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ABSTRACT 
 
 

Th17 cells are highly pathogenic CD4+ T cells that promote many immune-

mediated diseases, including rheumatoid arthritis, and a thorough understanding of the 

regulation and maturation of the Th17 response may prove therapeutically useful.  We 

therefore chose to characterize the mechanisms of Th17 suppression by the Th2 cytokine 

IL-4.   

After one week of in vitro differentiation or a two week immunization in vivo, IL-

4 rapidly inhibits expression of several Th17-family genes, including IL-17A, IL-17F and 

RORγt, and this suppression overcomes stimulation by TGFβ, IL-6 and IL-23.  However, 

suppression by IL-4 is unstable and does not induce Th2 conversion.  The mechanism of 

suppression downstream of the IL-4R is dependent on STAT6 but independent of 

STAT5, IRS-2 and GATA-3.  At the chromatin level, IL-4 up-regulates markers of active 

transcription at the Il17a locus, including acetylation of H3 and H4 and binding of PolII, 

despite the fact that IL-17A message levels are down-regulated.  However, IL-4 also 

displaces the transcriptional inducer STAT3 from the Il17a promoter, suggesting that a 

transcriptional repressor may take its place. 

We found that Th17 cells undergo a process of maturation, whereby in vitro-

generated Th17 cells stimulated for three weeks or in vivo-generated Th17 cells re-

stimulated for three days become resistant to suppression by IL-4.  This transition 

depends on a combination of TCR and cytokine stimuli and results in desensitization of 

the IL-4R.  Specifically, mature Th17 cells lose the ability to phosphorylate STAT6 in 

response to IL-4, despite normal expression of the IL-4R.  The suppression of IL-4R 

signaling did not depend on SOCS5, but may be mediated by SOCS1.  

 x



To explore the regulation of IL-17 by IL-4 and IFNγ in CIA, we treated mice with 

cytokine-neutralizing antibodies in vivo during the initiation phase of disease.  The results 

showed that IFNγ plays a protective role in CIA via down-regulation of IL-17.  IL-4, 

once released from suppression by IFNγ, also plays a protective role, particularly in bone 

and cartilage erosion.  However, the protective effect of IL-4 is not mediated by 

suppression of IL-17.  Interestingly, when both IFNγ and IL-4 are neutralized, mice 

develop a severe arthritis that is independent of IL-17. 

 

 xi



Chapter 1 

Introduction 

 CD4+ T helper cells are the arbiters of the immune system and thus have the 

power to mediate both protective and pathogenic immune responses.  Two decades ago 

Mossman and Coffman [1] proposed that CD4+ T cells differentiate into two subsets with 

reciprocal functions and patterns of cytokine secretion, termed T-helper 1 (Th1) and T-

helper 2 (Th2).  Th1 cells are characterized by production of interferon-γ (IFNγ) and 

induce cell-mediated immunity against intracellular pathogens, while Th2 cells produce 

interleukin-4 (IL-4) and stimulate humoral immunity against parasitic helminths.  This 

paradigm was maintained until 2005, when a third T-cell subset, known as T-helper 17 

(Th17), was identified [2, 3].  Th17 cells are characterized by production of interleukin-

17 (IL-17) and may have evolved for host protection against microbes that Th1 and Th2 

immunity are not well-suited for, such as extracellular bacteria and some fungi.   

While Th17 cells were only recently recognized as a unique Th-cell subset, IL-17 

has been known for much longer.  Human IL-17 was originally cloned in 1995, and early 

reports demonstrated multiple inflammatory and hematopoietic effects on epithelial, 

endothelial and fibroblastic cells [4-6].  These initial studies set the stage for much of 

what is now known about IL-17.  The over-riding theme is that IL-17 mediates powerful 

effects on stromal cells, resulting in production of inflammatory cytokines and 

recruitment of leukocytes, especially neutrophils, thus creating a link between innate and 

adaptive immunity.  Although Th17 cells play an important role in host defense, they 

have received considerable attention in recent years primarily because they appear to be 
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the principle mediators of pathogenesis in several autoimmune and inflammatory 

disorders, including rheumatoid arthritis (RA), psoriasis, multiple sclerosis, asthma and 

inflammatory bowel disease.  Thus a thorough understanding of the development and 

regulation of Th17 cells holds important prospects for the future of targeted clinical 

therapeutics.   

Th17 differentiation 

 When a naïve T cell is activated, the local cytokine milieu plays an important role 

in determining which effector lineage that cell will assume by inducing lineage-specific 

transcription factors.  Naïve CD4+ T cells stimulated through the T cell receptor (TCR) in 

the presence of interleukin-12 (IL-12) become Th1 cells and express the transcription 

factor T-bet, while those stimulated in the presence of IL-4 become Th2 cells and express 

the transcription factor GATA-3 (reviewed in [7]).  Initial studies in mice suggested that 

interleukin-23 (IL-23), a heterodimeric cytokine that shares a subunit with IL-12, induced 

IL-17 expression [2, 3, 8, 9].  However, subsequent studies demonstrated that the IL-23 

receptor (IL-23R) is only expressed on T cells after activation, and therefore IL-23 can 

up-regulate IL-17 in memory T cells but cannot act on naïve T cells to induce Th17 

differentiation [8].  Instead, three groups nearly simultaneously discovered that the key to 

Th17 differentiation in the mouse is the combination of transforming growth factor-β 

(TGFβ) and interleukin-6 (IL-6) [10-12].  In addition, tumor necrosis factor-α (TNFα) 

and interleukin-1β (IL-1β) can further enhance mouse Th17 differentiation, but only in 

the presence of TGFβ and IL-6 [12-14].  This discovery was a surprise because TGFβ is 
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well known to inhibit most T-cell responses and to induce differentiation of forkhead box 

protein 3 (FoxP3)-expressing regulatory T cells (Tregs) (reviewed in [15]).   

   One of the ways in which the anti-inflammatory role of TGFβ supports Th17 

development is through inhibition of IFNγ and IL-4, both of which inhibit Th17 

development.  However, TGFβ must also have more direct roles in Th17 differentiation 

because it is required even in the absence of IFNγ and IL-4 [10-12].  TGFβ synergizes 

with IL-6 to induce expression of the transcription factor retinoid-related orphan 

receptor-γt (RORγt), a key regulator of Th17 differentiation.  In mice, RORγt is both 

necessary and sufficient for IL-17 expression in vitro and in vivo [16].  In humans, 

RORγt is induced by the same cytokines that induce IL-17 and is only expressed by IL-

17-producing clones [17-20].  Thus, just as T-bet controls the Th1 lineage and GATA-3 

controls the Th2 lineage, RORγt appears to control the Th17 lineage.  Still, there are a 

few unanswered questions.  RORγt is an orphan nuclear receptor with a ligand-binding 

pocket, suggesting that its activity may be regulated by an unknown ligand.  Also, RORγt 

has not yet been shown to directly bind to the Il17a promoter, although a potential 

binding site was identified [16].  Despite these issues, inhibition of RORγt may be 

therapeutically useful, and the ligand-binding pocket is an ideal pharmacological target.  

Similarly, evidence suggests that a related nuclear receptor, RORα, plays a role in Th17 

development.  RORα is induced by TGFβ and IL-6 and synergizes with RORγt in the 

induction of IL-17 [21]. 

 In addition to RORγt and RORα, Th17 development in mice depends on the 

transcription factor signal transducer and activator of transcription 3 (STAT3), which is 
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activated by IL-6 and IL-23.  STAT3 has multiple roles in Th17 development: in 

activated Th17 cells stimulated with IL-23, it binds directly to the Il17a promoter and 

induces IL-17 expression, and in naïve T cells stimulated with TGFβ and IL-6, it is 

required for induction of RORγt expression, although it is not yet known if STAT3 binds 

directly to the Rorc promoter [22-25].  Because both RORγt and STAT3 are required for 

IL-17 expression, there may be cooperation between the two transcription factors at the 

Il17a promoter.  IL-23 also activates signal transducer and activator of transcription-4 

(STAT4), which is the primary mediator of IL-12 signaling and is required for Th1 

differentiation, yet is still important for IL-23-induced IL-17 production [23].  Thus, 

STAT4 may inhibit Th17 development downstream of IL-12, while also supporting IL-17 

expression downstream of IL-23.  In addition to STAT3 and STAT4, there are likely to 

be other transcription factors that are required for Th17 development, such as SMAD-2 or 

SMAD-3 downstream of TGFβ. 

 IL-23 plays an important role in Th17 effector function, but the mechanism is still 

under debate.  IL-23 up-regulates IL-17 production and has been suggested to promote 

survival and expansion of Th17 cells in vitro, although it is not absolutely necessary and 

more thorough experiments are necessary [9, 12, 26].  Cua and colleagues recently 

reported interesting in vivo results showing that IL-23R positive and negative Th17 cells 

survive and produce IL-17 equally well, but only IL-23R-positive Th17 cells proliferate 

and migrate to the site of inflammation in a mouse model of multiple sclerosis [27].  

Much more work is needed to fully understand how IL-23 supports Th17-mediated 

pathology, especially considering that neutralizing antibodies targeting the shared IL-
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12/IL-23 subunit are already under clinical investigation in multiple inflammatory 

diseases. 

 Evidence also demonstrates the existence of IL-17-producing cells within the 

CD8+, CD4-CD8- and γδ T cell subsets, although less is known about their differentiation 

and regulation.  

Cytokines expressed by Th17 cells 

 When T cells differentiate, they begin to express specific cytokines, such as IFNγ 

in Th1 and IL-4 in Th2, which act in an autocrine feedback loop to further promote 

differentiation, thus giving activated T cells self-sufficiency to move out of the lymphoid 

tissue and traffic to a site of inflammation while continuing to develop.  Similarly, mouse 

Th17 cells specifically express interleukin-21 (IL-21) soon after activation, and autocrine 

IL-21 plays an important role in RORγt and IL-17 expression.  IL-21 can also partially 

replace IL-6 during Th17 differentiation, giving established Th17 cells the ability to 

promote further Th17 development in neighboring cells.  IL-23 in combination with 

TGFβ can also induce RORγt and IL-17 expression, but only after IL-6 or IL-21 induces 

IL-23R expression [28-32].  Thus IL-6, IL-21 and IL-23 act sequentially: first IL-6 up-

regulates IL-21, then both IL-6 and IL-21 up-regulate IL-23R, and finally IL-23 appears 

to up-regulate effector function and pathogenicity in Th17 cells through an unknown 

mechanism. 

 Th17 cells are characterized by production of IL-17, but they also produce other 

inflammatory cytokines that can play an important role in disease.  IL-17, or IL-17A, is 

 5



one member of a family of six cytokines known as IL-17A through F.  Th17 cells 

specifically express IL-17F in addition to IL-17A.  IL-17A and IL-17F are closely 

related, with 55% amino acid identity, as well as a common receptor [33].  In addition, 

the Il17a and Il17f genes are located side-by-side on the chromosome and thus may be 

subject to coordinate regulation.  IL-17A and IL-17F are both homodimeric cytokines, 

but recent evidence shows that Th17 cells also produce an IL-17A/F heterodimer that has 

potent inflammatory effects [34, 35].  Currently, much less is known about the 

inflammatory effects of IL-17F than IL-17A, but given their high degree of similarity and 

possible redundancy, it may be important to measure, as well as to target, both IL-17A 

and IL-17F in disease.   

Other pro-inflammatory cytokines produced by both mouse and human Th17 cells 

include TNFα, a well-known mediator of inflammatory disease, interleukin-22 (IL-22) 

and interleukin-26 (IL-26) [17, 18, 20, 36-39].  Much less is known about IL-22 and IL-

26, members of the interleukin-10 (IL-10) family, which promote innate, non-specific 

immunity in cells outside of the immune system.  Studies in keratinocytes and colonic 

myofibroblasts show that IL-22 induces anti-microbial proteins, defensins, acute-phase 

proteins, inflammatory cytokines, chemokines and hyperplasia [40-42].  Others have 

found, however, that IL-22 protects hepatocytes during acute liver inflammation [43]; 

thus, IL-22 produced by Th17 cells may enhance inflammation or limit tissue damage 

induced by IL-17, depending on the type of tissue. 

Unexpectedly, a subset of Th17 cells co-expresses IFNγ, particularly in humans, 

in whom as many as half of all the IL-17-positive cells also express IFNγ [17, 18, 20, 36].  
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These double-positive cells seem to contradict the idea that Th17 cells are a unique subset 

distinct from Th1 cells, and these cells are particularly problematic to explain given that 

IFNγ has been shown to inhibit IL-17 expression.  However, human Th cell 

differentiation is known to be more flexible than that in mouse, and it is not uncommon 

to see IL-4/IFNγ double-positive T cells in humans, although it is rare in mice.  It is not 

yet clear if these cells represent a stable phenotype or a transitional phase, undergoing a 

switch from Th17 to Th1 or vice versa.  IFNγ/IL-17 double-positive cells are likely to be 

highly inflammatory, and a recent paper showed that these cells are very common in the 

brains of multiple sclerosis patients and are preferentially recruited to the central nervous 

system in a mouse model of multiple sclerosis [44].   

Another unexpected finding is the existence of many Th17 cells co-expressing IL-

10.  IL-10 is an anti-inflammatory cytokine produced by a number of different cell types.  

T-cell sources of IL-10 are generally thought to include Th2 cells and various types of 

Tregs, but Th1 cells have also been found to secrete IL-10 in certain conditions and to 

thereby limit their own inflammatory effects [45, 46].  In mice, the combination of TGFβ 

and IL-6, which synergize to induce IL-17 production, also synergize to induce IL-10, 

with the end result that half of the IL-17-positive cells co-express IL-10 and half of the 

IL-10-positive cells co-express IL-17 [47, 48].  IL-10 produced by Th17 cells may serve 

an important protective function by limiting inflammation and tissue damage normally 

caused by IL-17.  In fact, Th17-derived IL-10 was found to play an important role in 

limiting Th17-driven inflammation in a mouse model of multiple sclerosis [48].  It is not 

yet known whether human Th17 cells ever co-express IL-10 or what role the double-

positive cells might play human Th17-driven disease.  Exogenous IL-10 has been shown 
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to inhibit IL-17 production by T cells from peripheral blood of RA patients and IL-10 is 

overexpressed in RA synovium, but the cellular source is unknown [49]. 

 

T helper cell cross-talk 

Th1, Th2 and Th17 cells develop in response to very different cytokine milieus 

and each lineage is effective against a different class of microorganism.  During an 

immune response, cells of the innate immune system recognize pathogen-associated 

molecular patterns and secrete cytokines to induce differentiation of the appropriate T 

helper cell lineage while preventing development of an inappropriate and potentially 

ineffective or pathogenic immune response.  For example, IL-12, which induces Th1 

development, can inhibit Th2 differentiation, while IL-4, which induces Th2 

development, can inhibit Th1 differentiation.  In addition, T helper cells themselves 

support lineage cross-regulation because Th1-derived IFNγ inhibits Th2 development and 

Th2-derived IL-4 further inhibits Th1 development.  The respective differentiation 

programs are then reinforced in a cell-intrinsic manner through both positive and negative 

mechanisms, largely dependent on transcriptional regulation.   

The master-regulator transcription factors T-bet and GATA-3 simultaneously 

instruct one differentiation pathway and inhibit the other.  In developing Th2 cells, signal 

transducer and activator of transcription-6 (STAT6) and GATA-3 bind to DNA in the 

Th2 cytokine locus, triggering chromatin remodeling and inducing expression of IL-4, 

IL-5 and IL-13, as well as up-regulating GATA-3 expression in a positive feedback loop.  
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However, STAT6 and GATA-3 are simultaneously recruited to the Ifng locus and inhibit 

expression of IFNγ, IL-12Rβ2 and STAT4 [7, 50, 51].  In addition, Th2 cells express the 

transcription factor Ikaros, which binds to both the Tbx21 and Ifng loci, inhibiting 

expression of T-bet and IFNγ [52, 53].  Similar mechanisms underlie suppression of Th2 

genes in developing Th1 cells.  T-bet and STAT4 up-regulate expression of IFNγ, 

STAT1 (the primary mediator of IFNγ receptor signaling), IL-12Rβ2 and Runx3.  T-bet 

and Runx3 both bind to and suppress Il4, Il5 and Gata3 gene transcription [51, 54].  In 

addition, recent evidence suggests that there may be direct protein-protein interaction 

between GATA-3 and both T-bet and Runx3, leading to repression of GATA-3 activity 

[55, 56]. 

Much less is known about the cross-regulation between Th17 cells and the other T 

helper lineages.  TGFβ can inhibit Th1 and Th2 development through a number of 

mechanisms, including inhibition of signaling through the IL-12R, IFNγR and IL-4R, as 

well as down-regulation of STAT4, T-bet and GATA-3 expression [57-59].  In addition, 

limited evidence suggests that IL-23 and IL-17 inhibit Th1 development by down-

regulating T-bet and IL-12Rβ2, respectively [60, 61].  However, the general consensus 

seems to be that Th1 and Th2 cells suppress Th17 development much more potently than 

Th17 cells suppress Th1 or Th2 development.  In fact, one plausible explanation for why 

Th17 cells went undiscovered for so long is that they rarely develop in vitro without the 

addition of neutralizing antibodies to both IL-4 and IFNγ [2, 3].  Mice lacking T-bet 

show enhanced Th17 development in vitro [62, 63], and forced expression of T-bet in 

naïve CD4+ T cells prevents IL-17 expression under Th17-polarizing conditions[64].  In 

addition, T cells from mice overexpressing c-Maf, a Th2 transcription factor important 
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for IL-4 expression, produce much less IL-17 [3].  The precise mechanisms by which Th1 

and Th2 transcription factors inhibit IL-17 are currently unknown and are likely to 

depend on the relative expression levels or activities of a number of factors.  For instance, 

T-bet can inhibit Th17 development in some settings, but in other settings cells 

expressing both T-bet and RORγt and producing both IFNγ and IL-17 have been 

identified [65].  Similarly, T cells from mice over-expressing GATA-3 showed a 

moderate decrease in Th17 differentiation and RORγt expression both in vitro and in vivo 

but only at certain time points or in certain disease models [66, 67].  In systems such as 

these it is often difficult to disentangle direct effects from indirect effects due to changes 

in cytokine production by Th1 and Th2 cells.  Recent evidence has also demonstrated that 

IL-25 (IL-17E), a member of the IL-17 cytokine family, inhibits IL-17 expression 

indirectly by promoting Th2 differentiation [68, 69] and IL-13, a cytokine produced by 

Th2 cells, acts directly on Th17 cells to suppress IL-17 expression [70].   

T helper cell maturation 

In developing Th1 cells the intrinsic inhibition of Th2 development becomes 

more effective and the Th1 phenotype becomes more stable over time.  In one important 

study, naïve CD4+ T cells were stimulated to induce Th1 differentiation and the 

suppressive effects of IL-4 were tested at various time points.  The results showed that 

after 24 hours of Th1 stimulation, IL-4 treatment caused Th1 cells to down-regulate IFNγ 

and up-regulate IL-4, essentially reverting from a Th1 phenotype to a stable Th2 

phenotype.  However, after 96 hours of Th1 stimulation, IL-4 treatment caused a transient 

down-regulation of IFNγ without concomitant up-regulation of IL-4.  Thus Th1 cells lost 
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the ability to induce IL-4.  IL-4 receptor (IL-4R) signaling is primarily mediated by 

phosphorylation and activation of Janus-activated kinases-1 and -3 (JAK1 and JAK3), 

which then phosphorylate and activate STAT6.  Activated STAT6 then dimerizes and 

goes to the nucleus to modify gene expression.  At both time points IL-4 was capable of 

activating STAT6, but only in the early stage was GATA-3 up-regulated [71].   

The results of this and other studies suggest that developing Th1 cells stabilize 

their phenotype by inhibiting the expression of GATA-3 through a mechanism dependent 

on IL-12 and STAT4 [72].  It also suggests that IFNγ expression can be down-regulated 

by IL-4-dependent signals other than GATA-3, possibly through STAT6.  Additional 

studies have shown that with prolonged activation, Th1 cells lose the ability to 

phosphorylate JAK3 and STAT6 in response to IL-4, despite normal expression of the 

IL-4R [73].  This loss of IL-4R signaling was dependent on IFNγ [74].  In these mature 

Th1 cells, treatment with IL-4 no longer inhibited IFNγ production.  Taken together these 

reports suggest that there are three stages of Th1 maturation: after one day of in vitro 

stimulation IL-4R signaling is unimpaired and induces complete reversion to a Th2 

lineage, after three days of in vitro stimulation IL-4R signaling is blocked downstream of 

STAT6 and induces transient down-regulation of IFNγ production, and after seven days 

of in vitro stimulation IL-4R signaling is completely inhibited and IFNγ production is 

unaffected.   

The mechanism mediating loss of IL-4R signaling in committed Th1 cells is not 

clear.  Potential candidate mediators include the family of proteins known as suppressors 

of cytokine signaling (SOCS).  SOCS proteins are typically thought to mediate classical 
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negative feed-back loops: they are up-regulated in response to cytokine stimulation, bind 

to phosphorylated cytokine receptors through an SH2 domain, and inhibit JAK activity 

through a KIR domain (reviewed in [75]).  Both SOCS1 and SOCS5 have been shown to 

bind to the IL-4R and inhibit activation of STAT6 [76-80].  Thus, in maturing Th1 cells, 

IL-4-induced STAT6 activation may be inhibited by SOCS1, which can be induced by 

both IFNγ and IL-12, but there is also evidence of inhibition of recruitment of STAT6 to 

the phosphorylated IL-4R through a SOCS-independent mechanism [74]. 

There is no published evidence to date about the ability of Th2 cells to become 

resistant to IFNγ or IL-12.  Similarly, nothing is known about how Th17 cells mature and 

become unresponsive to cross-regulation by Th1 and Th2 cytokines, but our data 

suggests a similar three stage process may exist in Th17 cells as in Th1 cells. 

T helper cell plasticity

 New evidence has emerged demonstrating a remarkable degree of plasticity 

among T helper lineages, which may seem at odds with the idea of maturation.  While T 

helper cell subsets were initially thought to be stable lineages with unique cytokine 

profiles defined by discrete expression of a master regulator transcription factor, there are 

now many examples that expression of both cytokines and transcription factors is 

flexible.  For example, IL-10, which was once thought to be Th2 cytokine, has been 

found to be produced by Th1, Th2, Treg and Th17 cells [45, 46, 48].  Similarly, Th17 

cells that produce IFNγ are common in vivo, and IL-22, which is thought of as a Th17 

cytokine, is often produced by cells that express IFNγ but not IL-17 [81, 82].  Also, IL-12 

can suppress many Th17-specific genes and induce a phenotype that is almost completely 
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Th1 [83].  Even more surprising is the finding that in vitro differentiated, IL-4-producing 

Th2 cells can produce IFNγ when transferred in vivo [84].  These findings clearly suggest 

that T helper lineages cannot be defined strictly on the basis of expression of a single 

signature cytokine, particularly in vivo.  However, it appears that expression of master 

regulator transcription factors is not fixed either.  Tregs have been found to extinguish 

expression of FoxP3 and up-regulate pro-inflammatory cytokines, particularly in the 

setting of autoimmunity [85-88].  In addition, T cells have been found to co-express 

FoxP3 and T-bet [87, 89], FoxP3 and RORγt [90, 91], or T-bet and RORγt [65].  On the 

other hand, the lack of lineage commitment observed in many of these experiments could 

be attributed to defects in in vitro differentiation, as in vivo-derived Th17 cells have a 

very different gene expression profile and a more stable phenotype than in vitro-derived 

Th17 cells [92-94].  These observations raise many important questions about T helper 

cell lineage commitment and emphasize the importance of considering exactly when, 

where and for how long a T cell has undergone differentiation.  It will also be essential to 

decipher the relationship between plasticity and maturation.   

Chromatin regulation of T helper cell differentiation 

 Chromatin remodeling determines the heritability of gene expression patterns and 

plays an important role in T helper cell differentiation, as well as in the balance between 

plasticity and maturation.  Active transcription requires an “open” chromatin 

conformation in order to allow binding of specific transcriptional activators to the DNA 

and recruitment of general transcriptional machinery.  Some of the mechanisms that 

regulate DNA accessibility include DNA methylation, a number of different histone 
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modifications and three-dimensional chromatin structure.  In particular, the histone code 

hypothesis posits that a combination of various post-translational modifications of histone 

tails, including acetylation, phosphorylation, methylation and others, creates an 

epigenetic mechanism for the fine-tuning of gene expression.  The most well-

characterized histone modifications associated with active transcription include tri-

methylation of histone three on lysine four (H3K4me3), acetylation of histone three 

(H3Ac) and acetylation of histone four (H4Ac), while the most well-characterized histone 

modification associated with a repressive chromatin state is tri-methylation of histone 

three on lysine 27 (H3K27me3).  Genes marked with bivalent methylation patterns 

(H3K4me3 and H3K27me3) or null methylation patterns (neither H3K4me3 nor 

H3K27me3) are thought to be poised for transcription (reviewed in [95]). 

 Data suggest that lineage-specific transcription factors regulate T helper cell fate 

in part through epigenetic processes.  For example, chromatin-remodeling complexes 

displace nucleosomes and remodel chromatin at the Ifng promoter in Th1 cells in a 

STAT4-dependent manner, and these complexes are required for normal IFNγ expression 

[96].  T-bet binds to the Ifng promoter even when the DNA is repressively methylated, 

displaces histone deacetylases and recruits histone acetyltransferases and 

methyltransferases, thereby creating a highly permissive chromatin state [97-99].  These 

observations may explain how forced expression of T-bet can induce the expression of 

IFNγ even in committed Th2 cells [100].  Similarly, GATA-3 recruits chromatin-

remodeling complexes to the Th2 cytokine locus, inducing permissive H3Ac, H4Ac and 

H3K4me3 marks while removing repressive H3K27me3 marks [101-105].  In Th17 cells, 

H3Ac is induced at the Il17a and Il17f promoters, which is dependent on STAT3 [106].    
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 Recent technological advances leading to the combination of chromatin 

immunoprecipitation with high-throughput sequencing (ChIP-Seq) have allowed 

genome-wide examination of histone modifications in T helper subsets and provided 

insights into the mechanisms underlying T helper cell plasticity.  A paper by Wei et al. 

characterized H3K27me3 and H3K4me3 levels at the genes for the signature cytokines 

and master regulator transcription factors in naïve, Th1, Th2, Th17 and Treg cells [87].  

As predicted, naïve T cells displayed either null or bivalent marks across all the cytokine 

and transcription factor genes.  Also as expected, the epigenetic marks found at the Ifng, 

Il4 and Il17a loci correlated precisely with Th1, Th2 and Th17 loci, with Ifng marked by 

H3K4me3 in Th1 and H3K27me3 in Th2 and Th17, Il4 marked by H3K4me3 in Th2 and 

H3K27me3 in Th1 and Th17 and Il17a marked by H3K4me3 in Th17 and H3K27me3 in 

Th1 and Th2.  On the other hand, the loci for Tbet, Gata3 and Rorc, while marked by 

H3K4me3 in the appropriate lineage, had more bivalent marks in the opposing lineages, 

suggestive of a state poised for subsequent activation or silencing.  These findings imply 

a mechanism that may allow cells to adopt overlapping functional profiles or potentially 

to switch from one lineage to another. 

Role of Th17 cells in RA 

 RA is an autoimmune disease characterized by chronic inflammation of synovial 

tissues in multiple joints associated with bone and cartilage damage.  It affects almost 1% 

of the population and leads to enormous morbidity and accelerated mortality, despite 

recent improvements in its treatment.  Several studies have evaluated the tissue 

distribution of IL-17 in RA.  While there are some discrepancies regarding the serum 
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levels of IL-17 and the frequency of Th17 cells in the systemic circulation in RA, most 

reports agree that IL-17 is increased in the synovial fluid and synovial tissues of patients 

with RA.  IL-17 is expressed in the T cell rich areas of the synovium and is primarily 

secreted by CD4+CD45RO+ memory T cells in the synovium and peripheral blood [107-

115].  TGFβ, IL-6, IL-21, TNFα, IL-1β and IL-23, all of which are important in Th17 

differentiation, are found in RA serum and synovial fluid, suggesting that the inflamed 

joint may provide the ideal cytokine milieu for the generation and maintenance of Th17 

cells [116-120].  Interestingly, the frequency of Th17 cells correlates with markers of RA 

disease activity, such as C-reactive protein levels and tender joint count.  In addition, a 

prospective study found that increased expression of IL-17 and TNFα mRNA in synovial 

tissue were independently associated with more severe joint damage progression, while 

expression of IFNγ was associated with protection from joint damage progression [121].  

This evidence clearly points to a role for IL-17 in the pathogenesis of arthritis. 

Further support for the pathogenic role of IL-17 in RA comes from in vitro studies 

that demonstrate robust and widespread inflammatory effects of IL-17 on cells of the 

joint.  The IL-17 receptor (IL-17R) is ubiquitously expressed and initiates an 

inflammatory response in many cells types important to RA, including 

monocytes/macrophages, chondrocytes, osteoblasts and fibroblasts.  IL-17 induces the 

production of inflammatory cytokines such as IL-1β, TNFα, IL-6 and IL-23 by a number 

of cell types, all of which promote inflammation and Th17 development (reviewed in 

[122]).  Furthermore, IL-1β has been shown to induce the generation of Th17 cells from 

regulatory T cells [123].  Thus Th17 cells in the joint may initiate a positive feedback 
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loop, leading to the perpetual T-cell activation that is thought to be critical in the 

generation of autoimmunity.   

IL-17 also induces an array of chemokines, including CXCL-1, -2, -5, -8, CCL-2 

and CCL-20, leading to recruitment of T cells, B cells, monocytes and neutrophils, all of 

which populate the inflamed joint (reviewed in [122]).  Leukocyte recruitment is further 

enhanced by IL-17-induced up-regulation of granulocyte colony-stimulating factor (G-

CSF) and granulocyte-macrophage colony-stimulating factor (GM-CSF), inducers of 

granulopoiesis, as well as vascular endothelial growth factor (VEGF), an inducer of 

angiogenesis (reviewed in [122, 124]).   

A significant body of evidence demonstrates that IL-17 can enhance the 

inflammation and cellular infiltration common in arthritis, but it can also mediate bone 

and cartilage damage, which cause pain and disability in RA patients.  IL-17 up-regulates 

matrix metalloproteinases (MMPs), nitric oxide and receptor activator of nuclear factor 

κB (RANK)/RANK ligand (RANKL), as well as inflammatory cytokines and 

chemokines in chondrocytes and osteoblasts, cells of the cartilage and bone, respectively.  

Th17 cells can induce osteoclastogenesis indirectly by up-regulating RANKL on 

osteoblasts and also by directly expressing RANKL on their cell surface [110, 122, 125, 

126].  All of these pro-inflammatory molecules are found in the RA synovium and can 

contribute to RA pathology by recruiting and activating inflammatory cells, maintaining 

the IL-17 response and mediating destruction of tissue and bone. 

The arthritic joint presents a unique microenvironment, whereby autocrine and 

paracrine positive feedback loops mediated by TNFα, IL-1β, IL-6 and IL-23 promote 
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Th17 development and inflammation.  Thus, interrupting one or more of these positive 

feedback loops may limit inflammation directly as well as inhibit maintenance and 

activation of Th17 cells in the joint, hopefully without paralyzing normal immune 

responses.  Several studies have shown that TNFα and IL-1β, either together or 

separately, can induce the generation of Th17 cells and IL-17 can induce TNFα and IL-1β 

expression by synoviocytes as well  [13, 17, 18, 32].  The precise mechanisms are still 

unclear, but IL-23 may be involved in the TNFα- and IL-1β-induced secretion of IL-17 

[14, 127].  Additionally, there is synergy between IL-17, TNFα and IL-1β in mediating 

downstream effector functions.  Thus it is not surprising that neutralization of TNFα in 

combination with IL-1β and IL-17 is most effective in suppressing IL-6 production and 

collagen degradation in ex vivo cultures of RA synoviocytes [128].  Similarly, 

combination blockade of TNFα and IL-17 suppressed ongoing collagen-induced arthritis 

and was more effective than neutralization of TNFα alone [129].  These results suggest 

that treatments designed to block IL-17 may be beneficial in combination with treatments 

that block TNFα or IL-1β, provided that this approach proved to be safe.  IL-17 

neutralizing therapies may also be particularly useful for the considerable number of 

patients who do not respond to TNFα blockade. 

The value of regulating IL-17 or Th17 pathway cytokines is being tested in 

clinical studies of patients with inflammatory arthritis.  Phase I/II clinical trials of anti-IL-

17 in RA were recently completed and preliminary data suggest a therapeutic effect in at 

least one of these trials [130, 131].  In addition, two phase II trials of anti-IL-17 

neutralizing antibody, one in psoriatic arthritis and the other in ankylosing spondylitis, 

are currently underway (NCT00809614 and NCT00809159).  A phase II clinical trial in 
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psoriatic arthritis using anti-IL-12/IL-23 p40 was recently completed and results are 

pending (NCT00267956), and a trial with an oral IL-12/IL-23 inhibitor is ongoing in 

patients with RA (NCT00642629).  In view of the existence of multiple IL-17 isoforms, 

the complexity of the IL-17 receptors, the various ways of inducing Th17 cells and the 

production of pro-inflammatory cytokines other than IL-17 by these cells, the best way to 

target the Th17 axis in human disease is far from obvious and may differ among the 

various forms of human inflammatory arthritis.  It will likely require many years of 

clinical studies to sort this out, but these studies are also likely to offer further insights 

into the pathogenesis of human arthritis and the role of the Th17 pathway. 

Role of Th17 cells in collagen-induced arthritis 

 Animal models of arthritis are important tools for understanding the etiology and 

underlying mechanisms of disease, as well as for discovering and testing new therapeutic 

targets.  Many of these rodent models closely resemble RA pathologically, with 

infiltration of the joints by inflammatory cells, autoantibody production, synovial 

hyperplasia and erosion of cartilage and bone.  Arthritis can be induced experimentally 

by systemic immunization with joint proteins mixed with adjuvant, local injection of 

microbial products or inflammatory mediators directly into the joint or genetic mutation 

leading to exaggerated immune responses and spontaneous joint inflammation.  There are 

many similarities as well as important differences in the pathogenesis of these diverse 

animal models of arthritis, which possibly parallel the clinical, genetic and 

immunological subcategories of RA and other human arthritic syndromes. 
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 One of the best characterized models of RA is collagen-induced arthritis (CIA).  

To induce CIA, DBA mice are immunized intradermally with type II collagen (cII) in 

complete Freund’s adjuvant (CFA).  Several weeks later, joints of the front and hind 

paws develop severe synovial inflammation and cellular infiltration, leading to 

destruction of both cartilage and bone.  CIA is a T cell-dependent disease, and although 

Th1 cells were previously thought to be the key pathogenic subset, substantial evidence 

now demonstrates that Th17 cells are largely to blame.  In CIA, serum IL-17 levels 

increase shortly after immunization, and IL-17 mRNA is up-regulated in the synovium 

after the onset of arthritis [132].  Many of the CD4+ T cells in the joint are IL-17 positive 

[133].  Several approaches have shown IL-17 to be both necessary and sufficient for joint 

inflammation.  IL-17-deficient mice develop significantly less severe (although not 

completely absent) CIA, and IL-17 is important for priming collagen-specific T cells and 

for collagen-specific IgG2a production [134].  Administration of soluble IL-17R or 

neutralizing antibody to IL-17, either before or after the onset of disease, significantly 

reduces macroscopic joint swelling and the associated histological changes, including 

cellular infiltration, proteoglycan depletion, cartilage surface erosion and bone erosion 

[132, 135].  Conversely, local adenoviral over-expression of IL-17 in the knee of naïve or 

immunized mice results in aggravated joint inflammation, including increased cellular 

infiltration, synovial hyperplasia, RANK and RANKL expression, osteoclastogenesis, 

proteoglycan depletion, chondrocyte death and erosion of cartilage and bone [132, 136].  

Thus IL-17 is important for both recruitment of inflammatory cells and for joint 

destruction.  This conclusion is further supported by a multitude of in vitro studies which 

show that IL-17 can act on synovioctes to induce inflammatory cytokoines such as TNFα, 
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IL-1β and IL-6, chemokines such as IL-8, CXCL1 and CXCL2 and mediators of bone 

and cartilage loss such as RANKL and MMPs (reviewed in [122]).  Interestingly, a recent 

paper showed that γδ T cells are major producers of IL-17 in the arthritic joints of mice 

with CIA [137]. 

 Further evidence for the role of Th17 cells in CIA comes from studies on the 

effects of Th17-related cytokines, such as TGFβ, IL-6, IL-21 and IL-23.  The actions of 

TGFβ are complex, with both pro- and anti-inflammatory effects.  In mice, injecting 

TGFβ systemically inhibits CIA [138] and neutralizing antibody to TGFβ worsens 

disease [139], yet in rats injection of TGFβ directly into the joint results in accelerated 

arthritis and enhanced neutrophil recruitment, synovial inflammation and hyperplasia, 

while injection of blocking antibody to TGFβ inhibits acute and chronic synovial 

inflammation [140-143].  Thus, the precise role of TGFβ may vary greatly, depending on 

the species, the microenvironment or the timing. 

 IL-6, on the other hand, has robust and well-characterized inflammatory effects in 

multiple animal models.  Injection of blocking antibody to the IL-6 receptor (IL-6R) at 

the time of immunization inhibits differentiation of Th17 cells and the development of 

CIA, even after a second booster immunization with collagen [133].  Soluble IL-6R or 

neutralizing antibody to IL-6 can also ameliorate disease [144, 145] and IL-6-deficient 

mice have reduced IL-17 expression and are completely resistant to CIA [29, 146]. 

 IL-21 is produced by Th17 cells and can act in an autocrine manner to enhance 

Th17 development [29-32].  A role for IL-21 in a variety of autoimmune diseases and 

their animal models has been proposed (for review see [147]), but relatively little is 
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currently known about its role in arthritis.  In CIA, mice treated with a soluble IL-21R-Fc 

fusion protein after the onset of disease demonstrate a modest but significant decrease in 

disease severity and down-regulation of IL-6 and IL-17 expression in spleen cell cultures, 

although more dramatic results were obtained in a rat model of arthritis [148]. 

Role of IL-4 and IFNγ in arthritis 

The role of IFNγ in animal models of arthritis is complex, with evidence for both 

protective and pathogenic functions.  CIA was originally considered to be a Th1-

mediated disease due to the fact that deficiency of the p40 subunit of IL-12, the key Th1-

inducing cytokine, conferred resistance to disease.  However, the IL-12 p40 subunit is 

shared by IL-23, which supports the maintenance and pathogenicity of Th17 cells.  A key 

observation concerning the relative roles of Th1 and Th17 cells in CIA was made by Dan 

Cua and colleagues, who demonstrated that IL-23, rather than IL-12, was critical for 

development of arthritis.  Mice lacking the specific p19 subunit of IL-23 have 

significantly fewer Th17 cells and no joint or bone pathology, despite normal numbers of 

Th1 cells.  Mice lacking the specific p35 subunit of IL-12, on the other hand, develop 

exacerbated arthritis and increased expression of many inflammatory cytokines in the 

joint, including TNFα, IL-1β, IL-6 and IL-17 [149].  Furthermore, multiple studies have 

found that mice deficient in either IFNγ or IFNγ receptor develop more severe CIA than 

wild type counterparts [150-153].  More recently, Chu et al. showed that deletion of the 

IFNγ gene from the CIA-resistant B6 strain of mice renders them susceptible to CIA and 

correlates with an increase in IL-6 and IL-17 expression [154].   
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On the other hand, administering recombinant IFNγ to mice exacerbates CIA 

[150, 152], and the mouse model proteoglycan-induced arthritis is dependent on IFNγ 

and independent of IL-17 [155, 156].  IFNγ clearly has the ability to induce inflammation 

in some settings, but it can also inhibit Th17 differentiation and thereby reduce 

inflammation in others.  Thus the net effect of IFNγ may depend on the phase of disease 

and the location - such as the joint versus the spleen or lymph node.  By administering 

neutralizing antibodies at different time points, one study suggested that IFNγ has 

pathogenic effects in the early phase of disease but protective effects in the later stages 

[157].  Although this study did not measure IL-17, one plausible interpretation of these 

results is that IFNγ takes on a protective role after Th17 cells become overabundant and 

highly pathogenic. 

Similar to IFNγ, evidence for the role of IL-4 in arthritis is complex.  IL-4-based 

interventions can prevent or alleviate joint inflammation and bone damage in multiple 

animal models of arthritis [158-160].  We have shown previously that systemic injection 

of dendritic cells genetically engineered to produce IL-4 (IL-4 DCs) attenuates CIA 

[160].  Further mechanistic studies revealed that IL-4 secreted from IL-4 DCs is a potent 

suppressor of IL-17 production by T cells from the early phase of CIA [161].  These 

results suggest that endogenous IL-4 could also play a protective role in arthritis by 

suppressing IL-17 in the early phase of disease.  However, it leaves open the possibility 

that IL-4 could also have pathogenic effects by suppressing production of IFNγ, once 

IFNγ has taken on a protective role.  In addition, IL-4 reduces bone damage in 

established CIA and is necessary for the development of arthritis, possibly due to the 

important role of IL-4 in B cell activation and antibody production [158, 162].  Thus, like 
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IFNγ, IL-4 may have both protective and pathogenic roles in CIA, depending on the stage 

of disease, location of IL-4 production and relative abundance of other cytokines.  In 

human RA, a polymorphism of the IL-4R that results in decreased signaling is associated 

with more severe erosive disease, suggesting that IL-4 plays a protective role [163].  

Although the underlying mechanism is unknown, work from our lab has shown that Th17 

cells from healthy controls with the weak signaling IL-4R are less susceptible to down-

regulation by IL-4 [164]. 
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Chapter 2 

Cytokine regulation of Th17 differentiation and re-stimulation 

Regulation of in vitro Th17 differentiation 

 Naïve CD4+ T cells stimulated through the TCR can differentiate into a number 

of different subtypes depending on the cytokine milieu, including Th1, Th2, Th17, Treg 

and Tfh cells, with each subtype serving a unique functional role.  To ensure that a 

singular, focused and appropriate type of response develops, each T helper cell lineage 

can suppress the development of other lineages, through both intra- and inter-cellular 

mechanisms.  For example, previous work has shown that IFNγ, the prototypical Th1 

cytokine, inhibits Th2 differentiation, while IL-4, the prototypical Th2 cytokine, inhibits 

Th1 differentiation.  Thus we hypothesized that IFNγ and IL-4 would inhibit the 

differentiation of Th17 cells from naïve precursors.   

 To test this hypothesis we developed a system for in vitro Th17 differentiation.  

Naïve CD4+CD25-CD62L+CD44lo T cells were isolated from BALB/c spleens by FACS, 

cultured with bone-marrow-derived dendritic cells (BM-DCs) and stimulated with anti-

CD3 antibody in the presence of a Th17-skewing cytokine cocktail (TGFβ, IL-6, IL-23 

and neutralizing antibodies to IL-4 and IFNγ).  Th17 differentiation was measured by 

intracellular cytokine staining (ICS) and ELISA for IL-17A, as well as real-time PCR for 

IL-17A, IL-17F, IL-22, RORγt and IL-23R.  Using this system we were able to induce 

robust Th17 differentiation, with 20 to 60% of the cells typically staining positive for IL-

17A and less than 1% staining positive for IFNγ or IL-4 (following six-hour stimulation 
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with PMA, ionomycin and brefeldin A).  Representative dot plots are shown in Figure 

2.1.  The results clearly demonstrate that adding IL-4 or IFNγ to Th17 cultures inhibits 

the expression of IL-17 protein, sometimes by as much as 95%, and with a more potent 

inhibition by IL-4 (Fig. 2.2).  IL-4 and IFNγ also inhibited mRNA expression of IL-17A, 

IL-17F and RORγt (Fig. 2.3).  Interestingly, however, IL-4 was able to suppress the 

expression of IL-23R but not IL-22, while IFNγ was able to suppress expression of IL-22 

but not IL-23R (Fig. 2.3).  

Multiple groups have begun to characterize the changes that occur at the level of 

the chromatin structure during Th17 differentiation.  Naïve T cells cultured with TGFβ 

and IL-6 undergo histone H3 acetylation and K4 tri-methylation, two signals that mediate 

increased DNA accessibility and are associated with active transcription, at the promoter 

regions of the Il17a and Il17f genes [106].  Further work by O’Shea and colleagues has 

begun to examine the epigenetic regulation of the Il17a/f locus when Th17 differentiation 

is inhibited by IFNγ and IL-4.  For example, they found that IL-4 inhibits H3 acetylation 

and K4 tri-methylation at the Il17a promoter (personal communication).  These results 

suggest that the presence of IFNγ or IL-4 during the earliest stages of Th17 

differentiation can supersede the Th17-skewing signals at the chromatin level and may 

instead push cells towards a Th1 or Th2 lineage, respectively.  However, our observation 

that IL-23R and IL-22 are differentially regulated imply that the Th17 gene expression 

program is not completely reversed in the presence of IFNγ and IL-4, leaving open the 

possibility that these conflicting cytokine milieus may yield either a mixed population of 

cells or cells of a mixed phenotype.  Further studies are needed to determine whether IL-

22-positive/IL-17-negative “Th22” cells or IL-23R-expressing Th1 cells develop in these 
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circumstances and what the physiological relevance of these cells may be.  Continued 

expression of IL-23R in Th1 cells, however, may contribute to the development of 

IFNγ/IL-17 double-positive cells and explain the observation that in some instances IL-

23 can up-regulate IFNγ expression. 
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Figure 2.1: Flow cytometric analysis showing efficient in vitro Th17 differentiation. 

Naïve CD4+CD25-CD62L+CD44lo T cells were stimulated with anti-CD3 and a cocktail 
of Th17-skewing cytokines and neutralizing antibodies in the presence of BM-DCs for 
five days, rested for two days and re-stimulated with PMA, ionomycin and brefeldin A 
for six hours.  The cells were then stained for CD4, IL-17, IFNγ and IL-4 and analyzed 
by flow cytometry.  The results typically show 30-70% IL-17+, with less than 0.5% IFNγ+ 
or IL-4+, indicating that the naïve T cells have effectively differentiated into Th17 cells. 
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Fig. 2.2A: Effect of IL-4 and IFNγ on naive Th17 differentiation:
IL-17A production measured by ELISA
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Fig. 2.2B: Effect of IL-4 on naive Th17 differentiation:

intracellular staining for IL-17A
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Figure 2.2: IL-4 inhibits IL-17A expression during in vitro Th17 differentiation. 

Naïve T cells were stimulated to induce Th17 differentiation as described above, in the 
presence or absence of exogenous IL-4 or IFNγ (neutralizing antibodies to these 
cytokines were omitted from the Th17 cocktail as appropriate) and IL-17 expression was 
measured by ELISA (A) and ICS (B). Error bars represent SEM for triplicate cultures. 
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Fig. 2.3A: Effect of IL-4 and IFNγ on naive Th17 differentiation:

Real-time RT-PCR of Th17 family genes
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Fig. 2.3B: Effect of IL-4 on Th17 gene expression by
real-time RT-PCR
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Figure 2.3: IL-4 and IFNγ inhibit expression of different subsets of Th17 genes. 

Naïve T cells were cultured in Th17 conditions in the presence or absence of IL-4 or 
IFNγ for five days, followed by purification of RNA and analysis by Taqman-style real-
time PCR for IL-17A, IL-17F, RORγt, IL-22 and IL-23R. A) IL-4 fails to suppress IL-22 
expression, while IFNγ fails to suppress IL-23R expression.  B) IL-4 dose response curve 
showing inhibition of IL-17A, IL-17F, IL-23R and RORγt but no effect on IL-22. Results 
were normalized first to β-actin (the internal control) and then to the untreated sample.  
Error bars represent the SEM of triplicate PCR reactions. 
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Regulation of in vitro Th17 re-stimulation 

Most of what is known about the cross-regulation of T helper cells is limited to 

the earliest stage of differentiation, which occurs within the first few hours to days 

following the initial T cell activation.  However, it is also important to address the 

regulation of T cells after differentiation is complete and upon secondary stimulation, 

which may correspond to what happens to a T cell that has become activated and 

differentiated in a lymph node in a particular cytokine milieu, and then exited the lymph 

node and traveled to a site of inflammation, such as an inflamed joint, where it is likely to 

encounter a significantly altered microenvironment.  Understanding the regulation of pre-

existing activated T cells may also have therapeutic applications in the formulation of 

strategies to control chronic T cell-mediated diseases such as RA.  Knowledge of the 

immune system’s intrinsic regulatory mechanisms may lead to a better understanding of 

the etiology of disease and to exploitation of these mechanisms therapeutically in order to 

restore a natural balance to the immune system. 

To study the regulation of pre-existing Th17 cells, FACS-sorted naïve T cells 

were stimulated with BM-DCs, anti-CD3 and a Th17 cytokine cocktail, as described 

above.  Th17 cells were allowed to differentiate for five or six days, washed to remove all 

cytokines and antibodies, and rested for two days.  To test the effects of Th1 and Th2 

cytokines on Th17 re-stimulation, we then re-plated the cells with increasing 

concentrations of recombinant IFNγ, IL-4, IL-2, IL-10 or IL-12 for two days, in the 

presence or absence of anti-CD3 stimulation or anti-CD3 plus the Th17-skewing cytokine 

cocktail.  Using ELISA, we observed that each of these cytokines was able to suppress 
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expression of IL-17A, IL-17F and IL-22 even in the presence of strong pro-Th17 

conditions, although to varying degrees (Fig. 2.4).  These data imply that even after a 

substantial period of differentiation, Th17 cells are still susceptible to counter-regulation 

by opposing T helper lineages, which raises many interesting questions about the stability 

of lineage commitment, the mechanisms of suppression and the role of these regulatory 

pathways in chronic inflammation, some of which will be addressed in other chapters. 

Using real-time PCR we carried out a time-course experiment to assess how 

quickly IL-4 and IFNγ could down-regulate the expression of IL-17A, IL-17F and RORγt 

in pre-differentiated Th17 cells.  Interestingly, IL-4 acted very rapidly, suppressing Th17 

gene expression after only four hours (Fig. 2.5).  IFNγ, on the other hand, had no 

significant effect on IL-17 message after 6 hours, and changes were not visible even after 

as much as 24 hours in some experiments (data not shown).  These results suggest that 

suppression of Th17 activation by IL-4 may be mediated by a much more direct 

mechanism than suppression by IFNγ.  The molecular mechanisms of IL-4-mediated 

Th17 suppression will be explored in more detail in Chapter 3. 
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Fig. 2.4B: Effect of Th1 and Th2 cytokines on IL-17F production
during restimulation with anti-CD3
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Fig. 2.4A: Effect of Th1 and Th2 cytokines on IL-17A production
during restimulation with anti-CD3
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Fig. 2.4C: Effect of Th1 and Th2 cytokines on IL-22 production

during restimulation with anti-CD3
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Figure 2.4: Th1 and Th2 cytokines inhibit Th17 cytokine production after differentiation.   

Th17 cells were differentiated for five days, rested for two days, and then re-stimulated 
with anti-CD3 plus increasing concentrations of IL-4, IFNγ, IL-2, IL-12 or IL-10 for two 
days.  Supernatants were collected and analyzed for IL-17A (A), IL-17F (B), and IL-22 
(C) by ELISA.  Error bars represent SEM of triplicate culture samples. 
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 Fig. 2.5: Rapid down-regulation of Th17-family gene expression by IL-4
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Figure 2.5: IL-4 rapidly down-regulates Th17 gene expression during re-stimulation. 

Th17 cells were differentiated for five days and rested for two days and then re-
stimulated with anti-CD3 and IL-4 or IFNγ.  RNA was collected after four, six or nine 
hours and analyzed by real-time PCR using primers and probes for IL-17A, IL-17F and 
RORγt from Applied Biosystems.  Results were normalized first to β-actin (the internal 
control) and then to the untreated sample.  Error bars represent the SEM of triplicate PCR 
reactions. 
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Th17 plasticity 

Several groups have recently demonstrated a high degree of plasticity in Th17 

cells, such that stimulation with IL-12 up-regulates T-bet and IFNγ and induces a Th1-

like phenotype, while stimulation with TGFβ up-regulates FoxP3 and induces a Treg-like 

phenotype [64, 83].  One report suggested that the Th17 phenotype is unstable, and Th17 

cells will spontaneously convert to Th1 cells in lymphopenic hosts [165].  However, 

another group demonstrated that in vitro-generated Th17 cells quickly lose IL-17 

expression unless IL-23 is added and opposing cytokines are blocked, while in vivo-

generated Th17 cells continue to express IL-17 regardless of which cytokines are added 

[93].  Some Th17-to-Th1 conversion may not be surprising, considering the evidence for 

the close relationship between these two lineages.  Th17 cells were first thought to be a 

subset of Th1 cells, and IL-17/IFNγ double-positive cells are quite common in vivo.  

Similarly, the shared dependence on TGFβ implies some Treg-Th17 commonality.  There 

is no evidence, on the other hand, for any shared attributes between Th17 and Th2 cells, 

and there is no evidence for IL-17/IL-4 double-positive cells in vivo.  However, we 

decided to address the question of whether prolonged culture with IL-4, the chief Th2-

skewing cytokine, would induce Th17-to-Th2 conversion.   

Th17 cells were generated in vitro as described above, with five days of 

differentiation followed by two days of rest.  Following the rest period, the Th17 cells 

were re-stimulated in Th0 (anti-CD3, anti-IL-4, anti-IFNγ), Th2 (anti-CD3, IL-4, anti-

IFNγ) or Th17 (anti-CD3, TGFβ, IL-6, IL-23, anti-IL-4, anti-IFNγ) conditions for two, 

four or six days.  Th2 conversion was assessed by real-time PCR for IL-4, GATA-3 (the 

 35



master regulator transcription factor for Th2 development), IL-17 and RORγt (Fig. 2.6).  

The results showed that low levels of mRNA for IL-4 and GATA-3 were expressed in 

Th2-stimulated Th17 cell cultures, but similar levels of IL-4 and GATA-3 message were 

also expressed in Th17 cells stimulated with anti-CD3 alone.  Thus there was no specific 

up-regulation in response to stimulation with IL-4, which we believe to be indicative of a 

small number of contaminating Th2 cells in the culture rather than induction of new Th2 

differentiation.  In addition, the levels of IL-4 mRNA expressed by Th17 cells re-

stimulated in Th2 conditions were an order of magnitude lower than the levels of IL-4 

mRNA expressed by Th2 cells (data not shown).  We also looked at IL-4 expression in 

Th17 cells by ICS and found that less than two percent of the cells expressed IL-4 after 

two days re-stimulation in Th0 or Th2 conditions, which was extinguished after four or 

six days re-stimulation in either condition, and none co-expressed IL-4 and IL-17 (Fig. 

2.7 and data not shown).  Although these experiments could be refined by purifying IL-

17 expressing cells to remove the possibility of inducing new Th2 differentiation rather 

than Th17-Th2 conversion, the results suggest that there is no Th17-to-Th2 conversion. 

Although we concluded that IL-4-treated Th17 cells do not become Th2 cells, we 

were left wondering what it is that they do become.  In other words, does encountering 

IL-4 render Th17 cells permanently inactivated, or is the suppression merely temporary 

and the Th17 cells will regain IL-17 expression upon removal of the IL-4?  To answer 

this question, we again generated Th17 cells in vitro with five days differentiation and 

two days of rest and re-stimulated them in Th0 conditions (anti-CD3, anti-IL-4, anti-

IFNγ) to maintain the existing Th17 cell population without inducing new differentiation 

or in Th2 conditions (anti-CD3, IL-4, anti-IFNγ) to suppress Th17 cell populations.  After 
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five days of culture the cells were washed and rested for two days.  At this point some 

cells were removed to assay the IL-17 and IL-4 expression by ICS, while others were put 

back into culture either with no stimulation or with anti-CD3 (without neutralizing 

antibodies).  After two days Th17 function was measured by ICS for IL-17 and IL-4.  The 

results in Fig. 2.8 show that five days of Th2 culture suppressed IL-17 production and 

induced IL-4 expression.  Upon removal of the IL-4, however, IL-17 expression in 

resting cultures returned to the level of cells cultured without IL-4, suggesting that IL-4-

mediated suppression of IL-17 is not stable and is reversed without continuous exposure 

to IL-4.  On the other hand, when the IL-4-suppressed Th17 cells were put back into 

culture with anti-CD3, the newly differentiated Th2 cells proliferated and continued to 

suppress IL-17 due to the absence of IL-4-neutralizing antibodies in these tertiary 

cultures.  We did not observe IL-17/IL-4 double-positive cells in any condition, 

suggesting that there was no Th17-Th2 conversion (data not shown).  Although IL-17 

expression appears to be easily suppressed by low doses of opposing cytokines, the rapid, 

stimulation-independent reversal of Th17 suppression upon removal of opposing 

cytokines suggests that these cells may be more stably committed than was previously 

appreciated.   
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Fig. 2.6A: IL-4 expression in Th17 cells restimulated in
other conditions
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Fig. 2.6B: GATA 3 expression in Th17 cells restimulated in
other conditions
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Fig. 2.6C: IL-17A expression in Th17 cells restimulated in
other conditions
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Fig. 2.6D: RORγt expression in Th17 cells restimulated in
other conditions
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Figure 2.6: Th17 cells re-stimulated in Th2 conditions up-regulate low levels of Th2 
genes. 

Th17 cells were re-stimulated for two, four or six days in Th0, Th2 or Th17 conditions 
and expression of IL-4 (A), GATA-3 (B), IL-17A (C) and RORγt (D) were analyzed by 
real-time PCR. Results were normalized to β-actin expression.  Error bars represent the 
SEM of triplicate PCRs. 

 38



 
Fig. 2.7A: IL-17A expression by Th17 cells restimulated in

other conditions
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Fig. 2.7B: IL-4 expression by Th17 cells restimulated in
other conditions
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Figure 2.7: Th17 cells re-stimulated in Th2 conditions express IL-4 but it is quickly 
extinguished. 

Th17 cells were re-stimulated for two, four or six days in Th0, Th2 or Th17 conditions 
and then treated with PMA, ionomycin and brefeldin A for six hours.  IL-17A (A) and 
IL-4 (B) expression were measured by ICS. 
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Fig. 2.8: Th17 cells regain IL-17 expression after removal of IL-4
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Figure 2.8: Th17 cells regain IL-17 expression after removal of IL-4 

Th17 cells were generated in vitro as described.  After five days differentiation and two 
days rest, the cells were re-stimulated for five days in Th0 conditions (anti-CD3, anti-IL-
4, anti-IFNγ) to maintain the existing Th17 cells without inducing new differentiation or 
Th2 conditions (anti-CD3, 10ng/mL IL-4, anti-IFNγ) to suppress existing Th17 cells, 
followed by two days rest.  After the second round of stimulation some cells were treated 
with PMA, ionomycin and brefeldin A and analyzed by ICS for IL-17 and IL-4.  The 
remaining cells were put back into culture for two days with no stimulation or with anti-
CD3 alone to allow Th17 cells to regain IL-17 expression without inducing new 
differentiation. 
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Regulation of ex vivo Th17 re-stimulation 

We have established that many Th1 and Th2 cytokines, and most potently IL-4, 

can suppress the re-activation of in vitro-derived Th17 cells.  However, these Th17 cells 

develop under highly un-physiological conditions and may have a very different 

phenotype than in vivo-derived, antigen-specific Th17 cells, particularly in the context of 

Th17-mediated inflammatory disease.  In fact, in vitro-derived Th17 cells have been 

found to lack the chemokine receptor expression and EAE pathogenicity of in vivo-

derived Th17 cells [92].  To examine the cytokine-mediated regulation of Th17 cells 

generated in vivo in the context of an IL-17-dependent autoimmune disease, we 

immunized DBA1/LacJ mice i.d. with chick type II collagen emulsified in CFA 

following our standard protocol for induction of collagen-induced arthritis and measured 

serum IL-17 levels by ELISA.  The data in Figure 2.9 show that there is a very rapid and 

dramatic spike in serum IL-17 within the first few days after immunization, which likely 

comes from innate-like sources, including γδ T cells.  After seven days the early peak 

subsides, and IL-17 levels remain stably and significantly elevated at about twice the 

baseline level throughout the course of disease, suggesting that systemic Th17 responses 

have developed by one week and persist long-term.  Thus, rather than wait three to four 

weeks for arthritis to develop, we decided to assess collagen-specific Th17 responses in 

the spleen and draining lymph nodes (DLN) at two weeks post-immunization.  

Specifically, single-cell suspensions of spleens and DLNs were re-stimulated in vitro 

with collagen, with or without the Th17-skewing cocktail, and in the presence or absence 

of recombinant Th1 and Th2 cytokines or neutralizing antibodies.  After five days IL-17 

production was measured by ELISA and ICS.   
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Figure 2.10A shows the effects of a number of Th1 and Th2 cytokines on IL-17 

production from splenocytes stimulated with collagen.  The results demonstrate that, 

much like the in vitro-derived Th17 cells, pre-existing, in vivo-derived Th17 cells are 

susceptible to counter-regulation by cytokines from opposing T helper cell lineages.  In 

particular, IL-4 and IL-12 were potent suppressors and IFNγ was a weak suppressor of 

collagen-specific IL-17 production.  IL-13, another important Th2 cytokine like IL-4, 

also inhibited IL-17 production, confirming recent data from Newcomb et al. and 

furthering the idea that Th2 cells suppress Th17 cells through multiple mechanisms [70].  

Surprisingly, we found that collagen-specific IL-17 production was up-regulated by 

exogenous IL-10, which differs from our previous finding that IL-10 inhibits production 

of IL-17A, IL-17F and IL-22 by in vitro-derived Th17 cells (Fig. 2.4).  This discrepancy 

may be attributed to differences between in vitro- and in vivo-derived Th17 cells (if IL-10 

acts directly on the T cell) or to differences between the BM-DCs used to induce in vitro 

Th17 differentiation and the accessory cells present in the whole spleen ex vivo cultures 

(if IL-10 acts indirectly).  Although we chose not to pursue this avenue of investigation, 

preliminary data suggests that up-regulation of IL-17 by IL-10 is accessory cell 

dependent (data not shown).  In addition, neutralizing antibodies to IL-4, IFNγ or IL-12 

up-regulated IL-17 production, implying that in vivo-derived Th17 cells are constrained 

by endogenous cytokine production much like their in vitro-derived counterparts (Fig. 

2.10B).   

Because IL-12 is a powerful inducer of Th1 development and IFNγ production, 

we wondered whether suppression of IL-17 by IL-12 was mediated by increased IFNγ.  

We measured IFNγ and IL-17 production by spleens stimulated with collagen and IL-12 
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or IL-23 and found that, as predicted, IL-12 induced large quantities of IFNγ in our 

cultures (Fig. 2.11A).  IL-23, on the other hand, up-regulated IL-17 while down-

regulating IFNγ.  To determine if IFNγ was required for the suppressive effects of IL-12, 

we stimulated spleen cells in the presence of IL-12 and neutralizing antibody to IFNγ.  

IL-12 continued to inhibit IL-17 expression even in the presence of anti-IFNγ, suggesting 

that IL-12 exerts its suppressive effect by acting directly on the Th17 cells themselves, 

rather than indirectly through IFNγ-producing Th1 cells (Fig. 2.11B). 

Although several groups have shown that the combination of TGFβ and IL-6 acts 

on naïve T cells to induce Th17 differentiation [10-12], it is not clear what effect TGFβ 

and IL-6 have on pre-existing Th17 cells.  Therefore, we decided to re-stimulate 

collagen-immunized spleen cells in the presence of TGFβ and/or IL-6, with the 

assumption that two weeks after immunization most collagen-specific T cells have 

already differentiated, thus the TGFβ and IL-6 are more likely to be acting on activated or 

memory Th17 cells rather than inducing new Th17 differentiation in naïve T cells.  The 

results showed that IL-6 alone, and to a much greater extent TGFβ alone, was able to up-

regulate IL-17, possibly due to the presence of endogenous IL-6.  However, the 

combination of TGFβ and IL-6 was significantly better at inducing IL-17 than either 

cytokine alone, and adding IL-23 to the cocktail enhanced IL-17 production even further 

(Fig. 2.12).  In addition, TGFβ, IL-6 and IL-23, either alone or in combination, induced 

considerable IL-17 production even in the absence of exogenous collagen, suggesting that 

the right cytokine milieu can stimulate pre-existing Th17 cells without the need for 

concomitant TCR stimulation, assuming that antigen from the in vivo immunization does 
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not persist in these cultures.  The potential for Th17 cells to become antigen-independent 

could have important implications for the development of chronic inflammation. 

Given that TGFβ, IL-6 and IL-23 can greatly enhance the activation of pre-

existing Th17 cells, we wondered how these positive signals might interact with negative 

signals coming from Th1 and Th2 cytokines.  Thus we asked the question of whether IL-

4, IFNγ and IL-12 would continue to suppress IL-17 production in the presence of TGFβ, 

IL-6 and IL-23.  Looking first by ELISA of spleen cultures, we found that the 

suppressive signals from IL-4 superseded any combination of activating signals and even 

extremely large quantities of IL-17 were still potently down-regulated (Fig. 2.13A).  

Similarly, ICS showed that TGFβ, IL-6 and IL-23 up-regulated, while IL-4 down-

regulated, the number of IL-17+ cells in DLN cultures (Fig. 2.13B).  Interestingly, while 

IL-4 and IFNγ continued to suppress IL-17 in the presence of TGFβ, IL-6 and IL-23, IL-

12 lost its suppressive capacity.  We hypothesize that there may be competition between 

IL-12 and IL-23 for IL-12Rβ2, the subunit which is shared by both the IL-12 and IL-23 

receptors, but further work is needed to address this question. 

As the data shown thus far demonstrate, Th1 and Th2 cytokines are potent 

regulators of Th17 cells generated in vitro, as well as Th17 cells generated in vivo during 

the early stages of CIA.  However, we wanted to confirm that these effects are not 

restricted to DBA mice, the collagen-specific response or an auto-inflammatory disease, 

but rather that similar patterns can be generalized to all in vivo-derived Th17 cells.  Thus 

we decided to analyze the Th17 responses in the more commonly used BALB/c strain of 
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mice following i.p. immunization with the highly immunogenic protein antigen, keyhole 

limpet hemocyanin (KLH).   

Two weeks after immunization, spleen cells were re-stimulated with KLH and 

recombinant cytokines, and IL-17 production was assessed by ELISA.  Despite the well-

known Th2 bias in BALB/c mice, immunization induced a prominent KLH-specific Th17 

response in the spleen, and the results largely confirmed our previous findings in the 

collagen system.  TGFβ, IL-6 and IL-23 all up-regulated IL-17, while IL-4, IFNγ and IL-

12 all down-regulated IL-17, even in the presence of the Th17-skewing cytokine cocktail 

(Fig. 2.14).  The only discrepancy between the two systems was that IL-12 continued to 

suppress IL-17 in the presence of TGFβ, IL-6 and IL-23.  The reason for this difference 

remains a topic for future study. 
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Fig. 2.9: Serum IL-17 levels following cII/CFA immunization
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Figure 2.9: Collagen/CFA immunization induces two phases of systemic IL-17 
production. 

DBA mice were immunized i.d. with cII/CFA.  Blood samples were collected from the 
tail into serum separator tubes prior to immunization and after 1, 4, 7, 15, 31 or 41 days.  
IL-17 levels in the serum were analyzed by ELISA.  Error bars represent SEM of four 
individual mice at each time point.   
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Fig. 2.10A: Effect of Th1 and Th2 cytokines on IL-17 production during
collagen re-stimulation
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Fig. 2.10B: Effect of cytokine-neutralizing antibodies on IL-17

production during collagen re-stimulation
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Figure 2.10: Collagen-specific IL-17 production is regulated by endogenous and 
exogenous Th1 and Th2 cytokines. 

DBA mice were immunized i.d. with cII/CFA and spleens were collected two weeks 
later.  Single cell suspensions were re-stimulated in vitro with heat-denatured collagen in 
the presence of recombinant cytokines (A) or purified cytokine-neutralizing antibodies 
(B) for five days.  Supernatants were collected and IL-17 was measured by ELISA.  Error 
bars represent SEM of triplicate culture samples.
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Fig. 2.11A: IL-12 and IL-23 exert opposite effects on IL-17 and IFNγ

expression during cII re-stimulation
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Fig. 2.11B: IL-12-mediated suppression of IL-17 does

not require IFNγ
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Figure 2.11: Down-regulation of IL-17 by IL-12 does not depend on up-regulation of 
IFNγ. 

(A) Splenocytes from two-week collagen-immunized mice were re-stimulated with 
collagen plus recombinant IL-12 or IL-23.  After five days IL-17 and IFNγ were 
measured by ELISA.  (B) Splenocytes were stimulated with collagen in the presence of 
IL-12 and neutralizing antibody to IFNγ.  After five days IL-17 was measured by ELISA.  
Error bars represent SEM of triplicate culture samples. 
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Fig. 2.12: TGFβ and IL-6 up-regulate IL-17 during collagen re-stimulation

0

10000

20000

30000

40000

50000

150000

250000

50μg/mL cII
IL-23
TGFβ

IL-6
anti-IL-4/IFNγ

-
-
-
-
-

-
+
+
+
-

-
-
+
+
-

-
+
-
-
-

+
+
+
+
+

+
+
+
+
-

+
-
+
+
-

+
-
-
+
-

+
-
+
-
-

+
+
-
-
-

+
-
-
-
-

IL
-1

7 
(p

g/
m

L)
 

 

 

 

 

 

 

 

Figure 2.12: TGFβ, IL-6 and IL-23 synergistically up-regulate IL-17 production even in 
the absence of antigen. 

Splenocytes from immunized mice were re-stimulated with or without collagen, IL-23, 
TGFβ, IL-6 or neutralizing antibodies to IL-4 and IFNγ.  Supernatants were collected 
after five days and IL-17 was measured by ELISA.  Error bars represent SEM of 
triplicate culture samples. 
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Fig. 2.13A: IL-4 down-regulates IL-17 in the presence of strong Th17 stimuli
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Fig. 2.13B: ICS of DLN cells after collagen re-stimulation
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Fig. 2.13C: Dowregulation of IL-17 production by Th1 and Th2 cytokines in the
presence of TGFβ/IL-6/IL-23 during collagen re-stimulation
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Figure 2.13: Suppression of IL-17 by IL-4 overpowers induction by TGFβ, IL-6 and    
IL-23. 

(A) Splenocytes from two-week immunized mice were re-stimulated with collagen, 
TGFβ, IL-6 and IL-23 in the presence of increasing concentrations of IL-4.  After five 
days IL-17 production was measured by ELISA. Error bars represent SEM of triplicate 
culture samples. (B) Inguinal lymph node cells were re-stimulated with collagen, TGFβ, 
IL-6 and IL-23 in the presence or absence of IL-4 for five days, followed by six hours 
with PMA, ionomycin and brefeldin A.  IL-17 and IFNγ expression were measured by 
ICS.  Data represents cytokine staining among total LN cells, of which approximately 
25% are CD4+. (C) Splenocytes were cultured with collagen, TGFβ, IL-6 and IL-23 in 
the presence of increasing concentrations of IL-4, IFNγ or IL-12.  After five days IL-17 
production was measured by ELISA.  Error bars represent SEM of triplicate culture 
samples. 
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Fig. 2.14A: Effect of Th1 and Th2 cytokines on IL-17 production

during KLH re-stimulation
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Fig. 2.14B: Effect of Th1 and Th2 cytokines on IL-17 production during

KLH re-stimulation in the presence of Th17-skewing conditions
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Figure 2.14: Endogenous and exogenous Th1 and Th2 cytokines regulate KLH-specific 
IL-17 production. 

BALB/c mice were immunized i.p. with KLH in CFA.  Splenocytes were collected two 
weeks later and re-stimulated in vitro with KLH plus IL-4, IFNγ, IL-12 or neutralizing 
antibodies to these cytokines (A).  Alternatively, splenocytes were re-stimulated with 
KLH plus TGFβ, IL-6 or IL-23 in the presence or absence of IL-4, IFNγ or IL-12 (B).  
After five days IL-17 was measured by ELISA.  Error bars represent SEM of triplicate 
culture samples. 
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Discussion 

The data presented herein demonstrates a remarkable degree of complexity in the 

cytokine-mediated regulation of Th17 cells.  Initial reports suggested that T helper cell 

cross-regulation is rather black and white: TGFβ, IL-6 and IL-23 promote Th17 cells 

while IL-4, IFNγ and IL-12 inhibit Th17 cells.  Upon closer inspection, however, we see 

many shades of grey.  For instance, Th17 cells developing in the presence of IL-4 may 

continue to express IL-22, while Th17 cells developing in the presence of IFNγ may 

continue to express IL-23R, suggesting that there may be an array of T helper cell subset 

hybrids.  It is also particularly interesting that IL-12 can suppress Th17 development very 

potently, through both direct and indirect mechanisms, yet IFNγ and IL-4 continue to 

suppress Th17 activity in the presence of TGFβ, IL-6 and IL-23, while IL-12 does not.  

On the other hand, although IL-4 is a potent suppressor of Th17 development and 

cytokine expression even in the face of strong positive signals, our data suggests that IL-

4-mediated inhibition of Th17 activity is unstable and short lived.  This observation 

seems at odds with previous work from our lab demonstrating that a single injection of 

IL-4-transduced dendritic cells induces long-lasting protection from CIA, which is 

thought to be mediated by suppression of collagen-specific Th17 responses [160, 161].  

One potential explanation may be that sustained suppression requires multiple negative 

signals, or that the negative signals must be received in the proper context – such as TCR 

stimulation or costimulation.  However, the instability of in vitro suppression by IL-4 

supports the fact that there is no evidence for Th17-Th2 conversion, despite the 

abundance of data demonstrating Th17-Th1 conversion.  
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These results suggest a fundamental difference in the mechanisms underlying 

regulation of Th17 cells by Th1 cytokines, which may be stable and induce conversion, 

versus Th2 cytokines, which may be unstable.  How Th17 cells integrate a complex array 

of positive and negative signals is an interesting area for future research and likely 

depends on factors such as the ability of key transcription factors to bind to Th17 gene 

loci, which we will explore in further detail in the following chapter.     

Although much attention has been given to the cytokines that regulate T helper 

differentiation from naïve T cells, there is a paucity of data on how cells are regulated 

beyond this early window.  For instance, current dogma states that TGFβ and IL-6 act on 

naïve T cells to induce Th17 differentiation, while IL-23 acts on existing Th17 cells, but 

our observations suggest that TGBβ and IL-6 may be equally as important as IL-23 for 

augmenting the pathogenicity of effector and memory Th17 cells.  In addition, recent 

observations demonstrate a remarkable degree of fluidity within T helper cell lineages in 

vivo, with cells converting from one lineage to another or stably expressing multiple 

cytokines characteristic of different lineages.  Thus, much more work is needed to 

address the role of cytokine-mediated regulation throughout the full lifespan of each of 

the T helper cell subsets, as well as the ways in which our notions of divergent T helper 

lineages break down and the lines between distinct subsets become blurred. 
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Chapter 3 

Signal transduction and chromatin remodeling downstream of the IL-4R 

 We have established that IL-4 is a potent suppressor of IL-17 expression and 

Th17 differentiation, which logically leads us to question the molecular mechanisms of 

suppression downstream of the IL-4 receptor.  The IL-4R is composed of two subunits: 

the high affinity IL-4-binding subunit IL-4Rα and the pleiotropic cytokine receptor 

subunit known as the common γ chain.  Binding of IL-4 to the IL-4R activates JAK1 and 

JAK3, which phosphorylate the IL-4Rα chain, leading to recruitment and 

phosphorylation of STAT6.  Phosphorylated STAT6 then translocates to the nucleus, 

where it binds to DNA and modulates gene expression, particularly genes involved in 

Th2 differentiation.  In addition, the phosphorylated IL-4Rα chain recruits IRS-2, which 

leads to activation of Akt and ERK, which are thought to play an important role in cell 

survival and proliferation (reviewed in [166]).  Multiple reports have also shown that 

STAT5, the primary mediator of IL-2 receptor signaling, can be activated by IL-4 

through the common γ chain, which is shared by both cytokine receptors [167-169]. 

Role of STAT6 

 We hypothesized that suppression of IL-17 by IL-4 was mediated by STAT6, and 

to address this question we repeated many of our previous in vitro experiments using 

STAT6-deficient Th17 cells.  Wildtype or STAT6-deficient naïve T cells were stimulated 

with WT or STAT6-deficient BM-DCs, respectively, under Th17 conditions as described 

previously, with the one exception that bone marrow was cultured with GM-CSF alone, 
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rather than IL-4 and GM-CSF, to minimize potential artifacts from differences in 

phenotype between WT and STAT6-deficient DCs.  Looking first at suppression of re-

stimulation of pre-existing Th17 cells, the results confirmed our hypothesis in that IL-4 

had no effect on IL-17 expression in the absence of STAT6 (Fig. 3.1A).  Similarly, by 

real-time RT-PCR, IL-4 failed to suppress IL-17A, IL-17F, RORγt and IL-23R 

expression in STAT6-deficient Th17 cells (Fig. 3.1B).  Surprisingly, however, when 

testing inhibition of naïve Th17 differentiation, we found that IL-4 retained partial but 

significant suppressive effects even in the absence of STAT6 (Fig. 3.2A).  To confirm 

these results in another culture system we stimulated whole splenocytes with anti-CD3 

and measured IL-17 by ELISA, which in theory should induce a combination of naïve 

Th17 differentiation and memory Th17 re-stimulation.  Again we found that IL-4 was 

able to modestly suppress IL-17 production in STAT6 knockout spleen cultures (Fig. 

3.2B).  To exclude potential artifacts due to an unforeseen leaky STAT6 deletion, we did 

Western blots of splenocytes and confirmed the absence of STAT6 in the knockout mice 

(Fig. 3.3).   

In addition, the basal level of IL-17 production, both in culture supernatants and 

in the serum of un-manipulated mice, was greatly increased in the STAT6 knockouts 

(Fig. 3.2B and data not shown), suggesting that STAT6 mediates suppression of IL-17 by 

endogenous IL-4 or IL-13 (the only other cytokine known to signal via STAT6) in the 

steady state.  In fact, a recent publication demonstrates that IL-13 can act directly on 

Th17 cells and inhibit IL-17 expression, which came as a surprise because previous data 

suggested that CD4+ T cells did not express the IL-13 receptor [70].  We found that there 

is also increased basal production of IL-17 in culture supernatants from IL-4Rα knockout 
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mice as compared to wildtype (see Figure 3.5A, below), confirming the role of 

endogenous IL-4 or IL-13 (the IL-4Rα chain is shared by the IL-13R) in suppressing 

Th17 development, but IL-17 levels are significantly higher in STAT6 knockouts than in 

IL-4Rα knockouts, suggesting that STAT6 may also suppress IL-17 through IL-4Rα-

independent mechanisms.  

Given that STAT6 is a transcription factor, we hypothesized that it may be 

playing a role in the regulation of IL-17 production by directly binding to DNA in the 

Il17a, Il17f and Rorc loci and inhibiting transcription.  Sequence analysis of these loci 

identified potential STAT6 binding sites approximately 4 kb upstream of the Il17a locus 

and 6 kb upstream of the Rorc locus, as well as a couple sites in introns of both genes.  

While none of these sites are ideally situated (i.e., within the proximal promoter close to 

and directly upstream of the transcription start site), many transcription factors have been 

shown to alter gene expression from distant or intronic sites.  Thus we decided to look for 

STAT6 binding at these sites in IL-4-treated Th17 cells by chromatin 

immunoprecipitation (ChIP).  Unfortunately we were unable to detect any signal above 

the background in any of our attempts at STAT6 ChIP, even at positive control sites such 

as the IL-4 promoter in IL-4-stimulated Th2 cells, despite significant efforts at trouble-

shooting (data not shown).  Thus we cannot conclusively rule out a false-negative result 

and the possibility of STAT6 binding to Th17 loci.  Based on personal communication 

with John O’Shea at the NIH, who has had success with STAT6 ChIP-seq, there is no 

evidence for STAT6 binding to the IL-17 promoter in Th2 cells.  However, evidence also 

suggests that Th2 cells silence gene expression at the IL-17 locus by regulatory 

nucleosomes, which may occlude potential STAT6 binding sites in the DNA [87].  The 
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possibility remains that STAT6 binds to the IL-17 locus in Th17 cells (when the 

chromatin is in an open conformation) but not in Th2 cells (when the IL-17 locus is 

epigenetically silenced). 
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Fig. 3.1A: Effect of IL-4 on Th17 re-stimulation in the

absence of STAT6
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Fig. 3.1B: Effect of IL-4 on Th17-family gene expression in the
absence of STAT6
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Figure 3.1: Suppression of Th17 re-stimulation by IL-4 depends on STAT6. 

Wildtype or STAT6-deficient naïve T cells were cultured under Th17 conditions for five 
days, rested for two days and then re-stimulated with anti-CD3 in the presence or absence 
of IL-4 for two days.  (A) Cells were treated for six hours with PMA, ionomycin and 
brefeldin A and IL-17 expression was measured by ICS. Error bars represent SEM of 
triplicate cultures. (B) RNA was collected and IL-17A, IL-17F, RORγt, IL-22 and IL-
23R expression was measured by real-time PCR with primers and probes from Applied 
Biosystems.  Data is normalized first to β-actin, the internal control, and then to the 
matched sample without IL-4.  Error bars represent SEM of triplicate PCRs.
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 Fig. 3.2A: Effect of IL-4 on Th17 differentiation in the
absence of STAT6
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Fig. 3.2B: Effect of IL-4 on IL-17 production by anti-CD3
stimulation of whole spleens in the absence of STAT6
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Fig. 3.2C: Effect of IL-4 on IL-17 production by anti-CD3 stimulation
of whole spleens in the absence of STAT6: % of control
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Figure 3.2: IL-4 maintains partial suppression of IL-17 in the absence of STAT6. 

(A) Wildtype or STAT6-deficient naïve T cells were stimulated with Th17-skewing 
conditions in the presence or absence of IL-4 for five days, rested for two days and re-
stimulated with PMA, ionomycin and brefeldin A.  IL-17 was measured by ICS.  Error 
bars represent SEM of triplicate culture samples.  ** p<0.01 versus no IL-4 (B) Whole 
spleen cells from wildtype or STAT6-deficient mice were stimulated with anti-CD3 and 
increasing concentrations of IL-4 for five days and IL-17 was measured by ELISA.  Error 
bars represent SEM of triplicate culture samples. * p<0.05 versus no IL-4. In (C) the data 
from (B) was normalized to the IL-17 expression in the sample with no IL-4 to more 
clearly show the efficiency of suppression by IL-4. 
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Role of STAT5 

As mentioned above, published reports suggest that the IL-4R can activate 

STAT5 in addition to STAT6 [167-169].  Previous work from O’Shea and colleagues 

also demonstrates that STAT5, downstream of the IL-2 receptor, can bind to the IL-17 

promoter and inhibit Th17 differentiation [170].  Thus we hypothesized that partial 

suppression of IL-17 by IL-4 in the absence of STAT6 was mediated by STAT5.  As a 

proof of principle we confirmed that IL-4 induces STAT5 phosphorylation in WT and 

STAT6-deficient T cells by Western blot (Fig. 3.3).  The results show that IL-4 does, in 

fact, activate STAT5, albeit to a much lesser extent than IL-2.  In addition, we observed 

enhanced STAT5 activation in STAT6 knockouts, suggesting that there may be 

competition between STAT5 and STAT6 for binding sites on IL-4Rα and/or 

compensation for the lack of STAT6 by STAT5.    

To directly determine the role of STAT5, we obtained spleens from mice with 

CD4+ T cell-specific deletion of STAT5 (Stat5a/bfl/fl:CD4-Cre) from Dr. John O’Shea 

(NIH) and tested the effect of IL-4 on IL-17 expression during stimulation with anti-CD3 

(Fig. 3.4) or Th17-polarizing conditions (Fig 3.5).  In both conditions, the IL-4 dose-

response curve of the Stat5a/bfl/fl:CD4-Cre spleen cell cultures closely recapitulated that 

of the WT cultures, indicating that STAT5 is not required for suppression of IL-17 by IL-

4.  Although the basal level of IL-17 production is greatly increased in the 

Stat5a/bfl/fl:CD4-Cre cultures, this difference could be attributed to a defect in Th17 

suppression downstream of IL-2 [170].  However, a potentially confounding factor with 

these mutant mice is that the majority of the CD4+ T cells in the periphery appear to be 
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previously activated Th17 cells.  To address the effect of IL-4 on differentiation and re-

stimulation of Th17 cells that more closely resemble WT, we obtained Stat5a/bfl/fl:CD4-

Cre thymi and repeated the experiment using purified CD4 single-positive thymocytes.  

The results of the thymocyte cultures recapitulated the spleen cultures: the CD4 single-

positive thymocytes efficiently differentiated into Th17 cells in vitro and were potently 

suppressed by IL-4, regardless of the presence or absence of STAT5 (Fig. 3.6A).  As one 

might expect given the predominance of Th17 cells in the periphery of Stat5a/bfl/fl:CD4-

Cre mice, the baseline levels of IL-17 production are considerably higher in the 

Stat5a/bfl/fl:CD4-Cre spleen cultures than in the WT spleen cultures (Fig. 3.4 and 3.5).  

Also as predicted, when we circumvented this problem by purifying single-positive 

thymocytes, the basal levels of Th17 differentiation equalize, and the levels are slightly 

higher in the WT than in the Stat5a/bfl/fl:CD4-Cre, possibly due to decreased survival or 

proliferation of the Stat5a/bfl/fl:CD4-Cre cells as a result of the defect in IL-2 receptor 

signaling (Fig. 3.6A).  Confirming the functional absence of STAT5 in the 

Stat5a/bfl/fl:CD4-Cre thymocytes, Figure 3.6B reproduces the data from O’Shea and 

colleagues showing a lack of Th17 suppression by IL-2.     

The possibility remains that STAT5 only mediates suppression of IL-17 

downstream of IL-4 as a compensatory mechanism in the absence of STAT6, which is 

supported by the enhanced STAT5 activation in the STAT6 knockout (Fig. 3.3).  Testing 

this hypothesis would require either breeding STAT5/STAT6 double-deficient mice or 

using siRNA to knock down STAT5 expression in STAT6-deficient T cells and is an area 

for future study. 
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Fig. 3.3: STAT5 and STAT6 
activation by IL-4 in Th17 cells 

 

Figure 3.3: IL-4 activates STAT5 and STAT6 in Th17 cells. 

Wildtype or STAT6-deficient Th17 cells were generated in vitro as described and rested 
overnight in low-serum media with cytokine-neutralizing antibodies to reduce the 
background level of STAT activation.  Cells were then washed and stimulated with 
50ng/mL IL-4 or IL-2 for 15min, unless stated otherwise, and lysed with PhosphoSafe 
Lysis Buffer (Novagen). Lysates were reduced and run on 10% SDS-PAGE gels and 
stained with antibodies for phospho- or total STAT5 or STAT6.
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Fig. 3.4A: Effect of IL-4 on IL-17 production by Stat5a/bfl/fl:CD4-Cre
spleens stimulated with anti-CD3
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Fig. 3.4B: Effect of IL-4 on IL-17 production by Stat5a/bfl/fl:CD4-Cre
spleens stimulated with anti-CD3: % of control
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Figure 3.4: STAT5 is not required for suppression of IL-17 production by anti-CD3-
stimulated splenocytes. 

(A) Spleen cells from wildtype or Stat5a/bfl/fl:CD4-Cre mice were stimulated with anti-
CD3 with increasing concentrations of IL-4.  After five days IL-17 expression was 
measured by ELISA.  Error bars represent SEM of triplicate culture samples.  (B) The 
same results as in (A) with IL-17 expression normalized to the sample with no IL-4 to 
more clearly show the efficiency of suppression by IL-4. 
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 Fig. 3.5A: Effect of IL-4 on IL-17 production by Stat5a/bfl/fl:CD4-Cre
spleens stimulated with anti-CD3 and Th17-skewing cytokines
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3.5B: Effect of IL-4 on IL-17 production by Stat5a/bfl/fl:CD4-Cre
spleens stimulated with anti-CD3 and Th17-skewing cytokines: % of

control
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Figure 3.5: STAT5 is not required for suppression of IL-17 production by Th17-
stimulated splenocytes. 

(A) Spleen cells from wildtype or Stat5a/bfl/fl:CD4-Cre mice were stimulated with anti-
CD3 and the Th17-skewing cocktail plus increasing concentrations of IL-4.  After five 
days IL-17 expression was measured by ELISA.  Error bars represent SEM of triplicate 
culture samples.  (B) The same results as in (A) with IL-17 expression normalized to the 
sample with no IL-4 to more clearly show the efficiency of suppression by IL-4. 
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Fig. 3.6A: Effect of IL-4 on Th17 differentiation by

Stat5a/bfl/fl:CD4-Cre thymocytes
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Fig. 3.6B: Effect of IL-4, IFNγ and IL-2 on IL-17 expression by
Stat5a/bfl/fl:CD4-Cre thymocytes
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Figure 3.6: IL-4 and IFNγ but not IL-2 inhibit IL-17 expression by Stat5a/bfl/fl:CD4-Cre 
thymocytes. 

CD4 single-positive thymocytes were isolated by negative selection MACS from 
wildtype or STAT5-deficient thymi and stimulated with BM-DCs under Th17-polarizing 
conditions, in the presence or absence of IL-4, IFNγ or IL-2, for five days.  Th17 
differentiation was measured by ICS (A) or ELISA (B). Part (B) depicts only the STAT5-
deficient cultures.  Error bars represent SEM of triplicate culture samples. 
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Role of IRS-2 

 In addition to activating the STAT pathways, phosphorylation of the IL-4Rα 

chain leads to recruitment of IRS-2, which serves as an adaptor for a number of other 

signaling proteins, including the p85 subunit of PI3K and Grb2.  Activated PI3K then 

activates Akt, while Grb2 recruits SOS/Raf, which activates MEK1/2 and ERK1/2.  

Detailed structure-function analyses of the IL-4Rα chain initially led to the conclusion 

that signals generated through STAT6 primarily activate differentiation-specific gene 

programs, while IRS-2 mediates mitogenic and anti-apoptotic signals (reviewed in [166]).  

However, more recent data using primary T cells from STAT6 and IRS-2 deficient mice 

demonstrated that both STAT6 and IRS-2 are required for the mitogenic response to IL-4 

and that IRS-2 plays a previously unrecognized role in the development of Th2 cells 

[171]. 

 To address the role of IRS-2 in IL-4-mediated Th17 regulation we obtained mice 

bearing a mutation in the IL-4Rα chain that prevents recruitment and activation of IRS-2 

without affecting STAT6 activation.  As controls we included STAT6 knockout mice, as 

well as mice deficient in either IL-4 or the IL-4Rα chain.  Total splenocytes were 

stimulated with anti-CD3 alone or anti-CD3 plus Th17 conditions in the presence or 

absence of IL-4, and IL-17 production was measured by ELISA (Fig. 3.7).  The results 

from stimulation with anti-CD3 alone show that the STAT6 knockout, IL-4 knockout and 

IL-4Rα knockout all had a higher baseline levels of IL-17 production than WT.  Addition 

of IL-4 had no effect on IL-17 production in the IL-4Rα knockout, a moderate effect in 

the STAT6 knockout and a potent effect in the IL-4 knockout and WT.  The effect of IL-

4 in the presence of Th17-skewing conditions was comparable to the effect in cultures 
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stimulated with anti-CD3 alone.  The only notable discrepancy between the two stimuli 

was that the differences between the baseline level of IL-17 in the WT, IL-4 knockout, 

IL-4Rα knockout and STAT6 knockout that were evident with anti-CD3 alone were 

masked in the Th17-skewing conditions, possibly due to the addition of neutralizing 

antibody to IL-4 or the fact that IL-17 production reached a maximal level.   

Interestingly, the IL-4Rα mutant cultures, which cannot activate IRS-2 in 

response to IL-4, produce less IL-17 than WT with either anti-CD3 or Th17 stimulation 

but respond to exogenous IL-4 equally or slightly better than WT.  These results suggest 

that IRS-2 activation is not required for suppression of IL-17 expression in response to 

IL-4 but that there may be an unanticipated role for IL-4-induced IRS-2 signaling in 

promoting Th17 responses.  Similarly, although IL-4 is commonly known to inhibit Th1 

responses, there is some evidence that IL-4 can also support Th1 differentiation, possibly 

at a very early stage or indirectly through effects on APCs.  IL-4-induced IRS-2 signaling 

may promote survival or proliferation of Th17-precursors or memory cells rather than 

having a direct effect on Th17 differentiation.  Alternatively, IRS-2 may support Th17 

development indirectly, via survival, proliferation or activation of splenic antigen 

presenting cells, for example.  Further studies are needed to determine the key cellular 

targets and the relative contributions of Akt and ERK to this pathway.  
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Fig. 3.7A: Effect of IL-4 on IL-17 production by IL-4R-impaired
splenocytes stimulated with anti-CD3
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Fig. 3.7B: Effect of IL-4 on IL-17 production by IL-4R-impaired
splenocytes stimulated with anti-CD3: % of control
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Figure 3.7: Effect of IL-4 on IL-17 production by IL-4R-impaired splenoctyes stimulated 
with anti-CD3. 

Spleen cells from wildtype, IL-4-deficient, IL-4R-deficient, IL-4R-mutant and STAT6-
deficient mice were stimulated with anti-CD3 and increasing concentrations of IL-4 for 
five days.  Supernatants were anyalzyed by IL-17 ELISA. Error bars represent SEM of 
triplicate culture samples.  In (B), the data from (A) was normalized to the IL-17 
expression in the condition with no IL-4.
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Fig. 3.8A: Effect of IL-4 on IL-17 production by IL-4R-impaired
splenocytes stimulated under Th17 conditions
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Fig. 3.8B: Effect of IL-4 on IL-17 production by IL-4R-impaired
splenocytes stimulated under Th17 conditions: % of control
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Figure 3.8: Effect of IL-4 on IL-17 production by IL-4R-impaired splenocytes stimulated 
under Th17 conditions 

Spleen cells from wildtype, IL-4-deficient, IL-4R-deficient, IL-4R-mutant and STAT6-
deficient mice were stimulated with anti-CD3 and Th17-polarizing cytokines with 
increasing concentrations of IL-4 for five days.  Supernatants were anyalzyed by IL-17 
ELISA. Error bars represent SEM of triplicate culture samples.  In (B), the data from (A) 
was normalized to the IL-17 expression in the condition with no IL-4.
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Role of GATA3 

 Our studies on the role of STAT6 in suppression of IL-17 by IL-4 demonstrate 

that STAT6 is activated downstream of the IL-4R in Th17 cells, but we were unable to 

demonstrate direct binding of STAT6 to the Il17a locus.  Previous data from other 

groups, however, suggests that suppression of Th1 development by IL-4 is mediated by 

GATA-3, the transcription factor induced by IL-4 that acts as the master regulator of Th2 

differentiation [51, 55, 72, 101].  Using real-time PCR, we looked at the very early 

effects of IL-4 on GATA-3 expression in Th17 cells stimulated with anti-CD3.  The 

results in Figure 3.9 show that GATA-3 is up-regulated as early as two hours after the 

addition of IL-4, prior to down-regulation of IL-17.  We also found many potential 

GATA-3 binding sites near the Il17a and Rorc transcriptional start sites.  Thus we 

hypothesized that IL-4 activates STAT6, which goes to the nucleus to induce GATA-3 

expression, and GATA-3 binds to DNA in the Il17a/f and Rorc loci, inhibiting Th17 

activity.   

To confirm our hypothesis that STAT6 acts indirectly, we attempted to determine 

if IL-4-induced suppression of Th17 gene expression requires synthesis of new proteins 

by adding the protein synthesis inhibitor cycloheximide.  These experiments were 

inconclusive, however, because we found the effects of cycloheximide to be highly 

variable, and the addition of cycloheximide alone often significantly down-regulated IL-

17 expression, regardless of the presence or absence of IL-4, despite very brief exposure 

(data not shown).  Further experiments are necessary to determine if it is possible to find 

the right balance between efficacy and toxicity.  However, we decided to move forward 

with the working hypothesis that STAT6 acts indirectly and look for direct binding of 
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GATA-3 to Th17 loci by ChIP.  Although we consistently saw an increased signal at 

multiple loci when Th17 cells were treated with IL-4, the expression levels were not high 

enough above the background (i.e., ChIP with rat IgG) to allow us to draw any 

conclusions (data not shown).  Like the STAT6 ChIP, these experiments require further 

trouble-shooting for the immunoprecipitation step, and without a strong positive control it 

is difficult to rule out a false-negative result due to technical issues with the antibody to 

GATA-3.     

To address the role of GATA-3 in suppression of IL-17 expression downstream of 

IL-4, we received spleens from mice with an induced GATA-3 deletion as a kind gift 

from the laboratory of Dr. J.D. Engel at the University of Michigan.  Because GATA-3 

plays multiple roles in embryonic development in addition to the role in Th2 

differentiation, mice bearing a germline Gata3 deletion are non-viable.  To create 

conditional knockouts, mice bearing a floxed Gata3 gene (flanked by loxP sites) were 

crossed to mice expressing Cre recombinase under the control of the interferon-inducible 

Mx1 promoter [172-174].  The resulting Gata3fl/fl:TgMx1cre mice were injected three times 

i.p. with synthetic double-stranded RNA [polyinosinic-polycytidylic acid (pI-pC)] to 

induce IFN expression, leading to up-regulation of Cre recombinase and excision of the 

Gata3 gene.  Spleen cells from these mice and control mice (bearing one wildtype Gata3 

allele without loxP sites, lacking Mx1cre or untreated with pI-pC) were cultured with 

anti-CD3 in the presence or absence of Th17-skewing cytokines, and the effect of IL-4 on 

IL-17 expression was measured by ICS and real-time PCR.  The results show that 

deletion of Gata3 had no effect on suppression of IL-17 by IL-4, in both anti-CD3 and 

Th17-stimulated cultures, as measured by both ICS (Fig. 3.10) and qRT-PCR (Fig. 3.11).  
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The data suggests that there is a slight increase in IL-17 expression in spleens lacking 

GATA-3, which may be an indirect result of the fact that in the absence of GATA-3 Th2 

differentiation is impaired and more naïve T cells can differentiate into Th17 cells. 

To confirm that the inducible deletion was successful, we measured GATA-3 

mRNA expression in these spleen cultures by real-time PCR.  The results in Figure 3.12 

demonstrate that GATA-3 expression was reduced by approximately 70% under all 

culture conditions.  Although this level of deletion may be less than ideal, it is not outside 

the expected range for in vivo conditional deletion.  Despite the incomplete deletion, we 

believe that the fact that there was clearly no change in the dose-response of IL-4 in these 

cultures implies that GATA-3 is not required for suppression of IL-17.  However, to 

confirm these results in a cleaner system we plan on repeating the experiments using 

purified CD4+ T cells rather than whole spleens to get a more accurate measurement of 

GATA-3 expression specifically within our cells of interest.  If necessary, potential future 

experiments to improve Gata3 deletion include crossing Gata3fl/fl mice with a strain 

carrying a more effective inducible Cre, such as the tamoxifen-inducible system, or 

transfecting Gata3fl/fl T cells with retroviral Cre in vitro and sorting for transfectants 

based on expression of a co-transfected marker. 
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 Fig. 3.9: IL-4 rapidly up-regulates GATA-3 mRNA
in Th17 cells
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Figure 3.9: IL-4 rapidly up-regulates GATA-3 mRNA in Th17 cells. 

Th17 cells were generated in vitro as described.  After a week the cells were re-
stimulated with anti-CD3 in the presence or absence of 50ng/mL IL-4 for two or four 
hours.  RNA was collected and message levels for IL-17 and GATA-3 were analyzed by 
real-time PCR with primers and probes from Applied Biosystems.  Expression is 
normalized to β-actin.  Error bars represent SEM of triplicate PCR reactions. 
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 Fig. 3.10A: Effect of IL-4 on IL-17 expression by Gata3 cko
spleens stimulated with anti-CD3
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Fig. 3.10B: Effect of IL-4 on IL-17 expression by Gata3 cko

spleens stimulated with Th17 conditions
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Figure 3.10: Effect of IL-4 on IL-17 production by Gata3 cko spleens. 

Spleen cells from mice with inducible Gata3 deletion or controls without deletion were 
stimulated with anti-CD3 (A) or anti-CD3 plus Th17-polarizing cytokines (B) with 
increasing concentrations of IL-4.  After five days cells were treated with PMA, 
ionomycin and brefeldin A for six hours and IL-17 expression was measured by ICS.
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Fig. 3.11A: IL-17A mRNA expression in Gata3 cko spleens
stimulated with anti-CD3 or Th17 conditions +/- IL-4
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Fig. 3.11B: RORγt expression in Gata3 cko spleens
stimulated with anti-CD3 or Th17 conditions +/- IL-4
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Figure 3.11: Effect of IL-4 on IL-17 and RORγt mRNA expression by Gata3 cko spleens. 

Spleens from mice with inducible Gata3 deletion or controls without deletion were 
stimulated with anti-CD3 or anti-CD3 plus Th17-polarizing cytokines, in the presence or 
absence of 50ng/mL IL-4.  After three days RNA was collected and analyzed for IL-17 
(A) and RORγt (B) expression by real time PCR.  The left y-axis refers to the samples 
treated with anti-CD3, while the right y-axis refers to samples treated with anti-CD3 plus 
Th17-polarizing cytokines.  Error bars represent SEM of triplicate PCR reactions. 
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Fig. 3.12: GATA-3 mRNA expression in Gata3 cko spleens

stimulated with anti-CD3 or Th17 conditions +/- IL-4
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Figure 3.12: GATA-3 mRNA expression by Gata3 cko spleens. 

Spleens from mice with inducible Gata3 deletion or controls without deletion were 
stimulated with anti-CD3 or anti-CD3 plus Th17-polarizing cytokines, in the presence or 
absence of 50ng/mL IL-4.  After three days RNA was collected and analyzed for GATA-
3 expression by real time PCR.  The left y-axis refers to the samples treated with anti-
CD3, while the right y-axis refers to samples treated with anti-CD3 plus Th17-polarizing 
cytokines.  Error bars represent SEM of triplicate PCR reactions. 
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Effect of IL-4 on chromatin structure at Th17 loci   

 Similar to the natural progression of the signaling cascade, the focus of our 

experiments has gradually moved inward, starting near the cell membrane with events 

proximal to the IL-4R and ultimately leading to the nucleus with changes at the level of 

the chromatin.  The literature suggests that T helper cell differentiation and cross-

regulation are associated with both activating and inhibitory epigenetic changes at 

cytokine and transcription factor loci.  For example, STAT6 and GATA-3 silence IFNγ in 

Th2 cells by recruiting the histone methyltransferase EZH2 and inducing H3K27me3, a 

marker of inactive chromatin [50, 175].  In addition, GATA-3 binds to histone de-

acetylase enzymes and may mediate gene silencing via de-acetylation of H3 and H4 [97, 

101].  Recent reports have shown that the Il17 locus undergoes H3Ac and H3K4me3, two 

markers of transcriptionally active chromatin, in Th17 cells, versus H3K27me3 in Th1, 

Th2 and Tregs [87, 106].  The addition of IL-4 during Th17 differentiation prevents 

H3Ac and H3K4me3 and induces H3K27me3 at the Il17a promoter (John O’Shea, 

personal communication).  However, these observations represent stable changes 

associated with heritable lineage commitment, and nothing is currently known about 

epigenetic changes induced by transient suppression of previously differentiated T helper 

cells.  Given that adding IL-4 during Th17 differentiation likely results in permanent 

skewing towards a Th2 phenotype, while we have shown that adding IL-4 to pre-existing 

Th17 cells inhibits IL-17 expression without inducing de-differentiation or IL-4 

expression, the associated epigenetic changes are almost certain to be different.  Another 

important factor to consider is that inhibition of Th17 differentiation occurs in a naïve T 

cell, where the chromatin at the Il17 locus exists in a relatively neutral state, while 
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inhibition of Th17 activity requires reversal of a highly active chromatin state at the Il17 

locus.   

 To address possible epigenetic mechanisms for IL-4-induced silencing of IL-17 

expression in pre-existing Th17 cells, we generated Th17 cells in vitro as described 

above, re-stimulated them with anti-CD3 and Th17-skewing cytokines in the presence or 

absence of IL-4 for 6 or 24 hours, and measured levels of H3Ac, H4Ac, H3K4me3 and 

H3K27me3, as well as PolII and STAT3 binding at the Il17a promoter, Il17a/f intergenic 

region and Rorc promoter by ChIP.  Given the complexity of the histone code and how 

little we currently understand about transcriptional regulation, it is not surprising that our 

results show a confusing combination of signals expected to both promote and inhibit 

gene expression.  Acetylation of H3 and H4, which are typically associated with active 

chromatin, were both up-regulated at the Il17a and Rorc promoters by IL-4 (Fig. 

3.13A&B).  IL-4 also increased binding of PolII at the Il17a and Rorc promoters (Fig. 

3.13C), another marker typically associated with increased transcriptional activity, 

despite the fact that we clearly see decreased expression of IL-17 and RORγt message.  

ChIPs for H3K4me3 and H3K27me3, which are associated with active and inactive 

chromatin, respectively, were inconclusive because neither produced a significant signal 

over background (data not shown).  Further experiments are needed to optimize these 

assays.  ChIPs for STAT3, on the other hand, demonstrated very strong signals at the 

Il17a promoter, as expected based on the published role of STAT3 in IL-17 expression, 

but surprisingly also showed strong binding at the Il17a/f intergenic region and the Rorc 

promoter, which has not been previously described (Fig. 3.14).  Interestingly, IL-4 
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potently inhibited STAT3 binding at the Il17a promoter but had no effect at the Il17a/f 

intergenic region or the Rorc promoter.              
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Fig. 3.13A: IL-4 up-regulates H3 acetylation at
the Il17a and Rorc promoters
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Fig. 3.13B: IL-4 up-regulates H4 acetylation at
the Il17a and Rorc promoters
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Fig. 3.13C: IL-4 up-regulates PolII binding at the Il17a
and Rorc  promoters
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Figure 3.13: IL-4 up-regulates markers of active chromatin at Th17 loci. 

Th17 cells were generated in vitro as described. After one week the cells were re-
stimulated for 24 hours with anti-CD3 and Th17-polarizing cytokines in the presence or 
absence of 50ng/mL IL-4.  ChIPs were carried out using the EZ-ChIP kit according to 
manufacturer’s instructions (Millipore), with antibodies for acetylated histone 3 (A), 
acetylated histone 4 (B), RNA polymerase II (C) or isotype control.  Eluted DNA was 
quantitated by SYBR green real time PCR with primers specific for the Il17a or Rorc 
promoters.  Data is normalized to the corrected Ct values of the 1% input sample.  Error 
bars represent SEM of triplicate PCR reactions. 
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Fig. 3.14: IL-4 inhibits STAT3 binding at the Il17a promoter

but not at other sites

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Th17
Th17 + IL-4

rbIgG
Il17a promoter

STAT3
Il17a promoter

STAT3
Il17a/f intergenic

region

STAT3
Rorc promoter

%
 o

f i
np

ut
 

 

 

 

 

Figure 3.14: IL-4 inhibits STAT3 binding at the Il17a promoter but not at other sites. 

Th17 cells were generated in vitro as described. After one week the cells were re-
stimulated for 6 hours with anti-CD3 and Th17-polarizing cytokines in the presence or 
absence of 50ng/mL IL-4.  ChIPs were carried out using the EZ-ChIP kit according to 
manufacturer’s instructions (Millipore), with antibody specific for STAT3 or isotype 
control.  Eluted DNA was quantitated by SYBR green real time PCR with primers 
specific for the Il17a promoter, Il17a/f intergenic region or Rorc promoter.  Data is 
normalized to the corrected Ct values of the 1% input sample.  Error bars represent SEM 
of triplicate PCR reactions.
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Discussion  

Our initial hypotheses about the molecular mechanisms of suppression of Th17 

responses by IL-4 were simple and direct: IL-4 binds to the IL-4R and activates STAT6, 

STAT6 goes to the nucleus and inhibits transcription of IL-17A, IL-17F and RORγt.  

Instead what we found was several added layers of complexity, which has prompted us to 

broaden our view, delve deep into exciting new territories and ultimately expand the way 

we think about T helper cell regulation.   

To start with, we have shown that the well-established dogma that the IL-4R 

signals through STAT6, while true, overlooks potential secondary effects mediated by 

STAT5.  Given that the IL-4R is a heterodimer composed of the specific IL-4Rα subunit 

and the common γ chain, which is found in a number of other cytokine receptors, 

including the STAT5-activating IL-2R, it is not at all surprising that there may be some 

“leaky” STAT5 activation by IL-4.  Although we found that STAT5 was dispensable for 

inhibition of IL-17 expression by IL-4, there are many other effects of IL-4, possibly in 

other IL-4R-positive cell types, which may depend on STAT5. 

Despite a number of technical hurdles that make it difficult to draw firm 

conclusions about STAT6 binding to the Il17a promoter and about the requirement for 

protein synthesis, the limited precedent for direct inhibition of gene transcription by 

STAT family molecules led us to hypothesize that suppression of IL-17 downstream of 

STAT6 is most likely indirect, or at least a combination of direct and indirect effects.  

Thus we have begun to search for factors up-regulated by IL-4 and/or capable of 

silencing IL-17 expression, both in the literature and by microarray.  From the literature 
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we identified a number of candidate transcription factors and looked for early up-

regulation of their gene expression in Th17 cells in response to IL-4.  Our microarray 

data has also returned a number of interesting transcription factor genes either up-

regulated or down-regulated by IL-4, and future experiments exploring these leads are 

planned.  Although without convincing results from the cycloheximide experiments, the 

possibility remains that suppression of IL-17 depends on IL-4-induced changes in protein 

activity rather than expression. 

Our initial findings suggested that GATA-3 was a highly promising candidate: it 

has been shown to mediate both positive and negative effects on gene expression in T 

helper cells though multiple mechanisms, there are several potential binding sites in the 

Il17a and Rorc promoters, and the message is rapidly up-regulated in Th17 cells in 

response to IL-4.  However, induced Gata3 deletion, leading to a 70% decrease in 

average splenic mRNA expression, had no effect on suppression of IL-17.  It may be 

necessary to confirm these results both by looking at GATA-3 expression at the protein 

level and by enhancing deletion efficiency, but the data strongly suggests that GATA-3 is 

not the transcription factor we have been searching for.  This conclusion is supported by 

published data showing that Gata3 knock-in mice still develop Th17 cells in vitro and in 

vivo [66, 67].  

While the search for the missing link in this pathway continues, we moved our 

focus further downstream and addressed changes in histone modifications and binding of 

the transcriptional machinery at multiple Th17 gene loci.  It has already been shown that 

activation of the Il17a locus in Th17 cells is associated with H3 acetylation and H3K4 tri-
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methylation, which is inhibited by IL-4, and silencing of the Il17a locus in Th1, Th2 and 

Tregs is associated with H3K27 tri-methylation ([87, 106], O’Shea personal 

communication).  However, these experiments address epigenetic changes associated 

with stable lineage commitment, and much less is known about the role of histone 

modifications in inducible gene expression, such as when an effector T cell integrates a 

combination of positive and negative stimuli resulting in rapid and short-lived changes in 

cytokine expression.   

A recent paper from Medzhitov and colleagues greatly illuminated the 

mechanisms underlying inducible gene expression in macrophages treated with LPS and 

raised many new questions in our minds [176].  This paper described two types of 

inducible gene expression with very different mechanisms: broadly classified as primary 

response genes and secondary response genes.  Primary response genes are maintained in 

a poised state by co-repressors associated with DNA-binding transcription factors, which 

are dismissed upon stimulation, allowing for very rapid induction of gene expression.  

Secondary response genes, on the other hand, are maintained in an inactive state by 

regulatory nucleosomes, which may occlude DNA binding sites, resulting in a much 

slower induction of gene expression following stimulation.  The surprising finding was 

that primary response genes have many markers associated with active gene expression, 

including H3K4 tri-methylation, H3 acetylation and PolII binding, prior to stimulation.  

The key stimulation-induced epigenetic switch that activates the pre-assembled 

transcriptional machinery at primary response genes appears to be H4 acetylation, which 

recruits factors that phosphorylate PolII, releasing it from suppression, and allowing it to 

move along the gene.  Although these findings have yet to be extended to T cells or to the 
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chromatin changes underlying repression of active gene expression, it importantly 

demonstrates the fallibility of our oversimplified assumptions about the landscape of 

active versus inactive chromatin.    

With this in mind, we hypothesized that chromatin at the Th17 loci may transition 

along a continuum between repression and activation: neutral in naïve T cells; stably 

suppressed in Th1, Th2 and Tregs; poised in resting Th17 cells; active in stimulated Th17 

cells; and transiently suppressed in Th17 cells treated with IL-4.  It will be interesting to 

determine exactly how far along the continuum IL-4 pushes Th17 cells and how this 

relates to the stability of suppression.  Our ChIP results surprisingly demonstrated an 

increase in H3 and H4 acetylation, in addition to an increase in PolII binding.  Although 

the acetylation is difficult to explain, the increase in PolII binding at the promoter may 

represent an accumulation of inactive polymerase, suggesting that IL-4 may simply 

induce a poised state, similar to a resting Th17 cell, rather than a stably suppressed state.  

Our STAT3 ChIP data, showing decreased binding to the Il17a promoter following 

treatment with IL-4, are consistent with gene silencing, suggesting that STAT3 binding 

may provide the necessary activation signal at a locus that is otherwise poised for 

transcription.  However, it is currently unknown if STAT3 binds to the Il17a promoter 

constitutively or only in Th17 cells actively transcribing Il17a. 

The great number of surprises we encountered during this work points out exactly 

how little we understand about the signaling and epigenetic mechanisms mediating 

regulation of T cell cytokine production and raises many interesting questions for future 

research.  Particularly in the area of transcriptional regulation and the histone code, we 
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are likely in the early stages of a great flood of new understanding, facilitated by recent 

advances in the ChIP-seq method.          
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Chapter 4 

Th17 maturation 

 Previous reports from other groups have demonstrated that developing Th1 cells 

progress through several stages of maturation, gradually stabilizing their phenotype in 

response to cytokine stimulation.  Early in the culture, IL-4 suppresses Th1 

differentiation and IFNγ expression, but after prolonged stimulation, Th1 cells lose the 

ability to respond to IL-4 and become resistant to suppression [72-74].  While these 

initial reports are highly intriguing and raise many questions, much remains unknown, 

including the mechanism underlying desensitization of the IL-4R, the physiological 

significance and the applicability to other T helper lineages.  Our preliminary data on the 

effect of IL-4-transduced dendritic cells on collagen-specific IL-17 production from 

cII/CFA immunized spleen cells suggested that Th17 cells become less susceptible to 

regulation after the onset of arthritis [161].  Thus we decided to pursue the maturation of 

Th17 cells in vitro and in vivo, as measured by development of resistance to suppression 

by IL-4. 

Th17 maturation in vitro 

 We generated Th17 cells in vitro by stimulating naïve T cells with BM-DCs, anti-

CD3 and the Th17 cytokine cocktail for five days, followed by two days of rest, as 

described previously.  To induce maturation we repeated this process of five-day 

stimulation and two-day rest two times, for a total of three weeks of culture, and then 

assayed the effect of IL-4 on IL-17 expression during a two-day re-stimulation with anti-
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CD3 followed by ICS.  Figure 4.1 shows representative dot plots of ICS for IL-17 in 

Th17 cells treated with IL-4 after one week or three weeks of culture.  The results show 

that after three rounds of Th17 stimulation, IL-17 expression is largely resistant to 

suppression by IL-4.  Figure 4.2A demonstrates that the development of resistance is 

reproducible.  Interestingly, Th17 cells cultured for three weeks become resistant to 

suppression by IL-4 and IFNγ but remain sensitive to suppression by IL-12 (Fig. 4.2B). 
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Figure 4.1: Three weeks culture renders Th17 cells resistant to suppression by IL-4. 

Naïve T cells were stimulated with BM-DCs, anti-CD3 and the Th17-polarizing cocktail 
for five days, followed by two days rest.  At this point some cells were re-stimulated with 
anti-CD3 in the presence or absence of IL-4, followed by six hours with PMA, ionomycin 
and brefeldin A and ICS for IL-17.  The remaining cells were cultured for two more 
rounds of five days Th17 stimulation and two days rest, for a total of three weeks of 
culture.  After three weeks, the cells were re-stimulated for two days with anti-CD3 in the 
presence or absence of IL-4, followed by six hours PMA, ionomycin and brefeldin A and 
ICS for IL-17.  Numbers represent the percent IL-17+ in the total sample, which was 
almost exclusively CD4+.  

 89



Fig. 4.2A: Development of resistance to IL-4 in vitro
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Fig. 4.2B: Mature Th17 cells are resistant to IL-4
and IFNγ but sensitive to IL-12
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Figure 4.2: Th17 cells develop selective resistance in vitro. 

(A) Naïve T cells were cultured for one, two or three rounds of five days Th17 
stimulation and two days rest and then re-stimulated with anti-CD3 and increasing 
concentrations of IL-4 for two days, followed by PMA, ionomycin and brefeldin A and 
ICS for IL-17.  Data represent compiled results from several experiments.  Results are 
normalized to the IL-17 expression in the sample with no IL-4.  (B) Th17 cells cultured 
for three weeks to induce maturation were re-stimulated for two days with anti-CD3 and 
increasing concentrations of IL-4, IFNγ or IL-12, followed by six hours PMA, ionomycin 
and brefeldin A and ICS for IL-17.   
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Th17 maturation ex vivo and in vivo 

 We have already shown that IL-4 suppresses IL-17 expression by collagen- or 

KLH-immunized splenocytes, thus demonstrating that antigen-specific Th17 cells in the 

spleen two weeks after immunization have not fully matured.  However, we decided to 

look for ex vivo maturation of immunized splenocytes in two ways:  initially we simply 

delayed the addition of IL-4 to our spleen cell cultures by one or three days, collected 

supernatants on day five and measured IL-17 by ELISA; alternatively, to avoid 

confounding effects from IL-17 in the supernatant produced prior to the addition of IL-4, 

we stimulated the spleen cells with antigen for one or three days and then washed and re-

stimulated them in the presence or absence of IL-4 for two days, followed by IL-17 

ELISA of the supernatants.  As the results in Figure 4.2 show, we found that three days of 

ex vivo re-stimulation with antigen was sufficient to induce Th17 maturation and 

resistance to suppression by IL-4 in whole spleen cultures from two-week immunized 

mice.  Similar results were observed for collagen-immunized DBA and KLH-immunized 

BALB/c. 

The ability of Th17 cells to become resistant to suppression could have important 

implications for the development of autoimmune disease.  Thus we asked whether Th17 

maturation correlated with disease progression or severity in CIA.  To address this 

question we collected spleens from mice at different time points after immunization with 

cII/CFA and assessed the Th17 sensitivity to suppression by IL-4 on day zero, one or 

three of culture.  We were surprised to find that even six weeks after immunization, 

splenic Th17 cells were not fully mature directly ex vivo.  However, we did observe an 
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inverse relationship between the time since immunization and the duration of in vitro 

stimulation required to induce maturation (Figure 4.4 and Table 4.1). 

We hypothesized that collagen-specific Th17 cells may receive more cytokine 

and/or TCR stimulation closer to the site of inflammation, and thus cells in the DLN may 

be more mature than cells in the spleen, and cells in the arthritic joint may be more 

mature than cells in the DLN.  We developed a protocol to isolate cells from inflamed 

joints by collagenase digestion and the resulting cells were analyzed by IL-17 ELISpot.  

We were able to measure IL-17-producing cells in the paws of arthritic mice by ELISpot 

following treatment with PMA and ionomycin, and IL-4 had no effect on the number or 

size of IL-17 spots (data not shown).  However, because PMA and ionomycin is such a 

strong and unphysiological stimulus, we felt that this data may not represent an accurate 

measurement of the effect of IL-4 on IL-17.  Alternatives include stimulating with anti-

CD3 and anti-CD28, which may interfere with the ELISpot, or collagen, which we found 

was not sufficient to induce significant IL-17 production, possibly because the cells were 

too few or the cultures were too brief to allow for adequate antigen processing and 

presentation.  These techniques require further exploration.  

To look for differences in the maturation status of Th17 cells from spleens versus 

LNs and the relationship between maturation and disease severity, we compared the IL-4 

dose-response curves of collagen-stimulated spleen and DLN cultures from mice with 

varying degrees of arthritis.  The results in Figure 4.5 show that there is a trend towards 

decreased responsiveness to IL-4 in DLNs versus spleens and that there does not appear 

to be a significant correlation between disease severity and Th17 sensitivity to IL-4. 
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Fig. 4.3A: Maturation of Th17 cells from cII/CFA-immunized mice:
Three days ex vivo re-stimulation renders Th17 cells resistant to IL-4
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 Fig. 4.3B: Maturation of Th17 cells from KLH-immunized mice:
Three days ex vivo re-stimulation renders Th17 resistant to IL-4
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Figure 4.3: Th17 cells from immunized mice mature ex vivo. 

(A) DBA mice were immunized i.d. with cII/CFA and spleens were collected two weeks 
later.  Total spleen cells were re-stimulated with heat-denatured collagen for zero, one or 
three days, and then collected, washed and re-plated with collagen and increasing 
concentrations of IL-4 for two days.  Supernatants were collected and IL-17 was 
measured by ELISA.  (B)  BALB/c mice were immunized i.p. with KLH/CFA and 
spleens were collected two weeks later.  Total spleen cells were re-stimulated with KLH 
and increasing concentrations of IL-4 were added to the culture on day zero, one or three.  
Supernatants were collected on day five and IL-17 was measured by ELISA.  Error bars 
represent SEM of triplicate culture samples. 
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Fig. 4.4: In vivo experience determines rate of in vitro
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Figure 4.4: In vivo experience determines rate of in vitro development of IL-4 resistance. 

DBA mice were immunized with cII/CFA and spleens were collected 4, 15 or 31 days 
laters.  Spleen cells were re-stimulated with collagen and 50ng/mL IL-4 was added on 
day 0, 1 or 3.  Supernatants were collect on day five and IL-17 was measured by ELISA.  
IL-17 expression is normalized to the sample with no IL-4. 

 

 

 

 

Weeks since immunization Days culture until IL-4 resistance

1 >3 

2 2 

4 1 

6 0-1 

 

Table 4.1: In vivo experience correlates with in vitro development of resistance. 

Compiled data from several experiments as described in Figure 4.4.  DBA mice were 
immunized with cII/CFA and spleens were collected after one, two, four or six weeks.  
Spleen cells were re-stimulated with collagen and IL-4 was added on day zero, one or 
three of culture.  IL-17 was measured by ELISA on day five.  A designation of resistance 
required that IL-17 production in the presence of IL-4 was at least 70% of IL-17 
production in the absence of IL-4.  Spleens from one week immunized mice continued to 
respond to IL-4 when it was added after three days of culture, while spleens from six 
week immunized mice failed to respond when IL-4 was added on day zero or one. 
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Fig. 4.5A: Effect of IL-4 on IL-17 production by splenocytes
stimulated with cII, day 45 after immunization
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Fig. 4.5B: Effect of IL-4 on IL-17 production by splenocytes
stimulated with cII and IL-23, day 45 after immunization
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Figure 4.5: IL-4-sensitivity of spleens and lymph nodes from arthritic mice. 

DBA mice were immunized with cII/CFA i.d.; 45 days after immunization, at the peak of 
disease, spleens (A and B) and DLNs (C and D) were collected.  Single cell suspensions 
were cultured with heat-denatured collagen, with (B and D) or without (A and C) 
10ng/mL IL-23, and increasing concentrations of IL-4.  On day five the supernatants 
were analyzed for IL-17 by ELISA.  IL-17 expression was normalized to the matched 
sample with no IL-4.  Error bars represent SEM of triplicate culture samples.  Mice with 
a score of four in at least one paw were considered severely arthritic, mice with scores of 
one, two or three were considered mildly arthritic, and mice with no visible signs of paw 
redness or swelling were considered nonarthritic. 

 

Fig. 4.5C: Effect of IL-4 on IL-17 production by DLNs
stimulated with cII, day 45 after immunization

1 10 100
0

25

50

75

100

nonarthritic
mild arthritis
severe arthritis

200

300

400

IL-4 (ng/mL)

IL
-1

7 
%

 o
f c

on
tr

ol

Fig. 4.5D: Effect of IL-4 on IL-17 production by DLNs stimulated
with cII and IL-23, day 45 after immunization
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Stimulation required to induce Th17 maturation 

We established that in vitro-derived Th17 cells mature during stimulation with 

anti-CD3, TGFβ, IL-6 and IL-23, and in vivo-derived Th17 cells mature during re-

stimulation with antigen, but we wanted to determine which specific signals are 

necessary and sufficient to induce Th17 maturation.  Given that maturation of Th1 cells 

has been shown to depend on IL-12 and IFNγ [72-74] and that IL-23 confers a more 

pathogenic phenotype upon Th17 cells through an unknown mechanism [27], we 

hypothesized that IL-23 was responsible for inducing Th17 maturation.  The results in 

Fig. 4.6A show that Th17 cells left completely un-stimulated fail to mature, but no one 

signal seems to be absolutely necessary or sufficient, as removing any one of the 

components of the cocktail or the anti-CD3 results in an intermediate degree of IL-4 

responsiveness (Fig. 4.6B).  The role of IL-23 in ex vivo Th17 maturation varied from 

one system to another and from one experiment to another, possibly due to heterogeneity 

in the expression of key cytokines or costimulatory molecules by endogenous APCs.  For 

example, some experiments with cII-immunized splenocytes implied that exogenous IL-

23 is required, while KLH-immunized splenocytes could mature even in the presence of 

neutralizing antibody to IL-23 (Fig. 4.7).  The results in Fig. 4.8 show that, during ex vivo 

re-stimulation of collagen-immunized spleens, cells cultured without antigen did not 

mature, which could be partially rescued by exogenous IL-23 but not by the combination 

of TGFβ and IL-6.  These results suggest that IL-23 plays a more important role in 

maturation of the collagen-specific response than the KLH-specific response, but in both 

systems Th17 cells likely require a combination of signals for full maturation.     
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Fig. 4.6A: In vitro Th17 maturation requires stimulation
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Fig. 4.6B: Role of anti-CD3 and Th17 cytokines in
in vitro maturation
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Figure 4.6: Stimulation requirements for in vitro Th17 maturation. 

Naïve T cells were cultured with BM-DCs and Th17-polarizing cytokines for one week 
to induce Th17 differentiation.  (A) Following differentiation, cells were cultured for two 
more weeks with anti-CD3 and Th17 cytokines or with neither.  Alternatively, in (B), 
cells were cultured for two more weeks with anti-CD3 alone, Th17 cytokines alone or the 
combination of both.  After one or three weeks of culture cells were washed and re-
stimulated with anti-CD3 and IL-4 for two days and IL-17 was measured by ICS.  IL-17 
expression is normalized to the matched sample with no IL-4.
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Fig. 4.7A: Collagen-specific Th17 maturation from 2wk-immunized

spleens requires exogenous IL-23
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Fig. 4.7B: KLH-specific Th17 maturation from 2wk-immunized

spleens does not require IL-23
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Figure 4.7: Role of IL-23 in ex vivo Th17 maturation. 

(A) DBA mice were immunized i.d. with cII/CFA and spleens were collected two weeks 
later.  Total spleen cells were re-stimulated with heat-denatured collagen and varying 
concentrations of IL-23 for one or three days, and then collected, washed and re-plated 
with collagen and varying concentrations of IL-4 for two days.  Supernatants were 
collected and IL-17 was measured by ELISA.  (B)  BALB/c mice were immunized i.p. 
with KLH/CFA and spleens were collected two weeks later.  Total spleen cells were re-
stimulated with KLH, KLH plus 10ng/mL IL-23, or KLH plus 10μg/mL IL-23 
neutralizing antibody and varying concentrations of IL-4 were added to the culture on 
day zero, one or three.  Supernatants were collected on day five and IL-17 was measured 
by ELISA.  IL-17 expression is normalized to the expression in cultures with no IL-4. 
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Fig. 4.8: Role of antigen and Th17 cytokines in
ex vivo Th17 maturation
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Figure 4.8: Role of antigen and Th17 cytokines in ex vivo Th17 maturation. 

DBA mice were immunized i.d. with cII/CFA and spleens were collected two weeks 
later.  Total spleen cells were cultured with cII, cII + 10ng/mL IL-23, 10ng/mL IL-23 
alone, 2ng/mL TGFβ + 20ng/mL IL-6 or with no stimulation.  After three days cells were 
washed and re-plated with collagen and varying concentrations of IL-4 for two days.  
Supernatants were collected and IL-17 was measured by ELISA.  IL-17 expression is 
normalized to expression in cultures with no IL-4.  Error bars represent SEM of triplicate 
culture samples. 
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Loss of IL-4R signaling 

 Our observation of desensitization of Th17 cells to challenge with IL-4 begged 

the question of whether signaling through the IL-4R remained intact following 

maturation.  To measure IL-4R signaling in mature Th17 cells, we rested the cells in low 

serum media with cytokine neutralizing antibodies overnight to minimize the background 

level of activation, stimulated with IL-4 for 15, 30 or 120 min, harvested lysate in the 

presence of protein phosphatase inhibitors and measured STAT6 activation by Western 

blot with phospho-STAT6 specific antibodies.  The results in Fig. 4.9A show that IL-4 

induces significantly less STAT6 activation in mature Th17 cells cultured for three weeks 

versus immature Th17 cells cultured for one week, regardless of whether phospho-

STAT6 levels are normalized to total STAT6 (Fig. 4.9B) or to the loading control 

GAPDH (Fig. 4.9C).  In addition, when total STAT6 expression is normalized to 

GAPDH, we find that STAT6 is actually up-regulated in mature Th17 cells (data not 

shown).  Thus the loss of STAT6 activation is not simply due to down-regulation of 

STAT6 expression.   

Because we have also shown that IL-4 activates STAT5 in Th17 cells, we 

confirmed the loss of IL-4R signaling in mature Th17 cells by Western blot for phospho-

STAT5.  The results in Fig. 4.10 show that there is a similar loss of STAT5 activation in 

response to IL-4 in mature Th17 cells, although this is not due to a global defect in 

cytokine signaling, as mature Th17 cells induce normal levels of STAT5 phosphorylation 

in response to IL-2.  
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One plausible explanation for the loss in STAT5 and STAT6 activation could be 

down-regulation of the IL-4R or other proteins involved in the proximal IL-4R signaling 

cascade, such as JAK1 and JAK3.  Therefore we decided to measure expression of these 

molecules at different stages of Th17 maturation by Western blot and qRT-PCR.  The 

results show that mRNA and protein levels of IL-4Rα, JAK1 and JAK3 are not down-

regulated in three-week Th17 cultures versus one-week cultures (Fig. 4.11). 

One potential drawback to RT-PCR and Western blot, however, is that the results 

show the average expression level for all cells in culture, but Th17 cells are only a 

fraction of the culture, and mature Th17 cells make up an even smaller fraction.  To look 

more specifically at IL-4R protein expression on Th17 cells by flow cytometry, we co-

stained for IL-17 and IL-4R, but we discovered that treatment with brefeldin A, which is 

commonly used prior to ICS to increase intracellular cytokine levels by blocking 

secretion through the Golgi apparatus, had the unintended side-effect of down-regulating 

surface IL-4R staining (data not shown).  Similarly, we looked for STAT6 expression and 

phosphorylation by intracellular staining, but the signal was very weak even in immature 

Th17 cells, making it difficult to determine if expression decreased in mature Th17 cells, 

particularly given that three weeks of culture tends to give mature Th17 cells higher 

levels of background staining (data not shown).  One potential solution would be to 

isolate mature Th17 cells from contaminating cells in the culture prior to Western or 

qRT-PCR, but we have not yet been fortunate enough to find a surface marker for mature 

Th17 cells. 
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Fig. 4.9B: Phospho-STAT6 levels normalized to
total STAT6
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Fig. 4.9C: Phospho-STAT6 levels normalized
to GAPDH
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Figure 4.9: Decreased activation of STAT6 by IL-4 in mature Th17 cells. 

(A) Th17 cells were generated in vitro with one or three weeks of stimulation and rested 
overnight in low-serum media with cytokine-neutralizing antibodies to reduce the 
background level of STAT activation.  Cells were then washed and stimulated with 
50ng/mL IL-4 for 15, 30 or 120 min and lysed with PhosphoSafe Lysis Buffer 
(Novagen). Lysates were reduced and run on 10% SDS-PAGE gels and stained with 
antibodies for phospho-STAT6, total STAT6 or GAPDH.  Band intensities in part (A) 
were quantitated with Kodak software and phospho-STAT6 intensity was normalized 
either to total STAT6 intensity (B) or GAPDH intensity (C). 
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Figure 4.10: Decreased activation of STAT5 by IL-4 in mature Th17 cells. 

Th17 cells were generated in vitro with one or three weeks of stimulation and rested 
overnight in low-serum media with cytokine-neutralizing antibodies to reduce the 
background level of STAT activation.  Cells were then washed and stimulated with 
50ng/mL IL-4  or IL-2 for 5, 20 or 120 min and lysed with PhosphoSafe Lysis Buffer 
(Novagen). Lysates were reduced and run on 10% SDS-PAGE gels and stained with 
antibodies for phospho-STAT5 or GAPDH. 
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Fig. 4.11A: IL-4R and STAT6 mRNAs are not downregulated during

Th17 maturation
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Figure 4.11: Mature Th17 cells maintain expression of IL-4R components. 

(A) Th17 cells were generated in vitro with one, two or three weeks of stimulation.  RNA 
was collected and levels of IL-4R and STAT6 were measured by real time PCR with 
primers and probes from Applied Biosystems.  Data are normalized first to the internal 
control β-actin and second to the expression level in Th17 cells after one week of culture.  
Error bars represent SEM of triplicate PCR reactions.  (B) Naïve T cells or Th17 cells 
after one, two or three weeks of culture were lysed with PhosphoSafe Lysis Buffer 
(Novagen). Lysates were reduced and run on 10% SDS-PAGE gels and stained with 
antibodies for JAK1, STAT5, STAT6 or GAPDH.  Blots combine samples from multiple 
experiments. 
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Role of SOCS5 

 One potential mechanism for loss of STAT5 and STAT6 activation in mature 

Th17 cells is up-regulation of a member of the suppressor of cytokine signaling (SOCS) 

family of proteins.  Most SOCS family proteins preferentially interact with a different 

cytokine receptor, thereby specifically inhibiting activation of unique STAT molecules.  

SOCS3, for example, has been shown to suppress Th17 differentiation by binding to the 

IL-6R and inhibiting STAT3 activation, while SOCS5 has been shown to bind to the IL-

4R and inhibit STAT6 activation in Th1 cells [77].  There can be some redundancy, 

however, because previous work has also demonstrated that inhibition of IL-4R signaling 

in Th1 cells may be mediated by SOCS1 [78, 177].  Thus we decided to look for up-

regulation of SOCS1 and SOCS5 expression in Th17 cells cultured for one, two or three 

weeks by qRT-PCR and Western blot (Fig. 4.12).  Although the magnitude of the change 

varied from one experiment to another, there was consistent evidence for up-regulation of 

both message and protein for SOCS5 and to a lesser extent for SOCS1, suggesting that 

SOCS5 may be responsible for inhibition of IL-4R signaling in mature Th17 cells.   

To address the role of SOCS5 in Th17 maturation, we received SOCS5 knockout 

mice on a C57BL/6 background as a kind gift from the lab of Dr. Sandra Nicholson at the 

Walter and Eliza Hall Institute in Australia.  Given that our Western blots and qRT-PCR 

data showed some SOCS5 expression even in immature Th17 cells, we started by testing 

the effect of IL-4 on SOCS5-deficient Th17 cells after one week of in vitro 

differentiation, and to distinguish between potential effects of SOCS5 in T cells versus 

DCs we did the mix-and-match experiment with wildtype T cells and SOCS5-knockout 

DCs or vice versa.  The data in Fig. 4.13 show that SOCS5-deficiency, in either the T 
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cells or the DCs, had absolutely no effect on suppression of IL-17 by IL-4.  These results 

were no surprise, however, because we did not expect SOCS5 to play a role in IL-4R 

signaling until after three weeks of culture, when the Th17 cells have reached maturity.  

We hypothesized that SOCS5-deficient Th17 cells cultured for three weeks would fail to 

mature and IL-4 would maintain its suppressive capacity.  However, numerous attempts 

at inducing in vitro Th17 maturation with T cells from wildtype littermate controls were 

unsuccessful, and we decided to go back to our system of ex vivo maturation via one-day 

versus three-day antigen re-stimulation of whole splenocytes following immunization 

with KLH.  Initial attempts at inducing ex vivo Th17 maturation from wildtype littermate 

controls also failed, suggesting that Th17 maturation may be slower or more difficult to 

induce in the C57BL/6 strain than in the BALB/c or DBA strains used in previous 

experiments.  However, we were ultimately successful at inducing Th17 maturation by ex 

vivo re-stimulation once we waited until four weeks after immunization, rather than 

harvesting spleens at two weeks as in previous experiments.  The results, shown in Fig. 

4.14, demonstrate that SOCS5 is not required for resistance to suppression by IL-4.   

One interesting observation from these experiments, however, is that splenocytes 

from SOCS-knockout mice produced significantly more IL-17 than SOCS5-heterozygous 

mice, despite the fact that we saw no difference in naïve Th17 differentiation in vitro.  

How SOCS5 might inhibit IL-17 expression is not clear, and future experiments are 

needed to determine the cause of this discrepancy.  Because we did not see a difference in 

the baseline IL-17 expression from splenocyte cultures of two-week immunized mice 

(data not shown), we hypothesize that SOCS5 plays a role in long-term maintenance of 
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memory Th17 cells in vivo.  However, these effects very well may not be Th17-specific 

or T cell intrinsic. 

Given that SOCS1 and SOCS5 both inhibit IL-4R signaling and that we found 

both SOCS1 and SOCS5 were up-regulated in mature Th17 cells, it seems likely that they 

are functionally redundant, and SOCS1 compensates for the absence of SOCS5 in the 

knockout mice.  To address this question would require mice deficient in both SOCS1 

and SOCS5 or to knockdown SOCS1 expression in SOCS5-deficient Th17 cells, both of 

which we are currently exploring.    
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Fig. 4.12A: SOCS5 mRNA is up-regulated during Th17 maturation

SOCS1 SOCS3 SOCS5
0.0

0.5

1.0

1.5

2.0

2.5 d7
d14
d21

R
Q

 

 

 

 

SOCS5 

SOCS1 

N
aï

ve
 

Th
17

 d
7 

Th
17

 d
14

 

Th
17

 d
21

 

 

Fig. 4.12B 
 

 

 

 

 

Figure 4.12: Mature Th17 cells up-regulate SOCS5. 

(A) Th17 cells were generated in vitro with one, two or three weeks of stimulation.  RNA 
was collected and levels of SOCS1, SOCS3 and SOCS5 were measured by real time PCR 
with primers and probes from Applied Biosystems.  Data are normalized first to the 
internal control β-actin and second to the expression level in Th17 cells after one week of 
culture.  Error bars represent SEM of triplicate PCR reactions.  (B) Naïve T cells or Th17 
cells after one, two or three weeks of culture were lysed with PhosphoSafe Lysis Buffer 
(Novagen). Lysates were reduced and run on 10% SDS-PAGE gels and stained with 
antibodies for SOCS5 or SOCS1.  
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Fig. 4.13: SOCS5 does not play a role in inhibition of Th17
re-stimulation by IL-4
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Figure 4.13: SOCS5 does not play a role in inhibition of Th17 re-stimulation by IL-4. 

Naïve T cells from SOCS5 knockout, heterozygous or wildtype mice were cultured under 
Th17-polarizing conditions with BM-DCs from knockout, heterozygous or wildtype 
mice.  After five days stimulation and two days rest cells were washed and re-stimulated 
with anti-CD3 and increasing concentrations of IL-4 for two days.  IL-17 was measured 
by ICS. 
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Fig. 4.14A: SOCS5 is not required for desensitization of the IL-4R
during ex vivo Th17 maturation
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Fig. 4.14B: SOCS5 is not required for desensitization of the IL-4R
during ex vivo Th17 maturation: % of control
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Figure 4.14: SOCS5 is not required for desensitization of the IL-4R during ex vivo Th17 
maturation. 

SOCS5 knockout or heterozygous mice were immunized i.p. with KLH/CFA.  After four 
weeks spleen cells were collected and stimulated with KLH for one or three days, washed 
and replated with KLH and increasing concentrations of IL-4 for two days.  IL-17 levels 
in the supernatant were measured by ELISA.  Error bars represent SEM of triplicate 
culture samples.  In (B), the IL-17 expression data from (A) was normalized to the 
expression level in the sample with no IL-4.
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 Discussion 

   We have observed that Th17 cells, generated both in vitro and in vivo, become 

resistant to suppression by IL-4 after re-stimulation.  The maturation kinetics closely 

reproduce what has been demonstrated for Th1 cells, suggesting that this process is not 

Th17-specific, but rather may be a universal property of chronically activated T helper 

cells.  There is no evidence to date either supporting or refuting the possibility of Th2 

maturation and desensitization of the IFNγ receptor.  However, given our observations 

that the stimulation required to induce maturation can be variable and ambiguous, T 

helper cell maturation may depend on a complex combination or sequence of as yet 

undefined signals, making it difficult to reproduce in vitro when each lab uses a slightly 

different method.  Conflicting results between our group and others, who have shown 

Th17 plasticity even after three weeks of culture, may be due to differences in culture 

conditions or APC populations [83, 93].  For example, they used peptide plus irradiated 

spleens cells while we used anti-CD3 and BM-DCs.  In addition, the difficulty we 

encountered demonstrating that Th17 cells from arthritic mice are fully mature without 

requiring short in vitro re-stimulation, begs the question of whether maturation is simply 

an in vitro artifact.  Several groups have already shown that in vitro-derived Th17 cells 

differ greatly from in vivo-derived Th17 cells [92-94].  However, one of these reports 

actually suggests that in vivo-derived memory Th17 cells are more resistant to 

suppression and conversion than in vitro-derived Th17 cells, suggesting that our culture 

conditions may better approximate the natural setting. 

 Similar to published data on mature Th1 cells, we were able to demonstrate a loss 

of STAT6 activation in response to IL-4 in mature Th17 cells, despite normal levels of all 
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of the IL-4R signaling components [73, 77, 178].  However, there is disagreement on the 

underlying mechanisms of IL-4R desensitization: Seki et al. demonstrated selective up-

regulation of SOCS5 in Th1 cells and SOCS5-dependent inhibition of IL-4R signaling, 

while Huang et al. found no increase in expression of SOCS1, SOCS3 or SOCS5 and 

suggested that STAT6 recruitment to the IL-4R was impaired through an unknown 

mechanism.  In our experiments there was an up-regulation of SOCS5, and possibly 

SOCS1, leading us to hypothesize that IL-4R-desensitization in Th17 cells may be 

mediated by SOCS5.  However, the data from SOCS5-deficient mice shows no loss of 

IL-4R desensitization in mature Th17 cells in the absence of SOCS5.  Given the possibly 

redundancy between SOCS1 and SOCS5 and that both were expressed in mature Th17 

cells, future experiments are planned to address the role of SOCS1 in Th17 maturation, 

with the knowledge that we may need to generate Th17 cells deficient in both SOCS1 

and SOCS5, either by crossing the individual knockout mice or by in vitro siRNA-

mediated knockdown.       
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Chapter 5 

Control of inflammatory arthritis by cytokine balance 

 We and others have established that IL-4 and IFNγ suppress Th17 differentiation 

and re-stimulation in vitro, but the potential immunoregulatory roles of these cytokines in 

vivo are uncertain.  While IL-17 has consistently been shown to play a pathogenic role in 

CIA, the effects of IL-4 and IFNγ are more complex, with evidence for both protective 

and pathogenic functions depending on phase of disease, location and relative abundance 

of other cytokines.  Thus we asked what role the balance between IL-4, IFNγ and IL-17 

plays in the development of CIA, taking advantage of a system in which collagen-

immunization results in limited disease incidence and a wide range of severity.  To 

answer this question we measured systemic cytokine levels in the serum at several time 

points after immunization, as well as in vitro cytokine production from lymphoid organs 

and inflamed joints during the peak of disease.  We also administered neutralizing 

antibodies to IFNγ, IL-4 and IL-17 to perturb the cytokine balance and monitored the 

resulting changes in collagen-specific cytokine responses and disease pathogenesis. 

IL-17/IFNγ balance correlates with disease 

 Previous reports suggest that susceptibility to arthritis in various mouse strains 

correlates with high levels of IL-17 and low levels of IFNγ.  Similarly, we hypothesized 

that among individual collagen-immunized DBA mice, those with a Th17-biased 

response develop more severe arthritis than those with a Th1-biased response.  To test 

this hypothesis we collected serial serum samples every two weeks, beginning on the day 
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of collagen immunization, and assessed cytokine levels by ELISA.  The results in Fig. 

5.1A show that serum IL-17 was markedly elevated by day 14 and remained elevated 

until at least day 42.  All mice developed long-lasting elevation of serum IL-17, 

regardless of whether or not they developed arthritis.  Serum IFNγ, on the other hand, did 

not peak until day 28, and there was a much wider range in its absolute level (Fig. 5.1B).  

IL-4 was not detectable in the serum at any time point (data not shown).  In order to 

correlate disease outcome with a composite measurement of Th17 and Th1 responses, we 

calculated the ratio of IL-17 to IFNγ concentrations.  The results, shown in Fig. 5.1C, 

demonstrate that mice that developed arthritis had a significantly higher serum IL-

17/IFNγ ratio on day 28 than mice that did not develop arthritis, despite receiving the 

same immunization. 

To quantify antigen-specific Th1 and Th17 responses in mice with or without 

arthritis on day 28, spleen and draining lymph node cells were re-stimulated in vitro with 

collagen, and IFNγ and IL-17 were measured in the supernatant by ELISA (Fig. 5.2).  IL-

4 was not detectable (data not shown).  Although serum IL-17 levels were fairly uniform 

among arthritic and non-arthritic mice, the collagen-specific Th17 responses in the 

lymphoid organs were much more variable and there was a trend towards increased IL-17 

in arthritic mice, which did not reach statistical significance (Fig. 5.2A).  Consistent with 

the serum cytokine ratios, however, arthritic mice had a significantly higher IL-17/IFNγ 

ratio in culture supernatants than non-arthritic mice (Fig. 5.2C).  These results suggest 

that both Th1 and Th17 responses are initiated in response to immunization with collagen 

and CFA and that disease progression depends on the balance between the two competing 

lineages rather than the absolute strength of either alone. 
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We next examined the correlation between clinical disease scores and cytokine 

responses in the target organ.  IL-17, IFNγ and IL-4 were measured in paws by mincing 

and culturing them overnight, without exogenous stimulation, followed by ELISA of the 

supernatants.  As the results in Fig. 5.3 show, the Th17 response in the joint was distinct 

from the systemic response, in that only paws from arthritic mice produced IL-17.  

Interestingly, non-arthritic mice did not have measurable IL-17 in the paw cultures even 

though they had similar levels of serum IL-17 compared with arthritic mice.  

Furthermore, IL-4 and IFNγ were only detectable at significant levels in arthritic paws, 

and the levels of IL-4 and IFNγ correlated positively with the level of IL-17 (Fig. 5.3).  

These results suggest that inflammatory responses in the secondary lymphoid tissues are 

distinct from those in the target organ and that the recruitment of cytokine-producing 

cells from lymphoid organs to target tissue may represent a key step in the development 

of inflammation. 
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Fig. 5.1A: Serum IL-17
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Fig. 5.1C: Ratio of serum IL-17/IFNγ on day 28
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Figure 5.1: Serum IL-17 and IFNγ levels during CIA. 
 
DBA mice were immunized i.d. with cII/CFA on day 0. Serum was collected by serial 
tail bleeds on days 0, 14, 28 and 42.  IL-17 (A) and IFNγ (B) were measured by ELISA in 
triplicate.  (C) Arthritis was scored visually every other day from day 20. Mice with a 
clinical score of two in at least one paw were considered arthritic. IL-17/IFNγ is the ratio 
of the absolute level of IL-17 to the level of IFNγ in serum on d28.  Data represent the 
mean of 30 mice from two experiments. * p<0.05  

 116



Fig. 5.2A: IL-17 production by spleen and
LN cultures
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Fig. 5.2C: Ratio of spleen and LN IL-17/IFNγ
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Figure 5.2: Collagen-specific IL-17 and IFNγ responses in spleen and DLN during CIA. 

 Single cell suspension of spleens and DLNs, from day 28 after collagen and CFA 
immunization, were re-stimulated with collagen for five days. Supernatants were 
analyzed for IL-17 (A) and IFNγ (B) by ELISA.  (C) Arthritis was scored visually every 
other day from day 20. Mice with a clinical score of two in at least one paw were 
considered arthritic. IL-17/IFNγ is the ratio of the absolute level of IL-17 to the level of 
IFNγ in serum on d28.  Data represent the mean of 30 mice from two experiments. * 
p<0.05, ns = not significant.  
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Fig. 5.3A: Cytokine expression in paw cultures
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Fig. 5.3B: Correlation between paw cytokine expression
and arthritis severity
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Figure 5.3: Expression of IL-17, IFNγ and IL-4 in paw cultures. 

Paws were collected from mice 28 to 32 days after collagen immunization.  The skin was 
removed and paws were minced and cultured overnight.  Supernatants were collected for 
measurement of IL-17, IL-4 and IFNγ by ELISA (A). Error bars represent the SEM of 20 
mice from two experiments. (B) Correlation analysis between individual paw cytokine 
levels and arthritis score.  All three cytokines had a significant positive correlation with 
arthritis score. 
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Regulation of IL-17 and IL-4 by endogenous IFNγ during the initiation phase of arthritis  

As the absolute level of IL-17 was not predictive of arthritis, but the balance of 

endogenous IL-17 and IFNγ appeared to be important, we chose to perturb this balance 

by neutralizing endogenous IFNγ from day 10 to 20 after collagen immunization, thus 

targeting the initiation phase of CIA.  As shown in Fig. 5.4, treatment with neutralizing 

antibodies to IFNγ resulted in an accelerated course of arthritis. However, the effect of 

anti-IFNγ did not persist long after the end of treatment, and the incidence and severity at 

day 40 were the same amongst the different groups. These results are consistent with 

previously reported studies [161], and suggest that IFNγ has a protective role in the early 

response to collagen immunization. 

In the absence of endogenous IFNγ, arthritis peaked by day 20, at which point the 

severity was significantly different from the control groups.  Hence we chose to evaluate 

systemic and articular immune events around day 20.  Mice that received neutralizing 

antibody to IFNγ had higher levels of IL-17 and IL-4 in the serum (Fig. 5.5), but there 

was no effect on IL-17 and IL-4 responses in collagen-stimulated spleen and lymph node 

cultures (data not shown).  Consistent with previous data depicting the differences 

between the systemic and joint specific responses, the levels of IL-17, IL-4 and IFNγ 

were significantly higher in the paws of mice that received anti-IFNγ neutralizing 

antibodies versus control mice (Fig. 5.6) and correlated with disease severity (data not 

shown). 
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Fig. 5.4: Protective role of IFNγ during the initiation
phase of arthritis
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Figure 5.4: Protective role of IFNγ during the initiation phase of arthritis.  
 

Neutralizing antibody to IFNγ (clone R46A2, 100ug/mouse/day) was administered i.p. 
from day 10 to 20 after immunization with cII/CFA.  Rat IgG was used as isotype 
control.  Arthritis was scored visually from day 10 onwards.  Data are representative of 
two experiments, with n = 7 in each group in each experiment. * p<0.05 versus isotype 
control.  
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Fig. 5.5A: Effect of anti-IFNγ on serum IL-17
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Fig. 5.5B: Effect of anti-IFNγ on serum IL-4
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Figure 5.5: Effect of anti-IFNγ on serum IL-17 and IL-4 expression during CIA. 
 
Mice were treated with anti-IFNγ (clone R46A2, 100ug/mouse/day) from day 10 to 20 
after cII/CFA immunization.  Serum from day 21 to 23 after collagen immunization was 
analyzed for IL-17 (A) and IL-4 (B) by ELISA.  Error bars represent SEM.  Data are 
representative of two experiments, with n = 7 in each group. * p<0.05 and ** p<0.001.  
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Figure 5.6: Effect of anti-IFNγ on paw IL-17, IFNγ and IL-4 expression during CIA. 

Mice were treated with anti-IFNγ (clone R46A2, 100ug/mouse/day) from day 10 to 20 
after cII/CFA immunization.  On day 21-23 paws were minced and cultured overnight.  
The supernatants were analyzed for IL-17 (A), IL-4 (B), and IFNγ (C ) by ELISA. Error 
bars represent SEM.  Data are representative of two experiments, with n = 7 in each 
group. *** p<0.0001. *p<0.05. 
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Role of endogenous IL-4 in regulation of CIA  

IL-4 has been shown to suppress IL-17 production in vitro during immune 

responses to collagen; thus it was plausible that the increased levels of IL-4 observed in 

mice treated with neutralizing antibody to IFNγ might fulfill a regulatory role.  However, 

it has also been suggested that IL-4 might have pathogenic effects during the early phase 

of arthritis [27].  Additional experiments were therefore performed to assess the role of 

IL-4 in mice that were treated with neutralizing antibody to IFNγ by neutralizing both 

IFNγ and IL-4 during the early phase of arthritis. 

Anti-IFNγ or anti-IL-4 antibodies were administered, either alone or in 

combination, from day 10 to 20 after immunization with collagen and CFA.  As shown in 

Fig. 5.7, mice that received neutralizing antibodies to IFNγ alone developed an 

accelerated course of arthritis, and the group that received neutralizing antibodies to both 

IL-4 and IFNγ had significantly more severe arthritis than the anti-IFNγ alone group.  

Treatment with neutralizing antibody to IL-4 alone had no affect on arthritis, consistent 

with previous findings [162]. These results suggest that IFNγ plays a more prominent 

protective role in CIA than IL-4 but that IL-4 can play a regulatory (and not a pathogenic) 

role in the absence of IFNγ. 

As both IFNγ and IL-4 have been shown to suppress IL-17 production, we asked 

whether the increased severity of arthritis seen in the absence of both IFNγ and IL-4, in 

comparison to the absence of IFNγ only, was secondary to higher levels of IL-17.  Thus 

we measured serum IL-17 levels on day 22, immediately after completion of the 10-day 
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course of neutralizing antibody administration.  The results in Fig. 5.8 demonstrate that 

neutralizing IL-4 and IFNγ did not up-regulate IL-17 above the level in mice that 

received neutralizing antibody to IFNγ alone.  Therefore the increased incidence of 

arthritis in the absence of IFNγ and IL-4, versus IFNγ alone, cannot be attributed to 

systemic elevation of IL-17.  Additionally, while neutralization of IFNγ resulted in 

elevation of serum IL-4, neutralization of endogenous IL-4 did not result in any change in 

serum IFNγ levels (data not shown).  Consistent with our previous findings, we did not 

observe augmented IL-17 responses in collagen re-stimulation cultures of spleen and 

draining lymph nodes (data not shown).  Thus the mechanisms underlying the protective 

role of IFNγ seem to differ from the mechanisms mediating the protective role of IL-4, 

and the increase in disease following treatment with anti-IL-4 may be dependent on a 

mechanism distinct from IL-17.  

Levels of IFNγ, IL-4 and IL-17 in the target organ were measured by ELISA of 

supernatants from overnight paw cultures.  Consistent with our previous findings, IFNγ, 

IL-4 and IL-17 were elevated in the paws of arthritic mice from the anti-IFNγ group (Fig. 

5.9A,B&C).  Interestingly, mice that received anti-IFNγ + anti-IL-4 had similar levels of 

IFNγ and IL-4 but lower levels of IL-17 in their paws compared to mice that received 

anti-IFNγ alone, even though they had more severe arthritis.  A plausible explanation for 

this discrepancy could be that joints are more sensitive to Th17-mediated inflammation in 

the absence of systemic protective Th1 and Th2 responses or that inflammation in these 

paws is mediated by a factor other than IL-17. 
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Although we have shown that both endogenous and exogenous IL-4 down-

regulate IL-17 production in vitro and ex vivo, a similar effect of endogenous IL-4 was 

not seen in vivo, as neither neutralizing antibodies to IL-4 alone nor the combination of 

antibodies to IL-4 and IFNγ up-regulated IL-17 in serum or culture supernatants of 

spleens, lymph nodes or paws.  Thus endogenous IL-4 does not appear to play a major 

role in the regulation of IL-17 in the early phase of CIA.  IL-4 likely exerts a protective 

function in the absence of IFNγ by some other mechanism, possibly by inducing other 

regulatory cytokines such as IL-10 and/or by direct effects on APCs or synovial cells. 

As IL-10 has been found to be associated with a less pathogenic phenotype of 

Th17 cells in the mouse model of multiple sclerosis [162, 179], we evaluated IL-10 

responses in mice that received neutralizing antibodies to IL-4 and/or IFNγ.  Arthritic 

paws from mice that received neutralizing antibodies to IFNγ or IL-4 + IFNγ had 

increased levels of IL-10, which correlated positively with disease (Figure 5.9D).  IL-10 

was not detectable in collagen re-challenge cultures of lymphoid organs (data not shown).  

This suggests that in CIA, endogenous regulatory effects of IL-4 are not mediated 

through systemic production of IL-10.  The elevated levels of IL-10 in the arthritic joints 

could in part reflect IL-10 production by synovial cells.  Much like the other cytokines, 

paw IL-10 levels correlated positively with disease severity (data not shown).  

Interestingly, IL-10 is also highly expressed in RA synovium, but evidence suggests that 

IL-10R signaling in the synovium is blunted, limiting the potentially anti-inflammatory 

effects [180, 181].  It remains to be determined what role IL-10 plays in the arthritic joint 

in CIA and if the IL-10 receptor is competent. 
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Previous studies have shown that administration of IL-4 can protect against bone 

damage in CIA, and IL-4 is known to have direct inhibitory effects on osteoclastogenesis 

distinct from its effects on T and B cells [48].  We assessed the effects of neutralizing 

antibodies to IFNγ and IL-4 on joint pathology by staining paw sections with H&E, 

followed by visual scoring by two independent, blinded observers for several parameters, 

including inflammatory infiltrate, synovitis, cartilage destruction and bone destruction.  

Interestingly, we found that the increased severity of arthritis following neutralization of 

IFNγ and IL-4 was associated with increased bone and cartilage damage compared to the 

anti-IFNγ only group, despite the fact that both groups showed a similar degree of 

synovitis and inflammatory infiltrate (Fig. 5.10).  The anti-IL-4 only group did not show 

any increased bone or cartilage damage over baseline.  Fig. 5.11 illustrates the degree of 

inflammatory infiltrate and bone and cartilage damage associated with the neutralization 

of IFNγ compared with IFNγ plus IL-4. 
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 Fig. 5.7: Effect of anti-IFNγ + anti-IL-4 on arthritis
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Figure 5.7: Protective role of IL-4 in the absence of IFNγ during CIA. 

Neutralizing antibody to IFNγ (clone R46A2, 100 μg/mouse/day), and/or neutralizing 
antibody to IL-4 (clone 11B11, 100 μg/mouse/day) was administered i.p. from day 10 to 
20 after cII/CFA immunization.  Rat IgG was used as isotype control. Arthritis was 
scored visually from day 10 onward.  Data are representative of two experiments, with n 
= 8 in each group. * p<0.05 versus rat IgG.  
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Fig. 5.8B: Effect of anti-IL-4 on serum IFNγ
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Fig. 5.8C: Effect of anti-IFNγ on serum IL-4

untreated rat IgG anti-IFNγ
0

10

20

30

40

 IL
-4

 (p
g/

m
l)

*
 

 

 

 

 

Figure 5.8: Effect of anti-IFNγ and anti-IL-4 on serum cytokine expression during CIA. 

Mice were treated with neutralizing antibodies to IL-4 and/or IFNγ from day 10 to 20 
after cII/CFA immunization.  Serum samples were collected on day 22 and analyzed for 
IL-17 (A), IL-4 (B), and IFNγ (C) by ELISA.  Error bars represent SEM.  Data are 
representative of two experiments, with n = 8 in each group. *p<0.05, *** p<0.001 vs. rat 
IgG  
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Fig. 5.9A: Effect of anti-IFNγ + anti-IL-4 on paw IL-17
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Fig. 5.9B: Effect of anti-IFNγ + anti-IL-4 on paw IFNγ
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Fig. 5.9C: Effect of anti-IFNγ + anti-IL-4 on paw IL-4

untre
ate

d

rat
 Ig

G γ

an
ti-I

FN

an
ti-I

L-4

 + 
an

ti-I
L-4

γ

an
ti-I

FN

0

200

400

600

800

1000

1200

1400

*
*

IL
-4

 (p
g/

m
l)

 

Fig. 5.9D: Effect of anti-IFNγ + anti-IL-4 on paw IL-10
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Figure 5.9: Effect of anti-IFNγ and anti-IL-4 on paw cytokine expression during CIA. 

Mice were treated with anti-IFNγ and/or anti-IL-4 from day 10 to 20 after cII/CFA 
immunization.  On day 21-23 paws were minced and cultured overnight.  The 
supernatants were analyzed for IL-17 (A), IL-4 (B), IFNγ (C) and IL-10 (D) by ELISA. 
Error bars represent SEM.  Data are representative of two experiments, with n = 8 in each 
group. *p<0.05. 
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 Fig. 5.10A: Effect of anti-IFNγ + anti-IL-4 on
cartilage damage
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Fig. 5.10B: Effect of anti-IFNγ + anti-IL-4 on
bone erosion
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Fig. 5.10C: Effect of anti-IFNγ  + anti-IL-4 on
inflammatory infiltrate
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Fig. 5.10D: Effect of anti-IFNγ + anti-IL-4 on
synovitis
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Figure 5.10: Joint pathology after treatment with anti-IFNγ and anti-IL-4.  
 
Mice received neutralizing antibodies to IFNγ and IL-4 from day 10 to 20 after cII/CFA 
immunization.  One hind paw was collected from each mouse on day 21-23, sectioned 
and stained with hematoxylin and eosin. The sections were scored on a scale of 0-3 for 
cartilage damage (A), bone erosion (B), inflammatory infiltrate (C) and synovitis (D) by 
two blinded observers. Error bars represent SEM of 8 mice per group. * p<0.05, 
**p<0.01, ns = not significant 
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Fig. 5.11 

 

Figure 5.11: H&E staining of joints from mice treated with anti-IFNγ and anti-IL-4. 
 
(A) Ankle joint (clinical score 0) from a mouse that received rat IgG demonstrates a mild 
inflammatory infiltrate within a non-distorted joint space.  A mild degree of synovial 
hyperplasia is also present.  No significant cartilage or bone destruction is seen (H&E, 
20x).  (B) Arthritic joint (clinical score 4) from a mouse that received anti-IFNγ, 
demonstrating inflammatory infiltrate, with partial filling of the joint space.  Mild 
synovial hyperplasia is present along with early, minimal alteration of cartilage. 
Inflammatory changes extend into the adjacent soft tissue.  No significant bony changes 
are present and the joint space is otherwise intact (H&E, 10x).  (C) Arthritic joint 
(clinical score 4) from a mouse that received neutralizing antibodies to IFNγ + IL-4, 
demonstrating severe inflammatory changes including complete filling of the joint space 
and extension to the soft tissue. Cartilage is significantly destroyed and the bone shows a 
substantial amount of destruction and remodeling (H&E, 10x). 
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Relative contribution of IFNγ and IL-4 in the regulation of IL-17 in vivo  

Because neutralizing antibodies to IFNγ and/or anti-IL-4 were associated with 

differential regulation of IL-17 responses in vivo, we wanted to confirm and evaluate the 

role of IL-17 in disease pathogenesis in these mice.  Neutralizing anti-IL-17 antibody was 

administered in combination with anti-IFNγ and/or anti-IL-4 antibodies from day 10 to 

20 after immunization with collagen and CFA.  Consistent with our previous findings, 

mice that received anti-IFNγ + anti-IL-4 had more severe arthritis than the anti-IFNγ 

alone group (Fig. 5.12). Interestingly, neutralizing antibody to IL-17 completely 

abrogated disease in the anti-IFNγ alone group, whereas anti-IL-17 had only a minor 

effect on arthritis in the mice that received anti-IFNγ + anti-IL-4.  These results suggest 

that treatment with neutralizing antibodies to both IFNγ and IL-4 prompts the 

development of joint inflammation that is partially independent of IL-17.   

To further elucidate the relative contribution of IL-17 to disease in mice receiving 

anti-IFNγ versus anti-IFNγ + anti-IL-4, we evaluated the correlation between serum IL-

17 and arthritis severity (Fig. 5.13).  Although the absolute levels of serum IL-17 were 

comparable between the groups, there was a significant correlation between IL-17 and 

arthritis severity in the anti-IFNγ group but not in the anti-IFNγ + anti-IL-4 group (we 

could not address the IL-17/IFNγ ratio in these mice, as treatment with anti-IFNγ 

precludes ELISA for IFNγ in the serum).  The expression of IFNγ, IL-4 and IL-17 in the 

supernatants of paws, spleen and lymph node cultures was consistent with previous 

experiments (data not shown). 
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Neutralization of IFNγ in vivo was associated with elevated serum IL-17, with no 

further up-regulation in IL-17 after combined neutralization of IFNγ and IL-4, while 

numerous studies have consistently shown that neutralization of IFNγ and IL-4 is 

required for the optimal differentiation of Th17 cells in vitro.  Furthermore, some studies, 

mostly in humans, have reported the presence of Th17 cells expressing both IFNγ and IL-

17.  Hence we wanted to investigate whether the IL-17 and IFNγ responses in our 

experiments were associated with double-positive Th1/Th17 cells and/or if the increase in 

systemic IL-17 levels was associated with an increase in the generation of Th17 cells in 

vivo.  Splenocytes from the various groups were stimulated with PMA, ionomycin and 

brefeldin A and analyzed for IL-17, IFNγ and IL-4 production by intracellular flow 

cytometry.  The results show that IFNγ and IL-17 were produced by a discrete population 

of T cells and that neutralization of both IFNγ and IL-4 was associated with increased 

differentiation of Th17 cells in vivo (Fig. 5.14).  IL-4-producing T cells were not 

detectable.  Surprisingly, neutralization of IFNγ alone was not associated with an increase 

in the number of Th17 cells, even though this group of mice had the highest levels of 

serum IL-17.  On the other hand, neutralization of both IFNγ and IL-4 was associated 

with an increase in the number of Th17 cells, despite lower levels of serum and paw IL-

17 than the anti-IFNγ alone group.  Thus, Th17 differentiation and IL-17 production may 

be differentially regulated in vivo, with IFNγ primarily suppressing IL-17 production and 

IL-4 primarily suppressing Th17 differentiation.  Alternatively, the Th17 cells that 

differentiate in the presence of anti-IFNγ + anti-IL-4 may be differently activated, 

resulting in a more pathogenic phenotype despite reduced IL-17 production. 
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Tissue sections of inflamed joints were again stained with H&E and analyzed for 

inflammatory infiltrate, synovitis, cartilage destruction and bone erosion.  Consistent with 

arthritis severity scores, neutralizing antibody to IL-17 protected the joints of mice 

treated with anti-IFNγ but had no effect on the severe joint inflammation and tissue 

destruction observed in mice treated with anti-IFNγ + anti-IL-4 (Fig. 5.15).  These results 

further support the supposition that the exacerbated disease induced by neutralizing IFNγ 

and IL-4 is mediated by an IL-17-independent mechanism. 
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 Fig. 5.12: Effect of anti-IL-17 on arthritis in mice treated with
anti-IFNγ + anti-IL-4
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Figure 5.12: Effect of anti-IL-17 during treatment with anti-IFNγ and/or anti-IL-4 at the 
initiation phase of arthritis.  
 
Neutralizing antibody to IFNγ (clone R46A2, 100 μg/mouse/day), and/or neutralizing 
antibody to IL-4 (clone 11B11, 100 μg/mouse/day), and neutralizing antibody to IL-17 
(clone M210, 100 μg/mouse/day) was administered i.p. from day 10 to 20 after 
immunization with collagen and CFA. Rat IgG was used as isotype control.  Arthritis was 
scored visually from day 10 onward.  n = 8 to 9/group.  Error bars represent SEM of 7-8 
mice per group.  ** p<0.01 *** p<0.001 versus rat IgG. Also, anti-IFNγ versus anti-IFNγ 
+ anti-IL-17: p<0.01. Anti-IFNγ + anti-IL-4 versus anti-IFNγ + anti-IL-4 + anti-IL-17: 
not significant.  
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Fig. 5.13B: Correlation between arthritis and
serum IL-17 in mice treated with anti-IFNγ + anti-IL-4
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Figure 5.13: Serum IL-17 correlates with disease in mice treated with anti-IFNγ. 

Mice were treated with anti-IFNγ and anti-IL-4 from day 10 to 20 after cII/CFA 
immunization.  Serum cytokine levels were analyzed by ELISA on day 22 or 23.  
Analysis shows a significant correlation between IL-17 and disease in the anti-IFNγ 
group but not in the anti-IFNγ + anti-IL-4 group. 

 136



 
Fig. 5.14A: IL-17 staining in spleens of antibody-treated mice
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Figure 5.14:  Th17 cells in the spleens of mice treated with cytokine neutralizing 
antibodies during CIA. 

Mice were treated with neutralizing antibody to IFNγ, IL-4 and IL-17 from day 10 to 20 
after cII/CFA immunization.  Splenocytes were collected on day 22 or 23 and cultured 
overnight with collagen.  Following six-hour stimulation with PMA, ionomycin and 
brefeldin A, cells were stained with anti-CD4, anti-IL-17, anti-IFNγ and anti-IL-4 
antibodies and analyzed on a FACS Calibur using Cell Quest software. Data represent the 
percent of CD4-gated cells staining positive for IL-17A.  Error bars represent SEM of 8-9 
mice per group.  * p<0.05.  
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Fig. 5.15A: Effect of anti-IL-17 on cartilage destruction
in mice treated with anti-IFNγ + anti-IL-4
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Fig. 5.15B: Effect of anti-IL-17 on bone erosion in
mice treated with anti-IFNγ + anti-IL-4
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Fig. 5.15C: Effect of anti-IL-17 on inflammatory infiltrate
in mice treated with anti-IFNγ + anti-IL-4
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Fig. 5.15D: Effect of anti-IL-17 on synovitis in
mice treated with anti-IFNγ + anti-IL-4
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Figure 5.15:  Effect of cytokine neutralizing antibodies on joint pathology during CIA. 

Mice were treated with neutralizing antibodies to IFNγ, IL-4 and IL-17 from day 10 to 20 
after cII/CFA immunization.  One hind paw was collected from each mouse on day 22 or 
23, sectioned and stained with hematoxylin and eosin. The sections were scored on a 
scale of 0-3 for cartilage damage (A), bone erosion (B), inflammatory infiltrate (C) and 
synovitis (D) by two blinded observers.  Error bars represent SEM of 8-9 mice per group.  
*p<0.05, ns = not significant. 
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Discussion 

Various antigenic stimuli can trigger IL-17 responses in vivo and not all of them 

will result in systemic or organ specific autoimmunity in animal models, implying that 

endogenous regulation of IL-17 responses is important in the prevention or attenuation of 

autoimmunity.  Our studies show that the ratio of systemic IL-17/IFNγ is a better 

predictor of joint inflammation than the level of IL-17 alone, suggesting that disease 

outcome is not determined solely by the absolute level of the pathogenic cytokine, but 

rather by the balance between pathogenic and protective signals.  How these competing 

signals regulate disease pathogenesis at the molecular level is not clear.  Given our 

observation that only arthritic joints produced IL-17, one possibility is that these signals 

modulate trafficking of Th17 cells to the joint, either by altering expression of 

chemokines by cells of the synovium or expression of chemokine receptors by T cells.  

Once in the joint, Th17 cells may then induce inflammation and recruitment of other 

inflammatory cells.  Interestingly, arthritic joints had higher levels of IFNγ, and IL-4 than 

non-arthritic joints, suggesting that once target organ inflammation is initiated there is 

recruitment of both inflammatory and anti-inflammatory cell types.  Further studies are 

needed to determine the effect of the systemic Th1/Th17 balance on T cell homing and 

recruitment to the joint. 

Our results imply that the balance between Th1 and Th17 cells plays an important 

role in disease outcome, so neutralizing antibody to IFNγ was administered to perturb this 

balance.  Consistent with previous data suggesting that IFNγ negatively regulates IL-17 

responses and clinical arthritis, mice that received anti-IFNγ antibody had accelerated 
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arthritis associated with elevated levels of IL-17.  We also observed an increase in 

systemic IL-4, which was potentially surprising in view of the therapeutic effect of IL-4 

on arthritis and the ability of IL-4 to suppress IL-17.  In this situation, however, IL-4 

could represent another mechanism for immune regulation that only emerged with 

neutralization of IFNγ.  We found that treatment wth neutralizing antibody to IL-4 

exacerbated arthritis, but only in mice that also received neutralizing antibodies to IFNγ, 

suggesting that IFNγ plays a more prominent role than IL-4 in down-regulating arthritis.  

This could be due to the fact that the immune response to collagen in DBA mice is 

primarily Th1 and Th17, with very little Th2 response unless the IFNγ-mediated 

constraint is removed.   

Th17 cells that did not co-express IL-10 were found to have a higher pathogenic 

potential in a mouse model of multiple sclerosis than Th17 cells that co-expressed IL-10 

[182].  It is possible that the increased arthritis in the presence of anti-IFNγ + anti-IL-4 is 

associated with the generation of a more aggressive phenotype of Th17 cells, one that 

may be associated with reduced levels of IL-10.  However, IL-10 levels were higher in 

the paws of mice that received anti-IFNγ + anti-IL-4 than in paws of mice that received 

anti-IFNγ alone.  This would suggest that the phenotype of Th17 responses in CIA in the 

absence of IL-4 is independent of IL-10. 

There was a similar degree of inflammatory infiltrate and synovitis in the absence 

of IFNγ alone or in the absence of IFNγ + IL-4.  However, there was more bone and 

cartilage destruction in the absence of IFNγ + IL-4, suggesting that IL-4 could have direct 

protective effects on bone and cartilage, independent of regulation of IL-17.  This 
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supports finding by other groups showing that intra-articular delivery of IL-4 slowed 

bone and cartilage damage in rat adjuvant arthritis [158, 159] and that IL-4 can directly 

down-regulate osteoclastogenesis through inhibition of RANKL activity [48].  

Interestingly, in patients with RA a polymorphism in the IL-4 receptor that results in 

reduced responsiveness to IL-4 is associated with rapidly erosive disease, suggesting that 

IL-4 plays a protective role in joint destruction in RA [183, 184]. 

As both IFNγ and IL-4 suppress IL-17 in vitro, one would expect that the 

increased arthritis with anti-IFNγ + anti-IL-4 would be associated with increased IL-17.  

However, there was no further increase in the serum levels of IL-17 in the anti-IFNγ + 

anti-IL-4 groups versus the anti-IFNγ alone group.  In addition, the arthritis in the anti-

IFNγ group was associated with significantly elevated IFNγ, IL-4 and IL-17 levels in the 

joints, whereas the arthritis in the anti-IFNγ + anti-IL-4 group was associated with a 

significant increase in IFNγ and IL-4 but only a modest increase in IL-17.  While 

administration of anti-IL-17 antibody completely abrogated the arthritis associated with 

anti-IFNγ alone, it only partially suppressed the arthritis associated with anti-IFNγ + anti-

IL-4.  These results suggest that neutralization of IFNγ versus IFNγ + IL-4 lead to joint 

inflammation by distinct pathways, one completely dependent on IL-17 and the other 

only partially mediated by IL-17, but it remains unknown what mechanisms could be 

mediating inflammation in the absence of IFNγ, IL-4 and IL-17.     
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Chapter 6 

Conclusions 

 The experiments outlined herein have answered many questions about the 

regulation of Th17 cells by Th1 and Th2 cytokines, while also raising many new 

questions.  We have shown a remarkable degree of continuity between the regulation of 

in vitro Th17 differentiation, in vitro Th17 re-stimulation and ex vivo Th17 re-

stimulation.  In all three systems IL-17 expression is up-regulated by TGFβ, IL-6 and IL-

23 and down-regulated by IL-4, IFNγ and IL-12.  However, a few interesting differences 

do emerge.  For example, IL-4 inhibits expression of IL-23R but not IL-22, while IFNγ 

inhibits expression of IL-22 but not IL-23R.  Also, IL-4 and IFNγ continue to suppress 

IL-17 production in the presence of TGFβ, IL-6 and IL-23 while IL-12 does not.  These 

discrepancies point to important differences in the downstream mechanisms, which 

remain largely unknown.  We showed that IL-4-mediated suppression is dependent on 

STAT6 and independent of STAT5, IRS1/2 and GATA-3.  Although we have been 

unable to identify the direct target of STAT6 that ultimately mediates IL-17 silencing as 

of yet, the search continues, and the answer will likely come from careful and thorough 

screening of a large number of candidates.  Looking further downstream, we went on to 

demonstrate that IL-4 induces a loss of STAT3 binding at the Il17a promoter but also a 

surprising increase in PolII binding and acetylation of H3 and H4.  The results of these 

experiments fly in the face of our assumptions about the relationship between chromatin 

modifications and gene expression, but they also suggest that an “open” chromatin 

conformation may facilitate binding of transcriptional repressors as well as inducers. 
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 In other experiments that conflict with previously published data, we found Th17 

cells generated both in vitro and in vivo to be stable and resistant to suppression.  

Published data suggest that in vitro-derived Th17 cells quickly lose their IL-17 

expression and can be converted to other lineages, even after three rounds of stimulation.  

However, in vivo-derived Th17 cells maintained their phenotype and were resistant to 

suppression [83, 93, 165].  The results of these and other groups highlight the differences 

between in vitro- and in vivo-derived Th17 cells and suggest that our culture system may 

more closely resemble the natural setting, possibly due to the fact that we use BM-DCs as 

APCs rather than irradiated splenic feeder cells [92, 94].  In our experiments, Th17 cells 

cultured under Th2 conditions did not take on a Th2 phenotype and were able to re-

express IL-17 after the suppressive signals were removed.  We also found that three 

rounds of in vitro stimulation rendered Th17 cells resistant to suppression by IL-4 as a 

result of desensitization of the IL-4R.  Importantly, we observed a similar maturation 

process in Th17 cells generated in vivo, and maturation state correlated with disease 

progression.  The simple observation that inflamed joints from arthritic mice co-

expressed large quantities of IL-17, IFNγ and IL-4 suggests that Th17 cells at the site of 

inflammation are resistant to suppression.   

Although we showed that IL-4R desensitization does not depend on SOCS5, 

further studies are necessary to determine the role of SOCS1.  Assuming a specific factor 

such as SOCS1 is found to mediate loss of IL-4R signaling, experiments using knockout 

mice to address the role of Th17 maturation in CIA will be extremely alluring. 
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Based on observations from our lab and others, we propose that differentiation 

and maturation of Th17 cells can be divided into three phases: initiation, commitment and 

stabilization, which can be distinguished based on sensitivity to IL-4 (see Fig. 6.1).  

Initiation consists of the first few hours to days following stimulation of a naïve T cell 

with antigen and Th17-skewing cytokines, and during this time T cells may have a Th0 

phenotype and express cytokines and transcription factors specific for multiple lineages.  

Encountering IL-4 during initiation presumably activates STAT6 and up-regulates 

GATA-3, which prevents H3 acetylation and H3K4 tri-methylation and induces H3K27 

tri-methylation at the Il17a locus, resulting in silencing of IL-17 expression and 

conversion to a Th2 phenotype.  Commitment refers to the period of a few days to a few 

weeks after initial antigen encounter and may be mediated by a combination of TCR 

stimulation, TGFβ, IL-6, IL-23 and IL-21.  During this time Th17 cells up-regulate 

lineage-specific cytokines and transcription factors and down-regulate lineage-

inappropriate factors.  As shown in our studies on Th17 suppression following one week 

of in vitro differentiation or two weeks of immunization, treatment with IL-4 at this stage 

activates STAT6, resulting in a loss of STAT3 DNA-binding activity and transient down-

regulation of IL-17 expression through an unknown, GATA-3-independent mechanism, 

without concomitant up-regulation of IL-4 and conversion to a Th2 phenotype.  Lastly, 

stabilization is a slow process that may take many weeks and leads to resistance to 

suppression by opposing cytokines.  At this stage there is inhibition of IL-4-induced 

STAT6 phosphorylation, which is independent of SOCS5 but may be mediated by 

SOCS1.  This transition may also result in more permanent mechanisms of silencing of 

lineage-inappropriate cytokines and transcription factors, such as condensation into 
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centromeric heterochromatin, which has been found to occur at the Il4 and Gata3 loci in 

Th1 cells [185-187].  

We have drawn these lines in the sand between pre-Th17, immature Th17 and 

mature Th17 cells based on changes in the response to IL-4, but we have also found that 

Th17 cells respond differently to IL-4 versus IFNγ and IL-12, which raises the question 

of how applicable our model is to other systems.  For example, immature Th17 cells 

treated with IL-4 do not assume a Th2 phenotype, but other groups have found that Th17 

cells treated with IL-12 take on a Th1 phenotype [83].  In addition, mature Th17 cells are 

resistant to suppression by IL-4 and IFNγ but not by IL-12.  One possibility is that the 

timeline of Th17 maturation in the context of IL-12 is simply slower than Th17 

maturation in the context of IL-4.  Alternatively, Th17 cells may never become resistant 

to IL-12, which may be more likely given that IL-12 and IL-23 share a receptor subunit 

and Th1-like Th17 cells are fairly common in vivo.  However, reports from different 

groups have shown that forced expression of T-bet in naïve T cells prevents IL-17 

expression in Th17-polarizing conditions, yet T-bet/RORγt double-positive cells that 

express both IFNγ and IL-17 have been found in vivo, suggesting that there must be 

mechanisms that overcome T-bet-mediated inhibition of IL-17 expression [188, 189].  

Further support for the universality of our model comes from literature suggesting that 

Th1 cells undergo a similar three-stage maturation process of decreasing responsiveness 

to IL-4.  One possibility is that our model is specific to regulation by IL-4 but not specific 

to Th17 cells.  Thus it will be interesting to determine if Th2 and Th17 cells undergo a 

similar process of desensitization to suppression by IFNγ. 
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Th17 cells have been shown to play an important role in multiple inflammatory 

diseases, including rheumatoid arthritis, psoriasis, multiple sclerosis, asthma and 

inflammatory bowel disease, and a thorough understanding of the mechanisms leading to 

expansion and regulation of the Th17 response is of great clinical importance.  Our 

studies have focused on the mechanisms of suppression of Th17 cells by IL-4, a cytokine 

with known significance in the immunopathology of allergy and asthma, but largely 

thought to be absent from the immune response in RA.  Recent evidence suggests, 

however, that IL-4 may have an underappreciated protective role in RA.  A 

polymorphism in the IL-4R that confers decreased signaling capacity is associated with 

more erosive RA, and work from our lab has shown that this allele results in impaired 

suppression of IL-17 by IL-4 [164].  Thus IL-4 may suppress bone and cartilage 

destruction in RA via inhibition of IL-17.  Similarly, our studies with in vivo neutralizing 

antibody treatment in CIA described here suggest that endogenous IL-4 protects against 

joint destruction in mice.  Although these studies did not support the hypothesis that the 

protective function of IL-4 is mediated by suppression of IL-17, this conclusion is based 

on the effects of neutralizing antibodies that were only administered during the early 

phase of disease and are unlikely to penetrate the joint.  Given that IL-4 is highly 

expressed in the joint but not in the spleen or lymph node, it is plausible that IL-4 limits 

joint destruction by local inhibition of IL-17 at the site of inflammation without affecting 

IL-17 production in secondary lymphoid organs.  However, this idea is at odds with our 

hypothesis that Th17 cells in the inflamed joint are mature and resistant to suppression by 

IL-4.  Unfortunately, the experiments we would most like to do, namely modulating and 

analyzing joint-specific immune events during CIA, are fraught with technical challenges 
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inherent in studying an autoimmune disease with such an inaccessible target organ.  

While we have had some success with ELISpots of joint-derived cells, flow cytometry of 

these populations has been more difficult and requires further refinement.    

One technique for skewing both the systemic and joint-specific cytokine 

responses that we are currently exploring is adoptive transfer of collagen-specific Th1, 

Th2 and Th17 cells into arthritic mice, which we hope will traffic to the inflamed joint 

and contribute their prototypical cytokines to the milieu.  These experiments would also 

be an ideal way to test the relative pathogenicity of immature versus mature Th17 cells 

and the stability of IL-4-mediated suppression of IL-17.  We hypothesize that adoptive 

transfer of Th1 or Th2 cells would limit joint inflammation; adoptive transfer of 

immature Th17 cells would have a mild or delayed pathogenic effect; and adoptive 

transfer of mature Th17 cells would have a rapid, highly pathogenic effect and possibly 

induce arthritis in the absence of immunization.  However, further work is needed to 

optimize the in vitro differentiation and maturation of T cells from mice bearing a 

transgenic collagen-specific TCR.  Alternatively, the relative pathogenicity of immature 

versus mature Th17 cells may be easier to address in EAE, the mouse model of multiple 

sclerosis, because there are well-established techniques for adoptive-transfer-induced 

disease and adoptively transferred cells can be more easily isolated from the inflamed 

central nervous system (CNS).  It will also be interesting to know if our in vitro and ex 

vivo observations of Th17 maturation can be extended to other disease models by testing 

the effects of IL-4 on Th17 cells isolated from the inflamed CNS of mice with EAE.  

Similarly, much work is needed to assess the sensitivity and resistance to suppression by 

IL-4 in human Th17 cells from patients with various immune-mediated diseases.  The 
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possibility of human Th17 maturation raises many exciting new questions and ideas 

about the etiology of Th17-mediated disease, and a better understanding of the molecular 

mechanisms mediating stabilization of committed cytokine production may lead to new 

approaches for targeted therapies.      

Our work on the regulation and maturation of Th17 cells is particularly timely, as 

the recent identification of several new T helper cell subsets has led to a surge in the 

interest and understanding of the mechanisms underlying lineage commitment and 

plasticity of CD4+ T cells.  Technological advancements and increasing collaborations 

between scientists of diverse backgrounds have led us away from reductionist approaches 

and discrete, linear pathways and towards systems analyses and dynamic, relativistic 

models.  In this vein, we have shown that joint inflammation depends more on the 

balance between cytokines than on the absolute concentration of any cytokine alone and 

that traditional markers of active gene transcription can go up even as gene expression is 

going down.  It is also important to remember that many of our ideas about T helper cell 

differentiation are based on cells grown in highly biased conditions in vitro, and yet T 

helper cells are still able to differentiate and co-exist in vivo.  The simple fact that in vitro 

Th17 differentiation requires strict inhibition of Th1 and Th2 differentiation, but Th17 

cells clearly exist amidst a sea of cytokines in vivo, suggests that we are missing 

something significant.  The lesson here is that, rather than thinking in terms of absolutes 

(transcription is either on or off, cytokines are either inflammatory or anti-inflammatory, 

external stimuli either activate or inhibit), it will be more fruitful to think in terms of 

probabilities and ratios.  Our knowledge about T cell dynamics is continually expanding, 

ultimately leading to models that are more complicated, but also more inherently truthful. 
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Figure 6.1: Three-phase model of Th17 maturation and progressive desensitization to 

suppression by IL-4       
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Appendix 

Materials and Methods 

Mice  

For in vitro Th17 differentiation and KLH-immunization, male 6- to 8-week old 

BALB/c mice were obtained from Jackson Laboratories.  For cII/CFA immunization and 

CIA studies, male 8- to 10-week-old DBA1 mice were obtained from Jackson 

Laboratories.  STAT6-deficient, IL-4-deficient, IL-4R-deficient and IL-4R mutant mice 

on a BALB/c background were obtained from Jackson Laboratories.  SOCS5-deficient 

mice on a C57BL/6 background were obtained from the lab of Sandra Nicholson at the 

Walter and Eliza Hall Institute of Molecular Medicine (Melbourne, Australia) and bred in 

our facilities.  All animals were housed in specific pathogen free conditions and all 

procedures were approved by the University Committee for the Use and Care of Animals 

of the University of Michigan.  Single-cell suspensions from spleens and thymi of CD4-

Cre/STAT5a/bflox mice on a C57BL/6 background were collected in the lab of Dr. John 

O’Shea at the NIH and were shipped overnight on ice.  Freshly isolated spleens from 

GATA3 conditional knockout mice were collected in the lab of Dr. James Engel at the 

University of Michigan.      

Generation of BM-DC 

Bone marrow was isolated from femurs and tibias, treated with ACK, and 

cultured for 6 days at 1x106 cells/mL with 10ng/mL recombinant mouse IL-4 and GM-

CSF (Peprotech) in basic RPMI (10% FCS, 2% L-glutamine, 1% penicillin/streptomycin, 
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1X β-mercaptoethanol).  The cells were then collected using a cell scraper and CD11c+ 

cells were positively selected by two rounds of MACS (Miltenyi Biotech).  

Purification of naïve T cells 

Spleens were collected and CD4+ T cells were magnetically isolated by negative 

selection using the EasySep kit from Stem Cell Technologies.  The purified CD4+ T cells 

were then labeled with CD4 FITC, CD25 PE, CD44 PE-Cy7 and CD62L APC 

(Biolegend).  The CD4+CD25-CD44loCD62L+ cells were sorted on a FACS Vantage, 

Aria or Diva. 

Th17 differentiation 

BM-DCs and naïve T cells were plated in 6 well plates in basic RPMI at 

0.125x106 BM-DCs and 0.25x106 naïve T cells per mL with 4 μg/mL anti-CD3 (145-

2C11), 10 μg/mL anti-IL-4 (11B11), 10 μg/mL anti-IFNγ (R4-6A2), 1 ng/mL 

recombinant human TGF-β1 (Peprotech), 20ng/mL recombinant mouse IL-6 (Peprotech) 

and 10 ng/mL recombinant mouse IL-23 (eBioscience).  For inhibition of Th17 

differentiation anti-IL-4 was omitted from the culture and recombinant mouse IL-4 

(Peprotech) was added at 10 ng/mL, unless stated otherwise.  Alternatively, anti-IFNγ 

was omitted from the culture and recombinant mouse IFNγ (Peprotech) was added at 10 

ng/mL, unless stated otherwise.  Cells were stimulated for six days and then collected, 

washed twice with cold 2% NCS/PBS and put back into culture in the same volume 

without stimulation for two days.  For inhibition of Th17 re-stimulation IL-4 was added 
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to the culture during the two-day rest period or during a two-day restimulation with anti-

CD3 following the rest period.   

Th17 maturation 

Naïve T cells underwent six days of Th17 differentiation followed by two days of 

rest, according to the protocol described above.  To induce maturation the cells were then 

expanded two fold with the addition of fresh BM-DCs, re-stimulated with the same 

cytokine and neutralizing antibody cocktail for five days, and then washed and rested for 

two days.  This cycle of five days of stimulation and two days of rest was repeated, for a 

total of three weeks of culture.  At the end of the three weeks the Th17 cells were 

restimulated for two days with anti-CD3 and recombinant IL-4. 

ELISA 

In various experiments IL-17A, IL-17F, IL-22, IFNγ, IL-4 and IL-10 were 

measured by ELISA.  Plates were coated with purified anti-IL-17A (clone TC11-

18H10.1, Biolegend), anti-IFNγ (clone R46A2 or XMG1.2, Biolegend, San Diego, CA, 

USA) or anti-IL-4 (clone11B11).  Plates were blocked and then loaded with tissue culture 

supernatants or serum. The plates were washed and treated with biotin-conjugated anti-

IL-17A (clone TC11-8H4, Biolegend), anti-IFNγ (clone XMG1.2 or R4-6A2 Biolegend) 

or anti-IL-4 (clone BVD6-24G2, BD) mixed with streptavidin horseradish peroxidase 

(Biolegend).  Lastly the plates were developed with OptEIA TMB substrate (BD) and 

absorbance at 450 nm was quantitated with a Biorad (Hercules, CA, USA) plate reader 

using KC4 software (Biotek, Winooski, VT, USA).  IL-17F ELISA was performed using 
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a kit from R&D Systems according to the manufacturer’s protocol.  IL-22 ELISA was 

performed using a kit from Antigenix according to the manufacturer’s protocol.  IL-10 

ELISA was performed using a kit from BD Pharmingen (San Jose, CA, USA), according 

to the manufacturer’s protocol. 

Flow cytometry  

For ICS, cells were stimulated for 6 h with 5 ng/mL PMA and 500 ng/mL 

ionomycin, with 10 μg/mL Brefeldin A added for the last 5 h (all chemicals from Sigma).  

Cells were then treated with mouse FcBlock anti-CD16/32, stained with FITC- or PE-

conjugated anti-CD4 (clone GK1.5) and fixed overnight.  The next day cells were 

permeabilized with saponin and stained with fluorescent labeled anti-IL-17 (clone TC11-

18H10.1), anti-IFNγ (clone XMG 1.2), and anti-IL-4 (clone 11B11) or the appropriate 

isotype control (all antibodies from Biolegend).  Staining was measured with a FACS 

Calibur and data was analyzed using Cell Quest software (BD). 

Real-time PCR 

Gene expression at the mRNA level was analyzed by Taqman-based real time 

PCR with specific primers and probes.  First, RNA was collected from frozen cell pellets 

with the RNEasy Mini kit and treated with DNase (Qiagen).  cDNA was generated using 

the High Capacity cDNA archive kit (Applied Biosystems).  Relative quantification using 

the comparative CT method was carried out using TaqMan Universal PCR Master Mix or 

Gene Expression Master Mix (Applied Biosystems) and run on an AB7500 machine.  

The following primer and probe sets were obtained from Applied Biosystems: IL-17A, 
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IL-17F, IL-22, RORγ, IL-23R, IFNγ, IL-4, IL-4R, STAT6, SOCS1, SOCS3, SOCS5, 

GATA3, T-bet, β-Actin and GAPDH.  

Chromatin immunoprecipitation 

Chromatin immunoprecipitation was carried out according to the EZ ChIP 

protocol (Upstate).  Briefly, Th17 cells were fixed with formaldehyde and lysed with 

SDS.  Lysates were sonicated to shear DNA and immunoprecipitated with protein G and 

antibodies to STAT3, STAT6, GATA3, H3K4me3, H3K27me3, H3Ac, H4Ac, PolII.  

Eluted DNA was quantitated by real-time PCR with SYBR green master mix (Applied 

Biosystems) and the following primers: 

Il17a promoter forward: AGGGAGAGCTTCATCTGTGG 

Il17a promoter reverse: AGATTCATGGACCCCAACAG 

Il17a/f intergenic region forward: CAGACTCCAAGCACATCATG 

Il17a/f intergenic region reverse: GACTGACCTACATTGTGGGC 

Rorc promoter forward: AGGCTCCTGACCTTTGATTG 

Rorc promoter reverse: AGGGGGTGCTGAGTAATCAC 

 

Western blot 

Th17 cells were washed and rested overnight in RPMI with 2% FCS plus 

cytokine-neutralizing antibodies to minimize background levels of STAT activation.  The 

cells were then re-stimulated with 50 ng/mL IL-4 or IL-2 for various time periods.  The 

reaction was stopped with cold PBS plus 1 mM Na3VO4, and the cells were lysed with 

Phosphosafe extraction reagent (Novagen) supplemented with protease inhibitor cocktail 

(Calbiochem).  Lysates were reduced and denatured by boiling with SDS loading buffer 
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with 100 mM DTT. Sample were run on a 10% Precise Tris-Hepes-SDS gel (Pierce) and 

transferred to nitrocellulose membrane (Millipore).  Membranes were stained with the 

following primary antibodies at 1:1000 unless noted otherwise: anti-STAT6 (Cell 

Signaling), anti-phospho-Tyr641 STAT6 (Calbiochem), anti-STAT5 (Cell Signaling), 

anti-phospho-Tyr694 STAT5 (Cell Signaling), anti-JAK1 (Cell Signaling), anti-JAK3 

(1:200, Santa Cruz), anti-SOCS1 (1:200, Santa Cruz), anti-SOCS5 (1:200, Santa Cruz), 

and anti-GAPDH (1:400, Biolegend).  Secondary antibodies were goat anti-rabbit IgG 

HRP (1:1000, Cell Signaling) or rabbit anti-goat IgG HRP (1:10,000, Abcam).  

Chemiluminescence was developed with Pierce ECL Western blotting substrate and 

detected on blue autoradiography film (MidSci).  Band intensities were quantified using 

Kodak 1d 3.6 software.  

Immunizations  

Complete Freund’s adjuvant (CFA) was prepared by mixing heat inactivated 

mycobacterial strain H37Ra in incomplete Freund’s adjuvant at 4 mg/ml. For KLH 

immunization, Imject® mcKLH subunits (Pierce, Rockford, IL) were diluted in PBS to 

2mg/mL and mixed at a 1:1 ratio with CFA.  Mice were immunized intraperitoneally 

with 100μg KLH.  For collagen immunization, lyophilized chicken collagen (Chondrex, 

Redmond, WA, USA) was dissolved overnight in acetic acid at 4 mg/ml.  CFA and 

collagen were mixed at a 1:1 ratio to form an emulsion and 100 μg of collagen was 

injected intradermally at the base of the tail.  

Arthritis scoring 
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Mice were scored for arthritis every other day from day 15 after immunization.   

Scoring was performed as follows: 0 = no swelling or redness of paws or digits; 1 = 

swelling and redness in one to two digits; 2 = swelling and redness over ankle or three or 

more digits or midfoot; 3 = swelling and redness over ankle and midfoot or digits and 

midfoot; 4 = swelling and redness over entire foot or ankylosis.  

In vivo neutralizing antibody  

For in vivo cytokine neutralization in cII/CFA-immunized mice, neutralizing rat 

antibodies to mouse IFNγ (clone R46A2) or IL-4 (clone 11B11) were purified from 

hybridomas (ATCC, Manassas, VA, USA) and used at 100 μg/mouse/ day.  Neutralizing 

antibody to IL-17 (clone M210) was a kind gift from Amgen (Thousand Oaks, CA, 

USA).  The antibodies were injected intraperitoneally from day 10 to 20. Rat IgG at 100 

μg/mouse/day was used as a control. 

Tissue collection and culture from immunized mice 

For CIA experiments, blood was collected by cardiac puncture into serum 

separator tubes, and serum was frozen at –80oC for cytokine assays to be performed at a 

later date.  For some assays 100 μl of blood was collected serially from tail bleeds on 

days 0, 14, 28 and 42.  Spleens and inguinal lymph nodes were collected and single-cell 

suspensions were restimulated with 100 μg/ml of heat-denatured chicken collagen.  Cells 

were collected after overnight culture for ICS or supernatants were collected at day five 

of culture for ELISA.  Paws were harvested by incising at the fur line, removing the skin, 

mincing and culturing overnight in 1 mL of media.  Supernatants were collected for 
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ELISA.  All cultures were in basic RPMI 1640 (10% FCS, 2% L-glutamine, 1% 

penicillin/streptomycin and 1X β-mercaptoethanol).  

Histologic scoring  

Mouse hind paws were used for histology scoring. The paraffin-embedded tissue 

was sectioned in an axis longitudinal to the tibia. Three sections from the center of each 

paw were stained with H&E and scored by two independent blinded observers. 

Inflammatory infiltrate, synovitis (synovial hyperplasia), cartilage destruction and bone 

involvement were each scored on a scale of 0 to 3: 0 = no change, 1 = mild, 2 = moderate 

and 3 = severe. 

Statistical analysis  

P values were calculated by students t test, one sample t test and one-way 

ANOVA using Prism, with a p value less than 0.05 representing statistical significance. 
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