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Abstract

This thesis concerns the arithmetic properties of the Yoshida lift, Y, which is a scalar-
valued holomorphic Siegel modular form of degree 2 obtained as the theta lift of a
pair of automorphic forms f;, f; on D>, where D is a definite quaternion algebra over
Q.

Specifically, we define a refined version of the Yoshida lift, Y, which has the special
property that it preserves p-integral structures and is not identically zero under mild
conditions. For p-integrality, we compute a formula for the Fourier coefficients a” of
Y by exploiting an inherent freedom in the definition of Y. The formula for a” in turn
allows us to compute the Bessel model of the Yoshida lift, and apply an argument
of Cornut—Vatsal to conclude that Y is non-zero. Furthermore, if we assume Artin’s

conjecture on primitive roots, then we show that Y is in fact not zero modulo p.
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Introduction

The present work is the first part of an ongoing project aimed at understanding and
affirming some deep connections between special values of L-functions and certain
Selmer groups. The main object we study here is a certain theta [lift. Since the
subject could get a bit technical, we begin with some informal excerpts from the
elementary aspects of the subject to set the context for the non-experts.

0.0.1 Theta functions.

The simplest example of a theta function is the holomorphic function on the upper-
half plane $ = {z € C:Im(z) > 0} given by the series

9(2) — Z 627””22.

neZz

It is an automorphic form on for the congruence subgroup

To(4) = {7 - [Z Z] €SLy(Z): ce 42}

of weight %, in that it satisfies the transformation law [Iwa97, §2 (2.73)]
0(v2) = (+) - (cz+d)2 -6(2)

b
for all v = ¢ d] €'g(4) and z € Hf*| Also note that the Fourier coefficients a(m)
c

of A is 1 exactly when m € Z? and 0 otherwise, which so happens to be equal to the
number of ways that we can represent m by a square.

The point to take home is that theta functions, such as 0(z), are in automorphic
forms; moreover, their Fourier expansions are relatively tractable and carry interesting

arithmetic information.

*We have suppressed a constant = dependent on ¢ and d to keep the presentation elementary.



0.0.2 Automorphic forms.

Roughly speaking, automorphic forms are functions that satisfy strong invariant prop-
erties under certain group actions. For us, the most exciting aspect of automorphic
forms is that they are expected to give rise to L-functions, and can be used to study
the analytic properties of these L-functions. Take 6(z) for example, one can show

that |[GMO04, §2.1 (2.10)]

1
1-s

5T (5)c) = [Tt e TG 00 - e~

where I'(s) is the usual Gamma function and ((s) = Y>>, n~* is the Riemann zeta
function. This integral representation of ((s) together with Jacobi’s transformation

law

o(at) = % o)

allow us to establish a functional equation for {(s).

In fact, all L-functions that have Euler product factorizations and functional equa-
tions should be the L-functions associated with automorphic forms. Since Galois
representations arising from geometry or otherwise give rise naturally to L-functions,
one expects automorphic forms to be associated with Galois representations. This is

one of the aims of the Langlands program.

0.0.3 Integrality.

In addition to their relations to zeta functions, the Fourier coefficients of automorphic
forms (most notably those on GLg) have shown to carry a lot of number-theoretic in-
formation. For example, let Q(my,...,m,) = ¥I_; ;22 be a positive-definite quadratic

form with «; € Z.y. We define a theta function

0(=Q)= 3, Pt
mezr
for z € §. It is an automorphic form for I'y(2N) of weight k = § [Iwa97, §11.3]. It has

a Fourier expansion

0(z,Q) = ) r(n,Q)e*™

neZ
where r(n, Q) is the representation number of n by @, that is, the number of ways
we can right n = Q(m) for some m € Z". In particular, we see that these Fourier

coefficients r(n, Q)) are all integers.



The integrality of these Fourier coefficients is not only interesting in its own right,
but it is also important in constructing Galois representations. In fact, it is one of

the (abide minor) ingredients used in Wiles’s proof of Fermat’s Last Theorem.

0.0.4 Theta lifts.

Let x: (Z/NZ)* — C! be a Dirichlet character of conductor N. It turns out that x is
naturally an automorphic form for the group SOy ~ S'. We define a theta lift of y to
the group GLs by

0u(2) = 3 x(n) - - emns

where v = 0 if x(-1) = 1 and 1 otherwise. It is an automorphic form for the group
[o(4) of weight v+ % So we have [lifted the automorphic form x on SO, to the group
GLs.

This simple example is actually quite representative of the general phenomenon.
The theta lift which we study, Y, called the Yoshida lift, can be expressed as a sum

of a similar shape

i=1 € gen1.2;0X7,

Y(Z)=Y N )P (0o <>

where % is the holomorphic Siegel modular form of degree 2 associated to Y. Note

this expression also give a Fourier expansion

@(Z) — Z a(T) . e27rmr(TZ)
TeT

of % where the index T runs over the set of semi-definite symmetric 2 x 2 matrices
with entries in Q, and Z € §s.

The goal of this thesis is to study the arithmetic properties of these Fourier co-
efficients a(7), and also to show that the Yoshida lift Y is not trivial, that is, not

identically zero (or zero modulo a prime) as a function.

0.1 Motivations

As we mentioned at the beginning, the current work is not just an end in itself. In

fact, we see it really as a stepping stone for achieving our goal of exhibiting evidence

* Here the h;’s are elements in an orthogonal group, e; is a positive integer, and hi_1 -2y n Xg

is a finite collection of integral maps for each i. Also f’; is a vector-valued harmonic polynomial
which we will define precisely.



for some deep conjectures in number theory. Since casting this work in this larger

context helps one to better appreciate its relevance and utility, let us outline the vista.

0.1.1 The classical Yoshida lift.

To explain this, let D be a definite quaternion algebra over Q. In [Yos80], Yoshida
studied the theta lift taking a pair of automorphic forms, f;, i = 1,2 on D* to a
holomorphic automorphic form Y on GSp,. To do this, he first showed that the
product f; ® f, is an automorphic form on the orthogonal similitude group GSO(D)
of D. This is an immediate consequence of the fact that GSO(D) is essentially
D* x Dx.

Then the theory of Weil representations give rise to a collections of automorphic
forms, O, on a subgroup of GSO(D) x GSp,. They are naturally indexed by a choice
of a Bruhat—Schwartz function ¢. The Yoshida lift

Y = (04,1 ® f5)aso)

is essentially the Petersson inner product of ©, with f; ® f; over the group GSO(D).
Moreover, Yoshida computed the Satake parameters of Y in terms of those of f;
at the unramified places. This allows us to study the L-functions associated with Y

in terms of the L-functions associated with the f;’s.

0.1.2 Elements in a Selmer group.

By a standard construction, we can associate to Y a holomorphic Siegel modular
form % on the Siegel upper-half space £ of degree 2. Under favorable conditions,
% occurs in the cohomology of $,, then we can associate to % a p-adic Galois
representation [Tay93], [Wei05]

pw:Gal(Q/Q) - GSp,(Q,).

What makes ps interesting is that it is expected to be semi-simple but not irreducible

[Art04, pg. 78]. By constructing a congruence
% =7 (mod p)

between % and a stable Siegel modular form .% whose Galois representation is irre-

ducible, one can then (in theory) follow a well-known procedure dating back to the



work of Ribet [Rib76], to construct elements in a Bloch-Kato Selmer group

Hj = Hy(Gal(Q/Q), (41 & .412)[p)

attached to f; ® f5, where .#; denotes a Z,-lattice in the p-adic Galois representation
associated with f; [Tay89] for i = 1,2.

0.1.3 Rankin—Selberg L-functions.

On the other hand, one can measure the congruence % = .# (mod p) between %
and stable Siegel modular forms in terms of the p-divisibility of a special value of the
Rankin—Selberg L-function of f; ® f;. Let us explain how to do this.

Since Y is a theta lift, we have at our disposal the Rallis inner product formula,
which connects L-functions with ratios of the Petersson norms of automorphic forms.
Without going into the details, the Rallis inner product formula applied to Y has the
shape |G, Lemma 7.11]

(Y,Y) _LS(1,m xm5)- Zs(p, fi, ) (1.3.1)

£ 6] Q

which potentially relates the p-divisibility of Z20m2) with that of %

By a principle stemming from [Hid81], the ratio % may be considered as a
certain ratio of discriminants (a congruence period), and is a measurement of the
amount of congruence # =.# (mod p) between # and stable Siegel modular forms.

The upshot is that we can now phrase the existence of these congruences in terms
m on the right-hand side. This
congruence, then, would give rise to elements in the Selmer group H}.

Currently, however, the formula is only available in the representation-

theoretic setting, and does not yield much information in terms of arithmetic. Also,

of the p-divisibility of the algebraic L-value

we have yet to make good sense of a congruence % =.% (mod p). This is where the

current work comes in—to develop an arithmetic version of these results.

0.2 An overview of the results and methods

We now offer some broad sketches of the results obtained and the methods used.

*Here (Y,Y) and ||f;| are the Petersson norms of Y and f; respectively. The m;’s denote cuspidal
automorphic representations corresponding to f;, and L% (1,7r; x 73) is the partial Rankin-Selberg
L-function for the m;’s. Finally Zg(¢p,f1,f2) is a product of zeta integral at the “bad” primes in S
defined with respect to the choice of some Bruhat—Schwartz function ¢, and € is a certain period.



0.2.1 A p-integral Yoshida lift.

The first step is to develop a version of the Yoshida lift which preserves integral
structures. To explain this, let us fix once and for all a prime p > 5 in Q and let
p be a fixed prime ideal in Q lying over p. By working with cuspidal automorphic
representations m; of D> instead of automorphic forms, one gains the freedom to
choose which f? in the representation space of 7r; to lift, and we use e to index this
choice. By choosing the Bruhat-Schwartz function ¢* to align with f?, one obtains
the same Yoshida lift, Y, independent of the choices made. This simple observation
allows us to compute an expression
1

a (T) = (=det(T))*- 3 — > (66, f(fban)) -5 (a7 a1 3y)
hpeB, ; ©h weCl(or)

for the Fourier coefficient a;,(T') of the Siegel modular form % associated with Y for
all indices T[]

By finding possible representatives (ay, G¢) for all elements in E_’L ¢, we can verify
that a;,(T) is always p-integral assuming that the f;’s are. This gives our first main

result:

Theorem 4.5.3. If the compatible families {f’} attached to 7 are p-integral (Defini-
tion fori=1,2, then the arithmetic Yoshida lift Y ({f;},{fs}) is p-integral in
the sense that % = % ({f:},{£3}) has all its Fourier coefficients a(T) contained in
1 - 1
(K N Hﬁcp) C (Q N Eﬁcp)
where K = K({fi},{f2}) is an algebraic extension of Q dependent on the {£7}’s.

Moreover, if p > k, then the T'th Fourier coefficient a(T) of & lies in the local
ring Op ppy over some number field F' = FT dependent on T and {f*}.

Here f? being p-integral means roughly that f® takes values in a Z(p)—lattice, where

Z(p) c Q is the localization of the ring of all algebraic integers at p.

"Here E,. ¢ is a finite set of integrality-preserving isometries, ey is half the number of units in an
imaginary quadratic field K, and CI(&7) is a class group of Kj. Also we have hy = (ay, 5y) and
(tk £F) is a matrix coefficient of the vector-valued automorphic form f¥.



0.2.2 Non-vanishing and non-vanishing modulo p.

For applications, one also needs to know that Y is non-zero (modulo p) in order to
construct non-zero elements in H} For this, we compute the Bessel models BST{’X of
Y. For good choices of an index 7" and a character Y, Bg’x (1) is on the one hand a

linear combination of Fourier coefficients of Y, and is on the other hand a product of

two of character sums ((1.6.2)

ixn<ti>-ati(Tn)=(—12“§>§( > x(w)-fmw))-( > x<t>-<t'g,ffn<t'>>).
i=1 weCl(On) teC1(On)

We can then address the question of non-vanishing (modulo p) of a general character

sum

>R (£ () (222)

teC1(On)

using results of Cornut—Vatsal [CV07]. Let us briefly sketch the argument.
First we separate x into a product of a “tame” character x;, and a “wild” character
X that is defined on a cyclic group of [-power order. For a fixed y;, we average

the character sum over all primitive y,,’s of conductor [*. After some further

massaging, we reduce sum (2.2.2)) to (2.12.9)

(tk, Z Xe(7) - £°(7§- ay)).
TeR
Next we show this sum is not zero (modulo p).
By [CV07, Proposition 5.6], for n > 0, and any z,y in the domain of f*, we can

choose t and u so that 7t -a_, = 70 - a_, for all i # 1, and
T =Tt 0, Ty = .

Now if we choose x and y so that £*(x) # f*(y), then it follows that the character
sum ([2.12.9) is not zero for either s =t or s = u.

To finish the argument, we observe that a certain Galois action permutes the
characters y,, while fixing other all terms. This allows us to prove that there exists a
common character y for which both characters sums in are not zero.

Theorem 4.5.5. Suppose that the central characters ; of the cuspidal automorphic

We can scale the Fourier coefficients of Y by some power of a uniformizer in the complete p-
adic ring Op (p,.) so it is non-zero modulo pr; doing so, however, introduces additional unwanted
p-divisibility in the Petersson norm of Y which we cannot control.



representations 7; are trivial. Then the arithmetic Yoshida lift Y ({£;},{f5}) is not

identically zero.

We should mention that the non-vanishing of the Yoshida lift has been studied
by Yoshida [Yos80] and by Bécherer—Schulze-Pillot [BSP91], [BSP97]. Our result
consider some cases not addressed in these works. Also our proof is fundamentally
different from theirs.

For non-vanishing modulo p, however, we can only apply such an argument using
Galois conjugation assuming Artin’s conjecture on primitive roots. This gives the

following conditional result:
Theorem 4.5.6. Suppose that
o p>k;

e the cuspidal automorphic representations m;’s have level dN relatively prime to
p (sor=0);

e the central characters ex, are trivial;
e and that Conjecture [6.2.0 holds.

Under these assumptions, if the p-integral compatible families of automorphic
forms {£$} attached to m; are non-Fisenstein at p in the sense of Definition m
fori=1,2, then the arithmetic Yoshida lift Y ({£;},{fs}) is non-zero modulo p in the
sense that the image of % =% ({£;},{f5}) under the reduction map

HO (Mo, 0%F ®z(1 ¢x] Zp)) ~ H (Mo, %" ®z[L ¢(n] (Zpy/p))

18 not zero.

Here the condition that £ is non-Eisenstein at p essentially means it is not constant
modulo p.
Skinner has suggested an idea for removing the condition on Artin’s conjecture in

some cases. We will consider this in an subsequent work.

0.2.3 Other highlights.

Besides the new results obtained above, we also recover the results (c.f. Theorem

and Remark [4.5.2)) obtained by Yoshida [Yos80, Theorem 2.7] and Bécherer—
Schulze-Pillot [BSP91) Corollary 6.1] characterizing Y and its L-functions in terms

8



of the pair of automorphic forms £’ on D*. Our proofs of these results employ some
fairly recent results from the theory of Howe duality as well as the local Langlands
correspondence for GSp,. In this regards, our proofs are perhaps more illuminating

as they manifest the results as special instances of general theories.

0.3 A synopsis of the contents

We provide a roadmap of the thesis to orient the readers and to single out some points
of interest.

0.3.1 Chapter 1.

The first chapter concerns the structure theory of definite quaternion algebras and
their multiplicative groups over Q. We introduce here the notion of an S-basis for
a definite quaternion algebra D (Definition . With respect to such an S-basis
(d,7), we define a weight embedding (§1.1.5))

exl: Dp = D ®q F, = May(K?)

for F, a totally real field and K j‘; a CM-field over F), as well as some arithmetic
embeddings (§1.3.2 and §1.3.3))

€2:Dy = D ®q Q= Ma(Q))

at each prime [ in S. The weight embedding is used to define representations ¢%J
of D}, (; the arithmetic embeddings, on the other hand, are used to fix local
Eichler orders .@f 75 at the primes [ € S ( We also describe some specific models
for o = g, which germinate from representations of PGLy(Z) (§1.2)). Lastly, we fix
some p-integral lattices inside p ® C,, which will provide integral structures for the
automorphic forms on D*. There are some more technical sections where we check
that different weight embeddings are conjugate to each other (, and relate the
weight embedding to the arithmetic embeddings at the special prime p (§1.4.4)).

0.3.2 Chapter 2.

The second chapter provides the backgrounds on automorphic representations 7 ~

®'m, on D* (§2.2)). The representations ¢% from Chapter [Chapter 1.| provide models

for the archimedean component 7, of 7, and the specific automorphic forms %7 on



D> (22.3) that we compute with are vectors in 7r®(@i;;7) where g2 is the contragredient
of gi’oj = 0% ® C. Moreover, we choose f%7 so it is invariant under right-translation

25X gt all primes [ € S, and it turns out these conditions make the

by elements in .@f
choice of £%7 unique up to scaling.

This does not yet account for the choice of the S-basis (6,7), and we check that
the automorphic forms chosen above for different S-bases are indeed (up to scaling)
conjugate to each other (§2.3.3)). This motivates the notion of a compatible set of
automorphic forms (Definition [2.3.2)).

We describe the notions of a compatible set of algebraic (Definition and
p-integral (Definition automorphic forms in the remaining sections. Some work
is needed to ensure these notions are well-defined (§2.3.7). We finally conclude by
introducing a mild condition on the p-integral automorphic forms needed for showing

the non-vanishing modulo p of the Yoshida lift (§2.3.8]).

0.3.3 Chapter 3.

The third chapter has two parts. The first part focuses on the four different groups of
orthogonal type associated with D ( We reduce the representation theory of the
special orthogonal similitude group GSO(D) to that of D* (§3.3]), and fix a root sys-
tems together with a set of simple roots for the maximal compact subgroup SO(D),
of GSO(D) . The key to take away is that (automorphic) representations on
GSO(D) are simply a product of two (automorphic) representations on D* whose
central character are the reciprocal of each other (§3.3.1). This allows us to describe
the Satake parameters of automorphic representations on GSO(D) in terms of those
of automorphic representations on D* ( For the sake of completeness, we de-
scribe how to go from representations on GSO(D) to those on GO(D) (§3.3.3); we
also check that the Petersson pairing on GO(D) is compatible with that on GSO(D)
under restriction (§3.3.6)).

The second part of this chapter revolves around GSp,, the sympletic group of
rank 2 over Q ( We introduce the specific kinds of automorphic forms on
GSp, ( that we consider, and discuss their representation theory ( with
emphasis on the archimedean place (§3.4.8]). This is used later on to verify that the
Yoshida lift is holomorphic. We also describe the Satake parameters and the two types
of partial L-functions ( associated with these automorphic representations.

Next we discuss the classical theory of Siegel modular forms of degree 2 (,
as well as their Fourier coefficients (§3.5.1)). The Bessel model (§3.5.5)) is also intro-

duced, and we relate its value at the identity with a linear combination of Fourier

10



coefficients (§3.5.6]).

We conclude this chapter with some tidbits in the arithmetic theory of Siegel

modular forms, with emphasis on the g-expansion principle (§3.6)).

0.3.4 Chapter 4.

The fourth chapter begins with a survey of the theory of Weil representations (
In view of future work, we discuss this in slightly greater generality than what is
needed. The materials in this section are not necessary for understanding either the
main results or the proofs.

What we do use extensively is the restriction w = wy, of the Weil representation to
the product Sp,(A) x O(D)a (§4.2). We write down the transformation laws for the
Schrédinger model of w (§4.2.2)), and extend these formulas to a larger group (§4.2.3)).
Such an extension is necessary for the Yoshida lift to live on GSp,(A) and not just
Sp4(A), and only then can we discuss the Bessel model for the Yoshida lift.

The extended w defines a bijection between some admissible representations of
Sp4(Q,) and those of GO(D), (§4.2.4), and the theta lifts (§4.2.5) and its vector-
valued version (§4.2.6) are in some sense a global realization of this bijection. There is
a wealth of knowledge on the representation-theoretic aspects of the space generated
by these lifts, and we assemble some of the results that are relevant to our case
(§4.3). In particular, we describe the Satake parameters of the Yoshida lift (as a
representation) in terms of the Satake parameters of the automorphic representation
m; on D* being lifted.

Next we pick out a specific theta kernel @g’g’@ (, which depends a number
of choices, among which is the choice of an S-basis (0,7). This is expected since we
want © to carry some ¢¢-action by SO(D) and this representation 0% is cooked
up from representations of DX .

Finally, we reap the fruits of our ground work—we define the Yoshida lift, verify
that it is indeed independent of all the choices, and state the main theorems (§4.5)).

The proofs of these theorems occupy Chapter 5, Chapter 6, and also earlier sections
of Chapter 4 (§4.3)).
0.3.5 Chapter 5 and Chapter 6.

Since we have discussed the methods of proof earlier in this introduction (§0.2), we
do not repeat it here. It is worth mentioning, in case the readers are concerned

with the vast amount of integrations performed in Chapter 5, that these integrals are

11



in a sense a red herring. In essence, they represent nothing more than a choice of
exposition, since the groups we integrate over are either compact or compact modulo
center, and the function we integrate over are often right-invariant by some open
subgroup; consequently, we could potentially replace the integrals by finite sums, but

this probably would do more harm than good.

0.4 Notations and conventions
0.4.1 Fields.

We fix an algebraic closure Q of Q. All algebraic field extensions of Q will be viewed as
subfields of Q. We also fix an embedding Q < C. Note that the image of Aut(C/R)
gives an order 2 element in Gal(Q/Q). To avoid unnecessary confusion later, for any
integer n we fix a choice of \/n in Q. Set 1= v/~1.

For a prime ¢ in Q, we fix an embedding of Q - C, and, unless otherwise specified,
denote by the corresponding fraktur character q the maximal ideal cut out by the the
open unit disk in C,. Here C, is the completion of Q, with respect to the absolute
value normalized so that |g| = %. For a field extension L/Q in Cy, we set q;, = m¢, N0,
and denote by Lg, or simply L, the completion of L in C,. This in particular applies
to algebraic extensions of Q.

At a prime ¢, denote by Frob, the geometric Frobenius element in Gal(Q,/Q,)*".
The Weil group W, of Q, is the extension

1—>Iq—>Wq—>Froqu—>1

of the free abelian group Frob? by the inertia subgroup I, ¢ Gal(Q,/Q,). We equip
W, with the topology so that I, is open.
By “primes”, we will always mean non-archimedean (or finite) primes. The

archimedean ones will be referred to as “archimedean places”.

0.4.2 Groups and algebras.

Given G a linear algebraic group (scheme) defined over Z, we use Zs to denote the
center of G. Given any Z-algebra R, we denote the R-valued points of G' by G(R) or
simply by Gr when there is no risk of confusing it with G x Spec(R). The topology
on G(R) (and Gg) will be the one inherited from the topology on R. In particular,
if R~ Q,, then we set G, = G(Q,).

12



For (p,V,) arepresentation of G(F), (p,V,) will be the corresponding contragredi-
ent representation. We denote by VpG(F) the subspace of V, fixed point-wise by G(F)
under p. When there is no risk of confusion, we suppress the actual representation
and denote by g-v the action of g € G(F') on v € V, through p.

We denote the m x n matrices with entries in a commutative ring R by M, (R),
or simply M,,(R) if m =n. We use SM,,(R) to denote the subset of n x n symmetric
matrices in M, (R). Given any matrix A € M,,,,, ‘A denotes the transpose of A.
If R is equipped with an involution z + Z, then we use ‘A to denote the conjugate
transpose of A obtained by applying the involution to each of the entries of A.

We denote by diag[ay,...,a,] the diagonal matrix

a1

Qp

For convenience, we shall refer to an injective homomorphism of R-algebras as an
embedding. We also frequently suppress subscripts and superscript on objects (e.g.,
a bilinear forms (e, )y on a vector space V', the center Z of G, etc.) when there is

no danger of confusion.

0.4.3 Adeles and the standard character

We denote by A the adeles of Q, and Fs for the adeles of a number field F'/Q. We
use v to denote a general place of F. For a Q-vector space V, we put Va =V ®q A
and Vy =V ® A; where Ay is the finite adeles of Q. Similarly, for a Z-module B, we
put By = B®gz A

We denote by ¢: A/Q — C! the standard additive character on A trivial on Q.

So at a finite place v = p, ¥, Q, - Q,/Z, - C! is the character given by
Yp(a) = exp(-2me - pr(a))
where pr(a) is the image of a in Q,/Z,; and at the infinite place we have
Voo (a) = exp(2mia).

Given any Q-vector space V together with a linear map 7:V — Q, the composition
1oT defines a character on Va /V', which we frequently abbreviate as ¢»r. In particular,
this applies to M,,(Q) as well as SM,,(Q) where we take T' to be the standard trace
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map.

0.5 Measures

Although the normalization of Haar measures and invariant measures is not essential
to the present work, we nevertheless specify them in view of subsequent works on
computing the Rallis inner product. All the measures are chosen to be right-invariant
under the corresponding group transformations (although this is immaterial as we will
only be integrating over unimodular groups).

We begin with the various measures associated with a number field F.

0.5.1 Local additive measures.

Let v be a place of F' lying above the place w of Q. We fix an additive Haar measure

on F), in the standard way. Namely,

the Haar measure normalized so vol(0p,) =1 if v is non-archimedean;
dx, = {the Lebesgue measure dx ifv=R, z,~ x;

|dx A dZ| = 2dzydzy if v=C and z, = x| +125.

Remark 0.5.1. The Haar measure chosen above is self-dual with respect to the stan-

dard character ¢g,, = 1, o trp)q of F, in the sense that the Fourier transform
@(xv) = L @(yv)¢F,v(xvyv)dyv
for any Bruhat-Schwartz function ¢ satisfies the identity $(z,) = @(~z).

0.5.2 Local multiplicative measures.

We also fix the Haar measure d*z, on F} by

Go(1) 2 if v is non-archimedean;
n(zv)] ’
X — dz, _ d_x . _ .
d x’l} |xv‘ - ‘:E| lf/U—R, $v|—>l’,
dr, _ 2dzridzo : _
0P = wTead ifv=C, z,~ 21 +125.
Here in the non-archimdean case (,(s) = PlW’ where N, = [0, : w,0,] is the cardi-

nality of the residue field of F' at v. Also n: F} - QY is the norm map. We note that

vol(O%.,) = 1 with respect to this normalization.

14



0.5.3 Global measures.

The Tamagawa measure dr on F (resp. d*z on F§) is then the unique Haar measure
that induces on each standard open subgroup [l,cs Fy * [Toes Ou (resp. [les Fy %

[Toes OF) the product measure /disc(F) ! [1, dz, (resp. \/disc(F)~* 1, d*x,) where

disc(F') is the discriminant of F. Under these normalizations, vol(Fa/F') = 1 and

2r1(21)"2h R
vol(FL/F*) = % Cr(s)

=re
S=

Ll )}

where 7, (resp. r3) is the number of real (resp. complex) embeddings, h is the class
number of F', R is the regulator of F', and e is the number of roots of unity in O
[Wei95,, §VII-6, Proposition 12]. In particular, for F' = Q, we have vol(A!/Qx) = 1.

0.5.4 Compatible measures.

We state the following theorem for the record.

Theorem 0.5.1. Let G be any locally compact topological group and H a closed
subgroup of G. Let Ag and Ay be the corresponding modulus characters. Then a
necessary and sufficient condition for G/H to admit a nonzero G-invariant Borel
measure is that the restriction of Ag to H equals Ay. In this case such a measure

dg s uniquely determined up to a scalar, and it can be normalized so that

[ r@ada= [ ([, rngyan) dg

dg = dhdg,

or symbolically,

for all f e LNG).
Proof. [Wei40, §9]. ]

We shall refer to the right invariant measure dg thus obtained as the measure
compatible with dg and dh. In particular, the theorem applies in the case that G
and H are unimodular.

We will make frequent use of the above theorem in the following context. Suppose

N is a closed subgroup of G and we have a short exact sequence of topological groups:

1-NS5aLH-1,
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where ¢ is the natural inclusion. We can normalize the Haar measure dn on N so
that it is compatible with the Haar measures dg and dh on G and H respectively,
that is,

dg = dndh.

Caution 0.5.2. We caution the reader that this normalization depends on the short ex-
act sequence. If we post-compose j with an automorphism o of H, the normalization

will change by the modulus of the automorphism o.

As such, we denote by dx (resp. d*x) the invariant measure on Fa/F (resp.
FX|F*) compatible with the Haar measure dr on Fa (resp. d*x on F}) and the
discrete measure on F' (resp. F*). We have that vol(Fa/F) = 1.
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Chapter 1. Quaternion Algebras

1.1 Structures of quaternion algebras

We recall some facts concerning quaternion algebras and introduce some notations in

passing.

1.1.1 Definite quaternion algebras.

Let d be a product of an odd number of distinct primes, and let D be the unique
definite quaternion algebra defined over Q with discriminant d. We denote by = — &
the main involution on D. Let D* be the multiplicative group of D viewed as an
algebraic group over Q. The reduced norm n(z) = xz defines a homomorphism
from D* to G,,, and we denote its kernel by D'. Correspondingly, the reduced
trace tr(z) =  + = is a linear map from D = Lie(D*) to Q = Lie(G,,) with kernel
DO = TLie(D%).

1.1.2 Sub-algebras in D.

We can decompose D according to its sub-algebras as follows. Let
m(X)=X?+bX +c

be an irreducible monic polynomial with coefficients in Q. Denote by A,, = b — 4c
the discriminant of m(X), and let \/A,, = Vb2 - 4¢ be the square root of A,, in Q
fixed in §0.4.1, then K™ = Q(v/A,,) is the splitting field of m(X) in Q. By the
theory of local embeddings [Vig80, Ch. III, Théoreme 3.8], K™ embeds into D as a
sub-algebra if and only if K™ is imaginary quadratic and is not split at each of the

primes dividing d = disc(D).
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1.1.3 Basis for D.

Suppose K™ embeds into D, then such an embedding is equivalent to a choice of a
root 0 = 0™ of m(X) in D. Since m(X) does not determine ¢ € D uniquely, we set
As = Ay, \/A_ =0-0, and K% = Q(\/A_g) = Q(6) for bookkeeping. We have an
orthogonal decomposition

D=K’1 K"

with respect to the symmetric bilinear form (x,y) = tr(xy). Note that K% = jK?° for
any element 7 € K%, Since § and j determine the basis {1,4,7,70} of D as a vector
space over Q, we shall refer the pair (0, 7) as a basis for D. We distinguish a special

class of such bases for D:

Definition 1.1.1. Let S be a finite set of primes not dividing d. The pair (6,7)
defined above is an S-basis for D if it satisfies the following condition at every prime
l € S: if [ is not split in K, then -n(y) is square in Q[

Since D is split at the primes in S, such an S-basis (0, ) exists. Indeed, for
any choice of 7, the Hilbert symbol (-n(y),-n(y)n(d)); is equal to 1 for all [ € §
[O’MO00, 57:9]. In other words,

-n(y) -z —n(y)n(d) - yi = 2}

for some xy,y;, 2 € Q; with 2 € Z]. It is a direct consequence of weak approximation
that given any e > 0, there are rational numbers z,y € Q such that |22 - 27| < € and
ly?—y?| < eforall e S. When €< 7, we see that —n(y) 22 -n(y)n(d) -y? = z (mod 1),
which implies that X2 = -n(y) -2 - n(y)n(d) -y admits a solutionl] in Z; by Hensel’s
lemma; thus replacing 7 by 7(x +y-J) gives an element in K l& * whose norm is the
negative of a square in Q.

We adopt the following convention to keep the notations under control.

Convention 1.1.2. When working with a fized basis (9, ), we denote by K the sub-
algebra K¢ of D and by K the imaginary quadratic subfield K™ of Q. Similarly, given
an element t € K = K™, we denote by ¢ its image in K = K® under the embedding
K - D sending \/A,, to \/A_g . We also suppress the quantifier (9, 7) on all notations
in this situation as there is no risk for confusion. Similarly, we suppress specifying a

choice of S when this choice has no bearing on the discussion.

*See : for the motivation behind this condition.
In the case I = 2, we need to choose € < é, then -n(7)-2? -n(7)n(8)-y* € 1 +8Zy and is therefore
a square |[FT93, (3.8)].
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1.1.4 D* as a unitary similitude group.

The two-dimensional right K-vector space D = K1 jK comes equipped with a her-

mitian form (with values in K') given by

(2,9)s, = pr(yz)

for z,y € D. Here pr: D = K 1 jK — K ~ K is the projection onto the first summand.
Denote by GU(D, (e, )s,) the algebraic group over Q defined by

GU(D7 (.7 .)57])(14)
={9eGLkea(D®A):(g9-7,9-y)s, =det(g) - (x,y)s, for all z,y e D® A}

for any commutative Q-algebra A. The left multiplication by D* on D defines an
injective homomorphism D* — GU(D, (e, e)s,) which is in fact an isomorphism of

algebraic groups over Q [Gro04, §5].

1.1.5 The weight embedding.

Set F'=Q(y/n(y)). For a Q-algebra A, denote by A, = A® F the F-algebra obtained
by base change[| Set

GUY = GU(D, (e,)s5,) Xspee(q) SPec(F),

it is naturally the rational unitary similitude group (over F) attached to the two-
dimensional right K -hermitian vector space D,. As in the previous section, we have
Dy ~ C_}Ug’J as algebraic groups over F'.

Set 7=/ \/@ , it is an element in D, of reduced norm 1. With respect to the
ordered orthonormal basis {1,7} of D, as a (right) K -vector space, the hermitian

form (e, e);, corresponds to the identity matrix, and we have a matrix representation
GUS(A) = {g € GLy k,04(K, ® A) : 'gg = det(g) }

for any commutative F-algebra A. We shall refer to the induced injective homomor-
phism
€l: D* - GLy i,

*See 1 for motivation behind introducing this auxiliary real quadratic field.
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as the weight embedding. 1t is explicitly given by

d+]BH & _vn(J)'B
V()-8 o

fora+93eD=K 1 jK.

1.1.6 PD* as an orthogonal group.

The adjoint action by a € D* on x € DO = Lie(D'), Ad(a) -z = axa™!, factors
through the center Zp« ~ (G, and preserves the reduced norm. We thus obtain an

injective homomorphism of algebraic groups over Q,
PD* 24 80(D© n),

where PD* = Zpx\D* and SO(D(® n) is the special orthogonal group for the quadratic
space (D n). Since SO(D n) is connected and has the same dimension as PD*,
we see this is in fact an isomorphism.

Denote by ¢ the subgroup of order 2 in O(D(, n) generated by the main involution

on D. If ¢ is the non-trivial element in ¢, then we have
v-Ad(a™) - (z) = Ad(a) - (v- )

for all @ € D* and x € DO, Tt follows that PD* x ¢ ~ O(D(® n) with respect to the

multiplication
(o) - (Bxk) = af xur,

with at = a1 if ¢ is the non-trivial element.

1.2 Representations of PGLs

We describe two families of finite-dimensional representations of PGLy = PGLy(Z)
with coefficients in Z. We chose to not use the language of group schemes since such a
discussion would introduce confounding subtleties and unnecessary technicalities. It
is helpful, however, to keep in mind that the representations we define are functorial

in their coefficient rings. We fix an integer k € Zy.
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1.2.1 Induced representation of the Lie algebra.

The (algebraic) Lie algebra of PGL; is Méo) = Mgo)(Z) and has a basis over Z given

TRt

Let (o,V,) be a finite-dimensional representation of PGLy defined over a commutative
ring R, and let R[e] be the corresponding ring of dual numbers obtained by adjoining
to R an element e such that €2 = 0. The M{-action on V, ® R[e] formally defined by

_o(1+eY)v-v
€

o(Y)v

preserves V,, thus induces an action by Méo) on V, which we denote by (dg, V).

1.2.2 Symmetric powers.
Let Z[X Jaegsor be the Z-module of polynomials of degree at most 2k with integral

b
coefficients. We follow [Che05] and define two actions by g = ¢ J € GLy = GLo(Z)

on Z[ X |geg<or- First define two functions from GLy to Z[ X |geg<2r,
j(g) = (bX +d)* and  j(g) = (-cX +a)

Then given f(X) € Z[X ]qeg<2r, we define

aX +c

oa(9) - F(X) = det(9)"5(9)" F (35

),

and
dX -b

-cX +a

Gak(g) - F(X) = det(g) ™) (9)" ( ).

As the notation suggests, &gy is dual to oo (but only after base change to Z[%])

Furthermore, in each case the action factors through the center of GLy and therefore
defines a representation of PGLy. We denote these representations by (og, #2) and
(Fax, ”/7%) respectively.
The monomials,
téc — Xk+i
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for i = —k, -, k, define a basis of ¥ and ¥y, over Z. With respect to this basis, the
unique PGLg-equivariant pairing on %, x %3y, normalized so that (t£ t5)o, = 1, is

given by . N N
(> ath, Z bith)oy, = Z( 1)’ %ab (2.2.1)

i=—k

Note this pairing takes values in %Z.

1.2.3 Harmonic polynomials.

Denote by Poly, the space of homogeneous polynomials of degree k£ on M(O) with
2kk,Z It is again a Z-module. The adjoint action by g € PGLs on M(O)

extends to an action on P € Poly, by

coefficients in

g-P(Y)=P(Ad(g9)™"-Y)=P(g7'Yy).

a b
Let Y = be an element in Mgo). The quadratic form on Méo) given by
c -a

—det(Y") = a? + bc is invariant under the adjoint action of PGLs. A change of basis

over Z[1] given by

b+c b-c
Tr=aQa = — = —
Y= 2
identifies —det(e) with the quadratic form ¢(z,y,2) = 22 + y? + 22. From this, we see

that the differential

is invariant under PGLy in the sense that A(g- P) = A(P) for all g € PGLs.
Reverting back to the original coordinate system {a,b,c}, we find that

2
9y
9a2 " oboc

A =

and that
Harm,, = {P € Poly, : AP =0}

is stable under the adjoint action by PGLs,.
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1.2.4 Highest weight theory for PGL,(C).

Proposition 1.2.1. Every complez irreducible representation of PGLg(C) of dimen-

sion 2k + 1 is equivalent to (oax.c, Yor ® C).
Proof. Set t¥,, =0=t*_ . a direct computation shows that
o doo(H)-tF=2i-tF;

o dooi (V") -th = (k—1)-th ;

i+1
o dooy(Y7) - th=(k+id)-th .

With respect to the basis {((,ffi))!! -tF} of ¥4, ® C, we see that dogy, ¢ is equivalent to

the representation (pg, F®) of M{?(C) = sl,(C) from [GW09, Proposition 2.3.3].
The proposition loc. cit. implies that all irreducible representations of sly(C) of
dimension 2k + 1 are equivalent to (dog, c, %2 ® C). By |GW09, Proposition 2.3.5],

we conclude that all irreducible representations of SLy(C) of dimension 2k + 1 are

equivalent to (o9 c, #ar,c) viewed as a representation of SLo(C). The proposition
then follows since any irreducible representation of PGLy(C) of dimension 2k + 1 is

also an irreducible representation of SLy(C). O

In particular, we have (oo ¢, %ak.c) = (F2r.c, "//%C) as representations of PGLy(C)
by sending X* to (-X)? for i =0,---, 2k.

Remark 1.2.1. In fact, the above proposition holds in greater generality with C re-
placed by any field |[Jan03, Chapter 11.2].

1.2.5 The irreducible submodule .7%..

The preceding proposition shows that (Adc, Harmy c) = (6%70,77%,0). We like
to construct such an isomorphism and distinguish the Z-lattice in Harmy ¢ that

corresponds to #;. To begin, define

a b b\ (c\"
T (A RONE
The action by the Lie algebra Mgo) on these monomials are given by

o H- Ml,m,n = 2(n - m) : Ml,m,n;

o Y. Ml,m,n =m:- Ml+1,m—1,n -2[- Ml—l,m,n+1;
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o Y. Ml,m,n =2l Ml—17m+1,n -n: Ml+1,m,n—1-

In view of action by the Lie algebra, set

if £ is even,

L if k is odd;

> Nl

M|

and define the weight 0 polynomial to be
Z” (k\ (2
0 Z.20( ) 2; 1\ k=2i,1,

It is up to scaling the unique vector in Harmy,, that is annihilated by the derivation

defined by H. The other weight vectors are then given by

i Bl (_y+)=ipk  ifi<0,

b ER—y)iPE i 0.

Since M mn(diag[a,—a]) =0 unless m =n =0, we see that

ak ifi=0;
P - (2.5.2)
—a 0  otherwise.

We denote by 7, the free Z-module of rank 2k + 1 spanned by PF. As we shall see
below, it is stable under PGL,. Furthermore, since %, ¢ = Harmy, ¢ is irreducible as
a representation of PGLy(C), 44, is also irreducible. We denote the corresponding
representation of PGLy(Z) by (px, 74).

1.2.6 An explicit intertwining map.

Proposition 1.2.2. The map

(2 3

defines a Z-linear isomorphism Vo, ~ 6, that is equivariant for the PGLy-actions Gy,

and py.

Proof. Since this map sends a basis of Yo, to that of I, it defines an isomorphism
of free Z-modules. Furthermore, .74 is constructed so that this map intertwines the
representations (d&op, Yar) and (dpy, 74,) of Mgo)(Z) It follows that (Gor.c, Yar.c)

"Indeed, we have
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and (pr,c, 7. c) are equivalent as representations of PGL2(C). Consequently, the Z-
lattice .74, in 7, ¢ corresponding to the image of Yor is PGLy stable and is irreducible.
O

The dual pairing between oy, and &g, induces an isomorphism (over Z[%])
HomPGLQ(%ka i) = (Vo ® %’%)PGLQ,

under which the intertwining map defined above corresponds to the vector

Z( 1) %Pk@)t

(Zk)' (. ® Vap,) P2,

Remark 1.2.2. The representations (oo, %) and (62k,772k) are used to define an
integral structures for automorphic forms on D> in whereas we use the repre-

sentation (pg,#4.) to define a good archimedean Schwartz function for theta lifting

in §4.4.1]

1.3 Eichler orders

Fix a basis (0,7) of D. We will choose a finite set of primes S later on so that (4, 7)
is an S-basis as in Definition We distinguish a class of Eichler orders in D
attached to (9, 7). Let p>5 be a fixed prime.

1.3.1 Review of Eichler orders.

Given a prime [ and an integer n > 0, we define an order in My(Q;) by

Ii(n) = {[Z Z] € My(Zy) : ordy(c) > n}

o diop(H)-tF =-2i-tk;
[ d(}gk(y+)~ ]?:—(]<Z+’L')~téC 13
o diop(Y7) -tk = —(k—i)-tF .

From this we see that

DLy -)igk if Q> 0.

tk_{“““)'( YH)©itk  ifi<o0,
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Let N be an integer relatively prime to dp. Given a non-negative integer r, we denote
by 2 = 2(dNp") an Fichler order of level dNp” in D. Recall this means that Z is

an order of D such that for a prime [, & is
e the unique maximal order %, = {z € D;: n(x) € Z;} of D, for [ dividing d;
e conjugate to I;(ord;(Np")) under some isomorphism ¢;: D; ~ My(Q;) otherwise.

It follows from the definition that any two Eichler orders of level dNp™ in D are locally
conjugate.
We now specify such an isomorphism ¢; at each prime [ 4 d. We consider the cases

in which [ splits in K and [ does not split in K separately.

1.3.2 [ splits in K.

We have K ® Q; = K x K7 where [ = [ is the prime of K above [ fixed in §0.4.1] and
[ is its conjugate in K. We have that

GLK@Q;(D ® Ql) = GLKI(K[ L ]K[) X GLKT(KT L jK’[) ~ GLQ(Q[) X GLQ(QZ)

where the last map is defined with respect to the basis {1, 7} of D; as a right module
over Kix Ky~ Q;®Q;. Let GU = GU(D, (e,9);,) be the unitary similitude group over
Q defined in §1.1.4 A computation| shows that the image of GU(Q;) in GLy(Q;) x
GL2(Q)) is exactly

{(g,det(g) - M; g7 M,): g € GLa(Qu) }

where M, is the diagonal matrix diag[1,n(y)]. By projecting onto the first factor, we
obtain an isomorphism

DX~ GU S GLy(Q)),

ar,l”

*A pair of matrices (g1, g2) lies in the image of GU(Q;) if and only if

t(ghgz)'([l n(J)]»[l n(j)])'@hw:det(ghgz)‘([l n(J)],[l n(j)]).

The claim then follows from the equality

. [ ) I
gl'[ n(a)]'”‘det(gl)[ n<3>]

by projecting onto the first factor.
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which we shall refer to as the arithmetic embedding at [. It is explicitly determined

by
oy -n(7)
e ol

where §; (resp. &) is the root of the monic polynomial m(X) (c.f. §1.1.2) in Q
corresponding to the embedding K - K| ~ Q; (resp. K — Kj~ Q;). This map

extends to an isomorphism D; ~ M5(Q;) of Q;-algebras, which we also denote by GZ’YJJ.

1.3.3 [ does not split in K.

In this case Kl = Q; + Q0 is a two-dimensional vector space over Q; on which Kl
acts linearly by left multiplication. To define an isomorphism D; ~ Endgq, (K)), it
suffices to specify how j acts on K;. Suppose for the moment that \/T(]) € Q;, then
j/\/T(]), as a linear transformation on Kj, has order 2, trace 0, determinant —1
and satisfies the relation 70 = 7. Since the involution ¢ — # on K satisfies all these
conditions, we may let 5/ \/T(j) act on K; by involution. This defines an isomorphism
D; ~ Endq, (K 1) as Q-algebras. We can explicitly describe this isomorphism in terms
of matrices as follows. Denote by m(X) = X? - aX +b the minimal polynomial for
d, and set 6(0) = %5 = @ to be the trace-zero part of §; then with respect to the
ordered basis {0, 1} of K;, we have that

5»[_ i] y»\/—no)-[‘l 1].

Analogous to the split case, we shall refer to the isomorphism
Eg’rj’lt Dl o MQ(Q[)

and its induced isomorphism D} ~ GLo(Q;) as the arithmetic embeddings at I. We
emphasize that eg’rjl is only defined when —n(7) is a square in Q;. This explains the

extra condition in the definition of an S-basis.

1.3.4 Local conditions on 2%5(dNp").

Let S be a finite set of primes [ subjected to the conditions that
e D is split, and

e if [ is inert in K, then —n(y) is a square in Q;.
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Then (6, 7) is an S-basis for D and the arithmetic embedding is defined at all primes

in S. For each [ € S, set 2, to be the inverse image of
T a b ‘s
Ii(ord;(Np")) = {L d] € My(Z)) : ordy(c) > ord;(Np )}

under eg’rjl. In particular, if [ € S is inert in K and [ + Np", then

@l ~ Endzl(Zl @ Zlé(o))

4,

under the arithmetic embedding €7,

It a consequence of weak approximation [Vig80, Ch. III, Proposition 5.1] that
there is an Eichler order 2°25(dNp") such that 2%»5(dNp"), is not just isomorphic,

but exactly equal to &, for every prime [ € S.

Remark 1.3.1. We do not (in fact, cannot) specify precisely the local Eichler order
at all places using the above procedure. In fact, we know that all lattices in D are

locally identical at almost all primes [Vig80, Ch. III, Proposition 5.1].

1.3.5 Normalizer of 7.

Denote by N;(n) = N({;(n)*) the normalizer of I} in GL(Q;). For a description of
N,(n), first observe that the elements of N;(n) stabilize the order I;(n), and that I;(n)

is uniquely the intersection of the maximal orders My(Z;) and w;(n)-Ms(Z;) -w;(n)*

-1
wy(n) = [l” ] :

Since any element x € D) conjugates a maximal order to a maximal order, we see that
x € Nj(n) must either stabilize both My(Z;) and w;(n) - My (Z;) - w;(n)~! or permute
them. It follows that N;(n) is generated by I;(n)*, w;(n), and the center Q; as a
group. We caution the reader that N;(n) is not compact as a subgroup of GLy(Q;),

where

even though its image in GLgz,(/;) is necessarily compact.
We now consider the normalizer ] = A %5(dNp"), of 2%3(dNp"); in D;. Forl|
Np, set w; = w;(ord;(Np")) to be the element in D} corresponding to w;(ord;(Np"))

under eg’rjl; for [ | d, take w; to be a uniformizer of D). By the preceding discussion,
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we have

Q;'(glxawﬂ 1fl|Np7
N =1D; if I | d, and
Q-9 otherwise.

1.3.6 Double-coset decompositions.

Denote by K} the image of K [ in GL2(Q;) under the arithmetic embedding e, ;.
For each [ € S, we describe the double-coset decompositions of K;\GL2(Q;)/GL2(Z;)

depending on whether [ is split in K or not.

[ splits in K: In this case the Iwasawa decomposition gives

GLQ(QZ) = H le . ul(n) : GLQ(ZZ) (363)

n<0

1 [n
where u;(n) = [ 1] :

I does not split in K: In this case GLy(Q;) is identified with GLq,(K;) via the
basis {601} of K;. Given a matrix M € GLy(Q;) = GLq,(kK}), the lattice
S =M -Z;[69] in K is a principal ideal over )(.#) ={te K, :t- . c .7}
[[ha67, §Prop. 1]. Let ¢ be the conductorf| of Z,[6®] and m the conductor of
O,(-#), then we have

L =t- ﬁl(f) :t-dl(m—§) Zl[é(o)]

where d;(n) = diag[l", 1] and ¢ € K}*. Consequently, M € K-d;(n)-GLz,(Z,[6])

and we obtained the following double-coset decomposition

GLQ(Ql) = LI le . dl(TL - §) . G’LQ(ZZ) (364)

n>0

We also state for the record the following coset decomposition [Kna92) pg.259] of
GLQ(ZZ)I

GLQ(ZD:( LI [1 ]h(r)*)U(H [tl 1]&(@*). (3.6.5)

O<s<ir-1 sl 1 0<t<I™

TRecall the conductor of an order &, of K is the integer n such that @) = Z; + ™ - Ok, where
Ok is the maximal order of Kj.
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1.4 Representations of D* and 7

We describe the representations of D* and & obtained from the representations of
PGL; described in §1.2] The notations are from §I.1]

1.4.1 Families of representations of D*.

For a representation (o,V,) of PGLy defined over Z, denote by (0a,V,.4) the rep-
resentation of PGLy(A) obtained via base change to the Z-algebra A. Now given a
basis (9, 7) for D, the representation gg, pulls back to a representation of Dg, through
the isomorphism

enl: DG = GU(Q).

We denote the resulting representation of D¢ by (0%, V7). Tt is defined over the

field K, = Q(v/As,\/n(y)).

To keep matters precise, we now describe the theory of highest weight for DX .
Fix an S-basis (4,7) for D and set 6 = —2— and j = —2=. The weight embedding

_ Vn(9) V()
ef;{7oo:D§° ~ GUS’(R) induces an isomorphism PD¥ ~ PGUS’(R), whose derivative

defines an isomorphism DY ~ suy of Lie algebras explicitly given b

SRR

Let t = R0 be the Cartan sub-algebra of DY and let ep be the character in ts
that send ¢- 6 = diag[1,-1] to 1. We fix the unique set of simple roots for tc in
Dg)) ~ Mgo)(C) to be {ep}.

O~

Corollary 1.4.1. Every irreducible complex representation of PD% ~ SO(D®) n)g

. . .. . 4,7 4,7 _ 6,7 0,9
of dimension 2k + 1 is isomorphic to (o, Voioo) = (0o w0 Yarc)-

k,wt,o00?

Proof. This a consequence of the highest weight theory for compact connected Lie
groups [Kna02, Theorem 5.110]. We can also deduce this from Proposition m

as follows. The weight embedding efv’{ induces an isomorphism between Dg) ) and

*To see this, simply observe that filling this map in on the left makes the diagram

DY =P, Dl {1}

[
suy ——— PGUS’(R)

commute. Here the exponential map DY =L, DL, given by exp (10 + zoj+x370) = ™10 - %27 =330
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Méo)(C); thus all irreducible representations of Dg) ) of dimension 2k + 1 are equiv-

alent to (dag}g wh.oo? ”//2?00). Since the exponential map is surjective for any compact
connected Lie group, the corollary follows. O]

We shall refer to such an irreducible representation in the corollary as one of the
highest weight 2k.

1.4.2 Conjugation between bases.

Let (0,7) and (7, k) be two bases for D. Define an auxiliary totally real number field
F = Q(V/-As,\/-Ay,\/n(y),\/n(x)) and set Dp = D® F. Let K = K,,, = F(1) be
the CM-field obtained by adjoining 2 = /-1 to F. The K, .-vector space

‘/é’K = ‘/796’] ® Kjvﬂ = VQ’%R ® KJ:“

affords two representations of D}, namely Qf;{’ 5 and Q&: > we proceed to study how

they are related. We have an F-linear automorphism ¢ of Dp uniquely determined

by . .
VA SVNIA /A, and 35 /a()/n(r) -k

By Skolem-Noether [Vig80, Ch. I, Théoreme 2.1], there exists an element a € D5,
such that

¢(r)=a-z-at

for all x € Dp. This leads to the following proposition.

Proposition 1.4.2. The pair of bases (§,7) and (7v,k) of D are conjugate over the
totally real number field F = Q(v/=As,\/=A,,\/n(7),/n(k)) in the sense there exists

an o € Dy, such that

€ o Ad(a)(2) = €2 o(x)

for all x € D}..

Proof. The preceding discussion shows that there exists a € D} such that

. [ /A '
(o /Bs-at) = A, - [V = Lr(VD)

A
and

enep(a-g-a™) =y/n(g)/n(x)-

- EW‘c,F

Vn(r)

v “(“)] _ 9 .0)
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as matrices in My(Q). Since the weight embeddings €2, are maps of algebras, the

claim follow. O]

Corollary 1.4.3. The pair of bases (0, 7) and (v, k) of D are conjugate over the CM-
field K, . = F(2), with F = Q(\/—A(;,¢—A7,\/n(j),\/n(ﬁ)), in the sense that there

exists an a € Dy such that

QJV’SKM o Ad(a)(x)-v= Wt K, R(x) v
for allz e DY, and v eV, , = Véf’[](] ®K,, = Vg;’;ﬁ ® K, .

Proof. This follows from the definition of o K, and o ]

wtKJ,.i

A consequence of the corollary is that the representations (th o Vz’}(]), for dif-
ferent S%-basis (6, 7) for D, are all mutually conjugate over the compositum Kauad =
Q(\/q:q € Z) of all quadratic extensions of Q in Q. In view of this, we set

_ 1762 d _ _ 1763 A _ 1%
V'Q,quad = VQ’K] ® K V&Q = V&K] ®Q ngoo = VQ’KJ ®C

and ignore the quantifier (9, 7) on the representation space from now on.

1.4.3 A distinguished p-integral lattice.

Fix a S-basis (4,7) for D and let (g;,V,;) be a representation of PGL2(Q;) with
coefficients in C;. Analogous to the archimedean case, the representation (g;,V,,)
pulls back to a representation (0, Vpars) of Dy using the arithmetic embedding
afl Dy~ GLy(Qp).

We now consider the case that [ = p and g, = do;,, actingon V, ,, = %w = C,[T)<ok-
For each integer n >0, denote by .#a,,(n) the O¢ -lattice in Varp generated by

Fonp(Ip(n)7) - £

over Oc,. We emphasize that .#5;,(n) is independent of (d,7) and D*. Also, note
that #o1,,(0) = Oc,[ X Jacg<an-

Let 9, = 2%:P}(dNp"), be a local Eichler order at p fixed in its action on
Vokarp = Varp Dreserves the lattice Moy, = May,,(r) by construction. Furthermore,

we have that

1
(Oc, [ X aegears Oc, [ X Jacg<ar )2k € Eﬁc

and therefore ( Moy, Mok p)or € %ﬁcp.
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Let A, = A%2{P}(dNp), be the normalizer of 27 in DX as in §1.3.5, It is
generated by Z, w, = (€37,)" (w,(r)), and the center Q. Since tf is ﬁxe by
Fokp(wy(1)), we see that #ay, ,(7) is stable under the 6‘25}iar7p—action by A,. It is also

for this reason that we did not choose a larger lattice, e.g., Oc, [ X |deg<or, When r > 0.

1.4.4 Transition matrices.
Again fix (6,7) an S-basis for D. To a representation (p,V,) of PGL,, and every
prime [ € S, we have attached two representations

0w D* 25 GLy(K) ~V,® K, and  gu: D) 5 GLy(Q)) ~V,® C;

defined over K, and C; respectively. By base change, owt also gives rise to a rep-
resentation of D) with coefficients in C;. We like to describe how to conjugate one
representation to the other, which amounts to finding a matrix C' = Cf 7 in GLo(Cy)

that makes the following diagram

Dy — GLy(Q)) —— GLo(C))

H lAd@

Dy —> GLy(K,) —— GLo(C))

commute. (Here Ad(C)-g=C"-g-C! for g e GLy(K,;).) A direct computation shows
that

1
V() if [ splits in K;
C(S’] =1dF 1
: V&
_2A5 S if [ does not split in K
5> —V-1

has this property. We note that CZ‘S’J lies in GLy(K,(v/-1)). Also note that

0wt = 0(CP7) - 0ar - 0(CP7)

"Indeed, we have that

Fak,p(wp(r)) 'tlg = O2k,p ([pr _1]) 'tg

() ()

=th.
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as representations of D) on V, ® C;.

1.4.5 Comparing transition matrices.

Given (6, 7) an S-basis and (7, k) an S’-basis for D, we want to compare the associated
transition matrices C’f 7 and C)"" for l € SnS’ . To begin, observe that by the definition

of an Eichler order, there exists an element oy € D} such that
Qg - gé’J’S(der)l : Oél_l = @’Y’H’S/(der)l.

It follows that

(eI Ad(ay)
My(Q)) —— D) ——

Dl arl MQ(QZ)

is an automorphism of Ms(Q;) that preserves the Eichler order I;(n) where n =
ord;(Np"). By Skolem—Noether [Vig80, Ch. I, Théoreme 2.1|, this automorphism is
given by conjugation by some invertible matrix M = M%»7# in My(Q;). From this

we see that
arl(alxal ) M Earl(x) M !

for all x € D;. Moreover, we must have M € N;(n) in order to stabilize I;(n).
In view of this relation between the arithmetic embeddings, let us consider the

equation
eﬁva’t'fl(al:val‘l)zC%” arl(oclxozll) eyt
- CPM 2 () M)

By Proposition [I.4.2] there exists a totally real number field F' and an element ., €
Dy, such that € po Ad(ae) = e - Plug this into the equation above, we get:

eua(@) = (MG CT"M) - ey (2) - (M7H(C)™) ™ M)

where M, = ef;t (atey). This equation says that M;1C;"" M has the same properties
as Cl‘5 Jwhich again by Skolem—Noether implies the two must differ by some scalar

matrix. In summary, we have that

05] A- M 1CV’YHM
= A (atay)-CP "M

wt,l

(4.5.6)

*This is used in
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for some scalar matrix A € C; c GLy(C;).
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Chapter 2. Automorphic Forms on D*

2.1 Measures

We follow [Vig80| in normalizing the various Haar measures.

2.1.1 Local additive measures.

For the additive group D,, we set the Haar measure dx, by

the Haar measure giving &, a volume of % if v="_and[]d,
dr, = { the Haar measure giving &, a volume of 1 if v=1and [ }d,
4- dl‘l d$2d$3d$4 if v=o00.
Here &, is a maximal order at [, and at the archimedean place, we have identified z,
with its image x1 + 291 + 37 + 242) under any isomorphism D, ~ H[

Remark 2.1.1. Again, the Haar measure chosen above is self-dual for the the Fourier

transform

pw) = [ o )vu(ir(a)) dy.

This also explains the dependency on the discriminant of D, [Vig80, Ch. II, §4].

2.1.2 Local multiplicative measures.
For the multiplicative group DY, set d*x, by

o) mese ifu=l,

dxy : _
e if v = oco.

d*x, =

Here (;(s) = (1 =17%)! is the usual Euler factor at [.

*The Haar measure dz, is invariant under conjugation by DJ , hence it does not depend on the
choice of the isomorphism. Similarly all maximal orders &, are conjugate, so the normalization at [
is independent of this choice.
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With respect to this normalization, we have that for &, a maximal order in D
[Vig80, Ch. II, §4]:

S if 11 d and
VOl(.@lx): 1€ (2) | ’

WIQ) otherwise.
We also know that the maximal compact at the archimedean place, D! ~ H', has

volume 272.

2.1.3 Global measures.

Since the product [T, vol(Z;) is finite, we can take the Tamagawa measure da on Da
(resp. d*z on D3}) to be the unique Haar measure that induces on each [],eg D, X
[Toes Dy (resp. [lyes Dy x [yes Z5) the product measure [, dz, (resp. [1,d*x,).

We also denote by dx (resp. d*z) the invariant measure on D\D (resp. D*\D3})
compatible with dz (resp. d*x) and the discrete measure on D (resp. D*). We have
that vol(D\Da) =1 [Vig80, Ch. III, Théoreme 2.3].

2.1.4 Induced measures.

We give D! the Haar measure d'x, which is compatible for the short exact sequence

R, ifv=
1-D!->Dx5 S -1

Qy  otherwise

and the Haar measures on D and Q fixed earlier. As before, we obtain a Tamagawa
measure d'x on D} such that vol(D'\D}) =1 [loc. cit.].

Finally we turn our attention to the projective group Zp<\D* where Z = Zp« ~ G,
is the center of D*. For a place v, we normalize the Haar measure d*z, on Z,\D} so
it is compatible for the Haar measures on Z, ~ QX and that on D}. The Tamagawa

measure d*z, in this case gives D*A*\D a volume of 2 [loc. cit.].

2.2 Automorphic representations on D~

We describe the automorphic forms that we will be working with.
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2.2.1 Automorphic representations.

Denote by o7 (D*) the C-vector space of all smooth functiorf]
fiDy - C

satisfying the following conditions for all z € D’ :
o f(yx)=f(x) for all ye Dy;
o f(zeox) = f(x) for all 2o € Zo;
o f(zuy) = f(z) for all uy € Uy for some compact open subgroup Uy of D%; and

o z-fis DX-finite, i.e., the function ue — f(2u ) generates a finite-dimensional

C-vector space under right translation by DJ .

Remark 2.2.1. The requirement that f is invariant under Z,, ~ R* together with the
fact that Z,\DY is compact shows that f is of moderate growth.

</ (D) is a representation space of D} under the right regular action. An auto-

morphic representation (m,Vy) of D* is then an irreducible subquotient of &7 (D*).

2.2.2 The Petersson inner product and cuspidal representations.

Since D(XQZOO\DZ is compact, we have the D} -invariant Petersson inner product on
o/ (D*) defined by

(f.,9) = /Zme \D f(x)g(z)d x.

Under this inner product, <7 (D*) decomposes into a discrete direct sum of irreducible
unitary representations of D} each occurring with multiplicity one |[JL70, Lemma
14.1].
The one-dimensional automorphic representations of D} are exactly the (unitary)
characters
Xp: D§Z\Ds = Q*Rsg\A* 5 C!

where y is a finite-order Hecke character of A*. The orthogonal complement of the
sum of these one-dimensional representations under the Petersson inner product is
stable under D}, and we denote it by .&7%(D*). An automorphic representation 7 is
cuspidal if it lies in 27°(D>).

TThat is, f(2 2 ) is a smooth function on DX for any fixed x; € D% and is a locally constant
function on D} for any fixed o € D,
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2.2.3 Factorization.

Let 7 be an automorphic representation of D>, there is an abstract isomorphism
7 ~ @), that factors 7 into irreducible admissible representations of D} (with each
component 7, uniquely determined up to isomorphism) |Fla79, Theorem 4]. We recall

some useful invariants for characterizing 7.

2.2.4 The central character.

The center Z; ~ A; acts on V. through a finite order Hecke character e,: QX\A; - CL
We call € = e, the central character of m. It factors as € = ®;¢;. The conductor of
g1, c(er), is 0 if Z c ker(e;) and is equal to the smallest integer m > 0 such that
1 +1mZ; c ker(g;) otherwise.

Since Q*\A ~ Z%, and C! has no small subgroups, ¢ is in fact a finite order
character, and therefore takes values in the number field Q(g) c¢ Q generated by
the values of €. It follows that c¢(g;) = 1 for almost all [. We refer to the product
c(e) =T1;¢(e;) as the conductor of .

2.2.5 The level.

The level (or conductor) of  is the product of the level of the local components 7,

o(m) = J]1e™,

l<oo

where ¢(m) > ¢(g;) is defined using the following recipe.

D splits at [: Identify D with GLy(Q;) and view 7; as a smooth representation of

GL2(Qy). For n > c(g;), we can extend ¢; to a character of the compact open
subgroup I;(n)* c GLy(Z;) from §1.3.1| by

a b 1 if n=c(g) =0, and
€l =
c d ei(d) ifn>1.

We then define the level (or conductor) of m; to be the smallest integer n such

that the space of (&;' ® m)(I;(n)*)-invariant vectors

{fieVa 2w fi=e(u)- fi for all we [(n)"},

1S non-zero.
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D ramifies at [: In this case we define a compact open subgroup

7 if n=1, and
UP(n) = : )
L+ 'y ifn>1,

where 2, is the maximal order of D; and w; is a uniformizer. Then c¢(m;) = n
where n is the least integer such that the space of UP (n)-invariant vectors in

Vz, is non-zero.

2.2.6 The weight.

By Corollary [1.4.1} the irreducible finite-dimensional representation 7., of PDY is
g}iwtvm, Yak.0) for some integer 2k > 0. (Indeed, all irreducible rep-
resentations of PDX ~ SO(D( n)gr are of odd dimension [GW09, Lemma 3.2.15].)

Furthermore, this equivalence is unique up to scaling by Schur’s lemma. We refer to

equivalent to (o

the integer 2k attached to m. as the weight of w. It is independent of the S-basis
(6,7)-

2.2.7 The Jacquet—Langlands correspondence.

The (global) Jacquet-Langlands correspondence refers to the unique bijection be-
tween the automorphic representations on D* and the automorphic representations
on GL, that are discrete serieg”] at all places v where D is ramified [Gel75, Theorem
10.2]. We denote by a’ the representation corresponding to  on D* under this
bijection.

Fix factorizations 7 ~ ®'r, and 7/l ~ & 7IL. We have that 7, ~ 7L as admissible
smooth representations of D} ~ GLy(Q,) at all place v where D, ~ Ms(Q,) is split
[Lub10, Appendix, Theorem 3.3].

2.2.8 L-parameters and local constants.

Given a prime [, the local Langlands correspondence [BHOG6, §33.1] attaches to 7" a

GL2(C)-conjugacy class of admissible representations

¢ = ¢ Wy x SLy(C) - GL2(C)

*That is, their matrix coefficients are essential square-integrable in the sense that a twist of the
matrix coefficient by a character of Q) is in the L*(Zar,(Q,)\GL2(Q.)).
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called an L-parameter (or a Langlands parameter) with deto¢ identified with ¢
through local class field theory. Here W, is the Weil group at [ defined in §0.4.1]
In addition, ¢ satisfies the properties

L(s,m"@x)=L(s,p®x) and  e(s,m" ®x,¢) = (5,0 ® x,9")

for all characters x of Q; and characters 9" # 1 of Q;, and these properties determine

the correspondence uniquely. Here
L(s,0® ) = det(1 - (¢ ®x)"(Frob;)-17%)!

is the standard L-factor attached to the representation (¢ ® x)|w, |f| The epsilon fac-
tors are essentially generalized Gauss sums used for establishing functional equations
[BHO6|, §24.2, §29.4] for the respective L-factors, we will not mention them in the
remaining sections. For convenience, we shall refer to ¢ as the L-parameter for ;.
In the case that [ does not divide the level ¢(7) of 7, the representation m; =
ml = 7(p, ') is a spherical principal series for some characters p and g’ of Q) that
are trivial on Z;. In this case, ¢ ~ p @ p’ where we view p and p' as unramified
characters of W; through local class field theory. In particular, we see that ¢ uniquely

determined by its image on Froby,

o(Froby) = diag[ 5, 4/],

where 3, = p(Frob;) and 3] = p/(Frob;). We shall refer to {8, 0/} as the Satake

parameters for m;. Note that p-p' =¢; and

1

L(s,p®x)= (1-x(D)B - 1) (1= x()B - 1)

Finally, we set

LN (s,7) = ] Lis, )

l+e(m)
(so taking x = 1) and refer to it as the partial L-function for the automorphic repre-

sentation 7.

TRecall that I; ¢ W is the inertia subgroup and Frob; € W;/I; is the geometric Frobenius element.
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2.3 Automorphic forms on D~

Let 7 be an automorphic representation of level dNp", weight 2k, and character .
Note the restriction on the level implies that ¢ is unramified at all primes not dividing
Np. We attach some (vector-valued) automorphic forms to a given automorphic

representation 7 of D*.

2.3.1 The recipe.

Each of the automorphic forms that we attach to 7w depends on the choice of
e a finite set of primes S containing those dividing Np but not those dividing d,
e an S-basis (0,)) for D as in §1.1.3] and
e an Eichler order 2 = 2%»5(dNp") of level dNp" as in §1.3.4]

Definition 2.3.1. An automorphic form on D*, f = f,‘i’J, attached to 7 with respect

to (0,7) and Z is a vector in the one-dimensional vector space |Gel75, Theorem 4.24]
(1) = (Ve ® Vopo0) 10>,
where .@Jf act by e7lmy® 1 and D} acts by e ® 6gg7wt7oo.
As such, it satisfies the transformation law
F(rausun) = e(up) - 637, o () - £() (3.01.1)

for all v € D, uy € 75, and u € D,. Moreover, we can express f as a function
k ~
f= Z fz®t’7],€DZ - 7/2]9,007
i=—k

for some f; € V.

2.3.2 Hecke operators.

Let 9, = 2°15(dNp") ® Z; be the local Eichler order as in the previous section. For
any prime [, define the Hecke algebra J#(2;) to be the C-algebra of locally-constant,

compactly supported functions on D} that are bi-invariant under the compact open

“Here we extend ¢ to a character on 7} as in 31 after identifying 2; with I;(ord;(n))* through

]

eaur,l'
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subgroup Z;. It acts on m by convolution. We distinguish some special Hecke

operators arithmetic significance.

[+ dNpr: Let w;, € DS be an element of norm [, and denote by T; € J# (%)) the

normalized characteristic function Lizx = W 1gx e gx On the set of elements
l
in D) with norms in [Z;. The convolution action by 7; on V;, preserves the

. . P
one-dimensional subspace V', and hence

Tl'fl:al(ﬂ')'fl

for some a;(w) € C and all f; € Vw?lx. We can describe the induced action on
o/ %1(1) explicitly by

(D) = gy o 107 ) )

l
= Zf(l_l X wi,l) = 81([)_1 Z:Of(x . wi,l)

with respect to any decomposition w7 = Ul @iy - Dy . Setting a;(f) =
a;(7), we have T - f = ;(f) - f.

[| dNp": Denote by w; € (%)) the normalized characteristic function Wl%xwl@lx,
l
where w; is the element of norm " in A %25(dNp"); (here r; = ord;(dNp")) as

defined in §1.3.5| Since w? = -I" € Q, we have that
wi - fr=a(=U")- fi

for all f; € V. We shall refer to these operators w; as the Atkin—Lehner oper-
ators. Note that they are involutions when ¢; = 1. As before, denote by a;(7)

(resp. a;(f)) the eigenvalue of w; on m; (resp. f € &% (m)). We see it is either
Vel(=lm) or /e, (=1m).

We note that for [ + dNp", the Satake parameters {/3;, 5/} attached to m are roots
of the Hecke polynomial

det(X = T,) = X% - ay(£) X + 126-2¢(1).

TThe last equality follows since 1z (y~'x) is supported on {y € 2P w; ' P = 17" a D[, D) }.
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2.3.3 Compatibility with conjugation.

Let (0,7) be an S-basis and (v,x) an S’-basis for D for two possibly different fi-
nite sets of primes S and S’. We maintain the assumption that S and S’ contain
primes dividing Np and do not contain those dividing d. We now compare the two
automorphic forms £%7 = £27 and £7+ = £ attached to the same 7.

Let o = (a,) € D be an element such that
® T oo © Ad(e) = 63’,57wt700 as representations of DX, and
o o D%5(dNp"), - oyt = 915 (dNpr), for each I.

By Corollary [1.4.3] a not only exists but can be chosen to lie in D} where F' =
Q(\/—Ag,\/—Av,\/n(j),\/n(/@)). The existence of o, follows from the fact that all

local Eichler orders of a given level n are conjugate.

Consider the automorphic form m(a!) - f7#. It transforms under u., € DX by

(mw(a™h) - £77) (2ue) = £ (20 0] - Qoolico0ry,))
= 057 o0 (U00) L £ (za7h)

= G o0 (U100) - (@7 - £7%) (0);

and transforms under uy € 2°75(dNp")} by

(77(04‘1) A7) (zuy) = f%”(xa;}a}l . afufoz}l)
=e(uy) - £ (za™)
=e(up) - (m(a™)-£77)(2).

We see that
() 75 € (Vi ® Popoo) 7P

where ;= 2995 (dNp") ;. Since (Vi ® Yop.00)”7 P> is one-dimensional, we conclude
that
£ = - mw(at) - £1"

for some p € C*. This guarantees that the following definition is not vacuous.

Definition 2.3.2. Given an S-basis (d,) and an S’-basis (v, k) for D, we say the
automorphic forms £37 and £ are compatible if there exists some a = (a,) € D, with
Qo € D c DY for the totally real number field F' = Q(v/-As, \/—Av, \/Il(]), \/H(Ii)),
such that

- m(a™) £
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. ~ 9,7,S 7\ X X
as vectors in (Vi ® Yopo0)?  (NP)7*Ds

. More generally, if {(0,7)} is a set of S%-
bases for D, then a corresponding collection of automorphic forms {ffr’J }, indexed by
these S%-basis (0, 7) of D, is a compatible set of automorphic forms attached to 7 if

any two members are compatible.

We emphasize that the choice a = () is independent of the representation 7.
Indeed, we see from the definition that «; depends only on the choice of the local
Eichler orders for a finite prime /; and oo € D} is used to conjugate the weight
embeddings as in Proposition [I.4.2] Also note that since

Ad(a;t) - A2 (AND')f) = {z = dauzar?) - 6 € H(F7 (dND');)}
= A2 (ANP')),

compatible automorphic forms for 7w have the same Hecke eigenvalues q;(7) at all

primes [.

2.3.4 Algebraic automorphic forms.

Define fals: DJXC — 772;@’00 to be the restriction of f to D;. It satisfies the transformation

law
7]

e (v zuy) = f(yrupyd) = e(uy) .5‘25k7wt700 () - 2 ()

for all v = 7*ve € D c D} = D} x D, x € D}, and uy € Z7. Since the action of
9.3

" .
DQ under T wh. o0

is in fact defined over the number field K, the following definition

makes sense.

Definition 2.3.3. An automorphic form £27 is algebraic if ff,’J(D;) c ”I/;k’Q. A com-
patible set of automorphic forms {ff,’j } attached to 7 is algebraic if one (and hence

all) of its members are algebraic.

Let us verify the assertion made in the parenthesis, that is, every member of an
algebraic compatible set {27} satisfies the condition that £2” (D7) c Yorq- Indeed, let
f2" be an automorphic form satisfying this condition as in the definition; then given
another automorphic form £27 in the compatible family, we have, for some o € D}
with ae € D} c D, that

£2/(D}) = (m(a™) - £37)(DF) = 650 1,00 (000) - £25(DF)

o i ] (3.4.2)
c J;é,wt,oo(aoo) ’ 7/2/€,Q = %k,Q

as claimed (noting that a. € D} implies € (@e0) € GL2(Q)).
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Now since DG\D5/Z} is finite [Vig80, Ch. III, Théoréme 5.4], we see that an

algebraic automorphic form fo% = £o

D} in fact takes values in 7}2‘; K, ® K for some
number field K 2 K,. We refer to the intersection of all such K’s as the field of
definition of £27 and denote it by K (£27).

Finally, by , we see that two compatible algebraic automorphic forms £29
and 2" are both defined over the compositum K (£27) - F = K(f1") - F where F =
Q(V-As,\/-A,, V/1n(7),/n(k)) is the totally real field over which the element a.,
is defined. As a result, we see that all members of an algebraic compatible set of
automorphic forms {f2’} are defined over K ({fs}) = Kaad. F where Kauad is the

compositum Q(,/q: q € Z) of all quadratic extension of Q as in §1.4.2,

2.3.5 Existence of algebraic automorphic forms.

It remains to address the existence of such algebraic (compatible sets of) automorphic

forms. The following proposition shows they exist abundantly.

Proposition 2.3.1. For every automorphic representation 7, there exists an alge-

braic compatible set of automorphic forms {2} attached to .

Proof. This is essentially |Gro99, Prop. 8.3]. We supply a proof in this special case
for convenience. To ease the notations, we suppress the superscript (6,7). Let e = e,
be the central character of 7, recall from that it is a finite character with values
in the number field Q(e) generated by its values. Denote by M, (Zy;€) the space
of function ¢: DG\D} — Yar.qee) such that ¢(zuy) = e(uy) - ¢(x) for all x € D{\D;
and uy € Zf. Since DG\D/Z; is finite, we see that My (Zy;€) is finite-dimensional
over Q(e).

Let T = Z[T; : | + dNp] be the sub-algebra of [1,4x, 7 (Z]) generated by the
Hecke operators 7;. Note that T is commutative, and that it acts on My (Zy;¢)
by convolution just as in . Consequently Mo, (Zy;¢) decomposes as a direct
sum of finitely many simultaneous T-eigenspaces V, indexed by a collection of Hecke
eigenvalues a = {a(T}) e Q: 1 + dNP} of Tj:

Mo (Dyie) ® Q= @ Va-

Moreover, each V, ~ @Q-¢ is an orthogonal direct sum of one-dimensional eigenspaces
Q- ¢.

*The space Mo, (Py;e) is sometimes referred to as the space of automorphic forms of weight 2k,
level dNp", and character € on D* |Buz04, §4].
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Now f = f3’ defines a vector in V, ®q C where a = {a;(m)}; conversely, every
element ¢ in Moy (Zy;¢€) is a linear combination of such automorphic formsﬂ By
multiplicity one [DI95, Corollary 6.3.1] for elliptic modular forms together with the
Jacquet-Langlands correspondence, we see that the eigenspace V, corresponding to f
is one-dimensional, thus f is a multiple of ¢ € Moy (Z;;¢) ® Q. Consequently, we can
scale f so that f (D;) c 7}21@,@ and then conjugate it to obtain an algebraic compatible
set {f07}. O

2.3.6 p-integral automorphic forms.

Let Dy act on the C,-vector space Pokp = ”//va,Q ® C, by Fopwip = (73’,?7wt ®k, Cp. For

an algebraic automorphic representation 7, consider the function f%: D} - %k,p given
by

£7.(2) = £7(2) = ke p () - £15 (@)

It satisfies the transformation law

fp(qu?up) = e(up) - wn(yrpup) - £ ()
=e(uy) - 6wt(up)_l ) 5wt(mp)_1 ) 5wt(’7)_16wt(7) ' falg(x)
(g i) ()

for all v € D € DY, x € D, u} € [Ty I, up € Iy, and uy = uiuy,. Let A = Moy (7)

be the Oc,-integral lattice in %m) defined in i It is stable under the o arp =

"6)] 3 pd pd 3 3 57]
Toje ar p-action by .@;. As Goparp and Gopwip are conjugated under the matrix C),

from §1.4.4] we see that the lattice
M =5,(C) - M

is stable under the Fay wip-action by Z;. This motivates the following definition.

Definition 2.3.4. An algebraic automorphic form £, = £27 attached to 7 is p-integral

if f2 takes values in .#%7, or, equivalently, if

fr(7) € o1 (zp) '619(057]) M

2k,wt,p

for all 2 € D}. A compatible set of automorphic forms {£*7} is p-integral if one (hence

all, as we will see shortly) of its members is p-integral.

findeed, (o7 (D*) ® Yap, o) 7+ P = Moy (Zy;¢) ® C.
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. . . 1 . >
Since an algebraic automorphic form £27*'8 = £37 py takes values in "//2%] ® F(f),

we see that it is p-integral for almost all prime ideals p in Q.
2.3.7 p-integrality and S-basis.

We would like to check that every member of a p-integral compatible set of automor-
phic forms {27} is p-integral. Let (8, 7) be a S-basis and (7, k) a S'-bases for D, and
let £37 = £27 and £ = £2" be a corresponding pair of compatible automorphic forms
attached to . Assuming £7* is p-integral, we check that f%7 is also p-integral. Let
a € D be an element that conjugates £7+ to fo, i.e., w(a™t)-£7* = £37. We need to

verify that (w(a™t)-£75)(z) = 75 (z-a™t) lies in
G5t e p(@p) - Gotp(CO7) - M = G (€31 () - CO7) - (3.7.3)

for all x € D}. Since 7% is p-integral, and oo € D for some number field F', we have
that

fre(z-at) = ‘72k wt, r(Qeo) - fw{($ : O‘}l)

€ Tanp(np (o) - €y (2 3 1) - 1) - M

where €7 5 (o) - €0 (2p - 1) - Cp™ is @ matrix in GLy(F),) for the finite extension
F,/Q, in Cp. It suffices to show that this image lattice

OQkP(th F(aoo) thp($P ];1) 'Ogﬁ) ’%
is equal to the lattice on the right of (3.7.3)) above; or equivalently, that the matrix

(Ewt p(xp) C(SJ) Lot F(aw) ’ Wt p(xp _l) ’ C%H
= (Cg’]) ! ( Wt,p('rp)) L Wt,p(xp) Ewt F(aoo) 6wt’,]o(a_l) C%
= (Cg’])71 ) 6w’t,F(Oéoo) 6Wt’, p(a 1) C%
stabilizes .#. By (4.5.6} - from § . we have
(C’I‘E’J)_1 €7 (oo ) - ewtp(ofl) Cyr =AM

wt,Q

for some scalar matrix A € GLy(C,) and M € N,(r), which indeed stabilizes .# under

the &y p-action.
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2.3.8 Non-Eisenstein at p.

We distinguish a class of p-integral automorphic forms that are important for arith-

metic applications.

Definition 2.3.5. A p-integral automorphic form f = £27 attached to a cuspidal
automorphic representation 7 is non-FEisenstein at p if (t§,f(x))ax is not constant

modulo p as a function of z € D3.
Let us check this definition is not vacuous:

Proposition 2.3.2. There exist p-integral automorphic forms £27 that are non-Eisenstein

at p.

Proof. We have that f = f2’ = Y L fi® t¥ where each f; € Vi is an eigenvector for all
the Hecke operators. Now (t& f(z))ar = fo(x); so if this matrix coefficient is constant
modulo p as a function in x € D3, then by , we have

l
(Ti- fo) (=) =a (D) ;fo(x @) =a(l) - (1+1)-a (mod p)

for some constant o € Qn Oc,. This forces the Hecke eigenvalue ¢;(7) to be equivalent
to e(1)=1- (I +1) modulo p for all [ + dNp.

This, however, implies that the Galois representation associated with f, or equiv-
alently, associated with a newform in 7', is of the form - (1 ® ycy.) modulo p, and
is in particular not irreducible. Consequently, we see that any automorphic form f
whose associated Galois representation is irreducible modulo p is non-Eisenstein at
p in the above sense, and there are such residually irreducible Galois representations
by [Lan95, Part XI, Theorem 3.4]. H
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Chapter 3. GSO(D) and GSp,

3.1 From D* to GSO(D)

We now consider D as a four-dimensional vector space over Q equipped with the
symmetric bilinear form (z,y)p = tr(zy). The associated quadratic form is twice the

reduced norm (z,x)p = 2n(x).

3.1.1 Orthogonal similitude groups.

We have the corresponding group of orthogonal similitudes,
GO(D) ={heGL(D) :n(h-z) = A(h) -n(z) for all z € D},

where A\ is the multiplier character.
Let D* x D* act on D by

(o, 3) x> axft

This gives a homomorphism D*x D* - GO(D) with kernel the subgroup Z# given by
Z = Zp~ diagonally embedded inside D*x D* [] The image of the homomorphism is the
connected component GSO(D) of GO(D) defined by the condition det(h) = A(h)2.

In other words, we have an isomorphism
H = Z*\D* x D* ~ GSO(D).
The main involution is an isometry on D and has determinant —1. It follows that

H*=H»t~GO(D)

*Alternatively, one can let D* x D* act on D by (a,3) -z + axf as in [Rob01] and [GT]. The
difference between the two isomorphisms is a matter of language. We decided to use the isomorphism
above because it appears better suited for arithmetic.
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under the multiplication given by
(a,8) - (!, 3) % = (a0, 3) - (Cz’,ﬁ’)“ x 1’

We note that the non-trivial element ¢ € ¢ acts on H by (o, 8)* = (571, a1).
The center ZH" = ZH of H* and H is the image of Zp« x Zpx. We identify
Z1 ~ G,, through its projection onto the first factor.

3.1.2 Orthogonal groups.

The kernel of A in GO(D) (resp. GSO(D)) is the subgroup O(D) (resp. SO(D)).
The kernel of \ in H, on the other hand, is the subgroup

H={(a,8) e H :n(a) =n(B)}.

We then have H ~ SO(D) and H* = H x ¢~ O(D).
The multiplier character pulls back to the character A(a, 8) = n(a)n(3)~! on H.
Since A(¢) =1, we see that

MHR) =n(D3) = A} R

and A(Hg) = Qso [Vig80, Ch. III, Théoréme 4.1]. Now for z € Zy, = R, we have
A(z,1) =n(z) = 22. It follows that

GSO(D)ws = ZH-SO(D)os  and GO(D)w = ZE°-0(D)

since we can factor an element h € Hy, as h = 2, - % with z, = (v/A(h),1) € ZH. Form
this we conclude that the maximal compact subgroup of GSO(D)s = H., (resp.
GO(D)wo = Hz) is SO(D) oo = Heo (vesp. O(D)o = HZ).

3.1.3 Rank-one tori in H.

Fix (8,7) an S-basis for D, and consider the two-dimensional subspace K = K9 c D.
Denote by T° the subgroup of H ~ GSO(D) that fixes K point-wise. Using the
decomposition D = K L 7K, we see that

T? = A(Q\K¥)
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is the image of K* in H under the diagonal embedding. Note that 79 in fact lies in
H.

3.1.4 Compact open subgroups.

For a prime [, the maximal compact open subgroups of GL(D), are given by
GL(2)={9eGL(D),:9g-2< 9}

for lattice ¥ ¢ D.

The intersection ﬁlg = H/n GL(Z)) (resp. U7 = H nGL(2,)) is then a compact
subgroup of H; = H(Q;) (resp. H; = H(Q;)) which is maximal for almost all primes
[. In particular, if 2, = 2%25(dNp"), is an Eichler order attached to the S-basis (4, 7)
of D in then by , Ulg is the subgroup of H, generated by the image of
27 x P and the element (w;(n),w;(n)) since we factor through Z in defining H.
Similarly, we see that U7 is generated by the image of {(«, 8) € ;<2 :n(a) =n(5)}
and (wy(n),w;(n)).

Set U7 = icoo U and U7 = [Tjeoo U7, then U7 = U7 x Ho, (vesp. U? = U7 x Ho,)
is a compact subgroup of Ha (resp. Hp).

Since the main involution on D leaves & invariant, Ulg’Jr = Ul@ml and U19,+ = Ul@ml
define compact open subgroups of H ;- and H; which are maximal for all but finitely
many primes [. We define U]‘?’Jr and Uf@”r (resp. U7+ and U7+) of lfl}r and Hj (resp.
of H; and H}) as before.

3.2 Measures

We make precise our normalizations of Haar measures on the various groups along
the same lines as in [Wei82].

3.2.1 Decompositions of H and H.

We have a commutative diagram of algebraic groups

in pr

1 D1 H Z\D* —— 1
| |
1 D 2 72, AD —— 1




where

inta~ (1,a) and pr:(a, )~ a.

The diagram admits a section Z\D* — H given by o ~ («a,«), and we obtain a

realization of H and H as semi-direct products:
H=~(Z\D*)x D* and H =~ (Z\D*)x D'

by identifying o x 3 with («,3) in H. The multiplication in the semi-product is
given by
axB-a'xf = (aa) x (" Ba/B).

3.2.2 Local measures.

For each place v, we normalize the Haar measure dizv (resp. dh,) on fIv (resp. H,)

so it is compatible for the Haar measures on D (resp. D}) and Z,\D} that we fixed
in §2.7]
Remark 3.2.1. Alternately, one can appeal to the definition of H, and normalize the

Haar measure so it respects the Haar measures on Z; ~ QX and DX x DX. That this

procedure gives the same normalization follows from the commutative diagram

z2—(z,1)

Z5 —— D*x D~

(e, )
| .

(o, ap)
A D* x D*

z—(2,2)

and the fact that D> is unimodular. The same goes for H,.

We mention in passing that vol(Hy) = vol(DL) - vol(R*\DX ) = 273,

3.2.3 Global measures.

Denote by dh and dh the resulting Tamagawa measures on Ha and Ha. We have
that
vol(Hg\Ha) = vol(D*A*\D3y) - vol(D"\D} ) =2

as expected [Wei82, §3.7(c)].
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3.2.4 Modulus of some outer automorphisms.

Consider the automorphism on Ha = {(a,3) : n(a) = n(3)} induced by conju-
gation by (v,1) for some v € D3. Using the semi-direct product representation
Ha ~ Za\D}; x D}, we see that this automorphism corresponds to conjugation by
~vx 71, Now

(%7 ™) (ax B)- (7 x7) = a7 w ((a7)aB)

where we set a7 = yay™. Since (o) laris in Dy, and Za\D3}, D} are unimodular,
we conclude that the modulus of the conjugation automorphism (v, 1) is 1.
3.2.5 Measures on H+ and H".

To define measures on the groups I:I; and H;, it suffices to specify a measure on
the the two-torsion subgroup ¢ generated by the main involution z — z. Let di, be
the Haar measure on ¢, such that vol(¢,) = 1. The product measure dv =[], dt, is a
Tamagawa measure on ¢a giving tq\ta a volume of 3 (since vol(ea) = 1 and #tq = 2).
We denote by d*ﬁv and d*h, the normalized Haar measures thus obtained on ]5[; and
Hy.

3.3 Some representation theory of GSO(D)

We discuss some representation theory of GSO(D) and its siblings using representa-
tion theory of D* and the isomorphism GSO(D) ~ H.

3.3.1 Decomposing representations.

The isomorphism GSO(D) ~ H shows that every complex representation (o, V,) of

H is isomorphic to a product
(01802, Vp1©V,2)

of representations (g;,V,;), i = 1,2, of D*. Furthermore, starting with a pair of
irreducible complex representation o; of D* with the central characters w and w™!

respectively, the product representation

01 X 02

of GSO(D) is also irreducible with central character w |[GW09, Proposition 4.2.5]. If

(e,0); is a D*-invariant C-bilinear pairing on V,, x V,, for i = 1,2, then (e, e); ® (s, ),

o4



is a H-invariant bilinear pairing on V, x V.

3.3.2 Automorphic representations on GSO(D).

Given two cuspidal automorphic representations 7r; of D*, ¢ = 1,2, with the central

characters e, = € and e, = 7!, we obtain a representation
T2 =T KT

of H ~ GSO(D) with central character e. It is cuspidal automorphic in the sense that
it is infinite-dimensional and occurs in L2(ZH2 Hg\Hy).

Let {ffr’f } be a compatible set of automorphic forms attached to 7r; in the sense
of Definition [2.3.2, then the collection {ff% where

s
£5(ex, B) = £ () ® £7(5)
is a compatible set of automorphic forms on H attached to 12 in that
£ =mia(h') £y
where h, = (o, ) € Ha and « is the element chosen in §2.3.3]

3.3.3 Extension to H*.

The factorization m; ~ ®/ m; , from §2.2.3|for ¢ = 1,2 give a factorization my 3 ~ ®}7(1,2)
where 7(19), = T, B ma,. We can extend m(; 9y, to a representation of ﬁ;; using the
following recipe [Rob01} §3]:

T % T2t In this case the (compact) induction Indgfmvgw is irreducible. Set 77?172)7@ =

Indgfw(l,g)yv; we can realize it on the space Vio=Ve, 0 Vo, explicitly by

T ay (B 1) - (w,w’) = (.20 (h) - w0, w120 (R) - 0')

and 772172)71)(1 x1) - (w,w") = (w',w) for the non-trivial element ¢ € ¢.

T, = Mot In this case

i o _
Indm T(1,2)0 % T(12)0 @ T(1,2)0

is a direct sum of two inequivalent representations of H;} where 7r(*1 9,0 ACts On

VE ={(wew tw @w):w,w €V ~V,,}

1,2
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via the formula defined in the first case.

We note that when ;; is a spherical representation, then so 15[| P hence

(1,2),0
Tia = ®,7( ), is well-defined and is in fact a cuspidal automorphic representation

of H* occurring in LQ(ZOI?E%\EIK).
More concretely, we can extend the compatible set of automorphic forms {ff%} on
H to a compatible set {ff’g’ } by

£ (hx 1) = £75(h) @ £5(h) € 37, a1, o0
where ¢ € 1.q c ta and

£227(1) if v < oo, and

0,3,+ _
£ (1xe,)= 6‘”’ (1x10)- f&]’ (1) ifo=oco
2%1 2k ) I1 =

3,3 7+ : : + ; ; 20,0 7
Here (057751, Vo, 2ky.00) 15 the representation of H, associated with (657 , Yo, 0 ) for

1 = 1,2 using the procedure from the previous section.

3.3.4 The level.

Let 7r; be as before for ¢ = 1,2. Suppose furthermore that m;’s share the same level
dNp" and that their eigenvalues under the Atkin—Lehner operators are reciprocals,
i.e., ai(my) - aq(my) =1 for all [ | dNp. Under these hypotheses, we see that, for any
choice of an Eichler order & of level dNp", the subspace fixed by the compact open
subgroup i V,ﬁj(l Do is one-dimensional over C. In fact, we have that

71'(12)f {f1®f2 fle 7rrLf

@X
and me ; 1s by definition one-dimensional. We shall refer to the compact open sub-

group UZ as the level of w15 We note that the automorphic form ff”% defined

"Indeed, let f; € Vz,., that is fixed by some maximal compact open subgroup U;; ¢ D. Then the
vector

iy = (f1® fo, f1® f2) if my ¢ moy, and
UV AS ML A® M) i my #

is invariant under the subgroup in H | generated by Uy x Uz, and the main involution ¢;. This is
a maximal compact subgroup of H ;7 since we have Uy ; ~ GLy(Z;) ~ Uz, and the maximal compact
open subgroups of ﬁl* ~ GO22(Qq) are exactly the ones generated by GLa(Z;) x GLy(Z;) together
with the involution ¢;.
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in the previous section spans the one-dimensional U?" x H-invariant subspace of
Vs ® (%kl,m ® %kg,m) (where 2k; denotes the weight of ;).

The same observation applies to the automorphic form ff:%”r is right-invariant
under UJ?Jr In fact, V7 (o.s has a unique one-dimensional subspace fixed by Uj?é’]’+

: : 8.0+, \+ v+
generated by any matrix coefficient of the form (£57,v)3; ,, forve ¥ o0 .

3.3.5 Weights for H.,, and H,.

As we are mostly interested in representations of GSO(D)4, ~ H « Which are trivial on

the center, it suffices to consider the irreducible unitary representations of SO(D)e =
H,, trivial on ZH2 ~ {+1} by §3.1.2l Now

ZG\Hw = (PD3) x (PDY,),

hence we are reduced to considering pairs of irreducible representations of PDZ. The
notations are from §I1.4.1]

To begin, fix an S-basis (4, ) for D and let t = R0 be the Cartan sub-algebra of
DY = Lie(PDY) fixed in . It is the Lie algebra of the torus 7" in PDY given
by the image of exp(Rd) = {t; + 50 : t2 + t2 = 1}. Then tx t is a Cartan sub-algebra
of Lie(Hs ). Denote by {ep1,ep2} the union of the simple roots associated with the
(DY tc)s.

Given two complex representations (oo, , Vo, ) of PDZ for i = 1,2 of highest weight
2k; (with respect to the sets of simple root {ep;}), we denote by

(Q2k1,2k27 V2k1,2k2) = (Q2k1 0%y, Voi, ® Vzkg)

the corresponding representation on H,,. We like to determine its weight with respect
to a set of simple roots for SO(D),, which we now describe.

Fix an isomorphism SO(D). ~ SO4(R) with respect to the ordered orthonor-
mal basis {1,S,j, jg} of D. Note the norm form corresponds to the identity matrix
diag[1,1,1,1]. The torus in (PDx) x (PDX) given by the image of

exp(RO) x exp(RE) = {(s1 + 520,11 +120) : 55, t; e RN, 57+ 52 =1 =12+ 13}
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is mapped to

a b a = Sity + Sato
b b= sits - sot
¢ VTR TR L 50,(R) x SO4(R)

C d . C=Slt1—82t2

-d c d= S1to + Soty

in SO4(R)/{£1}. Now the Lie algebra

el e

is abelian and exp(s0y) = SO2(R), hence t x t is mapped to the Cartan sub-algebra
h=RX, ® RX; in so, where

4% 0
X, = and X, = .
0 Wi

Let e; be the linear form sending X; to 1 and X to 0 for j # ¢, then h¥ = Re; @ Res.
The corresponding roots of he in s04c are then given by {xe; + ey}, and we fix a
set of simple roots to be {e; £ es}. With respect the partial ordering on h¢ induced
by this choice of simple roots, the irreducible representations of SO4(R) are indexed
by the dominant integral weights a;e; + azep in h§ with a; € Z which we refer to as
representation of H,, of the highest weight (ay,as).

Now under the isomorphism t x t ~ s0, x §04, the element (§,0) is mapped to
(W1, W) and (0,4) is mapped to (Wi, -W4). It follows that

€p,1tE€p2 €D,1 — €D,
er = — and eg = —

Consequently, we see that if g9, is of the highest weight 2k;, then po, ok, is an
irreducible representation of H,, of the highest weight k = (k1 + ko, k1 — k). Also, we
refer to the irreducible representation V5; ,, of Hg obtained from Vo, ok, in
as a representation of HZ of the highest weight (k1 + ko, k1 — ko; +).

Finally we denote by (e, ®)or, ok, = (@, ®)o, ® (e, ®)r, the invariant bilinear pairing

~ . . +
on Vag, oky X Vory 2k, and (e, '>§k1,2k2 its natural extension to Vi o x Vii o .
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3.3.6 The Petersson pairing.

Let (o*,V,’) be an irreducible complex representation of HZ, on which the center
ZH" acts trivially. Fix a HZ-invariant bilinear pairing (e, e)* between ¢* and its
contragredient o*. In preparation for theta lifts, we define the Petersson pairing
to be the induced bilinear pairing (s, e)z+ between f+ e LX(ZE HE\H}) ® V7 and
gt e LX(ZH"HE\HL) @ Vy given by

(.8 = [, R OFIONED

If f* (resp. g*) is obtained from f € L2(ZEZHQ\HA) ®V, (resp. g € L2(ZZHQ\HA) ®

V,), then
(b= [ 0L o), 0.6 g o)) dhds
= o S (G, 8O0) + (£ + (1) e
o RGO OI
=(f,g)n

since vol(tq\ta) = 5 by §3.2.5)

3.3.7 L-parameters and local constants.

Recall that the dual group of GSO(D) is
GSpin, (C) = {(g.9") € GLz(C) x GLy(C) : det(g) = det(g") } [
By Langlands functoriality, the local L-parameter attached to m 2y, is then

¢W(1,2),l = (bm,z ®ep- ¢W2,l:m X SLQ(C) - GSpiH4(C) x W

“Indeed, the maps SO(D) — GSO(D) and D* x D* - GSO(D) induce homomorphisms between
the respective dual groups

GSO(D) - SO4(C)  and  GSO(D) - GLy(C) x GL5(C).

By [Bor79, §2.2], GSO(D) injects into GL2(C) x GL2(C) and is therefore a subgroup of rank 3 with
a central isogeny (i.e. a surjective homomorphism with kernel contained in the center) to SO4(C),
hence GSO(D) = GSpin, (C).
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Note that we have to twist by ¢; (viewed as a character on W; through local class
field theory) on the second factor in order for the image to land in GSpin,(C).

Let ¢; = c¢(m) be the level of m;. For [ not dividing cica, 71,2, = m(p1, p})
(g, phy) is spherical; therefore it is uniquely determined by the Satake parameters
Bi1 = pi(Frob;) and B, = pl(Frob;) as in . Note that pip] =&, = py'ps . In this
case, the corresponding L-parameter is unramified and is uniquely determined by its

image on Froby,

Bri- By,
61,[ : 62,[
¢W(172)Y1(Fr0bl) =

—

ﬁ{,l 'ﬁé,l

ﬁ{,l ' ﬁ?,l]
Set

L) (s, 7wy ® 7Ty, std)

= H det(1 - ¢W(1’2)‘1(Frobl) ATt

l+cico

1
) HEICQ (1= BraBh, - 17°) (1 = Brafay - 1) (1= 81 By, - 17°) (1 = By oy 17%)

We refer to it as the partial Rankin—Selberg L-function for the automorphic represen-

tation m; X 7.

3.4 Automorphic forms on GSp,

We review some basics of the theory of Siegel modular forms, focusing on the case of
degree 2.

3.4.1 Symplectic groups.

Let L = Qw; @ Qw, be a two-dimensional Q-vector space and denote by LY = Qw; &
Qw; its linear dual. We emphasize that L (resp. L") comes equipped with a preferred

"Indeed, the standard representation of
GSO(D) ={(g,9") € GL2(C) x GL2(C) : det(g) = det(g")}

into GL4(C) ~ GL(My(C)) given by the action (g,9') - A = gAg’~! for a matrix A € My(C) takes
an element (diag[s, t], diag[s’,#']) in the split torus of GSO(D) to diag[ £, 5,5, L] in GL4(C) with
respect to the basis {e11,e12,€21,€e22} of Ma(C). (Here e;; is the 2 x 2 matrix with 1 in the ijth
position and 0 elsewhere.)
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choice of an ordered-basis {w;} (resp. {w;}).

The direct sum of these two spaces,
W=Leo L =Qw;®Qw,y;®d Qw; & Qw,
has a natural choice of an alternating form (e, e)y, given by
(71 @ Y1, 72 ® Po)w = Y1) — U1 (72)
for x; € L and y; € LY. We have the group
GSp, ={ge GL(W):(g-v,g-w)w =X (9)(v,w)w, Vv,we W},

where A:GSp, — G, is the multiplier. We note that A’ is surjective] and its kernel
is the symplectic group Sp,.
As we will be working with matrices, we fix an ordered Q-basis {wy, wo, W1, Wy}

for W, which amounts to an embedding GSp, - GL,4. Note that the alternating form

1
has the matrix representation [ . ?| with respect to this choice of basis.
—1s

3.4.2 The Siegel parabolic.

Let P be the Siegel parabolic subgroup of GSp, stabilizing the flag 0 ¢ L ¢ W. Let
M be the Levi subgroup of P stabilizing LV, and N the unipotent radical of P, so
P~ MxN. We have that M ~ GL(L) x G, and N ~ Homg (L, L) ~ SM, where
Homg (LY, L) denotes the self-dual maps from LY to L (with respective to any linear
isomorphism L ~ LV). We set P, = PnSp, and M; = M nSp,.

With respect to the basis wi,wy of L, we have the following matrix representa-

tions:

o

3.4.3 Compact subgroups.

a

o-tal

I, S
:aeGL(L)EGLz,aeGm} and N:{[2 1]:SESM2}.
2

We define some compact subgroups of GSp,(Q,) and Sp,(Q,) for each place v.

*The linear automorphism z +y ~ -z +y for z € L and y € LY defines an element in GSp, that
has similitude a € G,,.
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For v = co: We define the maximal compact subgroup USP of Sp4(R) to be

USP = {u = |:f]13 i] u € Sp4(R)}.

Note that USP is also a maximal compact subgroup of
GSpy(R)" = {g € GSp,(R) : X'(g) > 0};

whereas the corresponding maximal compact subgroup of GSp,(R), denoted by

USSP is the extension of USP by the order two element 7 = diag[1,1,-1,-1].

For v =1[: For an integer n >0, we define a compact open subgroup of GSp,(Q;) by

GSp — N
U;P(n) = GSpy(Zy) I"My(Z1) Ma(Z)

Ma(Z;) anq.

Given a positive integer N = [T, 1", we set USSP(N ) = [Tjeoe U " (). Tt is a com-
pact open subgroup of GSp,(Af). We denote by U%SP(N) the product USSP(N) s x
U™,

3.4.4 Representations of UY and US™.

Let £ be the Lie algebra of USP, we have that
A B

E =
-B A

0 diag[1,0
ﬂ:_i iag[1,0]

eMy(R): A= —tA B = tB}.
The elements

and To=—1

—diag[1,0] 0 —diag[0, 1] 0

0 m%mJ1

span the Cartan sub-algebra t = RT) @ RT; of €. Let ¢; be the linear form on t¢c = t®C
which sends T; to 1 and T} to 0 for j # . We have that t; = Ce; ® Cey, and the
roots of t¢ in ¢ = €@ C are A. = {e1 — ey, —e1}. We fix a set of simple roots to
be {e; — ey}, this in turn defines a partial ordering on t§ and the dominant integral
weights are element kje; + koeg with k; € Z such that k; > ky. By the theory of highest

weight |[Kna02, Theorem 5.110], all irreducible finite-dimensional representations of
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USP are up to equivalence in bijection with these tuples of integers k = (ki, ko) with
k1 > ko. We shall refer to any representation corresponding to k as an irreducible
representation of USP of the highest weight k.

Let (7, #)) be such a representation of the highest weight k. The induction

GS
Indg‘;fpp% is isomorphic to the direct sum
Wy ® Wy

where u € U5 acts by u-(wew’) = 7 (u)- weT,(@)-w’ and the element diag[1,1,-1,-1]
in USSP acts by swapping the two vectors. From this we see that this induced rep-
resentation is the direct sum #,* @ #,~ of two irreducible isomorphic submodules
defined by -

W= {(wm)wety) Ay = {(w,-0) swe W),

We focus on the irreducible representation (777, %#;") of USSP and refer to it as an

irreducible representation of UL of the highest weight k.

3.4.5 Cartan decomposition.

Let g = sp, be the Lie algebra of Sp,(R). Under the Cartan involution X ~ —tX|
g decomposes as g = £ @ p where ¢ = Lie(UoSop) is the (+1)-eigenspace and p is the
(—1)-eigenspace. It follows at once from the definition that pc = p® C is stable under
the adjoint action by Sp,(R); moreover, it decomposes into a direct sum pc = pg@pg
of stable subspaces under Ad(Us?) where

A A
t = My(C): A=tA}.
Po {LZA —A]E A(©) }

3.4.6 Automorphic forms on GSp,.

Let (Tg , V/E) be an irreducible representation of Us " of the highest weight & = (K1, k»)
with & > ko > 2 and k; = ks (mod 2) so it factors through {+1} c US® Zasp, (R).
Also let e a character of Q<\A*, and UGS = UGSP(N) for some integer N > 0 as

above.

Definition 3.4.1. A holomorphic automorphic form on GSp, of level N, weight k,
and central character € is a smooth function F: GSp,(A) - %" such thalﬂ pe-F=0

"Here pg - F = {X -F: X epg} where (X -F)(g) = &

E’t=oF(9 -exp(tX)) is the usual Lie action.
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and
F(y2gucotiy) = £(2) - 7 (o) ™ - F(g),

for all v € GSp4(Q), z € Zgsp,(A), g € GSpy(A), and usuy € UGSP.

Remark 3.4.1. The holomorphy condition pg - F = 0 together with the Koecher prin-
ciple |[AZ95, 11, §3.2] imply that F is of moderate growth.

We denote the space of automorphic forms on GSp, of level N, weight k, and cen-
tral character e by @ (GSp,; N, k). We say an automorphic form F € @7 (GSp,; N, k)
is cuspidal if

F(ng)dn =0, for all g € GSp,(A), 4.6.1
Jocmn F@9) J(A) (46.1)

where we integrate over all possible unipotent radicals N’ of each proper parabolic
subgroup of GSp,. We denote by «7°(GSp,; N, k) the subspace of cuspidal automor-
phic forms (or just cusp forms) in @7 (GSp,; N, k).

When ki = k = ko, (70, Whi) = det” is one-dimensional, and consequently the

automorphic forms in @7 (GSp,; N, (k, k)) are scalar-valued.

3.4.7 Automorphic representations on GSp,.

Denote by &7 (GSp,) the vector space of functions on GSp,(A) generated by the

matrix coeflicients
{Fv = (U, (g : F)>E}

running over all v € #}, all F € @ (GSp,; N, k) for all possible central characters,
levels, and weights, and all g € GSp,(A) with (¢-F)(¢’) = F(g'g). We also define
2/°(GSp,) in the same way but only taking F € &/°(GSp,; N, k). It is immediate from
the definition that </ (GSp,) and </°(GSp,) are stable under the right translation
by GSp,(A). For us, an automorphic representation (resp. cuspidal automorphic
representation) on GSp, is then an irreducible sub-quotient IT of </ (GSp,) (resp.
2/°(GSp,)) viewed as a GSp,(A)-module. Although this rather naive approach ex-
cludes many representations of GSp,(A) that are considered automorphic by [BJ79),
it is sufficient for our purposes.

We have a factorization IT ~ ®;Hv where II; is an irreducible admissible smooth
representation of GSp,(Q;) for [ < oo and Il is an admissible representation of
PGSp,(R). Similarly, the central character factors as € = ®,¢,. The automorphic
representations defined above are exactly the ones whose archimedean component Il

is either a holomorphic discrete series or to a limit of discrete series of PGSp,(R)

64



[ASO1} §4.5]. We now review how to parametrize these (limits of ) holomorphic discrete

series in terms of Harish-Chandra parameters.

3.4.8 Holomorphic discrete series of PGSp,(R).

To begin, observe that the Cartan sub-algebra t¢ of £ is also a Cartan sub-algebra of
gc, and the set of roots of t¢ in go is A = AU A, where A, = {e; —ez,e5— €1} as
before is the subset of compact roots with roots space in ¢c, and A, = {e1 +ea, —€1 -
eq,£2e1, +2e5} is the subset of non-compact roots with roots spaces in pc.

By the works of Harish-Chandra as described in [Pau05, §3.1], the (limits of)
discrete series of II € Sp,(R)) are parametrized pairs (Ag, V) where \; = aje; + ages €
tV,a; € Z, and ¥ is the corresponding set of positive roots subjected to a number of
conditions[*| Since we have fixed a choice of positive compact roots, we may refer to
Aq as the Harish-Chandra parameter of I1.

In particular, if we take W = {e; —eg, €1+€5, 2e1, 265}, then the holomorphic discrete
series correspond to Harish-Chandra parameters Ay = aje; + ases with a3 > as > 0
and we denote it by Il,, 4,. The irreducible representation 7 of the highest weight
k= (a1 +1,as+2) occurs in II,, ,, with multiplicity one, and is the lowest K -type of
4, 4,- Since Il,, 4, is irreducible, it factors through the center Zs, (R) ~ {1} exactly
when 7, does, and this happens exactly when a; +1 = ag +2 (mod 2). In this case,
Indigip(“f({lf)ﬂah@ is a discrete series of PGSp,(R) which we denote by II} , . These
discrete series (and limits of such) exhaust all the infinity types of the automorphic

representations from §3.4.7 as we can check using [HK92, Table 2.2.1].

3.4.9 L-parameters and L-factors.

Let II ~ &I, be an automorphic representation of GSp, as in §3.4.7. Given a prime
[, the local Langlands correspondence |GT| attaches to II; a L-parameter, i.e., a

GSp,4(C)-conjugacy class of admissible representations

¢, Wi x SLa(C) - GSp,(C)

*Namely that
o Al={e1-ex}c¥;
e )\, is dominant with respect to ¥; and

e for all simple roots o € ¥ we have that if (Mg, ) =0 then « € A, is non-compact.
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such that A\ o ¢p, is identified with ¢; through local class field theoryﬂ
Suppose now that IT contains a vector (v, F), for some F € o7 (GSp,; N, k) and
v € #j; then for all primes [ + N, II; ~ II(xo, x1, x2) is the spherical representation

attached to an unramified character

diag[ty, ta, 11 0, 3 0] = Xxo(to) - x1(t1) - x2(t2)

of the standard maximal torus 7" [ASO1, §2.2]. As such, II; is uniquely characterized
by its Satake parameters a;; = y;(Frob;), where we view x; as a character on W/,
via local class field theory. Given such a II, we define its level to be the smallest
integer N for which it satisfies the property just mentioned.

We can define two different L-factors in this case,

L(s, ¢r,,std) = det(1 - (std o ¢y, ) (Froby) - 7)™
= 1 (4.9.2)
S (=) (= and =) (L= ag ) (1= a7}l=) (1 - a3}~)

corresponding to the standard representation GSp,(C) =, SO5(C) and

L(s, ¢m,,spin) = det(1 — (spin o ¢ry, ) (Froby) - 17%)7!
1 (4.9.3)

T (1= agl~*) (1 = aggai =) (1 = agraz =) (1 - agai jas =)

spin

corresponding to the spin representation GSp,(C) — GSpin;(C) |AS01, 2.4].
Finally, with N equal to the level of IT as above, we define its partial standard

L-function (resp. partial spinor L-function) to be

L(N)(S, IT, o) = ll_][V L(S, ¢H17 .)
+

where e = std (resp. e =spin).

3.4.10 The Siegel upper-half space of degree 2.

Let SMy(C) be the set of symmetric matrices with complex entries and let

$2={Z € SMy(C) : Im(Z) > 0}

fSince GSp, is split over Q, we may safely ignore the factor W in “GSp,.
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be the Siegel upper-half space of degree 2 and 9, = {Z : Z € §,} the Siegel lower-half
space. Then GSp,(R) (resp. GSp,(R)* and Sp,(R)) acts transitively on $; U H,

(resp. $2) as a group of holomorphic automorphisms by

for g = |:a
c

i =diag[¢,t,t,t] € $H under the action by Sp,(R) is USP. and $), is diffeomorphic to

Z %5 g(Z) = (aZ +b)(cZ +d)™"

b
J € GSp,(R) (resp. GSp,(R)* and Sp,(R)). The stabilizer of the point

b
Sp,(R)/U. For g = | o] € GSPu(R)” and Z € 9. we define the GLy(C)-valued
C

automorphy factor J(g,Z) on GSp,(R)* x ), by
J(g,7) =cZ +d.

Note that J induces the isomorphism U = Uy(R) by u ~ J(u, i).
Remark 3.4.2. Denote by dp the differential of the diffeomorphism Sp4(R)/UoSOp - 9

sending ¢ to d(i). It defines an isomorphism
dp
p — Ti(92)

where p is the Lie algebra of P;(R) = P(R)nSp,(R) from §3.4.5 and T;($),) is the
tangent space of ), at the point i. Moreover, the induced isomorphism dpg:pc —
Ti(92) ®r C identifies the element of p& with the holomorphic differential operators
in T;(92) ®r C [ASO1, §4.2].

3.4.11 Classical Siegel modular forms of degree 2.

Let ki = k = ko and fix an integer N > 0 as before. Given any gf € GSp,(Ay), set

I (97) = GSpy(Q) N (GSpy(R)* x g, U™ P(N)g7").

We shall consider 'Y (gy) as a subgroup of GSp,(Q)* ¢ GSp,(R)* and set I'Y, =T'%,(1)
for convenience. For an scalar-valued automorphic form F € o7 (GSp,; N, (k, k)), we

define a function ?gf(Z) on 93 by

Fg;(Z) = N(goo) ™ - det(J (goo,1))* - F(googy) (4.11.4)
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where g, is any element in GSp,(R)* such that ge(i) = Z[] Under this identification,
the left regular action by g7, € GSp,(R)* on &Z°(GSpy; N, (k,k)),

(9% -F)(9) =F((9%)"9),

goes over to the action classical denoted by:

(sl 90)(Z) = N (95) ™" - det(J (95, 2))* - Fy, (gl {2))- (4.11.5)

Consequently, ., (Z) satisfies the usual invariance condition:

(Zo,li1)(2) = F4,(2) 1] (4.11.6)

for all v € % (gy)-

Remark 3.4.3. Suppose that g is contained in the Levi subgroup M (A ) of the Siegel
parabolic. Since M ~ GLy x G,,, we see that gy = v-us with v € GLy(Q) x Q* and
uy € GLy(Zy)xZ} by strong approximation and class number one for Q. Furthermore,
uy normalizes USSP(N) ;. From this we see that I'} (g7) = v~ 'T'%y is just a conjugate
of T in GSp,(Q)*.

If #,, is holomorphic as a function on §),, then we say it is a Siegel modular form
of degree 2, level I'}(gy), weight k, and character e. We denote the space of such
Siegel modular forms by M(I'% (g¢);€).

“Let us check this is well-defined. Suppose g/, (i) = Z, then g., = oo - UooZoo fOr sOMe Uoo € USP
and 2. € Zasp, (R). We have

N (ghe)* - det(J(9h,1))" - F(ghegy)
= N (goo) ™" N (teo) ™7+ 222F - det (T (goo, 1)) - det (I (Uoos 1))* - 22 - F(goo oo 20091 )

= N (go0) ™" det(J (9o, 1))" - det(J (oo, 1))" - det(J (oo, 1)) ™ - F (o)
=Z4,(Z).

"Indeed, we have

(Zg; 1k)(Z)
=N ()" det(J (v, 2))* - Fy, (12(2))
=N ()7 det(J(7, 2)F - N (77 goo) ™ det (J (17 goos 1)) " F (1 goo7)
= N (goo) " - det(J(goo,1))* - Fgoogyr) = Fy,(Z)

since F(75' 9o 9r) = F(v " 9ov795) = F(gooys)-

68



3.5 Fourier coefficients and Bessel models

We recall some facts concerning the Fourier coefficients and Bessel models of Siegel

modular forms.

3.5.1 Classical Fourier coeflicients.

Let 4 be the standard character on SMy(A) defined in §0.4.3] Let .7 be the set of all

rational symmetric positive semi-definite 2 x 2 matrices. That is, the set of matrices

a b
b ¢

with a,b,ce Q and a,c > 0 and det(7T") > 0. We shall refer to elements of .7 as indices,

as they index the Fourier coefficients of Siegel modular forms of degree 2. Indeed, we

T =

have a Fourier expansion

Ty (Z)= Y ag, (T (TZ) = Y ag,(T) -T2,

TeT TeT

Here the T'th Fourier coefficient a,,(1") at the cusp ico is given by [Sug85, (1-17)]

1
T =—.f F, (X +iY)p_ (-T(X +iY)) dX, 5.1.7
00 )= 5 o ny P Ko X. (57

where L(gy) is the Z-lattice in SM»(Q) defined by
1S Gs -1
SesML@): | 7 e N@) A g TSPV

and Ny, = N(Aj)n ngfSpgf. Here dX denotes the usual Euclidean measure on
SMs(R) = R? fixed in §0.5.1] also note that vol(N) = vol(SMa(Zy)) = 1 when gy = 1.
Remark 3.5.1. The isomorphism dp:p ~ T;($2) identifies L(gs)\SM2(R) with a neigh-
borhood U of infinity in I'(g7)\92 just as in the case of elliptic modular forms. More-
over, since the action by elements in p on functions on £, go through the exponential
map exp:p - P(R) c Sp,(R), the standard Euclidean measure dX on SMy(R) is
identified with the invariant volume form (2midz) A (2midy) A (2midz) on the image

U, again similar to the case of elliptic modular forms.

Let L(gs)Y = {S” € SMy(Q) : tr(SS”) € Z for all S € L(gy)} be the dual lattice to
L(gy) under the trace form; we have that a, (7)) = 0 if T ¢ L(gs)”. We note that

69



for g; = 1, the Fourier coefficients are indexed by the subset %, ¢ 7 of symmetric
matrices that are semi-integral, namely, the ones with the entries @ and ¢ in Z and b
in %Z.

We say a (classical) Siegel modular form .7,

T € 7 that are semi-definite but not definite. The relation (5.2.9) below combined
with the proof of [ASO1, Lemma 5] imply that these are exactly the ones coming from

is cuspidal if a,, (T') = 0 for all indices

the cuspidal automorphic forms.

Remark 3.5.2. We saw in Remark that for g = y-up e M(Ay) ~ M(Q)xM(Zy),
I'%(gy) =77 'TO(N)y. Consequently, the Tth Fourier coefficient of .7, = ﬁ’|k’y at the

cusp ioo is the same as the T'th Fourier coefficient of .%# at the cusp - ioo.

3.5.2 Fourier functionals.

Similarly, given F € & (GSp,; N, (k,k)) and an index T € .7, we define a function
a’ =al on GSp,(A) by

o 15 )
a (g)—[V(Q)\N(A)F([ 1]g)1,b( TS)dS (5.2.8)

where we are integrating over the orbit space associated with the unipotent radical of
the Siegel parabolic. To relate this back to (5.1.7]), note that a”(g) is right-invariant
under N,

g¢» and we have an isomorphism

N(Q)\N(A)/Ny; = L(g7)\SM2(R)

for the Z-lattice L(gs) ¢ SM3(Q) defined in the preceding section. A compariso
with (5.1.7) yields the identity [Sug85, (1-19)]

a"(ggoo) = N (goo)" - det(J (Goo; 1)) - a4, (T) - b oo (T - goo (i), (5.2.9)

*Indeed, we have

a’(g) = QW (A) F([l f] g)w(—TS) ds

= )\/(gw)k . det(J(goo, i))—k
o msnnacy o (S 9 (TS + gos0)) - (T 9i) 05

= N (goo)® - det(J (9o, 1)) ™ - 9h(T - goo(i)) - ag, (T).
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where a4, (T) is the Tth Fourier coefficient of ., corresponding to F. In particular,

we have
a’(gr) = ag,(T) - Yoo (T -1) = ay, (T) - 72D, (5.2.10)

3.5.3 Indices and quadratic forms.

An index T =

o Nlo

} € 7 naturally defines a quadratic form on L by

x
][ ]:ax2+bxy+cy2.
)

T
y2 'mT(g) = QT(-CEWl +YW3),

o Q

o N

QT (zwy +ywy) = [ZE y] . [

oo Q

Set mT(X) = aX?+bX +¢; since

we see that QT (and hence T') is positive-definite on L if and only if mT is irreducible,

4ac-b%*>0 and a,c > 0.

3.5.4 Rank-one tori in GSp,.

Suppose now that 1" € .7 is positive-definite. We have the orthogonal similitude group
GSO(T) = {w e GL(L) : Q" (w - ) = det(w) - Q7 (z) for all z € L}

which is naturally a subgroup of M c GSp, via the embedding

N
det(t)-tt1|

On the other hand, denote by K7 the splitting field of m7(X) = aX2+bX +cin Q.

It is imaginary quadratic. Denote by n(e) the norm on K7, and let §7 = =2rvb'-dac V;j“‘ac

be a fixed root of m”(X) in K. We have a linear isomorphism of Q-vector spaces
$T T T
L — K* given by w;+~1and wy 9",
which sends QT (o) to a-n(e), i.e., QT (xwy +yws) = ax? +bxy +cy?> =a-n(x+y- 7).

Since the left multiplication by ¢ € KT on KT preserves n(e) up to scaling by n(t),
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we see that ¢7 induces an injective homomorphism
K™ =Resg/qGm —~ GSO(T)

which is in fact an isomorphism of algebraic groups over Q by connectivity and
dimension considerations. We shall use K™% and GSO(T") synonymously if there is

no risk of confusion.

3.5.5 Definition of the Bessel model.

Recall that given a cusp form F in &Z°(GSp,; N, (k, k)), we have attached to F (and
T) a function a” on GSp,(A) in §3.5.2, which computes the T-th Fourier coefficient
of the classical Siegel modular forms .7,
Let y: Kg’x\Ki’X — C! be a Hecke character of K% such that y

T-th Bessel model of F with respect to y is the function

associated to F up to a period.

Ax =€, then the

B?X(g) B foKT,X\KT,X X (1) -aT(tg) d”t. (5.5.11)
Q \Ka

Here the invariant measure d*t is normalized so that it is compatible for the Tama-
gawa measures on K, (S’X\Kf"X and Q*\A*. In particular, we have that vol(R.o\K%) =
2.

3.5.6 Relation to Fourier coefficients.

For convenience, set K = K7. Let us compute the value of the Bessel model at the

ldentlty element:
T,x 1) = f v(t) - 1 t Xt
Bg(1) Axa\xx()a()d

A
From the definition of aT'(t), we see that the integrand is right-invariant under the
compact open subgroup Uy c UfSp(N) of K7 c GSpy(Ay) given by the kernel of
X

K- Let h = h, be the cardinality of the idele class group
Cl(x) = KKK 3 U}

determined by x, and fix a set of representatives ¢; = 1,---,¢, with ¢, = 1 for all 4.

We have a decomposition

ATRGVRR = (07 Roo ZO\L K 10 U)
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where 0% = K§ n (Ko - U}‘) is a subgroup of the finite group &%. Set e, = #07.
Combining the relation (5.2.9) with this decomposition, we get

vol(U7)

BE() = —
X

' Voo () ) - €727 S (1) - (T
(-/11>0\K§°X (t) ) € ;X( )-a,(T)
since ' (fo)* - det(J (teo, 1)) = 1 and vol(Z}) = 1. Now the archimedean integral

if Yoo # 1,
[ Yoo (too) d*to =
R.o\K% vOl(Rso\KX) =vol(S1) =271 if xoo = 1.

We arrive at the following expression of BL(1) as a linear combination of translated
Fourier coefficients [Sug85, (1-26)]:

2m - vol(U¥)
—_— . e

BL(1) = ~2mtn(1) i X(t) - an,(T). (5.6.12)

€x
3.6 Arithmetic theory of Siegel modular forms

It is impossible to do justice to the arithmetic theory of Siegel modular forms in just
a few pages, even in the special case that we are considering. We repeat (almost
word-for-word) the summary of this theory given in [BR89, §3] with additional input

from [Ich09, §2]. All schemes considered here are locally noetherian.

3.6.1 Some terminology concerning abelian schemes.

We begin by fixing some notations.

e An abelian scheme o/ over the base S is a group scheme m: .o/ — S which is
smooth and proper with connected (geometric) fibers [Mil86| §20]. Let e: S — &7
be the identity section.

® wys is the invertible sheaf A, (Q} /s) ~ Ner(Q /s) where g is the relative
dimension of &/ — S and Q}Z{ /S is the sheaf of relative differentials. We will take

g=2.

e A principle polarization of m:o/ — S is an isomorphism \:.&Z — '/, where t.o/

is the dual abelian scheme and which arises by the procedure of [Mil86, §10].
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3.6.2 Siegel moduli space of degree 2.

We repeat the discussion in [Ich09, §2] which summarizes some basic notions in the
algebraic theory of Siegel moduli spaces for the reader’s convenience. We have added
some additional references but all credits should go to Ichikawa. We focus on the case
g=2.

Let n be a positive integer, and let (y be a primitive Nth root of unity. Let
M5, be the moduli stack (which becomes the fine moduli space scheme when N > 3)
over Z[1/N,(y] principally polarized abelian schemes of relative dimension 2 with
sympletic level N structure |Cha86, §1]. Then .#5 y(C) is a complex orbifold of
dimension 3, and it is represented as the quotient space $,/I'y of the Siegel upper-
half space $, from by the integral symplectic group

Iy =ker(Sp,(Z) —~ Spy(Z/NZ))

which is sometimes referred to as the principal sympletic group of level N. Note that
the group I'}, ¢ GSp,(Q)* from contains I'y. We set Ay = Ms ;.

Let 7 be the universal abelian scheme with identity section e over .#5 y [Cha86,
Theorem 1.4]. The invertible sheaf w4, , from is sometimes referred to as
the Hodge line bundle; it corresponds to the automorphy factor J(e,e) over .#5 x(C).

3.6.3 A smooth compatification of .#5,.

We extract the discussion from [BR89, §3.3], which highlights some aspects of the
procedure involved in constructing (a single point on the) boundaries used for com-
patifying .#5 = #51 when N = 1.

Let SMq = SM2(Q) be the space of symmetric 2 x 2 matrices with entries in
Q. The trace map tr: X x Y ~ tr(XY') identifies SMq with its dual. Under this
identification, the dual of SMgz, the lattice of matrices in SMq with integral entries,
is the set of semi-integral symmetric matrices with off-diagonal entries in %Z and
diagonal entries integral, which we denote by SMy. It contains the cone Zi; of
semi-integral semi-definite symmetric matrices.

Let s1,...,53 be a basis of SMq with each s; positive definite. Let o be the cone
of all Q-linear combinations of the s;’s with each coefficient strictly positive.

Define

Y ={XeSMy:tr(XY)>0forall Y eo}
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and

Y ={X eSMy:tr(XY)>0 for all Y e o}.

Let R, be the ring generated by the symbols ¢X, X € X, with the relations ¢X¢¥ =
¢**Y for X,Y € X. Let I, € R, be the ideal generated by the ¢X’s for X € ¥*. Let S,
be the I,-adic completion of R,. Let K, be the quotient field of S,, then K, contains
the quotient field of R,, and in particular, ¢* € K, for all X € SMy. Let ¢;; = ¢X%

1

Let G2, = G,, x G, be the two-dimensional splQit torus over R,. For i,7 =1,2,
let p; € G2,(K,) be the point whose j-coordinate is ¢;;. Let P, ¢ G2 (K,) be the
free abelian group generated by the p;’s. Then the rather intricate construction of
Mumford [FC90, Chapter III, §4] provides a quotient of the formal completion G2,
by P,, which is a principally polarized semi-abelian scheme (2, - S,,\) such that
25 x K, is abelian [FC90, Chapter III, §5].

As describe in [FC90, Chapter IV, Theorem 5.7], we can glue the pointfl] (2, -

Sy, ) to A5, and repeating roughly the same procedure for a collection of good cones

1
where X11 = dlag[l,O], X22 = dlag[O, 1], and X12 = |: 2] = X21.

o’ produces the boundary strata for a (smooth) toroidal integral compactification ./,
of .#5. We then define ,//ZQ,N to be the normalization of .4, in Mo N as on [FCI0, pg.
128]. As such, the universal abelian scheme o7 extends to a universal semi-abelian
scheme 2 over ///_27 ~ with the identity section again denoted by e. Moreover, the
invertible sheaf @ = A%e*(0 2.4y 8ives an extension of the Hodge line bundle

w = wﬂ///fwv to %27]\7.

3.6.4 Geometric Siegel modular forms of degree 2.

Let R be a Z[+,(y]-algebra, we define the R-module MER"(R) of geometric Siegel

modular forms over R of degree 2, weight k, and (principal symplectic) level N to be

MV (R) = H (Mo, 0% ©gp1 o g R).

%7CN
By Koecher’s principle [FC90, Chapter V, Remark 1.2 (c)], we have that

HO('%_ZN,(D@IC ®Z[ CN] R) = HO(%Q,N7w®k ®Z[%7CN] R)

L
N

By Serre’s GAGA and Hartog’s theorem [FC90, Chapter V, §1], M7 y"(C) is

identical to the space of holomorphic Siegel modular forms of level I'yy and weight &

"More precisely, the point (Z5 xUqsy A\, Wean ) from f.
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of degree 2. Since I'y c I'Y;, we see that this space contains the space M (I'},e) of
classical Siegel modular forms of level I'},, weight k, and character €. In other words,

we have
My(TY,e) € MY (C).

3.6.5 Geometric Fourier expansion.

We begin by describing the case N = 1, following again [BR89, §3.4]. Recall in
we have described a principal polarized semi-abelian scheme (2, \) with respect to
the fixed cone o ¢ SMq. Let z; be the character of G2, obtained by projecting onto
the i-the factor. Then dw—‘? A % = Wean generates Wy, «u, jz, Where %, = Spec(I;'S,) is
obtained by localizing S, away from I,. The significance of %, is that it is the largest
open subscheme on which 2, is abelian. Using the moduli space interpretation of
My, the tuple (2, x Uy, \,wWean) defines a point on .4, which we refer to as the cusp
at infinity on M.

Given a geometric modular form .Zem e M°™(R), we can evaluate it at the
cusp at infinity on ///_27]\;; the value Z#&om( 2, x Uy, A\, Wean ) lies in I71S, ®7z R and is
called the g-expansion of F#&°™ along the cusp at infinity. This expansion in fact can
be computed using any top-dimensional rational cone in SMy(R) and supported at
the elements ¢ with T € Z,; positive semi-definite [FC90, Chapter V, Proposition
1.5]. In particular, if we choose o to be the cone defined with respect to the basis X,
X2 + X1 and Xy, then ¥+ = 7% is the lattice of positive-definition semi-integral
symmetric 2 x 2 matrices, and the g-expansion of .#8m lies in

];150 ®ZR:R[[qT:T€ +

int
where R = R[¢"] with T running over the semi-integral symmetric indefinite matrices

n <7i.nt_¢7.Jr

int"

For general N, we have the following g-expansion for M V™ (R):

Proposition 3.6.1. For any Z[%,CN]—algebm R and any O-dimensional cusp ¢ of

//ZZN, there is a q-expansion homomorphism
eom 1 T
g-exp(c; R): My (R) - Z[N’ Cn][g7 : T € T Qg1 ey B (6.5.13)

obtained from totally degenerate Mumford families with level-n structures over the

cusp c.

Proof. [FC90, Chapter V, Proposition 1.8 (i)]. O
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We see that the proposition implies that the Fourier expansion of a geometric
Siegel modular form . € MFV"(R) at any cusp c¢ are all defined over R. Next we

have the g-expansion principle.

Theorem 3.6.2 (g-expansion principle). If My ¢ My are two Z[+,(n]-modules, then
a geometric Siegel modular form of degree 2, level N, and weight k over My is in fact
in HO( My N, ®z[L cn] M,) if (and only if) its q-expansion (at one cusp c) lies
Z[%, Wla% : T e Tl @ ) Ma]]

Proof. [FC90, Chapter V, Proposition 1.8 (iii)]. Also see [Ich09, §2]. The “only if”

part is immediate from the definition of the g-expansion g—exp above. n

Apply this theorem to the case that M; = R is some Z[+, (y]-algebra in Q ¢ C

and Ry = C, we obtain the following result.

Corollary 3.6.3. If the classical Siegel modular form F of degree 2, level I',, weight
k, and character € has all its Fourier coefficients a(T) contained in R, then F ¢

Proof. By , we have M, (I'%,¢) c M,ff’]‘\),m(C). The corollary follows by the ¢-
expansion principle to .# since we have normalized our volume form in Remark
on $), so the classical Fourier expansion and the geometric g-expansion coincide [FC90),
pg. 141]. ]

*Here M, is the constant sheaf on Spec(Z[+,(n]) associated with M;.
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Chapter 4. The Yoshida Lift

4.1 Review of the Weil representation

We review some basic facts concerning the Weil representation.

4.1.1 The Metaplectic group and the Weil representation.

Let W be a vector space of dimension 2n over Q, and let (e, ®)w be a non-degenerate
alternating form on W. Let ¢ be the standard additive character on Q\A defined in
. For every place v of Q, the theory of Weil (a.k.a. oscillator) representations
[How79] provides us with a unitary representation wy, , of the local metaplectic grou
Mp(W,) of W.

With respect to a complete polarization] W =Y + X of W, we have a Schodinger
model which realizes wy, ,, in the space . (X, ) of Bruhat-Schwartz functions (i.e. the
locally-constant compactly-supported functions) on X, for v = p finite and in the
space of square-integrable functions L?(X,,) of X, for v = oo.

Splicing these representations together in the usual fashion, one obtains a repre-
sentation wy, of the global metaplectic group Mp(Wa) on the restricted algebraic
direct product space 7 (Xa) = [Tjceo (X;) x L?(X,). The universal property of
this product allows us to extend elements in .#(X ), which are initially defined on
open subsets of X4, to functions on all of X5 [Rob01, §5].

4.1.2 Explicit formulas for the Schrodinger model.

For computational purposes, let us describe the Schrédinger model of the local Weil
representation explicitly. Fix a complete polarization of W =Y + X as above. Let
P be the parabolic subgroup of Sp(W) that stabilizes the flag 0 ¢ Y ¢ W. Let

*For a prime [, we take Mp(W;) to be an extension of Sp(W;) by C!; for v = oo, we take
Mp(W,) to be a two-sheeted cover of Sp(W,). This convention is needed in order for Mp(Wa )
to split over a symplectic-orthogonal dual pair such as Sp,(A) x O(D)a.

"That is, X and Y are maximal isotropic subspaces of W such that Y ~ X" under the alternating
form on W.
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M ~ GL(Y) be the Levi subgroup of P that stabilizes the dual subspace X. We have
the Levi decomposition P = M N where the unipotent radical N of P can be identified
with the additive group of self-dual linear maps from X to Y, Hom(X,Y)*. In terms
of matrices, we can represent p =a-b for a € GL(Y) and b € Hom(X,Y)* by

Ll

For each place v, we have a unique splitting of N(Q,) to Mp(W,). For m e M(Q,),
denote by m a lift (i.e. an element in the pre-image) of m to Mp(W,); then given
vy € .S (X,), we have [Li00, §3.1]

(wy,o la g1 0)(@) = 7(@) - [det(a)[? - g, (*az), and
- (1.2.1)

(ww,v(ll Il’ )%)@:)=wv((b§’x)>-@v(m>,

where (@) is a fourth root of unity depending on the particular polarization.

4.1.3 Action of a Weyl element.

It remains to specify the action of a Weyl element. For this, we fix a dualizing basis
x;,y; of W for i =1,...,n so that (y;,x;)w = d;;. Define a symmetric bilinear form
on X by

(Z a;X;, Z ijj)X = Z a@bl
i J i

We have the Fourier transform taking ¢, € .#(X,) to the function

2= [ el y)dy

in . (X,) where dy is the self-dual measure on X, ~ Q7.
Define an element 7 in Sp(W) by 7(x;) = y; and 7(y;) = —x;. Then for ¢, €
S (X,), we have

wyo (T)pu(x) = (Pu() (1.3.2)
where ( is a certain fourth root of unity, again depending on the polarization. Since 7

and P generate Sp(W) by the Bruhat decomposition, this completes the description
of the Schrodinger model.
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Remark 4.1.1. The Weil representation enjoys the special property of being mini-
mal [Li00], and there are only finitely many such minimal representations for the

metaplectic group.

4.2 The reductive dual pair (Sp,,O(D))

Let us now consider the case of interest where W = W ® D is the Q-vector space
equipped with the alternating form (e, e)w = (e, )y ® (e, )p. It has X = LV® D ~
Homgq(L, D) as a maximal totally isotropic subspace and a complete polarization
given by W ~ X @ XV. The subgroups Sp, and O(D) of Sp(W) form a reductive

dual pair in the sense that one is the centralizer of the other.

4.2.1 Linear maps attached to indices.

The norm form on D induces a bilinear map
XxX=L'®DxD®L' > L'® L ~Homg(L, L")

which can be explicitly described as follows. Recall that L = Qw; + Qwy (resp.
LY = Qw; + Qws) comes equipped with the preferred choice of an ordered basis, {w;}

(resp. {w;}). Given z € X, set x; = x(w;), then n(z) is equal to the matrix

2T, =

2n(xy) tr(xlxg)]

tr(z1Z2)  2n(ws)

with respect to the ordered basis of L and LY. This also gives a concrete description
of the restriction of (e, )w to X, namely, (z,y)w = tr(27,;) for z,y e X.

Note that if x; and x5 are integral in the sense that their minimal polynomials are
integral monic polynomials, then 7, is a positive semi-definite semi-integral symmetric
matrix, i.e., an index in ;. Converse, given an index T € Z;, we define X’ to be
the set of elements z € X such that T, = T. Note that X7 may be empty.

Remark 4.2.1. The scaling by 2 on the entries in 2- 7T, is due to the fact that (x,z)p =
tr(zz) = 2n(x).

4.2.2 The Schrodinger model.

Fix once and for all a splitting [Kud94, Theorem 3.1 (case 1.)]
Sp4(A) X O(D)A > Mp(WA)
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The Weil representation w,, restricts to a representation on Sp,(A) x O(D)a which
we shall simply denote by w. Consider the parabolic subgroup P € Sp(W) stabilizing
L ® D, then the intersection P nSp, x O(D) is the product P x O(D), where P is the
Siegel parabolic stabilizing L.

We now describe the Schrodinger model in this situation. Fix a place v of Q,
given (g,h) € Sp,(Q,) x O(D),, and a Bruhat-Schwartz function ¢, € .#(X,) (or a

smooth function ., € L?(X4)), we have

(L)) = o (B 2), heO(D),: (2.2.30)
(w”(lg tao—l 1 o) (2) = |det(a)? - v, (z - a), a € GL(L,); (2.2.3b)
12 S:
@@([O 12,1}¢0($)=¢%092J'¢A$% S € SM»(Q.); (2:2.3¢)
0 12: .
(““([-12 ;| 1) -co (22.34)

Recall that 1 = ¢ o tr. We also note that h € O(D) acts on X by post-composition

sending x to

L% D% D
and a € GL(L,) acts by pre-composition sending x to

a T

L—L->D.

To simplify notation, we write w(g) for w(g,1) for g € Sp,(Q,) from now on.

Remark 4.2.2. We tacitly made several simplifications in the above formulas. For
instance, since the discriminant of the quadratic form 2n(e) is a square in Q, a

character that usually appears in (2.2.3b|) always evaluates to 1, hence is left out.
Also, by , we have (S -z, 2)w =tr(S(2-7,)) and so ¢U(M) =,(ST,).

4.2.3 The theta correspondence for (GSp,, GO(D)).

As we plan to compute the Bessel model of the Yoshida lift as an automorphic form
on GSp,, we now discuss the theta correspondence for the pair (GSp,, GO(D)). This
involves considering the subgroup of GSp, x GO(D) defined by

G(Spy x O(D)) ={(g,h) € GSp, x GO(D) : N'(g) = A(h)}.
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For every place v, we can extend the local Schrédinger model of w, to G(Sp,xO(D)),
as follows. Given (g,h) € G(Spy x O(D)), and ¢, a Bruhat-Schwartz function on X,

(or a smooth function in L?(X)), we set

(wo(g, h) o) (@) = M) (wolg1) ) (R ), (2.3.4)

where

oo |
91=9[0 )\’(g)] € Sp,(Qu).

4.2.4 Howe duality.

For [ a prime, and for G; = GO(D), or Sp,(Q;), denote by Irr(G;) the set of
equivalence classes of irreducible admissible smooth representations of G;. We then
define R(G)) to be the set of m; € Irr(G;) which occur in w; in the sense that
Homg;, (w;, m) # 0. Following [Rob01}, pg. 263], we define R(GSp,(Q;)) to be the set
of m € Irr(GSp,(Q;)) such that sy, (q,) is multiplicity-free and has an irreducible
constituent in R(Sp,(Q;))[]

For v = o0, and for G, = GO(D). or Spy(R), denote by Irr(Go) the set of equiva-
lence classes of irreducible (g, K )—modulesﬂ underlying the admissible representations
of Go. We then define R(Go) to be the set of equivalence classes of (g, K')-modules
Too Of G Which occur in we in the sense that Hom(g x)(Wee; Teo) # 0 Where we
now denotes the underlying (g, K')-module. As before, we define R(GSp,(R)*) to
be the set of 7, € Irr(GSp,(R)*) such that 7e|sp,(r) is multiplicity-free and has an
irreducible constituent in R(Sp,(R)). Finally, we set R(GSp,(R)) to be the set of
Too € Irr(GSp,(R)) such that some irreducible constituent of me|Gsp, (r)+ is contained
in R(GSp,(R)*).

The (partial) Howe duality in this special case refers to the following theorem:

Theorem 4.2.1 (Howe, Moeglin—Vignéras—Waldspurger, Waldspurger, B. Roberts).
If v+2, then

{(7°P,m%) e R(GSp4(Qu)) x R(GO(D),) : Home(sp,x0(n)), (wo, Ty P ® m,C) # 0}

*We cannot directly define R(GSp,(Q;)) because GSp,(Q;) x GO(D); does not lie in G(Sp, x
O(D))-

THere g = Lie(Go) and K is the maximal compact subgroup of G, defined in and §3.4.3]
respectively.
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is the graph of a bijection between R(GSp,(Q,)) and R(GO(D),), and
dimc Homg(sp4xo(D))v (wv, WSSp ® WSO) <1.

If v=2, then the same statements hold with R(GSp,(Qs)) replaced by the subset
of tempered representations R(GSp,(Q2) )temp-

Proof. This is exactly [Rob01, Theorem 1.8] in the case that the discriminant of the

quadratic space is a square (so d =1 in the notations there), and m =4 = 2n. O

Given 7, € R(GO(D),), we denote by 0(m,) the unique element in R(GSp,(Q,))
(or R(GSp,4(Q2))temp When v = 2) such that dime Hom(w,, 0(7,) ® 7,) = 1.

Remark 4.2.3. We have a complete description of the local theta lifts 9(%{1 2) ,) in

terms of the representations 7, and my, of D in [GT) Tables 2 and 3].

4.2.5 Theta kernels and theta lifts.

Identify GO(D) with H* and view w as a representation of G(Sp, x H*)s. Given
a smooth vector ¢ € .7 (X ), we define the theta kernel, ©,, to be the function on
(9,h) € G(Spy x H*)A given by

Ou(9,h) = . (w(g,h)p)(x).

xEXQ

By [How79, Theorem 4.1], we have that ©, is left-invariant under G(Sp, x H*)q
and thus belongs to the space L?2(G(Sp, x H*)Q\G(Spy x H*)a). The theta lift of
fe LZ(FI(S\E[;) with respect to ¢ is then the function in L?(GSp,(Q)\GSp,(A))
given by

0N = [ ©(g.hhy)- f(hhy)d"h,

Q\HA
for any h, € H}, with A(hy) = N'(g). A priori, such an h, only exists for elements g in
the subgroup
GSpy(A)* ={g € GSpy(A) : X'(g) e (GO(D)a) = AT Rio}
= GSp,(Ay) x GSpy(R)™;
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1
however, since the element . e GSp4(Q) has similitude -1, we see that 6,(f)
-1s
extends uniquely [Rob01}, pg. 289] to include go, € GSp,(R) with (g« ) < 0 so that

0,(1)(g0) = 0,(f) ([1 12]900) .

Given an automorphic representation (7w*, V) on H+*, we define its theta lift to
be the representation ©(7*) of GSp,(A) generated by 6,(f) for all f eV} and ¢ €
' (Xa). It follows from the definition that ©(7*) occurs in the space of automorphic

forms on GSp, and hence is an automorphic representation*]

4.2.6 Vector-valued theta lifts.

For computational purposes, it is more convenient to fix models for the weights (or K-
types) of m* and w, and integrate vector-valued automorphic forms. More precisely,
let (¢*,V,") be an irreducible representation of HZ, on which the center acts trivially.
Suppose that 7%, ~ o*, then given a vector-valued automorphic form f* e (V* ®‘7g+)ﬁ3°
and a vector-valued Bruhat-Schwartz function ¢* =3, ¢; ® v} € (S (Xa) ® V;)H;,

we define

Op (F7)(9) = (w (g, hy) - Opr, 7" (hg) - £7) i+

(2.6.5)
= O, (g, hh,) - (hh,))" dh
fHa\H;&< ® (9» g) ( g))

where Og+ (g, h) = Yoexq Li(w(g,h) - pi)(x) ® v similar to before, and (e, e)* is a
H-invariant pairing on V, %V,

By §3.3.6, we see that O+ (f*) is equal to

O, (£)(9) = (w (g, hg) - Op, w(hy) - f) i

(2.6.6)
= o (O ) £ )

where now ¢ = Y, ¢; ® v; and v; is the projection of v; into an irreducible sub-
representation of He, in V" and f is similarly defined. From this we see that it

suffices to work with integrals over Hq\Ha, and we shall do so from now on.

*Here we use the notions of an automorphic form and an automorphic representation are those
from [BJ79.
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4.3 Representation-theoretic aspects of the Yoshida lift

We summarize some results concerning the automorphic representation ©(77,) of

GSp, generated by the Yoshida lift of the automorphic representation 7}, on GO(D)
from §3.3.3]

4.3.1 A characterization of O(77,).

Now consider the automorphic representation 7y, on H* obtained from the pair of
automorphic forms 7; on D>, ¢ = 1,2 as in §3.3.2] and §3.3.3] Recall that 7, has

central character € and 7o has central character e! (and €. = 1), and that ¢ is also

the central character of 7] ,. The following theorem then characterizes O (w7 ,):

Theorem 4.3.1 ([Rob01, Theorem 8.3]). ©(7{,) is non-zero and is an irreducible
unitary cuspidal automorphic representatz’mﬂ of GSp,(A) with central character e,
and

O(7ri,) = ®;9(7v72r1,2),v) = ®;9(7T2/17,+2),v)

where 9(7?672)’0) is the representation of GSp,(Q,) corresponding to 7r(*1’2)’v under the

Howe duality. For all v, 9(#2“172)71)) is tempered.

Proof. Since 7{, is cooked up so (3) holds in [Rob01, Theorem 8.3], the theorem
follows. O

4.3.2 Matching levels.

Let & be an Eichler order of level dNp" in D. At each prime [, consider the Bruhat—

Schwartz function given by

o1 =1y,
where 2; = £ ® 9, and £V = Zw, ® ZWw as before. Let

UlGSp(m) = GSp,(Z) n [ M;(Z) Mg(Zz)]

lnlMg(Zl) Mg(zl)

be a compact open subgroup of GSp,(Q;) that we considered in §3.4.3] Here we take
ny = ord;(dNp"). We would like to check that ¢, is fixed by UlGSp(nl) under the Weil

representation w;. First observe that given an element ¢ € UZGSp(nl) with similitude

"When the Yoshida lift from §4.5.1|is non-zero, the notion of a cuspidal automorphic representa-
tion is that from in the exceptional case that the Yoshida lift is identically zero, the notion
of a cuspidal automorphic representation is that from [BJ79).
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o € Zx, the element h, = (a,1) € U? has the same similitude and fixes ¢; under w.
Consequently, we have w(g, hy)- ¢ = w(g-diag[1,a]™t,1)-¢;. Since g-diag[1, ]! has
similitude 1, it suffices to show that (; is fixed by USP(n;) = GSp,(Q;) n UGSP(ny).
This is [Yos84, Lemma 2.1], whose proof we reproduce here for convenience.

First note that USP(n;) is generated by its elements of the form

u+(5):[1 f] d(a):[a ta_ll u(S):[; 1].

(wi(u(9)) - ) (x) = P, (ST) - () = pu()

since 1,(ST,) =1 for x € Z;. In the same vein, we have

We have

(wi(d(a)) - 1) () = pu(x - a) = pi()

since x - a is in 2 iff x is. Finally, we have

<wl<u-(s>>-¢l><x>=<wl([1 ‘1H1 f“l 1])-@)@)

The Fourier transform

2u(e) = [ o) u(Tug) dy

is the characteristic function vol(2;) - 14 for the dual lattice
2 ={reX=L"®D:(v,y)w =tr(Tyy) € Z, for all y e X}.

From this we see that ¢; is fixed under w; by the symmetric matrices S € I"»SMy(Z;).

Consequently, for such matrices S € ['""SMy(Z;), we have

B [ T O

and therefore ¢ is fixed by u=(.5).

4.3.3 Matching weights.

Let g be the Lie algebra of Mp(W),, and let K be a maximal compact subgroup
of Mp(W)., containing HZ x USP. The (g, K)-module underlying the archimedean
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Weil representation wy o has a realization on Poly(X) = Poly(X)¢, the space of
polynomials on X with complex coefficients, known as the Fock model [How89, §2].
By our choice of K, we may restrict Poly(X) as a representation of HY x Usp.
Following [HK92, §4], for U = HZ% or USP, and an irreducible representation g of U,
we let deg(o) denote the the smallest integer d such that ¢ occurs in Poly(X)?, the
space of polynomials of degree d. Also denote by Poly(X), the p-isotypic subspace
of Poly(X), then the space of U-harmonics is

HarmV (X) = @ Poly(X), n Poly (X)ds(@,
[

Since H} and USP commute with each other in K, the space of simultaneous
harmonics
+ S + S
Harm'=*V~' (X) = Harm'’*(X) n Harm"~ (X)

is again a representation of HZ x USP. The archimedean Howe duality [How89, Theo-
rem 2.1] in this context implies that given g an irreducible representation of HZ, the
o-isotypic component Harm"<<U< (X), is either zero or is isomorphic to ¢ ® ¢ for
some irreducible representation ¢ of Usp. Futhermore, this correspondence g — ¢ is a
bijection between the representations of H} and USP that occur in Poly(X).

We now describe this bijection explicitly in terms of the highest weights of the

representations under consideration.

Proposition 4.3.2. The irreducible representation o of HY, occurs in Poly(X)¢c if
and only if it has the highest weight (ki + ko, k1 — ko;+) with ki > ky > 0 as defined
mn . In this case, o corresponds to the irreducible representation s of USP of
the highest weight (ki + kg + 2, k1 — ko + 2). Furthermore, we have deg(o) = 2k, and
deg(c) = 2k;.

Proof. This is [Pau05|, Proposition 4] in the case p=4 and ¢ =0. ]

4.3.4 Matching Harish-Chandra parameters.

We follow [Pau05| to describe now the Harish-Chandra parameters correspond for
the dual pair (HZ,Sps(R)) focusing on the case of (limits of) holomorphic discrete

series.

Proposition 4.3.3. Let \; = a1e1 + ases be the Harish-Chandra parameter associated
to a representation I1 of Sp,(R) as described in §3.4.8 Suppose a1 > as > 0. Let 6(II)
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be the representation of HE ~ O4(R) corresponding to 11 under Howe duality. The
possibilities for O(I1) are as follows:

ai > ay > 0: In this case 11 is a holomorphic discrete series and 0(11) is of the highest

weight (a1 — 1, a9;+).

ai > ay =0: In this case 11 is a limit of holomorphic discrete series and 0(I1) is of the
highest weight (a; —1,0;+).

Proof. We have a complete description of how the Harish-Chandra parameters for
the limits of discrete series for Sp,(R) and O4(R) correspond under the archimdean
Howe duality in [Pau05, Theorem 15]. Note that we have fixed our root systems in
for s04 and in for sp, to align with that in [Pau05|, §2.1].

Since O4(R) is compact, its irreducible representations are uniquely determined
by their highest weights with respect to the simple roots fixed in §3.3.5] Suppose A\ =
aje; + ases = (aq,as) is a Harish-Chandra parameter for O4(R), then it corresponds

to the irreducible representation of O4(R) of the highest weight

1
/\d—§'((61+62)+(61—62))=/\d—61

by [Pau05, §3.2].

Using the notations from [Pau05, Theorem 15], in the case a; > as > 0 is a holo-
morphic discrete series we have w =0 = z, k = 2, and p; = 2. This lands us in (1), and
the Harish-Chandra parameter for 6(I1) is (a1, az). On the other hand, if a; > as =0
is a limit of discrete series, then w =0, z=1, k=1, and p; = 1. This lands us in (4),
and the Harish-Chandra parameter for 0(IT) is (aq,0).

Also there is a matter of sign since we are considering representations of O4(R)

and not just SO4(R); in the cases that we are considering, this sign is always +. [

Since the archimedean Howe duality [How89, Theorem 1] defines a bijection be-
tween the admissible representations of Sp,(R) and O(D). that occur in we, we

have the following corollary:
Corollary 4.3.4. We have that Occ(Vop, opy 00) = Wk tkot1, 1k -

Proof. Indeed, since 75} ,, ., is a representation of O(D)e = O4(R) of the highest
weight (ki + ko, k1 — ko;+), we have ay = k1 + ko + 1 and ay = k; — ko in the statement

of the proposition. O
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4.3.5 Matching L-parameters and L-functions.

We can embed GSpin, into GSp, as the subgroup

{(9,9") e GL(Qw; ® QW;) x GL(Qw> ® QW>) : det(g) = det(g') } [

Consequently, the L-parameter gbﬂ(m)’l associated with 7 9); induces an L-parameter
¢: W, x SLy(C) - GSp,(C),

which is associated with the representation 0(%{1’2)’1) of GSp,(Q;) [GT), §6]. (In other
words, the local theta correspondence realizes the local Langlands functoriality in this
case.)

Let ¢; = ¢(m;) be the level of the automorphic representation 7; on D*. For [ + ¢;ea,
the spherical representations 7 = 7T1HZ ~ 70 (py, p)) and o = W‘QH; ~ (g, puh) are taken
to the spherical representation 9(77?1,2),1) ~ T, egpyprt, egpapyt) = T, bl papl)
of GSp,(Q;) defined in by the local theta correspondence |GT, Theorem 9.5

(vi)].ﬂ It follows that the Satake parameters of 9(%2172)71) are

agy = By, a1 = ﬂé,lﬂi,l, a2 = 52,15{,1-

Since (1,0] , = ei(Frob) = 55155}, we see that the partial standard L-function is

L(8162)(57 @(WI,2)7Std)
— H 1
teieo (L= 12)(1= 85,81 - 179) (1= B2 By, - 172) (1= By Byt - 172) (1= B Byt - 17%)

1
_ (cie2) .
ls) z+112 (1= 85,80, 75) (L= BoaBy - 17*) (1 = BBy, - 175)(1 = By, 81+ 17%)

_ C(c162)(8) . L(C162)(3’7‘r1 TI'Q,Std),

(3.5.7)

*In terms of matrices, the embedding of GSpin, ~ {(g,¢") € GLy x GLg : det(g) = det(¢’)} into

GSp, is given by
a bl |la UV . a’ v
c d|'ld d c d )

"We have to twist the second factor by & because of our choice of the isomorphism H ~ GSO(D).
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and the partial spinor L-function is

L1)(s5,0(m1 ), spin)
_ H 1
Vieses (1= Bal™*) (1= BraBy, 81, - 1) (L= BraBoaB ;- 172) (1 = Braf3y, 81 12081 ;- 17%)
1 1
= aomma-am Goama -
= L(Cch)(S, 71'1) . L(0162)(S, ﬁ'g)

(3.5.8)

which agree with [BSP91, Cor 6.1] when € = 1.

4.4 Good theta kernels

We describe the Bruhat—Schwartz functions and the resulting theta kernels used to
define the Yoshida lift.

4.4.1 Recipe for a Bruhat—Schwartz function.
The Bruhat—Schwartz function depends on

e a finite set of primes S containing those dividing Np, but not those dividing d;
e an S-basis (4,7) for D as in §1.1.3;
e an Eichler order 2 = 2%75(dNp") of level dNp” as in §1.3.4; and

e an integer k > 0.

Given these data, the Bruhat—Schwartz function ¢ = gog’,ﬁ’@ = ®Ugog’,§’v@ is a factorizable

vector in
s, x Hoo
(7 (Xa)® %k,]O,K])Uf H

3,3

where Uy = Uf@ acts by wy ® 1, and H, acts by the representation w. ® T 0wh00°

The precise recipe is as follows:
For v =1 a prime: We take

. 1
6,,9
= = ———— 1
() =" () VOl(Ul@) 2,(2)

where 2; = £ ® Z, and 1; is the characteristic function on 2. Note that
that ¢y = @, is invariant under U7
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For v = co: Given z € X, = LY, ® D, we set z; = z(w;) and denote by

)(©) T1T9 — LT

513'(0) — ($1f2 5

the trace-zero part of z12,. With the notation fixed, let us define a vector-valued

polynomial Py, = f’g,ﬁ on X,, with values in 7/2?0 x, by

iy ) = i BD2 ok (2) ) et
P = Pu(e (o)) = X (1 i Pz ) o1,
where P’“(x) Pk(ewt (1)) for z € D, and PF € A, is the harmonic polynomial
defined in §1.2.5] We then set

6 @ > 67
Poo() = P30 (1) = E(x) - Pyii()
where F(z) = e72mtr(Tz) = ¢=2n(n(z1)+n(z2) ig the standard Gaussian.

The corresponding theta kernel is then

0507 (9:h) = B s0a (9. h) = 3 (w(g,h) - 5] ") ().

.’ZEXQ

Proposition 4.4.1. P}/ lies in the subspace of Harm"=*U= (X), 5 ® Yok,0,00

2k 0,wt,o0
]
Jized by Hoo under weo X 047 o 4 -

Proof. We suppress the superscript (9, 7) and the subscript (2k,0) in order to keep
the discussion transparent. First note that the degree of Py is 2k = deg(o9y) since
21T has coordinates of degree 2 (with respect to any choice of X, ~ R?); hence
Py, € Harm®’~*U~ (X)oyi.00 ® Yoo by Proposition 4.3.2L Now given h = (o, 3) € He,

we have that

o0 (1) - (Woo () - Poy) ()

Z( 1) L PF((a121790) D) ® 000 () - t

(k:+z)'(k: i’
_ (k1) K 0)
- YD) G () P (@12 0) @ 1 0)
=P2k($)
by §T.2.6, O
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Again Proposition [4.3.2] we see that Woo (USY) - f’g,ﬂ spans over C an irreducible
representation of Us? of the highest weight (k+2,k+2).

Remark 4.4.1. The Bruhat-Schwartz functions we considered above belong to the
space of Bruhat—Schwartz functions from [Yos80, pg. 202] and [Yos84) (2.11)-(2.14)].

4.4.2 S-basis attached to linear maps.

Given z € X = Xq = Homq(L, D), set
51 = I9T1

with z; = x(w;) as before. Note that d, is not in Q ¢ D if and only if x is non-
degenerate, i.e., x(L) = Qx; + Qzy is two-dimensional in D. Suppose that = is
non-degenerate and lies in 2" = 2V ® Z, then 9§, lies in &, and we can complete it to
an S-basis (d,,7) for D for any suitable choice of finite set of primes S as in §1.1.3|

In this case, we shall refer to (d,,7) as an S-basis attached to x.

4.4.3 A key simplification.

Let = € 2  be non-degenerate, and let (J,,7) be an S-basis attached to z. The

following proposition is central to our calculation of Fourier coefficients.

Proposition 4.4.2.
T-(n(x n(r 0
Poitu(a) = e (n(51))7 -t

Proof. First we note that

oy _ |
0
Wtoo ZL'( ))_Ewtoo g ) S:EO)

in My(C). By (2.5.2) from § we see that

Py (z) = Z( )%ij((%@z)(o))@ti

(0
= (-n(5”))* -t

as claimed. n
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We emphasize that this key simplification occurs only when we align x and (4, 7)

in this manner, and this is one of the main reason for introducing these S-bases.

4.4.4 Compatibility with conjugation.

Let (d,7) be an S-basis and (7,k) be an S’-basis for D and let ¥ and 2’ be the

corresponding Eichler orders. Let us compare the Bruhat—Schwartz functions ¢ and

7]7

A7
Pok :

and ¢,
Let a = () € D} be an element defined as in §2.3.3] It enjoys the properties

W’t o © Ad((){oo) = EWt oo and Qo+ @l . al_l — 9[/
for all [. It follows that

P (aw--az) =PY(2)  and @™ (ar-a-af’) = 7 (a)

where a, -z - ay! = hy, -« is the post-composition action by hq, = (o, ) € Hy,. As a

result, we see w(hyl) - " 7 cpg,g 7 and therefore
w(hl)- 617 = ek’ (4.4.9)

4.5 An arithmetic Yoshida lift

We are ready to define an arithmetic Yoshida lift.

4.5.1 Definition of the Yoshida lift.

Let 71 (resp. r3) be a cuspidal automorphic form of
e weight 2k (resp. weight 0),
e level dNp” (resp. level dNp"), and
e central character € (resp. central character e71) such that €., = 1.

We further assume that 7 and 75 have reciprocal eigenvalue under all Atkin—Lehner
operators w; from , i.e., aj(m)a(mwy) = 1 for all I | dNp. Let {f* = £/} be a
compatible set of automorphic forms attached to m; for ¢ = 1,2. They give rise to
the compatible set of automorphic forms {ff, = ff ® 3} on H attached to 7,5 as in
§3.3.2
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Definition 4.5.1. The Yoshida lift of {ff} and {f;}, denoted by Y ({f},{f5}), is a
scalar-valued function on GSp,(A) given by the theta lift

YUELA))(0) = s (000 )- O mall) - B
1
:vol(Hoo)

(5.1.10)
/ \ < Qk(g7 9)7 1,2( g)>2k,0

where h, is any element in Hy with A(hy) = X (g).

For simplicity, we sometimes denote the Yoshida lift by Y (7, 7), keeping in
mind that this actually depends on a compatible set of automorphic forms {f?} for

each 1.

4.5.2 Independence of basis.

Let us check Y = Y({f;}, {f5}) is well-defined, that is, it is independent of the actual
automorphic form f} , which we are lifting. To begin, let (9, 7) be an S-basis and (7, %)
be an S’-basis for two possibly different set of finite primes S and S’. Fix Eichler
orders 2 = 2%35(dNp) and 2’ = 975 (dNp') and denote by £f7 and " the
compatible automorphic forms attached to 7 with respect to these choices following
the recipe from for i=1,2. Let o= () € D3 be an element defined in §2.3.3]

and set h, = (o, ) € Ha, we have:

(w(g.hy) - 037 w12(hg) - £15 )1
:L o (@7“9(g,h(h h 1p- 1)h ) fiy;(h(h h 17,- 1)h ))zkodh
=qu\HA<(w(h Y0557 (g, hhy), (m12(hgt) - £15) (hhy))oro dh

) /1; \H <®g}?@(g’hhg)vff:%(hhg»zk,odh
Q\Ha

= (w(g.hy) - 0377 m12(hy) - £

since 15 (hy!) - £]5 = £13 by §3.3.2 and w(h;!) 0357 = 057 by §4.4.4]

4.5.3 The arithmetic Yoshida lift as a theta function.

Let 2 be the classical Siegel modular form to Y using the procedure from §3.4.11}
namely,

Y (Z) = det(J(geo, 1)) Y (g0)
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where go, € GSpy(R)* is any element such that g (i) = Z. Note that Y has weight
(k+2,k+2) as we saw in Let us check that ¢ is in fact just a linear combination
of theta functions along the lines indicated in [Yos80, (2.20)].

First note that it suffices to take g, € Sp,(R) since Sp,(R) acts transitively on
2. By definition, we have

w(Z)

det(J (g, D)2 [ (O3(gens ). () dh

1
vol(Ho) HQ\Ha

- it U ) [ (P (@0 )50 () W)

HQ\HA zeXq

VOl(lfloo) R [H ( 2 (wlgeo) - @3) (), £15()) 2k dP.

Q\Ha zeXq

We claim the integrand is invariant under the action by U? = U fQ x Ho,. Indeed, since
m;’s have reciprocal eigenvalues under the Atkin-Lehner operators, we see that f}, is
right-invariant under U ij . On the other hand, for h; € U7, we have that h~' - x lies
in the support 2 of @3, ; = ®ucoipyy,; if and only if x € 2, from which we see that

P53y ¢ is also right-invariant under U ]? . Furthermore, we have that

(Woo (Proo) - SDEkoo)(x) = U;k,O,Wt(h;ol) ‘@Ek,oo(x)

by construction Likewise, f}o(hthe) = 05, i (haa) - f5(hys). Since the pairing
(o, @)1 0 is He-invariant, the claim follows.
Now HqHo\Ha ; 1s compact since D is definite, and so we have a double-coset

decomposition
Ha=UHq hi-U/Hy
i=1

for a fixed set of representatives hi,...,h, in Hy.
To continue, we note that by the Iwasawa decomposition of Sp,(R) = P;(R)- U,
it suffices to consider an element g., in the Siegel parabolic P;(R), which has the

]

*Indeed, we saw in the proof of Proposition that
(Woo (heo) - P31) (&) = 034 0.0 (hed ) - PRy (@)

The Gaussian e~ 2™ ((@1)+n(22)) = o=2mt:(T2) " op the other hand, is fixed by wes (oo ) since tr(Tho1.y) =
tr(Ty).

form
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with a=1b € SMy(R) symmetric. We have J(go,1) = det(*a™!) = det(a)~! and that

Woo(Goe) * Pon () = det (@) - Yo (t1(a71b 1)) - 03, o (- )
- det(a)? - 2 I o2 @Tita) ot (a)* - By ()

= det(a)k+? - e2mtr(Ta(Paarta™h)) P (1)

since o, (a) = exp(2mia) by §0.4.3 and a direct computation shows that T}, = a-T,a
and (z-a)©® = det(a) - (9. Moreover, we see that taa -1+ a 'b = ala -1+ bta = goo (i)
as in [Yos80, (2.19)].

Substitute this in to the integral, we see that ¢ in fact a linear combination of

theta functions:

Y(Z) = (Soék,f(hi_lx) P (Te?) 15%(37)’ fl.,Q(hi»Qk,O

5 (5.3.11)
S B8 (PL(). £ (0))ano - D)

¢ weh7l- 250X

01~
-

<
Il
—

reX

r

-2

i=1

mlH

where we set h; = (o, 5;) and e; = #(Hg N hiUf@hi‘l).

Remark 4.5.1. Because of the twist by h; however and the presence of the (vector-
valued) harmonic polynomial 15,;, we cannot say much concerning this expression in
terms of integrality. On the other hand, we can deduce the rationality of the Yoshida
lift quite easily from this expression.

4.5.4 Properties of the arithmetic Yoshida lift.

We summarize the main properties of the Yoshida lift in the following generalization
of [Yos80, Theorem 2.7]:

Theorem 4.5.1 (Yoshida). The arithmetic Yoshida lift Y =Y ({£;},{f5}) is a scalar-
valued holomorphic automorphic form on GSp,(A) of level dNp", weight k + 2, and

central character €. In other words, we have
Y (yzgusue.) = €(z) - det(J (ue, 1)) ™72 Y (9),

for all v € GSpy(Q), 2z € Zasp,(A),g € GSpy(A), and usu. € USSP(dNp"). The

associated function on $o,

Y (Z) = det(J (9o, 1)) Y (90)
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for geo € Spy(R) such that goo(i) = Z is a holomorphic Siegel modular form of degree
2, character €, level dNp”, and weight k + 2.

Proof. By and our choice of the Bruhat-Schwartz function at the finite places,
we see that Y has level dNp". The weight of Y is k£ + 2 follows from Proposition
[4.3.2] and Proposition [4.4.1] We see that the central character of Y is e by apply
(2,1) € Zz(Ay) to the Yoshida lift and noting that ©%, is fixed by (z,1).

The holomorphy of Y follows from the fact the irreducible automorphic repre-
sentation ©(77,) generated by Y has infinity type Iy, %, which is a holomorphic
discrete series when k > 1 (and a limit of such when k& = 0), together with the fact
that Y is a vector of the lowest K-type 7(j42,+2). This is Corollary together
V&Zith 31 and Theorem , noting that 7?2’172)700 ~ 71'2172)700 as representations of
H7 . Alternatively, we can expand % into a linear combination of theta functions
(5.3.11]), which is holomorphic by inspection.

Finally, the cuspidality of Y follows from Theorem [£.3.1] O

Remark 4.5.2. We also described the partial standard and partial spinor L-functions
associated with Y in §4.3.5. Note that since c(;) = dNp" for ¢ = 1,2, the Euler

factors for these L-functions are defined at all primes not dividing dNp".

4.5.5 Rationality and integrality.

As the name implies, the arithmetic Yoshida lift Y = Y ({f;},{f5}) should carry
some arithmetic content. To justify this, let % = @ ({f7}, {f5}) be the classical Siegel
modular form associated with Y as in §3.4.11] It has a Fourier expansion (along the
cusp at infinity) given by

Y = Z CL(T) . 627rL~tr(TZ),
TeT

and by §3.6.5] the arithmetic properties of % are reflected through the Fourier coef-
ficients a(T).

First we have the following proposition concerning the rationality of %

Proposition 4.5.2. If the compatible families {£*} attached to ™ are algebraic (Def-
inition [2.3.9) for i =1,2, then the Tth Fourier coefficient a(T) of & =% ({f;},{fs})
lies in some number field F' = FT which depends on T and {£’}.

Moreover, all the Fourier coefficients a(T') of % are contained in the compositum
K({f1},{f2}) = K({f1}) - K({fa}) where K({£f;}) is the field of definition of {f;} as in
77
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Proof. This is Proposition and Corollary in the case t7 = 1. It follows from
the formula (2.5.8)) for a(T). O

In the same vein, we have the following result concerning the p-integrality of %/ .

Theorem 4.5.3. If the compatible families {f’} attached to 7 are p-integral (Defini-
tion for i =1,2, then the arithmetic Yoshida lift Y ({£7},{fs}) is p-integral in
the sense that % = % ({£;},{f5}) has all its Fourier coefficients a(T") contained in

1

(Kmk!

ﬁcp) c (Qn%ﬁcp)

with K = K({f1},{f2}) as in the previous theorem.
Moreover, if p > k, then the Tth Fourier coefficient a(T) of % lies in the local

ring Op,pp) for the same number field F' = FT from the previous theorem.

Proof. This is Theorem in the case ty = 1 together with the preceding proposition
since the p-integral compatible sets {f*} are by definition algebraic. O

The following corollary is crucial for attaching Galois representations to Y, which

we plan to take on in a subsequent work. Set Z(p) =Qn Oc,.

Corollary 4.5.4. Suppose p > k and that the cuspidal automorphic representations
m; have level AN relatively prime to p (so r =0), then & = % ({f7},{f5}) defines a
global section in HO( Mo x,0®* ®z[L (n] Zyy)-

¥
Proof. Since p > k, all the Fourier coefficients a(T") of % belong to Zy), the corollary
then follows from Corollary O

4.5.6 Non-vanishing.

The question of the non-vanishing of the Yoshida lift has been studied in [Yos80],
[BSPI1], and [BSP97]. We strengthen some of these results by considering the case

of Yoshida lifts of arbitrary level. This is our second main theorem:

Theorem 4.5.5. Suppose that the central characters ; of the cuspidal automorphic
representations 7; are trivial. Then the arithmetic Yoshida lift Y ({£;},{f5}) is not

identically zero.

Proof. We have shown in Theorem that an infinite number of Fourier coefficients
at, (%) are not zero, consequently ¢ is identically not zero; therefore, Y (7, 7s) is

also not identically zero. O
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Remark 4.5.3. We should mention that [BSP97] has obtained non-vanishing results
in the case of lifts to higher-rank symplectic groups and the case of general weights.
It is also worth pointing out that our methods of proof are fundamentally different.

4.5.7 Non-vanishing modulo p.

Assuming Artin’s conjecture on primitive roots, then we have the following theorem

concerning the non-triviality of %" modulo p:
Theorem 4.5.6. Suppose that
o p>k;

e the cuspidal automorphic representations 7;’s have level dN relatively prime to
p (sor=0);

e the central characters e, are trivial;
e and that Congecture [6.2.0 holds.

Under these assumptions, if the p-integral compatible families of automorphic
forms {£$} attached to m; are non-Fisenstein at p in the sense of Definition m
fori=1,2, then the arithmetic Yoshida lift Y ({£;},{fs}) is non-zero modulo p in the
sense that the image of % =% ({f;},{f5}) under the reduction map

HO( Moy, 0% ®z[ L cn] Zpy) > H (Mo, N, 0% ®z[L ¢y (Zpy/p))

18 not zero.

Proof. By Corollary [4.5.4] % defines a global section in HO(.# y,w®* Dz[L cn] Zy)).
By Proposition [3.6.1 the Fourier expansions of % along other cusps 7 -i for 7 €
GSp4(Q)* also have their coefficients belonging to Z). The Remarks [3.4.3/and [3.5.2]
explained that the Fourier coefficient a,,(T") for any t; € M(Aj) with M c GSp, the

Levi subgroup of the Siegel parabolic, are in fact Fourier coefficients of %" along some

cusp 7i. Consequently, we see that a;, (T), for all possible indices T, lie in Z(p) as
well.

Now we have shown in Theorem that one of the Fourier coefficients a;,(7T5,)
is not contained in p - Z(p). Apply Theorem W (or just Proposition with
M, =p-Z) and M, = Z(,,), we see that the section ¢ is not contained in

HO (Mo, 0%* Bz(L cn1 P Z(p))

L
N
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(here p-Zy) denotes the COHStaElt sheaf on Spec(Zﬁ[%,Qﬂ) associated with pZy).
Consequently its image in HO(.A n,0®* ®z[L cn] (Z(p)/p)) is not zero. O
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Chapter 5. Fourier Coefficients

5.1 An integral representation

Let Y = Y({fr},{f5}) be the arithmetic Yoshida lift of the compatible sets of auto-
morphic forms {f’} as in Definition , and denote by % the associated classical
Siegel modular form. We rework the integral representation for the Fourier functional
of % in [Yos84] to fit into our framework. Since # is a cusp form, we only need to

consider the indices T € .7,y which are semi-integral and positive definite.

5.1.1 Unfolding the theta kernel.

Fix an index T € %, and assume that 7' is positive-definite. Let KT be the imaginary
quadratic field attached to T, and identify K7* ~ GSO(T) as a subgroup of M c GSp,
via the embedding describe in §3.5.4, Let us compute that value of aT at

t
t= € KZ’X.
n(t) -ttt

We have:

aT(t):fNQ\NAY([l f]t)v,b(—TS)dS

~ 1

_ o . . )
_‘[VQ\NA w(=T5) vol(Ho) HQ\HA<®<P(St’h)7fl,2(hht)>2k,0d hdS

where h; is an element in Ha of similitude A'(¢) = n(¢) and e is an arbitrary choice

of S-basis for D. For simplicity, we set (e, o) = (o, o) 0.
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By expanding ©7, and applying the Weil action for similitude groups, we find that

CEEXQ

OL(St,hhy) = Y. $(T.S)- w'(htlhlxt)

where h € Hy and t € GL(L)a act on z € X by post and pre-composition, and T is
the symmetric matrix associated to z in §4.2.1f Substituting this into the integral,

we get

|
al(t) = —— “(h'hlat) €2, (hh f 7.5 -TS)dSd'h
0= ) Jon 2 PO Ea ) [ (ST
|

> (" (hy bt £, (hhy)) d'h,

vol(Ho) JHQ\Ha »XT,

since

f W(T,S - TS)dS
NQ\Na

is nonzero if and only if ¥ ((T, — T)S) = 1, which only happens when T, = T. This

gives the following result.
Proposition 5.1.1. a;,(T) = 0 if X, is empty.

Proof. 1f X{, is empty, then a”(¢) = 0. The proposition follows by §3.5.2/(5.2.10). [

5.1.2 X7 as a homogeneous space.

To continue, observe that H ~ SO(D) acts on Xg c Homgq(L, D) by post-composition.

We have the following proposition.

Proposition 5.1.2. If Xg 18 not empty, then it is a homogeneous space under the

SO(D).

“Indeed, set O, = OF,, we have

O, (St.hh) = Y (w(St.hh)e)(x)

reXq
_9 t 1

(o) A(‘”(s'[ Y | L s Pt
_ t

IO 3 9 (I oyes] ) o2

= § P(TS) - p(hy ' h™tat).
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Proof. This is a consequence of Witt’s decomposition theorem [O’MO00, Theorem
(42:17)]. Indeed, fix a representative x € Xg,, and let y be an elements in X, so
that T, = T,,. The linear isomorphism defined by sending z; — y; takes z(L) to
y(L) while preserving the norm form. Witt’s decomposition theorem then provides
us with an isometry from z(L)* to y(L)*, which we can choose to have the correct
determinant so together with the isometry from z(L) - y(L), it defines an element

in SO(D). Note this does not require = to be non-degenerate. O

We assume without loss of generality that Xg is non-empty in the following com-

putations.

5.1.3 Orbit integral.

Fix a representative x € 2" n X%, and denote by St, the stabilizer of x as a closed

algebraic subgroup in H. We have that
Xg o StLQ\HQ.

By substitution, we get

1

T
)= —— .
a’ (1) vol(Ho) JHQ\Ha

>, A (hithT iy ) £ o (vhie)) d'h

~veStz.Q\Hq
1
= (] h—lh—l t f. hh dlh
vol(H..) fStI,Q\HA“P(t wt), £, (hhy))

5.1.4 S-bases attached to indices.

We have associated a polynomial mT(X) = aX? +bX + ¢ with T € Z,; in §3.5.3] Let

T be positive-definite as above. We define a related polynomial m” by
m’(X) = X% +bX +ac.

Since m”(X) = £ -m”(aX), m" and m” define the same quadratic form and share
the same splitting field K.

Let 2 € X, be the fixed representative above. As in §4.4.2, we can complete
0z = a1 € D to an S-basis (J,,7) for D. Note that J, satisfies the polynomial m”,

and so we see that K% = Q(4,) ~ KT as imaginary quadratic fields. More importantly,
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we now have the following description of St,:
St, = {(f,x7'x)) € H:te K%} = T% [ (1.4.1)
where 7% = A(Q*\K%>*) ~ Q*\KT* is the torus in H defined in §3.1.3|

5.1.5 Equivariant linear maps.

We have now two (right) actions by ¢ € K7* on y € Xq = Homgq(L,D). One is

T
through the identification L Y, KT from §3.5.4] together with the pre-composition
Y-t

L5 L% D

the other is through the map t ~ (f,1) € H together with the post-composition

L% pY p

Let us compare these two actions in the special case that y is the fixed represen-

tative x € Xg Set t =t +ty- 07, with 67 € KT a fixed root of m? as in 3. then

t=t;+ty-% =t +1y- 22~ as an element in K% c D. we have:
a n(a:l)

(z-)(wi) =2((¢") (1)) (z-1)(wa) =2((¢")'(t-6"))

c b
= x(tlwl + tng) = %(—at2W1 + (tl - atg)Wg)
) c )
= tll'l + t2 ac T = __t2 . z To + (tl - —tQ)ZL'Q
n(xy) a " n(xy) a
= t T = t T2
where the final equality follows from the fact g = —% - 5‘% Consequently, we find that
(t,1)-x=x-t. (1.5.2)
*Indeed, given (f,z7'fx1) € St,, we have £ -z - 27 12y = 7, and
. oy 1
t-xg-x]t xp=t-0p-t X ——
n(z1)
1
-5,
()
=XT9.
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5.1.6 Factoring out toral action.

We return to our computation of aZ(t) for t € K. The element (f,1) € Ha has
similitude n(t), so we can set h; = (£,1). By (1.5.2), the integral expression for a” ()

becomes:
1 o/l 17— .
30 = sy o O I ) BN

Now conjugation by h; defines an automorphism on Hp that preserves the sub-

group St o. Furthermore, the modulus of the conjugation automorphism by h; =

(£,1) is 1 by §3.2.4 Tt follows that

1

T
t)y=—— .
a’(t) Vol(Ho) JStrq\Ha

(@ ((hy'hhe)™ - 2) 875 (he(hy " hhe))) d'h

1
= . . hfl . f. h h dlh
vol(Ho) ‘/S\txﬂq\HA“o( z), 1,2( +h))

We are now in a position to break up the integral by the action of w = (w, a7 wz1) €

Stz a. More precisely, we have
1
()= ————- *((wh)™-x),£1,(hedh)) d*h did
2= T oo s Jan o 27 2), B (i) b

1
- . .h_l‘ f. hAh dAdlh,
vol(Ho) ];tm,A\HA /;tI,Q\Stz,A(ip ( ), 1,2( 1wh)) dw

5.1.7 Archimedean pairing.

We can simplify a”(¢) one step further before having to pin down ¢* and f}, exactly
by a choice of S-basis. Observe that since (e, ) is a Ho-invariant pairing as in §3.3.5]

we have
(@ (" 2). £ (heiih)) = (05 5(hid) - 0 (k7' ). 5% 5 (heo) ™ £y (k)
= (p" (k" @), £7 2 (hebhy)).
This gives

1

al(t) = vol(Sty.e0)

. . h*l. fe. (h,wh dAdlh ) 1.7.3
/;tw,f\Hf fStx,CAStl.ﬁA((P( I ), 1:2( W f)) w f ( )
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5.2 Specializing to good choices

We fix a good choice of S-basis (d,,7) for D with respect to the fixed choice of
z € 2 nX{. We then evaluate a’(t) by specializing (1.7.3) to a specific Bruhat-

Schwartz function ¢%+7 and a particular member fﬁg’f of the compatible set {f},}.

5.2.1 The choice of a set S.

The choice of S now has bearing on our discussion. Recall that this choice only affects
the local conditions on the particular Eichler order Z(dNp") that we choose. Let x
be the fixed representative in 2~ ng as above, we have associated with it an element
0, in K% c D. Denote by 0% = 0% the order Z[,] in K%. The conductor of & is
exactly n(ég(co)) =det(7T). In view of this, we set

S ={2,p} u{primes [ that divide 4det(7)} - {l | d}.

5.2.2 The choice of an S-basis.

Let (d,,7) be an S-basis associated with z as in , and set ¢® = ‘szd’@ and
fr = ff”""’oj, i=1,2. Here 9 = 2%23(r) is an Eichler order of level dNp" associated

with (0,,7) in §1.3.41 Let us evaluate (1.7.3)) using ¢* and f".

Under these choices,
" (h7' ) = @5(h7! ) - 5 (2)

and

<pf° (Q?) _ 6727r-(n(21)+n($2)) . (_n((sg(co)))g . tlg
= e~ 2mtr(T) | (—det(T))g -tg

by Prop. [4.4.2] The integral ((1.7.3) now becomes

-
vol(Stz,o0)

: z(hL. f tk £ (hydhy)) did dh;.
fStz,f\Hf (’of( f ) Stz,q\Stz,A( 0 1,2( tW f)) w !

k
2

al(t) = L e2m () (~ det(T))

(2.2.4)

5.2.3 Integrality-preserving isometries.

We turn our attention to gofc.
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By definition, we have that

—L __ ifhtxe 2}, and
(71— vol(UZ 1 f fo
gof(hf1 -x) = vy
0 otherwise.

It follows that the integrand is supported on the subset St, \E, ; of St, f\H, where

Ez,fz {hfer:h}l-xe %}}
={h;=(a,B) a2, € Dy,i=1,2}.

The normalizer U f@ c Hy of 9y acts on I, y. To utilize this observation, we need to
assume that 7r; and 7r5 have reciprocal eigenvalues under the Atkin—Lehner operators
w; from for primes [ | dNp"; in other words, that a;(71)a;(72) = 1. Under this
assumption, ff, is right-invariant under U 7 and the integrand in is constant
on the orbits

St \Stas -l - U7~ (h'Sty phy n U7 \UY

of this action. We arrive at the following expression

=2mtr(T) . (— t(T))g 1
T ¢ ( © k gx ~ ~

t)= Y= th £2, (hehy)) d 2.3.5
a’ (t) Vol(Sty.) 20, Stz’Q\S%A< 0, £ (habhy)) dib ( )

where vy, = Vol(hfS% shynU ij ) and Ay runs through a set of double-coset represen-

tatives for
By =Sta\Es s /U7

which is in fact finite [Yos84, Prop. 1.5].

5.2.4 Averaging over an ideal class group.

For a fixed hy, the integrand
(t5, £ 2 (hedhy))

as a function of w € St, A is right-invariant under

Ut = (h'Sty thy 0 U7) x Sty 0]

"The right-invariance under Stz 00 follows from the observation that t’g is of weight 0 in Y5,
hence is fixed by the action of We..
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Under the isomorphism St, ~ Q*\ K%, we see that
Sta.\Stea Ui = Kg ™ \K™[(0) - K& = C(OT)
for some order €, in K. The integral (2.3.5) simplifies as a double sum:

e=2mtr(T) | (_ det(T))g 1 vy, 'VOI(Stx oo) .
vol(Stz.o0) hZf: o en wec%:ﬁg)< 0 1,2( 1Why))

1
_ g 2mtn(T) | (—det(T))g S = > (th £y (hebhy))
hy €h weCl(or)

al(t) =

(2.4.6)
where W = (w, x7'wx,) € St ¢ as before, and
HUR" 7 K
€Ep = #ZX
is half the number of units in &F. Since K% is purely imaginary, we see that
2 if 07 ~Z[V/-1];
en=13 if OF = Z[3];
1 otherwise.
5.2.5 A formula for a,(7).
By definition of {5, we have
£7, (hevhy) = £75((£, 1) (@, 27 021 ) (e, 5))
= 7 (tia) - £5 (w7 ix, B).
Plug this into the inner sum in ([2.4.6)), we get
1 .
a’(t) = e 2m (D). (—det(T))g Y = > (k£ (fway)) - £5 (z7 iz By). (2.5.7)

hpeB, ; € weCl(or)

Let us relate a”(t) to the Fourier coefficient atTf of the (shifted) Siegel modular
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form %}, using the relation (5.2.9), which in this case simplifies to

al (trtoo) = det(J(too, 1)) N (teo)" - ar, (T) - Yoo (T (i)
() - n(ta) - g, (T) - 28T

— atf(T) . e—27r~tr(T)'
Thus we arrive at the following formula for a;, (7'):

1 - 1.
ar, (T) = (~det(T))z- Y — 3 (th f(fwan)) £ (a7 wai B).  (2.5.8)
hypeB, ; ©h weCl(or)

From this formula, we see that rationality of a;,(T) follows immediately from the

algebraicity of f’s.

Proposition 5.2.1. Suppose that the £F’s are algebraic in the sense of Definition
with field of definition K (£7), then the Tth Fourier coefficient a;,(T) of %, is
defined over the compositum K (fF) - K(f5).

Proof. Indeed, first note that K (f*) contains \/—det(7") for both i = 1,2. In fact, by
§5.1.4] together with the definition of K (f#) from §2.3.4] we see that K () contains

K,=KT(\/n(y)), where KT = K(y/-det(T)) is the splitting field of m! from .

It remains to check that
(66, £ (fwan)) - £5 (27" 021 51)
lies in K(ff) - K(f5), and this is the case by the definition of algebraic automorphic

forms. O

Corollary 5.2.2. Suppose that the compatible sets of automorphic forms {£} are al-

gebraic, then the Fourier coefficients a;, (1) of %, are all contained in the compositum

K({fi}) = K({f:}) - K({f2}).

5.3 Integrality of Fourier coefficients

Assume for the rest of this section that the compatible sets of automorphic forms

{f7} are p-integral. We establish the p-integrality of the Fourier coefficients a; (7).

5.3.1 A criterion for p-integrality.

Among the terms appearing in the formula (2.5.8) for a, (T'), £5(z'wz13,) is p-

integral by definition, and % is either 1,1

.3, or &, hence is a unit in Z, for p > 5;
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therefore, if

(~det(T))% - (th, £ (o)) (3.1.9)

if p-integral, then so is a;,(T').
By the definition of a p-integral compatible set of automorphic forms on D in
§2.3.6 we have

ff(iwah) € 6§k,wt,p(ipwpap) '%(C,f) - M

- sz _ 00 x = (102 ;
where oa, = 0p, Oy, = Ogpi, and CF = G, Plug the above formula into the

pairing in (3.1.9)), we find

(t5, £ (twan) )i = (b6, 5o, (Eptipy,) - 6,(C5) - V)
= (Up(Cg)_l 'vazt,p(ipwpap)_l 'tlgy")

= {0 (Cy) ™o)™ 6, v)

since tf is fixed by ({,1,)! € K2 Altogether, we see that if

kE
2

(—det(T))2 - 0,(CE) oy ()" - £ (3.1.10)
lies in Oc,[ X Jaegear, then a; (T) lies in %ﬁcp. To continue, we need to understand
the matrix

(~det(T))% - (C2) ety ()™t = (~det(T))7 - €%, ()t (C2)

wt,p

b, b, :
7, and €2, ) = eqary). Let us begin by

in GLy(C,) (where for simplicity we set €5, = ey z

studying the double-coset space E, ;.

5.3.2 An auxiliary double-coset space.

Instead of studying EL ¢ directly, let us consider the related classes of double-cosets
E; ¢ where 7 € Xg is defined by

T(wy) =1 and T(wg) = 2271.

Unlike E, ;, Es s has the property that every element h € E; ¢ can be represented
by («,«) for some « € K?””’X\D; /25 Indeed, Ejz s is by definition the set of elements
h = (o, 3) € Hy such that

a’lfzﬂ € .@f
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for ¢ = 1,2. In particular, we see that a 13 € &, is an element of norm 1. It follows
that

(a,8) = (@, - a7' ) = (o, @) - (L,a7' B);

since (1,a713) € Uf@, we conclude that («,3) = (a, @) as elements in Fz ;.

5.3.3 Representatives for Fj ;.

Using the factorization E@ s Ei,l into local components, let us consider each Ejjl
individually.

As a first reduction, we have the following general proposition which applies to
Ex,l and not just Ei,l-

Proposition 5.3.1 (Yoshida). For a prime | # 2, if | does not divide 4det(T,) =
4ac - %, then E, ;= {1}.

Proof. We elaborate on the proof given for [Yos84, Prop. 1.3]. Denote by £* c
the image of %) under z. Since [ + det(7},), £ is a unimodular sub-lattice in 2,

and we have an orthogonal decomposition
D=L L4
Given h € E,;, we have another orthogonal decomposition
Wl = L L L

where .i”lz’l’h ={zeh: (x,y) =0 for all y e £} is the orthogonal complement of
L in h19,.

By [0’M00, Theorem (92:3)], we have an isometry taking .2"*" to .Z"*. Together
with the identity map on .Z*, we obtain an element w € St,; such that h~!-w is an

isometry preserving ¥, hence defines an element in U ij : m

Next we consider the case that D is ramified at [. In this case Ul@ = H, since 9,
is the unique maximal order in D;; therefore Ea:,l ={1} as well.

It remains to consider the prime 2 and the primes [ such that [ | 4det(7T") and
[ 4 d, in other words, the primes in S possibly excluding the special prime p. Let us
identify D) with GLy(Q;) using the arithmetic embedding 227 defined in 51 and
depending on whether [ is split in K7 or not. By §5.3.2] it suffices to consider

the elements (o, «) with a running over a set of representatives for Kf “\D; |9}
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and satisfying the condition o'z € 2. For convenience, set r; = ord;(Np"),

v =ord;(4det(T},)) = ord;(ac - b?), and ¢ the conductor of Z[4,] as in §1.3.6]

5.3.4 The case that [ splits in K7.

By §1.3.6 the union of

{A(n,S) = [1 lln] [sll 1] :n<0,0<s< l”‘l}
{B(n,t)=[1 l:”_tl 1]:n$0,0$t<l”}

is a set of double-coset representatives for K,“\GLy(Q;)/L(r)* = K'*™\D;|Z;. Now

0, = T2T7 1s identified with the matrix

[6 ] [_b+ . ]
R ? N/
—b— =

0 s

under the arithmetic embedding 27 Here A, = b2 — 4ac.

and

After some matrix multiplications, we get:

Oy + s A, "/ A,

0.
A, o) 1% A, s) = ) .
(m,5) [ (5] (n,5) —sl/A (1 +sl"Y) 6, — sI"/A,

xT

For the product to be in [;(r;), we must have
e n+42>0and

o ord;(slv/AL(1+sl"1)) >

Similarly

1 590 _ 5:(:
po) l &]B(”’“‘[u—z”)m 3

This translates to the conditions

° n+§20and

o ordy(t=1") + 5>y
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Set Rz, to be the inverse image under eg}”’] of the set
{(A(n,9),A(n,)) :02 0> =2} 0 {(B(n, ), B(n, 1)) : 020> =)
then every element in E; ; can be represented by some (o, ) € Rz

5.3.5 The case that [ does not split in K7.

Again by §1.3.6 the union of

{C’(n,s)=[ln 1][811 1]:n2—1/,0£8<l”‘1}
{D(n,t)zlln 1”_1 1]:n2—1/,03t<l”}

is a set of double-coset representatives for K, \GLa(Q;)/I(r)* = Kl‘;‘”’x\Df/.@f. Now

0, = T2T7 1s identified with the matrix

HENEA

under the arithmetic embedding €2:7. In particular, we must have that ord;(A,) > 1.

and

After some matrix multiplications, we get:

1

4

C(n,s)™! |:Az

sl [
Cln.s)= [m% _ 52z —SZM] |
For the product to be in [;(r;), we must have
e n <0 and
o ord;(I"§ — s212) > 1.

Similarly

4

1
D(n,t)! [ ]D(n,t) = [
S t2nfz _|n ¢jnba

This translates to the conditions

e n<0 and
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o ord,(t2" 8= — ™).
Set Rz, to be the inverse image under egiﬁ 7 of the set
{(C(n,s),C(n,s)):02n>-v}u{(D(n,t),D(n,t)):02n>-v};
then every element in Ej ; can be represented by some (o, ) € Rz

5.3.6 Recovering F, ;.

We can recover the original double-coset space FE, 7 as in proof of [Yos84, Theorem
4.3]. Denote by .@}l:n(zl) the set of elements in Z; of norm equal n(z;). For each
Y€ @;’zn(“), set

E;fif ={(a,B) € Bz y:a'mT1 € Zpy}  and Eg,f ={(o,B) € Epy:a 18 € D4y}

(Here g is the image of y under the main involution on D.) Since an element (a, 3)
of E; ¢ (resp. of E, ¢) belongs to Eg_flmlﬁ (resp. to Ef_flmlﬁ), we have that

Erp= U B!, and E.;= U E/,

y€@;=n(w1) ye@}’:"(xl)

The map c,: EY ; Eg,f given by (a,3) » (a,27'37) is a bijection with inverse
By o~ EY ; given by (a, 8) (o, Z7' By). Although the map ¢, is not compatible

with the right action by U J? in general, we still have the following lemma.

Lemma 5.3.2. Every element of E, ; can be represented by
cy(au, au) = (au, 7' auy)

for some (,a) € Rz 4, y € Qﬁzn(wl), and u € I5.

Proof. Given h € E, ;, choose an y € .@}l:n(ml) so that h e ng. Since ¢, is a bijection,

h=c,(B3,7) for some (3,7) € EY ;. Now we have

(677) = (w7w)(a? a)(ubu?)

for some (w,w) € Stz ¢ and (u,ug) € UJ?. Apply the map ¢, to the right-hand side,
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we get

¢y (i, 10) (o, @) (ur,u2)) = (wauy, r7 bousy)

= (w, 27 zy) (g, 77 ausy) (up g, 1).
The lemma follows by observing that (w,z7*wz) € St, ; and (uguj', 1) € Uf@. O

5.3.7 Integrality when p splits.

We check that the vector (3.1.10|) from indeed lies in @c,[X ]qegeor- Since p
splits in K7,

C: =

1
Vvn(7)
1
fixes t&; thus we have

(—det(T))g ~ap(CIf) o p(ap)” Lotk = (- det(T))2 ;ﬁnp(%)—l 'Op(CZ”f)‘l -tk
= (=det(T))2 - o2, (a) 7 - £,

b
where we set o2 @)

frp = Ogkar,p 00 Teduce the amount of notations. By Lemma [5.3.2) we

can represent o, by either

(€5p) " (A(n,5)) - u or (€,)" (B(n,t)) u

for some v e 7 and 0 > n > —%. In either case we see that o, ,(c,)~! =

(M)~

arp

1 [
or (w(n))™t where u;(n) = [ 1] and M € GLy(Z,). We have

(—det(T))% - 02, (o) 1t = (~det(T))2 - o2, (M) - 0%, (ui(n)) 't
= Garp (M) (=det(T))2 - (1" X + 1)
= Carp (M) 7L g2 - (<172 10X 4 1712

for some unit p € ﬁép. Since n + v/2 > 0, we see that the image vector indeed lies in
Oc,[ X Jaeg<2r-
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5.3.8 Integrality when p does not split.

Again, we check that the vector (3.1.10)) from §5.3.1|indeed lies in Oc, [ X Jqeg<or- Since
p does not split in KT, we have

VAs 1
C:v — 2
p —QAI _\/_—1]
and
1 1 k k — K
op(CE) -t =0, VA VA |tk = | - ! X +1 X + L
1 V-] \VA, 2] \V-A, 2
k k
X 1 VA
= (-1)* +- ] | X - ==
VA, 2 2
From this we find that

(—det(T))? - 0,(C2) - 0%, ()" -t
= (~det(T))% - 0%, ,(ap) " - 0, (CL) " -t

k k
- (D) o) (0 S 5 ) (- Y5

2
o (50 ().

—+
2 4 2
since det(7T") = 2=,

By Lemma [5.3.2] we can represent «, by either
(Egr,p)_l(c(nas)) "u o or (Ggr,p)_l(D(nut)) U

for some u € .@; and 0 >n > —v. In either case we see that

Taep(0p) ™ = 05 (M) - 0, (di(n)) ™
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n

[
where d;(n) = [ 1] and some M € GLy(Z,). We have

o) (5 Y] (- Y]

1 A,

(-2) om0yt (2 Be)
() sty (02

which lies in O¢, [ X Jaeg<or since n <0 and n+v >0.

5.3.9 The theorem.

We synthesize the above discussion into the following theorem.

Theorem 5.3.3. Suppose as before that the compatible sets of automorphic forms {£?}
are both p-integral, then the Fourier coefficients a,(T') of %;, all lie in Qn %ﬁcp.

Proof. Recall the formula (2.5.8)) reduced the question to checking that
(= det(T))? - (65, £ (frian) )i

lies in Oc,. We then reduced this to showing that

k
2

(=det(T))z - 0 (Cp) ™" o ()™ - £

wt,p

lies in Oc, [ X Jaegear- We have just verified this criterion in §5.3.4{and §5.3.8 depending
on whether p is split in K7 or not. O
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Chapter 6. Non-Vanishing

6.1 Bessel model of the Yoshida lift

We compute the Bessel model for a collection of Fourier coefficients. We make the

additional assumption that the central character ¢; of 7; is trivial.

6.1.1 A collection of good indices.

We choose a collection of indices whose Bessel models are of arithmetic interest. Let

A > 3 be a square-free odd integer satisfying the following conditions:
e A=-1 (mod 4),
e (A,dNp)=1, and

1 if ¢| Np, and
-1 ifq|d.

. ()

Set mA(X) = X2 - X + 2. Fix a root § of m? in D as in §1.1.3] Note such an
§ exists by the above conditions. Let K = K% = Q(d) be the imaginary sub-field of
D determined by 6. Let [ be a prime inert in K and not dividing 2dNp. For each

integer n > 0, we have the following data:
e §,=1"0eKcD;
e 1, € X given by z,(w;) =1 and z,(wy) = "J;

1 "
_ _ 2
o 1, =T, = r e |
2 4

Set S = {2,1,p} u {prime divisors of A}, and fix an element 7 € K* so that (d,,7) is

an S-basis.

118



6.1.2 Eichler orders and conjugation.

Let €, = ejﬁ’f be the arithmetic embedding at [ attached to the S-basis (J,,7) as in
§1.3.3 It determines a local Eichler order 7" = (el ;)™'(M2(%;)), which in turn can
be spliced with other local Eichler orders &, to give an Eichler order 2" = 29233 of
level dNp™ in D. As such, we have that ;' = &, for all m,n >0 and ¢ # [. Note that
the intersection ﬁ]’} =K;n 7 is exactly 2[6?(10)] in the notations from §1.3.3| and we
have Z[&SO)] = Z[0,] is the order of conductor [" in K.

Let us compare 2" and 2. Set a’" = (er.,) ' (diag[l?,1]), we claim that

o 7 (ag) ™ = 75

for 0 > 7 > —n. Indeed, we have

I~ , [ 1 ,
e:r,loAd(a?nrl(aﬁl):[ 1]-%[1% ” 1]=[ﬂw ]=ez:;(6£31->

4 4

and €}, o Ad(at)1(y) = er.,(7); hence

" o Ad(adr) =t

ar,l ar,l

and the claim follows since 2" = (e[} )~ (Ma(Zy)).

Remark 6.1.1. Since egr’l(ozf") = diag[l?,1] commutes with all diagonal matrices, it

follows from the above discussion that

()" (diag[ty, t2]) = (e )~ (diag[ty, t2])

for all m,n € Zo. This in particular applies to Ozf" itself, which we now simply denote

by «;. It is an element in D; independent of n.

6.1.3 The Fourier functional for 7,.

Let K = K™= be the imaginary quadratic field determined by T},, and let K* be the
corresponding torus in GSp, as in §3.5.4, We have an isomorphism

1+vV-A
Z”T >

K~K given by On-

1)

We emphasize that K, K, and the weight embeddings ef;‘t’j = e’ are all independent

of n; whereas the arithmetic embeddings €] ; and the corresponding Eichler orders
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2" do depend on n. Denote by ¢ the image of ¢ € K under this isomorphism. As
we observed in §5.1.5] this isomorphism intertwines the actions by K* c GSp, and
K*c D* on Ty

(t,1) -z, = 7y, - 1.

Let us evaluate al»(t) for t € K. Under the above choices made on T, the

formula (2.5.7) from §5.2.5| simplifie{*] to

AT (1) = e-2mn(T)  (_pn 2 ) Z S £ (friay)) - €27 (o).

-n w

Recall here ™ is an automorphic form associated with (d,,7) and 2" in §2.3.1| for

i=1,2; and w = w(i) runs over a set of representatives for the ideal class group
Cl(ﬁnﬂ) KQKX \KA/ n+i, f

(since Oy ¢ is the inverse image of al.@" -Ia K s under the isomorphism K = K

above).

6.1.4 The Bessel model for 7,,.
Given a Hecke character x: Kg\K3 — C! which is trivial on A%, we have
BEx =[xl d
AXKH\K;
e—27rtr(Tn) ( l2n g Z wan(wal

=-n w

' fAK sy X (th, £ (Fuber,)) d*t.

Let us untangle the integral by substituting ¢ with tw=!; we get

ByX(1) = e (- 12”—) Z > x(w) - 57 (way)
i==n v (1.4.1)

: t) - (th, £ (toy)) d*t.
Sy YO (87 G00)

*Since I, A, and dNp" are mutually co-prime, and [ is inert in K7», a set of double-coset
representatlveb for B, ¢ ~ E,; is given by {(a;,a;) : 0 > i > -n}. Also, we see that e; = 1 for
i=- ,1 since A > 3.
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6.1.5 Specializing to primitive characters.

Denote by &, = Z[Z"@] the order of conductor {" in K. Tt is mapped to the order
Om of K under the isomorphism described in . We now take x = x, to be a
primitive character of conductor (", i.e., x is trivial on the image of &) s but not on
the image of @jﬂ.’f for any 7 < 0.

We claim in this case all the terms in vanish except for ¢ = 0. By primitivity,
we have x(z;) # 1 for some z; € ﬁ;ﬂ,l if 2 < 0. Denote by Z; the corresponding element
in é’f”’x c @l"”’x. By , we see that a;'Z;a; lies in 2, As a result, we find
that

fAXKX ) X(t)-(t’g,ff”(iai))dxtzfx X)) (e T (e g fiy) i dt
n,Q\Kn,A A Kn,Q\Kn,A
<o X o)
n,Q\Kn,A

- x(z)- |, () - (8, £ (o) dt
AXKT Q\KG A
which implies both sides must be zero.

6.1.6 A linear combination of Fourier coefficients.

For a primitive character y = x,, of conductor [, we see that (1.4.1]) simplifies to

B;‘F("’X(l) _ 6—27T~tr(Tn) . (_Pn%)g

> x(w) -5 (w)- X(b) - (tE £ (£)) d*t

weCl(0y) AXKQ\KR

since ey = 1 and UY = € ;. The analysis from §3.5.6{with a” () replaced by (&, f7" ())
gives that

Jo RO E () = 2m vl ) S () (L (D).
AXKG\KQ teC1(0y)

Finally, substituting B (1) with the linear combination of translated Fourier coef-

ficients from ([5.6.12)) in §3.5.6, we get after cancellation

hn

- Xn(ti) - () =

i=1

(_l2n

>

(1.6.2)
)’5( > x(w)-fé”"(w))-( > X(t)-(t'é,ff"(t'»)

weCl(0y) teCl(On)
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where h,, = #Cl(0),).

6.2 Equidistribution and non-vanishing

We show that for n > 0 and some t; € Cl(0,,), a;,(T},) is non-zero. Furthermore,
in favorable situations, we show that a;,(7},) is in fact non-zero modulo p assuming
Artin’s conjecture on primitive roots. We assume that the automorphic forms £ are
p-integral throughout this section. Also denote by K(f) the field of definition of
£ and denote by K (f{,f5") their compositum. Moreover, we assume that p > k, so

the a;,(T,) in fact lies in K(ff",f5") n O¢, by Theorem and Proposition [5.2.1]

6.2.1 Character sums.

If Z?jl Xn(t:)-at,(T),) is not zero modulo p for some primitive y,, of conductor [”, then
at,(T,,) is also not zero modulo p for some i. By (1.6.2)), the non-vanishing of a,(7},)

becomes a question of the non-vanishing modulo p of the two character sums

>, x(w)-f"(w)  and > () {t6. £ (D). (2.1.3)

weCl(Or) teC1(Oy)

Since the first sum is but a special case of the second sum, let us study

> X(@O) (6, £ (D)) = x(s)  Xo x(t) - (t5, £ (13))

teCl(0n) teCl(On)

for a generic f*» and some s € Kf using the methods of [Vat03] and [CVO07]. Specif-

ically, we aim to address the question of whether

X)) (e, £ (5)) (2.1.4)

teCl(On)

is non-zero modulo p ]

6.2.2 Galois groups.

We begin by describing a special instance of [CV07, Proposition 5.6] that applies to

our context. Fix a choice of the reciprocity map

recK:K_a\K; ~ Gal(K*/K),

tNote since y is a ring class character, it is trivial on A*, which in turn forces us to work with
automorphic forms with trivial central character.
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and define K, to be the finite abelian extension of K corresponding to the open
subgroup given by the image of U, = Oy ; in K_a\K; We identify Cl(&,) with
G, = Gal(K,/K) via the reciprocity map, and set G = 1<iLnGn. We note that the

reciprocity map induces a topological isomorphism [CV07, Lemma 2.1]
KQ\KF [Uso = Go

where Uy, =N, U,,.

Denote by G, the torsion subgroup of Go; the quotient group G, = G+ /G, is free
of rank 1 over Z;, and K;~ = K& is the anti-cyclotomic Z;-extension of K. We note
that for n > 0, G; - G,, is an injection and G,, ¥ G¢ x G, ,, where G, ,, ~ G, /G, is a
cyclic l-group given by the projection of G,, onto G,,.

6.2.3 The genus subgroup.

For each prime ¢ | A, denote by o, € G the Frobenius element for the unique prime
q = qx ¢ K lying over ¢. Note that reck(w,) = 0, for a choice of uniformizer w, in
K,, and that o2 = 1. Denote by G the subgroup generated by all the oq's. We see
that G ~ [1ga p2 as groups. Let

R= {177}
be a fixed set of representatives for the quotient Gy/G.

6.2.4 CM points.

Let Z be a fixed order in D, we do not require Z to be an Eichler order. Set
CMy = KQ\D} | %},
we shall refer to it as the set of CM points attached to Z. The group
K&\K7 = Gal(K*/K)

acts on C'Mgy by left multiplication. Given a CM point z = [] € C' My, we define
the conductor of x to be the conductor of the stabilizer of z, &(x)} = K; ng-%; -
B71. We denote by C'M#(I™) the set of CM points of conductor [ and CMg(l*®) =
U, CM4%(I™). Note that the action by Gal( K#P/K) on C'My(I*) factors through G.,.
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6.2.5 An equidistribution result.

Set
My = DG\D} | %5

Since D is definite, My is finite [Vig80, Ch. III, Théoreme 5.4]. Let R be the set of

representatives of G;/G; fixed above. We have a simultaneous reduction map

CMQ(Z”)E HM/] e (7-2), = (2,70 Ty, T - ).
TER
Proposition 6.2.1 ([CV07, Prop. 5.6]). Suppose that n(%}) = 7%, then for all but
finitely many x € CMgyp(1°°), we have

RED(Gw - 2) = [[ Ma.
TeER
Proof. Since the base field is F'=Q, and H = %’; is assumed to satisfy n(%’;) = 7%,
we see that the set Ng = QX\A%/n(#}) in [CVO07, §5] has only one element. The
proposition is then almost word-for-word [CVO07, Prop. 5.6]. ]

6.2.6 Averaging over characters.

Following [CV07], we massage the sum ({2.1.4]) in order to apply the above key propo-
sition.

For a group G, denote by G the group of characters on G. Forn > 0, G, ~ GyxGy
and we can factor x € én into x = x¢ * Xw With x; € G’t and x,, € Cl'w’n. To show that
(2.1.4]) is non-zero modulo p, it suffices to show that there exist some primitive

character x; € G, such that the average over the primitive characters of GAw,n

Yoo 2 (R x)@®) {5 £ (E8)) = Do xi(t) Do D Xw(w) - (b5, £ (tsw)).
Xw€Gwn t€Gn teGy WEGhy n Xw Prim.

Xw Prim.

is non-zero modulo p.

*In fact, it turns out that for any such character, not necessarily primitive, we can show the sum
is non-zero for some primitive x,,.
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We can evaluate the two inner sums,

> 2 Xw(w) (6, £ (tsw))

weGw,n Xw Prim.

= ) ( > Xw(w)- X Xiu(w))‘(t’é,f”C’L(fﬁw))

WeGw,n \x4eGom Xty €Gwn-1
= |G ()] (t5, £ (13)) = 3 |Gu(n = 1)]- (t5, 7 (t50))
o€ln

=|Gu(n)| - (65, (1= 17" tr,) - £7) (£3))

where Z, = ker(Guypn = Guno1) and (tr, - £20)(£5) = ¥oey £ (E5-0).
Now |Gy (n)| = I™ for some m < n -1 is a p-unit, thus our problem reduces to

showing that

(tk, EGj Xe(t) - ((L=17"tr,) - £2)(£5)) 20 (mod p). (2.6.5)

6.2.7 Averaging over the genus subgroup.

Let us average over the genus subgroup G. For simplicity, we further assume that A

is a prime, so that G is a group of order 2 generated by oa. We get

;G: Xe(t) - ((L=17" try) - £77) (85) = %Xt(T)'((l—l_l'trn)'(f“+>_<t(UA)'0A'f$"))(T'5)
where (oa - f2r)(8) = fo(Boa) for f e Dj.
Set

f‘:cn = fon 4 )_Ct(O'A) cop - £

it is an automorphic form on D> of level 92}” =P noaP; "o, in the sense that it
satisfies the transformation law from §2.3.1| but with 2(r)} replaced by 7}~

Suppose that the automorphic form f# is non-Eisenstein at p in the sense of §2.3.8
That is, (t§,£7+(8)) is not constant modulo p as a function in (3 € D%. We claim that
fon is then also non-Eisenstein at p. Suppose otherwise that (t&, f=(3)) = ¢ (mod p)
for a constant § € Oc, and all § € D}. It follows that

(tlgvfxn(ﬁ)) = <t§’ (Yt(UA) “OA fxn)(ﬁ)) +€ (mOd p)

Now the right-hand side is right-invariant under oA 770!, hence (tk =) modulo
p is right-invariant under D - 7} = (7}, 042} 0") [CV07, Proof of Lemma 5.9].
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Since D is split at A, by strong approximation and the fact that Q has class number
1, we get
X _ X 1 n,x

This implies (t&, f*=) is constant modulo p, contradicting our assumption.

Remark 6.2.1. More generally, without assuming p-integality, we have that (t’g,f'xn)
is not constant as a function on D}. Indeed, since 7 is cuspidal, (tk frn(0)) is not

constant on D7, then the same argument applies.

6.2.8 Distribution relation.

In order to apply Proposition [6.2.1] we need to first make explicit the dependence on
nin (2.6.95). Set €ny =€ ,, 2= 2, f =2, and O, = ﬁlo By §6.1.2, we have that

ar,l’

D' = oz} Doy, 1t follows that

f* =a_, - f
as functions on D} since they only differ in the choice of the Eichler order. Similarly

fon = oy - f

since a_, € D) and oa € D} commute.lﬂ

It remains to show that

(S (7)) (=171 tr,) oy - £)(78)) 20 (mod p). (2.8.6)

T€ER

For this, we need to understand (1 —1"1-tr,)-a_, - (f). This is leads to the following

lemma.

Lemma 6.2.2 ([CV07, Corollary 6.6]).
try o, =T a a1 —1-a_, 0y (2.8.7)

as elements in Z[ D} [ 9] ].

tIndeed, we have

£2 (1) = f(7an) + Xe(on) - £(7oaay,)
=(an - £)(7) + (Xe(oa) -oa-f)(Tay)
= (o - (f+xe(0a) oa-£))(7)
=, -£(7).
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Before going into the proof, let us first explain what the equality says.

6.2.9 Lattices in Kl.

The map
x = jx = Ear,l(x) : ﬁl

defines a bijection between D /%) and the set of Z;-lattices in Kl, which we denote
by I. For convenience, we shall treat D;/2; synonymously when there is no danger
of confusion. We now introduce some terminologies useful for the ensuing discussion.

Given .#, we have that & = €, ,(t) - 6‘}” for some integer n > 0 and t € le
[Tha67, §Prop. 1]. We shall refer to n as the level of the lattice .&.

As in [CVO07, §6.2], the lower neighbors of .# € I are the lattices .#¥such that
Jtc F and I[Fb ~ Z[IZ. In particular, the lower neighbors of @, = Z & Z5©® are
the lattices 0} = Z(16© +i)®Z for i =0,...,1-1 and ﬁ’ll = Z5( @Zl. They correspond

to the elements

i = (€arg) ™ ([l i]) fori=0,...,0-1, and g = (€ary) ™" ([1 l])

in D/2;. From this we conclude that the neighbors of .7, = €, (x) are exactly
the lattices fxl’i = €ary(T) - ﬁj for ¢ = 0,...,0 and they correspond to the elements
x-p; € D [2). We note that if .7, has level n > 1, then ﬂx{i all have level n+1 except
for ﬂx{l, which has level n — 1.

Lastly, the upper predecessor of a lattice .Z, € I of level n > 1 is the unique lattice

AR 5’[“1 - Z, of level n—1 which has .#, as a lower neighbor. It corresponds to the
element za_y € D)/} where a_; = (€4,)  (diag[l™!,1]) as in §6.1.2)

6.2.10 Trace map on lattices.

For n > 0, Z, = ker(Gyn = Gun-1) ﬁf_l’x/ﬁf’x. Using this identification, we
define a trace map on x € DS/ of level n (ie., &, has level n) taking value in
Z[D; /7] by

tr, - x = Z o-xX.

o€y

It is compatible with the trace map on f (and f) in the sense that (tr,-z)-f = tr,-(z-f)

as functions on D7 .
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In more geometric terms, if we write &, = €,,(t,) - ﬁl”, then

Z oIy = Z J-ear7l(tx)-ﬁf

o€l o€ln

= Z €ar(tz) -0 ﬁ’l"

o€Zn

Now as ¢ runs over Z,, - O runs over the lattices in &'~ that are of level n and

index [, which are exactly the lower neighbors ﬁl" "t i=0,...,1-1 of level n; thus
-1
tr,, - Iy = Y (I, (2.10.8)
i=0

which corresponds Y5z -y - in Z[Dy/27].

6.2.11 Hecke action on lattices.

We also have a Hecke action on Z[D[/2/| ~ Z[I] defined as follows. Recall we have
the abstract Hecke element 7w, 2 = {ov € D} : n(«) = I} where w; is any element in

Dy of reduced norm /. The Hecke action is then
T -x= Z Ty

with respect to any decomposition Z)w 2 = U; w;; - ;. A comparison with the
Hecke action on automorphic forms described in shows that (T;-z)-f = w;(1)-z-
(T 'f) Now we have a natural choice for the elements w;;, namely, y; fori=0,... 1.
It follows that T;-x = Y, x - ;. In terms of lattices, we see that T;-.Z, = le‘:o ﬂgj’i is
the just the sum of the lower neighbors of .Z,.

Proof of Lemma[6.2.9. First observe that a_, is of level n. By the preceding discus-

*Indeed,
(Ty-2) £)(y) =D f(y = wiy)

=wi(l) - (T;-£)(y - x)
=wi(l) - (z-(T;-1))(y)-
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sion, we have:

-1
_ -1
tr, -a_, = Zoz_(n_l) SO g
i=0

=T (ap ) —ay-aq

=T -a_,-a_1—1-a_, a_s.

6.2.12 The upshot.

By Lemma which we just proved, we have

((1-01"tr,) - ay, - f)(T')
= (o D) (78) =17 ((T)- - ) - £)(78) + (o - vy - £) (75)
=f(75-a ) =17 (ap-a_y - T-£)(78) + (ay - £)(75-a_y)

=f(75-a ) =1 wi () -ar- (ay - £) (75 acy) + (ag - £) (75 - a_y)
where a; = a;(f) is the eigenvalue of f under 7;. Set

=1 w() a-oaq - fay-f,

it is an automorphic form of level 7, = .@Jf n a_l.@;aj n 04_2.@;0425, again in the

sense of (3.1.1) from §2.3.1f Arguing as in §6.2.7, we see that if (t&, f*) is constant

modulo p, then (t£ f) is constant on D& - Dy - .@; = D7, which contradicts the fact

that f is non-Eisenstein at p; therefore f* is also non-Eisenstein at p.

Remark 6.2.2. Again, without assuming p-integality, the same argument shows that

(t§, f*) is not constant on D} (c.f. Remark [6.2.1)).
The upshot of the preceding discussion is that (2.8.6)) now becomes

(t, > xu(r) - £*(75-a_,)) 0  (mod p), (2.12.9)

TeR

and this puts us in a position to apply Proposition [6.2.1
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6.2.13 Conductor of some CM points.
Let 2* be the Eichler order of level dNp"I?A defined locally by
DX noaPRoyt ifg=A,
Dy =3P nasZPa”y if q=1, and,

7 otherwise.

Note that 9}“ agrees with the compact open subgroup of D; defined in the previous
section.

The last detail to check before applying Proposition is the conductor of a_,
as a CM point in CMgy-. We claim it is ["*2. Indeed, since a_, € D}, and o € KZ

commutes with K A» we have that
X *X _ X 0,x _ zpx
King;"=K;n9,"=0%,

for all ¢ # . At the prime [, we have that

ex [ I a 1™
€arj(C_n D2, = [ 1] -0(2) - [ 1] = {[l’”?c p } e M2(Qy) :a,b,c,de Zp}

where I;(2) is the order in My(Z;) from §1.3.1} It then follows from the definition of
€ar,j that

Kina_,9," oz,

-n

_ n+2,x
Y e

6.2.14 Non-vanishing of a character sum.

Now we are ready to prove the following proposition.

Proposition 6.2.3. For any character x; € Gy and all n > 0, there exists a primitive

character x., € éwm such that

> (exw)(t) - (86, £ (1))

teCl(On)
s not zero modulo p.

Proof. The discussion up to now has reduced the problem to showing that

Yo xe(r) - (86,5 (75 - a_n)) 0 (mod p)

TER
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for some s € K7.
Now (tf, f*) defines a ;0c,-valued function on C'Mg-. Furthermore, since f* is

non-Eisenstein at p, we can find two CM points y, z in C Mg+ such that

(66, £ (1)) # (65, £°(2)) (mod p).

By Proposition [6.2.1, for n > 0, we can find s; and sy in K; such that 7;-s1-a_, =

Ti+ Sy -y, fori=2,...,m, but
S1-Q_p =Y and So Oy = Z.
Consequently,

> X(T) (8 £ (751 a)) # ) xe(T) (86, £ (732 - ay))  (mod p)

TER TER

and so one of them is non-zero modulo p. O

More generally, apply the same argument and using Remarks [6.2.1] and [6.2.2] we

have the following proposition along the lines of [CV07, Theorem 1.13]

Proposition 6.2.4. For any character x; € G, and all n > 0, there exists a primitive

character x., € éw,n such that

> (uxw) () (5, £ (1))

teCl(0n)

15 not zero.

6.2.15 Simultaneous non-vanishing.

To establish that a;,(7;,) is non-zero (modulo p) for n > 0 and some t; € C1(7,,), we
need to prove the simultaneous non-vanishing (modulo p) of the two character sums
in . For this, we modify the argument for [Vat03|, Corollary 4.2] and exploit the
fact that G, is cyclic of [-power order, and so its primitive characters are permuted
by a certain Galois action. Unfortunately, for non-vanishing modulo p, we also need
to assume the following version of Artin’s conjecture on primitive roots if we want to
apply this argument for the decomposition group at p.

Let us first state the general non-vanishing theorem. Let K(f", f5") = K(f{")-
K(fy") be the compositum of the fields of definition for the p-integral automorphic
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forms ", ¢ = 1,2. Denote by K’ = K(f{,f5")- Q(x:) the number field generated the

values of x; over K (fi",£5").

Theorem 6.2.5. Suppose [ is a prime that is unramified in the extension K'/Q. For
this |, and n € Zsg, let O, and T, be as defined in §6.1.5 and §6.1.1| respectively. Then
for all n > 0, there exists some t; € C1(0,,) such that the Fourier coefficient a,(T,,)

of %;. is not zero.
1

Proof. Indeed, since [ is unramified in K’, and the prime [ is totally ramified in
Q((n)/Q, we see that K'n Q(({) = Q for all n > 0. The Galois group I',, =
Gal(K'((n))/K") acts transitively on the primitive ["-th roots of unity, and hence on
the primitive characters in (A}’w,n. The theorem then follows from Proposition m
since we can use ', to permute the primitive characters in Gw,n while leaving x,(?),
(tk f2n (%)) fixed. This shows that

> (uxw) () (5, £ (1))

teC1(0n)

is not zero for all primitive characters x,, € Gw,n and n > 0. Consequently, we see
that

;nl Xn(tz) " Gy, (Tn)

is not zero for all n > 0; therefore one of a;,(7},) must be non-zero also. [

6.2.16 A conditional non-vanishing modulo p result.
For non-vanishing modulo p, we need to assume the following conjecture of Artin:

Conjecture 6.2.6 (Artin). Given any prime p, there exist infinitely many primes |

such that p is a primitive root modulo l. In other words, p is a generator in (Z[/IZ)*.

Remark 6.2.3. This conjecture is a theorem of Hooley [Hoo67| assuming yet another
conjecture, namely the General Riemann Hypothesis. Also, Heath-Brown |[HB86| has

shown that this conjecture holds unconditionally for all but possibly two primes p.

Under Conjecture [6.2.6, we again choose [ so that the number field K’ as in
Theorem is linear disjoint from Q((;~), and moreover, that [ is totally inert in
the decomposition group D, ¢ Gal(Q/K"). Then as in the proof of Theorem D,
acts transitively on the primitive characters in G,,,,, while leaving x,(t), (t, £ (1)),
and the p-adic valuation of Yeciig,)(XeXw)(t) - (t&,£72(£)) fixed. This implies this

character sum in question is non-zero modulo p for all primitive characters in G, ,,
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when n > 0, from which we see that Y ¥,,(#;) - as,(T},) is not zero modulo p for all

n > 0. We have proved the following theorem.

Theorem 6.2.7. Assume that p > k and that £ are non-Eisenstein at p for all
n € Zyy. Assuming in addition that Conjecture holds. Let 1, O, and T, be
as above, then for all n > 0, there exists some t; € Cl(0,) such that the Fourier

coefficient ay,(T,,) of %, is not zero modulo p. In other words, a,(T,) € 0%, (Pxcr) if
p>k.
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