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CHAPTER I

Introduction

1.1 Notes on Notation

The notation in this thesis can be called standard, with the proviso that different

disciplines consider different notations to be standard. Before providing a rough

outline of the work to follow, we will here remove most ambiguities. We use ω to

denote the set of natural numbers: {0, 1, 2, . . .}. The Cantor space is the set of infinite

binary sequences, and is denoted by ω2. Cantor space can also be characterized as

the set of functions from ω to {0, 1} (X ∈ ω2 is the function which sends n to the

value of the nth bit). The Baire space is the set of functions from ω to ω and is

denoted by ωω.

The set of finite binary sequences (in this finite-length case, we may use the word

“strings” instead of “sequences”) is denoted by <ω2, and the set of binary strings of

length n is denoted by n2. For σ ∈ <ω2, |σ| is the length of σ. We will use ⊆ or ⊂

to denote the initial segment relation (⊂ will be used for the case of a finite binary

string which is an initial segment of an infinite binary sequence). For X ∈ ω2 and

n ∈ ω, X � n is the initial segment of X which has length n.

Cantor space can be topologized, with basic open sets determined by elements of

<ω2. For σ ∈ <ω2, let [σ] denote the basic open set of X ∈ ω2 such that σ ⊂ X.

1
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Also, if V ⊆ <ω2, let [V ] denote the union of [σ] for σ ∈ V . We will also use the same

notation (with a similar meaning) for partial functions from ω to {0, 1} with finite

domain. If s is such a function, then [s] denotes the set of X which are extensions

of s. Under this topology, Cantor space is a metric space. The Lebesgue measure μ

is determined by μ([σ]) = 2−n.

Some ambiguity cannot be avoided. The main points of which the reader should

be aware are:

1. Brackets will also be used in another context. We will use [ω]ω and [ω]<ω to

denote the set of (respectively) finite and infinite subsets of ω.

2. Members X of ω2 will be called both “reals” and “oracles.” The latter term will

be used when we are concerned with the properties of X that relate to relative

computability. However, there will be cases where some properties of X involve

relative computability, and others do not. In such cases, either term may be

used.

3. The symbol ∅ can mean either the empty subset of ω, or the empty string.

This may cause ambiguity because of an identification between subsets of ω and

reals which we will use frequently: A ⊆ ω is identified with the real X such that

X(n) = 1 iff n ∈ A. Therefore, care is needed in some situations to distinguish

between ∅ the string, and the real associated with ∅ (the real consisting of only

zeroes).

1.2 This Thesis’s Thrust

An element of either Cantor space or Baire space is computable if it is determined

by an algorithm – for example, f : ω → ω is computable if there is a program which,

given n, determines (in finite time) f(n). The idea of computability can be expanded
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by relativization. An object is computable relative to B ⊆ ω (B is called an oracle)

if it is determined by an algorithm which is allowed to ask questions of the form “Is

n in B?” for any n. This gives rise to Turing reducibility ≤T – i.e., B ≤T A if the

set B is computable relative to A. Turing reducibility (restricted to sets only) is a

pre-order whose equivalence classes are called the Turing degrees [41]. The Turing

degrees are partially ordered by ≤T and form an upper semilattice. A significant

portion of computability theory is concerned with the basic question “What is the

structure of the Turing degrees of sets with interesting properties, or which compute

functions with interesting properties?” Of course, this depends on how one defines

“interesting.”

Set theory is one source for interesting properties. In set theory, one works with

a universe of sets satisfying the Zermelo-Fraenkel axioms (ZF), and frequently also

the axiom of choice (ZFC). Certain objects in the universe represent mathematical

objects – for example, the natural numbers and Cantor space. This thesis is primarily

interested in two topics of set theory, and how they relate to computability theory.

These topics are forcing and cardinal characteristics of the continuum.

Forcing is a set-theoretic technique which can be used to show certain statements

do not follow from ZFC. Forcing was first used by Cohen to construct a universe of

ZFC where the Continuum Hypothesis does not hold [12, 13]. Informally, forcing can

be thought of as a process that adds new objects to the initial universe, called the

ground model. For example, Cohen forcing adds new sets to 2ω. If enough sets are

added, 2ω can be enlarged without changing any cardinals, ensuring the Continuum

Hypothesis can be made false. The added sets have further properties – for example,

they are not contained in any meager (i.e. of first Baire category) subset of 2ω from

the ground model.
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A forcing is determined by conditions, objects in the ground model which par-

tially describe objects being added by the forcing. In the case of Cohen forcing, the

conditions are finite binary strings, and the added set is the union of all strings used.

To ensure the set has the desired properties, we make sure to use at least one string

each from certain ground model sets of strings. We may try a similar construction

in computability theory by replacing “ground model” here with “computable.” The

resulting sets have properties similar to those of sets added by Cohen forcing. This

method has also been used in certain constructions to prove statements – for ex-

ample, given A >T ∅, there exists B not Turing comparable to it. More recently,

forcing constructions have yielded interesting results with respect to many areas of

research, including effective Ramsey theory [11], almost everywhere domination [10],

and algorithmic randomness [33].

A cardinal characteristic is a cardinal which is descriptive of some property of

a model of ZFC. Some cardinal characteristics are defined using a triple K :=

(K−, K+, K), where K− (“the challenges”) and K+ (“the answers”) are subsets of

Cantor space or Baire space, and K (“is met by”) is a relation on K−×K+. We call

such triples “debates.” The cardinal associated with the debate K, denoted ||K||, is

the least cardinality of a family of answers needed to meet all challenges. The re-

lationships among ten cardinal characteristics definable via debates are summarized

by Cichoń’s diagram [17]:

cov(N ) ←−−− non(M) ←−−− cof(M) ←−−− cof(N )⏐⏐� ⏐⏐�⏐⏐� b ←−−− d

⏐⏐�⏐⏐� ⏐⏐�
add(N ) ←−−− add(M) ←−−− cov(M) ←−−− non(N )

An arrow ||K|| → ||L|| indicates ||K|| ≥ ||L|| is a theorem of ZFC. The diagram is
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complete, in the sense that every such provable inequality is represented by an arrow

or a series of arrows [5].

Debates provide standard mechanisms for proving either ZFC 
 ||K|| ≥ ||L||

or ZFC � ||K|| ≥ ||L||. We consider such results to be, respectively, positive and

negative. A positive result can be achieved by finding a morphism from K to L: a

pair of maps φ+ : K+ → L+ and φ− : L− → K− such that for all X ∈ L− and

Y ∈ K+, if φ−(X)KY , then XLφ+(Y ). A negative result can (in all cases relevant

to this thesis) be achieved by exhibiting a forcing which adds a challenge to L− not

met by any ground model answer in L+ but does not add a challenge to K− not met

by any ground model answer in K+.

In my thesis, we develop the notion of a Turing characteristic – a computability-

theoretic correspondent to a cardinal of the form ||K|| – to be the set of oracles

which compute a challenge not met by any computable answer (denote this by K). As

with cardinal characteristics, we associate with Turing characteristics positive results

(K ⊇ L) and negative results (K � L). In many cases results may be obtained via

an effective version of the corresponding set-theoretic proof. Specifically, we may

prove K ⊇ L by finding a morphism from K to L such that for all X ∈ L− and

Y ∈ K+, φ−(X) is computable from X and φ+(Y ) is computable from Y . If a notion

of forcing proves that ZFC � ||K|| ≥ ||L||, and this forcing can be made effective (as

in Section 3.4), it provides a witness to K � L.

In most cases, using the techniques outlined above, we can prove K ⊇ L in the

cases where ZFC 
 ||K|| ≥ ||L||, and K � L in the cases where ZFC � ||K|| ≥ ||L||.

This correspondence is not strict; for Turing characteristics derived from cardinal
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characteristics in Cichoń’s diagram, we obtain the diagram

COVN ←−−− NONM ←−−− COFM ←−−− COFN⏐⏐� ⏐⏐�⏐⏐� B ←−−− D
⏐⏐�∥∥∥ ∥∥∥

ADDN ADDM ←−−− COVM ←−−− NONN

where → means ⊇. This diagram, like Cichoń’s diagram, is complete.

We can expand this definition of Turing characteristics by enlarging the set of

answers considered, and restricting the set of challenges considered. Specifically, if

A and C are sets of oracles, both are closed downward with respect to ≤T , and A is

countable, we use the set of answers computable from an oracle in A, and challenges

computable from an oracle in C. With these added parameters, proofs of negative

results may or may not work, but the proofs of positive results can always be carried

out. This leads to the diagram

COVNC
A ←−−− NONMC

A ←−−− COFMC
A ←−−− COFNC

A⏐⏐� ⏐⏐�⏐⏐� BC
A ←−−− DC

A

⏐⏐�⏐⏐� ⏐⏐�
ADDNC

A ←−−− ADDMC
A ←−−− COVMC

A ←−−− NONNC
A

which is not known to be complete.

Some Turing characteristics studied in this paper impact the computability-theoretic

field of algorithmic randomness; specifically, those Turing characteristics which in-

volve N , the ideal of measure zero subsets of Cantor space. A real may be said to

be random if it does not have any “exceptional properties.” Exceptional properties

are represented by measure zero sets (also called null sets). Thus, a real is algorith-

mically random if it is not in any set which can be demonstrated by an algorithm to

have measure zero. This last property of measure zero sets – which we may term as
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being “effectively null” – is of interest in of itself, and some results of this thesis can

be interpreted as results on the relationship between the structure of a null set and

the oracles relative to which it is effectively null.

We begin this thesis with chapters II and III, which outline the necessary computability-

theoretic and set-theoretic background. Special attention will be paid to the topics of

algorithmic randomness, forcing and its role in computability theory, cardinal char-

acteristics of the continuum. In Chapter IV, we provide the full, formal definition of

a Turing characteristic, and deal with some preliminary matters needed to study Tur-

ing characteristics arising from cardinals in Cichoń’s diagram. Chapter V provides

positive results, and Chapter VI provides negative results. Finally, in Chapter VII

we list open questions arising from the thesis material.



CHAPTER II

Computability Theory Background

In this chapter we provide the background from computability theory on which

this thesis builds. Much of this material is basic – in fact, any graduate level in-

struction in computability theory should cover most if not all the material of Sec-

tions 2.1–2.6. The approach taken in this thesis is most similar to the ones found

in [38] and Chapters 4–5 of [20], though [49] and [19] are also important works and

useful references. The remaining sections cover a sampling of results from the fields

of algorithmic randomness and genericity, fields which are linked to the study of

Turing characteristics. The former in particular is a rich field, and only a little of

what is known is covered here – for more detailed treatments, see [36] or [15].

2.1 Computable and Partial Computable Objects

Let P denote the class of partial functions from some ωk (k ∈ ω) to ω (i.e., the

domain is a subset of ωk, possibly a proper subset). If Σ(n) is a statement dependent

on n ∈ ω, let μn[Σ(n)] denote the least value of n such that Σ(n) is true. We use

letters φ, ψ, . . . to denote members of P , and f, g, . . . to denote total members of P

(i.e., ones with domain ωk).

Definition II.1. The class PC of partial computable functions is the intersection of

all Q ⊆ P such that

8
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1. if φ(n0, . . . , nk−1) = m (for m constant) for all (n0, . . . , nk−1) ∈ ωk, then φ ∈ Q

(Q contains all constant functions);

2. if for some 0 ≤ i < k, φ(n0, . . . , nk−1) = ni for all (n0, . . . , nk−1) ∈ ωk, then

φ ∈ Q (Q contains all projection functions);

3. the function φ(n) = n+ 1 is in Q (Q contains the successor function);

4. if φ ∈ Q takes k inputs and ψ0, . . . ψk−1 ∈ Q each take r inputs, define ζ by

ζ(n0, . . . , nr−1) = φ(ψ0(n0, . . . , nr−1), . . . , ψk−1(n0, . . . , nr−1))

whenever the right-hand side is defined (otherwise ζ(n0, . . . , nr−1) does not ex-

ist); then ζ ∈ Q (Q is closed under composition);

5. If φ ∈ Q takes k + 2 inputs and ψ ∈ Q takes k inputs, define ζ by

ζ(n0, . . . , nk−1, 0) = ψ(n0, . . . , nk−1)

ζ(n0, . . . , nk−1,m+ 1) = φ(n0, . . . , nk−1, ζ(n0, . . . , nk−1,m),m)

whenever the relevant right-hand side is defined (otherwise ζ(n0, . . . , nk) does

not exist); then ζ ∈ Q (Q is closed under primitive recursion);

6. If m ∈ ω and φ ∈ Q takes k + 1 inputs, define ζ by

ζ(n0, . . . nk−1) = μn[φ(n0, . . . nk−1, n) = m]

whenever such an n exists (otherwise ζ(n0, . . . nk−1) does not exist); then ζ ∈ Q

(Q is closed under search).

If f ∈ PC is total, then f is computable. A set A ⊆ ωk is computable iff the function

χA, which maps members of A to 1 and non-members of A to 0, is computable. A

relation R on k integer-valued variables is computable iff the set of k-tuples for which

R holds is computable.
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Remark II.2. Some authors use the terms partial recursive and recursive in place of

partial computable and computable.

The intuition behind this definition is that φ is partial computable if there is an

algorithm that, given n, returns φ(n), with the amount of time and memory used

allowed to be arbitrarily large, as long as it is finite. For a given n, φ is allowed to

return no answer – φ(n) is allowed not to exist. In this case, we say φ(n) diverges,

and otherwise say φ(n) converges (these will be abbreviated φ(n) ↑ and φ(n) ↓,

respectively). Given this intuition, the above definition makes sense – the “starting”

functions in 1. through 3. are all clearly algorithmic, and any reasonable definition

of an algorithm allows for composition, definition by recursion, and search.

It is this intuition, rather than the formalism of Definition II.1, that is paramount.

Computability theory is guided by Church’s Thesis, an informal statement that any

possible (i.e., follows the intuition) definition of a computable (or partial computable)

function is equivalent to the one above. This statement cannot be proven, but there

is ample evidence for it, as all other proposed definitions are provably equivalent

to the one above, and further, the proofs of equivalence follow a specific pattern.

Sections 1.5-1.6 of Rogers [19] and Section 5.4 of [20] explain this in more detail. In

practice, therefore, when determining if a function is (partial) computable, we will

rely on a description of an algorithm that computes the function, rather than trying

to trace everything back to the formal definition. In most cases, it will be simple to

tell if something is or is not an algorithm.

For a quick and simple example of this algorithmic thinking, consider the follow-

ing line of reasoning. Addition is clearly a recursion of the successor function, and

multiplication a recursion of addition, so both are computable. The relation | (divis-

ibility) is computable since n|m iff there exists k ≤ m such that nk = m. Therefore,
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the set of primes is computable – p is prime if and only if p is not 0 or 1 and the only

n < p such that n|p is 1. All of this can be formalized according to Definition II.1,

but this formalization is clearly not necessary.

Since there are countably many partial computable functions, we can enumerate

them via the natural numbers. Further, this enumeration may be performed in such

a way that information about the eth partial computable function can be extracted

computably from e. In the remainder of this section, we sketch a way to develop such

an enumeration and present (without proof) some of its useful properties. We begin

with a standard method for enumerating pairs and sequences of natural numbers.

Definition II.3. 1. 〈·, ·〉 : ω2 → ω denotes the bijection given by

〈n0, n1〉 =
(n0 + n1)(n0 + n1 + 1)

2
+ n1.

2. For k ≥ 1, 〈·, . . . , ·〉k : ωk → ω denotes the bijection such that 〈·〉1 is the identity

map, 〈·, ·〉2 = 〈·, ·〉, and

〈n0, n1, . . . , nk〉k+1 = 〈n0, 〈n1, . . . nk〉k〉.

3. Seq :
⋃

k>0 ω
k → ω is the bijection given by

(n0, . . . nk−1) �→ 〈k − 1, 〈n0, . . . , nk−1〉k〉.

Proposition II.4. 1. 〈·, ·〉 is computable, as are 〈n0, n1〉 �→ n0 and 〈n0, n1〉 �→ n1

2. For all k ≥ 1 and 0 ≤ i < k, 〈·, . . . , ·〉k and 〈n0, . . . , nk−1〉k �→ ni are computable.

3. For all k, the restriction of Seq to ωk is computable. The function mapping n to

the length of Seq−1(n) is computable. For all k, the function mapping n to m if

m is the kth number in Seq−1(n) if this has length at least k+ 1 (and otherwise

reports failure) is computable.
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Remark II.5. By this proposition, the properties of partial computable functions are

encapsulated by the properties of partial computable functions with one input (we

may compose with the proper 〈·, . . . , ·〉k if need be).

Now, we will describe a method of assigning finite sequences of natural numbers to

partial computable functions. For each partial function φ and any sequence assigned

to φ, the first two numbers of the sequence correspond to the case from Definition II.1

by which φ is given1 and the number of inputs φ takes, respectively. Remaining

numbers in the sequence give any additional information about the definition of φ in

a reasonable way. For example, if φ is the function mapping all k-tuples to m, assign

to φ the sequence (1, k,m). If φ takes r inputs and is defined as a composition of

ψ, ζ0, . . . , ζk−1, to which have been assigned the sequences

Seq−1(a), Seq−1(b0), . . . , Seq
−1(bk−1),

assign to φ the sequence (4, r, a, b0, . . . , bk−1). Assignments in other cases are defined

analogously. If a sequence is not assigned to a function in this way, it is assigned

to the empty function (φ(n) diverges for all n). Note that it is possible for multiple

sequences to be assigned to the same partial computable function; in fact, it is not

hard to show that for every partial computable φ, there are infinitely many sequences

assigned to it.

For e ∈ ω, let Φe denote the partial computable function to which Seq−1(e) is

assigned. We say that e is a code, or index, for Φe. Note that a given φ has infinitely

many codes.

We can also use sequences of natural numbers (hence, natural numbers) to code

the computation of a partial computable function, including the code of the function,

all inputs, the final output, and all intermediate computation information. Contin-
1or more correctly, by which an algorithm for φ is given
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uing our examples from the previous paragraph, if Φe is the function mapping all k-

tuples to m, the computation code for Φe(n0, . . . , nk−1) will be (e, k, n0, . . . , nk−1,m).

If Φe is defined as a composition of Φa,Φb0 , . . . ,Φbk−1
where each Φbi

takes r inputs,

then then computation code for Φe(n0, . . . , nr−1) = y is

(e, r, n0, . . . , nr−1, c, d0, . . . , dk−1, y)

where c, d0. . . . , dk−1 are the (natural number) computation codes for the computa-

tions of Φa,Φb0 , . . . ,Φbk−1
involved in computing Φe(n0, . . . , nr−1).

We say that Φe(n0, . . . , nk−1) converges to y in s steps if Φe(n0, . . . , nk−1) =

y and the natural number computation code for this result is s. Abbreviate by

Φe,s(n0, . . . , nk−1) the result of Φe(n0, . . . , nk−1) considering only computation codes

up to s (if a computation code does not exist below s, then Φe,s(n0, . . . , nk−1) ↑). By

Proposition II.4, we can “unpack” computation codes, and verify they are correct.

For this reason, the enumeration Φe is universal, in the following respect.

Proposition II.6. Given e, n, s, we can computably determine if Φe,s(n) ↓2. The

function which maps (e, n) to Φe(n) if Φe takes one input, and diverges otherwise, is

partial computable.

Corollary II.7. The partial function J(e) := Φe(e) is partial computable.

Remark II.8. By the remark following Proposition II.4, similar results hold if we

replace one input with any fixed number of inputs. A useful property of this system

is that if Φe,s(n) = y, then s ≥ max e, n, y. The function in the corollary is called

the diagonal function, and in Section 2.6 we will see that it provides a method for

calibrating how non-computable a function or a set is.

2This does not mean we can computably determine if Φe(n) ↓.
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This proposition and the framework it represents help us to manage partial com-

putable functions in a way that is convenient and, in a sense, algorithmic. One

application of this is the definition of uniform sequences.

Definition II.9. A sequence {φn}n∈ω of partial functions is uniformly partial com-

putable iff there is a computable function g such that for all n, φn = Φg(n). Uniformly

computable sequences of functions are defined similarly. A sequence {An}n∈ω of sub-

sets of ω is uniformly computable iff the corresponding sequence of characteristic

functions is uniformly computable.

Remark II.10. Other kinds of uniform sequences will be mentioned without being

explicitly defined. In each case, the definition is similar to this one, where the index

of the nth element of the sequence is determined computably from n.

Uniform sequences will play an important role in constructions presented in this

thesis, although at the present time we are unable to explain exactly why. We can,

however, give the reader an idea of what is to come. Suppose we are trying to

construct a computable function f using a sequence of partial computable functions

φn. Each φn+1 will extend φn, and f will extend all φn. In order to compute f(m),

we can look for an n such that φn(m) converges, but to be able to do this, we need

the sequence of φn to be uniform. Further, the definition of φn+1 may depend on

computations involving φn. In this case, it may not enough to know that φn is

computable; we may need to know an index for φn, so that we know what that

function is.

We close this section by noting that Proposition II.6 can be thought of as saying

all the information about an algorithm can be computably extracted from its index.

This follows from Proposition II.4 since elements of a sequence can be extracted

computably from the sequence. Since elements can also be put into a sequence com-
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putably, we might also suppose that the index of an algorithm depends, computably,

on the information about that algorithm. Specifically, if the actions of an algorithm

depend comptuably on a parameter d, so does the index of the algorithm. This is

made precise by the following proposition.

Proposition II.11. [24] (s-m-n Theorem) For each m and n, there exists a com-

putable function f such that for all e, x0, . . . , xm, y0, . . . , yn,

Φe(x0, . . . , xm, y0, . . . , yn) = Φf(e,x0,...,xm)(y0, . . . , yn).

2.2 Coding Finite Mathematical Objects

Finite objects, in general, can be coded using natural numbers in such a way that

information about the object can be deduced computably from the code (and the

code can be determined computably from sufficient information about the object).

Before we continue, we define, for various types of finite objects, enumerations having

these properties. This allows us to talk profitably about computable functions on,

for example, finite subsets of ω, and show that the usual functions on them are all

computable. The proofs that the functions are computable are simple, and left to

the reader.

We begin with the rational numbers Q, letting 〈n, a, b〉3 code (−1)n a
b+1

for a, b, n ∈

ω. Note that in contrast to Definition II.3 this coding does not produce a bijection;

however, this does not significantly alter anything.

Proposition II.12. The following are partial computable on Q.

1. Addition, subtraction, multiplication, division, and inverse.

2. Exponentiation (as a function on Q× ω).

3. The relations = and <.
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Now consider finite subsets of ω. We code D ∈ [ω]<ω with the number
∑

k∈D 2k.

An empty sum is taken to be 0, so 0 codes ∅.

Proposition II.13. The following are partial computable on [ω]<ω.

1. max and min.

2. D �→ |D| (cardinality of D).

3. {(k,D) : k ∈ D}.

4. Union, intersection, and \ (relative complement).

5. {D : D is an interval}.

Enumerating finite subsets of ω allows us to enumerate <ω2, the set of finite binary

strings, since there is a natural correspondence between finite binary strings ending

in 1 and nonempty finite subsets of ω. If Dσ denotes the set corresponding to a string

σ in the way, we may code σ with the value of one subtracted from the code for Dσ.

Proposition II.14. The following are computable on <ω2.

1. σ �→ |σ| (length of σ).

2. {(σ, k) : σ(k) = 0} and {(σ, k) : σ(k) = 1}.

3. Concatenation and the initial segment relation ⊆.

4. {σ : σ ⊂ A} where A ∈ ω2 is computable.

The previous two enumerations immediately give an enumeration of the set of

clopen subsets of ω2, since C ⊆ ω2 is clopen if and only if it is the union of finitely

many basic open neighborhoods (each given by a finite binary string). Specifically,

if C = [D], we replace each σ ∈ D with its code, and then code C using the code for

D.
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Proposition II.15. The following are computable on clopen sets (and binary strings).

1. Intersection, union, complement, and \.

2. σ �→ [σ].

3. {(σ,C) : [σ] ⊆ C}.

4. Lebesgue measure (μ).

Finally, we briefly consider S, the set of partial functions from ω to {0, 1} with

finite domain. Code s ∈ S with

∑
s(k)=0

3k + 2
∑

s(k)=1

3k.

Proposition II.16. The following are computable on S.

1. s �→ dom(s).

2. {s : dom(s) is an interval}.

3. {(s, t) : s, t are compatible}.

4. s �→ [s].

5. {(s, k) : s(k) = 0}, {(s, k) : s(k) = 1}, and {(s, k) : k /∈ dom(s)} (as subsets of

S × ω).

Here s and t are compatible if they agree on the intersection of their domains.

2.3 Relative Computability and the Turing Degrees

Clearly, not all partial functions (or even all functions or sets) are partial com-

putable, since there are only countably many computable partial functions. There-

fore, the question arises, can we calibrate how uncomputable a function is? That
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is, given two functions f and g, when can we say that f is “more uncomputable”

than g? Clearly this will be the case if g is computable and f is not. Suppose g

is uncomputable, but we then modify Definition II.1 to include g “for free?” Then

g will be “computable,” and if f is still not “computable,” then we are justified in

saying f is “more uncomputable” than g. This is somewhat formalized below:

Definition II.17. Let φ : ωk → ω be a partial function. The partial computable

closure of φ is the set of partial functions obtained by adding a seventh case to

Definition II.1. This seventh case states that the partial computable closure of φ

contains φ.

Remark II.18. Note that if φ is partial computable, its partial computable closure is

consists of just the partial computable functions.

In almost all cases3, we will only consider the partial computable closures of

sets (identified with their characteristic functions, as usual). If φ is in the partial

computable closure of A, we say φ is partial computable relative to A, or φ is Turing

reducible to A. This is denoted φ ≤T A. We say A ≡T B if A ≤T B and B ≤T A,

and A|TB if A �T B and B �T A.

Our intuition is that we are modifying the idea of an algorithm by allowing it

to ask, at any time, questions of the form “is n in A?” with further action by the

algorithm depending on the answer received. The algorithm never “sees” A in any

way beyond the questions it asks in performing a computation. For this reason, in

this context A is called an oracle. We note that if φ is partial computable relative to

A and if φ(k) ↓, this computation only asks finitely many questions of the form “is n

in A?” The use of the computation is 1 plus the maximum value of n for which such

a question is asked (if no questions are asked, the use is 0). We observe that for this
3We may also consider the partial computable closures of total functions. We will not consider the partial

computable closures of partial functions.
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computation only, we achieve the same result whether we use as oracle A or σ, where

σ is any finite initial segment of A with length at least the use of the computation.

We can modify the framework presented in Section 2.1 to account for oracle com-

putation. To define sequences coding partial functions computable from A, we need

only add a code for χA. To define sequences coding computations, we proceed as

before, except we also have sequences coding the times when an algorithm asks “is

n in A?” in which we record the value of n and the result. Denote by ΦA
e the partial

function coded in this way by e (using oracle A), and by Φσ
e,s(n) the result of the

partial function coded by e, considering only computation codes up to s, using σ as

an oracle, with the use of the computation not exceeding |σ|.

Proposition II.19. The set of (e, s, n, σ) such that Φσ
e,s(n) ↓ is computable. The

function that maps (e, n) to ΦA
e (n) (if the latter exists) is uniformly partial computable

in A (i.e., there is an index d such that this function is given by ΦA
d for all A).

Remark II.20. Compare this proposition to Proposition II.6. For each e, the function

that maps A to ΦA
e is called a Turing functional.

It is clear that, as a relation on ω2, ≤T is reflexive and transitive. Therefore, we

can consider the set of equivalence classes of ≡T . A member of this set is called a

Turing degree. Naturally, ≤T imposes a partial ordering ≤ on the set D of Turing

degrees, and in fact (D,≤) forms an upper semilattice. Specifically, if a is the degree

of A and b is the degree of B, then the degree of A⊕B is the least upper bound of

a and b, where

A⊕B = {2n : n ∈ A} ∪ {2n+ 1 : n ∈ B}.

Finally, we note that if A ⊆ ω is computable (for example, A = ∅), then although

{ΦA
e }e∈ω gives exactly the partial computable functions, the indexing of functions is
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different. Specifically, values of e which involve a call to the oracle produce the empty

function when there is no oracle, and may produce something different if we use A

as an oracle. In order to present a more unified approach in cases where we deal

with functions which are computable and functions which are computable relative to

some B, we assume that all computation is done with an oracle. Specifically, from

this point forward, if we say something is computable, we are assuming the use of ∅

as an oracle, and take Φe to mean Φ∅
e.

Remark II.21. The overall idea of this section, if not the specific approach, is derived

from [41] and [25].

2.4 Descriptive Complexity of Sets

Consider the following question: when is it possible for an algorithm to describe

a set A ⊆ ω? This depends on what we mean by the word “describe.” An algorithm

can be said to describe A if it is an algorithm for χA, but there are other possibilities.

For example:

Proposition II.22. For A ⊆ ω, the following are equivalent.

1. A is the domain of some partial computable function φ.

2. There is a computable R ⊆ ω such that n ∈ A iff ∃s〈s, n〉 ∈ R.

3. A is empty or the range of some computable function f .

4. A is finite or the range of some injective computable function g.

5. The partial function ψ given by ψ(n) = 1 if n ∈ A and ψ(n) ↑ if n /∈ A is partial

computable.

Proof. 1 ⇒ 2: Let φ = Φe, and 〈s, n〉 ∈ R iff Φe,s(n) ↓.



21

2 ⇒ 3: If A is nonempty, choose a ∈ A. Let f(〈s, n〉) = n if 〈s, n〉 ∈ R and

f(〈s, n〉) = a otherwise.

3 ⇒ 4: If A is infinite, we may define g(0) = f(0) and g(n + 1) = f applied to

μk[∀m ≤ n f(k) �= g(m)].

4 ⇒ 5: Let h be the constant function equal to 1. If A is finite, then A is

computable, and ψ is partial computable since ψ(n) = h(μm[n ∈ A]). If A is

infinite, then ψ is partial computable since ψ(n) = h(μm[g(m) = n]).

5 ⇒ 1: Trivial.

Definition II.23. If A satisfies any (all) of the above conditions, A is computably

enumerable (abbreviated A is c.e.). The eth c.e. set, denoted We, is the domain of

Φe.

The intuition behind Definition II.23 is that A is c.e. if there is an algorithm

which puts numbers into A. Such an algorithm is not allowed to take numbers out

of A once they are put in, or decide that some n will never be put into A. An

algorithm of this type is called an enumeration of A, and can be represented by a

sequence {As}s∈ω such that
⋃

s∈ω As = A and As ⊆ As+1 for all s. The enumeration

is computable if the set of (s, n) such that n ∈ As is computable. Observe that each

condition in Proposition II.22 immediately gives an enumeration of A – for example,

if A = We, it is enumerated by As = We,s, where n ∈ We,s iff Φe,s(n) ↓.

Clearly, if A is computable, then A is c.e. Further, the two concepts do seem

similar in many ways. For example, it is easy to show A is computable iff A is empty

or the range of a nondecreasing computable function f iff A is finite or the range

of an increasing computable function g (compare to 3 and 4 of Proposition II.22).

Also, we have a simple characterization of computable sets in terms of c.e. sets.
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Proposition II.24. For A ⊆ ω, A is computable iff A and Ā are c.e.

Proof. The forward implication is trivial. Suppose A and Ā are c.e. via condition 2

of Proposition II.22, as witnessed by R and Q, respectively. Let f(n) = μs[〈s, n〉 ∈

R ∪ Q]. Clearly f is partial computable, and since every n is in A or Ā, f is total.

Now note n ∈ A iff 〈h(n), n〉 ∈ R.

However, it is not the case that every c.e. set is computable.

Proposition II.25. Let K = {e : Φe(e) ↓}. K is a c.e. set that is not computable.

Proof. Note K is c.e. since it is the domain of the diagonal function. If K is

computable, by Proposition II.24, K̄ = We for some e. But then e ∈ K̄ iff e ∈

dom(Φe) iff e ∈ K, a contradiction.

The c.e. set K defined in the above proposition plays an important role. It is

complete, in the sense that every c.e. set is not “less computable” than K.

Proposition II.26. If A is c.e., then A ≤T K.

Proof. Assume A = We and let ψ(n, x) = μs[n ∈ We,s]. By Proposition II.11, there

is a computable g such that for all n and x, ψ(n, x) = Φg(n)(x). It suffices to note

that n ∈ A iff g(n) ∈ K.

For any oracle A, the above can be relativized to produce a definition for A-c.e.

sets (by relativize, we mean replace all instances of “computable” with “computable

relative to A”). We denote by WA
e the eth A-c.e. set (the domain of ΦA

e ), and A′

the set {e : ΦA
e (e) ↓} (note that K = ∅′). As in the computable case, A′ is complete

with respect to A-c.e. sets. We denote by A(n) the result of applying ′ to A n times.

The operator ′ (called the jump operator) behaves nicely relative to ≤T .

Proposition II.27. If A ≤T B, then A′ ≤T B
′.
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Proof. A′ is A-c.e. ⇒ A′ is B-c.e. ⇒ A′ ≤T B
′.

Remark II.28. For this reason, we may view the jump operator as an operator on

Turing degrees (i.e., it is well-defined).

Definition II.29. A is lown if A(n) ≤T ∅(n), and A is highn if A(n) ≥T ∅(n+1). In the

case n = 1, we say simply A is low or A is high.

The intuition is that an A which is lown is close to ∅ in terms of computability

(i.e., behaves like ∅ with respect to the jump operator), and an A which is highn is

close to ∅′. This intuition is especially relevant when we restrict this definition to

sets which are computable relative to ∅′, so that the sets that are lown or highn are

the ones that take the lowest or highest possible value after n iterations of the jump.

We now turn our attention to an extension of the notion of c.e. sets, based on

condition 2 of Proposition II.22. We make the following definition inductively on n.

Definition II.30. Let A ⊆ ω.

1. A is Σ0
0 iff A is computable.

2. A is Π0
n iff Ā is Σ0

n.

3. A is Σ0
n+1 iff there is a Π0

n set B such that m ∈ A iff ∃s 〈s,m〉 ∈ B.

4. A is Δ0
n iff A is Σ0

n and Π0
n.

5. A is arithmetical iff A is Σ0
n or Π0

n for some n.

Remark II.31. Note that Π0
0 and Δ0

0 are equivalent to computable, and Σ0
1 is equiva-

lent to c.e. These definitions relativized to A are denoted Σ0
n[A], Π0

n[A], and Δ0
n[A].

The arithmetical sets, though they can be far from computable, are also in a sense

computably describable. From the definitions, it is clear that A is arithmetical iff it
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is obtained by applying a finite number of quantifiers to a computable relation R. If

we ignore any bounded quantifiers, the number of blocks of consecutive occurrences

of ∃ or consecutive occurrences of ∀ is the n such that A is Σ0
n (if the first unbounded

quantifier is ∃) or Π0
n (if the first unbounded quantifier is ∀). Two consequences are

immediate. First, for each n, we can enumerate the Σ0
n and Π0

n sets effectively (by

indexing the sequence of quantifiers and R). Second, since we can always put in a

dummy quantifier (i.e., a quantifier for a variable that is not involved in R), for all n,

“A is Π0
n” and “A is Σ0

n” each imply “A is Δ0
n+1.” These implications fail to reverse

for any n > 0, as do the implications “A is Δ0
n”⇒“A is Σ0

n” and “A is Δ0
n”⇒“A is

Π0
n.” This is easily deduced from the propositions below.

Definition II.32. A Σ0
n set A is Σ0

n T -complete iff for all Σ0
n B, B ≤T A.

Proposition II.33. [25] For all n, A is Σ0
n+1 iff A is c.e. relative to ∅(n), and ∅(n+1)

is Σ0
n+1 T -complete.

Proof. The proof will proceed by induction on n. For n = 0, this has already been es-

tablished (the second statement by Proposition II.26). Now assume both statements

for n. Let A be Σ0
n+2, as witnessed by a Π0

n+1 B. By the inductive assumption,

∅(n+1) ≥T B̄ ≥T B, so A is c.e. relative to ∅(n+1) (see condition 2 of Proposi-

tion II.22). The second statement is now Proposition II.26 relativized to ∅(n+1).

Corollary II.34. [25] For all n, A is Δ0
n+1 iff A ≤T ∅(n).

Proof. By a relativization of Proposition II.24, A ≤T ∅(n) iff A and Ā are c.e. relative

to ∅(n) iff A and Ā are Σ0
n+1.

For this reason, we may refer to all functions ≤T ∅(n) as Δ0
n+1 – certainly each

such function is ≡T a Δ0
n+1 set. The Δ0

2 functions are computably describable in an

especially nice way.
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Proposition II.35. [48] For all f , f is Δ0
2 iff there is a computable g : ω2 → ω such

that for all n, f(n) = lims g(n, s).

Proof. For the forward implication, let f = Φ∅′
e , and let ∅′s be a computable enumer-

ation of ∅′. We may let

g(n, s) = Φ∅′s�s
e,s (n)

if the latter converges, and 0 otherwise. For the reverse implication, let A be the

set of 〈n, s〉 such that ∀t ≥ s g(n, t) = g(n, s). Since A is Π0
1, it is computable

from ∅′. To compute f(n), search for the least s such that 〈n, s〉 ∈ A, and compute

g(n, s).

Remark II.36. Equivalently, f is Δ0
2 iff there is a sequence of functions gs uniformly

computable such that f = lims gs. This statement also holds for sets – i.e., A is Δ0
2

iff there is a sequence of sets Bs uniformly computable such that A = limsBs.

We now close this section with a proof of a theorem due to Martin [28] closely

related to the work of this thesis, using many of the ideas from this section.

Definition II.37. A function f dominates a function g iff for all but finitely many

n, f(n) ≥ g(n). This is abbreviated f ≥∗ g.

Proposition II.38. [28] A is high iff A computes a function f which dominates

every computable function.

Proof.

Lemma II.39. The set Tot := {e : Φe is total.} is Π0
2 T -complete.

Proof. First, Tot is Π0
2 since e ∈ Tot iff ∀n∃s n ∈ We,s. Now suppose A is Π0

2, and

fix R computable so that n ∈ A iff ∀s∃t 〈n, s, t〉 ∈ R. Then ψ partial computable,
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where ψ(n, s) = μt[〈n, s, t〉 ∈ R]. By Proposition II.11, there is a computable f such

that Φf(n)(s) = ψ(n, s). We now observe n ∈ A iff f(n) ∈ Tot.

Recall ∅′′ is Σ0
2 T -complete. Easily, it follows that ∅′′ is Π0

2 T -complete, so ∅′′ ≡T

∅̄′′ ≡T Tot. Therefore, by the relativizations of Corollary II.34 and Proposition II.35,

A is high iff Tot is limsBs with the Bs uniformly A-computable.

Now suppose such a sequence Bs exists. Define an A-computable h(e, n) by first

finding the least t ≥ n such that either Φe,t(n) ↓ or e /∈ Bt. In the former case, let

h(e, n) = Φe,t(n), and in the latter case, let h(e, n) = 0. Note that if Φe is total,

then for all but finitely many n, h(e, n) = Φe(n). Hence, f(n) := maxe≤n h(e, n)

dominates all computable functions.

Conversely, suppose f ≤T A dominates all computable functions. For Φe total, let

ge(n) = μs[Φe,s(n) ↓]. Note ge is computable – hence, so is g̃e(n) := maxm≤n ge(m).

Since every g̃e is dominated by f , Tot is the limit of Bs where e ∈ Bs iff for all n ≤ s

Φe,f(s)(n) ↓.

2.5 Descriptive Complexity of Classes

We can apply a process similar to the one from the discussion following Defini-

tion II.30 to subsets of ω2 to define arithmetical classes.

Definition II.40. 1. P ⊆ ω2 is Σ0
n iff for some computable R,

A ∈ P ⇐⇒ ∃x1∀x2 . . . Qxn(x1, x2, . . . , A � xn) ∈ R,

where Q = ∃ if n is odd and Q = ∀ if n is even.

2. P ⊆ ω2 is Π0
n iff for some computable R,

A ∈ P ⇐⇒ ∀x1∃x2 . . . Qxn(x1, x2, . . . , A � xn) ∈ R,

where Q = ∀ if n is odd and Q = ∃ if n is even.
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3. P ⊆ ω2 is an arithmetical class iff it is Σ0
n or Π0

n for some n.

We will be mostly concerned with Σ0
1 classes and Π0

1 classes. The former are also

called c.e. open sets, because of the following result which essentially says we may

view such a set V as the result of a computable process which adds (“enumerates”)

basic open sets into V .

Definition II.41. A tree is a T ⊆ <ω2 such that σ ∈ T and τ ⊆ σ imply τ ∈ T .

The paths through T are the A ∈ ω2 such that for all n, A � n ∈ T .

Proposition II.42. P ⊆ ω2 is Σ0
1 iff there is a computable W ⊆ <ω2 such that

P = [W ] iff there is a c.e. V ⊆ <ω2 such that P = [V ]. P ⊆ ω2 is Π0
1 iff there is a

computable tree T such that P is the set of paths through T iff there is a co-c.e. tree

S such that P is the set of paths through S.

Proof. The second statement clearly follows from the first, since P̄ is Π0
1 iff P is Σ0

1,

and if P = [W ], then P̄ is the set of paths through T , where σ ∈ T if it does not

extend any τ ∈ W . We also note that the first equivalence (Σ0
1 iff equal to [W ] for

some computable W ) is simply a restatement of the definition (though it represents

a different perspective that is sometimes useful).

The only case we need to consider, then, is when P = [V ] for a c.e. V . In this

case, we need to show that P = [W ] for a computable W . If Vs is a computable

enumeration of V , we may take W to be the set of σ such that some initial segment

of σ is in V|σ|.

Remark II.43. The equivalence P is Π0
1 iff it is the set of branches of a computable

tree T bears some further remarks. By König’s lemma, if T is infinite, P is nonempty.

However, König’s lemma does not hold computably – that is, P is not guaranteed to
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have a computable member. In future sections, we will see multiple natural examples

of nonempty Π0
1 classes without computable members.

The Π0
1 classes will play an especially important role in the material which follows,

since there are many cases where, for some property P , there is a Π0
1 class consisting

of only reals with property P . For a quick example, if φ is {0, 1}-valued and partial

computable, the set of reals extending φ is Π0
1.

Because of Proposition II.42, we may effectively enumerate the Π0
1 classes (i.e., e

codes the Π0
1 class that is the complement of [We]). Let Pe denote the Π0

1 class coded

by e, and Pe[s] the complement of [We,s].

Proposition II.44. The set {e : Pe = ∅} is computable relative to ∅′.

Proof. Note that for all s, Pe[s + 1] ⊆ Pe[s], so the Pe[s] form a nested sequence

of closed subsets of a compact space (ω2). Therefore, Pe is empty iff some Pe[s] is

empty. Since We,s is finite for all s, it follows that Pe[s] is in fact uniformly clopen.

Therefore, we may computably (from s) determine if Pe[s] is empty. It follows that

we may determine computably relative to ∅′ if any Pe[s] is empty.

In the cases where we want to know if an oracle A computes a real with property

P , the following notion will be useful.

Definition II.45. A ⊆ ω2 is a basis for Π0
1 classes iff for all nonempty Π0

1 P , there

exists A ∈ A ∩ P .

Example II.46. It is easy to show that the Δ0
2 reals are a basis for Π0

1 classes. If P

is nonempty, then an X ∈ P can be constructed computably in ∅′ as follows: we fix

a computable T such that P is the set of paths through T , and start with X � 0 = ∅.

Given X � n = σ, we determine computably in ∅′ if there is k > n such that every

extension of σ0 of length k is not in T . If so, let X � n + 1 = σ1, and if not, let it
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be σ0. In fact, the X constructed in this way is ≡T to a c.e. set, so the set of such

reals is a basis for Π0
1 classes.

Proposition II.47. [22] The set {A : A is low} is a basis for Π0
1 classes.

Proof. Let P be a nonempty Π0
1 class. We will construct a sequence of nonempty Π0

1

classes P e satisfying P 0 = P and P e+1 ⊆ P e, so that their intersection is nonempty.

We will ensure that any member of this intersection is low by using P e+1 to decide

ΦA
e (e) for all A ∈ P e+1.

Given P e, consider P̃ e = P e∩{X : ΦX
e (e) ↑}. Since ΦX

e (e) ↑ iff for all s ΦX�s
e,s (e) ↑,

an index for P̃ e can be found computably from an index from P e. The oracle ∅′ can

determine if P̃ e is empty – if so, let P e+1 = P e and otherwise let P e+1 = P̃ e. For

X ∈ ⋂
e P

e, ΦX
e (e) ↓ iff the first case occurred at step e, so X is low.

We close this section by remarking that there is no “best” choice for a basis for Π0
1

classes. Specifically, the intersection of all bases is the set of computable reals, which

is not a basis (as witnessed by, say, the set of X such that for all e, s, X(e) �= Φe,s(e)).

We will establish this in the next section, where we will exhibit a basis with no Δ0
2

members.

2.6 Properties Which Imply Non-Computability

One of the important early questions in computability theory was Post’s problem

[41], which asked if there was a c.e. A such that ∅ <T A <T ∅′ – that is, a c.e.

Turing degree other than the minimum and the maximum. While this problem (and

the further study of c.e. degrees) does not concern this thesis, the following two

definitions made in an attempt to solve Post’s problem do concern this thesis.

Definition II.48. [41] Let A ⊆ ω be infinite.
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1. A is immune iff A does not have an infinite c.e. subset.

2. A is hyperimmune iff for any computable sequence {Di}i∈ω of nonempty pairwise

disjoint finite subsets of ω, there exists i such that A ∩Di = ∅.

Proposition II.49. Every hyperimmune set is immune. No immune set is com-

putable.

Proof. The second statement is trivial since any computable set is c.e. For the first

statement, for any infinite c.e. set that is enumerated by an injective computable f ,

use Di = {f(i)}.

Remark II.50. Although it is not vital to this thesis, we will pause to briefly ex-

plain the role of these definitions in solving Post’s problem. A c.e. set A is simple

(hypersimple) if its complement is immune (hyperimmune). The hope behind these

definitions was that a simple/hypersimple set, while being non-computable, would

also be prevented from having too much computational power due to the “thinness”

of its complement. This hope was supported by known properties of ∅′. However, it

is possible for a simple (or even hypersimple) set to compute ∅′. Nevertheless, it is

possible to construct a low simple set, which provides one solution to Post’s problem.

There is a characterization of the hyperimmune reals similar to that of the high

oracles from Proposition II.38.

Definition II.51. For an infinite A ⊆ ω, pA is the increasing function that enumer-

ates A.

Proposition II.52. [30] A is hyperimmune iff pA is not dominated by any com-

putable function.

Proof. ⇒: Suppose pA is dominated by a computable g. Without loss of generality,

we may assume g is increasing (otherwise, replace g with n �→ ∑
m≤n(g(m) + 1)).
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Let Di be given by

D0 = [0, g(0)]

Di+1 = [1 + maxDi, g(1 + maxDi)].

Observe the sequence of Di is computable and the sets are pairwise disjoint. Also,

for all but finitely many n, n ≤ pA(n) ≤ g(n) (the former inequality is true always),

so for all but finitely many i, A ∩Di �= ∅. If we replace the Di with D̃i := Di+k for

a sufficiently large k, the D̃i witness A is not hyperimmune.

⇐: Suppose A is not hyperimmune, as witnessed by a sequence of Di. Let

g(0) = maxD0, and g(n + 1) = maxDm, where m is minimal such that Dm has no

member ≤ g(n). Note that for all n, the interval (g(n), g(n + 1)] contains some Di,

and so contains some member of A. As also g(0) ≥ pA(0) (since D0 contains some

member of A), it follows that g dominates pA.

Remark II.53. Clearly, for all A, pA ≡T A. Therefore, B computes a hyperimmune

real iff B computes a function that is not dominated by any computable function

(by the trick used on g in the ⇒ portion of the above proof, if B computes a

function not dominated by any computable function, we may assume the function

is increasing). For this reason, the B without this property are sometimes called

computably dominated. We will instead use the more traditional term hyperimmune-

free.

Hyperimmune reals have more impact on the material of this thesis than do im-

mune reals, and have notable interactions with the concepts from the previous two

sections, as witnessed by the following propositions.

Proposition II.54. [35] If A is non-computable and Δ0
2, then A computes a hyper-

immune real.
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Proof. Let Bs be a uniform sequence of computable sets such that limsBs = A. The

function given by f(s) = μt > s[Bt � s = A � s] is computable in A (in fact, f ≡T A).

Suppose g dominates f . Then for sufficiently large s, there is a t ∈ (s, g(s)] such

that Bt � s = A � s. Also, for any fixed n, for sufficiently large s, Bt(n) = A(n)

for all t > s. Consider the algorithm (computable in g) that, given n, finds s > n

such that Bt(n) is constant for t ∈ (s, g(s)] and returns this constant value. For

sufficiently large n, this constant value must be A(n), so the algorithm (up to a

finite modification) gives A. It follows that A ≤T g. As A is not computable, g

cannot be computable.

Remark II.55. The actual result being proven here is that if A is non-computable

and Δ0
2, then A computes a function f such that g ≥∗ f implies g ≥T f . Such an f

is called a self-modulus. The oracles which compute a self-modulus will be a topic of

discussion in Chapter VII.

Proposition II.56. [22] The set of hyperimmune-free reals is a basis for Π0
1 classes.

Proof. Let P be a nonempty Π0
1 class. As in the proof of Proposition II.47, we will

build a nested sequence of nonempty Π0
1 classes with P 0 = P . Given P e, determine

if there exists n such that

P̃ e,n := P e ∩ {X : ΦX
e (n) ↑} �= ∅.

Note this is a Π0
1 class since X is in the latter set iff for all s, Φe,s(n) ↑. If such an

n exists, let P e+1 = P̃ e,n for the least such n (in this case, ΦX
e is not total for any

X ∈ P e+1), and if not, let P e+1 = P e (in this case, ΦX is total for all X ∈ P e+1).

Now, let X ∈ ⋂
e P

e, and suppose ΦX
e is total (so P e = P e+1 and ΦY

e is total for

all Y ∈ P e+1). Let T be a computable tree such that P e+1 is the set of branches of T .

Temporarily fix n. Note that the set of σ ∈ T such that Φσ
e,|σ|(n) ↑ is a computable
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subtree of T . Since its set of branches is empty (any branch would be a Y ∈ P e+1

with ΦY
e not total), this subtree is finite. That is, there exists m such that for all

σ ∈ T of length m, Φσ
e,m(n) ↓. The function f that, given n, finds the least such m is

clearly computable. We now note that ΦX
e is dominated by the computable function

that maps n to the maximum of Φσ
e,f(n)(n) for σ ∈ T of length f(n).

Corollary II.57. The intersection of all bases for Π0
1 classes is the set of computable

reals.

Proof. If X is in every basis for Π0
1 classes, then X is low (Proposition II.47) and

therefore Δ0
2 (X ≤T X ′ ≤T ∅′), and X is hyperimmune-free (the preceding proposi-

tion). Therefore, by Proposition II.54, X is computable.

Corollary II.58. There is no ⊆-minimal basis for Π0
1 classes.

We now turn our attention away from immunity variants and consider another pair

of related properties which will figure prominently in this thesis. As with immunity

and hyperimmunity, they imply non-computability in a specific way, one related to

the diagonal function J(e) = Φe(e).

Definition II.59. A real A is diagonally non-computable (or DNC ) iff it computes

a function f such that f(e) �= J(e) for all e where the latter is defined. If f is

additionally {0, 1}-valued, A is PA.

In this definition, A computes a function (or a set) whose value on input e is

the witness that the function (set) is not given by Φe. The properties of DNC

reals which are of interest to us involve algorithmic randomness and genericity, and

therefore discussion of them will be postponed to the next section. The PA reals, on

the other hand, are closely related to Π0
1 classes in the following way:
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Proposition II.60. [22, 8] Let A ⊆ ω. The following are equivalent.

1. A is PA.

2. For any {0, 1}-valued partial computable function φ, A computes a total exten-

sion of φ.

3. The set of B ≤T A is a basis for Π0
1 classes.

Proof. 1 ⇒ 2: Let f ≤T A witness A is PA. By Proposition II.11, if φ is partial

computable, there is a computable g such that for all n and m, Φg(n)(m) = φ(n).

For all n in the domain of φ, f(g(n)) �= φ(n), so n �→ 1− f(g(n)) extends φ.

2 ⇒ 3: Let P be a nonempty Π0
1 class, and T a computable tree such that P is the

set of branches through T . For i ∈ {0, 1}, let φ(σ) = i if there exists s such that σi

has extensions in T of length s and σ�(1− i) does not (otherwise φ(σ) is undefined).

By König’s lemma, if [σ] ∩ P is nonempty and [σi] ∩ P is empty, φ(σ) = 1− i. Let

f ≤T A be a {0, 1}-valued total extension of φ. We may construct B ≤T A in P by

letting B(n) = f(B � n).

3 ⇒ 1: The set of Y such that Y (e) �= J(e) for all e is a Π0
1 class.

Remark II.61. Note that the third argument above immediately supplies a low PA

real and a hyperimmune-free PA real.

2.7 Algorithmic Randomness

The field of algorithmic randomness has been of intense interest to computability

theorists in recent years, and in this thesis we only touch on a small portion of it.

We refer the reader to the texts by Nies [36] and Downey and Hirschfeldt [15] for a

more detailed treatment.
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There are three approaches one can make to answering the question “what makes

a real random?”

• The real should not have any exceptional properties. Here, an “exceptional

property” is represented by being in a measure zero subset of ω2 (according to

Lebesgue measure). In this sense, a real is algorithmically random if it is not in

any null set that is effectively presented.

• The real should not be easy to compress. In other words, there should be no way

to describe, using relatively little information, relatively long initial segments of

the real. Here, a description is represented by a function which takes (usually

shorter) finite binary strings to (usually longer) finite binary strings. In this

sense, a real is algorithmically random if no such function which is effectively

presented consistently takes short strings to long initial segments of the real.

• The real should be unpredictable. If one bets on the next bit to appear in the

real, one should not expect to win consistently. Here, betting is represented by

a function from finite binary strings to positive real numbers that describes the

winnings of such a gamble according to a fixed betting process. In this sense, a

real is algorithmically random if no such function which is effectively presented

consistently produces success (in the form of increased winnings) along the initial

segments of the real.

There are therefore many ways to define an algorithmically random real, since we

can take any of the above approaches, and also within each approach we have differ-

ent options for what constitutes being “effectively presented.” We will only concern

ourselves with the first two approaches (no exceptional properties, incompressibil-

ity), and only with two notions of algorithmically random which may be defined from
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these approaches. The material in this section will also differ from the usual treat-

ment of algorithmic randomness in that we will place greater emphasis on effectively

presented null sets, since these sets will be of independent interest later.

The fundamental way to represent a null set N is with a sequence of open sets

Vn such that for all n, N ⊆ Vn, and μ(Vn) → 0 as n → ∞. The following definition

shows two ways we can make this definition in some sense computable.

Definition II.62. [29, 46]

1. A Martin-Löf test is a sequence of uniformly c.e. open sets Vn such that for all

n, μ(Vn) ≤ 2−n. A Schnorr test is a Martin-Löf test {Vn}n∈ω such that for all

n, μ(Vn) = 2−n.

2. A null set N ⊆ ω2 is Martin-Löf null (Schnorr null) iff for some Martin-Löf

(Schnorr) test {Vn}n∈ω, N ⊆ Vn for all n.

3. A real X is Martin-Löf random (Schnorr random) iff it is not contained in any

Martin-Löf (Schnorr) null set.

Remark II.63. Without loss of generality, we may assume the open sets of a Martin-

Löf test are nested, since we can replace Vn with
⋂

m≤n Vm. Of course, no computable

X is Martin-Löf or Schnorr random, as witnessed by {Vn} = [X � n].

Note that {Vn}n∈ω is uniformly c.e. open iff the set of 〈n, σ〉 such that [σ] ⊆ Vn

is c.e. Therefore, we can enumerate all sequences of uniformly c.e. open sets. This

further allows us to effectively list all Martin-Löf tests. That is, if Vn (in some

uniform sequence) would attain measure greater than 2−n, halt all enumeration of

basic open neighborhoods into Vn. Let {V e
n } denote the eth test in this listing. From

this we can construct a universal Martin-Löf test – a Martin-Löf test {Un}n∈ω such
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that N is Martin-Löf null iff N ⊆ Un for all n. Specifically, Un will be the union of

all V e
n+e+1. By way of contrast, there is no universal Schnorr test.

The existence of a universal Martin-Löf test has some interesting implications for

the Martin-Löf random reals (and, by extension, the Schnorr random reals, since

Martin-Löf random implies Schnorr random). Since X is Martin-Löf random iff

it is outside of the intersection of the Un iff it is outside one of them, for all n

Pn := ω2\Un is a Π0
1 class of measure at least 1− 2−n consisting of only Martin-Löf

random reals. Therefore, there are Martin-Löf random reals that are low and ones

that are hyperimmune-free. Also, every Π0
1 class P with positive measure contains a

Martin-Löf random real (if 2−n < μ(P ), Pn ∩ P has positive measure and cannot be

empty).

Both notions of an effectively null set can be expressed in multiple ways.

Definition II.64. A real number r (i.e., r ∈ R) is a computable real number iff

there is a computable sequence {qn}n∈ω of rational numbers such that for all n,

0 ≤ r − qn ≤ 2−n. A sequence of real numbers {rk}k∈ω is uniformly computable iff

the corresponding sequence of rational sequences is uniformly computable.

Proposition II.65. [50, 47, 46]

1. For all N ⊆ ω2, the following are equivalent.

(a) N is Martin-Löf null.

(b) There is a computable sequence of σn ∈ <ω2 such that

∑
n∈ω

2−|σn| <∞

and

N ⊆
⋂
n∈ω

⋃
m≥n

[σm].
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2. For all N ⊆ ω2, the following are equivalent.

(a) N is Schnorr null.

(b) There is a sequence of uniformly c.e. open sets Vn such that {μ(Vn)}n∈ω is a

decreasing uniformly computable sequence of real numbers, limn→∞ μ(Vn) =

0, and N ⊆ Vn for all n.

(c) There is a computable sequence of σn ∈ <ω2 such that

∑
n∈ω

2−|σn|

is a finite computable real number and

N ⊆
⋂
n∈ω

⋃
m≥n

[σm].

(d) There is a computable sequence of clopen sets En ⊆ ω2 such that μ(En) ≤

2−n for all n, and

N ⊆
⋂
n∈ω

⋃
m≥n

Em.

Proof. 1. (a)⇒(b): Assume N is Martin-Löf null as witnessed by a test {Vn}n∈ω.

Fix Wn ⊆ <ω2 uniformly c.e. such that Vn = [Wn] for all n. Let σ〈m,k〉 be the

mth finite binary string enumerated into Wk. The sequence of σn is computable,

and ∑
n∈ω

2−|σn| =
∑
n∈ω

μ(Vn) ≤ 2.

(b)⇒(a): Let σn be a sequence of strings as described. By removing finitely

many strings, we may assume

∑
n∈ω

2−|σn| ≤ 1.

Let Wn be the set of τ such that σm ⊆ τ for at least 2n many values of m.

Clearly, if Vn = [Wn], then the Vn form a sequence of uniformly c.e. open sets.
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Express Vn as the disjoint union of (possibly infinitely many) basic open sets

[τk]. Then

μ(Vn) =
∑

k

2−|τk| ≤ 2−n
∑

m,k:σm⊆τk

2−|τk| ≤ 2−n
∑
m

2−|σm| ≤ 2−n.

Note in the second inequality, we take advantage of the disjointness of the [τk],

implying that for a fixed m,

∑
k:σm⊆τk

2−|τk| ≤ 2−|σm|.

The proof is finished by observing that if X extends infinitely many σm, then

for every n there is a k such that X � k extends at least 2n many σm. Hence,

such an X is in every Vn.

2. (a)⇒(b): Trivial, since any computable sequence of rational numbers is also a

uniformly computable sequence of real numbers.

(b)⇒(c): Suppose we are given a sequence of Vn as stated in (b). We may move

to a subsequence Ṽn, which satisfies the necessary properties of Vn and also

μ(Ṽn) ≤ 2−n. Specifically, if {qn,k}k∈ω approximate μ(Vn) as in Definition II.64,

let Ṽn be Vm, where m is minimal such that qm,n+2 ≤ 2−n−1. The proof now

proceeds as with (a)⇒(b) of the previous item (as it is easy to verify that the sum

of a sequence of uniformly computable real numbers, if finite, is a computable

real number).

(c)⇒(d): Let the sequence of σn be given. Let r be the sum of the 2−|σn|. Since

r is computable, there is a computable function f such that for all n,

r −
∑

m≤f(n)

2−|σm| ≤ 2−n.

Specifically, wait for the sum to become ≥ qn, where the sequence of qn witnesses

r is computable. Let En be the union of [σm] for f(n) < m ≤ f(n+ 1).
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(d)⇒(a): Given the sequence of En as described, we obtain the Vn as uniform

unions of computable sequences of clopen sets Vn,s. Let Vn,0 be empty, and

given Vn,s, let Vn,s+1 = Vn,s ∪ En+s+1 ∪ C, where C is clopen and has minimal

index such that this union has measure 2−n − 2−n−s−1 (by induction on s, such

a C always exists since Vn,s has measure 2−n − 2−n−s and En+s+1 contributes

measure at most 2−n−s−1).

Using the above proposition we can easily prove the following converse to every

positive measure Π0
1 class containing a Martin-Löf random (hence Schnorr random)

real.

Proposition II.66. If a Π0
1 class P contains a Schnorr random real X, then μ(P ) >

0.

Proof. Let P = ω2\[W ], where W ⊆ <ω2 is c.e. Let Ws be a computable enumeration

of W such that Ws is finite for all s, and let Ps = ω2\[Ws]. Then Ps is a computable

sequence of clopen sets. In particular, the sequence Ps is uniformly c.e. open and

μ(Ps) is computable uniformly in s. Therefore, if μ(P ) = 0, lims μ(Ps) = 0 so by

Proposition II.65
⋂

s Ps = P is Schnorr null, a contradiction.

The interaction between Martin-Löf random and Schnorr random (as concepts)

is closely related to highness.

Proposition II.67. [37] If X is not high, X is Schnorr random iff X is Martin-Löf

random.

Proof. The reverse implication is always true. Assume X is not high and not Martin-

Löf random. For each n, X ∈ Un, where {Un} is the universal Martin-Löf test. Let

Un,s denote a uniform enumeration of the Un. For every enumeration As of a c.e.

set A, we can assume As is finite for all s. Correspondingly, we can assume Un,s
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is clopen (i.e., the union of finitely many basic open neighborhoods) for all n, s.

The function f mapping n to the least s such that X ∈ Un,s is computable in X.

Since X is not high, by Proposition II.38, there is a computable g such that for

infinitely many n, g(n) > f(n). Hence, for infinitely many n, X ∈ Un,g(n). Since

{Un,g(n)}n∈ω is a computable sequence of clopen sets and μ(Un,g(n)) ≤ μ(Un) ≤ 2−n,

by Proposition II.65, X is not Schnorr random.

In contrast to the above, when restricted to the high oracles, Martin-Löf random

and Schnorr random are very different concepts. For example, it is a theorem that

if A is high, there exists X ≡T A such that X is Schnorr random and not Martin-

Löf random. In particular, every high oracle computes a Schnorr random, including

every high c.e. oracle. But a c.e. oracle can only compute a Martin-Löf random real

if it computes ∅′. We do not prove these statements here, since the parts of them

most relevant to the thesis will be implied by later results.

Another way to calibrate the difference between Martin-Löf random and Schnorr

random is via initial segment complexity. This corresponds to the second approach

to randomness mentioned above, the approach of incompressibility.

Definition II.68. 1. A machine is a partial computable function M : <ω2 → <ω2.

A machine M is prefix-free if for all σ, τ ∈ dom(M), σ � τ . A machine M is

computable iff μ([dom(M)]) is a computable real number.

2. For M a machine and σ a finite binary string, the complexity of σ relative to

M , denoted KM(σ), is the minimum length of τ such that M(τ) = σ (if no such

τ exists, KM(σ) = ∞).

Since partial computable functions can be effectively enumerated, so can machines.

In fact, prefix-free machines can be effectively enumerated – simply enumerate the
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domain of Me, and if at any point we would enumerate an extension of a σ already

in the domain, stop enumerating the domain of Me, and alter the definition of Me to

only converge for those σ already in the domain. From this, we can define a universal

prefix-free machine, and from it, a minimal complexity function.

Definition II.69. 1. Let Me denote the effective enumeration of prefix-free ma-

chines. The universal prefix-free machine, denoted U, is the machine that maps

0e1σ to Me(σ) (and otherwise is not defined).

2. The Kolmogorov complexity of σ ∈ <ω2, denoted K(σ), is the complexity of σ

relative to U.

Remark II.70. Kolmogorov complexity is minimal among complexity functions up

to an additive constant – that is, for each prefix-free M , there is a constant d such

that for all σ, K(σ) ≤ KM(σ) + d (specifically, if M = Me, we may use d = e + 1).

We abbreviate this relationship by K(σ) ≤+ KM(σ); in general, if P and Q are

expressions, the notation P ≤+ Q indicates there is a constant d such that for all

possible values of variables occurring in P and Q, P ≤ Q+ d

A real X is compressible by a machine M if for many values of n, KM(X � n) is

significantly less than n (M provides short descriptions for long initial segments of

X). If any machine compresses X, then U does as well. Both Martin-Löf random

reals and Schnorr random reals can be characterized as the reals which cannot be

compressed by certain machines.

Proposition II.71. [47, 14] For a real X, X is Martin-Löf random iff K(X � n) ≥+

n, and X is Schnorr random iff for all computable prefix-free M , KM(X � n) ≥+ n.

Remark II.72. In other words, Martin-Löf random reals are those that can’t be

compressed by any prefix-free machine, and Schnorr random reals are those that



43

can’t be compressed by computable prefix-free machines.

Proof. For any prefix-free machine M and b ∈ ω, let RM
b denote the set of strings

σ such that KM(σ) ≤ |σ| − b. We observe that KM(X � n) ≥+ n iff for some b,

X /∈ [RM
b ]. We will actually prove the stronger statement that N is Martin-Löf null

iff for some prefix-free M , N ⊆ ⋂
b[R

M
b ], and N is Schnorr null iff this is the case for

some computable M . We divide the proof into two lemmas.

Lemma II.73. For all prefix-free M , RM
b is uniformly c.e., and μ([RM

b ]) ≤ 2−b for

all b. Additionally, if M is computable, this measure is uniformly computable.

Proof. That RM
b is uniformly c.e. is easily seen from τ ∈ RM

b iff there exists 〈τ, s〉

such that Ms(τ) ↓= σ and |τ | ≤ |σ| − b.

To bound the measure of [RM
b ], express this open set as the disjoint union of basic

open sets [σk]. For each k, there is τk such that M(τk) = σk and |τk| ≤ |σk|−b. Then

μ([RM
b ]) =

∑
k

2−|σk| ≤ 2−b
∑

k

2−|τk| = 2−bμ

(⋃
k

[τk]

)
≤ 2−bμ(dom(M)) ≤ 2−b.

Note the second equality is due to M being prefix-free, so the [τk] are disjoint.

Now suppose M is computable. It follows that there is a computable f such

that μ([dom(Mf(n))]) is within 2−n of μ([dom(M)]). Let RM
b,n denote the set of

those σ in RM
b which are witnessed by a τ ∈ dom(Mf(n)). The measure of [RM

b,n] is

rational and computable given n, uniformly in b, and by a straightforward variation

of the argument above, is within 2−n−b of μ([RM
b ]). Hence, μ([RM

b ]) is uniformly

computable.

Lemma II.74. If {Vm}m∈ω is a Martin-Löf test, there is a prefix-free machine M

such that for all m ≥ 1, V2m ⊆ [RM
m ]. Further, if μ(Vm) = 2−m for all m, M is

computable.
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Proof. Express, uniformly in m, each V2m as the disjoint union of basic open sets

[σm,k]. Without loss of generality, we may assume that for all m and k, |σm,k| ≤

|σm,k+1| by, if need be, replacing σm,k+1 with the sequence of all extensions of σm,k+1

of length |σm,k|, removing any which equal σm,l for l ≤ k.

The domain of M will be divided into disjoint pieces, with the mth piece (for

m ≥ 1) consisting of strings which extend 0m−11. The definition of M on the mth

piece of the domain will ensure that V2m ⊆ [RM
m ] by mapping strings of length m+ s

to σm,k of length 2m + s (note that each σm,k has length at least 2m). M will be

undefined on strings which do not have any 1’s. We will describe the definition of M

restricted to strings in the mth piece – this description will be uniform in m. The

description will be done in stages s.

In the description below, let τ + n denote the string whose index is n plus the

index of τ . Let f(n) be the number of k such that |σm,k| = n, and g(n) the minimal

k such that |σm,k| ≥ n. All three of these functions are computable (the latter two

uniformly in m). All work is restricted to those τ which extend 0m−11. Let M0(τ) ↑

for all τ . Given Ms, we define Ms+1 as follows:

1. If |τ | �= m+ s, Ms+1(τ) ↓ ⇐⇒ Ms(τ) ↓.

2. If f(2m+ s) = 0, Ms+1(τ) ↑ for all τ of length m+ s.

3. If f(2m+ s) �= 0, let τ ′ have minimal index such that for all ν ⊆ τ ′, Ms(ν) ↑.

4. For i < f(2m + s), let Ms+1(τ
′ + i) = σm,g(2m+s)+i. For all other τ of length

m+ s, Ms+1(τ) ↑.

Note that for all s,
∑

k<g(2m+s) 2−|σm,k| ≤ 2−2m−f(2m+s)2−2m−s, so the domain of

Ms (on the mth piece) has measure 2m
∑

k<g(2m+s) 2−|σm,k| ≤ 2−m− f(2m+ s)2−m−s.

Therefore, there are at most 2s−f(2m+s) many τ of length m+s such that Ms(ν) ↓
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for some ν ⊆ τ – that is, there are at least f(2m + s) many τ for which this is not

the case. This implies the above construction works – if f(2m + s) �= 0, τ ′ exists,

and for all i < f(2m+ s), τ ′ + i has length m+ s.

Clearly the M constructed is prefix-free, and all σm,k are in RM
m . Further, the

mth piece of the domain of M has measure 2mμ(V2m). If μ(V2m) = 2−2m for all m,

then dom(M) has measure 1, which is certainly a computable real number.

Remark II.75. The construction in Lemma II.74 makes the implicit assumption that

there are infinitely many σm,k for all m (else, f and g may not be computable, since

we do not know if there will be another σm,k). However, the functions f and g are

not strictly necessary – they merely serve as bookkeeping. The true nature of the

construction is that whenever we see a string of length 2m+ s in the list of σm,k, we

find a string of length m + s to be mapped to it by M . We do not need f and g to

be computable to show this construction works.

Kolmogorov complexity can also be used to characterize being a DNC real.

Proposition II.76. [23] A is DNC iff there is f : ω → <ω2 computable relative to

A such that for all n, K(f(n)) ≥ n.

Proof. Let σi denote the string coded by i ∈ ω.

⇒: Let r be an index such that ΦA
r is total and ΦA

r (e) �= J(e) for all e. By

Proposition II.11, there is a computable h such that

Φh(m)(x) = ΦU(σm)
r (x)

for all m,x. Let f(n) equal A � u, where u is the maximum of the uses for compu-

tations ΦA
r (h(m)) for m such that |σm| < n. Suppose that K(f(n)) < n for some n.
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There is an m such that |σm| < n and U(σm) = σf(n). Therefore,

ΦA
r (h(m)) = Φf(n)

r (h(m)) = ΦU(σm)
r (h(m)) = Φh(m)(h(m)),

a contradiction. Hence, K(f(n)) ≥ n for all n, as desired.

⇐: Consider the prefix-free machine M which, given 0k1σe, where |σe| = k,

outputs σJ(e). For all e such that J(e) ↓, KM(σJ(e)) ≤ 2 log e+d for some constant d.

Hence, K(σJ(e)) ≤ 2 log e+d′ for some constant d′ (independent of e). Now, if f ≤T A

satisfies K(f(n)) ≥ n for all n, then for sufficiently large n, K(f(n)) > K(σJ(e)), so

f(n) �= σJ(e). Hence, if f̃ is the function mapping n to the index of f(n), a finite

modification of f̃ shows A is DNC.

Corollary II.77. If X is Martin-Löf random, X is DNC. If X is Schnorr random,

X is high or DNC.

Proof. The first statement follows from Proposition II.71, which implies the existence

of a d such that K(X � (n + d)) ≥ n for all n. The second statement now follows

from Proposition II.67.

Note that the second part of the proof of Proposition II.76 does not depend on

J , but works for any partial computable φ. Immediately, we obtain the fact that if

A is DNC, then A computes a function f such that for any partial computable φ,

f(n) �= φ(n) for all but finitely many n (i.e., f̃ for an f such that K(f(n)) ≥ n for

all n). The oracles with this property are clearly just the DNC ones. However, if we

relax this property to just computable g (instead of partial computable φ), we also

obtain the high oracles.

Proposition II.78. [23] For any oracle A, the following are equivalent.

1. A is high or there is f ≤T A such that for all partial computable φ, f(n) �= φ(n)

for all but finitely many n.
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2. A is high or DNC.

3. There is f ≤T A such that for all computable g, f(n) �= g(n) for all but finitely

many n.

Proof. 1 ⇒ 2: Either A is high or a finite modification of f witnesses A is DNC (via

φ = J).

2 ⇒ 3: The argument preceding the proposition proves this if A is DNC. If A

is high, any f ≤T A which dominates every computable function must have this

property (else, f would fail to dominate g + 1).

3 ⇒ 1: Suppose f ≤T A has the described property and A is not high. Assume

φ = Φe and for infinitely many n, f(n) = Φe(n). Let h(n) equal the minimal s such

that f(m) = Φe,s(m) for n + 1 values of m < s. Clearly h ≤T A, so there is h̃

computable such that h̃(n) ≥ h(n) for infinitely many n. Without loss of generality,

assume h̃ is increasing. Let g(n) = Φe,h̃(n)(n) whenever the latter computation

converges, and 0 otherwise. Note that if h̃(n) ≥ h(n), then for some m ≥ n, we have

f(m) = Φe,h(n)(m) = Φe,h(m)(m) = g(m). As there are infinitely many such n, there

are infinitely many such m, a contradiction. Hence, for any partial computable φ,

f(n) ≥ φ(n) for all but finitely many n.

Corollary II.79. If X is Schnorr random, there is f ≤T X such that for all com-

putable g, f(n) �= g(n) for all but finitely many n.

We introduce another concept related to randomness which will be useful in later

chapters.

Definition II.80. For a real X, the effective Hausdorff dimension of X, denoted

dim(X), is

lim inf
n→∞

K(X � n)

n
.
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We note some simple facts about effective Hausdorff dimension before continuing.

The first requires an upper bound on K(σ).

Proposition II.81. K(σ) ≤+ 2 log |σ|+ |σ|.

Proof. Let τi be the string indexed by i, and M the prefix-free machine such that

M(νσ) = σ if τ|σ| = U(ν) and otherwise diverges. Also, let N be the prefix-free

machine that maps 0|τi|1τi to τi for every i and otherwise diverges. For all i, K(τi) ≤+

KN(τi) ≤+ 2|τi| ≤+ 2 log i. From M we obtain

K(σ) ≤+ KM(σ) ≤+ K(τ|σ|) + |σ| ≤+ 2 log |σ|+ |σ|.

Using X � n = σ and taking the limit as n→∞, we obtain dim(X) ≤ 1 for all X.

Clearly, 0 ≤ dim(X) for all X. If dim(X) > 0, then X is DNC – if dim(X) > 1/k

for k ∈ ω, then for sufficiently large n, K(X � kn) ≥ n. By Proposition II.71, if X

is Martin-Löf random, X has maximal dimension, as limn(n− d)/n = 1. However, if

X is Schnorr random, X can have minimal dimension, since X can fail to be DNC.

The notions of randomness and effectively null above can be relativized. In this

situation, it has proved interesting to ask when relativization does not change any-

thing. For example, are there non-computable A such that N is Schnorr null relative

to A iff N is Schnorr null, and if so, how can they be characterized? This question

can also be asked with “Martin-Löf” instead of “Schnorr,” or with randomness in-

stead of nullity, but it is the stated question that is of most interest to this thesis.

This notion was studied by Terwijn and Zambella [54].

Definition II.82. 1. An order is a computable h which is nondecreasing and un-

bounded.

2. A trace with bound h (where h is an order) is a function T : ω → [ω]<ω such
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that for all n, |T (n)| ≤ h(n). A trace T traces a function f if for all but finitely

many n, f(n) ∈ T (n).

3. An oracle A is computably traceable iff for some (any) order h, for every f ≤T A

there is a computable trace T with bound h such that T traces f .

4. An oracle A is low for Schnorr tests iff every Schnorr null set relative to A is

Schnorr null.

Remark II.83. It is proven by Terwijn and Zambella (and also by work done later

in this thesis) that if A is computably traceable via any order, it is computably

traceable via all orders; hence the lack of distinction between “any” and “some” in

the definition.

Proposition II.84. [54] A is low for Schnorr tests iff A is computably traceable.

We omit a proof of this proposition since it is implied by work done later in the

thesis.

2.8 Algorithmic Genericity

Algorithmic genericity is a concept that is in some ways similar to algorithmic

randomness, and there are some notable interactions between the two, though the

former is less developed. If a real being algorithmically random can be expressed

as not being in certain sets which are small with respect to measure, a real being

algorithmically generic can be expressed as not being in certain sets which are small

with respect to category. Here, “small” may mean nowhere dense (N is nowhere

dense if ω2\N has dense interior) or meager (covered by the union of countably

many nowhere dense sets). This similarity between randomness and genericity will

be of much interest to us.
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Definition II.85. [7]

A set V ⊆ <ω2 is dense iff for every σ, there exists τ ∈ V which extends σ.

A real X is n-generic (n ≥ 1) iff for every Σ0
n V ⊆ <ω2, there is σ ⊂ X such that

either σ ∈ V or ∀τ ⊇ σ, τ /∈ V .

A real X is weakly n-generic (n ≥ 1) iff for every dense Σ0
n V ⊆ <ω2, there is σ ⊂ X

such that σ ∈ V (equivalently, X ∈ [V ]).

Remark II.86. In light of the discourse above, note that the definition of weakly

n-generic is one that says X must be in certain open dense sets. No computable X

is n-generic or weakly n-generic, at witnessed by V = {σ : σ � X}.

Note that in the definition of n-generic, if V is dense, then there cannot exist a σ

without an extension in V . It follows that n-generic implies weakly n-generic for all

n. Also, if V is Σ0
n, the set of σ with no extension in V is Π0

n, so the union of this set

with V is a dense Σ0
n+1 set. It follows that weakly (n + 1)-generic implies n-generic

for all n. We will focus on reals which are weakly 1-generic, 1-generic, and 2-generic.

Algorithmic genericity is a property that tends to be orthogonal to the properties

we have already discussed. We give here some examples.

Proposition II.87. [9] No 1-generic real is DNC.

Proof. Suppose that for some index d and 1-generic real X, ΦX
d (e) �= J(e) for all e

(with the former function total). Let

V = {σ : ∃s, e Φσ
d,s(e) ↓= Φe,s(e) ↓}

By assumption, no σ ⊂ X can be in V , so fix σ ⊂ X such that τ /∈ V for all τ

extending σ. Define a computable g so that g(d) is Φτ
e,|τ |(d), where τ is the extension

of σ with minimal index such that this computation converges (since ΦX
d is total, such
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a τ must exist). But if g = Φd, then for some τ and s ≥ |τ |, Φτ
e,s(d) = g(d) = Φd,s(d),

a contradiction.

Corollary II.88. No 1-generic real computes a Martin-Löf random real.

Proposition II.89. No 2-generic real is high.

Proof. Suppose that d is an index such that for a 2-generic X, ΦX
e is total. We will

construct a computable g such that ΦX
e does not dominate g. Let

V = {σ : ∃n∀ν ⊇ σ Φν
e,|ν|(n) ↑}.

The totality of ΦX
e implies that no initial segment of X is in V . By 2-genericity, fix

σ ⊂ X such that for all τ extending σ and all n, there is ν ⊇ τ such that Φν
e,|ν|(n) ↓.

We let τn be an enumeration of the strings extending σ (i.e., τn is σ concatenated

with the string indexed by n). To define g, let m be minimal such that ν := τm

extends τn and Φν
e,|ν|(n) ↓, and let g(n) be 1 plus the output of this computation.

Now consider

Vm := {σ′ : ∃s, n ≥ m Φσ′
e,s(n) ↓< g(n)}

By the definition of g, for every m and σ′ ⊂ X, σ′ is an initial segment of some τn for

n ≥ m, and hence also an initial segment of some ν such that Φν
e,|ν|(n) ↓< g(n). This

ν is in Vm. Thus, by genericity, for all m some σ′ ⊂ X is in Vm. But this implies that

for all m there is n ≥ m such that ΦX
e (n) < g(n) – that is, ΦX

e doesn’t dominate g,

as desired.

Corollary II.90. No 2-generic real computes a Schnorr random real.

In contrast, weak 1-genericity dovetails perfectly with hyperimmunity, due to the

following weakening of a theorem of Kurtz.
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Proposition II.91. [27] A computes a weakly 1-generic real iff A computes a hy-

perimmune set.

Proof. ⇒: We show that if X is weakly 1-generic, then X is hyperimmune (when

viewed as a subset of ω). For any m ∈ ω and computable f , the set of Y such

that pY (n) ≥ f(n) for some n ≥ m is c.e. open and dense (specifically, given σ,

[σ(0r1)|σ|+n+1] ⊆ this set, where r = f(|σ| + n) + 1). It follows that X is in every

such set, so pX is not dominated by any computable function.

⇐: Let g ≤T A not be dominated by any computable function, and without loss

of generality, assume g is nondecreasing. We construct a weakly 1-generic X ≤T A

as the union of an A-uniform sequence {σn}n∈ω such that σ0 = ∅ and σn+1 ⊇ σn.

View We, the eth c.e. set, as a subset of <ω2. We aim to fulfill the requirements4

Re : We is not dense or X ∈ [We]

We keep track of a list of for which e has Re been satisfied (this list starts empty).

Given σn, search for the minimal e ≤ n such that Re is unsatisfied and there exists

τ such that |τ | ≤ g(n), τ ⊇ σn, and τ ∈ We,g(n) (say “Re needs attention”). If no

such e exists, σn+1 = σn. Otherwise, for the least e such that Re needs attention, fix

τ with minimal length satisfying the above statements. If |τ | ≤ n + 1, let σn+1 = τ

and add e to the “satisfied” list, and otherwise, let σn+1 = σn.

We now show that if We is dense, there is n such that σn+1 ∈ We. This will prove

X :=
⋃

n σn is weakly 1-generic (and that X is a real and not a finite binary segment,

since for any k, We can consist of the strings of length at least k). There is m such

that by stage m of the construction, for all d < e either Rd is satisfied or Rd will

never be satisfied. We note that the function

f(n) = μs[∀σ ∈ n2 ∃τ ⊇ σ |τ | ≤ s ∧ τ ∈ We,s]
4This “requirement” framework is common in computability theory proofs.
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is computable, and hence there is m′ ≥ m such that g(m′) ≥ f(m′). At this stage,

Re needs attention (since |σm′| ≤ m′). For n ≥ m′, if Re is not yet satisfied and still

needs attention, either σn+1 = σn, so Re still needs attention, or the choice of σn+1

satisfies Re (it cannot be chosen to satisfy Rd for d < e by assumption, or satisfy Rd

for d > e since such a d would not be minimal such that Rd needs attention). If n is

large enough to be greater than the length of a τ witnessing that Re needs attention,

then the latter will be the case. This has to happen eventually, so there is n such

that σn+1 ∈ We, as needed.

We end this chapter with one more concept related to genericity which will be

relevant to the thesis work.

Definition II.92. An oracle A is low for weak 1-genericity iff every weakly 1-generic

X is weakly 1-generic relative to A.

These oracles are nicely characterized by the following theorem of Stephan and

Yu. However, their proof involves concepts which will not directly influence the

remainder of the thesis. We do not wish to provide exposition for these concepts,

and so present their result without proof.

Proposition II.93. [52] For any A, the following are equivalent.

1. A is low for weak 1-genericity.

2. Every dense c.e. open set relative to A has a dense c.e. open subset.

3. A is hyperimmune-free and not DNC.



CHAPTER III

Set Theory Background

In this section, we provide some exposition to certain areas of set theory in order

for the reader to understand the motivation of the thesis work, and the sources of

the proofs contained herein. As this is a thesis in computability theory, and not set

theory, most of this material is covered in significantly less detail than the material of

the previous chapter. We refer the reader to [21], [16], or Chapter 6 of [20] for a more

thorough treatment. Also, [6] and [4] are good sources for additional information on

cardinal characteristics of the continuum, and how they are affected by forcing.

3.1 Fundamentals of Set Theory

In set theory, we consider sets to encompass all mathematical objects, with ∈ a

binary relation on sets (i.e., the elements of a set are themselves sets). The collection

of all sets is called the universe. We emphasize that not all collections of sets are

themselves sets. If this were the case, there would be a set A consisting of all sets

x such that x /∈ x. Since A ∈ A ⇐⇒ A /∈ A, we have a contradiction, known as

Russell’s paradox. We call a collection of sets a class. A class is a proper class if it

is not a set (the universe itself is one example).

We assume the universe satisfies the axiom system ZF. Axioms of ZF fall into two

types. The first type describe the behavior of sets. For example, a set is determined

54
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exactly by its elements. For another example, ∈ is a well-founded relation on sets

(that is, there is no infinite sequence xi such that xi+1 ∈ xi for all i). The second

type describe the existence of certain kind of sets. For example, if x is a set, so is

P(x) (defined formally as the class of y such that for all z, z ∈ y ⇒ z ∈ x). For

another example, if u is a set and F is an operation mapping sets y to the class of

sets z such that φ(y, z) holds (where φ is a formula of first-order logic, i.e., built

from ∈, propositional connectives, and quantifiers ∃ and ∀ ranging over sets), then

the class of those F (y) for y ∈ u which are sets is itself a set. In other words, if we

apply the same operation to every member of a set, we get another set.

Set theory is of interest in part because nearly all of mathematics can be rep-

resented in set theory. In some cases, this can be done directly. For example, a

topological space is just a set T and a set O ⊆ P(T ) such that O satisfies the axioms

assumed for open sets. We can then formalize statements about topological spaces

entirely in terms of sets (though to prove some of the theorems, we may need stronger

axioms than those in ZF).

For a second example which is simpler (though less direct), we may define the

ordered pair (x, y) to be the set {{x}, {x, y}} (that is, in ZF, it is provable that this

is a set whenever x and y are sets). A relation is then a set of ordered pairs, and a

relation f is a function if for all x, y, z, if (x, y), (x, z) ∈ f , then y = z ((x, y) ∈ f

meaning y = f(x)). The domain of f is the set of x such that (x, y) ∈ f for some y,

and similarly for the range of f . The set of functions from x to y is denoted xy (hence

our use of the notation ω2 and ωω). Continuing, we can make formal definitions for

concepts involving functions, and prove basic facts in ZF (e.g., if f is injective, there

exists g such that g(f(x)) = x for all x in the domain of f). We note that for

functions f and g, g extends f iff f ⊆ g (this explains our choice of notation for
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denoting initial segments of finite binary strings, which can be viewed as functions).

For a third example, the natural numbers can be represented by sets in the fol-

lowing way:

0 = ∅

1 = {0}

2 = {0, 1}

3 = {0, 1, 2}

This representation has several notable features. Each n ∈ ω is also a subset of ω.

For n,m in ω, n ∈ m is equivalent to n < m, and implies n ⊂ m. The successor of

n is n∪ {n}. From this representation, we can define addition and multiplication as

set functions, and begin to formulate statements in number theory. Going further,

we can represent rational numbers as equivalence classes of pairs of elements of ω,

real numbers as equivalence classes of Cauchy sequences of rational numbers, etc.

The above framework can also be extended to cover the ordinal numbers. For-

mally, a set is transitive if every element is also a subset. A set is an ordinal if it is a

transitive set whose elements are also transitive. Each ordinal is an initial segment

of the ordinals, as α contains all β < α. We note that the proper class of all ordinals

is well-ordered by ∈ (i.e., it is a well-founded linear order), so each ordinal can be

well-ordered within the universe. That is, for each ordinal α, there is a set of ordered

pairs (β, γ) with β, γ ∈ α such that if β ≤ γ iff the ordered pair (β, γ) is in the set,

then ≤ is a well-order. This set will consist of (β, γ) such that β ⊆ γ ∈ α.

Note that if α is an ordinal, so is α∪{α}. We call this the successor of α (denoted

α + 1). An ordinal is a successor ordinal if it is the successor some α, and a limit

ordinal if this is not the case. For example, ω is a limit ordinal. To define an

operation F recursively on the ordinals, it suffices to define F (0), F (α+ 1) given α,
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and for limit ordinals α, F (α) given F (β) for β < α. We will use this framework in

the next section to introduce the standard notation for cardinals.

3.2 Choice, Cardinals, and the Continuum

A fundamental assumption most mathematicians make is the axiom of choice.

One way to state this in the language of set theory is that for any set x, there is a

function f such that x ⊆ dom(f) and for all y ∈ x, if y �= ∅, f(y) ∈ y. In other

words, given any set of choices to make, we can (within the universe) make those

choices. One application of this axiom comes from the usual proof that there is a

subset of R which is not Lebesgue measurable. At one point, the proof considers

a set of equivalence classes of real numbers, and by the axiom of choice, assumes

that there is a set of real numbers which contains exactly one number from each

equivalence class.

In ZF, the axiom of choice can be described in terms of ordinals.

Theorem III.1. (ZF) The following are equivalent.

1. The axiom of choice.

2. For all x, there exists a relation r which well-orders x.

3. For all x, there exists a bijective function f from x to an ordinal α.

We pause to note that although the axiom of choice seems a reasonable mathe-

matical assumption to make, it is not a consequence of ZF (i.e., assuming there is

a model of ZF, there is a model of ZF where the axiom of choice fails). Therefore,

for some purposes, the axiom system ZFC (ZF plus the axiom of choice) is a better

model for mathematical thought. The remainder of this section will focus on ZFC

and its models.



58

An ordinal κ is a cardinal if there do not exist f and β < κ such that f : κ→ β

is a bijection. Note that in ZFC, for all x, the set of ordinals which can be mapped

bijectively to x is nonempty, and thus has a minimal element κ (we denote this by

|x| = κ). Clearly, κ is a cardinal. This gives us a way to interpret the cardinals as

giving the possible sizes of sets, in the sense that there is a bijection f : x → y iff

|x| = |y|.

Given an x, let Ha(x) be the set of ordinals α such that there is an injection

f : α→ x. Note that Ha(x) is an initial segment of the ordinals, so it is an ordinal.

Given that, it is clear that Ha(x) is a cardinal for all x, and if κ is a cardinal, Ha(κ)

is the least cardinal bigger than κ (for example, Ha(ω) is the smallest uncountable

cardinal). Using this, we “enumerate” the infinite cardinals using ordinals:

ℵ0 = ω

ℵα+1 = Ha(ℵα)

ℵα =
⋃
β<α

ℵβ for limit α1.

We now wish to turn our attention to the continuum. The use of “the” here

is somewhat misleading, as there are multiple sets that can be referred to as the

continuum: for instance R, [0, 1], [ω]ω, P(ω), ω2, and ωω. However, they are similar

enough that we can call each “the continuum” (we have already seen this to some

extent via our identification of P(ω) with ω2 in the previous chapter). They all

have the same cardinality, for example. Further, any pair of these sets (viewed

as topological spaces) become homeomorphic after removing a countable set from

each. In particular, there are maps between any pair that are “almost bijective” and

preserve properties like nowhere dense and meager. In each case where there is a

natural measure (such that the measure of the whole space is bounded by 1), these
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maps can also be made to preserve measure, so they preserve the property of being

null. This justifies our practice of calling each the continuum.

For cardinals κ and λ, we let κλ denote the cardinality of λκ. Therefore, 2ℵ0 is

the cardinality of the continuum (sometimes this is also denoted c). It is simple to

show that ℵ0 < 2ℵ0 , and it was conjectured by Cantor that the continuum was the

smallest set bigger than ω – in modern terms, that ℵ1 = 2ℵ0 . This conjecture is

known as the continuum hypothesis, abbreviated CH. It has been shown that CH is

independent of ZFC; in particular, there are models of ZFC where CH fails. We will

indicate (without full rigorous detail) in the next section how this was proven.

3.3 Forcing

Cohen [12, 13] established that ZFC does not prove CH using forcing, the name

given to a general method for constructing, given a model V of ZFC, another model

V [G] of ZFC, by adding new sets to V . By using this process, we may change the

truth value of certain statements in V . For example, if V is a model of ZFC+CH

(such a model can be constructed by methods other than forcing), and V [G] is a

model obtained via a forcing that adds ℵ2 reals to V without changing any cardinals,

then V [G] satisfies ZFC+(2ℵ0 = ℵ2). However, we should be careful in making such

statements, since our intuition was that the universe already contained “all” sets.

So to carry out forcing, we (roughly speaking) assume we work within the “real”

universe, and begin with a model V of ZFC (which may be a class or a set in the real

universe). The sets we add to V , although they were not in V , are in the real universe,

and therefore, we can describe and study them. This outline, and the remainder of

the material in this section, should be read remembering that we are not attempting

to rigorously define forcing, but rather, describe its methods and properties to such
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a degree that we may understand how they apply to computability theory (and in

particular to the subject of this thesis).

Suppose we have such a V , which we will call the ground model. A notion of

forcing is a partial order (P,≤) in V – that is, P and ≤ are both elements of V such

that ≤ partially orders P . We call the elements of P conditions. A set D ⊆ P in

V is dense if for every p ∈ P there is q ≤ p such that q ∈ D. A generic filter is a

G ⊂ P (not necessarily in V !) such that

1. For all p, q ∈ G, there is r ≤ p, q in G.

2. For all p ∈ G, if p ≤ q, q ∈ G.

3. For all dense D in V , there is p ∈ G ∩D.

We now sketch the construction of V [G], given G a generic filter. We associate

a set of names to (P,≤). We will not concern ourselves with the exact structure

of these names. The basic idea is that a name a is an element of V which contains

instructions for how to interpret it based on which p ∈ P are in G. Then the elements

of V [G] will be names interpreted via G. For the particular way that we define the

names, each element x of V has a name that is interpreted as x regardless of which p

are in G, so that V ⊆ V [G] (in the real universe). Also, there will be a name whose

interpretation will be G, so that this containment is strict2.

From the details of the construction, it is possible to show that V [G] is a model

of ZFC. We also have the useful concept of a condition forcing a statement. Let

φ(x1, . . . , xk) be a formula of set theory, a1, . . . , ak a list of names, and p a condition.

Then p forces φ(a1, . . . , ak) if whenever G is a generic filter containing p, φ(a1, . . . , ak)

holds in V [G]. Although this is a statement involving truth in V [G], it can repre-

2We will not concern ourselves with the question of whether or not G exists, even in the real universe. With
enough work, such a G can always be found for the notions of forcing involved in this thesis.
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sented by a formula in V (i.e., V can tell if p forces φ(a1, . . . , ak)). Also, φ(a1, . . . , ak)

is true in V [G] iff there is p ∈ G which forces φ(a1, . . . , ak).

To see an example of this, we consider Cohen forcing. The notion of forcing is

(<ω2,⊇). Let G be a generic filter for this notion of forcing, and let X =
⋃

p∈G p

as an element of V [G]. Note that X is a partial function from ω to 2 (particularly,

for n ∈ dom(X), p(n) and q(n) cannot have different values for p, q ∈ G). Actually,

X ∈ ω2 – for any n, the set of p such that n ∈ dom(p) is dense in <ω2 (in the ground

model). Further, if Y ∈ ω2 is in the ground model, X �= Y , since the set of p such

that p(n) �= Y (n) for some n is also dense. Therefore, this forcing adds a new real to

ω2. If we repeat this ℵ2 times,3 in the resulting model there are ℵ2 reals. Of course,

when we say ℵ2 in this context, we mean ℵ2 as interpreted in V . However, this

forcing does not change the values of any cardinals. Therefore, we have produced a

model of ZFC where 2ℵ0 = ℵ2.

We note that in this example, we have not explicitly used the idea of a condition

forcing a statement. This idea is present nonetheless, as it is necessary to show V [G]

is a model of ZFC, and has the same cardinals as V . In the next section, we will

show another example of a statement true in the V [G] obtained by Cohen forcing

which illustrates explicitly the usefulness of forcing.

3.4 Forcing in Computability Theory

Although primarily a set theoretic method, forcing can also be adapted to prove

results in computability theory. In fact, forcing in computability theory technically

predates forcing in set theory (see the Kleene-Post construction of incomparable Tur-

ing degrees [25], or Spector’s construction of a minimal Turing degree [51]), although

it was not formalized until its use in set theory.

3We need to take care doing this, but such care is beyond the scope of this thesis
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Forcing in computability theory can be based on any notion of forcing which adds

new reals to the ground model. The conditions are assumed to be computable, or at

least computably described, as are the dense sets of conditions. The computable reals

take the place of the ground model, and the reals computable relative to some oracle

A take the place of V [G]. The Turing programs ΦA
e take the place of names. We

no longer have general theorems about conditions forcing statements, but in certain

cases we can recapture results if the forcing of a statement can be verified sufficiently

computably. In this section, we will indicate specific proofs involving computable

forcing which will illustrate these points more clearly.

Forcing proofs in computability theory fall into two categories: constructive and

nonconstructive (this mirrors the situation in set theory, where a proof involving a

forcing extension may involve constructing it, or, knowing the construction is possi-

ble, producing a nonconstructive proof of certain properties it has). In the construc-

tive proofs, we think of conditions as approximations of some A we are constructing.

Given a condition p at some stage of the construction, we find p′ ≤ p which forces

some statement about A (i.e., we can verify that for all Ã which p′ approximates,

the statement is true for Ã). To guarantee we can do this, we need to verify that

the set of conditions which can force the desired statement is dense. Applying this

process ω many times, we obtain an A with desired properties (which may depend on

the overall relative computability of the construction – i.e., what oracle B is needed

to always find the p′ given p). Note that we could describe such a proof as finding

a set of conditions G that meets sufficiently many dense sets – finding a G that is

sufficiently close to the definition of a generic filter.

For an example of this, we point the reader to the proof of the Low Basis Theorem

(Proposition II.47). There, our conditions were Π0
1 classes (i.e., computable trees)



63

with Q ≤ P if Q ⊆ P . We were interested in classes P which could force either

ΦA
e (e) ↓ or ΦA

e (e) ↑ (i.e., this is true for all A ∈ P ). We showed that for any e, the

set of such P was dense and constructed a set of conditions which met all of them

(for any P e, we could define a P e+1 ⊆ P e which forced one of the two statements).

The A desired was then just the intersection of all the conditions obtained. That

A was low depended on ∅′ being sufficient to compute a sequence of indices for the

sequence of Π0
1 classes (we note that the sequence of indices being incomputable is

analogous to a ground model V not containing a generic filter G).

Another example that is somewhat more in a “set theoretic style” is the proof of

the Hyperimmune-free Basis Theorem (Proposition II.56). As with the Low Basis

Theorem, we force with Π0
1 classes, except now, we want to force some φ ≤T A to

be total or not total. Just as any element of a forcing extension is given by a name,

such a φ must be given by ΦA
e for some e. Therefore, it suffices to show that given

e and a Π0
1 class P , we can find a Π0

1 class P ′ ⊆ P such that either P ′ forces ΦA
e to

be total or P ′ forces ΦA
e to not be total. In the former case, using the representation

of P ′ as the paths through a computable tree, we can show ΦA
e is dominated by a

computable function.

This last portion of the argument points the way to a consideration of noncon-

structive forcing proofs. For a notion of forcing (P,<) and a member x of the generic

extension V [G], any statement about x must be forced by a p ∈ P . We can then

exploit the fact that p ∈ V to prove that x must have certain properties relative

to the ground model. Take, for example, (P,<) to be some notion of forcing, and

consider f ∈ ωω an extension V [G]. There is a name a for f , and a condition p

such that p forces “a is a name for a member f of ωω.” Further, for each n, we can

find pn < p such that pn forces “f(n) is defined.” Perhaps by examining pn from
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the ground model, we can determine an upper bound for the value of f(n) (i.e., an

upper bound for the m such that “f(n) = m” can be forced). If so, we can define

a ground model function g which dominates f , proving that every function in the

extension is dominated by a ground model function. The arguments are similar to

the ones employed to show that if P is a Π0
1 class forcing “ΦA

e is total,” then there is

a computable function dominating ΦA
e .

Nonconstructive forcing proofs in computability theory work in much the same

way, although sometimes more care is needed. Given a real with “sufficient generic-

ity” relative to a computable version of a notion of forcing, any statement about it is

forced by a condition. By computably manipulating this condition, we can show the

real has certain properties relative to the computable reals. The main difference is

that, say, we may need to define a function computably, which is a more restrictive

notion than defining a function in a model of ZFC.

We take as an example the proof that no 2-generic real is high (Proposition II.89).

This is the computable version of the argument that if V [G] is a generic extension

for the Cohen forcing, and f ∈ ωω is in this extension, then f does not dominate

all ground model functions. We compare and contrast the salient features of these

proofs in the table below.
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Given f ≤T A f ∈ ωω in V [G]

there is an e with f = ΦA
e . a name a for f .

Since A is 2-generic, V [G] is a generic extension,

there is a condition σ ⊂ A σ ∈ G

which forces the statement “f ∈ ωω.” Enumerate the τ ⊇ σ.

Construct a g which is computable in the ground model

by finding, for each τn, a νn ⊇ τn such that

for some m, νn forces ΦA
e (n) ↓= m f(n) = m

and let g(n) be 1 +m. There is no

τ ⊇ σ such that τ ⊂ A τ ∈ G

and m such that τ forces ΦA
e (n) ≥ g(n) f(n) ≥ g(n)

for all n ≥ m. Hence, the opposite must be forced, and it follows that

g is a computable ground model

function not dominated by f .

The computability theoretic proof is very nearly a direct translation of the set

theoretic proof. There are two major differences. First, we do not have access to

general forcing theorems, so we had to make specific arguments based on 2-genericity

to say that certain statements were forced. Second, we had to make sure that g was

defined computably, not just defined. For these reasons, not all set theoretic proofs

of this kind can be translated. Many, however, can be if sufficient care is taken. We

will see additional proofs of this kind (as well as constructive forcing proofs) later in

the thesis.
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3.5 Cardinal Characteristics of the Continuum

Before we can have any discussion of cardinal characteristics of the continuum, we

must first acknowledge the difficulty that there is no formal definition for this term.

Informally, a cardinal characteristic is a cardinal (whose value may vary between

different models of ZFC) which describes some property of the continuum. In (some-

what) more detail, let O be some property of infinite cardinals such that ¬O(ℵ0),

O(c), and if c ≥ κ ≥ λ ≥ ℵ0, then O(λ) ⇒ O(κ). Then the minimal cardinal κ

such that O(κ) can be thought of as marking the boundary between cardinals that

“behave like ℵ0” from those that “behave like c” (with respect to the property O).

For a more concrete idea, consider the following examples.

Example III.2. • O1(κ) iff there is an unbounded family B ⊆ ωω such that

|B| ≤ κ. B is unbounded if there is no f ∈ ωω that dominates every g ∈ B.

• O2(κ) iff there is a family F of null subsets of ω2 whose union is not null such

that |F| ≤ κ.

• O3(κ) iff there is a splitting family S ⊆ [ω]ω such that |S| ≤ κ. S is splitting if

for every R ∈ [ω]ω, there is S ∈ S such that |R ∩ S| = |R\S| = ℵ0 (S splits R).

• O4(κ) iff there is a family X ⊆ [ω]ω such that {Y : X ⊆ Y for some X ∈ X}

is an ultrafilter and |X | ≤ κ. U ⊆ P(ω) is an ultrafilter if it is closed under

supersets and finite intersections, and for all A ⊆ ω, A ∈ U or Ā ∈ U .

It is easy to verify that for 1 ≤ i ≤ 4, ¬Oi(ℵ0) and Oi(c). Let b, add(N )4, s,

and u denote the least κ such that (respectively) O1(κ), O2(κ), O3(κ), and O4(κ).

The cardinals b, add(N ), s, and u are examples of cardinal characteristics of the

continuum.
4The N denotes the ideal of null subsets of ω2. The reason for using this notation will become clearer shortly.
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Of course, ℵ1 ≤ b, add(N ), s, u ≤ c. Studying what other inequalities between

these cardinals are true under various assumptions has been an active area of re-

search. For example, it can be proven that b ≥ add(N ) is a consequence of ZFC.

Note that ZFC is the proper axiom system to use, and not, say, ZFC+CH. In the

latter system, the question at hand is trivial, since all cardinal characteristics of the

continuum equal c = ℵ1 (however, as will be explained later, the mere fact of equal-

ity between two such cardinals, even in a model of ZFC+CH, does not necessarily

properly describe the relationship between the two cardinals).

Although there is no universal formal definition for cardinal characteristics of the

continuum, all such cardinals studied in this thesis can be defined in a certain way.

These cardinals include the cardinals s, b, and add(N ) from Example III.2, but not

u. We note that these cardinals predate the formal unifying definition (some by

a great deal). Nevertheless, we find the definition we give to be preferable.5 The

formalization was first achieved by Vojtáš [57], though our notation and terminology

derives mainly from the handbook chapter by Blass [6].

Definition III.3. A debate is a triple K := (K−, K+, K), where K+ and K− are sets

and K is a relation with domain K− and range K+. The norm of K, denoted ||K||,

is the smallest cardinality of any subset Y of K+ such that for every X ∈ K−, there

exists Y ∈ Y such that XKY . The dual to K, denoted K⊥, is the triple (K+, K−, K̂),

where Y K̂X iff ¬(XKY ).

Remark III.4. Informally, we say that K− is the set of “challenges,” K+ the set

of “answers,” and if XKY we say that X “is met by” Y . Therefore, ||K|| is the

minimum cardinality of a family of answers needed to meet all challenges. We use the

convention of denoting a debate and its norm by matching uppercase and lowercase

5At least, for our purposes.
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letters if possible (so ||K|| = k). Although the definition in its generality does not

state this, the sets K+ and K− should have something to do with the continuum in

order for K to be of use to us.

Before we provide the examples of interest, we will need some notation.

Notation III.5. • f ≤∗ g denotes f is dominated by g.

• N denotes the set of null subsets of ω2.

• M denotes the set of meager subsets of ω2.

Example III.6. Consider Example III.2. It is easy to see that b, add(N ), and s

are the norms of the debates

B := (ωω, ωω,�∗)

Add(N ) := (N ,N ,�)

S := ([ω]ω, [ω]ω, is split by)

Example III.7. The additional cardinal characteristics of the continuum which we

will study can be defined as the norms of the following debates.

• D := B⊥ = (ωω, ωω,≤∗).

• R := R⊥ = ([ω]ω, [ω]ω, does not split).

• Let J be either N or M.

– Add(J ) := (J ,J ,�).

– Cof(J ) := Add(J )⊥ = (J ,J ,⊆).

– Cov(J ) := (ω2,J ,∈).

– Non(J ) := Cov(J )⊥ = (J , ω2, ��).
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In the interest of clarity, it is useful to explicitly write out the definitions of the

corresponding cardinals without using debates (as is usually done in the literature).

• d is the minimal cardinality of a dominating family D ⊆ ωω. D is dominating

if every g ∈ ωω, is dominated by some f ∈ D.

• r is the minimal cardinality of an unsplittable family R ⊆ [ω]ω. R is unsplittable

if there is no S ∈ [ω]ω which splits every R ∈ R (i.e., for each S, R has finite

intersection with either S or its complement).

• add(M) is the minimal cardinality of a family of meager sets whose union is

not meager.

• cof(N ) (cof(M)) is the minimal cardinality of a family F of null (meager) sets

such that every null (meager) set is the subset of some F ∈ F (such an F is a

base for the ideal).

• cov(N ) (cov(M)) is the minimal cardinality of a family of null (meager) sets

whose union is ω2.

• non(N ) (non(M)) is the minimal cardinality of a subset of ω2 that is not null

(meager).

Of the cardinals defined above, our primary focus will be on the ten b, d, and for

J = N or M, add(J ), cof(J ), cov(J ), and non(J ). The inequalities between

these cardinals that are provable in ZFC, established over the course of fifty years

by Rothberger [43, 44], Truss [55], Miller [32], Bartoszynski [2], and Raisonnier and

Stern [42], are summarized by what is known as Cichoń’s diagram [17].
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Proposition III.8. Let l → k denote ZFC proves k ≤ l. Then:

cov(N ) ←−−− non(M) ←−−− cof(M) ←−−− cof(N )⏐⏐� ⏐⏐�⏐⏐� b ←−−− d

⏐⏐�⏐⏐� ⏐⏐�
add(N ) ←−−− add(M) ←−−− cov(M) ←−−− non(N )

This diagram is complete, in the sense that any inequality between two of these car-

dinals that is provable in ZFC is represented by an arrow or a series of arrows

(announced in [5]; a summary of the relevant consistency results can be found in

[4]).

Remark III.9. We note that this diagram is highly symmetrical with respect to du-

alization. For each K, if we replace ||K|| with ||K⊥|| and reverse all arrows, we

obtain a 180◦ rotation of Cichoń’s diagram. It is also a theorem of ZFC that

s ≤ non(M), d,non(M) and r ≥ cov(N ), b, cov(M).

We consider Cichoń’s diagram to consist of two kinds of results: positive results

(ZFC proves k ≤ l) and negative results (ZFC does not prove k ≤ l). Both kinds

of results can be proven using general methods based on debates. We begin by

considering positive results.

Definition III.10. A morphism φ from one debate K = (K−, K+, K) to another

L = (L−, L+, L) is a pair of functions φ− : L− → K− and φ+ : K+ → L+ such that

for all X ∈ L− and Y ∈ K+, if φ−(X)KY , then XLφ+(Y ).

Remark III.11. Some authors use instead generalized Galois-Tukey connections, for

which the maps and the implication travel in the opposite direction (that is, one

needs maps from K− → L− and L+ → K+, etc.). Note that any morphism from

K → L gives a morphism from L⊥ → K⊥ – the maps φ+ and φ− merely switch places.
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Proposition III.12. (ZFC) If there is a morphism φ : K → L then ||K|| ≥ ||L|| and

||L⊥|| ≥ ||K⊥||.

Proof. Suppose we have such a φ. Fix an arbitrary Y ⊆ K+ with |Y| < ||L||. Then

|φ+(Y)| ≤ |Y| < ||L||, so there exists X ∈ L− such that for all Y ∈ Y , ¬XLφ+(Y ).

Consequently, for all Y ∈ Y , ¬φ−(X)KY . It thus impossible to have ||K|| < ||L||.

The second statement follows from the existence of a “dual” morphism from L⊥ to

K⊥.

All positive results from Cichoń’s diagram can be proven by establishing the exis-

tence of the proper morphisms. In fact, the framework of debates and morphisms was

created to describe recurring patterns in the original proofs of these results. Specifi-

cally, the original proofs of such results followed the pattern of the proof above, but

with specific cardinals and specific constructions in place of φ+ and φ−. In this re-

spect, morphisms between debates can be said to describe the relationships between

cardinal characteristics of the continuum.

However, situations can arise in which general morphisms between debates are

unsatisfactory in terms of describing relationships between cardinal characteristics.

For example, by a result of Yiparaki [58], in a model V of ZFC+CH, there exist

φ+ : ωω → ω2 and φ− : M → ωω such that φ+(f) ∈ M implies φ−(M) ≥∗ f . In

other words, there exists in V a morphism from B to Non(M) witnessing that, in

V , b ≥ non(M) (in fact both equal ℵ1), though the existence of such a morphism is

not guaranteed by ZFC alone. But these maps (as guaranteed by Yiparaki’s result)

are highly nonconstructive: φ−(M) and φ+(f) need not be related to M and f in

any meaningful way, so the mere existence of these maps does not impart any real

information about the relationship between b and non(M) in V . Therefore, it is

worth asking when K → L is achievable with maps φ− and φ+ that are sufficiently
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“nice.”

For example, suppose that instead of working with N and M directly, we work

with bases {Nf}f∈ωω and {Mf}f∈ωω, and view morphisms as working on indices. In

other words, a morphism from Non(M) to B now consists of maps φ+ : ω2 → ωω

and φ− : ωω → ωω such that f ≥∗ φ+(X) implies X ∈ Mφ−(f)). We note that these

changes do not affect the values of any cardinal characteristics or the existence of

any morphisms. Then we may ask when K → L can be achieved with φ− and φ+

both Borel. This is the case for all K,L such that k, l are in Cichoń’s diagram and

l ≤ k is a theorem of ZFC (to put this more concisely, all inequalities in Cichoń’s

diagram are realized by Borel morphisms). Pawlikowski and Rec�law improved this

by showing most inequalities are realized with continuous morphisms. Specifically:

Proposition III.13. [40] Let an unmarked arrow from K to L denote that there

exists a continuous morphism from K to L. If the arrow is labelled with a B, there

exists only a Borel morphism.

Cov(N ) ←−−− Non(M) ←−−− Cof(M) ←−−− Cof(N )⏐⏐�B

⏐⏐�⏐⏐� B ←−−− D

⏐⏐�⏐⏐� ⏐⏐�B

Add(N ) ←−−− Add(M) ←−−− Cov(M) ←−−− Non(N )

To understand the proofs of negative results, we must understand first the in-

teraction between cardinal characteristics of the continuum and forcing. If k is the

norm of K, we may use forcing to produce a model where k is large as follows. We

begin with a model of ZFC+CH, and iterate a forcing which adds to the ground

model a challenge not met by any ground model answer. If we iterate such a forcing

ℵ2 times,6 k is increased to ℵ2, since any family of answers with smaller cardinality

6Again, care needs to be taken with the iteration, and again, this is beyond the scope of this thesis.
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must be contained in the model obtained after the αth iteration, for some α < ℵ2.

The challenge added in the (α + 1)th iteration shows such a family does not suffice

to meet all challenges.

If l ≤ k is witnessed by a sufficiently well-behaved morphism φ : K → L, then any

forcing which adds a challenge to L− not met by any ground model answer in L+ will

also add a challenge to K−7 not met by any ground model answer in K+. Intuitively,

this makes sense, since it implies that a suitable iterated forcing that increases l

will also increase k. All of the proofs of positive results for Cichoń’s diagram can

be restated as proofs of such relationships between forcings. For example, the proof

that cov(N ) ≤ non(M) holds in ZFC can also be used to show that any forcing

which adds a real not in any ground model null set also adds a meager set covering

all ground model reals.

Therefore, if we want to construct a model where l > k, we want to find a forcing

which adds a challenge to L− not met by any ground model answer in L+ without

also adding a challenge to K− not met by any ground model answer in K+. All of

the negative results from Cichoń’s diagram can be proved using such forcings. Of

course, simply finding such a forcing is not by itself enough. An iterated forcing

construction needs to be carried out, so there are additional properties which the

forcing (and the iteration) need to satisfy. However, we have enough information to

state the following fact (which is nevertheless a gross oversimplification) which will

be a key motivating factor in the study of Turing characteristics (to be defined in

the following chapter).

Fact III.14. For cardinal characteristics of the continuum k, l from Cichoń’s dia-

gram, ZFC proves l ≤ k iff any forcing which adds a challenge to L− not met by any

7specifically, φ− applied to the challenge added to L−
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ground model answer in L+ will also add a challenge to K− not met by any ground

model answer in K+.



CHAPTER IV

Turing Characteristics

The goal of this thesis is twofold. First, make a reasonable definition for effective

correspondents to the cardinals in Cichoń’s diagram (and similarly defined cardinals,

such as r and s). Second, investigate the extent to which relationships among these

correspondents reflect relationships among cardinals. In this chapter, we define the

correspondents as classes of oracles with sufficient computing power. These classes

of oracles are closely related to some of the topics outlined in Chapter 2.

4.1 Definitions

A slightly informal definition which encapsulates our idea of a correspondent to a

cardinal characteristic defined via a debate is the following:

Definition IV.1. Let K = (K−, K+, K) be a debate such that ||K|| > ℵ0, and let C

and A be sets of oracles closed downward with respect to ≤T with A countable. The

Turing norm of K relative to A in C consists of the oracles A ∈ C which “compute”

an X ∈ K− such that for all Y ∈ K+ with “computable” relative to some oracle in

A, ¬(XKY ).

Remark IV.2. There are two intuitions behind this definition. The first is that the set

of answers computable from an oracle in A do not suffice to meet all challenges (there
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are only countably many such answers). The canonical case is where A consists of

the computable oracles (so we are looking at computable answers). The Turing norm

of K relative to A (in some set C of oracles) consists of oracles which are sufficiently

complex to compute a witness to the inadequacy of these answers. This intuition is

sound as long as ||K|| > ℵ0, which is the case for all the debates we considered in

Section 3.5.

The second intuition is that we have seen before the basic idea of a challenge

not met by any “weak” answer. Recall that ||K|| is increased by a suitable iteration

of a forcing which adds to the ground model a challenge not met by any ground

model answer. From Section 3.4, the computable analogue to a real being added by

a forcing is an oracle computing that real, with the computable objects standing in

for the ground model. Therefore, this definition can be viewed as the computable

version of this forcing, plus its relativizations.

This definition, however, currently lacks rigor because we do not know when an

oracle computes a challenge or response. If the debate is B or S (for example), this

doesn’t matter – every challenge or answer is either a function from ω to itself or a

subset of ω. But how does one define the complexity of, say, a null subset of ω2?

To resolve this difficulty, we use the same strategy as was used for finding Borel or

continuous morphisms. First, we replace N and M (which have cardinality 2c) with

a c-sized base for each. Parameterize each base with members of ωω, and replace each

debate involving N and M with a corresponding debate on the codes for members

in the correct base. We make this rigorous with the following definitions.

Definition IV.3. Let K = (K−, K+, K) be a debate with K− and K+ parameterized

by elements of ωω. Then K̃ denotes the debate (K̃−, K̃+, K̃) where K̃± is the set of

codes for elements of K± and if X̃, Ỹ code X, Y , then X̃K̃Ỹ iff XKY .
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Remark IV.4. Naturally, different coding schemes will produce different debates.

From a set theoretic perspective, there is no real difference, since for any K̃, there

are morphisms from K to K̃, and vice versa. However, different choices of codes will

affect how the material to follow proceeds. We will forego any discussion of which

codes to choose (and why) until a later section.

Now we rephrase our definition from earlier:

Definition IV.5. Let K = (K−, K+, K) be a debate such that K± ⊆ ωω and ||K|| >

ℵ0, and let C and A be sets of oracles closed downward with respect to ≤T with A

countable. The Turing norm of K relative to A in C (denoted by 〈K〉CA) consists of

the oracles A ∈ C which compute an X ∈ K− such that for all Y ∈ K+ computable

relative to some oracle in A, ¬(XKY ).

Remark IV.6. We refer to classes of degrees arising from Turing norms as Turing

characteristics. In the definition above, if A is omitted, it is understood to be the

set of computable oracles, and if C is omitted, it is understood to be ω2. Note

that 〈K〉CA = C ∩ 〈K〉A. For simplicity we denote a debate and its Turing norm by

matching Fraktur and boldface letters if possible (so 〈K〉CA = KC
A).

Using this definition, we can describe the 12 Turing characteristics this paper will

study (with the default choices for A and C).

• A ∈ B = 〈B〉 iff A computes a function dominating all computable functions.

• A ∈ D = 〈D〉 iff A computes a function not dominated by any computable

function.

• A ∈ ADDN = 〈 ˜Add(N )〉 iff A computes a code for a null set containing all

computably coded null sets.
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• A ∈ COFN = 〈C̃of(N )〉 iff A computes a code for a null set not contained in

any computably coded null set.

• A ∈ COVN = 〈C̃ov(N )〉 iff A computes a real not contained in any com-

putably coded null set.

• A ∈ NONN = 〈Ñon(N )〉 iff A computes a code for a null set containing all

computable reals.

• A ∈ ADDM = 〈 ˜Add(M)〉 iff A computes a code for a meager set containing

all computably coded meager sets.

• A ∈ COFM = 〈 ˜Cof(M)〉 iff A computes a code for a meager set not contained

in any computably coded meager set.

• A ∈ COVM = 〈 ˜Cov(M)〉 iff A computes a real not contained in any com-

putably coded meager set.

• A ∈ NONM = 〈 ˜Non(M)〉 iff A computes a code for a meager set containing

all computable reals.

• A ∈ R = 〈R〉 iff A computes a set splitting all infinite computable sets.

• A ∈ S = 〈S〉 iff A computes an infinite set not split by any computable set.

Now that we have a definition for Turing characteristics, we must determine which

relationships among them we wish to study. This issue is resolved by considering

Fact III.14 in light of our intuition concerning forcings and Definition IV.5. The

computable version of the second statement from Fact III.14 is that any A which

computes a challenge in L− which is not met by any computable answer in L+ also

computes a challenge in K− which is not met by any computable answer in K+. In
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other words, L ⊆ K. Therefore, we might hope that for k, l in Cichoń’s diagram,

ZFC proves l ≤ k iff L ⊆ K, or perhaps iff LC
A ⊆ KC

A for all A,C. We will show

that for both potential equivalences, the forward implication holds. For the former

potential equivalence, the reverse implication does not hold, and for the second, it is

still an open question. Specifically:

Theorem IV.7. In both the diagrams to follow, for P,Q ⊆ ω2, let P → Q denote

Q ⊆ P (= denotes equality as usual). Then:

COVN ←−−− NONM ←−−− COFM ←−−− COFN⏐⏐� ⏐⏐�⏐⏐� B ←−−− D
⏐⏐�∥∥∥ ∥∥∥

ADDN ADDM ←−−− COVM ←−−− NONN

This diagram is complete.

Also, for all A,C ⊆ ω2 closed downward with respect to ≤T and A countable,

COVNC
A ←−−− NONMC

A ←−−− COFMC
A ←−−− COFNC

A⏐⏐� ⏐⏐�⏐⏐� BC
A ←−−− DC

A

⏐⏐�⏐⏐� ⏐⏐�
ADDNC

A ←−−− ADDMC
A ←−−− COVMC

A ←−−− NONNC
A

Additionally, for all such A and C,

SC
A ⊆ NONMC

A,D
C
A,NONNC

A

RC
A ⊇ COVMC

A,B
C
A,COVNC

A

Remark IV.8. The second diagram above is not known to be complete.

As was the case with cardinal characteristics, we make a distinction between

positive results (e.g., L ⊆ K) and negative results (e.g., L � K). The former results

are needed to establish both diagrams hold, while the latter results are needed to
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establish the completeness of the first diagram. In order to prove positive results,

we make effective the notion of a morphism, and to prove negative results, we use

forcing proofs. Before we turn to either matter, we must attend to some preliminary

matters.

4.2 Coding of Objects

In order to go further, we must decide how we are going to use ωω to code bases for

N and M. The choice generally does not matter in set theory, but in computability

theory, our choice of codes can drastically alter the results. For example, let σi

denote the binary string coded by i, and Cj the clopen subset of ω2 coded by j (in

the manner described in Section 2.2). Now if N ⊆ ω2,

μ(N) = 0 ⇔ ∃f ∈ ωω

(∑
n∈ω

2−|σf(n)| <∞∧ A ⊆
⋂
n

⋃
m≥n

[σf(m)]

)

⇔ ∃g ∈ ωω

(
∀n[μ(Cg(n)) ≤ 2−n] ∧ A ⊆

⋂
n

⋃
m≥n

Cg(m)

)
.

These facts present us with two ways to code null sets. Either we use f to code the

null set of the first kind if
∑

n 2−|σf(n)| is finite or we use g to code the null set of the

second kind if for all n, μ(Cg(n)) ≤ 2−n.

Suppose we use the former system. LetNf denote the null set coded by f . Then by

Proposition II.65, for all N and A, N ⊆ Nf for some f ≤T A iff N is Martin-Löf null

relative to A. Because there is a universal Martin-Löf null set, there is a computable

f̃ such that Nf ⊆ Nf̃ for all computable f . In our parlance, this would imply every

computable oracle is in ADDN. But we expect that every oracle in ADDN is also

in B – that is, computes a function dominating all computable functions. As this is

impossible for a computable oracle to do, this coding is unsuitable for our purposes.

In proofs of b ≥ add(N ) which use this coding one needs to find, for any f , a
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function h such that for all k

∑
n≥h(k)

2−|σf(n)| < 2−k.

In set theory, this is not an issue – the function exists in whatever model we’re

working in, so we can use it. In computability theory, however, we have to ask

if such an h can be found computably in f . The answer, generally, is no. The

second coding above contains this information naturally, since we explicitly require

μ(Cg(n)) ≤ 2−n for all n1.

Therefore, there is a difference between the information content of these two

coding systems. We will later see that the second coding allows for proofs of the

results indicated in Theorem IV.7, so it is the coding we will use. In the absence of

a clear, overarching reason to choose one coding over another, we will continue to

select the codings which produce the desired results. Let us now make the formal

definition:

Definition IV.9. Ñ denotes the set of f ∈ ωω such that μ(Cf(n)) ≤ 2−n for all n.

For f ∈ Ñ ,

Nf =
⋂
n

⋃
m≥n

Cf(m).

For f, g ∈ Ñ and X ∈ ω2, f ⊆̃ g iff Nf ⊆ Ng and X ∈̃ f iff X ∈ Nf .

Remark IV.10. Note that for all N and A, by Proposition II.65, N ⊆ Nf for some

f ≤T A iff N is Schnorr null relative to A. We will avoid the notation ⊆̃ and ∈̃

whenever possible, although we defined this notation (in order to be in line with

Definitions IV.3 and IV.5).

Our parametrization of M requires some further preparation.

1This, and not our choice of basic open sets vs. clopen sets, is the significant difference between the codings
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Definition IV.11. 1. An interval partition is a partition of ω into intervals. For I

an interval partition, let In denote the nth interval in the partition. For f ∈ ωω

such that f is increasing and f(0) = 0 (denote the set of such f by ωω ↑), If

denotes the interval partition such that f(n) is the left endpoint of In
f .

2. A chopped real is a pair (X, I) where X ∈ ω2 and I is an interval partition. A

real Y ∈ ω2 matches (X, I) iff for infinitely many n, Y � In = X � In. Denote

the set of Y matching (X, I) by Match(X, I).

One can prove that sets of the form ω2\Match(X, I) constitute a base for the

ideal M. We can therefore code meager sets by coding chopped reals. Two options

immediately present themselves. We could code (X, I) with X⊕ f , where f codes I.

Or we could code (X, I) with the function mapping n to an index for X � In. Each

is more convenient than the other for certain purposes, though they are equivalent,

as shown below. Recall that M is meager iff it is covered by the union of countably

many nowhere dense sets, and M is nowhere dense iff it is the complement of a dense

open set iff for every σ, there is τ ⊇ σ such that [τ ] is disjoint from M .

Proposition IV.12. For any M ⊆ ω2 and A ∈ ω2, the following are equivalent.

1. There is a sequence Mn of nowhere dense sets and g : ω×<ω2 → ω2 computable

relative to A such that M ⊆ ⋃
nMn and for all n, σ, g(n, σ) extends σ and

[g(n, σ)] is disjoint from Mn.

2. There is a sequence Mn of nowhere dense sets and g : ω×<ω2 → ω2 computable

relative to A such that M ⊆ ⋃
nMn, Mn ⊆ Mn+1 for all n, and for all n, σ,

g(n, σ) extends σ and [g(n, σ)] is disjoint from Mn.

3. There are X, f ≤T A such that M is disjoint from Match(X, If ).
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4. There is h ≤T A, X ∈ ω2, and I an interval partition such that M is disjoint

from Match(X, I) and for all n, h(n) is an index for X � In.

5. M is disjoint from the intersection of an A-uniform sequence {Vn}n∈ω of A-c.e.

dense open sets.

Proof. (based on an argument in Section 5 of [6], in turn based on ideas from [53])

1 ⇒ 2: Let Mn and g be given as in 1. We let M̃n =
⋃

k≤nMn, and g̃ be the

function defined by

g̃(0, σ) = g(0, σ)

g̃(n+ 1, σ) = g(n+ 1, g̃(n, σ)).

Clearly g̃ and the sequence of M̃n satisfy the properties specified by 2 (note g̃ ≤T

g ≤T A).

2 ⇒ 3: Let Mn and g be given as in 2. We will construct (X, If ) such that for

each n, no Y ∈Mn agrees with X on In
f . Then any Y which matches (X, I) will be

out of infinitely many Mn, and thus out of all of them by monotonicity.

Assume f(n) has been defined, and X(k) for all k < m := f(n). Note that

{σ2m+i}i<2m is exactly the set of binary strings of length m. Let τ0 = ∅, and for

i < 2m, define τi+1 such that σ2m+iτi+1 = g(n, σ2m+iτi). Now let f(n+ 1) = m+ |τ2m|

and for m+ k < f(n+ 1), X(m+ k) = τ2m(k).

Now suppose Y agrees with X on In. Let m be as above, and fix i such that

σ2m+i = Y � m. Then Y ∈ [σ2m+iτi+1], implying Y /∈ Mn. Thus M is disjoint from

Match(X, If ). Also, X, f ≤T g ≤T A.

3 ⇒ 4: If X and f are given as in 3, we may let

h(n) =
∑

f(n)≤m<f(n+1)
X(m)=0

3m + 2 ·
∑

f(n)≤m<f(n+1)
X(m)=1

3m.

Note h ≤T X ⊕ f ≤T A.
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4 ⇒ 5: Suppose h is as given in 4. Then Vn :=
⋃

m≥n[h(m)] is A-uniformly

A-c.e. open. Also, each Vn is dense; given σ, for sufficiently large m σ and h(m)

have disjoint domains, so there is a Y extending both. We may assume m ≥ n, so

Y ∈ [σ] ∩ Vn. Since
⋂

n Vn = Match(X, I), M is disjoint from this intersection.

5 ⇒ 1: If {Vn}n∈ω is as given in 5, we may let Mn = ω2\Vn. Let {Wn}n∈ω

be an A-uniform sequence of A-c.e. subsets of <ω2 such that Vn = [Wn] for all n.

To define g, given n and σ, find the least 〈m, s〉 such that σm ∈ Wn,s and either

σm ⊆ σ or σ ⊆ σm. In the former case, let g(n, σ) = σ, and in the latter case, let

g(n, σ) = σm.

Remark IV.13. We note that in 1. and 2. above, it is a stronger condition to require

that the set of (τ, n) such that [τ ]∩Mn = ∅ is computable relative to A (if this is the

case, we let g(n, σ) be the first such τ we find for n). Although we do not need this

stronger condition, in some cases it will be possible to supply it, and furthermore

convenient to do so.

For simplicity of notation, we code meager sets by functions h as in item 4 of the

preceding proposition. However, it is understood that we may just as well use X⊕ f

for a code whenever that is more convenient. Recall from Section 2.2 the set S of

partial functions from ω to {0, 1} with finite domain. Let si denote the member of

S coded by i.

Definition IV.14. M̃ denotes the set of f ∈ ωω such that:

• For all n, dom(sf(n)) is a nonempty interval.

• min dom(sf(0)) = 0.

• For all n, min dom(sf(n+1)) = 1 + max dom(sf(n)).
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For f ∈ M̃,

Mf = ω2\
⋂
n

⋃
m≥n

[f(m)].

For f, g ∈ M̃ and X ∈ ω2, f ⊆̃ g iff Mf ⊆Mg and X ∈̃ f iff X ∈Mf .

Remark IV.15. As before, we will avoid the notation ⊆̃ and ∈̃ as much as possible.

4.3 Immediately Seen Equivalents From Computability Theory

For many k in Cichoń’s diagram, the corresponding Turing characteristic K is a

set of oracles that has already been mentioned in Chapter II. In several cases, this is

seen immediately from the definitions, with little to no further work. In this section,

we quickly point out these cases. We do stress that in this section, we are only

dealing with the case where C = ω2 and A is the set of computable reals. Varying

C does not produce anything interesting, since KC = C ∩ K. Varying A is not

desirable since not everything in this section relativizes. For example:

Proposition IV.16. A ∈ B iff A is high, and A ∈ D iff A computes a hyperimmune

set.

Remark IV.17. This follows from Propositions II.38 and II.52. The first part does

not relativize well – in particular, if A = {X : X ≤T B}, where B is not computable,

it is not necessarily the case that A ∈ BA iff A′ ≥ B′′. The proof of Proposition II.38

relied on an f dominating all computable functions being able to compute all such

functions. Since an f dominating every function computable relative to B is not

guaranteed to compute B, the proof may not work in this case. Trying to relativize

to more complicated sets A clearly just makes this problem worse. This is why, in

this section, we only present results for A the set of computable reals.
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Proposition IV.18. A ∈ COVN iff A computes a Schnorr random real, and A ∈

COFN iff A is not low for Schnorr tests.

Remark IV.19. This follows from our choice of codes Ñ and Proposition II.65.

Proposition IV.20. A ∈ COVM iff A computes a weakly 1-generic real.

Proof. By Proposition IV.12, A ∈ COVM iff there is X ≤T A which is in every

uniform intersection of dense c.e. open sets. If X is in every dense c.e. open set, it

is certainly in any intersection of such sets (uniform or not). Conversely, any dense

c.e. open V is the intersection of a uniform sequence of dense c.e. open sets (just use

Vn = V for all n), so if X is in any such intersection, it is in every dense c.e. open

set.

We also briefly consider R and S, which are also equivalent to sets of oracles

already considered in computability theory. These sets of oracles involve concepts

not discussed in Chapter II, since they do not have a significant impact on this thesis

(we are mainly concerned with the properties of RC
A and SC

A for arbitrary A and C).

Definition IV.21. Let X ∈ P(ω). X is r-cohesive iff for every infinite computable

set A, X ⊆∗ A or X ⊆∗ Ā (i.e., no computable set splits X). X is bi-immune iff X

and X̄ are immune.

Proposition IV.22. A ∈ S iff A computes an r-cohesive set.

Remark IV.23. Immediate from the definition.

Proposition IV.24. A ∈ R iff A computes a bi-immune set.

Proof. It suffices to show X is bi-immune iff neither X nor X̄ has an infinite com-

putable subset – if A is not split by X, then there is a finite F ⊂ A such that A\F

is an infinite computable subset of either X or X̄. The forward implication is trivial
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since every computable set is c.e. For the reverse implication, it suffices to show that

any infinite c.e. set A has an infinite computable subset. By Proposition II.22, let

A be the range of f , an injective computable function. Let B be the set

{f(n) : f(n) > f(m) for all m < n}.

Clearly B is an infinite subset of A, and it is computable since k ∈ B iff k = f(n),

where n is minimal such that f(n) ≥ k.



CHAPTER V

Positive Results

In this chapter, we mainly devote our attention to proving, for K and L such

that l ≤ k is an inequality in Cichoń’s diagram, statements of the form: for all A

and C, LC
A ⊆ KC

A. To do so, we make the corresponding set theoretic arguments

sufficiently effective by demonstrating a type of morphism from K to L which we will

call an effective morphism. As we are simply looking for morphisms with additional

properties, we can find suitable morphisms already in the set theoretic literature.

We also note that the goal of finding effective morphisms is similar to Pawlikowski

and Rec�law’s goal of finding continuous morphisms, and we derive considerable in-

spiration from their work [40]. In addition to proving a version of Cichoń’s diagram

for Turing characteristics, we also use effective morphisms to prove results about SC
A

and RC
A.

However, effective morphisms do not tell the whole story, at least not when we

consider a specific A and C. For example, we saw in Section 4.3 that

A ∈ D ⇐⇒ A computes a hyperimmune set

⇐⇒ A computes a weakly 1-generic real

⇐⇒ A ∈ COVM.

In particular, D ⊆ COVM. But this cannot be witnessed by an effective morphism

88
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from Cov(M) to D since such a morphism would imply d ≤ cov(M), which is not

true in all models of ZFC. We shall see a similar situation holds with B. Both anoma-

lies can be explained by modifying the definition of an effective morphism to produce

the notion of an effective semi-morphism. Further, the proof of Proposition II.91 can

be phrased in terms of effective semi-morphisms, so there is some evidence that this

notion can be used to explain completely the behavior of Turing characteristics when

particular choices are made for C and A.

Remark V.1. In this chapter and the next, many proofs will be modifications of set-

theoretic proofs. We will cite the source of the original argument whenever one may

be reasonably assigned.

5.1 Effective Morphisms

We now define the type of morphism to be used in conjunction with Turing char-

acteristics:

Definition V.2. Let K = (K−, K+, K) and L = (L−, L+, L) be debates with K±

and L± ⊆ ωω. A morphism φ : K → L is effective iff for all X ∈ L− and Y ∈ K+,

φ−(X) ≤T X and φ+(Y ) ≤T Y .

Theorem V.3. Let φ : K → L be an effective morphism and suppose C and A

are closed downward with respect to ≤T with A countable. Then 〈L〉CA ⊆ 〈K〉CA and

〈K⊥〉CA ⊆ 〈L⊥〉CA.

Proof. Fix A ∈ 〈L〉CA, and X ≤T A in L− not met by any answer in L+ computable

from an oracle in A. Since φ is effective, φ−(X) ≤T A, and for any Y ∈ K+

computable from an oracle in A, φ+(Y ) is also computable from an oracle in A.

For any such Y , ¬XLφ+(Y ) so ¬φ−(X)KY . It follows that φ−(X) witnesses that
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A ∈ 〈K〉CA, as needed. The second result follows from the dual morphism, which is

clearly also effective.

Now we can translate many proofs of positive results from set theory to com-

putability theory. For example, denote the space of interval partitions by IP . An

interval partition I is said to dominate J if for almost all n, there exists a k such that

Jk ⊆ In. Code interval partitions by members of ωω ↑ as detailed in Definition IV.11.

Note If dominates Ig iff for almost all n there exists k such that f(n) ≤ g(k) and

g(k+ 1) ≤ f(n+ 1). If f and g satisfy this condition, we say f interval dominates g

(we use this instead of “ ˜dominates” in order to avoid confusion with “dominates”).

Define the debate D′ = (IP, IP, is dominated by), and observe that the corre-

sponding D̃′ is (ωω ↑, ωω ↑, is interval dominated by). One can use morphisms to

show that d = ||D′||, and in fact the morphisms used (when applied to codes) are

effective:

Theorem V.4. There exist effective morphisms φ : D → D̃′ and ψ : D̃′ → D.

Proof. (based on an argument presented in [6], possibly folklore)

First, we need φ+ : ωω → ωω ↑ and φ− : ωω ↑→ ωω such that if φ−(f) is dominated

by g, then φ+(g) interval dominates f . Let

φ−(f)(n) = f(n+ 1),

φ+(g)(0) = 0, and

φ+(g)(n+ 1) = max{φ+(g)(n) + 1} ∪ {g(m) : m ≤ φ+(g)(n)}.

Clearly φ−(f) ≤T f and φ+(g) ≤T g, so it remains to prove these maps form a

morphism.

Suppose g dominates φ−(f). Note that for all n, φ+(g)(n) ≤ f(φ+(g)(n)), and
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for sufficiently large n,

f(φ+(g)(n) + 1) = φ−(f)(φ+(g)(n))

≤ g(φ+(g)(n))

≤ φ+(g)(n+ 1)

That is, if k = φ+(g)(n), for large enough n φ+(g)(n) ≤ f(k) and f(k + 1) ≤

φ+(g)(n+ 1), so φ+(g) interval dominates f . Thus φ is a morphism, as needed.

For the morphism in the other direction, let ψ+ = φ− and ψ− = φ+ from above.

Note that for any f , g, n, and k for which n ≤ g(n) ≤ ψ−(f)(k) and ψ−(f)(k+ 1) ≤

g(n + 1) = ψ+(g)(n), we have f(n) ≤ ψ−(f)(k + 1) ≤ ψ+(g)(n). It follows that if g

interval dominates ψ−(f) then ψ+(g) dominates f , as needed.

Corollary V.5. For all A and C which are closed downward with respect to ≤T and

with A countable, DC
A = 〈D̃′〉CA and BC

A = 〈D̃′⊥〉CA.

Remark V.6. For future results of this kind, we will say simply “For all A and C,”

with the understanding that the additional conditions are implicitly assumed.

Therefore, if we seek effective morphisms to or from D or B, we may as well seek

effective morphisms to or from D̃′ or D̃
′⊥, respectively. This will prove convenient,

as some morphisms will be easier to demonstrate if we use interval partitions.

For ease of reference, we now restate the diagram whose proof will be the major

work of this chapter.

Theorem V.7. For all A,C,

COVNC
A ←−−− NONMC

A ←−−− COFMC
A ←−−− COFNC

A⏐⏐� ⏐⏐�⏐⏐� BC
A ←−−− DC

A

⏐⏐�⏐⏐� ⏐⏐�
ADDNC

A ←−−− ADDMC
A ←−−− COVMC

A ←−−− NONNC
A
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where ← means ⊆.

The morphism necessary for one arrow in the diagram can be supplied immedi-

ately, and trivially.

Theorem V.8. There is an effective morphism φ : D → B.

Proof. We seek φ− : ωω → ωω and φ+ : ωω → ωω such that φ−(g) ≤∗ f implies

g �∗ φ+(f). We may simply let φ− be the identity, and φ+(f)(n) = f(n) + 1.

Corollary V.9. For all A,C, BC
A ⊆ DC

A.

5.2 Meager Sets and Chopped Reals

Because of their combinatorial nature, chopped reals are a convenient way to

represent meager sets. One manifestation of this is the way that they afford an easy

description of when one meager set contains another:

Proposition V.10. Match(X, I) ⊆ Match(Y, J) iff for almost all n, there exists an

m such that Jm ⊆ In and X � Jm = Y � Jm.

Proof. The reverse implication is clear – if the latter condition holds and Z matches

(X, I), then for almost all n such that X � In = Z � In, we have for some m

Z � Jm = X � Jm = Y � Jm. There will be infinitely many such m, so Z matches

(Y, J).

Conversely, assume there exists A an infinite set of n such that there is no m

with Jm ⊆ In and X � Jm = Y � Jm. Without loss of generality, we may assume

either all n ∈ A are even or all n ∈ A are odd. Define a real Z by Z(k) = X(k) if

k ∈ In and n ∈ A, and 1 − Y (k) otherwise. Note that Z matches (X, I). Also, if

Z � Jm = Y � Jm, then Jm must be covered by the union of some In for n ∈ A.
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Since A contains no consecutive members, Jm must be covered by a single In – a

contradiction. It follows that Z does not match (Y, J).

We say that (X, I) engulfs (Y, J) if the conditions of Proposition V.10 hold. Two

corollaries to Proposition V.10 should be readily apparent. Suppose X, Y ∈ ω2,

I, J ∈ IP , and f, g ∈ ˜mathcalM (see Definition IV.14).

Corollary V.11. If Match(X, I) = ω2\Mf and Match(Y, J) = ω2\Mg, then (X, I)

engulfs (Y, J) iff Mg ⊆Mf .

Corollary V.12. If (X, I) engulfs (Y, J), then I dominates J .

Theorem V.13. There exists an effective morphism φ : ˜Cof(M) → D̃′.

Proof. We require φ− : ωω ↑→ M̃ and φ+ : M̃ → ωω such that Mφ−(g) ⊆Mf implies

g is interval dominated by φ+(f).

Fix a computable Y , and let φ−(g)(n) be a code for Y � In
g . Given f , let φ+(f) =

min dom(sf(n)) – in other words, φ+(f) is the function such that for all n, f(n) is a

code for X � In
φ+(f). By the corollaries above, if Mφ−(g) ⊆ Mf , then f is engulfed by

φ−(g), so φ+(f) is interval dominated by g. Therefore these maps form a morphism.

By Proposition IV.12, it is an effective morphism.

Corollary V.14. For all C and A, DC
A ⊆ COFMC

A and BC
A ⊇ ADDMC

A

There are two more morphisms to be found before we need to include N . They

are:

• ˜Cof(M) → ˜Non(M).

• D → ˜Cov(M).

Along with duality, these will prove this much of the diagram of Theorem V.7:



94

NONMC
A ←−−− COFMC

A⏐⏐� ⏐⏐�
BC

A ←−−− DC
A⏐⏐� ⏐⏐�

ADDMC
A ←−−− COVMC

A

The first morphism is easily supplied. In general, when looking for a morphism

φ : Cof(I) → Non(I) (where I is a nontrivial ideal of subsets of X), we let φ−

be the identity, and for I ∈ I, φ+(I) = X, where X /∈ I – so that if J ⊆ I,

X /∈ J . So for meager (or measure zero) sets, the goal is to find, recursively in a

code, some real which is not in the coded object. For meager sets, this is simple,

since X ∈ Match(X, I) for all I. The result requires no further proof:

Theorem V.15. There exists an effective morphism φ : ˜Cof(M) → ˜Non(M).

Corollary V.16. For all C and A, NONMC
A ⊆ COFMC

A and ADDMC
A ⊆

COVMC
A.

The second morphism listed above relies on the observation that for any f ∈ ωω,

the set {g : g ≤∗ f} is a meager subset of ωω.

Theorem V.17. There exists an effective morphism φ : D → ˜Cov(M)

Proof. (based on an argument presented in [6], perhaps originally from [44])

We seek φ− : ω2 → ωω and φ+ : ωω → M̃ such that φ−(X) ≤∗ f implies

X ∈ Mφ+(f) – that is, for all but finitely many n, X doesn’t extend the function

coded by φ+(f)(n).

First, for h ∈ ωω, denote by Yh the real such that h(n) is the number of 0’s

between the nth and (n+ 1)th 1 (h(0) is the number of 0’s at the start of Yh). Note

that for all h, Yh ≡T h – in particular, pYh
is the function n �→ ∑

i≤n(h(n) + 1).
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Now, define φ−(X) to be X if it contains finitely many 1’s, and otherwise the

(unique) g such that X = Yg. For f ∈ ωω, let

M = {Yg : g ≤∗ f} ∪ {Y : ∀∞m Y (m) = 0}.

Note that if φ−(X) ≤∗ f , either X contains finitely many 1’s or it equals Yg for some

g ≤∗ f – thus, it is in M . Also, M is meager, as it is covered by the nowhere dense

sets

Mn = {Yg : ∀m ≥ n g(m) ≤ f(m)} ∪ {Y : ∃≤nm Y (m) = 1}.

By Proposition IV.12, it remains to observe that we can answer (computably in

f) if [τ ]∩Mn = ∅ – this will only be the case if τ has at least n+ 1 1’s and for some

m ≥ n (but less than the number of 1’s in τ) the number of 0’s between the mth

and (m+ 1)th 1 is more than f(m).

Remark V.18. This is the only effective morphism in this paper that cannot be made

uniformly so, in the sense that there are constants e+ and e− such that φ+(f) = Φf
e+

and φ−(X) = ΦX
e− . Further, no such morphism could exist – such a morphism would

be continuous, and it is possible to prove there is no continuous morphism from D to

˜Cov(M). It is unclear if there are any consequences to this fact, but it is interesting

nonetheless. We will discuss it somewhat further in Chapter VII.

Corollary V.19. For all C and A, COVMC
A ⊆ DC

A and BC
A ⊆ NONMC

A.

5.3 Null Sets

In this section, we describe two simple effective morphisms:

• C̃of(N ) → Ñon(N ).

• ˜Non(M) → C̃ov(N ).
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With duality and the results of the previous section, this establishes:

COVNC
A ←−−− NONMC

A ←−−− COFMC
A COFNC

A⏐⏐� ⏐⏐�⏐⏐� BC
A ←−−− DC

A

⏐⏐�⏐⏐� ⏐⏐�
ADDNC

A ADDMC
A ←−−− COVMC

A ←−−− NONNC
A

The remaining necessary morphism, from C̃of(N ) to ˜Cof(M) is considerably

more complicated, and will require some additional preparation.

To exhibit the first listed morphism, recall from the discussion prior to Theo-

rem V.15 that it suffices to prove:

Proposition V.20. For every f ∈ Ñ (recall Definition IV.9), there exists X /∈ Nf

such that X ≤T f .

Proof. (based on a proof presented in [40], possibly folklore)

Letting Ci denote the clopen set coded by i, we need to construct an X that is

out of all but finitely many of the Cf(n). We will in fact construct an X outside

all Cf(n) for n ≥ 4 (note these Cf(n) have total measure at most 1/8). Let Un =⋃
4≤m≤2n+5Cf(m), and observe that μ(Un+1\Un) ≤ 2−2n−6 + 2−2n−7 < 2−2n−5. We

will construct X so: assume X(m) has been defined for m < n. Choose X(n) such

that μ([X|n+1] ∩ Un) is minimal – in case of a tie, let X(n) = 0. We can determine

X(n) computably relative to f since the function mapping n to an index for Un (as

a clopen set) is computable in f .

Lemma V.21. For all n, μ([X|n+1] ∩ Un) < 2−n−2 − 2−2n−3.

Proof. Proof by induction. For n = 0, note

μ([X|1] ∩ U0) ≤ 1/2μ(U0) < 1/2(1/8) < 1/4− 1/8.
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Now suppose the claim is true for n. Then

μ([X|n+1] ∩ Un+1) ≤ μ([X|n+1] ∩ Un) + μ(Un+1\Un)

< 2−n−2 − 2−2n−3 + 2−2n−5

= 2−n−2 − 3 · 2−2n−5

< 2−n−2 − 2 · 2−2n−5

= 2−n−2 − 2−2n−4

By construction, μ([X|n+2] ∩ Un+1) ≤ 1
2
μ([X|n+1] ∩ Un+1), so this finishes the

induction step and the proof.

Now suppose X is in some Cf(m) and fix k such that [X|k] ⊆ Cf(m). Then for any

n such that 2n + 5 ≥ m and n + 1 ≥ k, [X|n+1] ⊆ Un, which contradicts the above

lemma.

As before, this is enough to prove:

Theorem V.22. There exists an effective morphism φ : C̃of(N ) → Ñon(N ).

Corollary V.23. For all C and A, NONNC
A ⊆ COFNC

A and ADDNC
A ⊆ COVNC

A.

Theorem V.24. There exists an effective morphism φ : ˜Non(M) → C̃ov(N ).

Proof. (based on an argument in [43])

We seek φ+ : ω2 → Ñ and φ− : ω2 → M̃ such that X /∈ Nφ−(Y ) implies Y ∈

Mφ+(X).

Let h(n) = n(n+1). Note that h is strictly increasing with h(0) = 0, and further,

|In
h | > n – thus, for any real Z, Match(Z, Ih) is a comeager set of measure 0 (because

the set of reals matching Z on In
h has measure less than 2−n). Let φ+(X) code X � In

h

and φ−(Y ) code the clopen set [Y � In
h ]. Since h is computable, these satisfy the
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effectivity requirement. Also, if X /∈ Nφ−(Y ), then for almost all n, X � In
h �= Y � In

h .

Thus, Y ∈ ω2\Match(X, Ih), as needed.

Corollary V.25. For all C and A, COVNC
A ⊆ NONMC

A and COVMC
A ⊆ NONNC

A.

5.4 Traces and Null Sets

In order to complete Theorem V.7, it remains only to exhibit an effective mor-

phism from C̃of(N ) to ˜Cof(M). A direct morphism is difficult to demonstrate. It

will be easier to go through an intermediate debate involving traces (recall Defini-

tion II.82).

Definition V.26. Let h be an order. Denote by Th the set of traces with bound h,

and by TRh the debate (ωω, Th, traces).

Remark V.27. We omit the use of ˜ in this definition, since we may identify [ω]<ω

with ω. It is worth noting that in set theory (from whence we derive much of the

work in this and the next section), traces are referred to as slaloms.

While different orders technically produce different debates, for the purposes of

this thesis, all such debates are equivalent.

Proposition V.28. If f and g are orders, then there is an effective morphism φ :

TRg → TRf .

Proof. Now we require φ+ : Tg → Tf and φ− : ωω → ωω such that if T traces φ−(h),

then φ+(T ) traces h. Let xn = μx(f(x) ≥ g(n)). Since f and g are orders, so is

n �→ xn. Let kn = xn+1 − xn.

We can think of our construction as having 2 sides – an f side (φ+(T ) and h) and

a g side (T and φ−(h)). Objects on the f side will be considered kn outputs at a

time, and on the g side one output at a time. The kn outputs for an object on the f
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side will code the single output of the corresponding object on the g side using the

coordinate function 〈〉kn .

Explicitly, we define φ−(h)(n) = 〈h(xn), h(xn+1), . . . , h(xn+1−1)〉kn if kn > 0 and

0 otherwise. To define φ+, suppose xn ≤ m < xn+1. For each 〈y0, y1, . . . , ykn−1〉kn ∈

T (n), put yi into φ+(T )(m), where i = m − xn. If no such n exists for m (i.e.,

m < x0) let φ+(T )(m) = ∅. Note that according to this definition, if φ+(T )(m) is

nonempty,

|φ+(T )(m)| ≤ |T (n)| ≤ g(n) ≤ f(xn) ≤ f(m)

so φ+(T ) ∈ Tf . We have φ−(h) ≤T h and φ+(T ) ≤T T , since 〈y0, y1, . . . , ykn−1〉kn �→

yi is computable uniformly in kn and i for 0 ≤ i < kn, and (y0, y1, . . . , ykn−1) �→

〈y0, y1, . . . , ykn−1〉kn is computable uniformly in kn. Also, by definition of φ− and φ+,

if φ−(h)(n) ∈ T (n), then for all m such that xn < m ≤ xn+1, h(m) ∈ φ+(T )(m). It

follows that if T traces φ−(h) then φ+(T ) traces h, as needed.

Remark V.29. The morphism in this proof is cumbersome to explain, but it follows

from a technique which we will use repeatedly with traces. We can think of it in

terms of one map in the morphism trying to undo the other. If φ− turns kn numbers

into one using the coordinate map, φ+ assumes it works on a set whose elements are

already in that form (i.e., coding kn coordinates). So φ+ undoes the coordinate map

on each element in the set. However, this method only works for morphisms from

something of the form TRf .

It follows that the cardinal and Turing characteristics associated to TRf are un-

affected by the choice of f . In the material to follow, it will be convenient to use

f(n) = 2n. Since this is the only bound we will use in this thesis, we will from this

point forward omit the subscript f .
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The primary usefulness of traces in set theory is the equivalence cof(N ) = ||TR||.

As we shall see below, this equivalence transfers to Turing characteristics, which

will prove a key intermediate step in showing that COFMC
A ⊆ COFNC

A for all

A,C. However, the equivalence (and its proof) are also of independent interest.

Taking the default values for A,C, we get COFN = TR. As mentioned earlier

(Proposition IV.18), COFN is the set of oracles not low for Schnorr tests, and from

the definition, it is clear that TR is the set of oracles not computably traceable.

Thus, the work below gives a proof of Proposition II.84 which is slightly different

than the one originally given by Terwijn and Zambella. This is our reason for not

giving a proof with the original citation (in Section 2.7) of this fact.

In all the work to follow, Ci denotes the clopen set coded by i, as usual.

Theorem V.30. There is an effective morphism φ : TR → C̃of(N )

Proof. (based on an argument from [40]

We seek maps φ+ : T → Ñ , φ− : Ñ → ωω such that if T traces φ−(f), then

Nf ⊆ Nφ+(T ). We may use

φ−(f)(n) = an index for (Cf(2n+1) ∪ Cf(2n+2))

φ+(T )(n) = an index for
(⋃

{Ci : i ∈ T (n) ∧ μ(Ci) ≤ 2−2n}
)

Note that the second union has measure at most 2n · 2−2n = 2−n, so φ+(T ) ∈ Ñ .

Suppose ∀∞n φ−(f)(n) ∈ T (n) and X ∈ Nf . Then there exist infinitely many n such

that X ∈ Cf(2n+1) ∪ Cf(2n+2). Since Cf(2n+1) ∪ Cf(2n+2) has measure not more than

2−2n, for almost all n Cf(2n+1) ∪ Cf(2n+2) ⊆ Cφ+(T )(n). It follows that X ∈ Nφ+(T ), as

needed.

Since unions of clopen sets are computable, φ−(f) ≤T f and φ+(T ) ≤T T , and

the morphism is effective.
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Remark V.31. The logic behind this morphism runs thus: in order to construct the

measure 0 subset from T , we would like to assume every member of T codes a clopen

set (of unspecified measure), and take their union to give another clopen set. But

this union must have measure at most 2−n. Since we might be taking the union of 2n

sets, each one must have measure at most 2−2n. So in order to make sure enough of

the Cf(k) are included in the unions, we need to take them two at a time – otherwise,

their measures will not diminish fast enough. Note that we again use the idea of

assuming that elements in a trace are of the type created by φ−.

Theorem V.32. There is an effective morphism φ : C̃of(N ) → TR.

Proof. (based on an argument from citeparam)

We seek maps φ+ : Ñ → T , φ− : ωω → Ñ such that Nφ−(g) ⊆ Nf implies φ+(f)

traces g.

First we define φ+. Temporarily fix f ∈ Ñ . For notational convenience, we let

En := Cf(n). Define a sequence of clopen sets Fn computably in f by the procedure:

F0 = ∅

F ∗
n+1 = Fn ∪ E2n+4 ∪ E2n+5

Fn+1 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
F ∗

n+1 ∪ Cn+1 if μ(Cn+1\F ∗
n+1) < 2−2n−2

F ∗
n+1 otherwise.

Let F =
⋃

n Fn. The goal is to add almost all the En to F , as well as any clopen

set that does not increase the measure by too much. The use of En guarantees

Nf ⊆ F , and the control over the measure of F makes it possible to determine which

clopen sets are subsets of F .

Lemma V.33. For all n:
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1. μ(F\Fn) < 2−2n−1.

2. Cn � Fn implies μ(Cn\F ) > 2−2n−1. Hence, Cn ⊆ F iff Cn ⊆ Fn, so {n : Cn ⊆

F} is computable in f .

Proof. 1. By construction, for all m,

μ(Fm+1\Fm) < 2−2m−4 + 2−2m−5 + 2−2m−2 = 11 · 2−2m−5.

Summing over all m ≥ n, we have

μ(F\Fn) < 44/3 · 2−2n−5 < 2−2n−1.

2. If Cn � Fn, then Fn = F ∗
n , so μ(Cn\Fn) ≥ 2−2n. As μ(Cn\F ) ≥ μ(Cn\Fn) −

μ(F\Fn), the previous result proves this claim.

Now we define a computable array of clopen sets Gi
n which are measure indepen-

dent and satisfy μ(Gi
n) = 2−n for all n, i. Let

Bi
n = {〈m1,m2〉|m1 + 1 = n ∧ i · n ≤ m2 < (i+ 1) · n}.

The Bi
n are pairwise disjoint, and |Bi

n| = n for all n, i. Take Gi
n to be the set of reals

X such that X(k) = 0 for all k ∈ Bi
n. Note that if D ⊂ 2<ω is finite and |σ| ≤ i · n

for all σ ∈ D, then [D] and Gi
n are measure independent.

Let R(n, k) be the set {i|Gi
n ∩ (Ck\F ) = ∅} (or, equivalently, the set {i|(Gi

n ∩

Ck)\F = ∅}). By Lemma V.33, the relation i ∈ R(n, k) is computable in f , and if

Ck ⊆ F , R(n, k) = ω. Otherwise, the following lemmas prove useful:

Lemma V.34. There exists a function h computable in f such that if Ck � F ,

maxR(n, k) ≤ h(n, k).
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Proof. The value of h for (n, k) where Ck ⊆ F is irrelevant, so assume otherwise. Let

m be minimal such that 2m + 1 ≥ n + 2k + 1, D a finite set of binary strings such

that [D] = Ck\Fm, and h(n, k) the minimal j such that |σ| ≤ j ·n for all σ ∈ D. For

i ≥ h(n, k),

μ(Gn
i ∩ (Ck\Fm)) = 2−n · μ(Ck\Fm)

≥ 2−n · μ(Ck\F )

> 2−n · 2−2k−1 ≥ 2−2m−1.

Since μ(F\Fm) < 2−2m−1, (Gi
n ∩ Ck)\F cannot be empty.

Lemma V.35. If Ck � F , then for almost all n, |R(n, k)| < 2n−k−1.

Proof. Note that if i ∈ R(n, k), then Ck\F ⊆ 2ω\Gi
n. Therefore,

0 < 2−2k−1 < μ(Ck\F )

≤ μ

⎛
⎝⋂

n

⋂
i∈R(n,k)

(2ω\Gi
n)

⎞
⎠

=
∏
n

∏
i∈R(n,k)

μ(2ω\Gi
n) =

∏
n

(1− 2−n)|R(n,k)|.

Note we are using the previous lemma, which implies R(n, k) is finite, and the mea-

sure independence of the Gi
n. The nonzero bound on the product implies lim infn(1−

2−n)|R(n,k)| = 1. On the other hand, if there are infinitely many n such that

|R(n, k)| ≥ 2n−k−1, then

lim inf
n

(1− 2−n)|R(n,k)| ≤ lim
n→∞

(1− 2−n)2n−k−1

= e−2−k−1

,

a contradiction.

For k < n, let R̃(n, k) be the set containing the 2n−k−1 least i in R(n, k) if

|R(n, k)| > 2n−k−1, and R(n, k) otherwise. Finally, let φ+(f)(n) be the union of all

R̃(n, k) for k < n (so that |φ+(f)(n)| ≤ 2n). By Lemma V.34, φ+(f) ≤T f (since we
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know when to stop looking for members of R(n, k)), and by Lemma V.35, if Ck � F ,

then for almost all n, R(n, k) ⊆ φ+(f)(n).

The definition of φ− is much simpler – we let φ−(g)(n) be a clopen set index for

G
g(n)
n (it is clear that φ−(g) ≤T g). We now suppose that for some f , Ng ⊆ Nf ⊆ F

(the F defined in the course of determining φ+(f)). We work in the space ω2\F , using

the topology inherited as a subspace of ω2. Since this is a closed subset of a Baire

space (a space where any countable intersection of open dense sets is nonempty),

ω2\F is a Baire space as well. For N ⊆ ω2, let �N denote N\F . Then we have

⋂
n∈ω

⋃
m≥n

�
G

g(m)
m = �∅.

Therefore, for some m,
⋃

m≥n

�
G

g(n)
n is not dense. That is, there is a k such that

�Ck �= �∅ and for all n ≥ m,
�

G
g(n)
n ∩ �Ck = �∅, so g(n) ∈ R(n, k) for almost all n. As

Ck � F , g(n) ∈ φ+(f)(n) for almost all n, as needed.

Corollary V.36. For all A,C, COFNC
A = TRC

A and ADDNC
A = 〈TR

⊥〉CA.

5.5 Traces and Meager Sets

In this section, we finish the proof of Theorem V.7 by relating TR to Cof(M).

Recall the proof of Theorem V.30. We can think of the proof in this way: given

a trace T (with bound 2n), imagine each T (n) as a set of codes for clopen sets

used in the definition of up to 2n measure zero sets. To construct a superset of

these increasingly many measure zero sets, use the unions of clopen sets coded by

elements of T (n). We do this because a measure zero set is expressed as the set of

reals in infinitely many of some sequence of clopen sets. The rest of the proof was

bookkeeping to ensure the resulting superset also had measure 0.

With meager sets, we will use a similar strategy. The main change is that we
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express the meager set as the set of reals out of almost all of some sequence of clopen

sets. Specifically, if si denotes the member of S coded by i (recall S is the set of

partial functions from ω to {0, 1} with finite domain), then Mf is the set of reals out

of almost all of the sets of the form [sf(n)]. So now, given a trace T , imagining each

T (n) as a set of codes for clopen sets used in the definition of some meager sets, we

will intersect the clopen sets coded instead of taking their union. But in doing so,

we need to be more careful, since we don’t want the intersections to become empty.

The following fact will prove useful in avoiding these empty intersections.

Proposition V.37. For all r ∈ ω, if {up,q}0≤p,q≤r is an array of elements of S such

that for all q, the domains of up,q are pairwise disjoint intervals, then there exists

t ∈ S such that for all q, there exists p with up,q ⊆ t.

Proof. Proof by induction on r. The case r = 0 is trivial. Assume the proposition

holds for r, and let {up,q}0≤p,q≤r+1 be an array with the described properties. For

each q, denote by ũq the up,q with min dom(up,q) maximal, and let q′ be the q with

min dom(ũq) maximal. Apply the induction hypothesis to

{up,q|q �= q′ ∧ up,q �= ũq},

obtaining t̃. Note that for all up,q in the set above, max dom(up,q) < min dom(ũq′),

so we may assume max dom(t̃) < min dom(ũq′). Clearly, there exists t ⊇ t̃ ∪ ũq′ .

Remark V.38. Without loss of generality, we may assume t has domain an interval.

Since we can check the necessary conditions on t computably, we can find such a t

computably (i.e., search for a t with minimal index).

Theorem V.39. There exists an effective morphism φ : TR → ˜Cof(M).

Proof. (based on an argument from [39])
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We seek φ+ : T → M̃ and φ− : M̃ → ωω such that if T traces φ−(g), then

Mg ⊆Mφ+(T ).

To define φ−(g), first note that, using the codings from Section 2.2 of S and [ω]<ω

by members of ω, we may also code [S]<ω using members of ω. Let φ−(g)(n) be an

index for {sg(m)}n≤m<n+2n .

Given T , view the elements of T (n) as indices for elements of [S]<ω, and let T̃ (n)

consist of only the elements of T (n) which satisfy the condition of corresponding to

subsets of S of cardinality 2n whose elements have domains that are pairwise disjoint

and disjoint from {0, 1, . . . , n− 1}. This condition is computable, so T̃ ≤T T .

Now fix n and let sp,q denote the pth member of the qth element of T̃ (n). Apply

Proposition V.37 (with r = 2n) to this array, obtaining (computably in T̃ ) the

existence of a t ∈ S such that for all q there exists a p with sp,q ⊆ t (note that for

some q < r, sp,q may not be defined, but this clearly does not alter the existence

of t). Without loss of generality, we may also assume there exists such a t with

min dom(t) = n. Denote this t by tn.

Now, let Mn be the set of X for which tm � X for all m ≥ n. Note that
⋃

nMn

is meager, as witnessed by h(n, σ) = σ0etk, where k = max(|σ|, n) and e = k − |σ|.

Clearly h is computable in T̃ , and hence in T , so by Proposition IV.12 there is

φ+(T ) ≤T T such that
⋃
Mn ⊆Mφ+(T ).

Assume that T traces φ−(g). Note that if φ−(g)(n) ∈ T (n), then φ−(g)(n) ∈ T̃ (n).

It follows that for all but finitely many n, there is an m ∈ [n, n + 2n) such that

sg(m) ⊆ tn. Suppose X ∈ Mg, and fix n such that for all m ≥ n, sg(m) �⊂ X. It

follows that for all m ≥ n, tm �⊂ X, so X ∈ Mφ+(T ). Therefore Mg ⊆ Mφ+(T ),

proving φ is a morphism.

Corollary V.40. For all C and A, ADDNC
A ⊆ ADDMC

A and COFNC
M ⊇ COFMC

A.
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Proof. By the preceding theorem and Theorem V.32.

This finishes the proof of Theorem V.7.

5.6 Splitting and Unsplittable Families

Although they will not play a role in the thesis beyond this chapter, the Turing

characteristics RC
A and SC

A interact notably with the Turing characteristics we have

been studying. These interactions are, as usual, proven by making the set theory

proofs effective via finding effective morphisms. In this section, we demonstrate the

existence of the following effective morphisms:

• R → D̃
′⊥,

• R → C̃ov(N ), and

• R → ˜Cov(M).

All proofs in this section are based on arguments presented in [6] which may be

folklore.

Theorem V.41. There exists an effective morphism φ : R → D̃
′⊥.

Proof. We require φ+ : [ω]ω → ωω ↑ and φ− : ωω ↑→ [ω]ω such that if f interval

dominates φ+(A), then φ−(f) splits A. Let φ+(A) = pA∪{0}, and m ∈ φ−(f) iff the

least n such that f(n) > m is odd (that is, φ−(f) is
⋃

n I
2n
f ). Clearly φ+ and φ−

satisfy the effectiveness conditions. Now suppose f interval dominates φ+(A). Then

for almost all n, there exists a k such that f(n) ≤ pA(k) < f(n + 1), so pA(k) ∈ In
f .

In particular, for almost all n, A ∩ I2n
f and A ∩ I2n+1

f are nonempty. It follows that

φ−(f) splits A, as needed.

Theorem V.42. There exists an effective morphism φ : R → ˜Cov(M).
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Proof. We seek φ− : ω2 → [ω]ω and φ+ : [ω]ω → M̃ such that φ−(X) not splitting A

implies X ∈Mφ+(A).

Consider the set UA of reals which do not split A. This set is meager, since it is

covered by the nowhere dense sets

UA,n = {X : A\{m : m < n} ⊆ X or X̄}

Note that [τ ] ∩ UA,n = ∅ iff there exist m0,m1 ∈ A such that |τ | > mi ≥ n and

τ(mi) = i for i = 0, 1. This is clearly recursive in A, so by Proposition IV.12 there is

φ+(A) ≤T A such that UA ⊆ Mφ+(A). Using the identity map for φ− completes the

proof.

Theorem V.43. There exists an effective morphism φ : R → C̃ov(N ).

Proof. We seek φ− : ω2 → [ω]ω and φ+ : [ω]ω → Ñ such that φ−(x) not splitting

A implies x is in the null set coded by φ+(A). As in Theorem V.42, φ− will be the

identity, and φ+(A) will code a null set covering UA (which is null as well as meager).

First, we define recursive functions f and g such that f(〈m, k〉) (respectively,

g(〈m, k〉)) is the finite string σm0〈m,k〉+1 (σm1〈m,k〉+1), where σm is the string coded

by m. Note that any finite (cofinite) real can be expressed as a finite string followed

by ω many 0’s (1’s), and thus is in infinitely many of the neighborhoods [f(n)]

([g(n)]).

For Y ∈ ω2, define A ◦ Y to be the subset of A such that A ◦ Y (pA(n)) = Y (n),

and for σ ∈ 2<ω define A ◦ σ to be the finite function with domain a subset of A

such that A ◦ σ(pA(n)) = σ(n) if the latter is defined and A ◦ σ(pA(n)) is otherwise

undefined. Then X fails to split A iff X ∩ A = A ◦ Y for some finite or cofinite Y .

It follows that if X does not split A, then for infinitely many n, X extends either
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A ◦ f(n) or A ◦ g(n). That is, we can take φ+(A)(n) to be the (clopen set) index

of [A ◦ σf(n)] ∪ [A ◦ σg(n)] (which has measure at most 2−n). Note that this can

be determined computably relative to A, using pA to find finite function indices for

A ◦ f(n) and A ◦ g(n).

Corollary V.44. For all A and C,

SC
A ⊆ NONMC

A,D
C
A,NONNC

A

RC
A ⊇ COVMC

A,B
C
A,COVNC

A

5.7 B, D, and Effective Semi-Morphisms

At this point, it is worth taking some time to reflect on how the results of Sec-

tions 5.1–5.6 fit in with what is already known in computability theory. Specifically,

we look at the case where A is the set of computable oracles, and C is ω2. In most

cases that we may talk about, we get confirmations of known (and not difficult)

results. For example, any high oracle computes a hyperimmune set (B ⊆ D), any

weakly 1-generic real computes a hyperimmune set (COVM ⊆ D), and any weakly

1-generic real computes a bi-immune set (COVM ⊆ R).

Somewhat more interesting are the results concerning ADDN and NONN. Pars-

ing the definitions,

• ADDN is the set of A such that the union of all (unrelativized) Schnorr null

sets is Schnorr null relative to A.

• NONN is the set of A such that the set of computable reals is Schnorr null

relative to A.

The article [45] calls such oracles Schnorr covering and weakly Schnorr covering, re-

spectively. Intuitively, A is Schnorr covering if it computes a “universal” relativized
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Schnorr test (i.e., universal in every respect except that it is not computable). The

fact that every such oracle is high (ADDN ⊆ B) shows how badly there fails to be

a universal Schnorr test (see the discussion following Definition II.62). Additionally,

any weakly 1-generic real computes a weakly Schnorr covering oracle, which in turn

is not computably traceable (COVM ⊇ NONN ⊆ COFN), though the last impli-

cation is trivial – if the set R of computable reals is Schnorr null relative to A, since

R is not Schnorr null, it witnesses A is not low for Schnorr tests.

However, there are gaps in the results from Sections 5.1–5.6 (at least, for our spe-

cific choices for A and C). For example, we have already mentioned that COVM =

D (by Proposition II.91), even though we do not have a result stating there is an

effective morphism from ˜Cov(M) to D. In fact, by the completeness of Cichoń’s

diagram, there are models of ZFC where such a morphism definitely does not exist.

Similarly, we know (though we did not exhibit a proof) that B ⊆ COVN, and can

further prove that B ⊆ ADDN.

Proposition V.45. If A is a high oracle, then A computes a trace T which traces

all computable functions.

Proof. Let f ≤T A dominate all computable functions. If Φe is total, then f dom-

inates n �→ μs[Φe,s(n) ↓]. Therefore, we may let T (n) be the set of m such that

Φe,f(n)(n) = m for some e < 2n.

Corollary V.46. COVN ⊆ ADDN = TR = ADDM = B. In other words, A is

Schnorr covering iff A is high, and if A is high A computes a Schnorr random real.

We make two observations about this proof. The first observation is that it

relies on A containing only computable oracles – i.e., this argument will not prove

BA ⊆ TRA for any A which contains some non-computable B. The reason is that



111

to construct T , A would have to be able to compute ΦB
e,f(n)(n) (in place of Φe,s(n)),

which it cannot necessarily do because A ≥T B is not guaranteed.

The second observation to make is that while it does not provide an effective

morphism, it does provide something that looks very similar to an effective morphism.

Given an f , we map it to a trace T ≤T f , and given a computable g, we map it to

an h ≤T g – namely, for an e such that g = Φe, we let h(n) = μs[Φe,s(n) ↓]. This is

done in such a way that if f dominates h, then T traces g. The only reason this is

not a morphism is that we only use computable g. If we generalize this procedure

which almost gives a morphism, we get the following definition.

Definition V.47. Let K = (K−, K+, K) and L = (L−, L+, L) be debates such that

K±, L± ⊆ ωω. An effective semi-morphism φ : K → L is a pair (φ−, φ+) consisting of

a function φ− : L− → K− and a partial function φ+ : from K+ to L+ whose domain

is the set of computable members of K+, such that for all X ∈ L− and computable

Y ∈ K+, φ−(X) ≤T X, φ+(Y ) is computable, and φ−(X)KY implies XLφ+(Y ).

Theorem V.48. Let φ : K → L be an effective semi-morphism and suppose C is

closed downward with respect to ≤T . Then 〈L〉C ⊆ 〈K〉C

Proof. Identical to the proof of Theorem V.3, except with “computable from an

oracle in A” replaced with “computable.”

Theorem V.49. There are effective semi-morphisms φ : Add(N ) → B and ψ :

Cov(M) → D.

Proof. This is implicit in the proofs of Propositions II.91 and V.45. We have already

discussed how to phrase the proof of Proposition V.45 in terms of finding an effective

semi-morphism. The other semi-morphism is more complicated to describe.
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Consider the proof of the ⇐ implication in Proposition II.91. In order to view

this as giving an effective semi-morphism ψ as described above, we need to define

ψ+(g) ∈ ωω for computable g ∈ M̃ and ψ−(f) ∈ ω2 for f ∈ ωω such that if f

dominates ψ+(g), then ψ−(f) /∈ Mg. The proof of Proposition II.91 almost fits this

mold, except instead of using g ∈ M̃, it uses a c.e. dense We ⊆ <ω2, and defines

from it the function

he(n) = μs[∀σ ∈ n2∃τ ⊇ σ |τ | ≤ s ∧ τ ∈ We,s].

Given an f , we construct a real X = ψ−(f) in such a way that if f is not dominated

by he, then X ∈ [We]. That is, follow the construction given in the proof, without

assuming f is not dominated by any he (if the construction fails to produce a real –

that is, for some n, σm = σn for all m ≥ n – let X be σn followed by ω many 0’s).

The remainder of the proof shows that for all e such that he does not dominate f ,

then X ∈ [We].

The only obstruction, then, is that the proof starts with a c.e. open dense set,

rather than a g ∈ M̃. We can remove this obstacle by first representing ω2\Mg as⋃
m∈ω[Wĝ(m)] for some computable ĝ such that each Wĝ(m) is dense (which we can do

by Proposition IV.12). Now let

ψ+(g)(n) = max
m≤n

hĝ(m)(n),

which is computable since he is uniformly partial computable and total for all e

such that We is dense. Observe that if f is not dominated by ψ+(g), then f is not

dominated by any hĝ(m). Therefore, ψ−(f) ∈ [Wĝ(m)] for all m, so ψ−(f) /∈ Mg, as

needed.

Of course, Theorem V.49 produces nothing new, since we just reformulated proofs

we already had. However, it does suggest that effective morphisms and their variants
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may completely describe relationships between Turing characteristics. We return to

this idea in Chapter VII.



CHAPTER VI

Negative Results

Combining the results from Chapter V, we have proven:

Theorem VI.1. Let ← denote ⊆. Then:

COVN ←−−− NONM ←−−− COFM ←−−− COFN⏐⏐� ⏐⏐�⏐⏐� B ←−−− D
⏐⏐�∥∥∥ ∥∥∥

ADDN ADDM ←−−− COVM ←−−− NONN

In this chapter, we prove this diagram is complete – if there is no arrow or sequence

of arrows leading from P to Q, then Q � P.

For some P and Q, we can already prove this using the equivalences from Sec-

tion 4.3 and the material from Chapter II. For example, consider any non-computable

low real X (for example, a low Martin-Löf random real, which from the discussion

following Definition II.62 exists). Since ∅ <T X ≤T X
′ ≤T ∅′, X computes a hyper-

immune set (Proposition). But X is not high. Therefore, X witnesses both D � B

and COVM � ADDM.

Similarly, let X be a hyperimmune-free Schnorr random real (also guaranteed to

exist by the discussion following Definition II.62). Then X witnesses COVN � D

(and therefore also COVN � ADDN and NONM � B).

114
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In order to go farther, we will need to study NONM, COFM, and NONN more

carefully. We will do so in this chapter. In particular, we will be able to establish,

by adapting set theoretic arguments, equivalents to NONM and COFM which

appeared in Chapter II (much as we did in Section 4.3). These equivalents will allow

us to prove NONM � COVN and COFM � NONM,D.

Forcing proofs will play an important role in this chapter, which is to be expected

since such arguments are used to separate cardinal characteristics. The first forcing

argument we present is one that shows COVM � NONM. Although this particular

result will prove redundant, the proof is instructive, and will prepare for later forcing

arguments, especially two involving NONN which can be used to show COFN �

NONN,COFM. This will finish the proof of the following theorem.

Theorem VI.2. The diagram of Theorem VI.1 is complete.

6.1 Cohen Forcing and Meager Sets

Recall that by the completeness of Cichoń’s diagram, is it not a theorem of ZFC

that cov(M) ≤ non(M). To construct a model of ZFC where non(M) < cov(M),

we may iterate a forcing which adds a real not in any ground model meager set

without adding a meager set which covers all ground model reals. As it turns out,

Cohen forcing (where the conditions are elements of <ω2) has this property. As

we saw in Section 3.4, algorithmically generic reals are the computable analogue to

Cohen generic reals (an idea reinforced by the fact that the weakly 1-generic reals are

exactly those not in Mg for any computable g ∈ M̃). Therefore, we would suspect

that a sufficiently generic real would witness COVM � NONM, and furthermore,

a proof of this fact can be obtained by adapting the proof that the Cohen forcing

does not add a meager set covering the ground model reals. Both suspicions are
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correct.

Notation VI.3. If sn denotes the finite domain partial function from ω to {0, 1}

which is coded by n, define the functions Smax and Smin by

Smax(n) = max dom(sn)

Smin(n) = min dom(sn).

Observe that both functions are computable. Also, let Int ⊆ ω be the computable

set of n for which dom(sn) is a nonempty interval.

Theorem VI.4. If A is a 2-generic real, A /∈ NONM.

Proof. This proof will follow a strategy similar to that of Proposition II.89. Assume

that A is 2-generic and ΦA
e ∈ M̃. Then we can show there is a σ ⊂ A which forces

“ΦA
e ∈ M̃.” Then we construct a computable real X such that for any τ ⊇ σ, there

is ν extending τ such that X matches the chopped real (or fragment thereof) given

by Φν
e beyond a specified point. That is, we will consider all such τ in turn, and

define more of X to ensure that this is the case. It will follow that no τ ⊇ σ can

force X /∈MΦA
e

, and therefore X ∈MΦA
e

.

Now let us provide details. Fix e such that ΦA
e ∈ M̃. Let

V = {σ : ∃n∀ν ⊇ σ (Φν
e,|ν|(n) ↑

∨ Φν
e,|ν|(n) /∈ Int

∨ Smax(Φν
e,|ν|(n)) + 1 �= Smin(Φν

e,|ν|(n+ 1))

∨ Smin(Φν
e,|ν|(0)) �= 0)}

No σ ⊂ A can be contained by V . By 2-genericity of A, there is σ ⊂ A such that for

all τ ⊇ σ, τ /∈ V (i.e., σ forces ΦA
e ∈ M̃). We will not actually need the full strength

of this fact – it suffices to know that for all τ ⊇ σ and n ∈ ω, there is ν extending τ

such that Φν
e,|ν|(n) ↓, and furthermore Smin(Φν

e,|ν|(n)) ≥ n.
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We construct a computable X /∈ MΦA
e

by initial segments Xs. Let τn be an

enumeration of the strings extending σ (e.g., τn is σ concatenated with the string

coded by n). Begin with X0 = ∅. Given Xs, let r be minimal such that ν := τr

extends τs and Φν
e,|ν|(|Xs|) ↓, and let u be the finite domain function coded by this

computed value. Since Smin(Φν
e,|ν|(Xs)) ≥ |Xs|, we may let Xs+1 be the string with

minimal index which extends Xs ∪ u (i.e., such strings exist). Let X =
⋃

sXs.

Now consider

Vm := {σ′ : ∃t, s ≥ m Φσ′
e,t(s) ↓ ∧sΦσ′

e,t(s)
⊂ X}.

By construction of X, for every m and τ ⊇ σ, there is an extension of τ in Vm (this

was guaranteed by the definition of any Xs such that τs ⊇ τ and s ≥ m). It follows

that it is impossible for there to be a σ′ ⊂ A such that τ /∈ Vm for all τ ⊇ σ′. So by

the 2-genericity of A, for some σ′ ⊂ A, σ′ ∈ Vm. It follows that for infinitely many

n, X extends sΦA
e (n), so X /∈MΦA

e
, as claimed.

We observe that the proof above is not quite sharp. We used the 2-genericity of

A twice. For the second use, only 1-genericity was necessary. For the first use, we

needed 2-genericity to ensure ν could be defined for every τ extending σ. However,

we only needed to be able to do this for τ which are initial segments of A, which is

always possible regardless of the genericity of A. However, while we are constructing

X, we do not know which τ are actually initial segments of A. Therefore, we need to

be able to employ a computable function which tells us, for a given τ , how long to

look for a ν before giving up. In the cases where τ actually is an initial segment of A,

we only need the function to be large enough to find ν infinitely often. This line of

reasoning suggests that we may be able to strengthen the proof of Theorem VI.4 to

work for nonhigh 1-generic reals. We can, although some additional care is required.
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Theorem VI.5. If A is a non-high 1-generic real, A /∈ NONM.

Proof. Suppose ΦA
e ∈ M̃. Let σm denote the finite binary string coded by m, and

let φ(σ,m, t) be the formula

σ ⊆ σm ∧ ∀k ≤ |σ|+ 2|σ| [Φσm
e,t (k) ↓]

∧ ∀k < |σ|+ 2|σ| [Smax(Φσm
e,t (k)) < Smin(Φσm

e,t (k + 1))]

Define f by f(n) = μ〈m, t〉(φ(A � n,m, t)). Clearly f is computable relative to A,

so there exists an increasing computable g for which ∃∞n g(n) ≥ f(n).

Construct a computable X by initial segments Xs. Let X0 = ∅. To construct

Xs+1, let n = |Xs|. For σ of length n say that σ requires attention if there exists

〈m, t〉 ≤ g(s) such that φ(σ,m, t). Also, say that σ allows action if it requires

attention and for the least 〈m, t〉 witnessing this, Smax(Φσm
e,t (n+ 2n)) ≤ s.

If every σ requiring attention also allows action, we can computably extend Xs to

a string Xs+1 of length s + 1 such that for each such σ, Xs+1 agrees with the finite

function coded by Φσm
e,t (k) for some k with n ≤ k ≤ n + 2n (using Proposition V.37

since there are at most 2n σ and for each σ we have 2n options with disjoint domain).

If no σ requires attention or some σ requires attention but doesn’t allow action, let

Xs+1 = Xs. Note that for all s, |Xs| ≤ s. Let X =
⋃

sXs. Now we prove several

properties of this construction:

Lemma VI.6. If Xv = Xs for all v ∈ [s, s′], and σ requires attention at stage s+ 1,

then σ requires attention at stage s′ + 1. Further, if σ allows action at stage s + 1,

it allows action at stage s′ + 1.

Proof. The first statement follows from the monotonicity of g. The second statement

follows from the fact that we use the least 〈m, t〉 in the computation that determines

if σ allows action, and this doesn’t change from stage to stage.
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Lemma VI.7. For every stage s, there exist a σ of length |Xs| and s′ ≥ s such that

σ requires attention at stage s′ + 1.

Proof. Let v ≥ s be minimal such that g(v) ≥ f(v). If Xv �= Xs, the lemma holds for

some σ and some s′ between s and v. Otherwise, the lemma holds for σ = A � |Xs|

and s′ = v (note f(v) ≥ f(|Xs|) since v ≥ |Xs|).

Lemma VI.8. For every s, there exists s′ ≥ s such that Xs′+1 �= Xs. Thus, X is

total.

Proof. By Lemma VI.7, fix v ≥ s such that some σ of length |Xs| requires attention

at stage v + 1. Also, for each σ of length |Xs| such that there exists 〈m, t〉 with

φ(σ,m, t), choose the minimal 〈m, t〉 with this property. Let v′ be the maximum of

the chosen 〈m, t〉 and v′′ the maximum of v and v′. Either Xv′′ �= Xs, or some σ will

require attention at stage v′′ + 1 and all σ requiring attention will allow action, so

Xv′′+1 �= Xv′′ .

Lemma VI.9. If σ requires attention at stage s + 1, then for some τ extending σ

and k ≥ |σ|, Φτ
e(k) ↓ and X agrees with sΦτ

e (k) on its domain.

Proof. This clearly follows from Lemmas VI.6 and VI.8.

Now we prove that for all σ ⊂ A and m, there exist τ extending σ and k ≥ m

such that Φτ
e(k) ↓ and X agrees with sΦτ

e (k) on its domain. Fix any s such that

|Xs| ≥ max (m, |σ|) and g(s) ≥ f(s). Then at stage s+1, A � |Xs| requires attention

(note f(s) ≥ f(|Xs|)). The desired property now follows from Lemma VI.9.

Now consider

Vm := {σ′ : ∃t, k ≥ m Φσ′
e,t(k) ↓ ∧sΦσ′

e,t(k) ⊂ X}
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Note that for each m every σ ⊂ A has an extension τ in V . By the 1-genericity of A,

for every m, there exists σ ⊂ A for which σ ∈ Vm, so there exists k ≥ m such that X

agrees with sΦA
e (k) = sΦσ

e (k) on its domain. It follows that X /∈MΦA
e

, as needed.

6.2 DNC Reals and Meager Sets

Consider the following debate:

Definition VI.10. Two functions f, g ∈ ωω are infinitely equal, denoted f =∞ g, iff

for infinitely many n, f(n) = g(n). IE is the debate (ωω, ωω,=∞).

By a theorem of Bartoszyński [3], this debate has norm equal to non(M). If

we can transfer the proof of this fact to computability theory, we would obtain the

equivalence A ∈ NONM iff A ∈ IE, which by definition is the case iff A computes

a function f such that for all computable g, f(n) �= g(n) for all but finitely many n.

This would be greatly beneficial, since we have already characterized the latter set

of oracles as those which are high or DNC (Proposition II.78).

There is a morphism from Non(M) to IE, and this does provide an effective mor-

phism from ˜Non(M) to IE. Consider Theorem V.17, which by duality implies the

existence of an effective morphism from ˜Non(M) to B. The crux of that theorem’s

proof is the fact that for any f ∈ ωω, the set of g ≤∗ f is a meager subset of ωω. It is

also the case that the set of g not infinitely equal to f is a meager subset of ωω, by

almost the same argument. Therefore, a straightforward modification of the proof

of Theorem V.17 establishes the required effective morphism from ˜Non(M) to IE.

This proves that IE ⊆ NONM (in fact IEC
A ⊆ NONMC

A for all A and C).

However, effective morphisms do not help us as much as they did in Chapter V,

because the inequality ||IE|| ≥ non(M) is not proven by exhibiting a morphism from
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IE to Non(M)1. Instead, the usual proof exhibits a morphism to Non(M) from a

more complex debate formed from B and IE. This debate involves functions from

the continuum to itself, so there does not appear to be a reasonable way to assign to

it a Turing characteristic. Nevertheless, we can still carry out the set theoretic proof

with sufficient computability (just without the machinery of morphisms).

Theorem VI.11. NONM ⊆ IE.

Proof. Let A be an oracle in NONM, and f ≤T A a member of M̃ such that Mf

contains every computable real. If A is high, then A ∈ IE automatically, so assume

A is not high. Let X, g ≤T A be such that for all n, X � In
g is the member of S

(the set of partial functions from ω to {0, 1} with finite domain) coded by f(n). By

Corollary V.5, since A /∈ B, there is a computable h such that Ig does not dominate

Ih. In other words, there are infinitely many n such that In
g does not contain an

interval of Ih. For such n, In
g is covered by the union of two consecutive intervals of

Ih. Therefore,

B := {m : ∃n In
g ⊆ Im

h ∪ Im+1
h }

is an infinite set computable relative to A. Define (by recursion on m) a B̂ ≤T A

such that m+ 1 ∈ B̂ iff m+ 1 ∈ B and m /∈ B̂. Note that B̂ is still infinite, and the

intervals of the form Im
h ∪ Im+1

h for m ∈ B̂ are pairwise disjoint, with each covering

an interval of Ig. Now, using the codings of Sections 2.1 and 2.2 to enumerate <ωS,

define p : ω → ω such that p(s) codes the set of X � Im
h ∪ Im+1

h for the 3s + 1 least

values of m ∈ B̂.

Clearly, p ≤T A. We claim that for every computable function q, p(s) �= q(s) for

all but finitely many s. If not, we fix a computable q which is infinitely equal to p,

and construct a computable Y which extends infinitely many of the finite functions
1In fact it is an open question as to whether or not such a morphism is guaranteed by ZFC to exist.



122

X � In
g (i.e., Y /∈ Mf ), which will be a contradiction. We construct Y in stages s,

by defining it on intervals of Ih, beginning with Y0 = ∅. The partial real Ys will be

defined on at most 3s intervals.

Given Ys, view q(s) as a code for a member of <ωS. If this sequence has length less

than 3s + 1, or if any element in the sequence has a domain which is not the union

of two consecutive intervals of Ih, or if the elements of the sequence do not have

disjoint domains, let Ys+1 = Ys. Otherwise (which will be the case infinitely often),

let t be the first element in the sequence coded by q(s) which has domain disjoint

from the domain of Ys (this is possible since Ys is defined on at most 3s intervals and

the sequence coded by q(s) has at least 3s+ 1 elements). Define Ys+1 to agree with

Ys and t on their respective domains, and then define Ys+1 to be constantly 0 on the

first interval of Ih on which it is undefined. Note that Ys+1 is defined on three more

intervals of Ih than Ys is, and the action of defining Ys+1 on the first empty interval

of Ih guarantees that Y :=
⋃

s Ys is a total real.

For every s such that p(s) = q(s), Ys+1 is defined to match X � Im
h ∪ Im+1

h . for a

new value of m. It follows that Y agrees with X on infinitely many intervals of Ig,

as needed.

Corollary VI.12. A ∈ NONM iff A is high or DNC.

Proof. By Theorem VI.11 and the preceding discussion, and Proposition II.78.

Remark VI.13. This corollary obviates Theorem VI.5, since no 1-generic real is DNC

(Proposition II.89).

6.3 Fractional Dimension

Armed with the characterization of NONM from the previous section, we are

ready to show how to construct an oracle A in NONM and not COVN. Since
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every high oracle is in COVN, such an A must be DNC and non-high. Also, A must

not compute a Martin-Löf random real, since such reals are Schnorr random (and

COVN is the set of oracles which compute Schnorr random reals). On the other

hand, if A is non-high, DNC, and does not compute a Martin-Löf random real, it is

in NONM\COVN since every non-high Schnorr random real is Martin-Löf random

(Proposition II.67). Our goal is to demonstrate the existence of such an A.

Recall the definition of effective Hausdorff dimension from Section 2.7. Informally,

one can think of the dimension of A as a measure of how random A is. This makes

sense because every Martin-Löf random real has the maximum dimension, 1 (al-

though not every real of dimension 1 is Martin-Löf random). For another example,

if X is Martin-Löf random, Z(n) = 0 for all n, and A = X ⊕Z (i.e., the bits of A al-

ternate between 0 and random), then A has dimension 1/2. One reasonable question

to ask about dimension is if dim(A) > 0, does A compute a real of higher dimension

(or even a real of dimension 1)? That is, if A has some randomness, can we extract

more randomness from it computably? Note that in the example A = X ⊕Z above,

this is the case, since X ≤T A. However, this is not always true; Miller [33] has

provided a construction of a real A which has dimension 1/2 and does not compute

a real of higher dimension2. Note that such an A is DNC and does not compute a

Martin-Löf random real (see discussion following Proposition II.81). Therefore, for

our purposes, it suffices to show that this A can be made non-high. Fortunately, the

A constructed by Miller is automatically low2, a fact which we will demonstrate in

this section3.

The full proof of Miller’s theorem is somewhat beyond the scope of this thesis. It

heavily relies on the properties of the Kolmogorov complexity K, which is of interest

2There is nothing special about 1/2. Miller’s proof can be easily modified to work for any rational q ∈ (0, 1).
3We stress that the observation that A is low2 is the sole contribution of this thesis’s author.
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for this thesis only insofar as it links randomness, diagonal non-computability, and

effective dimension. Therefore, in our presentation of Miller’s theorem, we will be

brief, only presenting enough detail so that it can be seen that A is low2. For the

full treatment, we encourage the reader to consult [33].

Before we begin, it should be noted that Miller’s proof is a forcing proof, but one

that does not have any clear set-theoretic precedent. In that it involves subtrees

of ω2 which branch “a lot,” but not “too much,” it is somewhat similar to PTf,g,

a notion of forcing whose conditions are subtrees of ωω which branch “a lot,” but

not “too much” [5]. This makes sense, since PTf,g is a forcing that can be used to

increase non(M) without increasing cov(N ). However, the forcing used by Miller

does not appear to be otherwise connected to PTf,g.

Definition VI.14. [33] Let V ⊆ <ω2. The direct weight of V , denoted DW (V ), is

∑
σ∈V

2−|σ|/2.

The weight of V , denoted W (V ), is

inf{DW (W ) : [V ] ⊆ [W ]}.

The optimal cover of V , denoted V oc, is the subset of <ω2 such that

• [V ] ⊆ [V oc];

• DW (V oc) = W (V );

• μ([V oc]) is minimal among all sets of strings satisfying the first two requirements.

Proposition VI.15. [33] For all V , V oc exists, and is unique and prefix-free. If V

is finite, so is V oc, and the functions mapping V to V oc and W (V ) are computable.

Further, if V is c.e., V oc is uniformly Δ0
2 and [V ] is uniformly Σ0

1.
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Definition VI.16. [33] For σ ∈ <ω2 and V a c.e. subset of <ω2 such that every

τ ∈ V extends σ and σ /∈ V oc, Pσ,V is the nonempty Π0
1 class [σ]\[V oc].

Remark VI.17. The set of pairs (σ, V ) satisfying the conditions of Definition VI.16

will be our set of forcing conditions. We let (σ, V ) ≤ (τ,W ) if Pσ,V ⊆ Pτ,W . A will

be constructed as the unique member of an intersection of Π0
1 classes corresponding

to conditions. In this context, (σ, V ) forces a statement about A if that statement

is true for all A ∈ Pσ,V .

Proposition VI.18. [33] Let V0 = {σ : K(σ) ≤ |σ|/2}. Then (∅, <ω2) is a condition.

Hence, there is a condition which forces dim(A) ≥ 1/2.

We now sketch Miller’s construction. The construction involves finding (com-

putably in ∅′) a sequence of conditions {(σs, Vs)}s∈ω such that for all s, (σs+1, Vs+1) ≤

(σs, Vs) and σs+1 properly extends σs. Then A is taken to be
⋃

s σs, or equivalently⋂
s Pσs,Vs . The construction begins by letting (σ0, V0) be the condition from Propo-

sition VI.18.

If we let s = 〈e, n〉, then (σs+1, Vs+1) is chosen to make sure A fulfills the require-

ment

Re,n : If ΦA
e is total, then ∃k > n K(ΦA

e � k) ≤ (1/2 + 2−n) · k.

Clearly, for any fixed e, if every Re,n is met, then ΦA
e either4 is nontotal or has

dimension at most 1/2.

Miller’s strategy to meet Re,n is to construct (σs+1, Vs+1) in order to force one of

the following statements:

ΦA
e is not total.

∃k > n
(
[∀i < k ΦA

e (i) ↓] ∧ K(ΦA
e � k) ≤ (1/2 + 2−n) · k

)
.

4This skips over the fact that ΦA
e may not be {0, 1}-valued. This, however, is not an issue, since we may

computably modify ΦA
e to output 1 in place of any nonzero output.
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Furthermore, given e and n, we can determine computably in ∅′ which statement

is forced – the choice is determined by whether M(ρ) ↓, where M is a prefix-free

machine and ρ is a finite binary segment, both of which are defined at stage s = 〈e, n〉.

Fix e. Clearly, if the first statement is forced for any n, ΦA
e is not total. Conversely,

if the second statement is forced for all n, then for all n, ΦA
e (n) ↓ – i.e., ΦA

e is total.

Let TotA be the set of e for which ΦA
e is total. Then e ∈ TotA iff for all n the

second statement is forced. The latter condition is computable relative to ∅′′, so

A′′ ≤T TotA ≤T ∅′′5. Hence:

Theorem VI.19. There is a low2 oracle A such that dim(A) = 1/2 and for all

B ≤T A, dim(B) ≤ 1/2.

Corollary VI.20. NONM � COVN.

6.4 Challenges Below ∅′

When confronted with a new computability theoretic property of reals, natural

first questions to ask are “How does it interact with being c.e., or being Δ0
2?” Of

the incomputable reals, those which are c.e. or Δ0
2 still feel somewhat tractable, and

somehow “realistic.” After all, c.e. reals are computably listable (i.e., as subsets of

ω), and Δ0
2 reals are those computable from the halting problem, which tells us which

computations will and will not converge. We observe that in this thesis we have some

new properties – for A, the property of A being in some Turing characteristic derived

from cardinal characteristics appearing in Cichoń’s diagram. What can be said about

c.e. or Δ0
2 oracles with such properties? To put it another way, what happens to

the diagram of Theorem VI.1 if we let C be the set of c.e. oracles or the set of Δ0
2

oracles? After the results of Section 6.3, we are able to answer both questions.

5Note that by the relativization of Lemma II.39, TotA is Π0
2[A] T -complete, and Ā′′ is Π0

2[A] by the relativization
of Proposition II.33.
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Remark VI.21. Technically, the set of c.e. oracles is not a suitable choice for C, since

in our original definition, we required C to be closed downward with respect to ≤T .

However, this requirement was not for technical reasons – that is, all of the results

involving morphisms do not rely on C being closed downward. The restriction was

placed on C so that it would correspond more closely to a set theoretic situation.

For an oracle in C, we should have access to everything that oracle defines (i.e.,

computes). Technically, however, it does make sense to allow C not to be closed

downward, although the only time we will do this is for the case where C is the set

of c.e. oracles.

First, we establish an upper bound for Turing characteristics derived from cardinal

characteristics appearing in Cichoń’s diagram.

Proposition VI.22. Let K = (K−, K+, K) be any debate such that K± ⊆ ωω and k

is in Cichoń’s diagram. For every X ∈ K−, there exists Y ∈ K+ such that Y ≤T X

and XKY . Colloquially, every challenge computes an answer which meets it.

Proof. The proof of this proposition is simple, though tedious because of the number

of cases that need to be considered.

• B or D: In these cases, given f , we need to find g such that either g is not

dominated by f , or g dominates f . In either case, g = f + 1 serves.

• Ñon(J ): Given f in Ñ or M̃, there exists X ≤T f such that X is not in Nf

or Mf , respectively. This was proven in Chapter V (Proposition V.20 and the

discussion preceding Theorem V.15, respectively).

• C̃ov(J ): Given X in ω2, there exists f in Ñ or M̃ such that X is in Nf or Mf ,

respectively. Let I be the (computable) interval partition such that |In| = n+1.
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If we seek an f ∈ Ñ , we may use the one which maps n to [X � In], and if we

seek an f ∈ M̃, we may use the one which maps n to X̄ � In.

• Ãdd(J ): Given f in Ñ or M̃, by the previous two cases, there exist g ≤T

X ≤T f such that, respectively, X ∈ Ng\Nf (so Ng � Nf ), or X ∈ Mg\Mf (so

Mg � Mf ).

• C̃of(J ): Given f , we may simply use f (i.e., Nf as an answer is a superset of

Nf as a challenge).

Corollary VI.23. Let K be a debate satisfying the assumptions of Proposition VI.22.

Then for any C and A, KC
A ⊆ C\A.

For an application of Corollary VI.23, let C be the set of Δ0
2 oracles, and let A

be the set of computable oracles. Then by Propositions II.54 and II.91, COVMC
A =

C\A. Therefore, for this choice of C and A, all the Turing characteristics from the

right half of Cichoń’s diagram equal C\A.

This observation is almost enough to provide a complete version of the diagram

from Theorem V.7 for the case where C is the set of Δ0
2 oracles and A is the (default)

set of computable oracles. It remains only to note that the facts COVN � B,

NONM � COVN, and COVM � NONM may all be realized by Δ0
2 witnesses

(i.e., respectively, by a low Martin-Löf random real, the real A given by Miller’s

construction from Section 6.3, and a low 1-generic real6). Therefore:

Theorem VI.24. Let C be the set of Δ0
2 oracles. Then the following diagram holds

6The existence of such a real has not been provided in this thesis. See [49] for a proof.
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and is complete.

COVNC ←−−− NONMC ←−−− COFMC COFNC⏐⏐� ∥∥∥⏐⏐� BC ←−−− DC
∥∥∥∥∥∥ ∥∥∥

ADDNC ADDMC ←−−− COVMC NONNC

The corresponding diagram for the case where C is the set of c.e. oracles is

even simpler. As before, COVMC is C\A (A is the set of computable oracles),

so all Turing characteristics on the right side of the diagram are equal. All Turing

characteristics on the left side of the diagram are also equal.

Theorem VI.25. Any c.e. oracle in NONM is high.

Proof.

Lemma VI.26. If f ∈ M̃, Mf contains all computable reals, and fs is a computable

approximation to f , then any function h satisfying

(∀s ≥ h(n))(∀m ≤ n)fs(m) = f(m)

dominates all computable functions.

Proof. Assume g is a computable function such that ∃∞ng(n) > h(n). Without loss

of generality, we may assume g is increasing.

We will construct a recursive X in stages by finite initial segments Xn, with

X =
⋃

nXn, such that X /∈Mf , a contradiction. At stage 0, X0 = ∅. At stage n+ 1,

look for an m ≤ n+ 1 such that r := fg(n+1)(m) satisfies7.

• Smin(r) ≥ |Xn| and

• Smax(r) ≤ n

7Recall Notation VI.3 for the meanings of Smin and Smax.
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If such an m exists, then for the least such m and for all k ∈ [|Xn|, n], define Xn+1(k)

to be sr(k) if it exists and 0 otherwise. If no such m exists, let Xn+1 = Xn. Note

that |Xn| ≤ n for all n.

Now fix an arbitrary n0 and n ≥ n0 such that g(n + 1) > h(n + 1). Thus, for all

m ≤ n and n′ ≥ n, the value of fg(n′+1)(m) is correct (in the sense that it equals

f(m)). Also,

|Xn| ≤ n ≤ Smin(f(n)) = Smin(fg(n+1)(n)).

Therefore, there is an m ≤ n such that Smin(fg(n+1)(m)) ≥ |Xn|, and the least m

satisfying this requirement will continue to be the least such m at all stages n′ + 1

for n′ ≥ n. In particular, if n′ = max{n, Smax(fg(n+1)(m))}, then the construction

will guarantee that Xn′ is extended to be compatible with sf(m).

This establishes that Xn is extended an infinite number of times (thus X is total).

Further, an infinite number of these extensions force it to be compatible with some

(new) sf(m), so X ∈ [sf(m)] for infinitely many m. It remains to note that X is com-

putable since the construction is computable. Thus, if g is computable, h dominates

g, as claimed.

Now assume A is c.e., and let f ≤T A witness A ∈ NONM. Recall that if

f = ΦA
e , we can approximate f computably by letting

fs(n) = ΦAs�s
e,s (n)

where As is a fixed computable enumeration of A (if the right-hand side computation

diverges let fs(n) = 0). Define h(n) to be the minimum s such that for all m ≤ n,

ΦA
e,s(m) ↓, and if u is the maximum use of A in this computation, As � u + 1 =

A � u + 1. Then h ≤T A and by the lemma, h dominates all computable functions.

Therefore, A is high.
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Remark VI.27. As with Theorem VI.5, this theorem provides nothing new once we

have the characterization of NONM from the Corollary to Theorem VI.11, since no

c.e. oracles which do not compute ∅′ can be DNC[1].

Since ADDN is the set of high oracles, ADDNC is the set of high c.e. oracles,

and thus equal to NONMC. Also, COVMC is not equal to NONMC, since the

former contains a low oracle. Therefore:

Theorem VI.28. Let C be the set of c.e. oracles. Then the following diagram holds

and is complete.

COVNC NONMC ←−−− COFMC COFNC∥∥∥ ∥∥∥∥∥∥ BC ←−−− DC
∥∥∥∥∥∥ ∥∥∥

ADDNC ADDMC ←−−− COVMC NONNC

6.5 Lowness For Genericity and Meager Sets

In addition to the inequalities implied by Cichoń’s diagram, it is also true in all

models of ZFC that

add(M) ≥ min{cov(M), b}

cof(M) ≤ max{non(M), d}
[31].

Both inequalities are proven using a morphism. However, as was the case with the

inequality ||IE|| ≥ non(M) described in Section 6.2, the morphism involves a debate

which does not translate to a Turing characteristic; specifically, one which is built

from Non(M) and D. Therefore, we cannot hope to use an effective morphism

to prove any versions of these inequalities for Turing characteristics. Nevertheless,

(again, as was the case before) we can modify a set theoretic proof to obtain a result

in the case where A is the set of computable oracles.
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Theorem VI.29. COFM ⊆ NONM ∪D.

Proof. (based on an argument from [31])

Fix A ∈ COFM and f ≤T A in M̃ such that Mf � Mg for all computable

g ∈ M̃. If Mf contains every computable real, we are done (A ∈ NONM), so

assume X is a computable real such that X /∈ Mf . By Proposition IV.12, we may

fix Y, h ≤T A such that Mf includes all reals which do not match (Y, Ih), and let

h̃ ≤T A be such that every In
h̃

contains some Im
h such that X � Im

h = Y � Im
h .

We claim h̃ is not interval dominated by any computable g̃ (if this is the case, then

by Corollary V.5 A ∈ D). Suppose then that g̃ is computable and interval dominates

h̃. Then (X, Ig̃) engulfs (X, Ih̃), which by definition of h̃ engulfs (Y, Ih). In other

words (see Proposition V.10 and the ensuing discussion), if g ∈ M̃ is computable and

Mg includes all reals which do not match (X, Ig̃), then Mf ⊆Mg, a contradiction.

Corollary VI.30. A is in COFM iff A computes a hyperimmune set or is DNC

(iff A is not low for weak 1-genericity – see Proposition II.93).

Remark VI.31. It appears the other three-cardinal inequality does not yield any

useful information involving Turing characteristics; that is, the above proof cannot

be modified to prove a useful result relating ADDM, B, and COVM.

6.6 Weakly Schnorr Covering

As mentioned in Section 4.3, in [45] the oracles in NONN are called “weakly

Schnorr covering.” Two forcing proofs in that paper (which consists of some of the

research for this thesis) shed light on the nature of the weakly Schnorr covering

oracles, and allow us to finish proving Theorem VI.2. We recall that it will suffice to

show that

1. NONN � COFM, and
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2. COVN � NONN.

In other words, (from the equivalences detailed in Sections 4.3 and 6.5)

1. there exists an oracle A which is weakly Schnorr covering and low for weak

1-genericity;

2. there exists a Schnorr random real A which is not weakly Schnorr covering.

We may achieve these by modifying set theory proofs which involve

1. a forcing which adds to the ground model a null set covering all ground model

reals without adding any new meager sets;

2. a forcing which adds to the ground model a real not in any ground model null

set without adding a null set covering all ground model reals.

For each of the above cases, there is a simple notion of forcing which has the

desired property, which allows for a direct adaptation of the set theory methods to

provide proofs in computability theory. For example, let I be the interval partition

such that |In| = n+ 1 for all n. Consider the notion of forcing whose conditions are

partial functions p : ω → {0, 1} whose domains are the unions of coinfinitely many

intervals In, and p ≤ q if q ⊆ p. This is a forcing which adds to the ground model a

null set covering all ground model reals without adding any new meager sets [18, 4].

A computable modification yields:

Theorem VI.32. There is an oracle which is weakly Schnorr covering and low for

weak 1-genericity. Furthermore, such an oracle is computable from ∅′′.

Proof. (based on an argument presented in [4], itself based on an argument from

[18])
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We construct an A with these properties via a forcing construction. Let I be the

interval partition such that |In| = n + 1 for all n. The conditions will be partial

computable functions p from ω to {0, 1} such that dom(p) is computable, coinfinite,

and the union of some of the intervals In. For any partial computable p with domain

a union of In, let fp be the function which enumerates, in increasing order, the n

such that In � dom(p). Note that p is a condition iff fp is total and computable.

We will construct A in stages s – if ps is the condition at stage s, A =
⋃

s ps. Let

σi denote the finite binary string coded by i, and let WA
e be the eth A-c.e. subset

of <ω2. We assume each WA
e is closed upward with respect to ⊆, so that [WA

e ] is

dense iff WA
e is dense; we may assume this because we may uniformly adjust the

enumeration of WA
e so that whenever σ is enumerated into WA

e , so are all extensions

of σ. Fix an enumeration Xe of the computable binary reals (which may be done

computably in Tot ≡T ∅′′). We let p0 be the empty function, and at stage s + 1 we

attend to requirement Rs:

R2e : A matches Xe on infinitely many In.

R2e+1 : WA
e is not dense, or ∃V ⊆ <ω2 c.e. such that

V is dense and V ⊆ WA
e .

Suppose all requirements are satisfied. If Ci denotes the clopen set coded by i,

and g ≤T A is such that Cg(n) = [A � In], then satisfaction of even requirements

implies Ng contains all computable reals, so A is weakly Schnorr covering. The odd

requirements guarantee (by Proposition II.93) that A is low for weak 1-genericity.

We now describe the action taken by the construction at stage s+1. If s = 2e, let

ps+1 match ps on its domain, and Xe on Ifp(2n) for all n – otherwise, ps+1 is undefined.

Clearly this suffices to satisfy Rs and finding an index for ps+1 is computable in ∅′′

(this latter point will be important for the action taken for s = 2e + 1). It is also
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straightforward to check that ps+1 is actually a condition (i.e., partial computable

with computable coinfinite domain). Note that dom(ps+1) includes the least interval

not in dom(ps), so the actions taken at stages of this form ensure A will be total.

If s = 2e+ 1, we consider the following subroutine which is computable in ∅′. We

construct a sequence of conditions qi (with qi+1 ⊇ qi) and enumerate a set V ⊆ 2<ω

in stages i. The purpose of the subroutine is to find, at stage i+ 1, an extension ν of

σi such that ν extends some string in WA
e for all A ⊃ qi+1, and enumerate ν into V .

The V we enumerate in the subroutine will play the role of V mentioned in R2e+1.

We will want to let ps+1 =
⋃

i qi, so qi+1 will be left undefined on i + 1 designated

intervals (so that
⋃

i qi will be undefined on infinitely many intervals). If instead we

see an opportunity to force WA
e to be nondense, we will take it and interrupt the

subroutine.

Let q0 = ps and V0 = ∅. Given qi and Vi, let

Γi =
⋃
n≤i

Ifqi (n)

Θi = {θ : Γi → {0, 1}}.

We intend that Γi is the union of the i+1 intervals where qi+1 will be undefined; Θi is

the set of possibilities for A � Γi assuming A extends qi+1. Index the members of Θi

by t < 2|Γi|. We now work in substages t ≤ 2|Γi|, at each substage t+ 1 constructing

a condition rt+1 which extends rt and has domain disjoint from Γi (let r0 = qi) and

a string νt+1 which extends νt (let ν0 = σi). The intention is for νt+1 to extend a

string in WA
e for all A extending rt+1 ∪ θt – that is, substage t + 1 accounts for the

possibility that A � Γi will be θt.

At substage t + 1, determine8 if there exist τ, ρ ∈ 2<ω such that τ is compatible

with rt ∪ θt, |τ | = (n+ 1)(n+ 2)/2 for some n, ρ extends νt, and τ ∈ W ρ
e . If not, let

8To do this uniformly in ∅′, we need an index for rt. This is why we ensure ∅′′ can provide indices for all conditions
used.
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ps+1 = rt ∪ θt – here, we say the subroutine terminates. If so, for the first such pair

〈τ, ρ〉, let νt+1 = ρ and let rt+1 be rt ∪ τ � ω\Γi (note an index for rt+1 can be found

computably from τ , Γi, and an index for rt).

If the subroutine does not terminate at any substage during stage i+ 1, let qi+1 =⋃
t≤2|Γi|

rt (this is a condition since it finitely extends qi) and enumerate ν := ν2|Γi| into

V . If the subroutine does not terminate during any stage, let ps+1 =
⋃

i qi. We need

to establish:

Lemma VI.33. 1. The partial function ps+1 is a condition.

2. V is c.e.

3. An index for ps+1 can be found computably in ∅′′.

4. R2e+1 is satisfied.

Proof. For each item, we proceed by cases, based on whether or not the subroutine

terminated.

1. Note first that the domain of ps+1 is the union of some In. If the subroutine

terminated, ps+1 =∗ ps and is therefore a condition. If the subroutine never

terminated, it can be carried out computably – each time, we can search for a τ

and ρ, knowing we will find one. It follows immediately that ps+1 is computable

and the sequence qi is uniform. Note Γi+1 = Γi ∪ Ifqi+1 (i+1) since qi+1 is never

defined on Γi. Thus fp(n) = fqn+1(n+ 1) witnesses p is a condition.

2. Either the subroutine terminated and V is finite or the subroutine is computable,

giving V a computable enumeration.

3. Since the subroutine is computable in ∅′, ∅′′ can determine if and when it ter-

minates. From this, we can find an index for ps+1 computably.
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4. If the subroutine terminated in stage i+ 1, substage t+ 1, then WA
e contains no

extension of νt (since A extends rt ∪ θt), and the requirement is satisfied. If the

subroutine never terminates, then at stage i+1, we enumerate an extension of σi

into V , so V is dense. Also, for some t, A extends rt+1 ∪ θt, so νt+1 ∈ WA
e ; since

ν2|Γi| ∈ V extends νt+1, it follows that [V ] ⊆ [WA
e ] (i.e., every string enumerated

into V has an initial segment in WA
e ).

Since the constructed A satisfies all requirements, it is weakly Schnorr covering

and low for weak 1-genericity.

Corollary VI.34. NONN � COFM.

The second result of this section uses a nonconstructive forcing proof. To under-

stand the motivation behind this proof, we need to recall the original goal: prove

COFN � NONN. If we are to adapt a set theoretic forcing to prove this, it must

be a forcing which adds a new9 null set to the ground model without adding a null

set containing all ground model reals. The simplest forcing which accomplishes this

is the random forcing, which adds a real not in any ground model null set (hence our

statement that we will prove COVN � NONN).

In the random forcing, the conditions can be taken to be positive measure closed

sets, with P ≤ Q if P ⊆ Q. The computable version should be forcing with positive

measure Π0
1 classes, which we have already seen in the proof of Proposition II.56.

Therefore, we might guess that a real A which is “sufficiently generic” for the com-

putable version of the random forcing should be hyperimmune-free. Of course, A

should also be algorithmically random to some degree. However, we should note

that, in contrast to “sufficiently algorithmically generic” reals sufficing for proofs

based on the Cohen forcing (see Proposition II.89 and Theorem VI.4), A cannot be
9by this we mean a null set not covered by any ground model null set
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“sufficiently algorithmically random,” since if A is Martin-Löf random relative to ∅′,

A is not hyperimmune-free [37]. Schnorr random turns out to be a correct level of

randomness.

Theorem VI.35. If A is hyperimmune-free and Schnorr random, and N ⊆ ω2 is

Schnorr null relative to A, then the set of computable reals in N is Schnorr null

(unrelativized).

Remark VI.36. This is a translation of the set theoretic result that if N is a null

subset of ω2 in the extension created by the random forcing, the set of ground model

reals in N is null in the ground model.

Proof. (based on an argument from [26])

We first present some notation, and then two lemmas which serve as weak versions

of Fubini’s Theorem for null sets, with Schnorr null replacing null. For M,N ⊆ ω2,

M ⊕N = {X ⊕ Y : X ∈ M ∧ Y ∈ N}, and for N ⊆ 2ω and Y ∈ 2ω, let NY = {X :

X ⊕ Y ∈ N}.

Lemma VI.37. If N is Schnorr null, so is {Y : μ(NY ) > 0}.

Proof. Due to van Lambalgen [56].

Lemma VI.38. If P is a Π0
1 class and e an index such that for all Y ∈ P , ΦY

e ∈ Ñ ,

then

e(P ) := {X ⊕ Y : Y ∈ P ∧X ∈ NΦY
e
}

is Schnorr null.

Proof. Let T ⊆ <ω2 be a computable tree such that P is the set of branches of

T , and f a computable function such that for all n and τ ∈ T with |τ | = f(n),

{e}τ
f(n)(n) converges, and Eτ

n := C{e}τ (n) has measure at most 2−n. Note that f must
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exist due to compactness (this argument is similar to the one employed to prove

Proposition II.44). Let Fn be the set of X ⊕ Y such that τ := Y � f(n) ∈ T and

X ∈ Eτ
n. Note that Fn is the union of at most 2f(n) sets of the form Eτ

n ⊕ [τ ],

each of which is clopen and has measure at most 2−n−f(n). Thus, Fn is clopen and

μ(Fn) ≤ 2−n. Also, e(P ) ⊆ ⋂
n

⋃
m≥n Fm, since if Y ∈ P and ∃∞n X ∈ CΦY

e (n), then

∃∞n X ∈ EY �f(n)
n , so ∃∞n X ⊕ Y ∈ Fn. Finally, the sequence of Fn is uniform (each

Fn is the union of finitely many clopen sets given uniformly by T and f).

Now, let A be Schnorr random and hyperimmune-free, and let N be a Schnorr null

set relative to A. Fix e such that ΦA
e ∈ Ñ and N ⊆ NΦA

e
. Since A is hyperimmune-

free, there exists a computable f̃ majorizing10 f(n) := μs ΦA�s
e,s (n) ↓. Then let P be

the Π0
1 class

{Y : ∀n Φ
Y �f̃(n)

e,f̃(n)
(n) ↓=: m ∧ μ(Cm) ≤ 2−n}.

Clearly A ∈ P , and for all Y ∈ P , ΦY
e ∈ Ñ . Let e(P ) be the Schnorr null set given

by Lemma VI.38, and M = {X : μ(e(P )X) > 0}; by Lemma VI.37, M is Schnorr

null.

If X is computable and X ∈ N , then there exists a Π0
1 class Q ⊆ P such that

for all Y ∈ Q, X ∈ NΦY
e

. To define Q, let g(n) be the nth value of m such that

X ∈ CΦA
e

(m). Then g ≤T A and thus is majorized by some computable g̃. Let Q be

the set of Y ∈ P such that for all n, X is in CΦY
e (m) for at least n values of m ≤ g̃(n)

(f̃ can be used to calculate the requisite values of ΦY
e (m)). Note that A ∈ Q, so

Q has positive measure (see Proposition II.66); as Q ⊆ e(P )X , we have X ∈ M .

Therefore, M is a Schnorr null set containing every computable real in N .

Corollary VI.39. If A is a hyperimmune-free Schnorr random real, A is not weakly

10We say f majorize g if f(n) ≥ g(n) for all n. Clearly, if f dominates g, then a finite modification of f majorizes
g.
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Schnorr covering.

Corollary VI.40. COVN � NONN.

This completes the proof of Theorem VI.2.



CHAPTER VII

Questions

In this chapter we lay out some possible directions for future research, some of

which are very speculative. We can divide these into two topics.

7.1 Algorithmic Randomness

If we ignore the original motivation of studying effective correspondents to cardinal

characteristics, the most striking results of this thesis deal with topics related to

algorithmic randomness. Specifically,

1. A is Schnorr covering iff A is high;

2. A computes a hyperimmune set implies A is weakly Schnorr covering implies A

is not computably traceable, and neither implication reverses;

3. A being weakly Schnorr covering does not imply, nor is it implied by, A being

not low for 1-genericity;

4. If A is hyperimmune-free and Schnorr random, and N is Schnorr null relative

to A, then the set of computable reals in N is Schnorr null.

Each of these items offers further questions. We first recall the definition of

Schnorr covering: A is Schnorr covering if the union of all (unrelativized) Schnorr

141
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null sets is Schnorr null relative to A. But from the perspective of algorithmic ran-

domness, there is no particular reason to consider only Schnorr null in this definition;

we may replace either instance of “Schnorr null” in the definition with some other

kind of effectively null. For example, we may use Martin-Löf null, covered by a null

Π0
1 class, covered by a null Π0

2 class, or contained in the success set of a computable

martingale (these are the types of effectively null which appear most frequently in

the study of algorithmic randomness). What sets of oracles can result from such

modifications?

The paper [34] investigates this general question. There are 25 possible definitions,

13 of which are trivial (either produce the set of all oracles or the empty set). Most

of the remaining 12 are characterized in terms of previously defined computability-

theoretic concepts. The exceptions center on the set P of oracles A such that there is

a martingale computable relative to A which succeeds on every real in the universal

Martin-Löf null set. It is known that P includes all PA oracles, every A ∈ P computes

a Martin-Löf random real, and P has measure zero.

Question VII.1. Does P consist of exactly the PA oracles?

In contrast to the set of Schnorr covering oracles, the weakly Schnorr covering

oracles have not been characterized in terms of previously defined computability-

theoretic concepts. One possibility involves the oracles which bound a very strong

array for computable reals1. A very strong array is a computable sequence {Dn}n∈ω

of finite subsets of ω such that for all n, |Dn+1| > |Dn| and
⋃

n∈ω Dn = ω. An oracle

A bounds a very strong array for computable reals if there is a real X ≤T A and a

very strong array {Dn}n∈ω such that for every computable Y , X � Dn = Y � Dn

for infinitely many n. Clearly, if A bounds a very strong array for computable reals,

1a notion closely related to that of array nonrecursiveness
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A is weakly Schnorr covering. We also note that our method for showing an oracle

to be weakly Schnorr covering has always been to show it bounds a very strong

array for computable reals (for example, the satisfaction of even requirements in

Theorem VI.32). This suggests that perhaps, informally speaking, the only way to

build a null set containing all computable reals is via a very strong array.

Question VII.2. Do all weakly Schnorr covering oracles bound a very strong array

for computable reals?

Recall that if A is computably traceable (i.e., not in COFN), it is not weakly

Schnorr covering (not in NONM) and low for weak 1-genericity (not in COFM).

Does the converse hold? Set-theoretic results suggest the answer is no, since there

are forcings which add to the ground model a new null set without adding a null set

containing all computable reals or adding a new meager set. However, the forcings

which accomplish this are very complex, and therefore unlikely to produce proofs in

computability theory. This leaves unsettled the question, which can be rephrased as:

Question VII.3. If A is not DNC and not weakly Schnorr covering, is A computably

traceable?

Informally, we can regard Theorem VI.35 as saying that a hyperimmune-free

Schnorr random real A can only compute a “new” null set by adding non-computable

reals to an “existing” null set. Of course, A still does compute “new” null sets; the

canonical example is {A}. Is this, effectively, the only thing A can do? Is it impos-

sible for A to compute “new” null sets by adding non-random reals?

Question VII.4. If A is hyperimmune-free and Schnorr random, and N is Schnorr

null relative to A, is the set

{X ∈ N : X is not Schnorr random}
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Schnorr null?

Another interesting interpretation of Theorem VI.35 is that it expresses a di-

chotomy for Schnorr random reals. If A is Schnorr random, then either A computes

a hyperimmune set, and the set of all computable reals is Schnorr null relative to

A, or A is hyperimmune-free, and any set of computable reals which is Schnorr null

relative to A is Schnorr null. There is no middle ground, where A can compute a

new null set of computable reals without being able to compute a null set covering

all the computable reals. Does this dichotomy extend to all oracles?

Question VII.5. Do there exist A an oracle and N a set of computable reals such

that A is not weakly Schnorr covering, N is Schnorr null relative to A, and N is not

Schnorr null?

7.2 Turing Characteristics

The key open question of this thesis is of course:

Question VII.6. Is the diagram of Theorem V.7 complete? That is, are the con-

tainments implied by this diagram the only ones which hold for all A and C which

are closed downward with respect to ≤T and with A countable?

This appears to be a difficult problem. In order to prove, for example, that

ADDNA can be separated from BA, we may need to carry out at least two con-

structions: one for a non-computable oracle A ∈ A, and one dependent on A for an

oracle B which will be in BA but not ADDNA. However, in certain cases, there are

other, seemingly more tractable, options.

• For separating ADDNA from BA: It is known that if A is an oracle of minimal

Turing degree (there exists no non-computable B <T A) and A �T ∅′, then
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∅′ ∈ BA, where A is the set of oracles computable relative to A. This allows

us to try to achieve separation with one construction, which may be a simpler

process.

• For separating COVMA from DA: If A is hyperimmune-free and A is the set

of oracles computable relative to A, then it is easy to see that DA = D. On the

other hand, if A is also DNC, it is not low for weak 1-genericity; there is an X

which is weakly 1-generic but not weakly 1-generic relative toA. Since COVMA

will be the set of oracles which compute a real which is weakly 1-generic relative

to A, it may be the case that additionally COVMA �= COVM.

A related question is: to what extent do effective morphisms (and their variants)

describe relationships between Turing characteristics?

Question VII.7. Let K and L be debates. Is it the case that

• there is an effective morphism from K to L iff LC
A ⊆ KC

A for all A and C;

• there is an effective semi-morphism from K to L iff L ⊆ K?

Remark VII.8. One of the original goals of this thesis was to find a strong correspon-

dence between relationships among cardinal characteristics and relationships among

Turing characteristics, mainly in the hopes of shedding further light on cardinal char-

acteristics using computability-theoretic methods. If the first item above holds, it

would further this goal, since we may be able to prove, via some method other than

finding an effective morphism, that LC
A ⊆ KC

A for all A and C. If this were the case,

it would also imply l ≤ k.

Cichoń’s diagram is complete in a stronger way than the one we have mentioned

before. It has been proven that for any assignment of the cardinals in the diagram to
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either ℵ1 or ℵ2, as long as the assignment respects the inequalities of the diagram and

the three-cardinal inequalities mentioned in Section 6.5, then there is a model of ZFC

such that c = ℵ2 and each cardinal in the diagram equals the cardinal to which it

was assigned. Does a similar result hold for the corresponding Turing characteristics?

We note that Turing characteristics have a natural maximum (C\A, as discussed in

Section 6.4) and a natural minimum (the empty set). Therefore, we may ask:

Question VII.9. If we assign Turing characteristics in the diagram of Theorem V.7

to either C\A or ∅, and this assignment respects the containments of Theorem V.7,

can we guarantee that there exist C and A such that each Turing characteristic equals

its assignment? Can C and A be chosen so that there are no other options (i.e., each

characteristic must be C\A or ∅2)? If not, what other relationships characterize the

additional assignments (in the manner of the three-cardinal inequalities)?

Some of our results have proofs that depend on A being the set of computable

oracles, and it is not known if the results themselves also depend on this. Aside from

the results of this kind contained in Theorem VI.1, which we have already addressed

above, we can ask the following questions.

Question VII.10. Do there exist A and C such that NONMC
A �= IEC

A?

Question VII.11. Do there exist A and C such that COFMC
A �= DC

A∪NONMC
A?

A final (vague) question would be: what other cardinal characteristics yield inter-

esting results for Turing characteristics? We have discussed R and S to some extent,

but it is not completely known how these sets of oracles fit in with those appearing in

Theorem VI.1. What about other cardinal characteristics? For cardinal character-

istics not defined using debates, can reasonable effective correspondents be defined?
2For example, this is the case if A is the set of computable oracles and C is the set of oracles computable relative

to some oracle of minimal Turing degree.
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A good place to start would be the consideration of the similarly defined cardinals g

and h. Some variants of g studied by Mildenberger [] appear to be likely candidates

for effectivization, and similar variants of h can be defined.
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