row, left to right, while recording the corresponding elements from

the top row. The ordinary mixed insertion is obtained if the top row is (1, 2, 3, . . .).

Thus, one can identify a word u with a biword where u is in the bottom row, and the

numbers 1, 2, 3, . . . form the top row. The inverse of u, denoted u−1, is the biword

obtained by switching the two rows in u, and then sorting the columns lexicograph-



28

ically with priority given to the element on the top row. Haiman has proved that

mixed insertion is dual to Sagan-Worley insertion in the following sense.

Theorem 3.5 (Haiman). Let w be a permutation. Then

Pmix(w) = QSW(w−1), and Qmix(w) = PSW(w−1)

This was extended to biwords by Fomin [2, p. 291], as follows.

Theorem 3.6 (Fomin). Let w be a word in X. Then

Pmix(w) = QSW(w−1), and Qmix(w) = PSW(w−1)

3.5 Shifted Greene’s Invariants

In this section we introduce a shifted analog of Greene’s invariants which deter-

mines precisely what conditions a word must satisfy for its mixed insertion tableau

to have shape λ.

Define a hook word as a word w = w1 · · ·wl such that for some 1 ≤ k ≤ l, we have

(3.1) w1 > w2 > · · · > wk ≤ wk+1 ≤ · · · ≤ wl.

Now, define a k-hook subword of w as a union of k hook subwords of w such that:

• any number can appear in at most 2 of the words, and

• any pair of hook words can only have at most 1 number in common.

The length of a k-hook subword of w is the sum of the lengths of the hook subwords

contained in it.

Note that if a letter i appears in w more than once, then each instance of i is

treated separately in the k-hook subword.

The following theorem can be considered a dual of [18, Corollary 5.2], or a semi-

standard version of [11, Corollary 3.39].
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Theorem 3.7. Let w be a word, and let λ be the shape of Pmix(w). Denote by Ik(w)

the maximum length of a hook subword of w. Then for all k ≤ `(λ),

Ik(w) = λ1 + · · ·+ λk +

(
k

2

)
.

The proof of Theorem 3.7 is given in Chapter 4.

As an example, let w = 3415961254, where the insertion tableau has shape (5, 3, 2)

(see Example 3.1). One can see that a maximal 1-hook subword is 96125, a maximal

2-hook subword is 96125, 4159, and a maximal 3-hook subword is 96125, 4159, 3124.

Thus I1(w) = 5, I2(w) = 9, and I3(w) = 13, agreeing with Theorem 3.7.

3.6 The shifted plactic monoid

Theorem 3.8 below is one of our main results. It is a shifted analog of the plactic

relations (2.1)–(2.2) [8]. It can be considered a semistandard generalization of results

by Haiman [6] and Kraśkiewicz [9].

Theorem 3.8. Two words have the same mixed insertion tableau if and only if they

are equivalent modulo the following relations:

(3.2) abdc≡ adbc for a ≤ b ≤ c < d in X;

(3.3) acdb≡ acbd for a ≤ b < c ≤ d in X;

(3.4) dacb≡ adcb for a ≤ b < c < d in X;

(3.5) badc≡ bdac for a < b ≤ c < d in X;

(3.6) cbda≡ cdba for a < b < c ≤ d in X;
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(3.7) dbca≡ bdca for a < b ≤ c < d in X;

(3.8) bcda≡ bcad for a < b ≤ c ≤ d in X;

(3.9) cadb≡ cdab for a ≤ b < c ≤ d in X.

Consequently, the mixed insertion tableau of a concatenation of two words is uniquely

determined by their mixed insertion tableaux.

The proof of Theorem 3.8 is given in Chapter 4.

A concise alternative description of relations (3.2)–(3.9) is the following.

Remark 3.9. As noted in [22], the plactic relations (2.1)–(2.2) can be understood in

the following way. Let us call w = w1 · · ·wn a line word if

w1 > w2 > · · · > wn

or

w1 ≤ w2 ≤ · · · ≤ wn.

Line words are precisely those words w for which the shape of PRSK(w) is a single

row or a single column.

In this language, the plactic relations (2.1)–(2.2) can be stated as follows. Two

3-letter words w and w′ in the alphabet X are plactic equivalent if and only if:

• w and w′ differ by an adjacent transposition, and

• neither w nor w′ is a line word.

The relations (3.2)–(3.9) are called the shifted plactic relations, and can be de-

scribed in a similar way.
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Observe that w is a hook word if and only if Pmix(w) consists of a single row.

Now, the shifted plactic relations (3.2)–(3.9) are precisely all the relations w≡w′ in

which:

• w and w′ are plactic equivalent 4-letter words, and

• neither w nor w′ is a hook word.

Definition 3.10. Two words u and v in the alphabet X are shifted plactic equivalent

(denoted u≡ v) if they can be transformed into each other using the shifted plactic

relations (3.2)–(3.9). By Theorem 3.8, u and v are shifted plactic equivalent if and

only if they have the same mixed insertion tableau.

A shifted plactic class is an equivalence class under the relation ≡. The shifted

plactic class containing a word w is denoted by [w]. We can identify a shifted plactic

class with the corresponding shifted Young tableau T = Pmix(w), and write [T ] = [w].

Example 3.11. Figure 3.1 shows the shifted plactic classes of 5-letter words of

content (3, 2), while Figure 3.2 shows the plactic classes of the same.

11122 11221 11212 12112 21112

1 1 1 2 2 1 1 1 2
2

1 1 1 2′ 2

22111 21211 21121 12121 12211

1 1 1 2′

2
1 1 1

2 2

Figure 3.1: Shifted plactic classes of words of content (3, 2). Each box contains a shifted plactic
class, with the edges representing shifted plactic relations; the corresponding shifted
tableau is shown underneath.

The following proposition can be verified by direct inspection.
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11122 11221 11212 12112 21112

1 1 1 2 2 1 1 1 2
2

22111 21211 21121 12121 12211

1 1 1
2 2

Figure 3.2: Plactic classes of words of content (3, 2). Each box contains a plactic class, with the
edges representing plactic relations; the corresponding tableau is shown underneath.

Proposition 3.12. Shifted plactic equivalence is a refinement of the plactic equiva-

lence. That is, each plactic class is a disjoint union of shifted plactic classes. To put

it yet another way: if two words are shifted plactic equivalent, then they are plactic

equivalent.

Proposition 3.12 can be illustrated by comparing Figures 3.1 and 3.2.

Definition 3.13. The shifted plactic monoid S = S(X) is the set of shifted plactic

classes with multiplication given by [u][v] = [uv]. (This multiplication is well defined

by Theorem 3.8.) Equivalently, the monoid is generated by the symbols in X subject

to the relations (3.2)–(3.9).

Alternatively, identifying each shifted plactic class with the corresponding shifted

Young tableau, we obtain the notion of a (shifted plactic) associative product on the

set of shifted tableaux.

The shape of a shifted plactic class is defined as the shape of the corresponding

shifted Young tableau.

The shifted plactic algebra QS is the semigroup algebra of the plactic monoid.

Remark 3.14. We normally considerX as an infinite alphabet, but a totally analogous
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theory holds for any finite alphabet Xn = {1 < 2 < · · · < n}.

3.7 The ring of Schur P - and Q-functions and Stembridge’s shifted Littlewood-
Richardson rule

Recall that the ring of symmetric functions Λ is generated by the power symmetric

functions; in other words,

Λ = Q[p1, p2, p3, . . .].

An important subring Ω ⊂ Λ is defined by

Ω = Q[p1, p3, p5, . . .].

The ring Ω plays a key role in the Schubert calculus of isotropic Grassmannians,

and in the theory of projective representations of the symmetric groups. In this

section, we recall two important bases for this ring: the Schur P - and Schur Q-

functions.

For a shifted Young tableau T with content (a1, a2, . . .), we denote the correspond-

ing monomial by

xT = xa1
1 x

a2
2 · · · .

For example, for the shifted Young tableau T in Example 3.1, the monomial is

xT = x2
1x2x3x

2
4x

2
5x6x9.

For each strict partition λ, the Schur P -function is defined as the generating

function for the shifted Young tableaux of shape λ, namely

Pλ = Pλ(x1, x2, . . .) =
∑

shape(T )=λ

xT .

The Schur Q-function is defined by

Qλ = Qλ(x1, x2, . . .) = 2`(λ)Pλ.
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Thus, Qλ is the generating function for a different kind of shifted Young tableaux,

namely those in which the elements on the main diagonal are allowed to be primed.

For partitions with only one part, it is common to denote Q(k) by qk.

The skew Schur P - and Q-functions Pλ/µ and Qλ/µ = 2`(λ)−`(µ)Pλ/µ are defined

similarly, for a skew shifted shape λ/µ.

The following is an example of a Schur P -function in two variables:

Example 3.15. For λ = (3, 1),

Pλ(x1, x2) = x3
1x2 + x2

1x
2
2 + x2

1x
2
2 + x1x

3
2.

1 1 1
2

1 1 2′

2
1 1 2

2
1 2′ 2

2

Theorem 3.16 (see e.g. [14]). The Schur P - and Q-Schur functions form linear

bases for the ring Ω.

The shifted Littlewood-Richardson coefficients, bλµ,ν are of great importance in com-

binatorics, algebraic geometry, and representation theory. They appear in the ex-

pansion of the product of two Schur P -functions

PµPν =
∑
λ

bλµ,νPλ

and also in the expansion of a skew Schur Q-function

Qλ/µ =
∑
ν

bλµ,νQν .

The latter can be rewritten as

Pλ/µ =
∑
ν

2`(µ)+`(ν)−`(λ)bλµ,νPν .

The first combinatorial interpretation for the shifted Littlewood-Richardson co-

efficients has been given by Stembridge [26]. Thomas and Yong [27] have recently

given a similar one involving (co)minuscule roots.
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Theorem 3.17 (Stembridge). Fix a standard shifted tableau Q of shape ν. The

shifted Littlewood-Richardson coefficient bλµ,ν is equal to the number of standard shifted

skew tableaux of shape λ/µ which rectify to Q.

It is well known that the Schur P -functions are Schur positive, i.e., the coefficients

gλµ in the expansion

Pλ =
∑
µ

gλµsµ

are positive. Stembridge [26] gave a combinatorial description of these coefficients:

Theorem 3.18 (Stembridge). The coefficient gλµ is equal to the number of standard

Young tableaux of shape µ which rectify to a fixed standard shifted Young tableau of

shape λ.

3.8 Plactic Schur P -functions and their applications

In this section we use the theory of the shifted plactic monoid to give a new proof

(and a new version of) the shifted Littlewood-Richardson rule.

Definition 3.19. A shifted plactic Schur P -function Pλ ∈ QS is defined as the sum

of all shifted plactic classes of shape λ. More precisely,

Pλ =
∑

shape(T )=λ

[T ].

Example 3.20. Representing each shifted plactic class as [w], for some representa-

tive w, we have:

P(3,1) = [1211] + [2211] + [1212] + [2212].

1 1 1
2

1 1 2′

2
1 1 2

2
1 2′ 2

2

The reader can check that each word gets mixed inserted into the tableau underneath,

making it a valid representative of the corresponding plactic class.
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The Pλ are noncommutative analogs of the Schur P -functions. For example, P(3,1)

is a noncommutative analog of

P(3,1)(x1, x2) = x3
1x2 + 2x2

1x
2
2 + x1x

3
2.

Theorem 3.21. The map Pλ 7→ Pλ extends to a canonical isomorphism between the

algebra generated by the ordinary and shifted plactic Schur P -functions, respectively.

As a result, the Pλ commute pairwise, span the ring they generate, and multiply

according to the shifted Littlewood-Richardson rule:

(3.10) PµPν =
∑
λ

bλµ,νPλ.

The proof of Theorem 3.21 is given in Chapter 4.

The concept of jeu de taquin [25, A1] has a shifted analog; both are special

instances of a general construction due to Schützenberger [23]. For both the ordinary

and the shifted cases, a rectification of a skew standard tableau T is a non-skew

standard tableau U obtained from T by applying a sequence of jeu de taquin moves.

The rectification is unique as proven by Schützenberger [23] in the ordinary case,

and by Sagan [18] in the shifted case. 1

Our first application of Theorem 3.21 is a new proof (and a new version of)

the shifted Littlewood-Richardson rule. Stembridge [26] proved that the shifted

Littlewood-Richardson number bλµ,ν is equal to the number of standard shifted skew

tableaux of shape λ/µ which rectify to a fixed standard shifted tableau of shape ν.

By taking the coefficient of the shifted plactic class [T ] corresponding to a fixed

tableau T of shape λ on both sides of (3.10), one obtains the following:

1Sagan [18] has extended the concept of jeu de taquin to shifted semistandard skew tableaux. Unfortunately, his
version does not fit our purposes nor have we been able to develop an alternative that does. Nevertheless, in Chapter
4 we develop the concept of rectification.
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Corollary 3.22 (Shifted Littlewood-Richardson rule). Fix a shifted plactic class [T ]

of shape λ. The shifted Littlewood-Richardson coefficient bλµ,ν is equal to the number

of pairs of shifted plactic classes [U ] and [V ] of shapes µ and ν, respectively, such

that [U ][V ] = [T ].

Example 3.23. Let us compute b31
3,1. For this, we fix the shifted tableau word w =

1423 associated with the shifted Young tableau T = 1 2 3
4

. The two words in [T ]

are 1423 and 1243. Among there, the only one that can be written as uv where u

and v are reading words of shapes (3) and (1), respectively, is 1243, with u = 124

(associated to the tableau U = 1 2 4 ) and v = 3 (associated to the tableau V = 3 ).

We conclude that b31
3,1 = 1.

Similarily, let us compute b31
2,2 using the same w and T . Note that both words

in [T ] can be written as uv, where u and v are both reading words of shape (2).

The word 1243, with u = 12 (associated to the tableau U = 1 2 ) and v = 43

(associated to the tableau V = 3 4′ ). The word 1423, with u = 14 (associated to the

tableau U = 1 4 ) and v = 23 (associated to the tableau V = 2 3 ). We conclude

that b31
2,2 = 2.

Corollary 3.22 can be restated in the language of words as follows. In Section 4.1

we introduce a canonical representative of the shifted plactic class [T ] corresponding

to the tableau T . This representative is called the mixed reading word of T , and

denoted by mread(T ). (See Definition 4.4 for precise details.) A word w is called a

shifted tableau word if w = mread(T ) for some shifted Young tableau T . The shape

of a shifted tableau word is, by definition, the shape of the corresponding tableau.

With this terminology, the shifted Littlewood-Richardson rule can be restated as

follows:
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Corollary 3.24. Fix a shifted tableau word w of shape λ. The shifted Littlewood-

Richardson coefficient bλµ,ν is equal to the number of pairs of shifted tableau words

u, v of shapes µ, ν, respectively, such that w≡uv.

The representatives we have picked in Example 3.20 are precisely the mixed read-

ing words of the corresponding tableaux; c.f. Example 4.6.

The following result is proved in Chapter 4

Lemma 3.25. Fix a shifted tableau word w of shape λ and a standard shifted tableau

Q of shape ν. The number of pairs of shifted tableau words u, v of shapes µ and ν,

respectively, such that uv = w is equal to the number of standard shifted skew tableaux

R of shape λ/µ which rectify to Q.

As a corollary, we recover Theorem 3.17.

The second application of the shifted plactic monoid is a new proof (and a new

version of) the Schur expansion of a Schur P -function. Stembridge [26] has found a

combinatorial interpretation for the coefficients gλµ appearing in the sum

(3.11) Pλ =
∑
µ

gλµsµ.

Below we give a different description of the numbers gλµ in terms of shifted plactic

classes.

By Proposition 3.12, any two shifted plactic equivalent words are plactic equiv-

alent; in other words, relations (3.2)–(3.9) are valid instances of (2.1)–(2.2). This

yields the natural projection

π : S→ P

which maps the shifted plactic class [u] to the plactic class 〈u〉.

We next consider the image of a plactic Schur P -function under π. We get:
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Theorem 3.26. The plactic Schur P -function Pλ is sent by the projection π to a

sum of plactic Schur functions Sµ. Specifically (cf. 3.11),

π(Pλ) =
∑
µ

gλµSµ.

Since the span of the Pλ and the span of the Sλ are isomorphic to Ω and Λ,

respectively, the following statement holds.

Corollary 3.27. The coefficient gλµ is equal to the number of shifted plactic classes [u]

of shifted shape λ such that π([u]) = 〈v〉 for some fixed plactic class 〈v〉 of shape µ.

Example 3.28. Let µ be the ordinary shape (3, 1), and λ be the shifted shape (4).

Let us compute gλµ, the coefficient of sµ in Pλ. For this, we fix 〈u〉 = 〈2134〉, the

plactic class corresponding to the Young tableau U = 1 3 4
2

. Note that the words in

〈u〉 are 2134, 2314, and 2341. These get split into two shifted plactic classes, namely

[2134] corresponding to the shifted Young tableau 1 2′ 3 4 , and [2314] = [2341]

corresponding to the shifted Young tableau 1 2′ 4
3

. Since only one of these shifted

plactic classes has shape λ, namely [2134], we conclude that gλµ = 1.

Theorem 3.29. Let λ be a shifted shape and Uλ a fixed standard shifted tableau of

shape λ. Fix a plactic class 〈Tµ〉 of (ordinary) shape µ. Then the number of shifted

plactic classes [Tλ] of shape λ for which π([Tλ]) = 〈Tµ〉 is equal to the number of

standard Young tableaux of shape µ which rectify to Uλ.

Theorems 3.26 and 3.29 are proved in Section 4.3. As a corollary, we recover

Theorem 3.18.

3.9 Noncommutative Schur P -functions and box-adding operators

Definition 3.30 (Noncommutative Schur P -function). Let u1, u2, . . . be a finite

or infinite sequence of elements of some associative algebra A over Q. (We will
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always assume that these elements satisfy the shifted plactic relations.) For a shifted

shape λ, define

Pλ(u) = Pλ(u1, u2, . . .) =
∑
T

uT ,

where T runs over all shifted Young tableaux, and the monomial uT is determined by

mread(T ), or by any other representative of the shifted plactic class corresponding

to T . (In the infinite case, Pλ(u) is an element of the appropriate completion of the

algebra A.)

Theorem 3.21 implies the following result.

Corollary 3.31. Assume that the elements u1, u2, . . . of some associative algebra

satisfy the shifted plactic relations (3.2)–(3.9) (the element ui is represented by the

letter i in the alphabet X). Then the noncommutative Schur P -functions Pλ(u)

introduced in Definition 3.30 commute pairwise, and satisfy the shifted Littlewood-

Richardson rule:

Pµ(u)Pν(u) =
∑
λ

bλµ,νPλ(u).

Corollary 3.32 (Noncommutative Cauchy identity). Let u1, u2, . . . , un be as in

Corollary 3.31, and let x1, x2, . . . , xm be a family of commuting indeterminates, also

commuting with each of the uj. Then

(3.12)
∑
λ

Pλ(u)Qλ(x) =
m∏
i=1

(
1∏

j=n

(1 + xiuj)
n∏
j=1

(1− xiuj)−1

)
.

The analogous statement also holds when the xi, or uj, or both, are an infinite family.

Proof. We have

m∏
i=1

(
1∏

j=∞

(1 + xiuj)
∞∏
j=1

(1− xiuj)−1

)
=

m∏
i=1

∑
k≥0

xki
∑

a1>...>ai≤ai+1≤···≤ak

ua1 . . . uak


=

m∏
i=1

∑
k≥0

xki qk(u).
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The last step follows from the classical shifted Cauchy identity (see e.g. [18,

Corollary 8.3]) together with Corollary 3.31, since now the xi and the qk(u) form a

commuting family of indeterminates. Note that for this reason, the ordering in the

interior products in 3.12 is as indicated, whereas the ordering in the outer products

does not matter.

Recall the notion of partial maps from Definition 2.32.

Definition 3.33 (Generalized skew Schur Q-functions, cf. [3]). Let u1, u2, . . . , un be

partial maps in Y. For any g, h ∈ Y, define

(3.13) Gh/g(x1, . . . , xm) =

〈
m∏
i=1

(
1∏

j=n

(1 + xiuj)
n∏
j=1

(1− xiuj)−1

)
g, h

〉
,

where the variables xi commute with each other and with the uj, and the noncom-

muting factors of the double product are multiplied in the specified order. Here,

〈∗, ∗〉 denotes the inner product on RY for which the elements of Y form an or-

thonormal basis. By the argument at the end of the proof of Corollary 3.32, the

order of factors in the outer product doesn’t matter, which implies that the Gh/g are

(ordinary) symmetric polynomials in x1, . . . , xm.

Theorem 3.34 (Generalized shifted Littlewood-Richardson Rule). Let the ui be par-

tial maps in Y satisfying the shifted plactic relations (3.2)–(3.9). Then for any

g, h ∈ Y, the polynomial Gh/g defined by (3.13) is a nonnegative integer combination

of Schur Q-functions. More specifically,

Gh/g(x1, . . . , xm) =
∑

bhg,λQλ(x1, . . . , xm),

where bhg,λ is equal to the number of shifted semistandard Young tableaux T of shape λ

such that uTg = h.
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Proof. By the noncommutative Cauchy identity (Corollary 3.32),

Gh/g(x) =

〈∑
λ

Pλ(u)Qλ(x)g, h

〉
=
∑
λ

〈Pλ(u)g, h〉Qλ(x).

Consequently,

bhgν = 〈Pλ(u)g, h〉,

which is precisely the number of shifted semistandard Young tableaux T of shape λ

such that uTg = h.

As an application of this theory, we obtain yet another version of the shifted

Littlewood-Richardson Rule.

Definition 3.35 (cf. [3]). The diagonal box-adding operators uj act on shifted shapes

according to the following rule:

uj(λ) =


λ ∪ {box in the j-th diagonal} if this gives a valid shape;

0 otherwise.

Here the diagonals are numbered from left to right, starting with j = 1 for the main

diagonal.

Example 3.36. We have

u2

( )
= and u1

( )
= 0.

The maps ui are partial maps on the vector space formally spanned by the shifted

shapes.

The product

B(x) =
1∏

j=n

(1 + xuj)
n∏
j=1

(1− xuj)−1

can be viewed as an operator that adds a (possibly disconnected) border strip to a

fixed shifted shape (the first product will add a horizontal strip, and the second one
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a vertical strip), each time introducing a power of x that is determined by the length

of the strip. Setting g = µ and h = λ, we get

∏
i≥0

(
1∏

j=n

(1 + xiuj)
n∏
j=1

(1− xiuj)−1

)
µ =

∏
i≥0

B(xi)µ =
∑
T

xTλ,

where the sum is over all semistandard skew shifted Young tableaux T of shape λ/µ.

Therefore

Gλ/µ(x) =

〈∏
i≥1

B(xi)µ, λ

〉
=
∑
T

xT = Qλ/µ(x),

the skew Schur Q-function.

One can see that the box-adding operators ui satisfy the nil-Temperley-Lieb rela-

tions of type B (cf. [3, Example 2.4] [4]):

uiuj = ujui |i− j| ≥ 2,

u2
i = 0 i ≥ 1,

uiui+1ui = 0 i ≥ 2,

ui+1uiui+1 = 0 i ≥ 1,

which implies that they also satisfy (3.2)–(3.9). Consequently, we can use Theo-

rem 3.34 to obtain an expansion of the skew Schur Q-functions in terms of Schur

Q-functions. This leads to the following new version of the shifted Littlewood-

Richardson rule.

Corollary 3.37. The shifted Littlewood-Richardson number bλµ,ν is equal to the num-

ber of shifted semistandard tableaux T of shape ν such that uT (µ) = λ, where, as be-

fore, uT is the noncommutative monomial in u1, u2, . . . defined by any representative

of the shifted plactic class associated with T , and each ui is interpreted as a diagonal

box-adding operator.
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The following is a direct connection between the versions of the shifted Littlewood-

Richardson rule given in Corollary 3.37 and in Corollary 3.17.

Let T be a tableau of shape ν with the property that uTµ = λ. We wish to match

it to a standard filling of a shape λ/µ that rectifies to a fixed standard tableau of

shape ν. This filling will be obtained as follows: Note that mread(T ) adds boxes to

a shape µ one by one, until a shape λ is obtained. If we add a label i to the i-th

box added in this procedure, we obtain a filling of a shape λ/µ that will rectify to

the tableau of shape ν in which the first box in the i-th row will contain the number

λ1 + . . .+ λi−1 + 1, and the numbers will be increasing by one in every row.

Example 3.38. For the computation the coefficient b542
31,43, one has the following

standard shifted Young tableau of shape (542)/(31) which rectifies to a fixed tableau

(say, the one below) of shape (43):

1 4
2 3 5
6 7

−→ 1 2 3 4
5 6 7

.

Recording the diagonals in which the numbers 7, 6, . . . , 1 are located within the skew

shifted tableau on the left, we obtain the sequence w = 2145324. Note that w is the

mixed reading word of the shifted semistandard Young tableau

1 2′ 2 4
3 4′ 5

which means that its corresponding monomial u2u1u4u5u3u2u4 appears in P(4,3)(u).

Note that this monomial, when applied to a shape (3, 1) yields a shape (5, 3, 2), as

claimed.



CHAPTER 4

Shifted tableau words, semistandard decomposition
tableaux, and proofs

In this Chapter, we develop the machinery for the proofs of the main theorems

in the thesis. We define a canonical mixed reading word for a shifted semistandard

Young tableau, and state several of its important properties. We define semistandard

decomposition tableaux, which are related to shifted semistandard Young tableaux,

and are sometimes easier to manipulate. Most of the proofs rely on the key stan-

dardization lemmas which show that many theorems about permutations and shifted

standard tableaux can be extended to the generality of words and shifted semistan-

dard tableaux.

4.1 Shifted tableau words

In this section, we begin to systematically develop the theory of the shifted plactic

monoid by defining a canonical representative of each shifted plactic class and stating

its characterizing properties.

Recall that the mixed insertion correspondence associates each word with its in-

sertion and recording tableau. Associating each word in a shifted plactic class [T ]

with its recording tableau gives a natural correspondence between representatives of

[T ] and standard tableaux of the same shape as T . Thus, by constructing a canonical

45
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standard shifted Young tableau of each shape, we specify a canonical representative

of each shifted plactic class.

A skew shifted tableau T is called a vee if its shape is a (possibly disconnected)

border strip, and the entries i, i+1, . . . , k appear in T in the following manner. There

exists some i ≤ j ≤ k such that:

• the entries i, i+ 1, . . . , j form a vertical strip;

• these entries are increasing down the vertical strip;

• the entries j, j + 1, . . . , k form a horizontal strip;

• these entries are increasing from left to right;

• each box in the vertical strip is left of those boxes in the horizontal strip that

are on the same row.

The size of a vee is the number k of its entries. A vee is connected if the corresponding

skew shape is connected.

Example 4.1. A vee of shape (5, 3, 2)/(3, 2) and size 5 is shown below:

6 10
7

8 9

Definition 4.2. A standard shifted Young tableau of shape λ = (λ1, λ2, . . . , λl) is

a special recording tableau if it is standard, and for every i such that 1 ≤ i ≤ l, the

entries λl + . . .+λi+1 + 1, λl + . . .+λi+1 + 2, . . . , λl + . . .+λi+1 +λi form a connected

vee.

Note that for every shape, the special recording tableau is unique.

This concept is a shifted analog of the dual reading tableau defined by P. Edelman

and C. Greene [1].
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Example 4.3. The steps for building a special recording tableau of shape (5, 3, 2),

by adding connected vees formed by the following sets of numbers: {1, 2}, {3, 4, 5},

and {6, 7, 8, 9, 10}:

1 2 , 1 2 3
4 5

,
1 2 3 6 10

4 5 7
8 9

.

Definition 4.4. The mixed reading word of a shifted Young tableau T is the word

corresponding to the pair (T, U) under the mixed insertion correspondence, where U

is the shifted dual reading tableau of the same shape as T . The mixed reading word

of T is denoted mread(T ).

Example 4.5. We find mread(T ) for the tableau T in Example 3.1. Recall that the

special recording tableau of shape (5, 3, 2) is U , given in Example 4.3.

To obtain the last letter of the mixed reading word, one first removes (using

the mixed insertion algorithm backwards) the element in T corresponding to the

largest entry in U , namely the 10. In T , this is precisely the 4 in the top right

corner. Thus, the last letter of mread(T ) is 4. Continuing in this fashion, we obtain

mread(T ) = 3451196524.

Example 4.6. The mixed reading words of all tableaux of shape λ = (3, 1) in the

alphabet {1, 2} are shown below:

1 1 1
2

1 1 2′

2
1 1 2

2
1 2′ 2

2

1211 2211 1212 2212.

Definition 4.7. A word w in the alphabet X is a shifted tableau word if there exists

a shifted Young tableau T such that w = mread(T ). The shape of a shifted tableau

word is given by the shape of the corresponding tableau.
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Theorem 4.8. Every shifted plactic class [T ] contains exactly one shifted tableau

word, namely mread(T ).

Proof. The fact that Pmix(mread(T )) = T is direct from the definition. The unique-

ness follows from the fact that each shifted plactic class corresponds to a unique

shifted Young tableau.

We proceed to characterize shifted tableau words by certain properties.

Recall that a hook word is a word w = w1 · · ·wl such that for some 1 ≤ k ≤ l,

the inequalities (3.1) hold. It is formed by the decreasing part w↘ = w1 · · ·wk, and

the increasing part w↗ = wk+1 · · ·wl. Note that the decreasing part of a hook word

is always nonempty.

Theorem 4.9. A word w is a shifted tableau word if and only if it is of the form

w = ulul−1 · · ·u1, and:

(1) each ui is a hook word,

(2) ui is a hook subword of maximum length in ulul−1 · · ·ui, for 1 ≤ i ≤ l − 1.

Furthermore, for 1 ≤ i ≤ l, the shape of the tableau Pmix(ul · · ·ui+1ui) is (λi, λi+1, . . . , λl),

where |ui| = λi. In particular, shape(Pmix(u)) = λ.

This theorem is proved in Section 4.2.

Proposition 4.10. An equivalent characterization of a shifted tableau word is ob-

tained when one replaces condition (2) in Theorem 4.9 by the following:

(2′) ui is a hook subword of maximum length in ui+1ui, for 1 ≤ i ≤ l − 1.

This proposition is proved at the end of Chapter 4.

Consider the alphabets −X = {· · · < −3 < −2 < −1} and −X ′ = {· · · − 2 <

−2′ < −1 < −1′}, where by convention, any letter of −X (−X ′) is smaller than
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any letter in X (X ′). The mixed reading word of a skew shifted Young tableau T of

shape λ/µ is defined as follows: Fill the shape µ with any shifted Young tableau with

letters in −X ′. In this way, one obtains a shifted Young tableau U with letters in

X ′∪−X ′. Note that mread(U) has letters in the alphabet X∪−X. Let mread(T ) be

the restriction of mread(U) to the alphabet X, and let rect(T ), the rectification of T

be Pmix(mread(T )). The following lemma confirms that this reading is well defined.

Lemma 4.11. Let T be a shifted skew Young tableau of shape λ/µ. Both mread(T )

and rect(T ) are independent of the filling of the shape µ with letters in −X.

Proof. Let a be a letter in X ∪ −X, and U a shifted Young tableau with letters

in X ′ ∪ −X ′. The mixed insertion of a into U gives rise to a sequence of letters

a = a1, a2, . . . , ak = b, each getting bumped at every stage, until b gets added to a

new row or column. By definition, a1 < a2 < · · · < ak. Thus, when one removes

b using the inverse process, the letters bumped are b = ak > · · · > a1 = a. Thus,

if a ∈ −X ′, there is some 1 ≤ i ≤ k such that ai, ai−1, . . . , a1 ∈ −X ′. This implies

that once the reverse bumping sequence enters −X ′, it will stay in −X ′. Since we

are restricting mread(U) to X ′, the result follows.

We define the shifted plactic skew Schur P -function of shape λ/µ to be the fol-

lowing element of QS:

Pλ/ν =
∑

shape(T )=λ/µ

[rect(T )].

Conjecture 4.12. Pλ/µ belongs to the ring generated by the shifted plactic Schur

P -functions.

Corollary 4.13 (of Conjecture 4.12). Fix a shifted Young tableau U of shape ν. The

coefficient of Pν in Pλ/µ is equal to the number of skew shifted Young tableaux T with

Pmix(mread(T )) = U .
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4.2 Semistandard decomposition tableaux

The fact that the mixed reading word of T can be decomposed into hook subwords,

precisely of the same lengths as the rows of T , hints that arranging these words as

rows of a shifted diagram would yield an interesting object. Based on the concept

of a standard decomposition tableau introduced by W. Kraśkiewicz [9] and further

developed by T. K. Lam [11], we introduce the following notion.

Definition 4.14. A semistandard decomposition tableau (SSDT) is a filling R of a

shape λ = (λ1, . . . , λl) with elements of X, such that:

(1) the word ui formed by reading the i-th row from left to right is a hook word of

length λi, and

(2) ui is a hook subword of maximum length in ulul−1 · · ·ui, for 1 ≤ i ≤ l − 1.

The reading word of R is read(R) = ulul−1 · · ·u1. The content of an SSDT is the

content of read(R).

By Proposition 4.10, a filling R of a shape λ is an SSDT if and only if each of the

fillings formed by two consecutive rows is an SSDT. By the definition, a filling R is

an SSDT of shape λ if and only if read(R) is a shifted tableau word of shape λ.

Example 4.15. An SSDT, with its corresponding reading word:

R =
9 6 5 2 4

5 1 1
3 4

read(R) = 34 511 96524.

The content of R is (2, 1, 1, 2, 2, 1, 0, 0, 1).

Remark 4.16. An SSDT can be viewed as a shifted analog of a (ordinary) Young

tableau for the following reason. A word w in the alphabet X is the reading word of

a Young tableau T of shape λ if and only if it is of the form ulul−1 · · ·u1, where:
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(1) each word ui is weakly increasing,

(2) the length of ui is λi, for 1 ≤ i ≤ l, and

(3) ui is a weakly increasing subword of maximal length in ulul−1 · · ·ui, for 1 ≤ i ≤

l − 1.

In this case the ui are precisely the rows of T .

Shifted Young tableaux and SSDT share many properties, and many theorems

about shifted Young tableaux can be proved more easily in the language of SSDT.

To translate from one language to another, one can use the following bijection.

Theorem 4.17. Let Y(λ) be the set of shifted Young tableaux of shape λ. Let D(λ)

be the set of SSDT of shape λ. The map

Φ : D(λ) → Y(λ)

R 7→ Pmix(read(R))

is a bijection. Furthermore, read(R) = mread(Φ(R)), i.e., Φ is a word preserving

bijection.

Theorem 4.17 is proved below in this section.

For a more informal definition of Φ, see Remark 4.24

As an example, the image under Φ of the SSDT in Example 4.15 is the shifted

Young tableau of Example 3.1.

In the special case of tableaux with only one row, the image of a shifted Young

tableau is the SSDT formed by reading the primed entries from right to left, and

then the unprimed entries from left to right. For example,

6 3 2 1 2 2 4 5
Φ7→ 1 2′ 2 2 3′ 4 5 6′ .

In order to find the inverse of Φ directly, we define a semistandard version of

Kraśkiewicz insertion [9].
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Definition 4.18 (Semistandard Kraśkiewicz (SK) insertion). Given a hook word

u = y1 · · · yk · · · ys, where u↘ = y1 · · · yk and u↗ = yk+1 · · · ys, and a letter x, the

insertion of x into u is the word ux if ux is a hook word, or the word u′ with an

element y that gets bumped out, as follows:

(1) let yj be the leftmost element in u↗ which is strictly greater than x;

(2) replace yj by x;

(3) let yi be the leftmost element in u↘ which is less than or equal to yj;

(4) replace yi by yj, to obtain u′, bumping y = yi out of x.

To insert a letter x into an SSDT T with rows u1, u2, . . . , ul, one first inserts x = x1

into the top row u1. If an element x2 gets bumped, it will get inserted into the second

row u2, and so on. The process terminates when an element xi gets placed at the

end of row ui.

The SK insertion tableau of the word w = w1 · · ·wn, denoted PSK(w), is obtained

by starting with an empty shape and inserting the letters w1, . . . , wn from left to

right, forming an SSDT.

The SK recording tableau of w, denoted QSK(w), is the standard shifted Young

tableau that records the order in which the elements have been inserted into PSK(w).

In other words, the shapes of PSK(w1 · · ·wi−1) and PSK(w1 · · ·wi) differ by one box;

QSK(w) has a letter i on that box.

Example 4.19. The following are the steps for inserting 3 into the tableau

6 5 4 2 1 1 4
6 3 2 1 5

5 2 2
.

At every step, notation u ← a≡ b ← u′ indicates that the insertion of the letter a

into row u produces a new row u′, with the letter b bumped out and inserted into
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the next row. The vertical bar separates u↗ and u↘. We have:

65421 | 14← 3 ≡ 4← 65421 |13,

6321|5← 4 ≡ 3← 6521|4,

52|2← 3 ≡ 52|23,

and the resulting tableau is
6 5 4 2 1 1 3

6 5 2 1 4
5 2 2 3

.

Example 4.20. The word w = 3415961254 has the following SK insertion and

recording tableau

PSK(w) =
9 6 5 2 4

5 1 1
3 4

QSK(w) =
1 2 4 5 9

3 6 8
7 10

.

In Section 4.3, we define the standardization of a word, of a shifted Young tableau,

and of an SSDT, based on techniques introduced by Sagan [18] and Haiman [6].

Standardization enables us to translate results on permutations to results on words

with repeated letters. We prove (Lemmas 4.28, 4.30 and 4.31) that standardiza-

tion commutes with the shifted plactic equivalence, the SK insertion, and the mixed

insertion. Thus, we obtain the following results which can be viewed as semistan-

dard counterparts of theorems by Kraśkiewicz [9], Lam [10] [11], and Sagan [18].

Specifically, Theorem 4.21 is the semistandard extension of [9, Theorem 5.2], while

Theorem 4.22, Proposition 4.23, and Theorem 4.25 are semistandard extensions of

[11, Lemma 3.5, Corollary 3.6, Lemma 4.8], [10, Theorem 3.34], and [10, Theorem

3.25], respectively. Their proofs follow directly from the result in for permutations

and the standardization lemmas.

Theorem 4.21. SK insertion is a bijection between words in the alphabet X and

pairs of tableaux (P,Q), where P is an SSDT and Q is a standard shifted Young

tableau of the same shape as P .
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Theorem 4.22. Two words are shifted plactic equivalent if and only if they have

the same SK insertion tableau. In particular, for a word w, w≡ read(PSK(w)) (or

equivalently, PSK(read(PSK(w))) = PSK(w)). Furthermore, QSK(read(PSK(w))) is the

special recording tableau of the same shape as PSK(w).

Proposition 4.23. The recording tableau of a word is the same under mixed inser-

tion and SK insertion. Namely, Qmix(w) = QSK(w) for any word w in the alphabet X.

Remark 4.24. A more informal way to view Φ is as follows. Let w be a word in the

alphabet X. Then Φ sends PSK(w) to Pmix(w).

Proof of Theorem 4.17. We will prove that the inverse map is given by

Ψ : Y(λ) → D(λ)

T 7→ PSK(mread(T )).

Let T ∈ Y(λ). Then by Theorem 4.22, QSK(mread(T )) is the special recording

tableau of shape λ. Therefore, Ψ(T ) = PSK(mread(T )) has shape λ, i.e., Ψ(T ) ∈

D(λ). Similarly, if R ∈ D(λ), then Φ(R) ∈ Y(λ).

Now, note that for T ∈ Y(λ),

Φ(Ψ(T )) = Pmix(read(PSK(mread(T ))))

= Pmix(mread(T ))

= T.

And similarly, for R ∈ D(λ), Ψ(Φ(R)) = R. Therefore, Φ is a bijection.

Proof of Theorem 4.9. By Theorem 4.17, w is a shifted tableau word if and only if

w = read(R) for some SSDT R. Therefore, (1) follows from the definition of an

SSDT.
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(2) from the definition of an SSDT, it follows that if ul, . . . , u1 are rows of an SSDT,

then so are ul, . . . , ui for all 1 ≤ i ≤ l. The result follows from this observation.

Note that an ordinary shape λ = (λ1, λ2, . . . , λl) can be considered a skew shifted

shape (λ + δ)/δ, where δ = (l, l − 1, . . . , 1). The following result, which can be

viewed as the semistandard version of [10, Theorem 3.25], relates the mixed (or SK)

recording tableau of a word to its Robinson-Schensted-Knuth recording tableau.

Theorem 4.25. Let w be a word in the alphabet X. Then the tableau Qmix(w) (which

is the same as QSK(w)) can be obtained by treating QRSK(w) as a skew shifted Young

tableau and applying shifted jeu de taquin slides to it to get a standard shifted Young

tableau.

4.3 Semistandardization and Proofs

Definition 4.26. Recall that a word of length n is a permutation if it contains

each of the letters 1, 2, . . . , n each exactly once. A shifted Young tableau of content

(1, 1, . . . , 1) will be called a Haiman tableau. In other words, a Haiman tableau is a

standard shifted tableau, possibly with some primed off-diagonal entries.

Let w = w1w2 . . . wm be a word. Let (α1, . . . , αm) be the content of w, i.e.,

αi letters in w are equal to i. The standardization of w, denoted stan(w) is the

permutation obtained by relabelling the elements labelled i by α1 + · · · + αi−1 +

1, . . . , α1 + · · ·+ αi, from left to right.

The standardization of an SSDT R, denoted stan(R) is the filling obtained by

applying the same procedure used in the standardization of a word, namely, taking

the order of the elements from read(R). Note that in general, any filling of a shifted

shape with letters in X can be standardized, using this method.

The standardization of a shifted Young tableau T , denoted stan(T ) is the Haiman
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tableau of the same shape, obtained as follows: Let α = (α1, . . . , αm) be the content

of T . For every i, the entries labelled i′ or i are relabelled α1 + . . . + αi−1 + 1, α1 +

. . .+ αi−1 + 2, . . . , α1 + . . .+ αi−1 + αi. One assigns these values in increasing order,

starting from the boxes labelled i′, from top to bottom, and then moving to the

boxes labelled i, from left to right. If the old element in a box was primed, so is the

new one. This procedure has been suggested by Haiman [6].

Example 4.27. Standardizations of a word w, a shifted Young tableau T , and an

SSDT R:

w = 23314211, stan(w) = 46718523,

R =
4 2 1 1

3 1 3
2

, stan(R) =
8 5 2 3

6 1 7
4

,

T =
1 1 1 2′

2 3′ 4
3

, stan(T ) =
1 2 3 4′

5 6′ 8
7

.

In his study of decompositions of reduced words in the hyperoctahedral group

BN , Kraśkiewicz [9] has introduced standard decomposition tableaux (SDT), which

are defined in the same way as SSDT, with the extra condition that the reading word

must be a reduced word in BN . He has also introduced the Kraśkiewicz correspon-

dence, which assigns to every reduced word in BN , a pair of tableaux consisting of

the Kraśkiewicz insertion tableau (an SDT), and the Kraśkiewicz recording tableau

(a standard Young tableau).

We do not use the full power of Kraśkiewicz insertion, but we use it for permuta-

tions, since a permutation is always a reduced word in BN , for some N . (Here the

letter i stands for the i-th generator of BN as a Coxeter group.) We abuse notation

and call PSK(w) and QSK(w) the Kraśkiewicz insertion and recording tableaux, re-

spectively, and use the term SDT to refer to a semistandard decomposition tableau

whose reading word is a permutation. We also note that for permutations, the shifted
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plactic relations are equivalent to the B-Coxeter-Knuth relations in [11], and to the

dual equivalence relations given in Corollary 3.2 in [7].

Lemma 4.28. Two words u and v in the alphabet X are shifted plactic equivalent if

and only if they have the same content, and stan(u)≡ stan(v).

Proof. It is enough to check this for relations (3.2)–(3.9). For example, for (3.2),

there are four possible type of words that will have abdc as their standardization,

with a < b < c < d, namely aaba, aacb, abcb, abdc. Similarly for adbc, we have

abaa, abac, acab, adbc. These eight words are paired by relation (3.2) as follows:

aaba ≡ abaa;

aacb ≡ acab;

abcb ≡ acbb;

abdc ≡ adbc.

Checking the other seven relations is routine, and left for the reader.

Lemma 4.29. Standardization respects the property of being a shifted tableau word,

an SSDT, or a semistandard shifted Young tableau. More precisely:

• a word w is a shifted tableau word if and only if stan(w) is;

• a filling of a shifted shape R with letters in X is an SSDT if and only if stan(R)

is an SDT;

• a filling of a shifted shape T with letters in X ′ is a semistandard shifted Young

tableau if and only if stan(T ) is a Haiman tableau.

Proof. The first two points follow from the observation that a word w is a hook word

if and only if its standardization stan(w) is a hook word. The third one is a routine

check of the properties that define a shifted Young tableau.
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Lemma 4.30. Let w be a word and R an SSDT. Then

PSK(stan(w)) = stan(PSK(w));

QSK(stan(w)) = QSK(w);

read(stan(R)) = stan(read(R)).

Proof. Cases (1) and (2) of the SK insertion algorithm treat the two following sce-

narios in the same fashion:

• when a letter i gets bumped by a letter j > i;

• when a letter i gets bumped by another letter i.

Therefore, if two letters i are in an SSDT R, the algorithm treats them as if the

rightmost one in the reading word was larger. Furthermore, the i at the right will

always remain at the right of the i at the left, i.e., they will always maintain their

relative position with respect to each other. The third equation is a rewording of the

definition of standardization of an SSDT.

Lemma 4.31. Let w be a word and T a shifted Young tableau. Then

Pmix(stan(w)) = stan(Pmix(w));

Qmix(stan(w)) = Qmix(w);

mread(stan(T )) = stan(mread(T )).

Proof. Let w = w1 · · ·wl, and T = Pmix(w). The result follows from the next claim.

Say w has two letters equal to i, say, wa = wb = i for a < b. We say that a letter is

primed or unprimed depending of the state of its corresponding entry in T . Let ra

and ca be the row and column where wa gets located in T , and rb, cb the row and

column where wb gets located. Then either
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• wa and wb are unprimed and ca < cb,

• wa and wb are primed and ra < rb, or

• wa is primed and wb is unprimed.

The claim is proved as follows. Assume that both wa and wb are unprimed. As they

both have the label i, then whenever wb reaches the row where wa is, it must be at

its right. No number smaller than i can bump wb before bumping wa. Therefore, wa

always remains strictly at the left of wb, i.e., ca < cb.

If both wa and wb are primed, namely, they have the label i′, it means they

both reached the diagonal and later got bumped out of the diagonal. An analogous

argument to the above one, replacing columns for rows, will show that wa must be

in a row above wb, i.e., ra < rb.

It remains to show that the case where wa is unprimed and wb is primed can not

occur. For this to happen, wb must reach the diagonal, but wa must not. But this is

impossible since wb must remain at the right of wa when they are both unprimed.

Proof of Theorem 3.7. The result follows either as a dual of [18, Corollary 5.2], or

by [11, Corollary 3.39] and Lemmas 4.30 and 4.31.

Proof of Theorem 3.8. Let u, v be words in the alphabet X. By Lemma 4.28, u≡ v

if and only if they have the same content and stan(u)≡ stan(v).

By Corollary 3.2 in [7], stan(u)≡ stan(v) if and only if Pmix(stan(u)) = Pmix(stan(v)).

By Lemma 4.31, the latter is equivalent to stan(Pmix(u)) = stan(Pmix(v)).

By the definition of standardization of shifted Young tableaux, it is clear that

Pmix(u) = Pmix(v) if and only if u and v have the same content and stan(Pmix(u)) =

stan(Pmix(v)). The result then follows.
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The following result is the semistandard extension of [11, Lemma 3.11].

Lemma 4.32. Let R be an SSDT and w = w1 · · ·wl a word in the alphabet X. Let

S be the SSDT obtained by SK inserting w1, . . . , wl into R. Let µ = shape(R) and

λ = shape(S). Then w is a hook word if and only if the entries in the standard skew

tableau of shape λ/µ that records the insertion of w1, . . . , wl in R is a vee.

Proof of Theorem 3.21. It suffices to prove that the shifted plactic Schur P -functions

satisfy the Pieri rule, namely

PµP(k) =
∑
λ

2c(λ/µ)−1Pλ,

where λ runs over all strict partitions such that λ/µ is a (possibly disconnected)

border strip with c(λ/µ) connected components.

It is well known that a skew tableau Uλ/µ of shape λ/µ is a vee if and only if it

rectifies to the single row with entries i, i+1, . . . , k under jeu de taquin, and that the

number of vees of this shape with a fixed content is exactly 2c(λ/µ)−1, where c(λ/µ)

is the number of connected components of λ/µ.

Recall that D(λ) is the set of SSDT of shape λ, where we denote D((k)) by D(k).

Let µ ⊕ k be the set of shifted shapes λ such that λ/µ is a (possibly disconnected)

border strip of size k. Let V(λ/µ) be the set of vees of shape λ/µ filled with the

entries |µ|+ 1, |µ|+ 2, · · · .|λ|.

We will prove that D(µ)×D(k) and
⋃
λ∈µ⊕k (D(λ)× V(λ/µ)) are in bijection, and

moreover, that the content of the elements in D(µ) and D(k) adds up to the content

of the element in D(λ) in their image. Thus, the theorem will follow since Pλ is the

formal sum of all elements in D(λ).

Consider the map

Φ : D(µ)×D(k)→
⋃

λ∈µ⊕k

(D(λ)× V(λ/µ))
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defined as follows. Given Sµ ∈ D(µ) and Tk ∈ D(k), insert the elements of read(Tk)

into Sµ from left to right to obtain an SSDT Rλ of some shape λ. Since read(Tk) is

a hook word then by Lemma 4.32, λ ∈ µ ⊕ k, and the standard skew tableau Vλ/µ

that records this insertion is in V(λ/µ). We define Φ(Sµ, Tk) = (Rλ, Vλ/µ). Clearly,

the content of Sµ and Tk add up to the content of Rλ.

The inverse map

Ψ :
⋃

λ∈µ⊕k

(D(λ)× V(λ/µ))→ D(µ)×D(k)

is defined in a very similar way, by removing the elements of Rλ in the order given

by the vee Vλ/µ, to obtain Sν ∈ D(µ) and Tk ∈ D(k). Since this map removes the

elements that were inserted in the definition of Φ, it is clear that the composition of

these two maps is the identity.

The following example illustrates the bijection:

Φ

 4 2 1 1
3 1 3

2
, 5 3 1 2 2

 =

 5 3 1 1 1 2 2
3 1 2 4

2 3
,

1 4 5
2

3

 .

The following definition appears in [11] and [18].

Definition 4.33. Let U be a standard ordinary or shifted Young tableau. Define

∆(U) to be the tableau obtained by applying the following operations:

1. remove the entry 1 from U ;

2. apply a jeu de taquin slide into this box;

3. deduct 1 from the remaining boxes.

The first two parts of the following lemma follow straight from [11, Theorem 4.14],

the standardization Lemmas 4.28 and 4.30, and Theorem 4.17. The last part is a

straightforward application of the theory of jeu de taquin in [25].
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Lemma 4.34. Let w1w2 · · ·wl be a word. Then,

QSK(w2 · · ·wl) = ∆QSK(w1w2 · · ·wl),

Qmix(w2 · · ·wl) = ∆Qmix(w1w2 · · ·wl),

and

QRSK(w2 · · ·wl) = ∆QRSK(w1w2 · · ·wl),

Proof of Lemma 3.25. The bijection Φ in the proof of Theorem 3.21 is a special case

of the following bijection:

Φ : D(µ)×D(ν)→
⋃
λ

(D(λ)× V(λ/µ)) ,

where V(λ/µ) is the set of standard shifted skew tableau which rectify to the special

recording tableau of shape ν. This bijection is described in the exact same way, so

we will not go into much detail. However, it is necessary to check that V(λ/µ) is

indeed the set we claim.

For a skew tableau T and an integer k, let T + k be the skew tableau of the

same shape, where all the entries are raised by k. Let Sµ ∈ D(µ), Tν ∈ D(ν). Let

λ be the shape of Pmix(mread(Sµ) mread(Tν)). Let Uλ/µ ∈ V(λ/µ) be the standard

shifted skew tableau of shape λ/µ which records the order in which the entries of

mread(Tν) get inserted into Sµ. Note that Uλ/µ + |µ| is precisely the subtableau of

Qmix(mread(Sµ) mread(Tν)) corresponding to the shape λ/µ. By Lemma 4.34 applied

repeatedly, one can see that Qmix(mread(Tν) = ∆|µ|(Uλ/µ+ |µ|). But ∆|µ|(Uλ/µ+ |µ|)

is nothing more than the restriction of Uλ/µ. Since Qmix(mread(Tν)) is the standard

recording tableau of shape ν, by definition, then Uλ/µ ∈ V(λ/µ).

Lemma 3.25 then follows, if one lets u = mread(Sµ), v = mread(Tν), and Q =

Qmix(mread(Tν)), i.e., the special recording tableau of shape ν.



63

Proof of Theorems 3.26 and 3.29. Let Uλ be the special recording tableau of shifted

shape λ. Let H(λ, µ) be the set of (ordinary) standard Young tableaux of shape µ

which rectify to Uλ (the proof is the same if Uλ is any other standard shifted Young

tableau of shape λ).

Let 〈Pµ〉 be a plactic class of shape µ, and G(λ, Pµ) be the set of shifted plactic

classes [Tλ] of shifted shape λ such that π([Tλ]) = 〈Pµ〉. We will prove that the size of

G(λ, Pµ) does not depend on Pµ (only on λ and µ), by finding a bijection Θ between

G(λ, Pµ) and H(λ, µ).

Define the maps

Θ : G(λ, Pµ) → H(λ, µ)

[Tλ] 7→ QRSK(mread(Tλ))

and

Γ : H(λ, µ) → G(λ, Pµ)

Q 7→ [Pmix(w)]

where w is the word in the alphabet X such that PRSK(w) = Pµ and QRSK(w) = Q.

First assume that [Tλ] ∈ G(λ, Pµ). Let w = mread(Tλ) (i.e., the canonical rep-

resentative of [Tλ]), so by definition, Qmix(w) = Uλ. By Theorem 4.25, QRSK(w)

rectifies to Uλ, so Θ([Tλ]) = QRSK(mread(Tλ)) = QRSK(w) ∈ H(λ, µ).

Now assume that Q ∈ H(λ, µ). Let w be such that PRSK(w) = Pµ and QRSK(w) =

Q. Then, again by Theorem 4.25, Q = QRSK(w) rectifies to Qmix(w), but as Q ∈

H(λ, µ), then Qmix(w) has shape λ. Furthermore, as PRSK(w) = Pµ, then Γ(Q) =

[Pmix(w)] ∈ G(λ, Pµ).

To prove that Θ and Γ are inverse maps, again let Q ∈ H(λ/µ). Thus, Γ(Q) =

[Pmix(w)] where w is the word such that PRSK(w) = Pµ and QRSK(w) = Q. Since Q

rectifies to Uλ, QRSK(w) rectifies to Qmix(w) (by Theorem 4.25), and Qmix(w) = Q,
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then Qmix(w) = Uλ. Thus, w is the canonical representative of [Pmix(w)], which

implies that mread(Pmix(w)) = w. Therefore,

Θ(Γ(Q)) = Θ([Pmix(w)])

= QRSK(mread(Pmix(w)))

= QRSK(w)

= Q.

The proof that Γ(Θ([Tλ])) = [Tλ] is similar.

Since H(λ, µ) clearly does not depend on the choice of Pµ, but only on the shape

µ, then neither does the number of shifted plactic classes [Tλ] of shifted shape λ such

that π([Tλ]) = 〈Pµ〉. This number is precisely gλµ. Furthermore, it is also equal to

the size of H(λ, µ), which proves Theorem 3.29.

Proof of Proposition 4.10. Let u1, . . . , ul be hook words. We use the fact that w =

u1 · · ·ul is a shifted tableau word if and only if the tableau formed by the rows

u1, . . . , ul from top to bottom is an SSDT.

Clearly, (2) implies (2′). We will prove the converse.

By an inductive argument, it suffices to prove the following claim: If un · · ·u2 and

un−1 · · ·u1 are both shifted tableau words, then so is un · · ·u1.

Equivalently, we will prove that if the filling of the shape (a1, a2, . . . , an−1) with

rows u1, · · · , un−1, and the filling of the shape (a2, . . . , an) with rows u2, . . . , un are

both SSDT, then the filling of the shape (a1, . . . , an) with rows u1, . . . , un is an SSDT

as well.

By Theorem 4.22, QSK(un · · ·u2) is the special recording tableau of shape (a2, . . . , an).

Let us assume that the tableaux formed by the rows u1, . . . , un is not an SSDT. This

means that the longest hook subword in the word un . . . u1 is of length d, for some
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d > a1. Therefore, by Theorem 3.7, the top row of QSK(un . . . u1) is of length d.

By Lemma 4.34 applied repeatedly, QSK(un−1 · · ·u1) = ∆anQSK(un . . . u1). But note

that since QSK(un · · ·u2) is a subtableau of QSK(un · · ·u1), and ∆anQSK(un · · ·u2) =

QSK(un−1 · · ·u2) which is a special recording tableau of shape (a2, . . . , an−1), then the

top row of ∆an(QSK(un−1 . . . u1)) has length a1 (because applying ∆a1 toQSK(un · · ·u1)

will not alter the top length of the top row, since it doesn’t alter the top row of

QSK(un · · ·u2)). This contradicts the assumption that un−1 · · ·u1 is a shifted tableau

word, completing the proof.



CHAPTER 5

Cyclic sieving for longest reduced words in the
hyperoctahedral group

In this Chapter, we apply the relations between plactic equivalence and shifted

plactic equivalence to show that the set R(w0) of reduced expressions for the longest

element in the hyperoctahedral group exhibits the cyclic sieving phenomenon. More

specifically, R(w0) possesses a natural cyclic action given by moving the first letter

of a word to the end, and we show that the orbit structure of this action is encoded

by the generating function for the major index on R(w0).

5.1 The hyperoctahedral group

The hyperoctahedral group Bn is the group of symmetries of an n-dimensional

cube. As an abstract group, Bn is a Coxeter group generated by the simple reflections

s1, . . . , sn subject to the relations

s2
i = 1

sisj = sjsi for |i− j| ≥ 2

sisi+1si = si+1sisi+1 for 2 ≤ i ≤ n

s1s2s1s2 = s2s1s2s1.

The smallest number of generators si whose product is equal to a given element

66
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w ∈ Bn is called the length of w, and denoted by `(w). Such a shortest factorization is

called a reduced word for w. The longest element in Bn is w0 = w
(Bn)
0 = (s1s2 · · · sn)n,

with the length `(w0) = n2.

5.2 Promotion on standard Young tableaux

For a partition λ, let SY T (λ) denote the set of standard Young tableaux of

shape λ. If λ is a strict partition, then let SY T ′(λ) denote the set of standard Young

tableaux of shifted shape λ. We now describe the action of jeu de taquin promotion,

first defined by Schützenberger [20].

We will consider promotion as a permutation of the set of tableaux of a fixed

shape (resp. shifted shape), p : SY T (λ)→ SY T (λ) (resp. p : SY T ′(λ)→ SY T ′(λ)).

Given a standard Young tableau T of shape λ ` n, we form p(T ) by the following

algorithm. (We denote the entry in row a, column b of a tableau T , by Ta,b.)

1. Remove the entry 1 in the upper left corner and decrease every other entry by

1. The empty box is initialized in position (a, b) = (1, 1).

2. Perform jeu de taquin:

(a) If there is no box to the right of the empty box and no box below the empty

box, then go to 3).

(b) If there is a box to the right or below the empty box, then swap the empty

box with the box containing the smaller entry, i.e., p(T )a,b := min{Ta,b+1, Ta+1,b}.

Set (a, b) := (a′, b′), where (a′, b′) are the coordinates of box swapped, and

go to 2a).

3. Fill the empty box with n.
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Here is an example:

T =
1 2 4 8
3 6 7
5

7→
1 3 6 7
2 5 8
4

= p(T ).

5.3 Cyclic sieving

Suppose we are given a finite set X, a finite cyclic group C = 〈ω〉 acting on X, and

a polynomial X(q) ∈ Z[q] with integer coefficients. Following Reiner, Stanton, and

White [16], we say that the triple (X,C,X(q)) exhibits the cyclic sieving phenomenon

(CSP) if for every integer d ≥ 0, we have that |Xωd | = X(ζd) where ζ ∈ C is a root

of unity of multiplicitive order |C| and Xωd is the fixed point set of the action of

the power ωd. In particular, since the identity element fixes everything in any group

action, we have that |X| = X(1) whenever (X,C,X(q)) exhibits the CSP.

If the triple (X,C,X(q)) exhibits the CSP and ζ is a primitive |C|th root of

unity, we can determine the cardinalities of the fixed point sets X1 = X, Xω,

Xω2
, . . . , Xω|C|−1

via the polynomial evaluations X(1), X(ζ), X(ζ2), . . . , X(ζ |C|−1).

These fixed point set sizes determine the cycle structure of the canonical image of ω

in the group of permutations of X, SX . Therefore, to find the cycle structure of the

image of any bijection ω : X → X, it is enough to determine the order of the action

of ω on X and find a polynomial X(q) such that (X, 〈ω〉, X(q)) exhibits the CSP.

The cyclic sieving phenomenon has been demonstrated in a variety of contexts.

The paper of Reiner, Stanton, and White [16] itself includes examples involving

noncrossing partitions, triangulations of polygons, and cosets of parabolic subgroups

of Coxeter groups. An example of the CSP with standard Young tableaux is due to

Rhoades [17] and will be discussed further in Section 5.5.
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5.4 CSP for words in R(w0).

Now we turn to the CSP of interest to this chapter.

Abbreviate a reduced word w = wi1wi2 · · ·wil in Bn as i1i2 · · · il. For example,

the reduced word s1s2s1s3s2s3s1s2s3 for w
(B3)
0 will be abbreviated by 121323123. It

turns out that if we cyclically permute these letters, we always get another reduced

expression for w0. Said another way, siw0si = w0 for i = 1, . . . , n. The reason for

this is that in the standard reflection representation of the type Bn Coxeter group,

the longest element w0 is the scalar transformation −1, and thus commutes with

all simple reflections si. The same is not true for longest elements of other classical

types. In type A, we have siw
(An)
0 sn+1−i = w

(An)
0 , and for type D,

w
(Dn)
0 =


siw

(Dn)
0 si if n even or i > 2,

siw
(Dn)
0 s3−i if n odd and i = 1, 2.

Recall that R(w0) is the set of reduced expressions for w0 in type Bn and let

c : R(w0)→ R(w0) denote the action of placing the first letter of a word at the end.

Then the orbit in w0(B3) of the word above is:

{121323123→ 213231231→ 132312312→ 323123121→ 231231213

→ 312312132→ 123121323→ 231213231→ 312132312}.

As the length of w0 is n2, we clearly have cn
2

= 1, and the size of any orbit divides

n2. For an example of a smaller orbit, notice that the word 213213213 has cyclic

order 3.

For any word w = w1 . . . wl, (e.g., a reduced expression for w0), a descent of w

is defined to be a position i in which wi > wi+1.The major index of w, maj(w), is

defined as the sum of the descent positions. For example, the word w = 121323123
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has descents in positions 2, 4, and 6, so its major index is maj(w) = 2 + 4 + 6 = 12.

Let fn(q) denote the generating function for this statistic on words in R(w0):

fn(q) =
∑

w∈R(w0)

qmaj(w).

The following is the main result in this chapter.

Theorem 5.1 ([15]). The triple (R(w0), 〈c〉, X(q)) exhibits the cyclic sieving phe-

nomenon, where

X(q) = q−n(
n
2)fn(q).

For example, let us consider the case n = 3. We have

X(q) = q−9
∑

w∈w0(B3)

qmaj(w)

= 1 + q2 + 2q3 + 2q4 + 2q5 + 4q6 + 3q7 + 4q8 + 4q9

+ 4q10 + 3q11 + 4q12 + 2q13 + 2q14 + 2q15 + q16 + q18.

Let ζ = e
2πi
9 . Then we compute:

X(1) = 42 X(ζ3) = 6 X(ζ6) = 6

X(ζ) = 0 X(ζ4) = 0 X(ζ7) = 0

X(ζ2) = 0 X(ζ5) = 0 X(ζ8) = 0

Thus, the 42 reduced expressions for w
(B3)
0 split into two orbits of size three (the

orbits of 123123123 and 132132132) and four orbits of size nine.

To prove Theorem 5.1 we rely on a pair of remarkable bijections due to Haiman

[6, 7], and a recent result of Rhoades [17, Thm 3.9]. The composition of Haiman’s

bijections relates R(w0) with the set SY T (nn) of standard Young tableaux of square

shape. Rhoades’ result is that there is a CSP for SY T (nn) with respect to the action

of promotion (defined in Section 5.2). Our main strategy is to show that Haiman’s
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bijections carry the orbit structure of promotion on SY T (nn) to the orbit structure

of c on R(w0).

5.5 Rhoades’s Theorem

Rhoades [17] proved an instance of the CSP related to the action of promotion

on rectangular tableaux. His result is quite deep, and his proof involves the theory

of Kahzdan-Lusztig cell representations.

Recall that for any partition λ ` n, the standard tableaux of shape λ are enumer-

ated by the Frame-Robinson-Thrall hook-length formula:

fλ = |SY T (λ)| = n!∏
(i,j)∈λ hij

,

where the product is over the boxes (i, j) in λ and hij is the hook-length at the box

(i, j), i.e., the number of boxes directly east or south of the box (i, j) in λ, counting

itself exactly once. To obtain the polynomial used for cyclic sieving, we replace the

hook-length formula with a natural q-analogue. First, recall that for any n ∈ N,

[n]q := 1 + q + · · ·+ qn−1 and [n]q! := [n]q[n− 1]q · · · [1]q.

Theorem 5.2 ([17], Theorem 3.9). Let λ ` N be a rectangular shape and let X =

SY T (λ). Let C := Z/NZ act on X via promotion. Then, the triple (X,C,X(q))

exhibits the cyclic sieving phenomenon, where

X(q) =
[N ]q!

Π(i,j)∈λ[hij]q

is the q-analogue of the hook-length formula.

5.6 Haiman’s bijections

We first describe the bijection between reduced expressions and shifted standard

tableaux of doubled staircase shape. This bijection is described in Section 5 of [7].
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Let T be in SY T ′(2n− 1, 2n− 3, . . . , 1). Notice the largest entry in T , (i.e., n2),

occupies one of the outer corners. Let r(T ) denote the row containing this largest

entry, numbering the rows from the bottom up. The promotion sequence of T is

defined to be Φ(T ) = r1 · · · rn2 , where ri = r(pi(T )). Using the example above of

T =

1 2 4 5 8
3 6 9

7 ,

we see r(T ) = 2, r(p(T )) = 1, r(p2(T )) = 3, and since p3(T ) = T , we have

Φ(T ) = 132132132.

Haiman’s result is the following.

Theorem 5.3 ([7], Theorem 5.12). The map T 7→ Φ(T ) is a bijection SY T ′(2n −

1, 2n− 3, . . . , 1)→ R(w0).

By construction, then, we have

Φ(p(T )) = c(Φ(T )),

i.e., Φ is an orbit-preserving bijection

(SY T ′(2n− 1, 2n− 3, . . . , 1), p)←→ (R(w0), c).

Next, we will describe the bijection

H : SY T (nn)→ SY T ′(2n− 1, 2n− 3, . . . , 1)

between squares and doubled staircases. Though not obvious from the definition

below, we will demonstrate that H commutes with promotion.

Recall that by Theorem 4.25, if we view QRSK(w) as a skew shifted standard

Young tableau and apply jeu de taquin to obtain a standard shifted Young tableau,

the result is Qmix(w) (independent of any choices in applying jeu de taquin).
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For example, if w = 332132121, then

(P,Q) =

 1 1 1
2 2 2
3 3 3

,
1 2 5
3 6 8
4 7 9

 ,

(P ′, Q′) =

 1 1 1 2′ 3′

2 2 3′

3
,

1 2 4 5 8
3 6 9

7

 .

Performing jeu de taquin we see:

1 2 5
3 6 8
4 7 9

→
1 2 5

3 4 6 8
7 9

→
1 2 5 8
3 4 6

7 9
→

1 2 4 5 8
3 6 9

7
.

Haiman’s bijection is precisely H(Q) = Q′. That is, given a standard square

tableau Q, we embed it in a shifted shape and apply jeu de taquin to create a

standard shifted tableau. That this is indeed a bijection follows from Theorem 4.25,

but is originally found in [6, Proposition 8.11].

Remark 5.4. Haiman’s bijection applies more generally between rectangles and “shifted

trapezoids”, i.e., for m ≤ n, we have H : SY T (nm) → SY T ′(n + m − 1, n + m −

3, . . . , n−m+1). All the results presented here extend to this generality, with similar

proofs. We restict to squares and doubled staircases for clarity of exposition.

We will now fix the tableaux P and P ′ to ensure that the insertion word w has

particularly nice properties. Recall that Proposition 3.12 states that the set of words

that mixed insert into P ′ = Pmix(w) is contained in the set of words that RSK insert

into P = PRSK(w). We apply this proposition to the word

w = n · · ·n︸ ︷︷ ︸
n

· · · 2 · · · 2︸ ︷︷ ︸
n

1 · · · 1︸ ︷︷ ︸
n

.

If we use RSK insertion, we find P is an n× n square tableau with all 1s in row

first row, all 2s in the second row, and so on. With such a choice of P it is not difficult

to show that any other word u inserting to P has the property that for all indices j
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and all initial subwords u1 · · ·ui, there are at least as many letters (j + 1) as letters

j. Such words are sometimes called (reverse) lattice words or (reverse) Yamanouchi

words. Notice also that any such u has n copies of each letter i, i = 1, . . . , n. We

call the words inserting to this choice of P square words.

On the other hand, if we use mixed insertion on w, we find P ′ as follows (with

n = 4):
1 1 1 1 2′ 3′ 4′

2 2 2 3′ 4′

3 3 4′

4 .

In general, on the “shifted half” of the tableau we see all 1s in the first row, all 2s

in the second row, and so on. In the “straight half” we see only primed numbers,

with 2′ on the first diagonal, 3′ on the second diagonal, and so on. Proposition 3.12

tells us that every u that mixed inserts to P ′ is a square word. But since the sets of

recording tableaux for P and for P ′ are equinumerous, we see that the set of words

mixed inserting to P ′ is precisely the set of all square words.

Remark 5.5. Yamanouchi words give a bijection with standard Young tableaux that

circumvents insertion completely. In reading the word from left to right, if wi = j, we

put letter i in the leftmost unoccupied position of row n+1−j. (See [25, Proposition

7.10.3(d)].)

5.7 Proof of the theorem

The operator ej acting on words w = w1 · · ·wl is defined in the following way.

Consider the subword of w formed only by the letters j and j + 1. Consider every

j + 1 as an opening bracket and every j as a closing bracket, and pair them up

accordingly. The remaining word is of the form jr(j + 1)s. The operator ej leaves

all of w invariant, except for this subword, which it changes to jr−1(j + 1)s+1. (This
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operator is widely used in the theory of crystal graphs.)

As an example, we calculate e2(w) for the word w = 3121221332. The subword

formed from the letters 3 and 2 is

3 · 2 · 22 · 332,

which corresponds to the bracket sequence ()))((). Removing paired brackets, one

obtains ))(, corresponding to the subword

· · · · 22 · 3 · ·.

We change the last 2 to a 3 and keep the rest of the word unchanged, obtaining

e2(w) = 3121231332.

The following lemma shows that this operator leaves the recording tableau un-

changed. The unshifted case is found in work of Lascoux, Leclerc, and Thibon [12];

the shifted case follows from the unshifted case, and the fact that the mixed recording

tableau of a word is uniquely determined by its RSK recording tableau (Proposition

3.12).

Lemma 5.6 ([12] Theorem 5.5.1). Recording tableaux are invariant under the oper-

ators ei. That is,

QRSK(ei(w)) = QRSK(w),

and

Qmix(ei(w)) = Qmix(w).

Let e = e1 · · · en−1 denote the composite operator given by applying first en−1,

then en−2 and so on. It is clear that if w = w1 · · ·wn2 is a square word, then e(ŵ)1

is again a square word.
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Theorem 5.7. Let w = w1 · · ·wn2 be a square word. Then,

p(QRSK(w)) = QRSK(e(ŵ)1),

and

p(Qmix(w)) = Qmix(e(ŵ)1).

In other words, Haiman’s bijection commutes with promotion:

p(H(QRSK)) = H(p(QRSK)).

Proof. By Lemma 4.34, we see that QRSK(ŵ) is only one box away from p(QRSK(w)).

Further, repeated application of Lemma 5.6 shows that

QRSK(ŵ) = QRSK(en−1(ŵ)) = QRSK(en−2(en−1(ŵ))) = · · · = QRSK(e(ŵ)).

The same lemmas apply show Qmix(e(ŵ)) is one box away from p(Qmix(w)).

All that remains is to check that the box added by inserting 1 into P (e(ŵ)) (resp.

P ′(e(ŵ))) is in the correct position. But this follows from the observation that e(ŵ)1

is a square word, and square words insert (resp. mixed insert) to squares (resp.

doubled staircases).

Now thanks to Theorem 5.7 we know that H preserves orbits of promotion, and

as a consequence we see the CSP for doubled staircases.

Corollary 5.8. Let X = SY T ′(2n− 1, 2n− 3, . . . , 1), and let C := Z/n2Z act on X

via promotion. Then the triple (X,C,X(q)) exhibits the cyclic sieving phenomenon,

where

X(q) =
[n2]q!

[n]nq
∏n−1

i=1 ([i]q · [2n− i]q)i

is the q-analogue of the hook-length formula for an n× n square Young diagram.

Because of Theorem 5.3 the set R(w0) also exhibits the CSP.
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Corollary 5.9 ([17], Theorem 8.1). Let X = R(w0) and let X(q) as in Corollary 5.8.

Let C := Z/n2Z act on X by cyclic rotation of words. Then the triple (X,C,X(q))

exhibits the cyclic sieving phenomenon.

Corollary 5.9 is the CSP for R(w0) as stated by Rhoades. This is nearly our main

result (Theorem 5.1), but for the definition of X(q).

In spirit, for a CSP (X,C,X(q)), the polynomialX(q) should be some q-enumerator

for the set X. That is, it should be expressible as

X(q) =
∑
x∈X

qs(x),

where s is an intrinsically defined statistic for the elements of X. Indeed, nearly all

known instances of the cyclic sieving phenomenon have this property. For example,

it is known ([25, Cor 7.21.5]) that the q-analogue of the hook-length formula can be

expressed as follows:

(5.1) fλ(q) = q−κ(λ)
∑

T∈SY T (λ)

qmaj(T ),

where κ(λ1, . . . , λl) =
∑

1≤i≤l(i−1)λi and for a tableau T , maj(T ) is the sum of all i

such that i appears in a row above i+1. Thus X(q) in Theorem 5.2 can be described

in terms a statistic on Young tableaux.

With this point of view, Corollaries 5.8 and 5.9 are aesthetically unsatisfying.

Section 5.8 is given to showing that X(q) can be defined as the generating function

for the major index on words in R(w0). It would be interesting to find a combinatorial

description for X(q) in terms of a statistic on SY T ′(2n − 1, 2n − 3, . . . , 1) as well,

though we have no such description at present.
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5.8 Combinatorial description of X(q)

As stated in the introduction, we will show that

X(q) = q−n(
n
2)

∑
w∈R(w0)

qmaj(w).

If we specialize (5.1) to square shapes, we see that κ(nn) = n
(
n
2

)
and

X(q) = q−n(
n
2)

∑
T∈SY T (nn)

qmaj(T ).

Thus it suffices to exhibit a bijection between square tableaux and words in R(w0)

that preserves major index. In fact, the composition Ψ := ΦH has a stronger feature.

Define the cyclic descent set of a word w = w1 · · ·wl to be the set

D(w) = {i : wi > wi+1} (mod l)

That is, we have descents in the usual way, but also a descent in position 0 if wl > w1.

Then maj(w) =
∑

i∈D(w) i. For example with w = 132132132, D(w) = {0, 2, 3, 5, 6, 8}

and maj(w) = 0 + 2 + 3 + 5 + 6 + 8 = 24.

Similarly, we follow [17] in defining the cyclic descent set of a square (in general,

rectangular) Young tableau. For T in SY T (nn), define D(T ) to be the set of all i

such that i appears in a row above i+ 1, along with 0 if n2 − 1 is above n2 in p(T ).

Major index is maj(T ) =
∑

i∈D(T ) i. We will see that Ψ preserves cyclic descent sets,

and hence, major index. Using our earlier example of w = 132132132, one can check

that

T = Ψ−1(w) =
1 2 5
3 6 8
4 7 9

has D(T ) = D(w), and so maj(T ) = maj(w).

Lemma 5.10. Let T ∈ SY T (nn), and let w = Ψ(T ) in R(w0). Then D(T ) = D(w).
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Proof. First, we observe that both types of descent sets shift cyclically under their

respective actions:

D(p(T )) = {i− 1 (mod n2) : i ∈ D(T )},

and

D(c(w)) = {i− 1 (mod n2) : i ∈ D(w)}.

For words under cyclic rotation, this is obvious. For tableaux under promotion, this

is a lemma of Rhoades [17, Lemma 3.3].

Because of this cyclic shifting, we see that i ∈ D(T ) if and only if 0 ∈ D(pi(T )).

Thus, it suffices to show that 0 ∈ D(T ) if and only if 0 ∈ D(w). (Actually, it is

easier to determine if n2 − 1 is a descent.)

Let S = Φ−1(w) be the shifted doubled staircase tableau corresponding to w. We

have n2−1 ∈ D(w) if and only if n2 is in a higher row in p−1(S) than in S. But since

n2 occupies the same place in p−1(S) as n2 − 1 occupies in S, this is to say n2 − 1 is

above n2 in S. On the other hand, n2 − 1 ∈ D(T ) if and only if n2 − 1 is above n2

in T . It is straightforward to check that since S is obtained from T by jeu de taquin

into the upper corner, the relative heights of n2 and n2− 1 (i.e., whether n2 is below

or not) are the same in S as in T . This completes the proof.

This lemma yields the desired result for X(q).

Theorem 5.11. The q-analogue of the hook-length formula for an n×n square Young

diagram is, up to a shift, the major index generating function for reduced expressions

of the longest element in Bn:

∑
w∈R(w0)

qmaj(w) = qn(
n
2) · [n2]q!

[n]nq
∏n−1

i=1 ([i]q · [2n− i]q)i
.



80

Theorem 5.11, along with Corollary 5.9, complete the proof of Theorem 5.1. Be-

cause this result can be stated purely in terms of the set R(w0) and a natural statistic

on this set, it would be interesting to obtain a self-contained proof, i.e., one that does

not appeal to Haiman’s or Rhoades’ work. More specifically, a proof that doesn’t

rely on promotion on Young tableaux.
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