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CHAPTER I

Introduction

Many illnesses show heterogeneous response to treatment. For example, a study

on schizophrenia (Ishigooka et al., 2001) found that patients who take the same

antipsychotic (olanzapine) may have very different responses. Some may have to

discontinue the treatment due to serious adverse events and/or acutely worsened

symptoms, while others may experience few if any adverse events and have improved

clinical outcomes. These types of results have motivated researchers to advocate

the individualization of treatment to each patient (Lesko, 2007; Piquette-Miller and

Grant, 2007; Insel, 2009). One step in this direction is to estimate each patient’s risk

level and then match treatment to risk category (Cai et al., 2008a,b). However, this

approach is best used to decide whether to treat; otherwise it assumes the knowledge

of the best treatment for each risk category. Alternatively, one can directly estimate

a decision rule that recommends treatment according to individual characteristics.

Such a decision rule is sometimes called an individualized treatment rule. In this

dissertation, we consider the latter approach. Our goal is to develop a high quality

individualized treatment rule using data from a randomized trial. We investigate

model selection and penalization techniques aiming to improve the quality of the

estimated individualized treatment rule.
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1.1 Individualized treatment rules

We use upper case letters to denote random variables and lower case letters to

denote values of the random variables. Consider data from a randomized trial. On

each subject we have the pretreatment variables X ∈ X , treatment A taking values in

a finite, discrete treatment space A, and a real-valued primary outcome Y (assuming

large values are desirable). An individualized treatment rule d is a deterministic

decision rule from space X into the treatment space A.

Denote the distribution of (X, A, Y ) by P . This is the distribution of the clinical

trial data; in particular, denote the known randomization distribution of A given X

by p(·|X). The likelihood of (X,A, Y ) under P is then f0(x)p(a|x)f1(y|x, a), where

f0 is the unknown density of X and f1 is the unknown density of Y conditional on

(X,A). Denote the expectations with respect to the distribution P by an E. For any

individualized treatment rule d : X → A, let P d denote the distribution of (X,A, Y )

in which d is used to assign treatments. Then the likelihood of (X, A, Y ) under P d is

f0(x)1a=d(x)f1(y|x, a). Denote expectations with respect to the distribution P d by an

Ed. The Value of d is defined as V (d) = Ed(Y ). An optimal individualized treatment

rule is a rule that has the maximal Value, i.e.

dopt ∈ arg max
d

V (d),

where the argmax is over all possible treatment rules. The Value of dopt, V (dopt), is

the optimal Value.

Assume P [p(a|X) > 0] = 1 for all a ∈ A (i.e. all treatments in A are possible

for all values of X a.s.). Then P d is absolutely continuous with respect to P and a

version of the Radon-Nikodym derivative is dP d/dP = 1a=d(x)/p(a|x). Thus the Value
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of d satisfies

V (d) = Ed(Y ) =

∫
Y dP d =

∫
Y

dP d

dP
dP = E

[1A=d(X)

p(A|X)
Y

]
. (1.1)

Our goal is to estimate dopt, i.e. the individualized treatment rule that maximizes

(1.1) using data from distribution P .

1.2 Comparison with classification

The decision making problem stated in the previous section is similar to a weighted

classification problem. In binary classification, the goal is to estimate the classifier π :

X → {−1, 1} that minimizes the classification error E[1Y 6=π(X)], where Y ∈ {−1, 1}
is the correct label of X. In the decision making problem, the goal is to estimate

the decision rule d : X → A that maximizes (1.1). One can think of d as a classifier

which, given the observation X = x as input, predicts the optimal treatment. Notice

that V (d) can be written as

V (d) = E
[1A=d(X)

p(A|X)
Y

]
= E

[ Y

p(A|X)

]
− E

[ Y

p(A|X)
1A6=d(X)

]
. (1.2)

The first term on the RHS of (1.2) is a fixed number and the second term can be

viewed as a weighted classification error. Consequently, from an algorithmic view

point, estimating the optimal individualized treatment rule is similar to learning the

classifier with the minimal weighted classification error.

Thus ideas in classification can be used to estimate the optimal individualized

treatment rule. When X is low dimensional and the best rule within a simple class

of treatment rules is desired, empirical versions of the Value can be used to construct

estimators (Murphy et al., 2001; Robins et al., 2008). However if the best rule within

a larger class of treatment rules is of interest, these approaches are no longer feasible
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due to the non-smoothness and non-concavity of 1A=d(X). In this dissertation, we

consider a surrogate convex minimization method to regularize the non-concavity

problem.

1.3 Estimating optimal rules based on convex minimization

Denote Qopt(X, A) := E(Y |X,A) (here notation “Q” stands for “quality” since

Qopt(x, a) measures the quality of treatment a at observation X = x). It follows from

(1.1) that for any individualized treatment rule d,

V (d) = E
[1A=d(X)

p(A|X)
Qopt(X,A)

]
= E

[∑
a∈A

1d(X)=aQ
opt(X, a)

]
= E[Qopt(X, d(X))].

Thus V (dopt) = E[Qopt(X, dopt(X))] ≤ E[maxa∈A Qopt(X, a)]. On the other hand, by

the definition of dopt,

V (dopt) ≥ max
d: d(X)∈arg maxa∈AQopt(X,a)

V (d) = E
[
max
a∈A

Qopt(X, a)
]
.

Hence an optimal individualized treatment rule satisfies dopt(X) ∈ arg maxa∈A Qopt(X, a)

a.s.

This suggests that we may estimate the conditional mean function Qopt first and

then estimate dopt by maximizing the estimated Qopt over A. We propose to estimate

Qopt based on minimization of the quadratic loss (Y−Q)2 over a function class for Qopt.

In particular, if the function class is linear in the parameter space, then we have a

convex minimization problem. Compared with directly maximizing a Value estimator,

this approach reduces the computational difficulty and allows the consideration of a

large space of individualized treatment rules.

4



1.4 Contribution and Outline of the dissertation

In the present Chapter, we have formulated the decision making problem and

compared it with classification. This comparison has motivated us to estimate the

conditional mean function Qopt first over a function class and then estimate the treat-

ment rule by maximizing the estimated Qopt. For clarity, we include in Table 1.1

symbols used throughout the dissertation, and in Tables 1.2 and 1.3 extra symbols

used in Chapter III and Chapter IV, respectively.

In Chapter II, we relate the Value of an individualized treatment rule d to the

prediction quality of Q for any square integrable function Q on X × A such that

d(X) ∈ arg maxa∈A Q(X, a). This relationship implies that the estimated individual-

ized treatment rule will be of high quality if Qopt is well estimated. We also demon-

strate that although the convex minimization approach reduces the computational

difficulty, it may however deviate from the goal of estimating the best treatment rule

if the approximation space for Qopt is poor. This will motivate us to improve the

performance of the convex minimization approach by using penalization and model

selection techniques.

In Chapter III, we consider a sufficiently rich linear approximation space for Qopt.

l1 penalty is employed to regularize possible overfitting problem and produce a simple

individualized treatment rule. To justify this approach, we provide a finite sample

upper bound on the difference between the Value of the estimated individualized

treatment rule and the Value of the optimal individualized treatment rule. In practical

implementation, we consider a data dependent criterion for selecting tuning parameter

involved in the l1 penalty that is targeted for Value maximization. This method is

evaluated using simulation studies and illustrated with data from the Nefazodone-

CBASP trial (Keller et al., 2000)

In Chapter IV, we use model selection techniques to deal with possible deviation of

5



the convex minimization method from the goal of maximizing the Value. We consider

a sequence of models for Qopt. Within each model, an individualized treatment rule

is estimated by minimizing the quadratic loss (Y −Q)2. And the rule that maximizes

a penalized Value estimator is selected. This approach is also justified by a finite

sample upper bound on difference between the Value of the estimated individualized

treatment rule and the Value of the optimal individualized treatment rule.

In Chapter V, we discuss possible extensions and future work. This includes the

extension of current one-stage decision making problem to sequential decisions and

issues related to efficient estimation.

In Chapter VI, we list mathematical tools that are useful in deriving theorems

presented in Chapters III and IV.
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X patient pretreatment variables (X ∈ X )

A treatment (A ∈ A, where A is a finite space)

Y a one-dimensional summary of primary outcome (larger is better)

(x, a, y) particular instances of random variables (X, A, Y )

R real line

p(A|X) randomization distribution of A given X in the clinical trial data

P distribution of (X, A, Y ) where A is assigned according to p(A|X)

E expectation with respect to the distribution P

n sample size of the clinical trial data

(Xi, Ai, Yi) data collected from the i-th patient

En empirical expectation with respect to the clinical trial data

d an individualized treatment rule (mapping from X to A)

P d distribution of (X, A, Y ) where A is assigned according to rule d

Ed expectation with respect to the distribution P d

V (d) the Value of d, V (d) = E[1A=d(X)Y/p(A|X)]

dopt an optimal individualized treatment rule, dopt ∈ arg maxd V (d)

Qopt the conditional mean function, Qopt(X,A) = E(Y |X, A)

Q a square integrable function on X ×A
L(Q) prediction error of Q, L(Q) = E[Y −Q(X, A)]2

Q approximation space for Qopt

α margin parameter defined in the Margin condition (2.2)

P probability with respect to all random variables

E expectation with respect to all random variables

Table 1.1: List of symbols used throughout the dissertation.
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Φ ( or Φn) a row vector of basis functions on X ×A
J (or Jn) dimension of Φ (or Φn)

φj the j-th component of Φ (or Φn)

θ a J (or Jn) by 1 parameter vector, θ = (θ1, . . . , θJ)T

[θ∗] (or [θ∗n]) set of prediction error minimizers in the linear model

θ̂n l1 penalized least squares estimator of θ

λn tuning parameter used in the l1-PLS

σj the L2 norm of basis φj, σj =
(
Eφ2

j

)1/2

σ̂j the l2 norm of basis φj, σj =
(
Enφ

2
j

)1/2

d̂n the estimated l1-PLS individualized treatment rule

M0(θ) the index set of nonzero components in θ, M0(θ) = {j = 1, . . . J :
θj 6= 0}

Mρλn(θ) the smallest index set of “large” components in θ (defined in Section
3.4.1)

NM cardinality of the index set M

Θo
n set of parameters with controlled prediction error (define in (3.4))

Θn a subset of Θo
n with controlled sparsity (define in (3.5))

T opt the interaction term in Qopt, T opt(X,A) = Qopt(X,A) −
E[Qopt(X,A)|X]

Φ(1) (or Φ
(1)
n ) all components in Φ (or Φn) that do not contain A, Φ(1) =

(φ1, . . . , φJ(1))

J (1) (or J
(1)
n ) dimension of Φ(1) (or Φ

(1)
n )

Φ(2) (or Φ
(2)
n ) all components in Φ (or Φn) that contain A, Φ(2) = (φJ(1)+1, . . . , φJ)

θ(1) parameter vector corresponding to Φ(1), θ(1) = (θ1, . . . , θJ(1))T for a
given θ ∈ RJ

θ(2) parameter vector corresponding to Φ(2), θ(2) = (θJ(1)+1,...,θJ
)T for a

given θ ∈ RJ

M
(1)
0 (θ) the index set of nonzero components in (θ1, . . . , θJ(1))

M
(2)
0 (θ) the index set of nonzero components in (θJ(1)+1, . . . , θJ)

M
(1)
ρλn

(θ) the smallest index set of “large” components in (θ1, . . . , θJ(1))

M
(2)
ρλn

(θ) the smallest index set of “large” components in (θJ(1)+1, . . . , θJ)

Table 1.2: List of extra symbols used in Chapter III.
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Mn number of models for Qopt

Qm the m-th model for Qopt

Q̂n,m the least square estimator of Qopt in the m-th model

Q∗
m prediction error minimizer in the m-th model

Dm class of individualized treatment rules associated with Qm, Dm =
{d(X) ∈ arg maxa Q(X, a) : Q ∈ Qm}

d̂n,m the treatment rule associated with Q̂n,m, d̂n,m(X) ∈
arg maxa Q̂n,m(X, a)

d∗m the treatment rule associated with Q∗
m

d̃m the best treatment rule in Dm, d̃m ∈ arg maxd∈Dm V (d)

m∗ the model that has the maximal Value V (d̂n,m)

m̂ model selection by maximizing the penalized empirical Value (de-
fined in (4.3))

γ(n,m) a quantity that increases as the model complexity increases and de-
creases to zero as the sample size n →∞

f(d) a function of (X, A, Y ) and treatment rule d, f(d) =
1A=d(X)

p(A|X)
Y

Fm class of functions f(d) for d ∈ Dm

N(ε,G, L1(Pn)) the ε-covering number of G relative to the L1(Pn) norm for any func-
tion class G on X ×A× R

un(G) un(G) = E log[N(1/n,G, L1(Pn)) + 1]/n for any function class G on
X ×A× R

ξ1, . . . , ξn i.i.d. Rademacher random variables, ξi = 1 or −1 with probability
1/2 each

Table 1.3: List of extra symbols used in Chapter IV.
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CHAPTER II

Quadratic loss minimization

In this chapter, we relate the Value of an individualized treatment rule d to the

prediction quality of the associated square integrable function Q on X ×A. We also

demonstrate possible deviation of the quadratic loss minimization method from the

goal of estimating the best rule in the class of treatment rules under consideration.

2.1 Relating Value to quadratic loss

For any square integrable function Q : X ×A → R, let L(Q) denote the prediction

error of Q (i.e. the expected quadratic loss, L(Q) := E[Y − Q(X, A)]2) and d be an

individualized treatment rule associated with Q (i.e. d(X) ∈ arg maxa∈A Q(X, a)

a.s.). In this section, we provide an upper bound on the excess Value of d, V (dopt)−
V (d), in terms of the excess prediction error of Q, L(Q)− L(Qopt).

Suppose there exists a positive constant S such that p(a|x) ≥ S−1 for all (x, a)

pairs. Murphy (2005) showed that

V (dopt)− V (d) ≤ 2S1/2
[
L(Q)− L(Qopt)

]1/2
. (2.1)

Intuitively, this bound tells us that if the excess prediction error of Q is small, then

the Value of the associated individualized treatment rule will be close to the optimal

10



Value. Furthermore, the exponent 1/2 on the right hand side of (2.1) implicitly gives

a rate of convergence. For example, suppose we approximate the conditional mean

function Qopt by a linear model and we estimate it by least squares. In addition,

suppose Qopt is in the linear model. Then the excess prediction error of the estimated

Q-function will converge to zero at rate 1/n. This bound implies that the Value of the

estimated individualized treatment rule will converge to the optimal Value at rate at

least 1/
√

n. To guarantee a fast rate of convergence, an upper bound with exponent

greater than 1/2 is needed. Such an improved bound can be obtained under a margin

condition as follows.

Margin condition. There exists some constants C > 0 and α ≥ 0 such that

P
(
0 < max

a∈A
Qopt(X, a)− max

a∈A\arg maxa∈AQopt(X,a)
Qopt(X, a) ≤ ε

)
≤ Cεα (2.2)

for all positive ε satisfying Cεα ≤ 1.

The above condition is similar to the margin condition in classification (Polonik,

1995; Mammen and Tsybakov, 1999; Tsybakov, 2004); in classification this assump-

tion is often used to obtain sharp upper bounds on the excess 0−1 risk in terms of other

surrogate risks (Bartlett et al., 2006). Here maxa∈A Qopt(x, a)−maxa∈A\arg maxa∈AQopt(x,a)

Qopt(x, a) can be viewed as the “margin” of Qopt at observation X = x. It measures

the difference in mean outcomes between the optimal treatment(s) and the best sub-

optimal treatment(s) at x.

Note that the margin condition (2.2) always holds with C = 1, α = 0. In addition,

the margin condition does not exclude multiple optimal treatments for any observa-

tion x. However, when α > 0, it does exclude suboptimal treatments that yield a

conditional mean outcome very close to the optimal conditional mean outcome for a

set of x with nonzero probability.

Theorem II.1. Suppose p(a|x) ≥ S−1 for a positive constant S for all (x, a) pairs.

11



Assume the margin condition (2.2) holds with some C > 0 and α ≥ 0. Then for any

individualized treatment rule d : X → A and square integrable function Q : X×A → R

such that d(X) ∈ arg maxa∈A Q(X, a) a.s., we have

V (dopt)− V (d) ≤ C1

[
L(Q)− L(Qopt)

](1+α)/(2+α)
, (2.3)

where C1 = (22+3αS1+αC)1/(2+α). Furthermore, for any decomposition of Qopt(X, A)

into W opt(X) + T opt(X,A) and Q(X,A) into W (X) + T (X,A),

V (dopt)− V (d) ≤ C1

[
E

(
T (X, A)− T opt(X, A)

)2
](1+α)/(2+α)

. (2.4)

The proof of Theorem II.1 is in Section 2.3.

Remarks:

1. Inequality (2.3) is adaptive in the sense that if the margin condition (2.2) holds

with some α > 0, the exponent on the RHS (right hand side) of (2.3) is larger

than 1/2; otherwise (2.3) is equivalent to (2.1) (since C ′ = 2S1/2 when C = 1

and α = 0).

2. T opt(X,A) in the inequality (2.4) need only contain terms in Qopt that involve

A. The consequence is that the quality of an estimated individualized treatment

rule only depends on how well we estimate T opt. In some cases, the estimation

of T opt will not be effected by the estimation of W opt. See Chapter III for further

discussion.

3. The exponent on the RHS of (2.3) and (2.4) approaches 1 as α →∞. In this case,

the margin condition requires that the LHS of (2.2) equals 0 for all ε ∈ (0, 1),

which is unlikely to be true. However, the following holds.

12



Suppose p(a|x) ≥ S−1 for all (x, a) pairs. Assume there is an ε > 0, such that

P
(
0 < max

a∈A
Qopt(X, a)− max

a∈A\arg maxa∈AQopt(X,a)
Qopt(X, a) < ε

)
= 0.

Then V (dopt)− V (d) ≤ 4S[L(Q)− L(Qopt)]/ε and

V (dopt)− V (d) ≤ 4SE(T − T opt)2/ε.

The proof is essentially the same as that of Theorem II.1 and is omitted.

Theorem II.1 implies that estimation based on minimization of the quadratic loss

will yield a high quality individualized treatment rule if the associated estimator of

Qopt has prediction error close to L(Qopt) (or more precisely, the part in Qopt involving

A is well estimated). In particular, if the excess prediction error converges to zero at

a certain rate, then the estimated rule will have Value converges to the optimal Value

at this rate to a power no smaller than 1/2.

2.2 Possible deviation from the goal

Recall that the non-concavity of the indicator function 1A=d(X) has motivated us

to use quadratic loss minimization method instead of directly maximizing an esti-

mate of the Value. Below we demonstrate that although the convex minimization

approach reduces the computational difficulty, it may, however, deviate from the goal

of estimating the best individualized treatment rule.

In the previous section, we provided a quantitative relationship between the Value

of an individualized treatment rule and the prediction error of the associated Q-

function. This relationship is built through the optimal treatment rule dopt and the

true conditional mean function Qopt. In practical implementation, we propose to es-

timate Qopt over a function class, say Q. The approximation space Q together with

the definition of the estimated individualized treatment rule as the argmax of the
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estimated Qopt places an implicit restriction on the space of decision rules that will be

considered. In effect the space of decision rules is DQ = {d(X) ∈ arg maxa Q(X, a) :

Q ∈ Q}. Thus it appears that the goal is to find the treatment rule in DQ that max-

imizes the Value. However, asymptotically the quadratic loss minimization method

tries to estimate d∗(X) ∈ arg maxa Q∗(X, a), where Q∗ = arg minQ∈Q L(Q). As one

can see in the following example, d∗ may not be the treatment rule in DQ when

Qopt /∈ Q.

A toy example

Suppose X is uniformly distributed in [−1, 1], A is binary {−1, 1} with proba-

bility 1/2 each and is independent of X, and Y is normally distributed with mean

Qopt(X,A) = (X − 1/3)2A and variance 1. It is easy to see that the optimal individ-

ualized treatment rule satisfies dopt(X) = 1 a.s. and V (dopt) = 4/9. Now we consider

model Q = {Q(X,A; θ) = (1, X,A, XA)θ : θ ∈ R4} for Qopt. Thus the space of

decision rules under consideration is DQ = {d(X) = sign(θ3 + θ4X) : θ3, θ4 ∈ R}.
Note that dopt ∈ DQ since dopt(X) can be written as sign(θ3 + θ4X) for any θ3 > 0

and θ4 = 0. dopt is the best treatment rule in DQ. However, minimizing the prediction

error over Q yields the individualized treatment rule d∗(X) = sign(2/3−X), which

has lower Value than dopt (V (d∗) = 29/81 < V (dopt)). ¤

From this toy example we see that, if the approximation space for Qopt is poor,

estimation based on quadratic loss minimization may not (even asymptotically) reach

the goal of maximizing the Value. In the rest of the dissertation, we consider two

approaches to deal with this deviation. In the first approach, we consider a rich

linear model for Qopt, and we use l1 penalization to avoid possible overfitting problem

and produce a simple treatment rule. In the second approach, we consider a set of

different models for Qopt. An individualized treatment rule is estimated from each

model using the quadratic loss minimization based method. The final rule will be
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chosen by maximizing a penalized Value estimator.

2.3 Proof of Theorem II.1

For any decision rule d : X → A, denote4Qd := maxa∈A Qopt(X, a)−Qopt(X, d(X)).

Following the arguments in Section 1.3, we have V (dopt)− V (d) = E(4Qd).

If V (dopt) − V (d) = 0, then (2.3) and (2.4) automatically hold. Otherwise,

E(4Qd)
2 ≥ (E4Qd)

2 > 0. In this case, for any ε > 0, define the event

Ωε =
{

0 < max
a∈A

Qopt(X, a)− max
a∈A\arg maxa∈AQopt(X,a)

Qopt(X, a) ≤ ε
}

.

Then on the event ΩC
ε , 4Qd = 0 or 4Qd > ε, which implies 4Qd ≤ (4Qd)

2/ε. Thus

V (dopt)− V (d) = E
(
1ΩC

ε
4Qd

)
+ E

(
1Ωε4Qd

) ≤ 1

ε
E

[
1ΩC

ε
(4Qd)

2
]
+ E

(
1Ωε4Qd

)
.

Since 4Qd ≤ (4Qd)
2/ε + ε/4, we have

V (dopt)−V (d) ≤ 1

ε
E

[
1ΩC

ε
(4Qd)

2
]
+E

[
1Ωε

((4Qd)
2

ε
+

ε

4

)]
≤ 1

ε
E

[
(4Qd)

2
]
+

C

4
ε1+α,

where the second inequality follows from the margin condition (2.2). Choosing ε =
(
4E(4Qd)

2/C
)1/(2+α)

to minimize the above upper bound yields

V (dopt)− V (d) ≤ 2α/(2+α)C1/(2+α)
[
E(4Qd)

2
](1+α)/(2+α)

. (2.5)

Next, for any d and Q such that d(X) ∈ maxa∈A Q(X, a),

E(4Qd)
2

=E
[(

max
a∈A

Qopt(X, a)−max
a∈A

Q(X, a) + Q(X, d(X))−Qopt(X, d(X))
)2]

≤2E
[(

max
a∈A

Qopt(X, a)−max
a∈A

Q(X, a)
)2

+
(
Qopt(X, d(X))−Q(X, d(X))

)2]
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≤4E
[
max
a∈A

(
Qopt(X, a)−Q(X, a)

)2
]
,

where the last inequality follows from the fact that neither |maxa∈A Qopt(X, a) −
maxa∈A Q(X, a)| nor |Q(X, d(X))−Qopt(X, d(X))| is larger than maxa∈A |Qopt(X, a)−
Q(X, a)|. Since p(a|x) ≥ S−1 for all (x, a) pairs, we have

E(4Qd)
2 ≤ 4SE

[ ∑
a∈A

(
Qopt(X, a)−Q(X, a)

)2
p(a|X)

]
= 4S

[
L(Q)−L(Qopt)

]
. (2.6)

Inequality (2.3) follows by substituting (2.6) into (2.5).

In addition, note that 4Qd = maxa∈A T opt(X, a)− T opt(X, d(X)) for any decom-

position of Qopt(X, A) into W opt(X) + T opt(X,A). Following the same procedure, we

have that

E(4Qd)
2 ≤ 4E

[
max
a∈A

(
T (X, a)− T opt(X, a)

)2
]
≤ 4SE[T (X, A)− T opt(X, A)]2

for any decomposition of Q(X,A) into W (X) + T (X, A). Inequality (2.4) follows

immediately. ¤

16



CHAPTER III

Least squares with l1 penalization

In this chapter, we consider an estimation procedure based on l1 penalized least

squares. And we provide a performance guarantee for the quality of the estimated

individualized treatment rule.

3.1 l1 penalized least squares

Let {(Xi, Ai, Yi)}n
i=1 represent i.i.d. observations on n subjects in a trial. For

convenience, we use En to denote the associated empirical expectation (i.e. Enf =
∑n

i=1 f(Xi, Ai, Yi)/n for any real-valued function f on X ×A×R). From the previous

chapter, we see that if the interaction term (i.e. term involving A) in an estimated

Q̂opt is a high quality estimator of the interaction term in Qopt, then the individualized

treatment rule, d̂n(X) = arg maxa∈A Q̂opt(X, a), will have Value near optimal Value.

Thus we focus on the estimation of Qopt.

We estimate Qopt via l1-PLS (l1 penalized least squares, Tibshirani 1996) over

a linear approximation space Q for Qopt. Because this is a convex optimization

problem, the computational difficulty is reduced as compared to directly maximizing

an empirical version of the Value.

We use penalization for two reasons. The first reason is that the use of least

squares, while reducing computational difficulty, may, however, deviate from the goal
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of estimating an optimal individualized treatment rule if the interaction term in Qopt

is poorly modeled. As a result we consider complex models for Qopt. The second

reason is to deal with over-fitting due to the potentially large number of pretreatment

variables (and/or complex approximation space for Qopt). To illustrate this issue,

consider the setting in which we know the form of Qopt is linear in the {X, A} variables

and suppose that most coefficients are nonzero (some may be quite small). Then

the least squares estimator using the correct linear model (i.e. the model that only

contains variables with true nonzero coefficients) may result in decision rules with

poor Value as well as estimated Q̂opt with large prediction error. Intuitively this

occurs when the dimension of {X, A} is too large for the size of the data set. This

is similar to the case of stepwise model selection; a solution is to select the model

that balances the approximation error with the estimation error instead of keeping

all nonzero coefficients (Massart, 2005). Indeed we will see in Theorem III.3 that the

l1-PLS method estimates a parameter with balanced prediction error and sparsity.

As a result, the individualized treatment rule produced by l1-PLS will more reliably

have higher Value than the rule produced by the least squares estimator constructed

when the correct model is known but is too complex relative to the size of the data

set.

We selected l1 penalization as this penalty does some variable selection and as

a result will help us to construct individualized treatment rules that are cheaper to

implement (fewer variables to collect per patient) and easier to interpret. See Section

3.3 for the discussion of other potential penalization methods.

Let Q := {Q(X, A; θ) = Φ(X,A)θ, θ ∈ RJ} be the approximation space for

Qopt, where Φ(X, A) = (φ1(X, A), . . . , φJ(X, A)) is a 1 by J vector composed of basis

functions on X × A, θ is a J by 1 parameter vector, and J is the number of basis

functions (for clarity here J will be fixed in n, see Section 3.4.1 for results with J
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increasing as n increases). The l1-PLS estimator of θ is

θ̂n = arg min
θ∈RJ

{
En[Y − Φ(X, A)θ]2 + λn

J∑
j=1

σ̂j|θj|
}

, (3.1)

where σ̂j =
[
Enφj(X, A)2

]1/2
, θj is the jth component of θ and λn is a tuning param-

eter that controls the amount of penalization. The weights σ̂j’s are used to balance

the scale of different basis functions; these weights were used in Bunea et al. (2007b)

and van de Geer (2008). In some situations, it is natural to penalize only a subset

of coefficients and/or use different weights in the penalty; see Section 3.4.3 for mod-

ifications of θ̂n to this case. The resulting estimated individualized treatment rule

satisfies

d̂n(X) ∈ arg max
a∈A

Φ(X, a)θ̂n. (3.2)

3.1.1 Performance guarantees for the l1-PLS

In this section we prove that the Value of the individualized treatment rule pro-

duced by the l1-PLS method is larger than the optimal Value minus a quantity with

high probability. As the sample size goes to infinity, this quantity converges to a con-

stant which will be small if the interaction term in Qopt is approximated sufficiently

well. Even though we hope to have a good approximation model, the results below

do not require this condition to hold.

Define M0(θ) = {j = 1, . . . , J : θj 6= 0}. For a set M , let NM denote the

cardinality of M .

Let θ∗ ∈ RJ be the prediction error minimizer in the linear model, i.e.

θ∗ ∈ arg min
θ∈RJ

L(Φθ) = arg min
θ∈RJ

E(Y − Φθ)2. (3.3)
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Note that the minimizer of L(Φθ) may not be unique. In that case, we use [θ∗] to

denote the equivalence class of θ∗ that contains all θs having the same prediction

error as θ∗. Let ‖f‖∞ = supx∈X ,a∈A |f(x, a)| for any bounded function f on X × A.

For any γ ∈ [0, 1/2), η1 ≥ 0, t > 0 and tuning parameter λn > 0, define the sets

Θo
n =

{
θ ∈ RJ : ∃ θo ∈ [θ∗] s.t. ‖Φ(θ − θo)‖∞ ≤ η1

and max
j=1,...,J

∣∣∣E[φjΦ(θ − θo)]

σj

∣∣∣ ≤ γλn

}
(3.4)

Θn =
{

θ ∈ Θo
n : NM0(θ) ≤ (1− 2γ)2β

120

(√
1

9
+

n

2U2[log(3J(J + 1)) + t]
− 1

3

)}
, (3.5)

where σj = (Eφ2
j)

1/2, and β and U are positive constants that will be defined in The-

orem III.1. For small η1 and γ, Θo
n contains θs that are close to the elements in [θ∗]

(note that γ controls the closeness between θ ∈ Θo
n and [θ∗] via first order derivatives

of the prediction errors since |E[φjΦ(θ − θo)]/σj| =
∣∣∂L(Φθ)/∂θj − ∂L(Φθo)/∂θo

j

∣∣ /2σj).

Θo
n is non-empty. Θn contains all θ ∈ Θo

n that have the required sparsity (note that

Θn is always non-empty for large n since NM0(θ) ≤ J). In the following, we fist provide

an upper bound for the Value of d̂n in terms of the prediction error.

Theorem III.1. Suppose p(a|x) ≥ S−1 for a positive constant S for all (x, a) pairs

and the margin condition (2.2) holds for some C > 0, α ≥ 0 and all positive ε

satisfying Cεα ≤ 1. Assume

1. the error terms εi = Yi−Qopt(Xi, Ai), i = 1, . . . , n, are i.i.d. with E(εi|Xi, Ai) =

0 and E[|εi|l] ≤ l!
2
cl−2σ2 for some c, σ2 > 0 for all l ≥ 2; and

2. there exist constants 0 < U < ∞ and 0 ≤ η2 < ∞ such that maxj=1,...,J

‖φj‖∞/σj ≤ U and supθ∈[θ∗] ‖Qopt − Φθ‖∞ ≤ η2.

For any η1 ≥ 0, 0 ≤ γ < 1/2 and t > 0, consider the estimated individualized
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treatment rule d̂n defined by (3.2) with tuning parameter

λn ≥ k max
{ log 6J + t

n
,

√
log 6J + t

n

}
, (3.6)

where k = (8 max{3c, 2(η1 + η2)}U + 12
√

2 max{σ, η1 + η2})/(1− 2γ). Let Θo
n be the

set of parameters defined in (3.4). Assume

3. there exists a constant β > 0 such that, for all θ ∈ Θo
n \ {0} and θ̃ ∈ {RJ :

∑
j∈{1,...,Jn}\M0(θ) σj|θ̃j| ≤ (2γ + 5)

∑
j∈M0(θ) σj|θ̃j − θj|/(1− 2γ)},

E[Φ(θ̃ − θ)]2NM0(θ) ≥ β
( ∑

j∈M0(θ)

σj|θ̃j − θj|
)2

.

Let Θn be the set of parameters defined in (3.5). Then for any n ≥ (27U2 − 10γ −
22) log 2J/[2(1 − 2γ)2] and for which Θn is non-empty, we have, with probability at

least 1− exp
(− k′n)− exp(−t), that

V (dopt)− V (d̂n) ≤ C1

[
min
θ∈Θn

(
L(Φθ) + KNM0(θ)λ

2
n/β

)](1+α)/(2+α)

where k′ = 13(1−2γ)2/[6(27U2−10γ−22)], K = 50(2γ +5)(4γ2 +116γ +13)/[9(1−
2γ)(2γ + 19)2] and C1 is defined in Theorem II.1.

The result follows from Theorem II.1 and Theorem III.3 in Section 3.1.2. Similar

results for J increasing in n can be obtained by combining Theorem II.1 with Theorem

III.4 in Section 3.4.1

Remarks

Assumptions 1-3 in Theorem III.1 are employed to derive the finite sample pre-

diction error bound for the l1-PLS estimator θ̂n defined in (3.1). Below we briefly

discuss those assumptions.
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1. Assumption 1 implicitly implies that the error terms do not have heavy tails.

It is easy to verify that this assumption holds if each εi is bounded. Moreover,

it also holds for some commonly used error distributions that have unbounded

support, such as the normal or double exponential. This condition is often

assumed to show that the sample mean of a variable is concentrated around its

true mean with a high probability.

2. Assumption 2 implies that Qopt and all basis functions are bounded. Note that

we do not assume Q to be a good approximation space for Qopt. However, if Φθ∗

approximates Qopt well, η2 will be small, which will result in a smaller upper

bound in (3.8). This assumption is also used to show the concentration of the

sample mean around the true mean. It is possible to replace the boundedness

condition by conditions on moments similar to those in Assumption 1.

3. Assumption 3 employed to avoid collinearity. It is easy to verify that when

E[φjφk/(σjσk)]j,k∈{1,...,J} is positive definite, this condition trivially holds with

β to be the smallest eigenvalue of E[φjφk/(σjσk)]j,k∈{1,...,J}. Similar conditions

have been used in van de Geer (2008), where the minimum is taken over all

θ ∈ RJ . Assumption 3 is also similar to the restricted eigenvalue assumptions

in Bickel et al. (2009)) in which E is replaced by En, and a fixed design matrix

is considered. It is satisfied if the “mutual coherence” assumption in Bunea

et al. (2007b) (NM0(θ) maxj 6=k,j∈M0(θ) |Eφjφk|/(σjσk) ≤ a small constant) holds

for all θ ∈ Θo
n (similar results in the fixed design setting have been proved in

Bickel et al. (2009)). See Bickel et al. (2009) for other sufficient conditions for

Assumption 3.

Define T opt(X,A) := Qopt(X,A)− E[Qopt(X, A)|X]. Then T opt is the interaction

term in Qopt. In particular, the vector of basis functions can be written as Φ(X,A) =

(Φ(1)(X), Φ(2)(X, A)), where Φ(1) = (φ1(X), . . . , φJ(1)(X)) is composed of all compo-
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nents in Φ that do not contain A and Φ(2) = (φJ(1)+1(X, A), . . . , φJ(X, A)) is composed

of all components in Φ that contain A. Since A takes only finite values and the ran-

domization distribution p(a|x) is known, we can code A so that E[Φ(2)(X,A)T |X] = 0

a.s. (see Section 3.2.1 for examples). For any θ = (θ1, . . . , θJ)T ∈ RJ , denote

θ(1) = (θ1, . . . , θJ(1))T and θ(2) = (θJ(1)+1, . . . , θJ)T . Then Φ(1)θ(1) approximates

E(Qopt(X, A)|X) and Φ(2)θ(2) approximates T opt. Define M
(1)
0 (θ) = {j = 1, . . . , J (1) :

θj 6= 0} and M
(2)
0 (θ) = {j = J (1) + 1, . . . , J : θj 6= 0}

In the following we relate the Value of d̂n to the estimator T opt. Note that the

conclusion of Theorem III.1 and the following theorem hold for all choices of λn that

satisfy (3.6). Suppose λn = o(1). The following theorem implies that if T opt can be

well approximated by a sparse representation (i.e. E(Φ(2)θ(2) − T opt)2 and N
M

(2)
0 (θ)

are small for some θ ∈ Θn), then d̂n will have Value close to the optimal Value.

Theorem III.2. Suppose p(a|x) ≥ S−1 for a positive constant S for all (x, a) pairs

and the margin condition (2.2) holds for some C > 0, α ≥ 0 and all positive ε

satisfying Cεα ≤ 1. Suppose E[Φ(2)(X,A)T |X] = 0 a.s. and Assumptions 1 and 2 in

Theorem III.1 hold. For any 0 ≤ γ < 1/2, η1 ≥ 0 and t > 0, let θ̂n be the l1-PLS

estimator defined in (3.1) with λn satisfying condition (3.6) and Θo
n be defined in

(3.4). Assume

4. there exists a constant β > 0, such that for all θ ∈ Θo
n \ {0} and θ̃ ∈ {RJ :

∑
j∈{1,...,Jn}\M0(θ) σj|θ̃j| ≤ (2γ + 5)

∑
j∈M0(θ) σj|θ̃j − θj|/(1− 2γ)},

E[Φ(1)(θ̃
(1) − θ(1))]2N

M
(1)
0 (θ)

≥ β
( ∑

j∈M
(1)
0 (θ)

σj|θ̃j − θj|
)2

(3.7)

and E[Φ(2)(θ̃
(2) − θ(2))]2N

M
(2)
0 (θ)

≥ β
( ∑

j∈M
(2)
0 (θ)

σj|θ̃j − θj|
)2

.

Let Θn be defined in (3.5). Then for any n ≥ (27U2−10γ−22) log 2J/[2(1−2γ)2] and
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for which Θn is non-empty, we have, with probability at least 1−exp
(−k′n)−exp(−t),

that

V (dopt)− V (d̂n) ≤ C1

[
min
θ∈Θn

(
E(Φ(2)θ(2) − T opt)2 + K ′N

M
(2)
0 (θ)

λ2
n/β

)] 1+α
2+α

, (3.8)

where K ′ = 20γ(2γ + 5)/[7(1 − 2γ)] + 200(2γ + 5)2/[9(2γ + 19)2], C1 is defined in

Theorem II.1, and k′ is defined in Theorem III.1.

The result follows from Theorem II.1 and Corollary III.1 in Section 3.1.2.

Remark

Assumption 4 is a sufficient condition for Assumption 3 in Theorem III.1. We

need (3.7) to show that the cross product term En[(Φ(1)θ̂
(1)

n − Φ(1)θ(1)
n )(Φ(2)θ̂

(2)

n −
Φ(2)θ(2)

n )] converging to 0 at the desired rate. We may use a really poor model for

E(Qopt(X, A)|X) (e.g. Φ(1) ≡ 1, and (3.7) holds with β = 1). When the sample size

is large (so that λn is small), the estimated treatment rule will be of high quality as

long as T opt is well approximated.

3.1.2 Prediction error bound for the l1-PLS estimator

l1-penalization in regression has been extensively studied in recent years. Much lit-

erature focused on variable selection/parameter estimation accuracy (see Meinshausen

and Buhlmann 2006; Zhao and Yu 2006; Zhang and Huang 2008; Meinshausen and

Buhlmann 2009; Zhang 2009 for examples). Others studied the behavior of the pre-

diction loss (see Greenshtein 2006; Bunea et al. 2007a,b; van de Geer 2008; Bickel

et al. 2009; Koltchinskii 2009 for examples). We are mainly interested in the latter.

In this section we provide a finite sample upper bound for the prediction error of

the l1-PLS estimator θ̂n. We present the result here for the following two reasons.

First, the result is needed to prove Theorem III.1. Second, the result itself strengthens

24



existing literature on l1-PLS method in prediction in the following way. Finite sample

prediction error bounds for the l1-PLS estimator in the random design setting have

been provided in Bunea et al. (2007b) for quadratic loss, van de Geer (2008) mainly

for general Lipschitz loss functions and Koltchinskii (2009) for loss functions satisfying

some conditions. With the quadratic loss, and permitting J to increase with n (so Φ

depends on n as well), both Bunea et al. (2007b) and van de Geer (2008) assumed

the existence of some sparse θ ∈ RJ such that E(Φθ − Qopt)2 is upper bounded by

a quantity that decreases to 0 at a certain rate as n →∞; while Koltchinskii (2009)

requires the primary outcome Y to be bounded. We improve the results in the sense

that we do not make any of these assumptions (see Section 3.4.1 for results when Φ,

J are indexed by n and J diverges).

In this section we consider the case where the sparsity of θ is measured by the

number of nonzero components (see Section 3.4.1 for proofs with a laxer definition of

sparsity). The l1-PLS estimator θ̂n estimates a parameter with balanced prediction

error and sparsity. This target parameter lies in Θn defined in (3.5). By definition,

elements in Θn have prediction error close to θ∗ and have the required sparsity. When

Θn is non-empty, we define

θ∗∗(u) = arg min
θ∈Θn

[
L(Φθ) + uNM0(θ)

]
(3.9)

for any u > 0. Note that θ∗∗(u) is at least as sparse as θ∗ since by (3.3), L(Φθ) +

uNM0(θ) > L(Φnθ
∗) + uNM0(θ∗) for any θ such that NM0(θ) > NM0(θ∗). Thus the

individualized treatment rule produced by θ∗∗(u) could be simpler than the rule

produced by θ∗. The l1-PLS estimator θ̂n estimates θ∗∗(un) for a particular “un”

that gives a balanced prediction error and sparsity. Under appropriate conditions,

un → 0 as n → ∞ (see remark 1 after Theorem III.3); in this case the prediction

error of θ∗∗(un) converges to L(Φθ∗) as n →∞ (since NM0(θ) ≤ J).
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In the following theorem, we show that L(Φθ̂n) ≤ L(Φθ∗∗(un)) + unNM0(θ∗∗(un))

with high probability. That is, up to the unNM0(θ∗∗(un)) term, θ̂n will have prediction

error roughly as if the sparseness of θ∗∗(un) were known.

Theorem III.3. Suppose Assumptions 1 and 2 in Theorem III.1 hold. For any

0 ≤ γ < 1/2, η1 ≥ 0 and t > 0, let θ̂n be the l1-PLS estimator defined in (3.1) with

λn satisfying condition (3.6) and Θo
n be defined in (3.4). Suppose Assumption 3 in

Theorem III.1 holds. Let Θn and θ∗∗(u) be defined in (3.5) and (3.9), respectively.

Then for any n ≥ (27U2−10γ−22) log 2J/[2(1−2γ)2] and for which Θn is non-empty,

we have, with probability at least 1− exp
(− k′n)− exp(−t), that

L(Φθ̂n) ≤ min
θ∈Θn

(
L(Φθ) + unNM0(θ)

)
= L

(
Φθ∗∗(un)

)
+ unNM0(θ∗∗(un)), (3.10)

where un = Kλ2
n/β, k′ and K are defined in Theorem III.1.

The results follow directly from Theorem III.4 in Section 3.4.1 with ρ = 0.

Remarks:

1. The conclusion of Theorem III.3 holds for all choices of λn that satisfy (3.6).

Suppose λn = o(1), then L(Φθ∗∗(un)) − L(Φθ∗) → 0 as n → ∞ (since NM0(θ)

is bounded). Then Theorem III.3 implies that L(Φθ̂n) − L(Φθ∗) → 0 in prob-

ability. To achieve the best rate of convergence, equal sign should be taken in

(3.6).

2. Note that θ∗∗(un) defined by (3.9) is the parameter in Θn that minimizes

L(Φθ) − L(Qopt) + unNM0(θ). Intuitively, the minimum of L(Φθ) − L(Qopt) +

unNM0(θ) can be viewed as the approximation error plus a “tight” upper bound

of the estimation error of an “oracle” in the stepwise model selection framework

(when “=” is taken in (3.6)). Here “tight” means the convergence rate in the

bound is the best known rate, and “oracle” is defined as follows.
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Let m denote a non-empty subset of the index set {1, . . . , J}. Then each m repre-

sents a model which uses a non-empty subset of {φ1, . . . , φJ} as basis functions.

Define θ̂n,m = arg min{θ∈RJ :θj=0,j /∈m} En(Y−Φθ)2 and θ∗m = arg min{θ∈RJ :θj=0,j /∈m}

E(Y −Φθ)2. In this setting, an ideal model selection criterion will pick model m∗

such that L(Φθ̂n,m∗) = infm L(Φθ̂n,m). θ̂n,m∗ is referred as an “oracle” in Mas-

sart (2005). Note that the excess prediction error of each θ̂n,m can be written

as

L(Φθ̂n,m)− L(Qopt) =
[
L(Φθ∗m)− L(Qopt)

]
+

[
L(Φθ̂n,m)− L(Φθ∗m)

]
,

where the first term is called the approximation error of model m and the

second term is the estimation error. It can be shown that (Bartlett, 2008) for

each model m and xm > 0, with probability at least 1− exp(−xm),

L(Φθ̂n,m)− L(Φθ∗m) ≤ constant×
(xm + Nm log(n/Nm)

n

)

under appropriate technical conditions, where Nm is the cardinality of the index

set m. To our knowledge this is the best rate known so far. Taking xm =

log n+Nm log J and using the union bound argument, we have with probability

at least 1−O(1/n),

L(Φnθ̂n,m∗)− L(Qopt)

= min
m

([
L(Φθ∗m)− L(Qopt)

]
+ L(Φθ̂n,m)− L(Φθ∗m)

)

≤min
m

([
L(Φθ∗m)− L(Qopt)

]
+ constant× Nm(log J + log n)

n

)

= min
θ

([
L(Φθ)− L(Qopt)

]
+ constant× NM0(θ)(log J + log n)

n

)
. (3.11)

On the other hand, take t = log(n/6) in (11) and select λn so that condition

(3.6) holds with “=”. We have λn = constant×
√

(log J + log n)/n for large n.
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(3.10) implies that, with probability at least 1−O(1/n),

L(Φθ̂n)−L(Qopt) ≤ min
θ∈Θn

([
L(Φθ)−L(Qopt)

]
+constant×NM0(θ)(log J + log n)

n

)
,

which is essentially (3.11) with the constraint of θ ∈ Θn. (The “constant” in the

above inequalities may take different values.) Since the minimum is achieved at

θ = θ∗∗(un), we refer to θ∗∗(un) as an oracle.

3. Note that θ̂n minimizes En(R − Φθ)2 plus an l1 penalty whereas θ∗∗(un) min-

imizes the prediction error L(Φθ) plus an l0 penalty. We provide an intuitive

connection between these two quantities. First note that En(Y −Φθ)2 estimates

L(Φθ) and σ̂j estimates σj. We use “≈” to denote this relationship. Thus

En(Y − Φθ)2 + λn

J∑
j=1

σ̂j|θj| (3.12)

≈L(Φθ) + λn

J∑
j=1

σj|θj|

≤L(Φθ) + λn

J∑
j=1

σj|θ̂n,j − θj|+ λn

J∑
j=1

σj|θ̂n,j|,

where θ̂n,j is the jth component of θ̂n. In Section 3.4.1 we show that for any θ ∈
Θn, λn

∑J
j=1 σj|θ̂n,j−θj| is upper bounded by NM0(θ)λ

2
n/β up to a constant with

a high probability. Thus θ̂n minimizes (3.12) and θ∗∗(un) roughly minimizes an

upper bound of (3.12).

4. The constants involved in the theorem can be improved; we focused on a read-

able result rather than providing best constants.

Following Theorem III.3 and Theorem III.4 in Section 3.4.1, we obtain a finite

sample upper bound on the mean square difference between T opt and its estimator.

This upper bound implies that l1-PLS estimator of T opt is of high quality as long as
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T opt can be approximated sufficiently well by a sparse linear representation in the

approximation model.

Corollary III.1. Suppose E[Φ(2)(X, A)T |X] = 0 a.s. and Assumptions 1 and 2 in

Theorem III.1 hold. For any 0 ≤ γ < 1/2, η1 ≥ 0 and t > 0, let θ̂n be the l1-

PLS estimator defined in (3.1) with λn satisfying condition (3.6) and Θo
n be defined

in (3.4). Suppose Assumption 4 in Theorem III.1 holds. Let Θn be defined in (3.5).

Then for any n ≥ (27U2−10γ−22) log 2J/[2(1−2γ)2] and for which Θn is non-empty,

we have, with probability at least 1− exp
(− k′n)− exp(−t), we have

E(Φ(2)θ̂
(2)

n − T opt)2 ≤ min
θ∈Θn

(
E(Φ(2)θ(2) − T opt)2 + K ′N

M
(2)
0 (θ)

λ2
n/β

)
, (3.13)

where k′ and K ′ are defined in Theorem III.1.

3.2 Numerical Studies

The proof of the theorems in the previous section requires a non-stochastic tuning

parameter. However in practical implementation, it is more realistic to use data-

dependent methods to select λn. Since our primary goal is to maximize the Value,

we select λn to maximize the cross-validated Value. For any individualized treatment

rule d, it is easy to verify that E[1A=d(X)/p(A|X)] = 1. Thus an unbiased estimator

of V (d) is En[1A=d(X)Y/p(A|X)]/En[1A=d(X)/p(A|X)] (Murphy et al., 2001). We split

the data into 10 roughly equal-sized parts; then we apply the l1-PLS based method

on each 9 parts of the data to obtain a treatment rule, and estimate the Value of

this rule using the remaining part (i.e. the average of 1A=d(X)Y/p(A|X) divided

by the average of 1A=d(X)/p(A|X) over the remaining part); this method will select

λn that maximizes the average of the 10 estimated Values. Since the Value of an

individualized treatment rule is noncontinuous in the parameters, the resulting λn is
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usually non-unique. If necessary, we select the λn that produces the simplest decision

rule (the rule using the least number of variables), from the set of λn’s that maximize

the average estimated Value. In the simulation below this second criterion effectively

reduced the number of candidate λn around 25% of the time, and multiple λn still

remained around 90% of the time. This is not surprising since the Value of a decision

rule only depends on the relative magnitudes of parameters in the decision rule. In

this case, we select the one among the remaining λn that minimizes the 10-fold cross

validated prediction error estimator; that is, minimization of the prediction error is

used as a final tie breaker.

In Section 3.2.1, we evaluate the l1-PLS based method. In Section 3.2.2, we use

data collected from the Nefazodone-CBASP trial (Keller et al., 2000) to illustrate the

application of the l1-PLS based method.

3.2.1 Simulations

In this section we evaluate the l1-PLS based method by comparing it with treat-

ment assignment via separate prognosis prediction for each treatment.

Prognosis prediction is the prediction of the outcome of a disease following a treat-

ment. Usually this method is used on multiple data sets, each of which involves one

active treatment. A natural approach to individualizing treatment is then to compare

the predicted prognosis of a patient for each treatment and recommend the treatment

that is associated with the best predicted prognosis (Kent et al., 2002). As a compari-

son to the l1-PLS method, we estimate the prognosis E(Y |X, A = a) via least squares

with l1 penalization separately for each treatment a ∈ A. We call this method the

“prognosis prediction” approach. In this approach the individualized treatment rule

results in the treatment that yields the best predicted prognosis (i.e. the estimated

individualized treatment rule satisfies d̂PP (X) ∈ arg maxa∈A Ê(Y |X,A = a)). The
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tuning parameters involved in this approach will be selected by minimizing the 10-fold

cross-validated prediction error estimator. In the following examples, the approxima-

tion model we use for prognosis prediction under each treatment is consistent with

the model we use in l1-PLS (e.g. if Qopt is approximated by (1, X, A, XA)θ in l1-PLS,

then we approximate E(Y |X,A = a) by (1, X)θPP for each treatment group in the

prognosis prediction approach). The intercept is penalized in neither method.

We consider 9 examples. In all the examples, treatment A is generated from

{−1, 1} independent of X with probability 1/2 each, and the outcome Y given X and

A is normally distributed with mean Qopt. In examples 1-3, we consider X ∈ R5 and

three simple examples for Qopt. In example 4, we consider X ∼ U [0, 1] and a complex

Qopt, which mimics the blocks function used in Donoho and Johnstone (Donoho and

Johnstone, 1994). To make the simulations more realistic, examples 5-9 are based

on data from the Nefazodone-CBASP trial (Keller et al. (2000), see Section 3.2.2 for

description of the trial). We consider 50 pretreatment variables collected from the

trial (i.e. X ∈ R50) and five examples for Qopt. Detailed simulation design for the

examples are presented in Section 3.4.2.

For example 4, we approximate Qopt by Haar wavelets. The number of basis func-

tions may increase as n increases (we index J , Φ and θ∗ by n in this case). Example

plots for Qopt(X,A) and the associated best wavelet fits Φn(X, A)θ∗n are provided in

Figure 3.1. For all other examples, we approximate Qopt by (1, X, A, XA)θ.

In examples 1, 2, 5 and 6, the interaction term T opt(= Qopt − E(Qopt|X)) is

contained in the analysis model. In particular, there is no treatment effect in example

1 and 5 (i.e. T opt ≡ 0). In other examples, the analysis model does not contain T opt.

However, in example 4 the Haar wavelets approximate Qopt (and thus T opt) sufficiently

well when Jn is large.

For each of the examples 1 - 4, we simulate data sets of sizes n between 40 and

1000. For each of the examples 5 - 9, we simulate data sets of size n = 500. 500
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Figure 3.1: Plots for: the conditional mean function Qopt(X, A) (left), Qopt(X, A) and
the associated best wavelet fit when Jn = 8 (middle), and Qopt(X,A) and
the associated best wavelet fit when Jn = 128 (right) (example 4).

data sets are generated for each sample size. We apply the l1-PLS based method

(denoted by l1-PLS) and the method based on separate prognosis prediction for each

treatment (denoted by PP) on each data set. The Value of each estimated decision

rule is evaluated via Monte Carlo using a test set of size 10, 000.

Simulation results are presented in Figure 3.2 and Table 3.1. When the approxi-

mation model for the interaction term in Qopt is of high quality, both methods produce

decision rules with similar Value. However, when the approximation model for the

interaction term in Qopt is poor (example 4 for small Jn and examples 3, 7, 8 and 9),

the l1-PLS method generally produces higher Value than PP (see examples 3, 8 and

9). Note that in example 3 the Value of the decision rule produced by l1-PLS method

has larger median absolute deviation (MAD) than that from PP when the sample size

is small. One possible reason is that the Value estimator used in cross-validation is

a non-smooth function of the data. Nonetheless, the l1-PLS method is still preferred

after taking the variation into account (l1-PLS produces treatment rules with higher

Value than PP 59.4%, 64.4%, 70.2% and 79.4% of the times when n = 40, 64, 101

and 160). Furthermore, in general the l1-PLS method uses much fewer variables for

treatment assignment than PP. This is expected since many variables may be useful
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in predicting the primary outcome under each treatment but only a few of them are

helpful in selecting the best treatment.
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Figure 3.2: Comparison of the l1-PLS based method with separate prognosis pre-
diction for each treatment (examples 1 - 4): Plots for medians and
median absolute deviations (MAD) of the Value of the estimated de-
cision rules (top panels) and the number of variables (terms) needed
for treatment assignment (including the main treatment effect term,
bottom panels) over 500 samples versus sample size on the log scale
(n = 40, 64, 101, 160, 253, 401, 633, 1000. The corresponding numbers of
basis functions in example 4 are Jn = 8, 16, 16, 32, 32, 64, 64, 128).
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Median and MAD (in the parentheses) for
Method Value of the # of variables needed

decision rules for treatment assignment
Example 5

l1-PLS 28.8515 (0.0947) 4 (4)
PP 28.8300 (0.1659) 49 (1)

Example 6
l1-PLS 30.0865 (0.0239) 10.5 (6.5)

PP(CV) 30.0011 (0.0404) 50 (1)

Example 7
l1-PLS 30.0798 (0.0007) 6 (6)

PP 29.8959 (0.0533) 49 (1)

Example 8
l1-PLS 32.1382 (0.3611) 4 (2)

PP 31.3168 (0.2512) 42 (3)

Example 9
l1-PLS 30.1579 (0.0064) 7 (5)

PP 29.9262 (0.0592) 50 (1)

Table 3.1: Comparison of the l1-PLS based method with separate prognosis prediction
based method: Medians and MAD (in the parentheses) of the Value of
each estimated decision rule (left) and the number of variables needed for
treatment assignment (including the main treatment effect term, right)
based on 500 replications (examples 5 - 9) (n = 500).

3.2.2 Nefazodone-CBASP trial example

The Nefazodone-CBASP trial was conducted to compare the efficacy of several

alternate treatments for patients with chronic depression. The study randomized

681 patients with non-psychotic chronic major depressive disorder (MDD) to either

Nefazodone, cognitive behavioral-analysis system of psychotherapy (CBASP) or the

combination of the two treatments. Various assessments were taken throughout the

study, among which the score on the 24-item Hamilton Rating Scale for Depression

(HRSD) was the primary outcome. Low HRSD scores are desirable. See Keller et al.

(2000) for more details of the study design and the primary analysis.
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In the data analysis, we use a subset of the Nefazodone-CBASP data consisting of

656 patients for whom the outcome HRSD score was observed. Pairwise comparisons

show that the combination treatment resulted in significantly lower HRSD scores than

either of the single treatments, and there was no overall difference between the single

treatments.

We use l1-PLS to develop an individualized treatment rule. In the analysis HRSD

score is reverse coded so that higher is better. There are 50 pretreatment variables

X = (X1, . . . , X50). Treatments are coded using contrast coding of dummy variables

A = (A1, A2), where A1 = 2 if the combination treatment is assigned and−1 otherwise

and A2 = 1 if CBASP is assigned, −1 if nefazodone and 0 otherwise. The vector of

basis functions, Φ(X,A), is of the form (1, X,A1, XA1, A2, XA2). So the number of

basis functions is J = 153. As a contrast, we also consider treatment assignment via

separate prognosis prediction for each treatment (PP). The vector of basis functions

used in PP is (1, X) for each treatment group. Neither the intercept term nor the

main treatment effect terms in these methods will be penalized (see Section 3.4.3 for

the modification of the weights σ̂j’s used in (3.1)).

The individualized treatment rule given by the l1-PLS method recommends the

combination treatment to all (so none of the pretreatment variables enter the rule).

On the other hand, the PP method produces a treatment rule that uses 29 variables.

If the individualized treatment rule produced by PP were used to assign treatment

for the 656 patients in the trial, it would recommend the combination treatment for

614 patients and nefazodone for the other 42 patients.

We have found that, in general, if one treatment is overwhelmingly better than the

other treatments, the treatment rules produced by both methods are likely to recom-

mend the same treatments for most patients; however as the difference in treatments

decreases these two treatment rules will recommend different treatments for more and

more patients. To see this, we consider the following 5 examples. The first example
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uses the original data, in which the combination treatment is overwhelmingly better.

Cohen’s f effect size index is around 0.25 (Cohen’s f index is the square root of the

between-group variance divided by the square root of the within-group variance; 0.25

is considered as a medium effect size; Cohen 1988). In each of the examples 2 to

5, we subtract a constant from the reverse coded HRSD scores for the combination

treatment group so that the Cohen’s f index is around 0.2, 0.15, 0.1 and 0.05, re-

spectively. Both methods are used on each example. The l1-PLS method produces

treatment rules that use 0, 0, 0, 30 and 23 variables and the PP method produces

treatment rules that always use 29 variables for treatment assignment for examples

1 to 5, respectively. If the treatment rules produced by the two methods were used

to assign treatment for the 656 patients in the trial, they would recommend different

treatments on 42, 81, 132, 264 and 331 patients for examples 1 to 5, respectively.

3.3 Discussion

Our goal is to construct an individualized treatment rule that can be employed

to benefit future patients. In this chapter, we considered l1-PLS based estimation

method and provided a finite sample upper bound for V (dopt) − V (d̂n), the excess

Value of the estimated treatment rule.

The use of an l1 penalty allows us to consider a large model for the conditional

mean function Qopt yet permits a sparse estimated individualized treatment rule.

In fact, many other penalization methods such as SCAD (Fan and Li, 2001) and

l1 penalty with adaptive weights (adaptive Lasso; Zou 2006) also have this property.

We choose the non-adaptive l1 penalty to represent these methods. Interested readers

may justify other PLS methods using similar proof techniques.

An important issue is how to select the sequence of basis functions so that the mean

square error minθ∈Θn E(Φ(2)θ(2) − T opt)2 converges to 0 as n →∞, where T opt is the
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term in Qopt containing A and Φ(2)θ(2) approximates T opt. Although our theoretical

result does not require this condition, if this condition does hold then our result

implies that V (d̂n) converges to the optimal Value. We refer to Barron et al. (1999)

for general results on the construction of approximation spaces that guarantee this

condition. In addition, note that the obtained high probability bound (3.8) cannot

be used to construct a prediction interval for V (dopt) − V (d̂n) due to the unknown

quantities in the upper bound. How to develop a high probability computable upper

bound to assess the quality of d̂n is an open question.

We used cross validation with Value maximization to select the tuning parameter

involved in the l1-PLS method. As compared to treatment assignment via separate

prognosis prediction, this method yields individualized treatment rules that use less

variables. However, since only the Value is used to select the tuning parameter, this

method may produce a complex individualized treatment rule for which the Value

is only slightly higher than that of a much simpler treatment rule. In that case,

the simple treatment rule may be preferred due to the interpretability and cost of

collecting the variables. Investigation of a tuning parameter selection criterion that

trades off the Value with the number of variables in an individualized treatment rule

is needed.

3.4 Appendices

3.4.1 Generalization of Theorem III.3

In this section, we present a generalization of Theorem III.3 where J may depend

on n and the sparsity of any θ ∈ RJ is measured by the number of “large” components

in θ as described in Zhang and Huang (2008). In this case, J , Φ and the prediction

error minimizer θ∗ from (3.3) are denoted as Jn, Φn and θ∗n, respectively. We allow

some constants used in Θo
n defined in (3.4), Θn defined in (3.5) and Assumptions 1-3
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used in Theorem III.3 to depend on n. Those sets and assumptions are re-stated

below.

Let NM denote the cardinality of any index set M ⊆ {1, . . . , Jn}. For any θ ∈ RJn

and constant ρ ≥ 0, define

Mρλn(θ) ∈ arg min
{M⊆{1,...,Jn}:

∑
j∈{1,...,Jn}\M σj |θj |≤ρNMλn}

NM .

Then Mρλn(θ) is the smallest index set that contains only “large” components in θ.

It is easy to see that when ρ = 0, M0(θ) is the index set of nonzero components in θ.

Moreover, Mρλn(θ) is an empty set if and only if θ = 0.

When E(Φ
(2)
n (X, A)T |X) = 0 a.s. (Φ

(2)
n is defined in Section 3.1.1), we define

M
(1)
ρλn

(θ) ∈ arg min
{M⊆{1,...,J

(1)
n }:∑

j∈{1,...,J
(1)
n }\M

σj |θj |≤ρNMλn}
NM .

and M
(2)
ρλn

(θ) ∈ arg min
{M⊆{J(1)

n +1,...,Jn}:
∑

j∈{J
(1)
n +1,...,Jn}\M

σj |θj |≤ρNMλn}
NM .

Assumption III.1. The error terms εi, i = 1, . . . , n, are independently distributed

with E(εi|Xi, Ai) = 0 and E[|εi|l] ≤ l!
2
cl−2σ2 for some c, σ2 > 0 for all l ≥ 2.

Assumption III.2. For all n ≥ 1,

(a) there exists an 0 < Un < ∞ such that maxj=1,...,Jn ‖φj‖∞/σj ≤ Un, where

σj := (Eφ2
j)

1/2.

(b) there exists an 0 ≤ η2,n < ∞, such that supθ∈[θ∗n] ‖Qopt − Φnθ‖∞ ≤ η2,n.

For any 0 ≤ γ < 1/2, positive number η1,n (which may depend on n) and tuning

parameter λn, define

Θo
n =

{
θ ∈ RJn : ∃ θo ∈ [θ∗n] s.t. ‖Φn(θ − θo)‖∞ ≤ η1,n

and max
j=1,...,Jn

∣∣∣E
[
Φn(θ − θo)

φj

σj

]∣∣∣ ≤ γλn

}
.
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Assumption III.3. For any n ≥ 1, there exists a βn > 0 such that

E[Φn(θ̃ − θ)]2NMρλn (θ) ≥ βn

[( ∑

j∈Mρλn (θ)

σj|θ̃j − θj|
)2

− ρ2N2
Mρλn (θ)λ

2
n

]
(3.14)

for all θ ∈ Θo
n \ {0}, θ̃ ∈ RJn and

∑
j∈{1,...,Jn}\Mρλn (θ) σj|θ̃j| ≤ 2γ+5

1−2γ
(
∑

j∈Mρλn (θ) |θ̃j −
θj|+ ρNMρλn (θ)λn).

When E(Φ
(2)
n (X,A)T |X) = 0 a.s., we consider the following assumption instead

of Assumption III.3.

Assumption III.4. For any n ≥ 1, there exists a βn > 0 such that

E[Φ(1)
n (θ̃

(1) − θ(1))]2N
M

(1)
ρλn

(θ)
≥ βn

[( ∑

j∈M
(1)
ρλn

(θ)

σj|θ̃j − θj|
)2

− ρ2N2

M
(1)
ρλn

(θ)
λ2

n

]

and E[Φ(2)
n (θ̃

(2) − θ(2))]2N
M

(2)
ρλn

(θ)
≥ βn

[( ∑

j∈M
(2)
ρλn

(θ)

σj|θ̃j − θj|
)2

− ρ2N2

M
(2)
ρλn

(θ)
λ2

n

]

for all θ ∈ Θo
n \ {0}, θ̃ ∈ RJn and

∑
j∈{1,...,Jn}\Mρλn (θ) σj|θ̃j| ≤ 2γ+5

1−2γ
(
∑

j∈Mρλn (θ) |θ̃j −
θj|+ ρNMρλn (θ)λn).

Without loss of generality, we can assume ρβn ≤ 1.

For any t > 0, define

Θn =

{
θ ∈ Θo

n : NMρλn (θ) ≤ (1− 2γ)2βn

120

(√
1

9
+

n

2U2
n[log(3Jn(Jn + 1)) + t]

− 1

3

)}
.

(3.15)

Note that we allow Un, η1,n, η2,n and β−1
n to increase as n increases. However, if

those quantities are small, the upper bound in (3.18) will be tighter.

Theorem III.4. Suppose Assumptions III.1 and III.2 hold. For any given 0 ≤ γ <

1/2, η1,n ≥ 0, ρ ≥ 0 and t > 0, let θ̂n be the l1-PLS estimator defined in (3.1) with
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tuning parameter

λn ≥ 8 max{3c, 2(η1,n + η2,n)}Un(log 6Jn + t)

(1− 2γ)n
+

12 max{σ, (η1,n + η2,n)}
(1− 2γ)

√
2(log 6Jn + t)

n
.

(3.16)

Suppose Assumption III.3 holds with ρβn ≤ 1. Let Θn be the set defined in (3.15) and

assume Θn is non-empty. If

log 2Jn

n
≤ 2(1− 2γ)2

27U2
n − 10γ − 22

, (3.17)

then with probability at least 1− exp(−k′nn)− exp(−t), we have

L(Φnθ̂n) ≤ min
θ∈Θn

[
L(Φnθ) + Kn

NMρλn (θ)

βn

λ2
n

]
, (3.18)

where k′n = 13(1− 2γ)2/[6(27U2
n − 10γ − 22)] and Kn = [40γ(12βnρ + 2γ + 5)]/[(1−

2γ)(2γ + 19)] + 130(12βnρ + 2γ + 5)2/[9(2γ + 19)2].

Furthermore, suppose E(Φ
(2)
n (X, A)T |X) = 0 a.s. Let T opt := Qopt − E(Qopt|X).

Instead of Assumption III.3, suppose Assumption III.4 holds with ρβn ≤ 1. Then

with probability at least 1− exp(−k′nn)− exp(−t), we have

E(Φ(2)
n θ̂

(2)

n − T opt)2 ≤ min
θ∈Θn

[
E(Φ(2)

n θ(2) − T opt)2 + K ′
n

N
M

(2)
ρλn

(θ)

βn

λ2
n

]
.

where K ′
n = 20(12βnρ + 2γ + 5){γ/[(1 − 2γ)(7 − 6βnρ)] + [3(1 − 2γ)βnρ + 10(2γ +

5)]/[9(2γ + 19)2]}.

Remark

Note that Kn is upper bounded by a constant under the assumption βnρ ≤ 1.

In the asymptotic setting when n → ∞ and Jn → ∞, (3.18) implies that with

probability tending to 1, L(Φnθ̂n) − L(Φnθ
∗
n) → 0 if (i) NMρλn(θ∗n)λ

2
n/βn = o(1), (ii)

U2
n log Jn/n ≤ k1 and NMρλn (θ∗n) ≤ k2βn

√
n/(U2

n log Jn) for some sufficiently small
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positive constants k1 and k2, and (iii) λn ≥ k3

√
log Jn/n when η1,n + η2,n = O(1)

or λn ≥ k3(η1,n + η2,n)
√

log Jn/n when (η1,n + η2,n)−1 = o(1) for a sufficiently large

constant k3 (take t = log Jn).

Proof. For any θ ∈ Θn, define the events

Ω1 =
Jn⋂
j=1

{2(1 + γ)

3
σj ≤ σ̂j ≤ 2(2− γ)

3
σj

}
(where σ̂j = (Enφ2

j)
1/2),

Ω2(θ) =

{
max

j,k=1,...,Jn

∣∣∣(E − En)
(φjφk

σjσk

)∣∣∣ ≤ (1− 2γ)2βn

120NMρλn (θ)

}
,

Ω3(θ) =

{
max

j=1,...,Jn

∣∣∣En

[
(Y − Φnθ)

φj

σj

]∣∣∣ ≤ 4γ + 1

6
λn

}
.

Then there exists a θo ∈ [θ∗n] such that

L(Φnθ̂n) =L(Φnθ) + 2E[(Φnθo − Φnθ)Φn(θ − θ̂n)] + E[Φn(θ̂n − θ)]2

≤L(Φnθ) + 2 max
j=1,...,Jn

∣∣∣E
[
Φn(θo − θ)

φj

σj

]∣∣∣
(

Jn∑
j=1

σj|θ̂n,j − θj|
)

+ E[Φn(θ̂n − θ)]2

≤L(Φnθ) + 2γλn

(
Jn∑
j=1

σj|θ̂n,j − θj|
)

+ E[Φn(θ̂n − θ)]2,

where the first equality follows from the fact that E[(Y − Φnθo)φj] = 0 for any

θo ∈ [θ∗n] for j = 1, . . . , Jn and the last inequality follows from the definition of Θo
n.

Based on Lemma III.1 below, we have that on the event Ω1 ∩ Ω2(θ) ∩ Ω3(θ),

L(Φnθ̂n) ≤ L(Φnθ) + Kn

NMρλn (θ)

βn

λ2
n.

Similarly, by Lemma III.2, we have that on the event Ω1 ∩ Ω2(θ) ∩ Ω3(θ),

E(Φ(2)
n θ̂

(2)

n − T opt)2
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≤E(Φ(2)
n θ(2) − T opt)2 + 2γλn

(
Jn∑

j=J
(1)
n +1

σj|θ̂n,j − θj|
)

+ E[Φ(2)
n (θ̂

(2)

n − θ(2))]2

≤E(Φ(2)
n θ(2) − T opt)2 + K ′

n

N
M

(2)
ρλn

(θ)

βn

λ2
n.

The conclusion of the theorem follows from the union probability bounds of the

events Ω1, Ω2(θ) and Ω3(θ) provided in Lemmas III.3, III.4 and III.5.

Lemma III.1. Suppose Assumption III.3 holds with ρβn ≤ 1. Then for any θ ∈ Θn,

on the event Ω1 ∩ Ω2(θ) ∩ Ω3(θ), we have

Jn∑
j=1

σj|θ̂n,j − θj| ≤ 20(12βnρ + 2γ + 5)

(1− 2γ)(19 + 2γ)βn

NMρλn(θ)λn (3.19)

and E[Φn(θ̂n − θ)]2 ≤ 130(12ρβn + 2γ + 5)2

9(19 + 2γ)2βn

NMρλn (θ)λ
2
n (3.20)

Remark

This lemma implies that θ̂n is close to each θ ∈ Θn on the event Ω1∩Ω2(θ)∩Ω3(θ).

The intuition is as follows. Since θ̂n minimizes (3.1), the first order conditions imply

that maxj |En(Y − Φnθ̂n)φj/σ̂j| ≤ λn/2. Similar property holds for θ on the event

Ω1 ∩ Ω3(θ). Assumption III.3 together with event Ω2(θ) ensures that there is no

collinearity in the n×Jn design matrix
(
Φn(Xi, Ai)

)n

i=1
. These two aspects guarantee

the closeness of θ̂n to θ.

Proof. First note that θ̂n (defined in (3.1)) satisfies the following first order condition:

−2En(Y − Φnθ̂n)φj + λnσ̂jsgn(θ̂n,j) = 0 for j = 1, . . . , Jn,

where sgn(θj) = 1 if θj > 0, sgn(θj) = −1 if θj < 0 and sgn(θj) ∈ [−1, 1] if θj = 0 for
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any θj ∈ R. This implies

−2En[(Y − Φnθ̂n)Φnθ] + λn

Jn∑
j=1

σ̂jsgn(θ̂n,j)θj = 0

for any θ ∈ RJn . In particular, −2En[(Y − Φnθ̂n)Φnθ̂n] + λn

∑Jn

j=1 σ̂j|θ̂n,j| = 0.

Therefore, for any θ ∈ RJn , we have

0 = 2En[(Y − Φnθ̂n)Φn(θ̂n − θ)] + λn

Jn∑
j=1

σ̂jsgn(θ̂n,j)θj − λn

Jn∑
j=1

σ̂j|θ̂n,j|

≤ 2En[(Y − Φnθ̂n)Φn(θ̂n − θ)] + λn

Jn∑
j=1

σ̂j|θj| − λn

Jn∑
j=1

σ̂j|θ̂n,j|. (3.21)

Fix n. If θ = 0, on the event Ω1 ∩ Ω3(θ), we have

0 ≤2En[(Y − Φnθ)Φnθ̂n]− 2En(Φnθ̂n)2 − λn

Jn∑
j=1

σ̂j|θ̂n,j|

≤2 max
j=1,...,Jn

∣∣∣En

[
(Y − Φnθ)

φj

σj

]∣∣∣
(

Jn∑
j=1

σj|θ̂n,j|
)
− 2En(Φnθ̂n)2 − 2(1 + γ)

3
λn

Jn∑
j=1

σj|θ̂n,j|

≤2γ − 1

3
λn

Jn∑
j=1

σj|θ̂n,j| − 2En(Φnθ̂n)2 ≤ 0.

This implies θ̂n = 0. Thus (3.19) and 3.20) hold.

Otherwise, for any fixed θ ∈ Θn \ {0}, the index set Mρλn(θ) is non-empty.

Following (3.21), on the event Ω1 ∩ Ω3(θ), we have

0 ≤ 2 max
j=1,...,Jn

∣∣∣En

[
(Y − Φnθ)

φj

σj

]∣∣∣
(

Jn∑
j=1

σj|θ̂n,j − θj|
)
− 2En[Φn(θ̂n − θ)]2

+ λn

∑

j∈Mρλn(θ)

σ̂j|θ̂n,j − θj|+ λn

∑

j∈{1,...,Jn}\Mρλn(θ)

σ̂j(|θj| − |θ̂n,j|)

≤ 4γ + 1

3
λn

( ∑

j∈Mρλn(θ)

σj|θ̂n,j − θj|+ ρNMρλn (θ)λn +
∑

j∈{1,...,Jn}\Mρλn (θ)

σj|θ̂n,j|
)
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+
2(2− γ)

3
λn

( ∑

j∈Mρλn(θ)

σj|θ̂n,j − θj|+ ρNMρλn (θ)λn

)

− 2(1 + γ)

3
λn

∑

j∈{1,...,Jn}\Mρλn(θ)

σj|θ̂n,j| − 2En[Φn(θ̂n − θ)]2

=
2γ + 5

3
λn

( ∑

j∈Mρλn (θ)

σj|θ̂n,j − θj|+ ρNMρλn(θ)λn

)

− 1− 2γ

3
λn

∑

j∈{1,...,Jn}\Mρλn(θ)

σj|θ̂n,j| − 2En[Φn(θ̂n − θ)]2.

This implies

∑

j∈{1,...,Jn}\Mρλn (θ)

σj|θ̂n,j| ≤ 2γ + 5

1− 2γ

( ∑

j∈Mρλn (θ)

σj|θ̂n,j − θj|+ ρNMρλn (θ)λn

)

and En[Φn(θ̂n − θ)]2 ≤ 2γ + 5

6
λn

( ∑

j∈Mρλn(θ)

σj|θ̂n,j − θj|+ ρNMρλn (θ)λn

)
. (3.22)

Define the sets

Θ1(θ) =

{
θ̃ ∈ RJn :

∑

j∈{1,...,Jn}\Mρλn(θ)

σj|θ̃j|

≤ 2γ + 5

1− 2γ

( ∑

j∈Mρλn(θ)

σj|θ̃j − θj|+ ρNMρλn (θ)λn

)}
,

Θ2(θ) =

{
θ̃ ∈ RJn :

∑

j∈Mρλn (θ)

σj|θ̃j − θj| >
[10(2γ + 5) + 3(21− 2γ)βnρ]NMρλn(θ)λn

3(19 + 2γ)βn

}
,

Θ3(θ) =

{
θ̃ ∈ RJn :

∑

j∈Mρλn (θ)

σj|θ̃j − θj|+ ρNMρλn(θ)λn >
10NMρλn (θ)λn

3βn

}
.

Note that θ̂n ∈ Θ1(θ) on the event Ω1 ∩ Ω3(θ). In addition, on the event Ω1 ∩
Ω2(θ) ∩ Ω3(θ),

sup
θ̃∈Θ1(θ)∩Θ2(θ)

{
2En[(Y − Φnθ̃)Φn(θ̃ − θ)] + λn

Jn∑
j=1

σ̂j|θj| − λn

Jn∑
j=1

σ̂j|θ̃j|
}
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≤ sup
θ̃∈Θ1(θ)∩Θ2(θ)

{
2γ + 5

3
λn

( ∑

j∈Mρλn(θ)

σj|θ̃j − θj|+ ρNMρλn (θ)λn

)

− 2E[Φn(θ̃ − θ)]2 + 2 max
j=1,...,Jn

∣∣∣(E − En)
(φjφk

σjσk

)∣∣∣
( Jn∑

j=1

σj|θ̃j − θj|
)2

− 1− 2γ

3
λn

∑

j∈{1,...,Jn}\Mρλn (θ)

σj|θ̃j|
}

≤ sup
θ̃∈Θ1(θ)∩Θ2(θ)

{
2γ + 5

3
λn

( ∑

j∈Mρλn(θ)

σj|θ̃j − θj|+ ρNMρλn (θ)λn

)

+ 2βnρ
2NMρλn(θ)λ

2
n −

2βn

NMρλn (θ)

( ∑

j∈Mρλn(θ)

σj|θ̃j − θj|
)2

+
(1− 2γ)2βn

60NMρλn (θ)

( ∑

j∈Mρλn(θ)

σj|θ̃j − θj|+ ρNMρλn (θ)λn

)( Jn∑
j=1

σj|θ̃j − θj|
)

+
1− 2γ

3

[ (1− 2γ)βn

20NMρλn (θ)

( Jn∑
j=1

σj|θ̃j − θj|
)
− λn

]( ∑

j∈{1,...,Jn}\Mρλn (θ)

σj|θ̃j|
)}

≤ sup
θ̃∈Θ1(θ)∩Θ2(θ)

{
2γ + 5

3
λn

( ∑

j∈Mρλn(θ)

σj|θ̃j − θj|+ ρNMρλn (θ)λn

)

+ 2βnρ
2NMρλn(θ)λ

2
n −

2βn

NMρλn (θ)

( ∑

j∈Mρλn(θ)

σj|θ̃j − θj|
)2

+
(1− 2γ)βn

10NMρλn(θ)

( ∑

j∈Mρλn(θ)

σj|θ̃j − θj|+ ρNMρλn (θ)λn

)2

+
1− 2γ

3

[ 3βn

10NMρλn (θ)

( ∑

j∈Mρλn (θ)

σj|θ̃j − θj|+ ρNMρλn(θ)λn

)
− λn

]

×
( ∑

j∈{1,...,Jn}\Mρλn (θ)

σj|θ̃j|
)}

≤ sup
θ̃∈Θ1(θ)∩Θ2(θ)∩Θ3(θ)C

{( ∑

j∈Mρλn (θ)

σj|θ̃j − θj|+ ρNMρλn(θ)λn

)

×
(2γ + 5

3
λn +

21− 2γ

10
βnρλn − (19 + 2γ)βn

10NMρλn(θ)

∑

j∈Mρλn (θ)

σj|θ̃j − θj|
)}

+ sup
θ̃∈Θ1(θ)∩Θ2(θ)∩Θ3(θ)

{( ∑

j∈Mρλn (θ)

σj|θ̃j − θj|+ ρNMρλn (θ)λn

)
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×
(13

5
βnρλn − 7βn

5NMρλn (θ)

∑

j∈Mρλn(θ)

σj|θ̃j − θj|
)}

<0,

where the second inequality follows from Assumption III.3 and the definition of Ω2(θ),

the third inequality follows from the definition of Θ1(θ), the fourth equality follows

from the definition of Θ3(θ) and simple algebra and the last inequality follows from

the definition of Θ2(θ), Θ3(θ) and the assumption that ρβn ≤ 1.

Since θ̂n satisfies inequality (3.21), we have θ̂n ∈ Θ1(θ) ∩ Θ2(θ)C on the event

Ω1 ∩ Ω2(θ) ∩ Ω3(θ). Algebra suffices to show (3.19).

Following (3.22) and the fact that θ̂n ∈ Θ2(θ)C , we have

En[Φn(θ̂n − θ)]2 ≤ 5(12ρβn + 2γ + 5)(2γ + 5)

9(19 + 2γ)βn

NMρλn (θ)λ
2
n.

on the event Ω1∩Ω2(θ)∩Ω3(θ). Suppose (3.20) does not hold, i.e. E[Φn(θ̂n−θ)]2 >

130(12ρβn+2γ+5)2

9(19+2γ)2βn
NMρλn(θ)λ

2
n. Then

(E − En)[Φn(θ̂n − θ)]2

E[Φn(θ̂n − θ)]2
≤ (1− 2γ)2βn

120NMρλn(θ)

·

( ∑Jn

j=1 σj|θ̂n,j − θj|
)2

E[Φn(θ̂n − θ)]2
≤ 3

13
,

where the first inequality follows from the definition of Ω2(θ) and the second inequality

follows from (3.19). This implies

E[Φn(θ̂n − θ)]2 ≤ 13

10
En[Φn(θ̂n − θ)]2 ≤ 13(12ρβn + 2γ + 5)(2γ + 5)

18(19 + 2γ)βn

NMρλn (θ)λ
2
n,

which contradicts the condition. Thus (3.20) holds on the event Ω1∩Ω2(θ)∩Ω3(θ).

Lemma III.2. Suppose E
[
Φ

(2)
n (X, A)T |X]

= 0 a.s. and Assumption III.4 holds with
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ρβn ≤ 1. Then for any θ ∈ Θn, on the event Ω1 ∩ Ω2(θ) ∩ Ω3(θ), we have

Jn∑

j=J
(1)
n +1

σj|θ̂n,j − θj| ≤ 10(12βnρ + 2γ + 5)

(1− 2γ)(7− 6βnρ)βn

N
M

(2)
ρλn

(θ)
λn (3.23)

and

E[Φ(2)
n (θ̂

(2)

n − θ(2))]2 ≤ 20(12ρβn + 2γ + 5)[3(1− 2γ)βnρ + 10(2γ + 5)]

9(2γ + 19)2βn

N
M

(2)
ρλn

(θ)
λ2

n.

(3.24)

Proof. Consider fixed n and fixed θ ∈ Θn. Since E(Φ
(2)
n |X) = 0 a.s., we have

E(φjφj′) = 0 for any j ∈ {1, . . . , J (1)
n } and j′ ∈ {J (1)

n + 1, . . . , Jn}. On the event

Ω1 ∩ Ω2(θ) ∩ Ω3(θ), we have

En

[
(Φnθ − Φnθ̂n)(Φ(2)

n θ̂
(2)

n − Φ(2)
n θ(2))

]

≤ max
j∈{1,...,J

(1)
n },j′∈{J(1)

n +1,...,Jn}

∣∣∣En

(φjφj′

σjσj′

)∣∣∣
(

J
(1)
n∑

j=1

σj|θ̂n,j − θj|
)(

Jn∑

j=J
(1)
n +1

σj|θ̂n,j − θj|
)

+ max
j,j′∈{J(1)

n +1,...,Jn}

∣∣∣(E − En)
(φjφj′

σjσj′

)∣∣∣
(

Jn∑

j=J
(1)
n +1

σj|θ̂n,j − θj|
)2

− E
[
Φ(2)

n

(
θ̂

(2)

n − θ(2)
)]2

≤(1− 2γ)(12βnρ + 2γ + 5)

6(2γ + 19)
λn

(
Jn∑

j=J
(1)
n +1

σj|θ̂n,j − θj|
)
− E

[
Φ(2)

n

(
θ̂

(2)

n − θ(2)
)]2

,

where the second inequality follows from the definition of Ω2(θ) and Lemma III.1

(note that Assumption III.4 implies Assumption III.3).

Next, note that (3.21) holds for (θ(1), θ̂
(2)

n ). Thus on the event Ω1∩Ω2(θ)∩Ω3(θ),

we have

0 ≤2En[(Y − Φnθ̂n)Φ(2)
n (θ̂

(2)

n − θ(2))] + λn

Jn∑

j=J
(1)
n +1

σ̂j|θj| − λn

Jn∑

j=J
(1)
n +1

σ̂j|θ̂n,j|
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≤2 max
j=J

(1)
n +1,...,Jn

∣∣∣En

[
(R− Φnθ)

φj

σj

]∣∣∣
( Jn∑

j=J
(1)
n +1

σj|θ̂n,j − θj|
)

+ λn

∑

j∈M
(2)
ρλn

(θ)

σ̂j|θ̂n,j − θj|

+ λn

∑

j∈{J(1)
n +1,...,Jn}\M(2)

ρλn
(θ)

σ̂j

(|θj| − |θ̂n,j|
)− 2En

[
(Φnθ̂ − Φnθ)(Φ(2)

n θ̂
(2)

n − Φ(2)
n θ(2))

]

≤2γ + 5

3
λn

( ∑

j∈M
(2)
ρλn

(θ)

σj|θ̂n,j − θj|+ ρN
M

(2)
ρλn

(θ)
λn

)

− 1− 2γ

3
λn

∑

j∈{J(1)
n +1,...,Jn}\M(2)

ρλn
(θ)

|θ̂n,j|

+
(1− 2γ)(12βnρ + 2γ + 5)

3(2γ + 19)
λn

( Jn∑

j=J
(1)
n +1

σj|θ̂n,j − θj|
)
− 2E

[
Φ(2)

n (θ̂
(2)

n − θ(2))
]2

=
12(1− 2γ)βnρ + 20(2γ + 5)

3(2γ + 19)
λn

( ∑

j∈M
(2)
ρλn

(θ)

σj|θ̂n,j − θj|+ ρN
M

(2)
ρλn

(θ)
λn

)

− 2(1− 2γ)(7− 6βnρ)

3(2γ + 19)
λn

∑

j∈{J(1)
n +1,...,Jn}\M(2)

ρλn
(θ)

|θ̂n,j| − 2E
[
Φ(2)

n (θ̂
(2)

n − θ(2))
]2

This implies

(1− 2γ)(7− 6βnρ)

3(2γ + 19)
λn

∑

j∈{J(1)
n +1,...,Jn}\M(2)

ρλn
(θ)

|θ̂n,j|+ E
[
Φ(2)

n (θ̂
(2)

n − θ(2))
]2

≤6(1− 2γ)βnρ + 10(2γ + 5)

3(2γ + 19)
λn

( ∑

j∈M
(2)
ρλn

(θ)

σj|θ̂n,j − θj|+ ρN
M

(2)
ρλn

(θ)
λn

)

Using similar argument as that in lemma III.1, we obtain

∑

j∈M
(2)
ρλn

(θ)

σj|θ̂n,j − θj|+ ρN
M

(2)
ρλn

(θ)
λn ≤ 10(12βnρ + 2γ + 5)

3(2γ + 19)βn

N
M

(2)
ρλn

(θ)
λn.

Algebra suffices to show (3.23) and (3.24).

Lemma III.3. Suppose Assumption III.2(a) and inequality (3.17) hold. Then

P(ΩC
1 ) ≤ exp

(
− 13(1− 2γ)2n

6(27U2
n − 10γ − 22)

)
.
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Proof. For each j = 1, . . . , Jn, we apply Lemma VI.8(a) with Oi = (φj(Xi, Ai)
2/σ2

j −
1)/(U2

n − 1) and t = (7− 2γ)(1− 2γ)n/9(U2
n − 1). By Assumption III.2(a), we have

Oi ≤ 1 and
∑n

i=1 EO2 ≤ n/(U2
n − 1). Thus

P
(
σ̂j ≥ 2(2− γ)

3
σj

)
≤ exp

(
− (7− 2γ)2(1− 2γ)2n

2(U2
n − 1)[81 + 3(7− 2γ)(1− 2γ)]

)

≤ exp
(
− 25(1− 2γ)2n

6(27U2
n − 10γ − 22)

)
.

Similarly, applying Lemma VI.8(a) with −Oi, we have

P
(
σ̂j ≤ 2(1 + γ)

3
σj

)
≤ exp

(
− (5 + 2γ)2(1− 2γ)2n

6[27(U2
n − 1) + (5 + 2γ)(1− 2γ)]

)

≤ exp
(
− 25(1− 2γ)2n

6(27U2
n − 10γ − 22)

)
.

Using union bound argument and condition (3.17), we have

P(ΩC
1 ) ≤ 2Jn exp

(
− 25(1− 2γ)2n

6(27U2
n − 10γ − 22)

)
≤ exp

(
− 13(1− 2γ)2n

6(27U2
n − 10γ − 22)

)
.

Lemma III.4. Suppose Assumption III.2(a) holds. Then for any θ ∈ Θn and t > 0,

P({Ω2(θ)}C) ≤ exp(−t)/3.

Proof. Note that ‖φjφk/(σjσk)−E[φjφk/(σjσk)]‖∞ ≤ 2U2
n and E[φjφk/(σjσk)]

2 ≤ U2
n

for all j, k. Applying Lemma VI.8(a) with Oi = ±[φj(Xi, Ai)φk(Xi, Ai)/(σjσk) −
E(φjφk)/(σjσk)]/U

2
n and t = (1 − 2γ)2βnn/[120NMρλn (θ)U

2
n] and using union bound

argument, we obtain

P({Ω2(θ)}C) ≤ Jn(Jn + 1) exp
(
− (1− 2γ)4β2

nn

160U2
n[180N2

Mρλn (θ) + (1− 2γ)2βnNMρλn (θ)]

)

≤ 1

3
exp(−t),
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where the second inequality follows from the definition of Θn in (3.15).

Lemma III.5. Suppose Assumptions III.1 and III.2 hold. For any t > 0 and η1,n ≥
0, take λn so that it satisfies condition (3.16). Then for any θ ∈ Θn, we have

P({Ω3(θ)}C) ≤ 2 exp(−t)/3.

Proof. For any θ ∈ Θn, there is a θo ∈ [θ∗n] such that maxj |E[Φn(θo − θ)φj/σj]| ≤
γλn. Since θo minimizes E(Y −Φnθ)2, we have E

[
(Y −Φnθo)φj

]
= 0 for j = 1, . . . , Jn.

Thus

max
j

∣∣∣E
[
(Y − Φnθ)

φj

σj

]∣∣∣ = max
j

∣∣∣E
[
(Φnθo − Φnθ)

φj

σj

]∣∣∣ ≤ γλn.

This implies

max
j

∣∣∣En

[
(Y−Φnθ)

φj

σj

]∣∣∣ ≤ max
j

∣∣∣(En−E)
[
ε
φj

σj

]∣∣∣+max
j

∣∣∣(En−E)
[
(Qopt−Φnθ)

φj

σj

]∣∣∣+γλn.

By Assumptions III.1 and III.2(a), we have E(εiφj(Xi, Ai)/σj) = 0 and
∑n

i=1 E[(εiφj(Xi, Ai)/σj)
l
+] ≤ l!

2
nσ2(cUn)l−2 for all integers l ≥ 2. Applying lemma

VI.8(b) yields

P
(∣∣∣(En − E)

[
ε
φj

σj

]∣∣∣ >
1− 2γ

12
λn

)
≤ 2 exp

(
− (1− 2γ)2λ2

nn

288σ2 + 24c(1− 2γ)Unλn

)
.

Similarly, the definition of Θo
n together with Assumption III.2 implies that, for any θ ∈

Θn and j = 1, . . . , Jn,
∥∥(Qopt−Φnθ)φj/σj−E

(
(Qopt−Φnθ)φj/σj

)∥∥
∞ ≤ 2(ηn,1+ηn,2)Un

and E
[
(Qopt − Φnθ)φj/σj

]2 ≤ (ηn,1 + ηn,2)
2. Applying Lemma VI.8(a) yields

P
(∣∣∣(En − E)

[
(Qopt − Φnθ)

φj

σj

]∣∣∣ >
1− 2γ

12
λn

)

≤2 exp
(
− (1− 2γ)2λ2

nn

288(η1,n + η2,n)2 + 16(1− 2γ)(η1,n + η2,n)Unλn

)
.

The result follows from the union bounds argument and condition (3.16).
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3.4.2 Design of simulations in section 3.2.1

In this section, we present the detailed simulation design of the examples used in

Section 3.2.1.

In examples 1 - 3, we generate X = (X1, . . . , X5), where X1, . . . , X5 are mutu-

ally independent and each Xj, j = 1, . . . , 5, is uniformly distributed on [−1, 1]. The

treatment A is then generated independently of X from {−1, 1} with probability

1/2 each. Given X and A, the outcome Y is generated from a normal distribution

with mean Qopt(X, A) = 1 + 2X1 + X2 + 0.5X3 + T opt(X,A) and variance 1 (recall

that T opt(X, A) := Qopt(X, A) − E[Qopt(X, A)|X]). We consider the following three

examples for T opt.

1. T opt(X,A) = 0 (i.e. there is no treatment effect).

2. T opt(X,A) = 0.4190(1−X1)A.

3. T opt(X,A) = 0.4464sign(X1)(1−X1)
2A.

We approximate Qopt by Q = {(1, X,A, XA)θ : θ ∈ R11}. Thus in example 2 the

correct model is contained in the approximation space, while in example 3 the correct

model is not in the approximation space.

The effect sizes in examples 2 and 3 are medium according to Cohen’s d index.

When there are two treatments, the Cohen’s d effect size index is defined as the

standardized difference in mean outcomes between two treatment groups. Cohen

(1988) tentatively defined the effect size as “small” if the Cohen’s d index is 0.2,

“medium” if the index is 0.5 and “large” if the index is 0.8.

In example 4, we consider a complex Qopt. We generate X from U [0, 1]. Treat-

ment A is generated independently of X from {−1, 1} with probability 1/2 each.

The outcome R is generated from a normal distribution with mean Qopt(X,A) =
∑5

j=1 ϑ(0),j1X<u(0),j
+ [

∑5
j=1 ϑ(1),j1X<u(1),j

]A and variance 1, where ϑ(s),j and u(s),j

51



(∈ [0, 1]) for s = 0, 1, j = 1, . . . , 5 are parameters specified in (3.25). The effect

size is medium.

ϑ(0),1 = −0.4260, ϑ(0),2 = 2.8856, ϑ(0),3 = −1.6010, ϑ(0),4 = −0.9513, ϑ(0),5 = 1.2680;

ϑ(1),1 = 2.0822, ϑ(1),2 = −0.7318, ϑ(1),3 = 0.7559, ϑ(1),4 = 0.3185, ϑ(1),5 = −2.9579;

u(0),1 = 0.1408, u(0),2 = 0.9902, u(0),3 = 0.2807, u(0),4 = 0.4929, u(0),5 = 0.4651;

u(1),1 = 0.9934, u(1),2 = 0.1191, u(1),3 = 0.2509, u(1),4 = 0.7541, u(1),5 = 0.6660.

(3.25)

We approximate Qopt by Haar wavelets

Q =
{

θ(0),0h0(X) +
∑

lk

θ(0),lkhlk(X) +
(
θ(0),1h0(X) +

∑

lk

θ(1),lkhlk(X)
)
A : θ·,· ∈ R

}
,

where h0(x) = 1x∈[0,1] and hlk(x) = 2l/2
(
12lx∈[k+1/2,k+1)−12lx∈[k,k+1/2)

)
for l = 0, . . . , l̄n.

We choose l̄n = b3 log2 n/4c − 2. For a given l and sample (Xi, Ai, Ri)
n
i=1, k takes

integer values from b2l mini Xic to d2l maxi Xie − 1. Then Jn = 2b3 log2 n/4c ≤ n3/4.

Examples 5-9 are based on data from the Nefazodone-CBASP trial (Keller et al.,

2000). In the simulation study, we consider 50 pretreatment variables collected from

the trial. Each variable is standardized using the sample mean and standard de-

viation. The Nefazodone-CBASP data provides an empirical distribution for the

standardized pretreatment variables. This is the distribution we use to generate X.

Treatment A is generated independently of X from {−1, 1} with probability 1/2 each.

To generate Y , the outcome HRSD score is reverse coded so that higher scores are

desirable. We regress the reverse coded HRSD score on (1, X) and denote the esti-

mated regression coefficients by ϑ(1). Then the outcome R is generated from a normal

distribution with mean Qopt(X,A) = (1, X)ϑ(1) +T opt(X,A) and variance 9. We con-

sider 5 examples for T opt. There is no treatment effect in example 5. The covariates

and parameters involved in examples 6 - 9 produce a medium effect size.
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5. T opt(X,A) = 0.

6. T opt(X,A) = (1, X̃)ϑ(2)A, where X̃ = (X38, X27, X22, X21, X6) and θ(2) =

(−1.2223, 0.6141,−0.7756,−0.0079, 0.4163,−0.5676)T . Note that the analysis

model contains the the correct model for T opt.

7. T opt(X,A) = |(1, X̃)ϑ(2)|A, where X̃ = (X40, X8, X46, X9, X29) and ϑ(2) =

(−0.8745, 0.3439, −0.2885, −0.4241, 0.1214, 1.0515)T . In this case, treatment

1 is always better than −1.

8. T opt(X,A) = sign((1, X̃sub)ϑ
(2),2)|(1, X̃)ϑ(2),2|A, where X̃ = (X44, X17, X31,

X35, X16), X̃sub contains the first 3 covariates in X̃, ϑ(2),1 = (−0.8410, 0.7471,

0.1411, 0.2981)T and ϑ(2),2 = (−3.1364, 0.7930, −5.2663, −1.7865, −0.2682,

2.3239)T . Note that the analysis model does not contain the correct model for

T opt.

9. Same as example 8, but with a different set of covariates and parameters.

X̃ = (X27, X30, X12, X50, X32), X̃sub contains the first 3 covariates in X̃, ϑ(2),1 =

(−1.7428,−0.0478, 1.6312,−0.1969)T and ϑ(2),2 = (−0.3859, 0.5457, 0.7019,

0.6935, 1.0135, −1.1039)T .

We approximate Qopt by model Q = {(1, X,A, XA)θ : θ ∈ R102}.

3.4.3 Some modifications of the l1-PLS estimator

As demonstrated in van de Geer (2008), sometimes it is natural not to penalize a

subset of coefficients (e.g. coefficients corresponding to the constant term and/or to

variables that are considered as definitely relevant). In this section, we discuss several

modifications of the l1-PLS estimator θ̂n in this case.
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Suppose one decides not to penalize coefficients indexed by S ⊂ {1, . . . , Jn}. A

general modification is to exclude those terms from the penalty, i.e.

θ̂n = arg min
θ

En(Y − Φn(X, A)θ)2 + λn

∑

j∈{1,...,Jn}\S
σ̂j|θj|,

where σ̂j = (Enφ2
j)

1/2. It is easy to see that with this modification, an analog of

inequality (3.18) can be obtained after only slight adjustments in the proof.

Now suppose there are only two treatments A = {1,−1}. A simple vector of

basis functions that one may consider is Φn(X,A) = (1, X,A, XA), where X is a row

vector of pretreatment variables. One may choose to leave the intercept term not

penalized. Furthermore, if one believes that the main treatment effect exists, then

the coefficient of A should not be penalized either (see the Nefazodone-CBASP data

example in Section 3.2.2). In both cases, one might want to change the weights σ̂j’s

used in the penalty. In the following, we discuss these two special cases in a general

framework.

1. When there is a constant term φ1 ≡ 1 and one decides not to penalize θ1, it is

natural to modify σ̂j to σ̂j := [Enφ
2
j − (Enφj)

2]1/2 (so σ̂1 = 0). In this case, each

Eφj is estimated by Enφj. van de Geer (2008) pointed out that “this additional

source of randomness is in a sense of smaller order” and “the modification does

not bring in new theoretical complications”. The modified assumptions and

outline of the proof for obtaining an analog of inequality (3.18) is provided

below.

2. When Φn contains the main treatment effect terms and one decides not to penal-

ize those terms, one may modify σ̂j to an estimate of
( ∑

a∈A var(φj(X, A)|A =

a)E1A=a

)1/2
(i.e. pooled standard deviation).

For example, suppose Qopt(X, a) is modeled by Ψa(X)θa for each a ∈ A, where
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the first term of each Ψa is ψa,1 ≡ 1. Then the vector of basis functions is

Φn(X, A) = (Ψa(X)1A=a)a∈A and {ψa,11A=a : a ∈ A} is the set of main treat-

ment effect terms. Denote the index set of the main treatment effect terms

in Φn by S. If we use weights σ̂j :=
( ∑

a∈A ˆvar(φj(X,A)|A = a)En1A=a

)1/2
,

where ˆvar(φj(X, A)|A = a) is the sample variance of φj over the sub-sample

that assigned treatment a, then σ̂j = 0 for all j ∈ S. One can verify that

choosing θ ∈ RJn to minimize En(Y − Φnθ)2 + λn

∑Jn

j=1 σ̂j|θj| is equivalent to

choosing θj, j ∈ {1, . . . , Jn} \ S, to minimize En(Y ′ − ∑
j∈{1,...,Jn}\S θjφ

′
j)

2 +

λn

∑
j∈{1,...,Jn}\S σ̂j|θj| and setting θj, j ∈ S to be some appropriate quantities,

where R′ = R −∑
a∈A(En1A=aR)1A=a/En1A=a (so EnR

′ = 0) and each φ′j is a

variation of φj (so that Enφ
′
j = 0 and En[(φ′j)

2] = σ̂2
j ). This implies that the

modification of σ̂j is appropriate.

To obtain an analog of (3.18), we need to show the concentration of sample

means (of quantities such as R and φj) around the true means within each

treatment group and make some assumptions about the randomization proba-

bility p(a|X). As we have discussed, these modifications only bring in further

trivial technical complications rather than theoretical innovations.

In the rest of the section, we present modified assumptions and outline of the

proof for obtaining an analog of (3.18) when φ1 ≡ 1 and θ1 is not penalized.

In this case, σ̂j and σj are modified to σ̂j := [Enφ2
j − (Enφj)

2]1/2 and σj :=

[Eφ2
j − (Eφj)

2]1/2, respectively, for j = 1, . . . , Jn.

For any 0 ≤ γ < 1/2 and η1,n ≥ 0, Θo
n is modified to

Θo
n
′ =

{
θ ∈ RJn : ∃ θo ∈ [θ∗n] s.t. ‖Φn(θ − θo)‖∞ ≤ η1,n

and max
{
|θ1 − θo

1|, max
j∈{2,...,Jn}

∣∣∣E
[
Φn(θ − θo)

φj

σj

]∣∣∣
}
≤ γλn

}
.
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For any θ ∈ RJn and ρ ≥ 0, let

Mρλn(θ)′ ∈ arg min
{M⊆{2,...,Jn}:

∑
j /∈M σj |θj |≤ρ(NM+1)λn}

NM .

Assumption III.2(a) is modified to

Assumption A.2(a) There exists some Un > 0 such that maxj=2,...,Jn ‖φj‖∞/σj ≤
Un.

Assumption III.3 is modified to

Assumption A.3 There exists a positive number βn such that

E[Φ(θ̃ − θ)]2(NMρλn (θ)′ + 1)

≥βn

[(
|θ̃1 − θ1|+ |

∑

j∈Mρλn (θ)′
σj|θ̃j − θj|

)2

− ρ2(NMρλn(θ)′ + 1)2λ2
n

]
(3.26)

for all θ̃ and θ satisfying conditions similar to those in Assumption III.3.

For any fixed θ ∈ Θn, define the events

Ω′
1 = ∩Jn

j=2 {(1− δ1)σj ≤ σ̂j ≤ (1 + δ2)σj} ,

Ω2(θ)′ =
{

max
j=2,...,Jn

∣∣∣(E − En)
φj

σj

∣∣∣ ≤ τ1
βn

NMρλn(θ)′ + 1

and max
j,k=2,...,Jn

∣∣∣(E − En)
(φjφk

σjσk

)∣∣∣ ≤ τ1
βn

NMρλn (θ)′ + 1

}
,

Ω3(θ)′ =
{∣∣En

[
(Y − Φnθ)φ1

]∣∣ ≤ 2τ2 + δ2 + 1

2
λn

and max
j=2,...,Jn

∣∣∣En

[
(R− Φnθ)

φj

σj

]∣∣∣ ≤ τ2λn

}
.

Using the same arguments as those in the proof of Theorem A.1, an analog of

(3.18) can be obtained on the event Ω′
1 ∩Ω2(θ)′ ∩Ω3(θ)′ with appropriate choices of

δ1, δ2, τ1 and τ2.

Next one can show that Ω2(θ)′ and Ω3(θ)′ occur with high probabilities under
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similar conditions as those in Lemmas III.4 and III.5. To show Ω′
1 occurs with high

probability, we define

Ω′
1,1 = ∩Jn

j=2

{
|Eφj| − ν1

√
Eφ2

j ≤ |Enφj| ≤ |Eφj|+ ν2

√
Eφ2

j

}

Ω′
1,2 = ∩Jn

j=2{(1− κ1)Eφ2
j ≤ Enφ2

j ≤ (1 + κ2)Eφ2
j}

for some ν1, ν2, κ1 and κ2 to be chosen later. Under similar conditions as those in

Lemma III.3, it is easy to see that Ω′
1,1 and Ω′

1,2 hold with high probabilities. In below

we show that Ω′
1 ⊂ Ω′

1,1 ∩ Ω′
1,2 with appropriate choices of ν1, ν2, κ1 and κ2.

Note that Assumption A.2(a)’ implies Eφ2
j ≥ (1 + c0)(Eφj)

2 for j = 2, . . . , Jn for

some c0 > 0. Thus on the event Ω′
1,1 ∩ Ω′

1,2,

σ̂2
j = Enφ

2
j − (Enφj)

2 ≥ (1− κ1)Eφ2
j −

(
|Eφj|+ ν2

√
Eφ2

j

)2

≥ (1− δ1)
2σ2

j + (2δ1 − δ2
1 − κ1)Eφ2

j + (1− δ1)
2(Eφj)

2 −
(
|Eφj|+ ν2

√
Eφ2

j

)2

≥ (1− δ1)
2σ2

j +
[
c0(2δ1 − δ2

1)− (1 + c0)κ1 − 2
√

1 + c0ν2 − (1 + c0)ν
2
2

]
(Eφj)

2

≥ (1− δ1)
2σ2

j

for j = 2, . . . , Jn for some small enough ν2 and κ1 depending on c0 and δ1.

On the other hand, for any j = 2, . . . , Jn and κ2 < δ2
2 + 2δ2, if (Eφj)

2 ≤ (δ2
2 +

2δ2 − κ2)Eφ2
j/(1 + δ2)

2, then

σ̂2
j = Enφ

2
j − (Enφj)

2 ≤ (1 + κ2)Eφ2
j

≤ (1 + δ2)
2σ2

j + (κ2 − 2δ2 − δ2
2)Eφ2

j + (1 + δ2)
2(Eφj)

2 ≤ (1 + δ2)
2σ2

j .

Otherwise, for any 0 < ν1 ≤
√

δ2
2 + 2δ2 − κ2/(1 + δ2), we have

σ̂2
j = Enφ2

j − (Enφj)
2 ≤ (1 + κ2)Eφ2

j −
(
|Eφj| − ν1

√
Eφ2

j

)2

≤ (1 + δ2)
2σ2

j + (κ2 − 2δ2 − δ2
2)Eφ2

j + (1 + δ2)
2(Eφj)

2 −
(
|Eφj| − ν1

√
Eφ2

j

)2
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≤ (1 + δ2)
2σ2

j +

[
2ν1

√
(1 + δ2)2

δ2
2 + 2δ2 − κ2

+ (1 + c0)κ2 − c0(δ
2
2 + 2δ2)

]
(Eφj)

2

≤ (1 + δ2)
2σ2

j

for some small enough ν1 and κ2 depending on c0 and δ2.
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CHAPTER IV

Model Selection

From the toy example in Section 2.2, we see that by using the quadratic loss

minimization based method, we may deviate from the goal of estimating the best

individualized treatment rule under consideration if the conditional mean function

Qopt is poorly approximated. In fact, it is also easy to verify that asymptotically the

treatment rule estimated from a poor model for Qopt may have higher Value than

that from a better but still wrong model for Qopt (e.g. in the toy example in Section

2.2, the rule estimated from the constant space Q = {θ1 + θ2A : θ1, θ2 ∈ R} would be

better than the rule estimated from the linear space). In this chapter, we propose to

deal with the deviation using step-wise model selection techniques. We will consider

different models for Qopt. For each model, we estimate an individualized treatment

rule by minimizing the empirical quadratic loss. Model selection techniques will then

be used to select a treatment rule with the highest Value.

Throughout this chapter, we will always assume suprema of empirical processes

(i.e. quantities of the form supg∈G(En − E)g) are measurable. In other words, we

assume that the class G and the distribution P satisfy appropriate (mild) conditions

for measurability of this supremum (see Pollard (1984) and Massart (2003) for the

conditions).

59



4.1 Model selection procedure

We still use {(Xi, Ai, Yi)}n
i=1 to represent i.i.d. observations on n subjects in a

trial. Let {Qm : m = 1 . . . , Mn} be a collection of models for Qopt, where the number

of models Mn may increase as n increases. For each model m ∈ {1, . . . ,Mn}, we

estimate Qopt using least squares,

Q̂n,m = arg min
Q∈Qm

En[Y −Q(X,A)]2.

And the estimated individualized treatment rule is

d̂n,m(X) ∈ arg max
a∈A

Q̂n,m(X, a).

Now with the Mn candidate treatment rules {d̂n,m : m = 1, . . . , Mn}, we want to

select the one that gives the highest Value V (d̂n,m). Hence, the oracle selector satisfies

m∗ ∈ arg max
m∈{1,...,Mn}

V (d̂n,m). (4.1)

Note that m∗ is a random variable since the estimated treatment rules d̂n,m’s vary

from data sets to data sets.

For any individualized treatment rule d, denote

f(d) = f(X, A, Y ; d) :=
1A=d(X)

p(A|X)
Y. (4.2)

Then V (d) = Ef(d) and Enf(d) is an unbiased estimator of V (d) for any fixed d

(see Section 1.1). However, Enf(d̂n,m) may not be a good estimator of V (d̂n,m) since

we use the same data set to estimate and evaluate d̂n,m. There might be over-fitting

effect. We propose to conduct model selection via penalization to compensate for the

possible over-fitting effect.
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Our model selection criterion is

m̂ = arg max
m∈{1,··· ,Mn}

[
Enf(d̂n,m)− penn(m)

]
, (4.3)

where penn(m) is the penalty, which depends on the sample size n, the model com-

plexity and possibly the data.

We will discuss possible methods for constructing the penalty in Section 4.4. In

the following section, we give a literature review on step-wise model selection with

penalization.

4.2 Literature review

The vast majority of penalty based model selection literatures focuses on predic-

tion (e.g. regression or classification). Despite the differences between prediction and

decision making, much insight could be gained by investigating penalization methods

developed for prediction.

In regression or classification, one observes i.i.d. copies {(Xi, Yi) : i = 1, . . . , n},
where each Xi takes values in a measurable space X and Yi is real-valued (Yi ∈ {−1, 1}
in classification). Define ψ∗(x) = E(Y |X = x) for every x ∈ X . In the regression case,

one is interested in the estimation of ψ∗, and the most commonly used method is to

minimize the empirical quadratic risk En(Y −ψ(X))2 over a function class Ψ. While in

the classification case, one wants to estimate the Bayes classifier πb(x) = sign(ψ∗(x)),

and one approach is to minimize the empirical classification error En1Y 6=π(x) over a

class of classifiers Π. This is the so called empirical risk minimization (ERM) principle

(Vapnik, 1999). On one hand, one may choose a sufficiently large Ψ or Π so as to

approximate well any function, but then the estimator get from the ERM principle

may fit the data too well and cannot be generalized. This is the so called over-fitting
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problem. On the other hand, using a small Ψ or Π would make it hard to approximate

the truth well. Therefore, selecting the right model Ψ or Π is the key to success.

For this reason, various penalty based model selection methods have been pro-

posed. Basically, one considers a sequence of models with different complexities. For

each model, the ERM principle is used to get an estimator. And one then chooses

the estimator with minimal penalized empirical risk. Since the empirical risk of the

estimators consistently decreases with model complexity, it is natural to incorporate

model complexity into the penalty to compensate for possible overfitting effect.

Historically, penalty based model selection began with the work of Mallows (1973)

(Cp) and Akaike (1974) (AIC) in the context of linear regression. Schwarz (1978)

introduced the BIC criterion under Bayesian considerations. Rissanen (1978, 1983)

proposed MDL criterion. Those classical methods are motivated by asymptotic (large-

sample) properties of the linear estimators. For practical situations where the sample

size is finite, they suffer from large variability of finite data and are often not optimal

(Cherkassky et al., 1992). Another disadvantage is that all of the above penalties

depend on the number of parameters in each model. This works well with linear

model, but for models nonlinear in parameters, the number of parameters is not a

good measurement of model complexity.

To deal with the above difficulties, Vapnik and Chervonenkis (1974) and Vapnik

(1982, 1995) proposed the structural risk minimization (SRM) approach to model se-

lection with finite sample sizes. In this approach, one considers a hierarchy of model

classes with increasing complexities measured by VC-indices (defined in Chapter VI).

For each model, the empirical risk minimizer is selected. One then chooses the es-

timator whose sum of empirical risk and VC confidence is minimal. According to

the SRM principle, the hierarchy of model classes is defined before the training data

appear (Vapnik, 1995). An extension of SRM in the case of classification can be found

in Shawe-Taylor et al. (1998). They proved that one can get better risk bounds if the
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hierarchy of models is chosen according to data.

In literature of late 1990’s on nonparametric inference, a general approach quite

similar to SRM was developed by Barron et al. (1999) and Birgé and Massart (1997,

1998). They used sieve theory to define a sequence of nested models characterized

by some dimensions, where the dimension of the model grows as the sample size

increases. In particular, they pioneered the construction of penalties based on the

upper bounds of the maximal deviation between the empirical risk and true risk in

each model, and obtaining some oracle inequalities. In the context of classification,

the oracle inequalities are of the form

E[1Y 6=π̂n,m̂(X) − 1Y 6=πb(X)] ≤ K inf
m

(
inf

π∈Πm

E[1Y 6=π(X) − 1Y 6=πb(X)] + γ(n, m)
)
, (4.4)

where {Πm : m = 1, 2, . . .} is a collection of classes of classifiers, π̂n,m is the empirical

0 − 1 risk minimizer in the m-th model, K is a constant that is at least as large as

1, and γ(n,m) is a quantity that increases with model complexity and decreases to

zero as n → ∞. Here, concentration inequalities for empirical processes (van der

Vaart and Wellner, 1996; Massart, 2000, 2003) play an important role in bounding

the maximal deviation. This approach has become a popular way to prove optimality

in nonparametric estimation. Illustration of this method in regression can be found

in Baraud (2000).

So far, all penalization methods mentioned above are based on dimension of the

competing models. That is, they choose models by balancing the empirical risk

with dimensionality. These approaches work well in situations where they apply.

However, the dimension of each model is often hard to compute in some situations.

Even if the dimension is computable, the obtained estimator may not work well

for all distributions since the penalties are chosen independently of the data. Indeed,

Kearns et al. (1995) compared (hold-out) cross-validation with some data-independent
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penalization methods (Rissanen’s MDL and Vapnik’s SRM). Their overall analysis

showed that cross-validation is favored in most common circumstances. This has

motivated people to investigate data-dependent penalties (Lugosi and Nobel, 1999).

Using symmetrization techniques in empirical processes (van der Vaart and Well-

ner, 1996), Koltchinskii (2001) and Bartlett et al. (2002) suggested penalties based

on Rademacher averages. For a given function class G, the Rademacher average of

G is defined as Eξ supg∈G
1
n

∑n
i=1 ξig(Xi, Yi), where ξ1, . . . , ξn are i.i.d binary {−1, 1}

random variables with probability 1/2 each, and the expectation is taken over the

distribution of ξi’s. Note that this quantity measures the model complexity since a

large function class is associated with a large Rademacher average. Lozano (2000)

gave experimental evidence that the Rademacher penalization outperforms Vapnik’s

SRM and cross-validation for the interval selection problem in classification. Fromont

(2007) further related Rademacher penalization to other resampling techniques. She

proposed a penalty based on i.i.d. weighted bootstrap samples of the data (Efron,

1979, 1982), and proved that the Rademacher averages are actually special examples

of bootstrap type penalties.

The above SRM and Rademacher penalization methods are based on upper bounds

of the maximal deviation between the empirical risk and risk in the entire function

class (e.g. supπ∈Πm
(E − En)1Y 6=π(X) in classification), and ignore the fact that the

empirical risk minimizer will likely have small risk and thus only a small subset of

each function class should be used. For example, Bartlett (2008) showed that for a

nontrivial class Π, the expectation of the maximal deviation would converge to zero

at rate no faster than 1/
√

n. Thus these penalties may lead to an oracle inequality

of the form (4.4) with γ(n,m) converging to 0 at rate no faster than 1/
√

n for each

m. It is possible to get a faster rate of convergence if the penalty only measures the

complexity of a small subset in each function class. This approach was first proposed

by Massart (2000, 2003) in the general prediction setting, where the penalty is a
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data-independent upper bound on the deviation between the empirical excess risk

and the excess risk in a subset of functions with small risk in each model. Bartlett

et al. (2005) extended Massart’s idea by considering local Rademacher complexities.

Their work can be used to construct a data dependent computable penalty with a

fast rate of convergence if the risk function satisfies some conditions (e.g. bounded

regression). In the classification case, Lugosi and Wegkamp (2004) constructed a local

Rademacher penalty, which will give a fast rate if the minimal risk is zero. Koltchinskii

(2006) and Arlot and Bartlett (2008) further investigated the use of local Rademacher

complexities in classification and proposed some sharp data-dependent penalties.

The key condition that allows one to obtain a fast rate of convergence in classi-

fication is the fact that the variance of the the excess loss is upper bounded by the

power (≤ 1) of the expectation of the excess loss up to a constant. That is,

V ar[1Y =π(X) − 1Y =πb(X)] ≤ C2(E[1Y =π(X) − 1Y =πb(X)])
β (4.5)

for any π ∈ Π for some C2 > 0 and β ∈ (0, 1]. Intuitively, (4.5) implies that

the variance of 1Y =π(X) − 1Y =πb(X) decreases as π approaches πb. So the risk of

the empirical risk minimizer converges to the minimal risk more quickly than the

uniform convergence results (Boucheron et al., 2005; Bartlett et al., 2006). Thus

penalties based on local complexity measurement should be sharper than those based

on maximal deviation within the entire function class.

In fact, since our goal is to minimize the risk, it is obvious that an ideal penalty

measures the deviation between the risk and the empirical risk of the empirical risk

minimizer (in classification, an ideal penalty is (E−En)1Y 6=π̂n,m). While almost all of

the above methods considered upper bounds of the ideal penalty. In a recent paper by

Arlot (2009), he provided a bootstrap estimator of the ideal penalty in the histogram

selection case. This is a regression setting with indicator predictors and orthogonal
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design matrix. Thus the ideal penalty has a close form and the bootstrapped version

can be shown to concentrate around the truth with high probability. How to obtain

such a penalty in general regression and/or classification is still a challenge.

4.3 Oracle inequalities

As demonstrated in the previous section, in the decision making problem, an ideal

penalty is penid(m) = (En − E)f(X,A, Y ; d̂n,m). This penalty will guarantee that

V (dopt)− V (d̂n,m̂) ≤ inf
m=1,...,Mn

[
V (dopt)− V (d̂n,m)

]
,

which is known as the benevolent oracle. However, this penalty depends on the

unknown distribution P . There is no hope to perfectly mimic the behavior of the

benevolent oracle. It is more realistic to incorporate a factor K and an additive term

of the form γ(n,m) in the oracle inequality, so that

V (dopt)− V (d̂n,m̂) ≤ inf
m=1,...,Mn

{
K[V (dopt)− V (d̂n,m)] + γ(n,m)

}
, (4.6)

where the constant K is at least as large as 1 and γ(n,m) is increasing in model

complexity and decreasing to 0 as n →∞.

However, since the RHS of (4.6) involves V (d̂n,m), which is random and the asymp-

totic behavior is unclear, (4.6) is not appropriate to serve as an oracle inequality.

Below we briefly discuss model selection in classification and propose a reasonable

oracle inequality.

Existing theoretical model selection literature for classification can be classified

into the following two categories. The first category is empirical risk minimization

(ERM): choosing the classifier that minimizes the empirical 0 − 1 risk within each

model, and then selecting the model with minimal penalized empirical 0−1 risk. The
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second category is empirical surrogate risk minimization: choosing the classifier that

minimizes an empirical surrogate risk (e.g. hinge loss), and then selecting the model

with minimal penalized empirical surrogate risk. In both cases, people estimate the

classifiers and perform model selection based on the same loss function. In the context

of the decision making problem, this is similar to the following two scenarios.

1. Estimate d̂n,m by maximizing Enf(d) over a class of rulesDm, and then select the

model that maximizes the penalized Value (4.3). In this case, V (dopt)−V (d̂n,m)

can be decomposed into [V (dopt) − V (d̃m)] + [V (d̃m) − V (d̂n,m)], where d̃m is

the individualized treatment rule in Dm that maximizes the Value. Note that

[V (dopt) − V (d̃m)] is the approximation error (irreducible) of model m, and

[V (d̃m) − V (d̂n,m)] is the estimation error (V (d̃m) − V (d̂n,m) ≤ supd∈Dm
(E −

En)[f(d̃m) − f(d)], which converges to 0 as n → ∞ under regular conditions).

Thus a desirable oracle inequality is that, with a high probability,

V (dopt)− V (d̂n,m̂) ≤ inf
m

{
K[V (dopt)− V (d̃m)] + γ(n,m)

}
, (4.7)

where K is at least as large as 1 and γ(n,m) converges to 0 at the same rate

as [V (d̃m)− V (d̂n,m)].

2. Estimate Q̂n,m by minimizing En(Y − Q)2 over Qm and then select the model

m̂ that minimizes the penalized empirical quadratic risk En[Y − Q̂n,m(X,A)]2 +

penn(m). The final estimated treatment rule d̂n,m̂ chooses the treatment that

maximizes Q̂n,m̂(X, a). In this approach, one usually relates the Value to the

prediction error first (see Theorem II.1), and then constructs a high probability

upper bound for the excess prediction error:

L(Q̂n,m)− L(Qopt) ≤ KL[(Q∗
m)− L(Qopt) + γ(n,m).
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where L(Q) = E(Y − Q)2, Q∗
m = arg minQ∈Qm L(Q), K is at least as large as

1, and γn,m converges to 0 at the same rate as L(Q̂n,m)−L(Q∗
m). This together

with Theorem II.1 implies an oracle inequality of the form

V (dopt)− V (d̂n,m) ≤ K ′ inf
m

{
E[(Y −Q∗

m)2 − (Y −Qopt)2] + γ(n,m)
}(1+α)/(2+α)

.

(4.8)

Now let us go back to our problem. For each model m = 1, . . . , Mn, define

Q∗
m = arg min

Q∈Qm

L(Q)

and d∗m ∈ arg max
a∈A

Q∗
m(X, a).

In this chapter, we use the quadratic loss minimization based method to estimate

d̂n,m and choose model by maximizing the penalized empirical Value (4.3). Ideally,

we would hope the “estimation error” part V (d∗m)− V (d̂n,m) converges to 0 for every

m. And an oracle inequality similar to (4.7) is of the form

V (dopt)− V (d̂n,m̂) ≤ inf
m=1,...,Mn

{
K[V (dopt)− V (d∗m)] + γ(n,m)

}
. (4.9)

However, under certain circumstances, V (d∗m)−V (d̂n,m) may not converge to 0. Con-

sider the following example.

Example IV.1. Suppose there are two treatments A = {−1, 1} and the randomiza-

tion probability p(a|x) is 1/2 for all (x, a) combinations. We consider linear models

for Qopt, i.e. for each model m,

Qm =
{

Φ1,m(X)θ1 + AΦ2,m(X)θ2 : θ1 ∈ Rdim(Φ1,m), θ2 ∈ Rdim(Φ2,m)
}

,

where Φ1,m and Φ2,m are row vectors of basis functions on X . Then d∗m(X) =
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sign(Φ2,m(X)θ∗2,m) (define sign(0) = 1), where (θ∗1,m, θ∗2,m) = arg minθ1,θ2 E(Y −
Φ1,m(X)θ1 − AΦ2,m(X)θ2)

2. If θ∗2,m = 0, then

V (d∗m) = 2E[1A=1Y ] = E
[
Qopt(X, 1)

]
.

However in this case, it is easy to verify that

V (d̂n,m) = E
[
1Φ2,m(X)

√
n(θ̂2,m−θ∗2,m)≥0Q

opt(X, 1) + 1Φ2,m(X)
√

n(θ̂2,m−θ∗2,m)<0Q
opt(X,−1)

]
.

As n →∞,
√

n(θ̂2,m−θ∗2,m) converges to a normal random vector. Thus Φ2,m(X)
√

n(θ̂2,m−
θ∗2,m) may be positive or negative. If an optimal rule dopt is indecisive (i.e. Qopt(x, 1) =

Qopt(x,−1) for all x ∈ X ), then V (d̂n,m) = V (d∗m). Otherwise V (d̂n,m) may not con-

verge to V (d∗m).

Thus in order to obtain (4.9), we need to assume that either θ∗2,m 6= 0 for all m

(i.e. all d∗m are decisive) or dopt is indecisive. This condition is strong in the sense

that it depends on both the unknown system dynamics and all the models under

consideration. ¤

To avoid making assumptions stated in the previous example, we adopt oracle

inequality of the form (4.8). Note that by the weighted AM-GM inequality, (4.8) is

equivalent to

V (dopt)− V (d̂n,m) ≤ inf
m

{
K̄

[
L(Q∗

m)− L(Qopt)
](1+α)/(2+α)

+ γ̄(n,m)
}

, (4.10)

where K̄ is a constant and γ̄(n,m) converges to 0 as n →∞ for every m.
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4.4 Penalization methods

In this section, we will discuss penalization methods that give us oracle inequality

of form (4.10) with high probability.

4.4.1 Penalty based on maximal deviation

Note that by the definition of m̂,

V (dopt)− V (d̂n,m̂)

=
[
V (dopt)− V (d̂n,m)

]
+ Ef(d̂n,m)− Ef(d̂n,m̂)

≤
[
V (dopt)− V (d̂n,m)

]
+ (E − En)f(d̂n,m) + penn(m) + (En − E)f(d̂n,m̂)− penn(m̂).

By Theorem II.1, we have that V (dopt)− V (d̂n,m) ≤ C1[L(Q̂n,m)−L(Qopt)](1+α)/(2+α)

under the margin condition (2.2), which can be further upper bounded by K(L(Q∗
m)−

L(Qopt))(1+α)/(2+α) +γ(n,m) under appropriate conditions. Thus to achieve an oracle

inequality of form (4.10), it is sufficient to choose the penalty as a nontrivial upper

bound on the maximal deviation supd∈Dm
(En−E)f(d) (the upper bound is nontrivial

in the sense that it converges to 0 as n →∞). Such an upper bound can be obtained

by using concentration inequalities in the theory of empirical processes (Bartlett et al.,

2002; Massart, 2000, 2003; Bartlett, 2008; Fromont, 2007). This upper bound could

be either distribution-free, such as quantities depending on the dimension of the

parameter space in each model class (Barron et al., 1999), or data-dependent, such as

quantities based on Rademacher averages (Koltchinskii, 2001; Bartlett et al., 2002)

or bootstrap estimators (Fromont, 2007).

As we have discussed in Section 4.2, penalties based on the upper bound of the

maximal deviation in the entire function class measures the complexity of the entire

function class and the resulting γ̄(n,m) in (4.10) may approach 0 at a rate no faster
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than 1/
√

n. This makes us think of penalties that estimate the maximal deviation in

a small ball around d̂n,m. In the following section, we will consider such a penalization

based on local Rademacher complexities.

4.4.2 Margin adaptive model selection

In this section, we propose a penalization method so that γ̄(n, m) in (4.10) con-

verges to zero at a rate adapting to the Margin condition (2.2). First note that if

Qopt(X,A) is constant in A, then V (dopt)−V (d̂n,m̂) = 0. The oracle inequality (4.10)

trivially holds. In the following, we consider the case where Qopt is not a constant

function in A. We start with the following assumptions.

Assumption IV.1. There exist some constants S ≥ 1 and b > 0 such that

(a) p(a|x) > S−1 for all combinations of (x, a);

(b) |Y | ≤ b; and

(c) supQ∈∪mQm
‖Q‖∞ ≤ b.

This assumption requires that all relevant quantities are bounded. Later we will

see that it is directly relevant to Assumption IV.3 below. In addition, this technical

condition is often employed in concentration inequalities for empirical processes. It

is possible to replace Assumption IV.1(b) with a moment assumption on error terms

and a boundedness assumption on Qopt.

Assumption IV.2. Each approximation space Qm is convex for m = 1, . . . , M .

This assumption has two functionalities. First, this together with assumption

IV.1(b) and (c) implies a bernstein condition on the quadratic loss function (see

Lemma IV.9), which is the key to obtain a fast rate of convergence in prediction error

within each model (Bartlett and Mendelson, 2006). Second, this condition ensures

that the class Qm is star-shaped (see Definition VI.4), which allows us to construct
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a data-dependent penalty with fast rate of convergence. It is easy to verify that this

condition holds if each function class Qm is linear.

Assumption IV.3. For any optimal individualized treatment rule dopt such that

dopt(X) ∈ arg maxa∈A Qopt(X, a), square integrable function Q on X × A and in-

dividualized treatment rule d such that d(X) ∈ arg maxa∈A Q(X, a), there exist some

C1, C2 > 0 and α ≥ 0 such that

(a) V (dopt)− V (d) ≤ C1[L(Q)− L(Qopt)](1+α)/(2+α); and

(b) E[f(dopt) − f(d)]2 ≤ C2[Ef(dopt) − Ef(d)]α/(1+α), where f(d) is defined in

(4.2).

This assumption is the key to show a rate of convergence faster than 1/
√

n when

α > 0. Note that this assumption always holds with α = 0 under Assumption IV.1(a)

and (b). When α > 0, condition (a) implies a tighter upper bound between the

excess Value and the excess prediction error, and condition (b) implies the variance

of f(dopt) − f(d) is upper bounded by its expectation to a power between 0 and 1.

Thus the variance of f(dopt) − f(d) is small if the Value of d is close to the optimal

Value, which gives a fast rate of convergence.

In fact, Assumption IV.3 is closely related to the margin condition (2.2). In

Chapter II, we have showed that Assumption IV.3(a) holds if Assumption IV.1(a) and

the margin condition hold (see Theorem II.1). The following proposition explains the

origin of Assumption IV.3(b) and its relation to the margin condition when α > 0.

Proposition IV.1. Assume the margin condition (2.2) holds with some C > 1 and

α > 0. Suppose Assumptions IV.1(a), (b) hold and arg maxa∈A Qopt(X, a) is unique

a.s. Then for any square integrable function Q on X ×A and individualized treatment

rule d such that d(X) ∈ arg maxa∈A Q(X, a), we have

E[f(dopt)− f(d)]2 ≤ C2[Ef(dopt)− Ef(d)]α/(1+α), (4.11)
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where C2 = 2b2S(1 + α)C1/(1+α)α−α/(1+α).

The proof is given in Section 4.6.1.

Remark

The exponent on the RHS of (4.11) approaches 1 as α → ∞. In this case, the

margin condition requires that the LHS of (2.2) equals 0 for all ε ∈ (0, 1), which

is unlikely to be true. However, we can replace the margin condition (2.2) by the

following condition. There exists an ε > 0 such that

P
(
0 < max

a∈A
Qopt(X, a)− max

a∈A\arg maxa∈AQopt(X,a)
Qopt(X, a) ≤ ε

)
= 0.

Then (4.11) holds with C2 = 2b2S/ε and α = ∞.

After the list of assumptions, below we provide a sufficient condition for the

penalty term to attain margin adaptivity.

For any function class G on X ×A×R, let N(ε,G, L1(Pn)) denote the ε-covering

number of G relative to the L1(Pn) norm and denote un(G) = E log[N(1/n,G, L1(Pn))+

1]/n.

For each model m = 1, . . . , Mn and any t > 0, define the sets of functions

Dm =
{

d(X) ∈ arg max
a∈A

Q(X, a) : Q ∈ Qm

}
,

Fm ={f(d) : d ∈ Dm}, where f(d) =
1A=d(X)

p(A|X)
Y.

Theorem IV.1. Suppose Assumptions IV.1(a),(b) and IV.3(b) hold. For any t > 0

and 0 < δ < 1, assume there exists a positive constant c such that the penalty term

satisfies

penn(m) +
ct

n
≥ [(1− δ)E − En](f(d∗m)− f(d̂n,m)). (4.12)
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Let m̂ be the selected model defined in (4.3). Then with probability at least 1−exp(−t),

we have

(1− δ)
[
V (dopt)− V (d̂n,m̂)

]

≤ inf
m=1,...,Mn

{
(1 + δ)

[
V (dopt)− V (d̂n,m)

]
+ penn(m)

+ K1

[
un(Fm)(1+α)/(2+α) +

(t + log(2Mn)

n

)(1+α)/(2+α)

+
t + log(2Mn)

n

]}

for a sufficiently large constant K1 depending on b, S, α, C2, δ and c.

The proof is given in Section 4.6.2.

Note that V (dopt)−V (d̂n,m) is bounded above by C1[L(Q̂n,m)−L(Qopt)](1+α)/(2+α)

under Assumptions IV.1(a) and IV.3(a). It also can be shown that with a high

probability L(Q̂n,m −L(Q∗
m) ≤ O(un(Qm)) under Assumptions IV.1(b), (c) and IV.2

(Bartlett et al., 2005). This, together with the weighted AM-GM inequality, will give

an oracle inequality of form (4.10) with the desired rate of convergence as long as the

penalty is of the right order.

The above theorem applies to any penalization procedure that satisfies condi-

tion (4.12). Now we propose a data-dependent penalty based on local Rademacher

complexities. Below we define precisely these complexities.

For any s ≥ 0, define the set of individualized treatment rules

B̂m(s) =
{

d(X) ∈ arg max
a

Q(X, a) : En[(Y −Q)2 − (Y − Q̂n,m)2] ≤ s,Q ∈ Qm

}
.

Let ξ1, . . . , ξn be i.i.d. Rademacher random variables (i.e. P(ξi = 1) = P(ξi = −1) =

1/2). For any t > 0, r > 0, define

η̂m(r) =256b3
(4

3
Eξ sup

Q∈Qm:b2En(Q−Q̂m)2≤170r

1

n

n∑
i=1

ξiQ(Xi, Ai) +
6bt

n

)
, (4.13)
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where the expectation Eξ is taken with respect to (ξ1, . . . , ξn) and can be empirically

approximated by repeatedly sampling (ξ1, . . . , ξn).

By Lemmas VI.11 and VI.12 in Section 4.6.3, η̂m(r) has a unique positive fixed

point under Assumption IV.2. Let r̂n,m denote the positive fixed point of η̂m(r).

Define

ŝn,m =
132

b2
r̂n,m +

5300b2t

n
. (4.14)

We have the following theorem.

Theorem IV.2. Suppose Assumptions IV.1, IV.2 and IV.3 hold. For any given t > 0

and δ ∈ (0, 1), let m̂ be the model selected according to (4.3) with

penn(m) = δ sup
d1,d2∈B̂m(ŝn,m)

En[f(d1)− f(d2)]

+ 10(1 + δ)Eξ sup
d1,d2∈B̂m(ŝn,m)

1

n

n∑
i=1

ξi[f(Xi, Ai, Yi; d1)− f(Xi, Ai, Yi; d2)]

+ 2(1 + δ)

√
sup

d1,d2∈B̂m(ŝn,m)

En[f(d1)− f(d2)]2
t

n
. (4.15)

Then with probability at least 1− exp(−t),

V (dopt)− V (d̂n,m̂)

≤K2 inf
m=1,...,Mn

{[
L(Q∗

m)− L(Qopt)
](1+α)/(2+α)

+ un(Fm) + un(Fm)(1+α)/(2+α)

+ un(Qm)(1+α)/(2+α) +
(t + log(15Mn)

n

)(1+α)/(2+α)

+
t + log(15Mn)

n

}

for a sufficiently large constant K2 depending on b, S, α, C1, C2 and δ.

The proof is given in Section 4.6.3.

Note that penalty (4.15) is a data-dependent penalty. It measures the deviation

in the ball B̂m(ŝn,m). If the models are nested, then the ball is large for large models.
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Thus the penalty reflects the model complexity. The rate of convergence in the

final result depends on the margin parameter α. To better illustrate the rate of

convergence, we give the following corollary.

Corollary IV.1. Suppose there are only two treatments A = {−1, 1}. Assume As-

sumptions IV.1, IV.2 and IV.3 hold. For any given t > 0 and δ ∈ (0, 1), let m̂ be the

model selected according to (4.3) with penalty satisfying (4.15). If each model Qm is

a VC-class, then with probability at least 1− exp(−t),

V (dopt)− V (d̂n,m̂)

≤K3 inf
m=1,...,Mn

{[
L(Q∗

m)− L(Qopt)
](1+α)/(2+α)

+
(vc(Qm) log n

n

)(1+α)/(2+α)

+
vc(Qm) log n

n
+

(t + log(15Mn)

n

)(1+α)/(2+α)

+
t + log(15Mn)

n

}

for a sufficiently large constant K3 depending on b, S, α, C1, C2 and δ, where vc(Qm)

is the VC-index of the set of subgraphs of functions in Qm.

The result follows from Lemma VI.4 (which provides a connection between the

covering number and VC-index) and the preservation properties of VC class (Lemma

VI.5). And the proof is omitted.

Note that if each model Qm is a convex subset of a lm-dimensional vector space,

then vc(Qm) ≤ lm + 2. For example, suppose each model class is of the form Qm =

{Φmθ : |θ| ≤ b}, where Φm is a 1 × lm vector of basis functions, and the sup-norm

of each component in Φm is bounded above by 1. Then it is easy to verify that

Assumptions IV.1(c) and IV.2 hold and Qm is a subset of a finite dimensional vector

space. In general, one can take t = log n. Intuitively, this oracle inequality means

that if there is a simple model that approximates Qopt sufficiently well (so that both

vc(Qm) and L(Q∗
m)−L(Qopt)) are small, then the estimated individualized treatment

rule will have Value close to the optimal Value.
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4.5 Discussion

In this chapter, we considered a step-wise model selection procedure to improve

the ability of the quadratic loss minimization based method. Unlike other theoretical

model selection work, this approach is novel in the sense that the estimation and

model selection are based on different loss functions. We justified this approach by

providing a high probability upper bound on the quality of the estimated individual-

ized treatment rule.

Although the proposed penalization method gives us a theoretical margin adaptive

rate of convergence, it is practically hard to implement. First, the upper bound b in

Assumption IV.1 is required in order to compute the penalty. In addition, we need to

compute the fixed point of every η̂m (defined in (4.13)), take sup over each sequence

of sampled Rademacher variables ξi’s and then average over sampled sequence of

Rademacher variables. A possible future direction is to develop an easy-to-compute

penalty with a fast rate of convergence.

As discussed in Section 4.2, an ideal penalty is (En − E)f(d̂n,m). In the simple

histogram selection setting, Arlot (2009) provided a bootstrap penalty, which is con-

centrated around the idea penalty with high probability. This is a regression setting

with piecewise constant predictors and orthogonal design matrix. Thus the ideal

penalty has a closed form. How to obtain such a penalty in other general settings is

an open problem.

In this chapter, we provided an oracle inequality in which the RHS contains a

measure of approximation error E[(Y − Q∗
m)2 − (Y − Qopt)2]. This oracle inequality

implies that the estimated rule d̂n,m̂ is of high quality if infm=1,...,Mn(E[(Y−Q∗
m)2−(Y−

Qopt)2]) is small and the sample size is large. However, this oracle inequality is still not

ideal since V (dopt)−V (d̂n,m̂) could be small and E[(Y −Q∗
m)2− (Y −Qopt)2] could be

very large when all models are poor. Further exploration of an ideal oracle inequality
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that could better justify the quality of the estimated individualized treatment rule is

needed.

4.6 Appendices

4.6.1 Proof of Proposition IV.1

First note that for any dopt(X) ∈ arg maxa∈A Qopt(X, a) and individualized treat-

ment rule d,

E[f(dopt)− f(d)]2 =E
[1A=dopt(X) − 1A=d(X)

p(A|X)
Y

]2

≤b2SE

[
(1A=dopt(X) − 1A=d(X))

2

p(A|X)

]

=b2SE
[ ∑

a∈A
(1dopt(X)=a − 1d(X)=a)

2
]

≤2b2SE1d(X)6=dopt(X)

This together with the assumption that arg maxa∈A Qopt(X, a) is unique a.s. implies

E[f(dopt)− f(d)]2 ≤ 2b2SE1d(X)∈A\arg maxa∈AQopt(X,a). (4.16)

For any ε > 0, define the event

Ωε =
{

0 < max
a∈A

Qopt(X, a)− max
a∈A\arg maxa∈AQopt(X,a)

Qopt(X, a) ≤ ε
}

.

If the margin condition (2.2) holds with some α > 0, then following the arguments in

Section 1.3, we have

E[f(dopt)− f(d)] =E

[(
max
a∈A

Qopt(X, a)−Qopt(X, d(X))
)
1d(X)∈A\arg maxa∈AQopt(X,a)

]
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≥E

[(
max
a∈A

Qopt(X, a)−Qopt(X, d(X))
)
1d(X)∈A\arg maxa∈AQopt(X,a)1ΩC

ε

]

≥ε
[
E1d(X)∈A\arg maxa∈AQopt(X,a) − E1Ωε

]

≥εE1d(X)∈A\arg maxa∈AQopt(X,a) − Cεα+1,

Choosing ε =
(
E1d(X)∈A\arg maxa∈AQopt(X,a)/[(1+α)C]

)1/α
to maximize the above lower

bound yields

E[f(dopt)− f(d)] ≥C−1/αα(1 + α)−(1+α)/α
(
E1d(X)∈A\arg maxa∈AQopt(X,a)

)(1+α)/α
.

The result follows by combining the above result with inequality (4.16). ¤

4.6.2 Proof of Theorem IV.1

Fix an optimal individualized treatment rule dopt. For each model m = 1, . . . , Mm,

define the quantity

Hm = sup
d∈Dm

∣∣∣∣
(En − E)[f(dopt)− f(d)]

[E(f(dopt)− f(d))]α/(1+α) + hm

∣∣∣∣ ,

where hm = k
(
un(Fm)α/(2+α)

[
1∨un(Fm)1/(2+α)

]
+(t/n)α/(2+α)

[
1∨ (t/n)1/(2+α)

])
, k is

a large enough constant depending on b, S and C2 (see Lemma IV.1); and the events

Ω1.m =
{

Hm ≤ un(Fm)1/(2+α) +
( t

n

)1/(2+α)}

Ω2,m =
{

(E − En)[f(dopt)− f(d∗m)] ≤
√

2tE[f(dopt)− f(d∗m)]2

n
+

2bSt

3n

}
.

By the definition of m̂, Enf(d̂n,m) − penn(m) ≤ Enf(d̂n,m̂) − penn(m̂). Thus for
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any m = 1, . . . ,Mn, on the event Ω1,m,

V (dopt)− V (d̂n,m̂)

=
[
V (dopt)− V (d̂n,m)

]
+ Ef(d̂n,m)− Ef(d̂n,m̂)

≤
[
V (dopt)− V (d̂n,m)

]
+ (En − E)[f(dopt)− f(d̂n,m)] + penn(m)

+ (E − En)[f(dopt)− f(d̂n,m̂)]− penn(m̂)

≤[
V (dopt)− V (d̂n,m)

]
+ hm

[
un(Fm)1/(2+α) +

( t

n

)1/(2+α)]

+
[
V (dopt)− V (d̂n,m)

]α/(1+α)
[
un(Fm)1/(2+α) +

( t

n

)1/(2+α)]

+ penn(m) + (E − En)[f(dopt)− f(d̂n,m̂)]− penn(m̂)

≤(1 + δ)
[
V (dopt)− V (d̂n,m)

]
+ hm

[
un(Fm)1/(2+α) +

( t

n

)1/(2+α)]

+
1

(1 + α)δα

[
un(Fm)(1+α)/(2+α) +

( t

n

)(1+α)/(2+α)]

+ penn(m) + (E − En)[f(dopt)− f(d̂n,m̂)]− penn(m̂), (4.17)

where the last inequality follows from the weighted AM-GM inequality and the fact

that α/(1 + α) ≤ 1.

Next by Assumption IV.3(b), we have on the event Ω2,m,

(E − En)[f(dopt)− f(d∗m)]

≤
√

2tC2[E(f(dopt)− f(d∗m))]α/(1+α)

n
+

2bSt

3n

≤δ[V (dopt)− V (d∗m)] +
( 1

2δ

)α/(2+α)(2C2t

n

)(1+α)/(2+α)

+
2bSt

3n
.

Thus on the event ∩mΩ2,m,

(E − En)[f(dopt)− f(d̂n,m̂)]

≤δ[V (dopt)− V (d∗m̂)] +
( 1

2δ

)α/(2+α)(2C2t

n

)(1+α)/(2+α)

+
2bSt

3n

80



+ (E − En)[f(d∗m̂)− f(d̂n,m̂)]

≤δ[V (dopt)− V (d̂n,m̂)] +
( 1

2δ

)α/(2+α)(2C2t

n

)(1+α)/(2+α)

+
2bSt

3n

+ ((1− δ)E − En)[f(d∗m̂)− f(d̂n,m̂)]. (4.18)

Substituting (4.18) into (4.17) and using the penalty condition (4.12), we obtain

(1− δ)V (dopt)− V (d̂n,m̂) ≤ inf
m=1,...,Mn

{
(1 + δ)

[
V (dopt)− V (d̂n,m)

]
+ penn(m)

+ K1

[
un(Fm)(1+α)/(2+α) +

( t

n

)(1+α)/(2+α)

+
t

n

]}

on the event ∩m(Ω1,m ∩Ω2,m), where K1 is a sufficiently large constant depending on

b, S, α, C2, δ and c.

Taking t = t+log(2Mn), the result follows from Lemmas IV.1, IV.2 and the union

bound argument.

Lemma IV.1. Assume assumptions IV.1(a),(b) and IV.3(b) hold. Then P(Ω1,m) ≥
1− exp(−t) for a sufficiently large constant k depending on b, S and C2.

Proof. Under Assumptions IV.1(a), (b) and IV.3(b), for any d ∈ Dm

∥∥∥f(dopt)− f(d)− P [f(dopt)− f(d)]

(E[f(dopt)− f(d)])α/(1+α) + hm

∥∥∥
∞
≤ 2bS

hm

; and

V ar
(f(dopt)− f(d)− E[f(dopt)− f(d)]

(E[f(dopt)− f(d)])α/(1+α) + hm

)
≤ E[f(dopt)− f(d)]2

4hm(E[f(dopt)− f(d)])α/(1+α)
≤ C2

4hm

.

By Lemma VI.9, we have with probability at least 1− exp(−t),

Hm ≤ EHm +
1

n

√
2t

(C2n

4hm

+
4bSn

hm

EHm

)
+

2bSt

3nhm

≤ 2EHm +

√
C2t

2nhm

+
8bSt

3nhm

.
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Let Gm = {g = f(dopt)− f(d) : d ∈ Dm}. Then

Hm = sup
g∈Gm

∣∣∣ (En − E)g

(Eg)α/(1+α) + hm

∣∣∣.

It is easy to verify that un(Gm) = un(Fm).

Let Gm,0 be a 2/n-net in L1(Pn) over Gm. The cardinality of Gm,0 can be chosen

equal to N(1/n,Gm, L1(Pn)). Then by symmetrization inequality and the definition

of Gm,0, for any r > 0, we have

E

[
sup

g∈Gm:Eg2≤r

|(En − E)g|
]
≤2E

[
sup

g∈Gm:Eg2≤r

∣∣∣ 1
n

n∑
i=1

ξig(Xi, Ai, Yi)
∣∣∣
]

≤2E

[
sup

g∈Gm,0:Eg2≤r

∣∣∣ 1
n

n∑
i=1

ξig(Xi, Ai, Yi)
∣∣∣
]

+
4

n
.

In addition, note that

E

[
sup

g∈Gm,0:Eg2≤r

∣∣∣ 1
n

n∑
i=1

ξig(Xi, Ai, Yi)
∣∣∣
]

≤ 1√
log 2n

E




∥∥∥∥∥ sup
g∈Gm,0:Eg2≤r

∣∣∣
n∑

i=1

ξig(Xi, Ai, Yi)
∣∣∣
∥∥∥∥∥

ψ2




(by the definition of Orlicz norm)

≤ 2
√

2

n log 2
E

[√
log(N(1/n,Gm, L1(Pn)) + 1) sup

g∈Gm,0:Eg2≤r

∥∥∥
n∑

i=1

ξig(Xi, Ai, Yi)
∥∥∥

ψ2

]

(by Maximal inequality)

≤ 2
√

2

n log 2
E

[√
log(N(1/n,Gm, L1(Pn)) + 1) sup

g∈Gm,0:Eg2≤r

√
6nEng2

]

(by Hoeffding’s inequality)

≤ 4
√

3

log 2

√
un(Gm)E sup

g∈Gm,0:Eg2≤r

Eng2 (by Cauchy-Schwarz inequality)
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≤ 4
√

3

log 2

√√√√un(Gm)
[
r + 4bSE sup

g∈Gm,0:Eg2≤r

∣∣∣ 1
n

n∑
i=1

ξig(Xi, Ai, Yi)
∣∣∣
]

(by assumption IV.1(a), (b) and lemma VI.16),

which implies

E sup
g∈Gm,0:Eg2≤r

∣∣∣ 1
n

n∑
i=1

ξig(Xi, Ai, Yi)
∣∣∣ ≤ 192bSun(Gm)

(log 2)2
+

4
√

3un(Gm)r

log 2
.

Since un(Gm) = un(Fm), we have for any r > 0,

E

[
sup

g∈Gm:Eg2≤r

|(En − E)g|
]
≤384bSun(Fm)

(log 2)2
+

8
√

3un(Fm)r

log 2
+

4

n

≤(384bS + 4 log 2)un(Fm)

(log 2)2
+

8
√

3un(Fm)r

log 2
,

where the second inequality follows from the fact that un(Fm) ≥ log 2/n.

By simple algebra, for any r ≥ (96bS/ log 2+1)2un(Fm)α/(2+α)[1∨un(Fm)1/(2+α)]/12,

E

[
sup

g∈Gm:Eg2≤r

|(En − E)g|
]
≤ 16

√
3

log 2

√
un(Fm)r[1 ∨ un(Fm)1/(2+α)].

For any s > 1, let j′ be the smallest integer such that s2(j′+1)hm ≥ b2S2. Then

under Assumption IV.3(b),

Hm ≤ sup
g∈Gm:Eg2≤hm

∣∣∣C2(En − E)g

Eg2 + C2hm

∣∣∣ +

j′∑
j=0

sup
g∈Gm:s2jhm≤Eg2≤s2(j+1)hm

∣∣∣C2(En − E)g

Eg2 + C2hm

∣∣∣

≤ 1

hm

sup
g∈Gm:Eg2≤hm

∣∣(En − E)g
∣∣

+

j′∑
j=0

C2

(s2j + C2)hm

sup
g∈Gm:s2jhm≤Eg2≤s2(j+1)hm

∣∣(En − E)g
∣∣.
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If hm ≥ (96bS/ log 2 + 1)2un(Fm)α/(2+α)[1 ∨ un(Fm)1/(2+α)]/12, then

EHm ≤
[
1 +

j′∑
j=0

C2s
j+1

(s2j + C2)

]16
√

3

log 2

√
un(Fm)[1 ∨ un(Fm)1/(2+α)]

hm

≤16
√

3(1 + 4C2)

log 2

√
un(Fm)[1 ∨ un(Fm)1/(2+α)]

hm

by taking s = 2.

By the definition of hm, for any k ≥ (96bS/ log 2 + 1)2/12, we have w.p. ≥
1− exp(−t),

Hm ≤32
√

3(1 + 4C2)√
k log 2

un(Fm)1/(2+α) +
(√

C2

2k
+

8bS

3k

)( t

n

)1/(2+α)

,

which is no larger than un(Fm)1/(2+α) + (t/n)1/(2+α) if k is sufficiently large.

Lemma IV.2. Assume assumption IV.1(a),(b) holds. Then P(Ω2,m) ≥ 1− exp(−t).

This directly follows from the bernstein inequality (Lemma VI.8). ¤

4.6.3 Proof of Theorem IV.2

We first define some quantities and events that will be used in the proof.

For any class of individualized treatment rules B, define the quantities

In(B) = δ sup
d1,d2∈B

E[f(d1)− f(d2)] + 2E sup
d1,d2∈B

(E − En)[f(d1)− f(d2)]

+ sup
d1,d2∈B

√
E(f(d1)− f(d2))2

2t

n
+

8bSt

3n
,

În(B) = δ sup
d1,d2∈B

En[f(d1)− f(d2)]

+ 10(1 + δ)Eξ sup
d1,d2∈B

1

n

n∑
i=1

ξi[f(Xi, Ai, Ri; d1)− f(Xi, Ai, Ri; d2)]
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+ 2(1 + δ)

√
sup

d1,d2∈B
En[f(d1)− f(d2)]2

t

n
+

83(1 + δ)bSt

3n
,

Īn(B) =
[
22(1 + δ)

√
1

n
+ δ

]
sup

d1,d2∈B
E[f(d1)− f(d2)]

+ (42 + 44δ)E sup
d1,d2∈B

|(En − E)[f(d1)− f(d2)]|

+ [4 + 5δ]

√
sup

d1,d2∈B
E(f(d1)− f(d2))2

t

n
+

(52 + 55δ)bSt

n
,

and the events

Ω3(B) =
{

sup
d1,d2∈B

(E − En)(f(d1)− f(d2)) ≤ 2E sup
d1,d2∈B

(E − En)(f(d1)− f(d2))

+

√
sup

d1,d2∈B
E(f(d1)− f(d2))2

2t

n
+

8bSt

3n

}
,

Ω4(B) =
{

E sup
d1,d2∈B

1

n

n∑
i=1

ξi[f(Xi, Ai, Yi; d1)− f(Xi, Ai, Yi; d2)]

≤ 2Eξ sup
d1,d2∈B

1

n

n∑
i=1

ξi[f(Xi, Ai, Yi; d1)− f(Xi, Ai, Yi; d2)] +
2bSt

n

}

Ω5(B) =
{

sup
d1,d2∈B

(E − En)(f(d1)− f(d2))
2 ≤ 2E sup

d1,d2∈B
(E − En)(f(d1)− f(d2))

2

+

√
sup

d1,d2∈B
E(f(d1)− f(d2))4

2t

n
+

8b2S2t

3n

}
,

Ω6(B) =
{

sup
d1,d2∈B

(En − E)(f(d1)− f(d2)) ≤ 2E sup
d1,d2∈B

(En − E)(f(d1)− f(d2))

+

√
sup

d1,d2∈B
E(f(d1)− f(d2))2

2t

n
+

8bSt

3n

}

Ω7(B) =
{

Eξ sup
d1,d2∈B

1

n

n∑
i=1

ξi[f(Xi, Ai, Yi; d1)− f(Xi, Ai, Yi; d2)]

≤ 2E sup
d1,d2∈B

1

n

n∑
i=1

ξi[f(Xi, Ai, Yi; d1)− f(Xi, Ai, Yi; d2)] +
5bSt

6n

}
,

Ω8(B) =
{

sup
d1,d2∈B

(En − E)(f(d1)− f(d2))
2 ≤ 2E sup

d1,d2∈B
(En − E)(f(d1)− f(d2))

2
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+

√
sup

d1,d2∈B
E(f(d1)− f(d2))4

2t

n
+

8b2S2t

3n

}
.

For each model m = 1, . . . , Mn and any s ≥ 0 and r > 0, define the set of

individualized treatment rules

Bm(s) ={d(X) ∈ arg max
a

Q(X, a) : L(Q)− L(Q∗
m)] ≤ s,Q ∈ Qm}

and the quantities

ηm(r) =256b3
(
E sup

Q∈Qm:16b2E(Q−Q∗m)2≤r

1

n

n∑
i=1

ξiQ(Xi, Ai) +
10bt

3n

)
,

η̄m(r) =256b3
(5

3
E sup

Q∈Qm:b2E(Q−Q∗m)2≤2650r

1

n

n∑
i=1

ξiQ(Xi, Ai) +
82bt

9n

)
.

By Assumption IV.2, lemma VI.11 and lemma VI.12, each of ηm and η̄m(r) has unique

positive fixed point. Let r∗n,m and r̄n,m be the positive fixed points of ηm(r) and η̄m(r),

respectively. Denote

s∗n,m =
44

b2
r∗n,m +

1752b2t

n
and s̄n,m =

308

b2
r̄n,m +

12352b2t

n
.

Define the events

Ω9,m =
{

sup
Q∈Qm

(
[L(Q)− L(Q∗

m)]− 2En[(Y −Q)2 − (Y −Q∗
m)2]

)

≤ 44

b2
r∗n,m +

1752b2t

n

}

Ω10,m =
{

sup
Q∈Qm

(
En[(Y −Q)2 − (Y −Q∗

m)2]− 2[L(Q)− L(Q∗
m)]

)

≤ 22

b2
r∗n,m +

920b2t

n

}

Ω11,m(r) =
{
E sup

Q∈Qm:16b2E(Q−Q∗m)2≤r

1

n

n∑
i=1

ξiQ(Xi, Ai)
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≤ 4

3
Eξ sup

Q∈Qm:16b2E(Q−Q∗m)2≤r

1

n

n∑
i=1

ξiQ(Xi, Ai) +
8bt

3n

}

Ω12,m(r) =
{
Eξ sup

Q∈Qm:b2E(Q−Q∗m)2≤2650r

1

n

n∑
i=1

ξiQ(Xi, Ai)

≤ 5

4
E sup

Q∈Qm:b2E(Q−Q∗m)2≤2650r

1

n

n∑
i=1

ξiQ(Xi, Ai) +
7bt

3n

}

Ω13,m(r) =
{

sup
Q∈Qm:16b2E(Q−Q∗m)2≤r

(En − E)(Q−Q∗
m)2 ≤

√
rt

2n
+

52b2t

3n

+
5

2
E sup

Q∈Qm:16b2E(Q−Q∗m)2≤r

1

n

n∑
i=1

ξi(Q(Xi, Ai)−Q∗
m(Xi, Ai))

2
}

Ω14,m(r) =
{

sup
l∈Lm(r)

(E − En)l ≤ 5

2
E sup

l∈Lm(r)

1

n

n∑
i=1

ξil(Xi, Ai, Yi) +

√
rt

2n
+

52b2t

3n

}
,

where Lm(r) =
{

l =
r(Q−Q∗

m)2

max{16b2E(Q−Q∗
m)2, r} : Q ∈ Qm

}
.

Now we start the proof. First note that for m = 1, . . . , Mn,

penn(m) = În(B̂m(ŝn,m))− 83(1 + δ)bSt

3n
.

Since En[(Y − Q̂n,m)2 − (Y − Q∗
m)2] ≤ 0, we have d̂n,m ∈ Bm(s∗n,m) on the event

Ω9,m. In addition, by the definition of d∗m, d∗m ∈ Bm(s∗n,m). Thus

[(1− δ)E − En](f(d∗m)− f(d̂n,m))

≤ sup
d1,d2∈Bm(s∗n,m)

[(1− δ)E − En](f(d1)− f(d2))

≤ sup
d1,d2∈Bm(s∗n,m)

(E − En)(f(d1)− f(d2)) + δ sup
d1,d2∈Bm(s∗n,m)

E(f(d1)− f(d2)),

which is no larger than In(Bm(s∗n,m)) on the event Ω3,m(s∗n,m).

By lemmas IV.3 and IV.6, we have In(Bm(s∗n,m)) ≤ În(Bm(s∗n,m)) ≤ În(B̂m(ŝn,m))

on the event Ω3(Bm(s∗n,m))∩Ω4(Bm(s∗n,m))∩Ω5(Bm(s∗n,m))∩Ω9,m∩Ω10,m∩Ω11,m(r∗n,m)∩
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Ω13,m(r∗n,m) ∩ Ω13,m((1408 + 657
10

)r∗n,m). This implies

penn(m) +
83(1 + δ)bSt

3n
≥ [(1− δ)E − En](f(d∗m)− f(d̂n,m)).

Following the proof of Theorem IV.1, there exists a positive constant K1 depending

on b, S, α, C2, δ such that

(1− δ)V (dopt)− V (d̂n,m̂) ≤ inf
m=1,...,Mn

{
(1 + δ)

[
V (dopt)− V (d̂n,m)

]
+ penn(m)

+ K1

[
un(Fm)(1+α)/(2+α) +

( t

n

)(1+α)/(2+α)

+
t

n

]}

(4.19)

on the event ∩Mn
m=1(Ω1,m∩Ω2,m∩Ω3(Bm(s∗n,m))∩Ω4(Bm(s∗n,m))∩Ω5(Bm(s∗n,m))∩Ω9,m∩

Ω10,m ∩ Ω11,m(r∗n,m) ∩ Ω13,m(r∗n,m) ∩ Ω13,m((1408 + 657
10

)r∗n,m)).

Next, note that {f(d) : d ∈ Bm(s̄n,m)} ⊂ Fm. By Lemmas IV.4, IV.6 and IV.5,

we have that, on the event Ω6(Bm(s̄n,m)) ∩ Ω7(Bm(s̄n,m)) ∩ Ω8(Bm(s̄n,m)) ∩ Ω9,m ∩
Ω10,m ∩ Ω12,m(r̄n,m) ∩ Ω13,m((1408 + 657

10
)r∗n,m) ∩ Ω14,m(r̄n,m),

penn(m)

≤În(Bm(s̄n,m))− 83(1 + δ)bSt

3n
≤ Īn(Bm(s̄n,m))− 83(1 + δ)bSt

3n

≤
[46α + 51αδ + 2δ

2(1 + α)
+ 22(1 + δ)

√
1

n

]
sup

d∈Bm(s̄n,m)

E[f(dopt)− f(d)]

768(21 + 22δ)bSun(Fm)

(log 2)2
+

(21 + 22δ)(2 + α)

1 + α

(768C2un(Fm)

(log 2)2

)(1+α)/(2+α)

+
(4 + 5δ)(2 + α)

2(1 + α)

(4C2t

n

)(1+α)/(2+α)

+
(73 + 82δ)bSt

3n
+

16(21 + 22δ)

n
(4.20)

By Assumption IV.3(a), the definition of s̄n,m and Lemma IV.7, there exists a constant
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K4 depending on b such that

sup
d∈Bm(s̄n,m)

[V (dopt)− V (d)]

≤C1 sup
Q∈Qm:L(Q)−L(Q∗m)≤s̄n,m

[
L(Q)− L(Qopt)

](1+α)/(2+α)

≤C1

[
L(Q∗

m)2 − L(Qopt)2 + s̄n,m

](1+α)/(2+α)

≤C1

[
L(Q∗

m)− L(Qopt) + K4

(
un(Qm) +

t + 1

n

)](1+α)/(2+α)

. (4.21)

In addition, note that (1+δ)[V (dopt)−V (d̂n,m)] ≤ (1+δ) supd∈Bm(s̄n,m)[V (dopt)−V (d)]

on the event Ω9,m. Substituting (4.20) and (4.21) into (4.19) and using Lemma VI.2,

we have

V (dopt)− V (d̂n,m̂)

≤K2 inf
m=1,...,Mn

{[
L(Q∗

m)− L(Qopt)
](1+α)/(2+α)

+ un(Fm) + un(Fm)(1+α)/(2+α) + un(Qm) +
( t

n

)(1+α)/(2+α)

+
t + 1

n

}

for a sufficiently large constant K2 depending on b, S, α, C1, C2 and δ on the event

∩Mn
m=1(Ω1,m ∩ Ω2,m ∩ Ω3(Bm(s∗n,m)) ∩ Ω4(Bm(s∗n,m)) ∩ Ω5(Bm(s∗n,m)) ∩ Ω6(Bm(s̄n,m)) ∩

Ω7(Bm(s̄n,m))∩Ω8(Bm(s̄n,m))∩Ω9,m∩Ω10,m∩Ω11,m(r∗n,m)∩Ω12,m(r̄n,m)∩Ω13,m(r∗n,m)∩
Ω13,m((1408 + 657

10
)r∗n,m)) ∩ Ω14,m(r̄n,m).

Taking t = t+log(15Mn), the conclusion follows from Lemma IV.8 and the union

bound argument. ¤

Lemma IV.3. Suppose Assumption IV.1(a), (b) hold. Then for any class of indi-

vidualized treatment rules B, In(B) ≤ În(B) on the event Ω3(B) ∩ Ω4(B) ∩ Ω5(B).
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Proof. First note that on the event Ω3(B),

sup
d1,d2∈B

E[f(d1)− f(d2)]

≤ sup
d1,d2∈B

En[f(d1)− f(d2)] + sup
d1,d2∈B

(E − En)[f(d1)− f(d2)]

≤ sup
d1,d2∈B

En[f(d1)− f(d2)] + 2E sup
d1,d2∈B

(E − En)(f(d1)− f(d2))

+

√
sup

d1,d2∈B
E(f(d1)− f(d2))2

2t

n
+

8bSt

3n
.

Thus

In(B) ≤ δ sup
d1,d2∈B

En[f(d1)− f(d2)] + 2(1 + δ)E sup
d1,d2∈B

(E − En)[f(d1)− f(d2)]

+ (1 + δ)

√
sup

d1,d2∈B
E(f(d1)− f(d2))2

2t

n
+

8(1 + δ)bSt

3n
(4.22)

In addition, on the event Ω4(B), we have

E sup
d1,d2∈B

(E − En)[f(d1)− f(d2)]

≤2E sup
d1,d2∈B

1

n

n∑
i=1

ξi[f(Xi, Ai, Yi; d1)− f(Xi, Ai, Yi; d2)]

≤4Eξ sup
d1,d2∈B

1

n

n∑
i=1

ξi[f(Xi, Ai, Ri; d1)− f(Xi, Ai, Ri; d2)] +
4bSt

n
, (4.23)

where the first inequality follows from the symmetrization inequality (6.3).

Furthermore, on the event Ω5(B)

sup
d1,d2∈B

E[f(d1)− f(d2)]
2

≤ sup
d1,d2∈B

En[f(d1)− f(d2)]
2 + sup

d1,d2∈B
(E − En)[f(d1)− f(d2)]

2

≤ sup
d1,d2∈B

En[f(d1)− f(d2)]
2 + 2E sup

d1,d2∈B
(E − En)[f(d1)− f(d2)]

2
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+

√
sup

d1,d2∈B
E[f(d1)− f(d2)]4

2t

n
+

8b2S2t

3n

≤ sup
d1,d2∈B

En[f(d1)− f(d2)]
2 + 2E sup

d1,d2∈B
(E − En)[f(d1)− f(d2)]

2

+
1

2
sup

d1,d2∈B
E[f(d1)− f(d2)]

2 +
11b2S2t

3n
, (4.24)

where the last inequality follows from the fact that E[f(d1)−f(d2)]
4 ≤ b2S2E[f(d1)−

f(d2)]
2 (by assumption IV.1(a) and (b)). By symmetrization inequality (6.3) and

contraction inequality (6.1), we have on the event Ω4(B),

E sup
d1,d2∈B

(E − En)[f(d1)− f(d2)]
2

≤2E sup
d1,d2∈B

1

n

n∑
i=1

ξi[f(Xi, Ai, Yi; d1)− f(Xi, Ai, Yi; d2)]
2

≤4bSE sup
d1,d2∈B

1

n

n∑
i=1

ξi[f(Xi, Ai, Yi; d1)− f(Xi, Ai, Yi; d2)]

≤8bSEξ sup
d1,d2∈B

1

n

n∑
i=1

ξi[f(Xi, Ai, Yi; d1)− f(Xi, Ai, Yi; d2)] +
8b2S2t

n
.

This together with (4.24) implies that

sup
d1,d2∈B

E[f(d1)− f(d2)]
2

≤2 sup
d1,d2∈B

En[f(d1)− f(d2)]
2

+ 32bSEξ sup
d1,d2∈B

1

n

n∑
i=1

ξi[f(Xi, Ai, Yi; d1)− f(Xi, Ai, Yi; d2)] +
118b2S2t

3n
.

By Lemma VI.2, we have on the event Ω4(B) ∩ Ω5(B),

√
sup

d1,d2∈B
E[f(d1)− f(d2)]2

2t

n

≤2

√
sup

d1,d2∈B
En[f(d1)− f(d2)]2

t

n
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+ 2Eξ sup
d1,d2∈B

1

n

n∑
1=i

ξi[f(Xi, Ai, Yi; d1)− f(Xi, Ai, Yi; d2)] +
17bSt

n
. (4.25)

The result follows by substituting (4.23) and (4.25) into (4.22).

Lemma IV.4. Suppose Assumption IV.1(a), (b) holds. Then for any class of indi-

vidualized treatment rules B, Î(B) ≤ Ī(B) on the event Ω6(B) ∩ Ω7(B) ∩ Ω8(B).

Proof. First on the event Ω6(B),

sup
d1,d2∈B

En[f(d1)− f(d2)]

≤ sup
d1,d2∈B

E[f(d1)− f(d2)] + sup
d1,d2∈B

(En − E)[f(d1)− f(d2)]

≤ sup
d1,d2∈B

E[f(d1)− f(d2)] + 2E sup
d1,d2∈B

(En − E)(f(d1)− f(d2))

+

√
sup

d1,d2∈B
E(f(d1)− f(d2))2

2t

n
+

8bSt

3n
. (4.26)

In addition, on the event Ω7(B),

Eξ sup
d1,d2∈B

1

n

n∑
i=1

ξi[f(Xi, Ai, Ri; d1)− f(Xi, Ai, Ri; d2)]

≤2E sup
d1,d2∈B

1

n

n∑
i=1

ξi[f(Xi, Ai, Yi; d1)− f(Xi, Ai, Yi; d2)] +
5bSt

6n

≤2E sup
d1,d2∈B

1

n

n∑
i=1

ξi[f(Xi, Ai, Yi; d1)− f(Xi, Ai, Yi; d2)− E(f(d1)− f(d2))]

+ 2E sup
d1,d2∈B

1

n

n∑
i=1

ξiE[f(d1)− f(d2)] +
5bSt

6n

≤4E sup
d1,d2∈B

|(En − E)(f(d1)− f(d2))]|

+ 2E
∣∣∣ 1
n

n∑
i=1

ξi

∣∣∣ sup
d1,d2∈B

|E[f(d1)− f(d2)]|+ 5bSt

6n
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≤4E sup
d1,d2∈B

|(En − E)(f(d1)− f(d2))]|+ 2

√
1

n
sup

d1,d2∈B
E[f(d1)− f(d2)] +

5bSt

6n
,

(4.27)

where the third inequality follows from the desymmetrization inequality (6.2) and

the last inequality follows from the fact that E
∣∣∑n

i=1 ξi/n
∣∣ ≤ [

E(
∑n

i=1 ξi/n)2
]1/2

=

(1/n)1/2.

By assumption IV.1(a) and (b), |(f(d1) − f(d2))
2| ≤ b2S2. Thus on the event

Ω8(B)

sup
d1,d2∈B

En[f(d1)− f(d2)]
2

≤ sup
d1,d2∈B

E[f(d1)− f(d2)]
2 + sup

d1,d2∈B
(En − E)[f(d1)− f(d2)]

2

≤ sup
d1,d2∈B

E[f(d1)− f(d2)]
2 + 2E sup

d1,d2∈B
(En − E)(f(d1)− f(d2))

2

+

√
sup

d1,d2∈B
E(f(d1)− f(d2))4

2t

n
+

8b2S2t

3n

≤5

2
sup

d1,d2∈B
E[f(d1)− f(d2)]

2 + 2E sup
d1,d2∈B

(En − E)(f(d1)− f(d2))
2 +

3b2S2t

n

≤5

2
sup

d1,d2∈B
E[f(d1)− f(d2)]

2 +
3b2S2t

n

+ 8bSE sup
d1,d2∈B

1

n

n∑
1=i

ξi[f(Xi, Ai, Ri; d1)− f(Xi, Ai, Ri; d2)]

≤5

2
sup

d1,d2∈B
E[f(d1)− f(d2)]

2 +
3b2S2t

n

+ 16bSE sup
d1,d2∈B

|(En − E)[f(d1)− f(d2)]|+ 8bS

√
1

n
sup

d1,d2∈B
E[f(d1)− f(d2)],

where the last two inequalities follows from the desymmetrization-symmetrization

inequality (6.2), (6.3) and the contraction inequality (6.1). This implies that

√
sup

d1,d2∈B
En[f(d1)− f(d2)]2

t

n

93



≤E sup
d1,d2∈B

|(En − E)[f(d1)− f(d2)]|+
√

sup
d1,d2∈B

E[f(d1)− f(d2)]2
5t

2n

+

√
1

n
sup

d1,d2∈B
E[f(d1)− f(d2)] +

(6 +
√

3)bSt

n
(4.28)

The result follows by substituting (4.26), (4.27) and (4.28) into În(B).

Lemma IV.5. Suppose Assumptions IV.1(a), (b) and IV.3(b) hold. For any non-

stochastic class of individualized treatment rules B, let F = {f(d) : d ∈ B}. Then

Īn(B) ≤
[46α + 51αδ + 2δ

2(1 + α)
+ 22(1 + δ)

√
1

n

]
sup
d∈B

E[f(dopt)− f(d)]

768(21 + 22δ)bSun(F)

(log 2)2
+

(21 + 22δ)(2 + α)

1 + α

(768C2un(F)

(log 2)2

)(1+α)/(2+α)

+
(4 + 5δ)(2 + α)

2(1 + α)

(4C2t

n

)(1+α)/(2+α)

+
(52 + 55δ)bSt

n
+

16(21 + 22δ)

n
.

Proof. Define the function class G(B) = {g = f(d1)− f(d2) : d1, d2 ∈ B}. Let G0(B)

be a 4/n-net in L1(Pn) over G(B). The cardinality of G0(B) can be chosen equal to

N(2/n,G(B), L1(Pn)). Then by symmetrization inequality (6.3) and the definition of

Gm,0,

E sup
d1,d2∈B

|(E − En)[f(d1)− f(d2)]| ≤2E sup
g∈G(B)

∣∣∣ 1
n

n∑
i=1

ξig(Xi, Ai, Yi)
∣∣∣

≤2E sup
g∈G0(B)

∣∣∣ 1
n

n∑
i=1

ξig(Xi, Ai, Yi)
∣∣∣ +

8

n
. (4.29)

Next, we can verify that N(2/n,G(B), L1(Pn)) = N(1/n,F , L1(Pn)). Thus

E log[N(2/n,G(B), L1(Pn)) + 1]/n = un(F). Following the same argument as that in

the proof of Lemma IV.1, we have

E sup
g∈G0(B)

∣∣∣ 1
n

n∑
i=1

ξig(Xi, Ai, Yi)
∣∣∣ ≤ 192bSun(F)

(log 2)2
+

4
√

3

log 2

√
un(F) sup

g∈G0(B)

Eg2.
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This together with 4.29 implies that

E sup
d1,d2∈B

|(E − En)[f(d1)− f(d2)]|

≤384bSun(F)

(log 2)2
+

8
√

3

log 2

√
un(F) sup

d1,d2∈B
E[f(d1)− f(d2)]2 +

8

n

≤384bSun(F)

(log 2)2
+

16
√

3

log 2

√
C2un(F) sup

d∈B
E[f(dopt)− f(d)]α/(1+α) +

8

n

≤ α

2(1 + α)
sup
d∈B

E[f(dopt)− f(d)] +
384bSun(F)

(log 2)2

+
2 + α

2(1 + α)

(768C2un(F)

(log 2)2

)(1+α)/(2+α)

+
8

n

Furthermore,

√
sup

d1,d2∈Bm(s)

E(f(d1)− f(d2))2
t

n

≤ α

2(1 + α)
sup

d∈Bm(s)

E[f(dopt)− f(d)] +
2 + α

2(1 + α)

(4C2t

n

)(1+α)/(2+α)

.

The result follows by substituting the above two inequalities into Īn(B).

Lemma IV.6. Suppose assumptions IV.1(b), (c) and IV.2 hold. Then d̂n,m ∈ Bm(s∗n,m) ⊂
B̂m(ŝn,m) ⊂ B̄m(s̄n,m) on the event Ω9,m∩Ω10,m∩Ω11,m(r∗n,m)∩Ω12,m(r̄n,m)∩Ω13,m(r∗n,m)∩
Ω13,m(

(
1408 + 657

10

)
r∗n,m) ∩ Ω14,m(r̄n,m).

Proof. First, by the definition of Bm(s) and s∗n,m, d̂n,m ∈ Bm(s∗n,m) on the event Ω9,m.

Next, suppose r∗n,m ≤ r̂n,m ≤ r̄n,m.

For any d ∈ Bm(s∗n,m), there is a Q ∈ Qm such that d(X) ∈ arg maxa Q(X, a) and

E[(Y −Q)2 − (Y −Q∗
m)2] ≤ s∗n,m. On the event Ω9,m ∩ Ω10,m, we have

En[(Y −Q)2 − (Y − Q̂m)2]

=En[(Y −Q)2 − (Y −Q∗
m)2] + En[(Y −Q∗

m)2 − (Y − Q̂m)2]
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≤2E[(Y −Q)2 − (Y −Q∗
m)2] +

22r∗n,m

b2
+

920b2t

n
+

22r∗n,m

b2
+

876b2t

n

=
132

b2
r∗n,m +

5300b2t

n
≤ ŝn,m.

Thus Bm(s∗n,m) ⊂ B̂m(ŝn,m) if r∗n,m ≤ r̂n,m.

Similarly, for any d ∈ B̂m(ŝn,m), there is a Q ∈ Qm such that d(X) ∈ arg maxa Q(X, a)

and E[(Y −Q)2 − (Y − Q̂m)2] ≤ ŝn,m. On the event Ω9,m ∩ Ω10,m, we have

E[(Y −Q)2 − (Y −Q∗
m)2] ≤2En[(Y −Q)2 − (Y −Q∗

m)2] +
44r∗n,m

b2
+

1752b2t

n

≤2ŝn,m +
44r∗n,m

b2
+

1752b2t

n
≤ s̄n,m.

Thus B̂m(ŝn,m) ⊂ B̄m(s̄n,m) if r̂n,m ≤ r̄n,m.

To show r∗n,m ≤ r̂n,m ≤ r̄n,m, note that if

{Q ∈ Qm : 16b2E(Q−Q∗
m)2 ≤ r∗n,m} ⊂{Q ∈ Qm : b2En(Q− Q̂n,m)2 ≤ 170r∗n,m},

(4.30)

then on the event Ω11,m(r∗n,m),

r∗n,m =ηm(r∗n,m)

≤256b3
(4

3
Eξ sup

Q∈Qm:16b2E(Q−Q∗m)2≤r∗n,m

1

n

n∑
i=1

ξiQ(Xi, Ai) +
6bt

n

)

≤η̂m(r∗n,m).

By Lemmas VI.11 and VI.12, we have r∗n,m ≤ r̂n,m.

Similarly, if

{Q ∈ Qm : b2En(Q− Q̂n,m)2 ≤ 170r̄n,m} ⊂{Q ∈ Qm : b2E(Q−Q∗
m) ≤ 2650r̄n,m},

(4.31)
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then on the event Ω12,m(r̄n,m),

η̂m(r̄n,m) =256b3
(4

3
Eξ sup

Q∈Qm:b2En(Q−Q̂m)2≤170r̄n,m

1

n

n∑
i=1

ξiQ(Xi, Ai) +
6bt

n

)

≤256b3
(4

3
Eξ sup

Q∈Qm:b2E(Q−Q∗m)2≤2650r̄n,m

1

n

n∑
i=1

ξiQ(Xi, Ai) +
6bt

n

)

≤η̄m(r̄n,m) = r̄n,m

By Lemmas VI.11 and VI.12, we have r̂n,m ≤ r̄n,m.

In the following, we show that (4.30) and (4.31) hold on the event Ω9,m∩Ω13,m(r∗n,m)∩
Ω13,m(

(
1408 + 657

10

)
r∗n,m) ∩ Ω14,m(r̄n,m).

Since ηm(r) is a sub-root function (Lemma VI.12) and r∗n,m is the positive fixed

point of ηm(r), r ≥ ηm(r) if and only if r ≥ r∗n,m. Thus, for any r ≥ r∗n,m, on the event

Ω13,m(r), we have

sup
Q∈Qm:16b2E(Q−Q∗m)2≤r

En(Q−Q∗
m)2

≤ sup
Q∈Qm:16b2E(Q−Q∗m)2≤r

E(Q−Q∗
m)2 + sup

Q∈Qm:16b2E(Q−Q∗m)2≤r

(En − E)(Q−Q∗
m)2

≤ r

16b2
+

5

2
E sup

Q∈Qm:16b2E(Q−Q∗m)2≤r

1

n

n∑
i=1

ξi(Q(Xi, Ai)−Q∗
m(Xi, Ai))

2 +

√
rt

2n
+

52b2t

3n

≤ r

16b2
+ 10bE sup

Q∈Qm:16b2E(Q−Q∗m)2≤r

1

n

n∑
i=1

ξiQ(Xi, Ai) +
r

128b2
+

100b2t

3n

≤ 7r

64b2
,

where the third inequality follows from the contraction inequality (6.1) and the as-

sumption that supQ∈Qm
‖Q‖∞ ≤ b.

In addition, following the argument in the proof of lemma IV.9, on the event Ω9,m,
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we have

16b2E(Q̂n,m −Q∗
m)2 ≤32b2

[
E(Y − Q̂n,m)2 − E(Y −Q∗

m)2
]

≤1408r∗n,m +
56064b4t

n
≤

(
1408 +

657

10

)
r∗n,m.

This implies that on the event Ω9,m ∩ Ω13,m(
(
1408 + 657

10

)
r∗n,m), for any r ≥ r∗n,m, we

have

En(Q̂n,m −Q∗
m)2 ≤ 7

64

(
1408 +

657

10

)r∗n,m

b2
≤

(
154 +

4599

640

) r

b2
.

Thus for any r ≥ r∗n,m and Q ∈ Qm such that 16b2E(Q−Q∗
m)2 ≤ r,

En(Q− Q̂n,m)2 ≤
(√

En(Q−Q∗
m)2 +

√
En(Q∗

m − Q̂n,m)2

)2

≤ 170r

b2

Setting r = r∗n,m in the above argument shows that (4.30) holds on the event Ω9,m ∩
Ω13,m(r∗n,m) ∩ Ω13,m(

(
1408 + 657

10

)
r∗n,m).

Next, for any r ≥ r∗n,m and Q ∈ Qm such that b2En(Q − Q̂m)2 ≤ 170r, on the

event Ω9,m ∩ Ω13,m(
(
1408 + 657

10

)
r∗n,m),

En(Q−Q∗
m)2 ≤

(√
En(Q− Q̂m)2 +

√
En(Q̂m −Q∗

m)2

)2

≤ 1325r

2b2
.

Let Lm(r) be the class of functions defined in the event Ω14,m(r). For each l0 ∈
Lm(r), there is a Q0 ∈ Qm, such that l0 = r(Q0−Q∗m)2

max{16b2E(Q0−Q∗m)2,r} . If 16b2E(Q0−Q∗
m)2 ≤

r, then l0 = (Q0 −Q∗
m)2. Otherwise,

l0 = α2
Q0

(Q0 −Q∗
m)2 = [αQ0Q0 + (1− αQ0)Q

∗
m −Q∗

m]2 = (Q1 −Q∗
m)2,

where αQ0 =
√

r/[16b2E(Q0 −Q∗
m)2] and Q1 = αQ0Q0 + (1 − αQ0)Q

∗
m. Since Qm is
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convex, Q1 ∈ Qm. It is also easy to verify that 16b2E(Q1 −Q∗
m)2 ≤ r.

Thus

E sup
l∈Lm(r)

1

n

n∑
i=1

ξil(Xi, Ai, Yi)

≤E sup
Q∈Qm:16b2E(Q−Q∗m)2≤r

1

n

n∑
i=1

ξi[Q(Xi, Ai, Yi)−Q∗
m(Xi, Ai, Yi)]

2

≤4bE sup
Q∈Qm:16b2E(Q−Q∗m)2≤r

1

n

n∑
i=1

ξiQ(Xi, Ai, Yi),

where the last inequality follows from the contraction inequality (6.1) and the sym-

metry of the Rademacher random variables.

Hence, for any r ≥ r∗n,m, on the event Ω14,m(r),

(E − En)
r(Q−Q∗

m)2

max{16b2E(Q−Q∗
m)2, r}

≤10bE sup
Q∈Qm:16b2E(Q−Q∗m)2≤r

1

n

n∑
i=1

ξiQ(Xi, Ai, Yi) +

√
rt

2n
+

52b2t

3n

≤ r

128b2
+

5ηm(r)

128b2

≤ 3r

64b2
.

For any Q ∈ Qm such that b2En(Q− Q̂m)2 ≤ 170r, if 16b2E(Q−Q∗
m)2 > r, the above

inequality implies that

E(Q−Q∗
m)2 ≤ 4En(Q−Q∗

m)2 ≤ 2650r

b2
.

Since ηm(r) ≤ η̄m(r) for any r > 0, r̄n,m ≥ r∗n,m. Setting r = r̄n,m in the above

argument shows that (4.31) holds on the event Ω9,m ∩ Ω13,m(
(
1408 + 657

10

)
r∗n,m) ∩

Ω14,m(r̄n,m).

This completes the proof.
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Lemma IV.7. Assume assumptions IV.1(c) and IV.2 hold. Then there exists a

positive constant K4 depending on b, such that

s̄n,m ≤ K4

(
un(Qm) +

t + 1

n

)
.

Proof. Let Qm,0 be a 2/n-net in L1(Pn) over Qm. The cardinality of Qm,0 can be

chosen equal to N(1/n,Qm, L1(Pn)). Then

E sup
Q∈Qm:b2E(Q−Q∗m)2≤2650r

1

n

n∑
i=1

ξiQ(Xi, Ai)

=E sup
Q∈Qm:b2E(Q−Q∗m)2≤2650r

1

n

n∑
i=1

ξi

[
Q(Xi, Ai)−Q∗

m(Xi, Ai)
]

≤E sup
Q∈Qm,0:b2E(Q−Q∗m)2≤2650r

∣∣∣ 1
n

n∑
i=1

ξi

[
Q(Xi, Ai)−Q∗

m(Xi, Ai)
]∣∣∣ +

2

n
.

Following the same argument as that in the proof of Lemma IV.1, we can show that

E sup
Q∈Qm:b2E(Q−Q∗m)2≤2650r

1

n

n∑
i=1

ξiQ(Xi, Ai) ≤ 200
√

318un(Qm)r

(log 2)b
+

384bun(Qm)

(log 2)2
+

2

n
.

Thus,

r̄n,m = η̄m(r̄n,m) ≤512

3

(500b2
√

318un(Qm)r̄n,m

log 2
+

960b4un(Qm)

(log 2)2
+

5b3

n
+

41b4t

3n

)
.

The result follows by solving the above inequality for r̄n,m and from the definition of

s̄n,m.

Lemma IV.8. Suppose Assumptions IV.1 and IV.2 hold. Then for any nonstochastic

class of individualized treatment rules B and nonstochastic positive quantity r,

P(Ωj(B)) ≥ 1− exp(−t) for j = 3, . . . , 8, (4.32)

P(Ω9,m) ≥ 1− exp(−t), P(Ω10,m) ≥ 1− exp(−t), (4.33)
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and P(Ωj,m(r)) ≥ 1− exp(−t) for j = 11, . . . , 14. (4.34)

Proof. (4.32) and (4.34) follow directly from Lemmas VI.9, VI.10 and the symmetriza-

tion inequality (6.3).

Now we prove (4.33). First by Lemma IV.9,

E[(Y −Q)2 − (Y −Q∗
m)2]2 ≤ 32b2E[(Y −Q)2 − (Y −Q∗

m)2].

In addition note that |(Y − Q1) + (Y − Q2)| ≤ 4b for any Q1, Q2 ∈ Qm. By lemma

IV.9 and lemma VI.14,

32b2E sup
Q∈Qm:32b2E[(Y−Q)2−(Y−Q∗m)2]≤r

1

n

n∑
i=1

ξi

[
(Yi −Q(Xi, Ai))

2 − (Yi −Q∗
m(Xi, Ai))

2
]

=32b2E sup
Q∈Qm:32b2E[(Y−Q)2−(Y−Q∗m)2]≤r

1

n

n∑
i=1

ξi(Yi −Q(Xi, Ai))
2

≤32b2E sup
Q∈Qm:16b2E(Q−Q∗m)2≤r

1

n

n∑
i=1

ξi(Yi −Q(Xi, Ai))
2

≤128b3E sup
Q∈Qm:16b2E(Q−Q∗m)2≤r

1

n

n∑
i=1

ξiQ(Xi, Ai)

≤ηm(r).

Since ηm(r) is a subroot function, (4.33) follows from Lemma VI.13.

Lemma IV.9. Suppose Assumptions IV.1(b), (c) and IV.2 hold. Then

E[(Y −Q)2 − (Y −Q∗
m)2]2 ≤ 32b2E[(Y −Q)2 − (Y −Q∗

m)2] (4.35)

for any Q ∈ Qm.

(4.35) is also known as the bernstein condition. Similar to (4.11), this condition

is the key to show that L(Q̂n,m)− L(Q∗
m) converges to 0 at rate faster than 1/

√
n.
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Proof. On one hand, by assumption IV.1(b) and (c), we have

E[(Y −Q)2 − (Y −Q∗
m)2]2 = E[(2Y −Q−Q∗

m)2(Q−Q∗
m)2] ≤ 16b2E(Q−Q∗

m)2.

On the other hand, assumption IV.2 implies that (Q+Q∗
m)/2 ∈ Qm for any Q ∈ Qm.

Thus

E(Y −Q)2 + E(Y −Q∗
m)2 =2E

(
Y − Q + Q∗

m

2

)2

+
1

2
E(Q−Q∗

m)2

≥2E(Y −Q∗
m)2 +

1

2
E(Q−Q∗

m)2,

which implies E(Q−Q∗
m)2 ≤ 2E[(Y −Q)2−(Y −Q∗

m)2]. This completes the proof.
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CHAPTER V

Future Work

This dissertation investigates l1 penalization and model selection for decision mak-

ing. In this chapter we briefly discuss several problems that worth further exploration

in future.

5.1 Extension to multi-stage decision

So far we have investigated a one stage decision problem. However, it is evident

that some diseases may require time-varying treatments. For example, individuals

with a chronic disease often experience a waxing and waning course of illness. In

these settings the goal is to construct a sequence of individualized treatment rules

that tailor the type and dosage of treatment through time according to an individual’s

changing status. There is an abundance of statistical literature in this area (Thall

et al., 2000, 2002; Murphy, 2003, 2005; Robins, 2004; Lunceford et al., 2002; Wahed

and Tsiatis, 2006; van de Laan et al., 2005). In the following we briefly introduce the

multistage decision problem.

Consider data from a sequentially randomized trial. The longitudinal data on

each subject is of the form {X1, A1, . . . , XT , AT , Y }, where T is the number of stages,

Xt ∈ Xt includes patient’s variables observed prior to the treatment at stage t, At ∈ At
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is the treatment at stage t for t = 1, . . . , T , and Y is a one-dimensional primary

outcome. Denote X̄t = (X1, . . . , Xt) and Āt = (A1, . . . , At) for t = 1, . . . , T . At

stage t, an individualized treatment rule dt will take patient’s history prior to stage

t treatment (i.e. (X̄t, Āt−1)) as input and output a treatment At. The sequence of

rules, d = (d1, . . . , dT ), is called a dynamic treatment regime (Murphy, 2003).

We still use E to denote the expectations with respect to the distribution of

(X1, A1, . . . , XT , AT , Y ), where the stage t treatment is assigned according to ran-

domization probability pt(·|X̄t, Āt−1) for t = 1, . . . , T . In addition, we use Ed to

denote the distribution of (X1, A1, . . . , XT , AT , Y ) where the sequence of treatments

is assigned according to rule d. The Value of d, V (d), is the expected primary out-

come that would have been observed if the dynamic treatment regime d were used to

recommend treatment sequence for the entire study population. It is easy to verify

that

V (d) = Ed(Y ) = E

[
T∏

t=1

1At=dt(X̄t,Āt−1)

pt(At|X̄t, Āt−1)
Y

]
.

Our goal is to construct a dynamic treatment regime that maximizes the Value. Such

a regime is called an optimal dynamic treatment regime and is denoted by dopt.

Define the conditional mean functions

Qopt
T (X̄T , ĀT ) =E(Y |X̄T , ĀT ),

Qopt
t (X̄t, Āt) =E

[
max
at+1

Qopt
t+1(X̄t+1, Āt, at+1)

∣∣X̄t, Āt

]
for t = T − 1, . . . , 1.

Using backwards induction (Murphy, 2003), an optimal dynamic treatment regime

satisfies

dopt
t (X̄t, Āt−1) ∈ arg max

at

Qopt
t (X̄t, Āt)

for t = 1, . . . , T .

Based on the above argument, an intuitive approach is to estimate the conditional
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mean functions backwards (the stage t dependent variable is maxat+1 Q̂n,t+1(X̄t+1, Āt+1)

where Q̂n,t+1 is the estimator of Qopt
t+1), and then estimate the decision rules by max-

imizing the estimated Qopt
t ’s. This approach is known as Q-learning and has been

extensively studied in computer science literature (Watkins, 1989; Sutton and Barto,

1998; Ormoneit and Sen, 2002; Lagoudakis and Parr, 2003; Ernst et al., 2005; Murphy,

2005).

To justify the Q-learning approach, an inequality similar to (2.1), which measures

the closeness between the excess Value and the associated excess prediction error,

has been provided in Murphy (2005). More precisely, suppose there is some S ≥
1 such that pt(at|x̄t, āt−1) ≥ S−1 for all (x̄t, āt) pairs for t = 1, . . . , T . For any

dynamic treatment regime d = (d1, . . . , dT ) and any functions {Q1, . . . , QT} such

that dt(X̄t, Āt−1) ∈ arg maxat Qt(X̄t, Āt−1, at), Murphy (2005) showed that

V (dopt)− V (d) ≤
T∑

t=1

2St/2

√
E

(
max
at+1

Qopt
t+1 −Qt

)2 − E
(
max
at+1

Qopt
t+1 −Qopt

t

)2
,

where Qopt
T+1 ≡ Y .

Following the same arguments as those in Chapter II, we can further improve the

upper bound under a margin type condition.

Theorem V.1. Suppose there is some S ≥ 1 such that pt(at|x̄t, āt−1) ≥ S−1 for all

(x̄t, āt) pairs for t = 1, . . . , T . Assume there are some constants C > 0 and α ≥ 0

such that for any positive ε satisfying Cεα < 1,

P
(
∃āt−1 ∈ Āt−1 s.t.

max
at

Qopt
t (X̄t, āt−1, at)− max

at /∈arg maxat Qopt
t (X̄t,āt−1,at)

Qopt
t (X̄t, āt−1, at) ≤ ε

)
≤ Cεα

for t = 1, . . . , T . Then for any dynamic treatment regime d = (d1, . . . , dT ) and any
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functions {Q1, . . . , QT} such that dt(X̄t, Āt−1) ∈ arg maxat Qt(X̄t, Āt−1, at),

V (dopt)− V (d) ≤
T∑

t=1

C1,t

[
E

(
max
at+1

Qopt
t+1 −Qt

)2 − E
(
max
at+1

Qopt
t+1 −Qopt

t

)2
](1+α)/(2+α)

,

where C1,t = [22+3αS(1+α)tC]1/(2+α) and Qopt
T+1 ≡ Y .

The proof is similar to that of Theorem II.1 and thus is omitted.

To extend the l1-PLS based method described in Chapter III to the multi-stage

setting, we can approximate each conditional mean function Qopt
t by a linear model,

and then estimate Qopt
t using least squares with an l1 penalty. We can obtain a high

probability bound for the excess prediction error at the last stage using the same

techniques as that in the one-stage decision problem. However, the performance of

the l1-PLS at stages prior to the last stage is not clear and worth further investigation.

Now we consider the extension of the step-wise model selection as described in

Chapter IV to the multi-stage setting. To develop a penalty with margin adaptive

rate of convergence, we need to show that the difference between the prediction error

of the empirical quadratic risk minimizer and the prediction error of the quadratic

risk minimizer is upper bounded by a quantity which converges to zero at the desired

rate of convergence at each stage. However, since the dependent variable at each stage

prior to the last is estimated from the whole training set, existing methods can not

be directly applied to construct such an upper bound. An interesting future research

direction is to develop new techniques so as to obtain a fast rate of convergence of

the prediction error in this setting.

5.2 Efficient estimation

In the previous chapters, we considered the use of model selection and penaliza-

tion techniques to improve the quality of the estimated individualized treatment rule
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(dynamic treatment regime). In fact, those methods could be further improved by

considering efficient estimation. In this section, we will discuss issues about improving

estimation efficiency. We will illustrate this problem in the multi-stage setting.

5.2.1 An efficient estimator of Value

For any dynamic treatment regime d = (d1, . . . , dT ), define the weights

Wt(X̄t, Āt;d) =
t∏

s=1

1As=ds(X̄s,Ās−1)

ps(As|X̄s, Ās−1)
for t = 1, . . . , T .

It is easy to see that En[WT (X̄T , ĀT ;d)Y ] is an unbiased estimator of V (d). However,

this estimator is not efficient. To achieve the goal of estimating the optimal dynamic

treatment regime, we wish to use a more efficient estimator of V (d) in the future.

A doubly robust estimator of V (d) has been provided in Murphy et al. (2001) by

solving the following estimating equation for µ.

0 = En

[
WT

(
Y − µ

)
−

T∑
t=1

Wt(X̄t, Āt)
(
zt(X̄t, Āt)− µ

)

+
T∑

t=1

∑
at∈At

pt(at|X̄t, Āt−1)Wt(X̄t, Āt−1, at)
(
zt(X̄t, Āt−1, at)− µ

) ]
(5.1)

where zT (X̄T , ĀT ) = E[Y |X̄T , ĀT ] and

zt(X̄t, Āt) = E
[ ∑

at+1∈At+1
1at+1=dt+1(X̄t+1,Āt)zt+1(X̄t+1, Āt, at+1)|X̄t, Āt

]
for t = T −

1, . . . , 1.

Note that zt’s are unknown functions and need to estimated. One can parameterize

{zt : t = 1, . . . , T} with vector parameter γ and set

En

[(
Y − zT (X̄T , ĀT ; γ)

)∂zT (X̄T , ĀT ; γ)

∂γ
+

T−1∑
t=1

∂zt(X̄t, Āt; γ)

∂γ
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×
( ∑

at+1∈At+1

1at+1=dt+1(X̄t+1,Āt)zt+1(X̄t+1, Āt, at+1; γ)− zt(X̄t, Āt; γ)
)]

to 0 to get γ̂.

The use of (5.1) leads to a consistent estimator of V (d) even if models for zt’s are

incorrect. This property holds because the randomization probabilities p1, . . . , pT are

known. In addition, the resulting estimator is also efficient if zt’s are parameterized

correctly.

5.2.2 Efficient regression

In this dissertation, we estimated the entire conditional mean functions Qopt
t ’s.

however, it turns out that only part of each condition mean function is relevant to

the construction of decision rules. To see this point, define the time-t advantage

υt(X̄t, Āt) = Qopt
t (X̄t, Āt)−max

at

Qopt
t (X̄t, Āt−1, at).

Then

Qopt
t (X̄t, Āt) = υt(X̄t, Āt) + max

at

Qopt
t (X̄t, Āt−1, at),

where only the first term υt contains At. Thus we only need to model the advantage

functions υt’s instead of modeling Qopt
t ’s.

This approach was first proposed in Murphy (2003), where an estimation proce-

dure based on the least square characterization of the advantage functions is provided.

Robins (2004) gave a refined estimation equation to gain efficiency. This is the so-

called efficient A-learning in Almirall et al. (August, 2005). In the following, we will

describe the efficient estimation procedure.

We parameterize {υt, t = 1, . . . , T} with vector parameter θ and denote the

parameterization by {υt(X̄t, Āt; θ), t = 1, . . . , T}. Define Ht(X̄T , ĀT , Y ) = Y −
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∑T
s=t υs(X̄t, Āt) for t = 1, . . . , T . Assume that

V ar(Ht|X̄t, Āt) = V ar(Ht|X̄t, Āt−1) denoted as σt(X̄t, Āt−1)

for t = 1, . . . , T .

A doubly robust estimator of θ can be found by solving the following estimating

equations

0 = En

( T∑
t=1

[
Ht(θ)− E(Ht(θ)|X̄t, Āt−1)

]
σt(X̄t, Āt−1)

−1

× [
E(∇θHt(θ)|X̄t, Āt)− E(∇θHt(θ)|X̄t, Āt−1)

] )
.

Again, this estimator is efficient if E(Ht(θ)|X̄t, Āt−1)’s, E(∇θHt(θ)|X̄t, Āt)’s and

σt(X̄t, Āt−1)’s are modeled correctly.
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CHAPTER VI

Tools

This chapter contains a collection of results that is needed in the proofs in Chapters

III and IV.

We start with several basic inequalities.

Lemma VI.1. (Weighted AM-GM inequality)

For any x, y > 0 and p, q ≥ 0 such that p + q = 1,

xpyq ≤ px + qy.

Lemma VI.2. For any x, y ≥ 0 and β ∈ [1/2, 1],

21−2β(x + y)β ≤ xβ + yβ ≤ 21−β(x + y)β

and for any α > 0,

2
√

xy ≤ αx +
y

α
.

Lemma VI.3. (Cauchy-Schwarz inequality)

For random variables X and Y ,

[E(XY )]2 ≤ E(X2)E(Y 2).
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Let O ∈ O be a random variable distributed according to P (O = (X,A, Y ) in

the main body of the dissertation). Let O1, . . . , On be independent copies of O and

Pn be the empirical measure supported on (O1, . . . , On). We use E and En to denote

the expectation with respect to P and Pn, respectively.

Let (F , ‖ · ‖) be a subset of a normed space of real-valued functions on O. In the

following we will always assume suprema of empirical processes (i.e. quantities of the

form supf∈F(En −E)f) are measurable. In other words, we assume that the class F
and the distribution P satisfy appropriate (mild) conditions for measurability of this

supremum (see Pollard (1984) and Massart (2003) for the conditions).

Definition VI.1. (Covering number; van der Vaart and Wellner 1996)

The ε-covering number of (F , ‖ · ‖), denoted by N(ε,F , ‖ · ‖), is the minimal

number of balls {f : ‖f − f0‖ < ε} of radius ε needed to cover the set F . The centers

of the balls need not belong to F , but they should have finite norms.

Let C a collection of subsets of O. For any collection of points {o1, ..., on} in a set

O, we say that C picks out a certain subset of {o1, ..., on} if this subset can be formed

as C ∩ {o1, ..., on} for a C ∈ C. The collection C is said to shatter {o1, ..., on} if all of

the 2n possible subsets of {o1, ..., on} can be picked out in this manner. The VC-index

of the class C, vc(C), is the smallest n for which no set of size n is shattered by C. C
is called a VC-class if its index is finite.

The subgraph of a function f : O → R is the subset of O × R given by

{(o, t) : t < f(o)}.

A collection F of measurable real-valued functions on the sample space O is called

a VC-subgraph class or VC-class, if the collection of all subgraphs of functions in F
forms a VC-class of sets in O × R. We use vc(F) to denote the VC-index of the set

of subgraphs of functions in F .
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A connection between covering numbers and VC-index is given in the following

lemma.

Lemma VI.4. (Haussler, 1992)

Let F be a VC-class of functions on O with ‖f‖∞ ≤ b for all f ∈ F for some

b > 0. Then for any ε > 0,

N(ε,F , L1(Pn)) ≤ 2
(2eb

ε

)2(vc(F)−1)

.

Lemma VI.5. (Preservation properties of VC-class; Kosorok 2008)

Let F and G be VC classes of functions on O with VC-indices vc(F) and vc(G),

respectively. Let g : O → R, φ : R→ R be fixed functions. Then

(a) F ∧G ≡ {f ∧ g : f ∈ F , g ∈ G} is a VC class with index ≤ vc(F) + vc(G)− 1;

(b) F ∨ G is a VC class with index ≤ vc(F) + vc(G)− 1;

(c) {F > 0} ≡ {{f > 0} : f ∈ F}
is a VC-class of sets with index vc(F);

(d) −F is a VC class with index vc(F);

(e) F + g ≡ {f + g : f ∈ F} is a VC class with index vc(F);

(f) F · g ≡ {f · g : f ∈ F} is a VC class with index ≤ 2vc(F)− 1;

(g) φ ◦ F ≡ {φ ◦ f : f ∈ F} is a VC class with index ≤ vc(F) for monotone φ.

Definition VI.2. (Orlicz norm; van der Vaart and Wellner 1996)

Let ψ be a nondecreasing, convex function with ψ(0) = 0. Then the Orlicz norm

‖O‖ψ is defined as

‖O‖ψ = inf{c > 0 : Eψ(|O|/c) ≤ 1}.

Let ψp(o) = exp(op)− 1 for p ≥ 1. Then

E|O|p ≤ p!‖O‖ψ1 ,
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‖O‖ψp ≤ ‖O‖ψq(log 2)1/q−1/p for p ≤ q.

Lemma VI.6. (Maximal inequality; van der Vaart and Wellner 1996)

For any random variables O1, . . . , Om, there exists a constant K depending only

on ψp such that

|| max
1≤i≤m

Oi||ψp ≤ Kψ−1
p (m) max

i
||Xi||ψp .

Lemma VI.7. (Hoeffding’s inequality; van der Vaart and Wellner 1996)

Let a1, . . . , an be constants and ξ1, . . . , ξn be independent Rademacher random vari-

ables. Then

P

(∣∣∣∣∣
n∑

i=1

ξiai

∣∣∣∣∣ > t

)
≤ 2 exp

(
−1

2
t2/‖a‖2

)
,

for the Euclidean norm ‖ · ‖ for any t > 0. Consequently, ‖∑n
i=1 ξiai‖ψ2 ≤

√
6‖a‖.

Lemma VI.8. (Bernstein’s inequalities; Massart 2003)

Let O1, . . . , On be independent and square integrable random variables such that

E[Oi] = 0 for all i = 1, . . . , n.

(a) Assume there exist some positive numbers b and ν such that ζi ≤ b almost

surely for all i = 1, . . . , n and
∑n

i=1 EO2
i ≤ ν. Then for any t > 0,

P
( n∑

i=1

Oi > t
)
≤ exp

(
− t2

2(ν + bt/3)

)
.

(b) Assume there exist some positive numbers b and ν such that
∑n

i=1 E[(Ol
i)+] ≤

l!
2
νbl−2 for all integers l ≥ 2. Then for any t > 0,

P
( n∑

i=1

Oi > t
)
≤ exp

(
− t2

2(ν + bt)

)
.

Lemma VI.9. (Concentration inequality; Bartlett et al. 2005)

Consider n independent random variables O1, . . . , On with values in some mea-

surable space O. Let F be a class of real valued functions on O. Assume that all
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functions f in F satisfy Ef = 0 and ‖f‖∞ ≤ b for some b > 0. Let

Z = sup
f∈F

∣∣∣
n∑

i=1

f(Oi)
∣∣∣ or Z = sup

f∈F

n∑
i=1

f(Oi).

Let σ be a positive constant such that σ2 ≥ supf∈F
[∑n

i=1 V ar(f(Oi))
]
. Then for any

t ≥ 0, with probability at least 1− exp(−t),

Z ≤ EZ +
√

2t(nσ2 + 2bEZ) +
bt

3

Lemma VI.10. (Bartlett et al. 2005)

Let F be a class of real-valued functions on O such that supf∈F ‖f‖∞ ≤ b for a

positive constant b. Let

Z = Eξ sup
f∈F

n∑
i=1

ξif(Oi).

Then for any t > 0,

P
(
Z ≥ EZ +

√
2btEZ +

bt

3

)
≤ exp(−t)

and

P
(
Z ≤ EZ −

√
2btEZ

) ≤ exp(−t).

Definition VI.3. (Sub-root function; Bartlett et al. 2005)

A function η : [0,∞) → [0,∞) is sub-root if it is nonnegative, nondecreasing and

if r → η(r)/
√

r is nonincreasing for r > 0.

Lemma VI.11. (Bartlett et al. 2005)

If η : [0,∞) → [0,∞) is a nontrivial sub-root function (i.e. η is not the constant

zero function), then it is continuous on [0,∞) and the equation η(r) = r has a unique

positive solution. Moreover, if we denote the solution by r∗, then for all r > 0,
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r ≥ η(r) if and only if r ≥ r∗.

Definition VI.4. (Star-shape; Bartlett et al. 2005)

A class of functions F is star-shaped around f0 if f0 +α(f −f0) ∈ F for all f ∈ F
and α ∈ [0, 1].

Lemma VI.12. (Bartlett et al. 2005)

If the class F is star-shaped around f̂ (which may depend on the data), and T :

F → R+ is a ( possibly random) function that satisfies T (αf) ≤ α2T (f) for any

f ∈ F and any α ∈ [0, 1], then the (random) function η defined for r ≥ 0 by r

η(r) = Eξ sup
f∈F :T (f−f̂)≤r

1

n

n∑
i=1

ξif(Oi)

is sub-root and r → Eη(r) is also sub-root.

Lemma VI.13. (Bartlett et al. 2005)

Let F be a class of functions with ranges in [b1, b2] and assume that there are

some functional T : F → R+ some constant B such that for every f ∈ F , V ar[f ] ≤
T (f) ≤ BEf . Assume there is a sub-root function η such that

η(r) ≥ BE sup
f∈F :T (f)≤r

1

n

n∑
i=1

ξif(Oi)

for any r > r∗, where r∗ is the fixed point of η. Then, with c1 = 704 and c2 = 26, for

any K > 1 and every t > 0, with probability at least 1− exp(−t),

∀f ∈ F , Ef ≤ K

K − 1
Enf +

c1K

B
r∗ +

(11(b2 − b1) + c2BK)t

n
.

Also, with probability at least 1− exp(−t),

∀f ∈ F , Enf ≤ K + 1

K
Ef +

c1K

B
r∗ +

(11(b2 − b1) + c2BK)t

n
.
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Lemma VI.14. (Contraction inequality; Bartlett et al. 2005)

Let l(·) be a contraction, that is, |l(x)− l(y)| ≤ |x− y|. Then, for every class F ,

Eξ sup
f∈F

1

n

n∑
i=1

ξil ◦ f(Oi) ≤ Eξ sup
f∈F

1

n

n∑
i=1

ξif(Oi). (6.1)

Lemma VI.15. (Desymmetrization - Symmetrization inequality; Koltchin-

skii 2006)

For any class of functions F ,

1

2
E sup

f∈F

1

n

n∑
i=1

ξi[f(Oi)− Ef(Oi)] ≤ max
(
E sup

f∈F
(E − En)f,E sup

f∈F
(En − E)f

)
(6.2)

max
(
E sup

f∈F
(E − En)f,E sup

f∈F
(En − E)f

)
≤ 2E sup

f∈F

1

n

n∑
i=1

ξif(Oi). (6.3)

The lower bound is often referred to as a desymmetrization inequality and the

upper bound as a symmetrization inequality.

Lemma VI.16. Suppose ‖f‖∞ ≤ b for all f ∈ F . Then

E
[
sup
f∈F

Enf 2(O)
]
≤ sup

f∈F
Ef 2 + 4bE

[
sup
f∈F

1

n

n∑
i=1

ξif(Oi)
]

Proof. By the symmetrization inequality (6.3), we have

E
[
sup
f∈F

Enf 2(O)
]
≤ sup

f∈F
Ef 2(O) + E

[
sup
f∈F

(En − E)f 2(O)
]

≤ sup
f∈F

Ef 2(O) + 2E
[
sup
f∈F

1

n

n∑
i=1

ξif
2(Oi)

]

≤ sup
f∈F

Ef 2(O) + 4bE
[
sup
f∈F

1

n

n∑
i=1

ξif(Oi)
]
,

where the second inequality follows from the contraction inequality (6.1).
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