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SUMMARY

We consider a network of sensors that measure the intensities of a complex plume composed of multiple
absorption–diffusion source components. We address the problem of estimating the plume parameters,
including the spatial and temporal source origins and the parameters of the diffusion model for each
source, based on a sequence of sensor measurements. The approach not only leads to multiple-source
detection, but also the characterization and prediction of the combined plume in space and time. The
parameter estimation is formulated as a Bayesian inference problem, and the solution is obtained using a
Markov chain Monte Carlo algorithm. The approach is applied to a simulation study, which shows that
an accurate parameter estimation is achievable. Copyright q 2010 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Advances in monitoring and communication technologies have enabled environmental monitoring
and security assessment using sensor networks, as evidenced by their deployments in a wide variety
of contexts [1, 2]. While the specific configuration of any particular sensor network depends on the
context of the problem, sensor networks typically generate potentially complex and unstructured
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data sets. These data sets are a crucial part of our understanding of the phenomena that the networks
monitor. Hence, our ability to analyze and extract useful information determines the effectiveness
of the sensor networks.

After the initial explosion/release at a certain time and location, the results of a dirty bomb, a
chemical leak, or the release of biological agents take the form of an atmospheric plume that will
undergo transport, advection, diffusion, adsorption, radioactive decay, and delayed re-emission. To
detect, study, identify, and/or track the plume, we must study its spatio-temporal evolution. In this
paper, we propose a Bayesian statistical approach that relies on both physical laws and statistical
models in space and time. That is, they are physical statistical models in the sense of [3].

Spatially disperse networks of sensors hold an enormous potential for the detection, identifi-
cation, tracking, and prediction of these point-source phenomena. In particular, the problem of
detecting and tracking sources was addressed using sensor networks for chemical dispersions in
[4–6], and nuclear radiation in [7]. However, there has been limited effort in incorporating the
analytical and statistical nature of the plume and sensor models to analyze the measurements
collected by such networks. In [8], a linear array of detectors was employed to detect a moving radi-
ation source against the background radiation. A sensor-network solution for detecting a moving
radiological dispersion device was presented using a Bayesian formulation in [7]. Cost–benefit
analysis of using sensor networks for detecting the moving radiation sources was carried out in [9].
These contributions mainly focus on detecting low-level radiation emitted by sources prior to the
explosion, and consequently they do not explicitly consider the dispersion dynamics. A recursive
algorithm was presented in [10] to locate a single source and track the plume intensity. It is not
clear to us how this method can be extended to a multiple-source situation.

This paper is structured as follows. Section 2 gives a technical formulation of the problem,
introduces a PDE plume model, and discusses the Bayesian inferential approach for this model.
Section 3 contains a simulation study, and the discussion and conclusions are given in Section 4.

2. PDE PLUME MODEL AND ESTIMATION METHOD

2.1. Formulation of the problem

The objective of this paper is to introduce a statistical approach to systematically analyze and
estimate the parameters of a plume resulting from a chemical leak (say), based on a sequence
of sensor-network measurements. The establishment of such networks is expected to accelerate,
and the roles that they play in addressing significant issues will continue to expand in the near
future. We consider the following scenario of K pollution sources released into the environment
at different times t01, . . . , t0K and spatial locations s01, . . . ,s0K , respectively, for some K>1. For
simplicity, we assume that the sensor locations are on the two-dimensional plane. Let

uk(x, y, t) ≡ true plume intensity at time t and location (x, y),

due to the kth source (1)

clearly uk(x, y, t)=0 if t<t0k . In most situations, such as dirty bombs and chemical leaks, the
plume intensities are usually low and sources are not close to each other. We assume that plume
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intensities are additive, so that the true total plume intensity at location (x, y) and time t is,

K∑
k=1

uk(x, y, t).

Suppose that sensors are placed at locations (xi , yi ); i=1,2, . . . ,ns , and the (total) plume
intensity is observed at times ti, j ; j =1,2, . . . ,ni , for sensor i . The plume intensity is measured by
the sensors; we assume that there is an additive random error εi, j associated with each measurement,
so that we observe

zi, j =
K∑

k=1
uk(xi , yi , ti, j )+εi, j , (2)

where the errors {εi, j } may have a spatio-temporal dependence structure.
An example of uk is the simple product-form model in [11, 12]

uk(x, y, t)=
⎧⎨
⎩

�e−[(x−x0k)2+(y−y0k)2]1/2, t ∈[t0k, t0k+T ],
�e�(t−t0k−T )−[(x−x0k)2+(y−y0k)2]1/2, t>t0k+T,

where �,�,T are unknown parameters. Other plume models considered in the literature can be
found in [4, 5, 13, 14]. The product-form model provides a convenient analytic formulation of the
spatio-temporal evolution of the plume, but it does not account for propagation or drift due to
exogenous factors such as wind. Indeed, within this model the consequence of the explosion is
instantaneous in the whole space, followed by absorption after a delay T . On the other hand, one
could attempt to simulate each particle and track them through space and time, with the sensor
measurements providing parameter estimates on the simulation. An intermediary step between the
extremely simple product model given above and the realistic, but often cumbersome numerical
simulations of particles, is given by analytic PDE solutions, adapted to a statistical-modeling frame-
work. These provide an excellent basis for evaluating statistical methods, carrying out parameter
identification, and refining sensor-fusion techniques.

The main purpose of this paper is to consider the statistical inference of such a PDE plume
model based on the spatio-temporal data {zi, j } described in (2). Owing to the large number of
unknown parameters, a Bayesian perspective will be adopted and the posterior distribution will be
obtained from Markov chain Monte Carlo simulations. As mentioned in Section 1, the Bayesian
approach has been used previously in detecting moving radiation sources (characterized by simple
diffusions) using sensor networks; see [7, 8, 15].
2.2. A PDE plume model

The most important features of the physical phenomenon described in Section 1 are well captured
by an absorption-drift-diffusion model. When the space is two dimensional, a homogeneous version
of the model is given by

�u
�t

=−bu+v1
�u
�x

+v2
�u
�y

+c2
(

�2u
�x2

+ �2u
�y2

)
, (3)

where u(x, y, t) models the plume intensity at the point (x, y) at time t , b is the absorption
coefficient, and v1 and v2 are the components of the advection velocity. Considering that the
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propagation usually takes place within a relatively small field in the atmosphere, an isotropic
medium is assumed with a diffusion coefficient c. This model also assumes that the propagation
takes place essentially at the surface; accounting for the third dimension would be an important
next step.

We assume that the medium is infinite and the initial condition is:

u(x, y, t= t0)=C�(x−x0)�(y− y0), (4)

where �(·) is the Dirac delta function, which corresponds to a very sharply localized release of
intensity C at time t= t0, at the point (x0, y0). Then the solution to (3) and (4) can be calculated
exactly as

u(x, y, t)= a

t− t0
exp

{
−b(t− t0)− (x−v1t−x0)2+(y−v2t− y0)2

4c2(t− t0)

}
, (5)

where a is a normalization constant depending on the intensity of the initial source, C , and on the
diffusion constant, c; for example, see [16]. Formula (5), which represents the Green’s function
of Equation (3) in an infinite medium, can be generalized to higher dimensions and various
anisotropic situations. Notice that it is not of product (time × space) form, and hence the model
is non-separable in space and time.

Propagation in inhomogeneous and/or non-stationary media (i.e. accounting for the presence
of buildings, mountains, forests, changing meteorological conditions, etc.) can be described by
replacing the constant coefficients with appropriate functions of time and position and/or supple-
menting the equation with appropriate boundary conditions. While in general these situations do
not lend themselves to simple analytical solutions (see [17]), numerical approaches are usually
possible and have been pursued to a great extent (e.g. [18]). Note that (stochastic) PDE models for
environmental and ecological processes have been used in the hierarchical Bayesian framework
(e.g. [19, 20]), although their goal was not inference on the location of sources.

In the remainder of our paper, we rely on knowing the explicit solution (5). There are several
things to note. Should the PDE be generalized to account for spatial or temporal inhomogeneity,
our approach would need an analytical solution. A similar consideration holds if we generalize
from two dimensions to three dimensions. Finally, the PDE plume model (3) has no uncertainty
associated with it (often expressed in the form of a stochastic PDE).

The advantages of the class of models illustrated by Equation (3) include (i) their general
mathematical properties are very well understood [16, 17]; (ii) the evolution described by the
continuous versions preserves the required physical properties, such as positivity and conservation
laws [16, 17]; (iii) due to the parabolic character of the equation, the discretized versions are stable.
2.3. Methodology

From now on we shall focus on the PDE-based plume model (5). We assume here that the total
number of plume sources K is known; an approach to determine K from data will be discussed
in Section 4. To simplify notation, write

u(x, y, t;sk)= I (t>t0k)
ak

t− t0k
exp

{
−bk(t− t0k)− (x−v1k t−x0k)2+(y−v2k t− y0k)2

ck(t− t0k)

}
,

where sk =(ak,bk,ck,v1k,v2k, t0k, x0k, y0k)′ is the vector of parameter values for the kth plume
source. Let s̃k ≡(ãk, b̃k, c̃k, ṽ1k, ṽ2k, t̃0k, x̃0k, ỹ0k)′ denote the corresponding true parameter values.
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Observe that the true intensity function uk(x, y, t) defined in (1) can be written in terms of the
model as u(x, y, t; s̃k).

Assume that the errors {εi, j } in (2) are independent and normally distributed with mean 0 and
variance �2; let the true variance be �̃2. We consider the robustness of this assumption below in
Section 3. Thus, the combined parameter of the K plume sources is

h≡(s1,s2, . . . ,sK ,�2)′,

which is a vector of length 8K +1. In addition, denote by z the data {zi, j ,1� j�ni ,1�i�ns}
defined by (2). Then the likelihood of h is

p(z|h)∝(�2)−N/2 exp

[
− 1

2�2

ns∑
i=1

ni∑
j=1

{
zi, j −

K∑
k=1

u(xi , yi , ti, j ;sk)
}2]

, (6)

where N =∑ns
i=1 ni . The high dimensionality of h makes it attractive to regularize the likelihood

by putting a prior on h. Our approach in this paper is to put all the uncertainty about the PDE onto
its parameters s, and express that uncertainty through a prior distribution. Hence, the posterior
distribution can (in principle) be obtained, and inference carried out on such parameters as the
plume’s source.

For prior distribution consideration, if the plume sources are dirty bombs, then highly populated
areas may be more likely to contain the bombs’ source locations than lowly populated areas,
in which case it makes sense for the prior distribution to reflect this. In addition, certain values
of ak,bk,ck may be more likely than others, as determined by the physical conditions of the
environment. However, if no prior information is available or if one chooses to ignore it, then a
uniform distribution on the 6K -dimensional vector, (s′1, . . . ,s′K ), often called a non-informative
prior, could be used. One could also use a normal prior with large variances for the elements of
sk,k=1, . . . ,K .

Bayesian inference focuses on the properties of the posterior distribution, p(h|z), the conditional
distribution of h given the data z. Once p(h|z) is available, inference based on it can be made with
regard to the unknown model parameters. Furthermore, the overall plume intensity at any location
(x, y) and any time t can be predicted using its posterior mean (say):

K∑
k=1

∫
h

u(x, y, t;sk)p(h|z)dh. (7)

The posterior distribution can sometimes be derived in a closed form but often has to be computed
numerically. In this paper, the posterior distribution will be computed by Markov chain Monte
Carlo (MCMC) simulations. MCMC methods are widely used in statistics, and there are many
different approaches. See [21] for an overview of MCMC and discussions of important issues.

3. NUMERICAL RESULTS

In this section, we present some numerical results for the statistical inference on h from the PDE-
based plume model. We are not aware of any real-world data available, although there may be some
that are classified. Therefore, we illustrate our approach on the simulated data. For convenience,
we shall make the simplification that, for the advection velocities, v1k =v and v2k =0, is the same
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Figure 1. The upper-left/right panels give the source locations (×) and the 9/16 sensor locations (◦) for
the examples with two sources. The lower-left/right panels give the source locations (×) and the 16/25

sensor locations (◦) for the examples with three sources.

for all sensors, which reduces the number of parameters from 8K +1 to 6K +2. The assumption
means that the wind is blowing at more or less constant velocity in the direction of the x-axis in
the region containing the sensors. Note that this direction can be replaced by any other known
direction, and we do not assume that the wind speed is known. The locations of the plume sources
(unknown) and sensors (known) in our examples are given by the configurations in the upper-left
panel of Figure 1, where sensor locations are denoted by ‘◦’ and source locations are denoted
by ‘×’.

First, we consider an example for two sources (i.e. K =2) and ns =9 sensors. Assume that the
true PDE plume model is specified by the parameters in the top row of Table I, and we simulate
data from the model (5) followed by (2). The data z={zi, j } are observed at 20 equally spaced time
points from 0 to 2 at each of the 9 sensor locations shown in the top-left panel of Figure 1. In this
simulation, we assumed that the distribution of the measurement errors {εi, j } is independent and
identically distributed normal with mean 0 and standard deviation �̃=0.05. We first conducted a
single MCMC simulation run; see Figure 2, which shows the data zi, j observed at the 9 sensors
at 20 time points.

Based on the data, we conducted the statistical inference using the Bayesian approach described
in Section 2.3. We assumed that the prior distributions for each of the parameters were mutually
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Figure 2. The plots show the data collected by the nine sensors for one simulation.

independent. A scaled inverse-�2 distribution with scale parameter 0.01 and degrees of freedom 1
was used for �2, while for x0i , y0i , v, ai , bi , ci , ti we used uniform priors with truncated ranges
(−1,1), (−1,1), (−1,1), (1,3), (1,3), (1,3), and (0.2,0.8), respectively. Note that in practice, if
more information is available, one may choose some more informative priors. While �2 was updated
directly through a conjugate posterior distribution, all other parameters were updated using the
Metropolis algorithm (see [21]). MCMC simulations were implemented with 100 000 iterations;
after a burn-in of 50 000, the last 50 000 simulation results were used to compute the empirical
posterior distributions. The distributions obtained from a single MCMC run are summarized in
the plots in Figure 3, where the bar charts are relative-frequency histograms. The superimposed
smooth curves are the corresponding density estimates obtained by the kernel smoothing, where
Silverman’s bandwidth-selection rule-of-thumb (see [22]) is implemented. It can be observed that
the estimated posterior distributions are fairly tight and include the true parameters in their ranges.
The estimated posterior means are reported in Table I on the row that begins with ‘ns =9, �̃=0.05,
Independent’. All the estimates are quite close to their corresponding true values.

We then used (7) to predict the true plume intensity at time t=2.5 and over the spatial region
[−1,1]×[−1,1]. Note that this time point and a portion of the spatial region are beyond the
coverage of the sensors, as reflected by the data z. The predicted intensities are displayed in the
left panel of Figure 4, and the difference between the predicted and the true plume intensities is
displayed in the right panel of Figure 4. Clearly, the plume levels are predicted extremely well
over the entire region at this time point.

Copyright q 2010 John Wiley & Sons, Ltd. Appl. Stochastic Models Bus. Ind. 2010; 26:331–348
DOI: 10.1002/asmb
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Figure 3. Estimated posterior distributions of the parameters based on a single MCMC run for K =2. The
curves denote kernel-smoothed densities. The true values are indicated by the vertical lines.

In practice, the sensor-network measurements may not be independent. For instance, one could
assume that the measurement errors have spatio-temporal covariance:

cov(�i1, j1,�i2, j2)=�2C1(s,/1)C2(t,/2), (8)

where s is the spatial distance between the sensor locations (xi1, yi1) and (xi2, yi2), and t is the time
difference between the observation times ti1, j1 and ti2, j2 . In (8), �

2 is the overall variance; C1(s,/1)
is the spatial correlation function, where /1 indicates the spatial dependency; and C2(t,/2) is the
temporal correlation function with /2 representing the temporal dependency. In (6), let w denote
the vector whose elements are:

zi, j −
K∑

k=1
u(xi , yi , ti, j ;sk), 1�i�ns, 1� j�ni .
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Figure 4. The left panel shows the predicted plume levels. The right panel shows the difference between
the predicted plume levels and the true plume levels.

Then, under the independent-measurement-error assumptions made earlier,

p(z|h)∝(�2)−N/2 exp

{
− 1

2�2
w′w

}
. (9)

Now, if {εi, j } are dependent, having the covariance matrix � (e.g. obtained from (8)), then the
likelihood function becomes:

p(z|h)∝|�|−1/2 exp{− 1
2w

′�−1w} (10)

note that h is then augmented to include the parameters of �. In each iteration of the MCMC
procedure, an inversion of the matrix � needs to be computed. This can complicate the procedure
and can be time consuming.

It is of great interest to investigate the robustness of our procedure in this situation. With the
same set up as above, we generated the random error terms according to the spatio-temporal
structure (8) with the spatial correlation function C1(s,/1)=e−s/�1 and the temporal correlation
function C2(t,/2)=e−t/�2 , where �1=�2=0.4. The same MCMC procedure was conducted to
obtain the (estimated) posterior distributions. We first present the estimated posterior means on
the row that begins with ‘ns =9, �̃=0.05, spatio-temporal’ in Table I. It can be observed that
these values are very similar to their ‘independent’ counterparts and are close to the true values.
To compare the estimated posterior distributions with those in Figure 3, Q–Q plots were drawn
for each parameter and are included in Figure 5. These plots show that the estimated posterior
distributions of each parameter for the two models are similar to each other. In conclusion, this
limited study demonstrates that an assumption of independent measurement errors in (2), even
when the measurement errors are correlated as in (8), can still result in valid inferences. Note that
this approach can be viewed as a Bayesian procedure based on the quasi-likelihood [23]; we use (9)
instead of the full likelihood (10), and the parameters (�1,�2) in the spatio-temporal correlation
functions are not considered. Conducting inference based on quasi-likelihoods is common in
non-Bayesian statistics; see [24] for a general discussion.

To investigate further the performance of the MCMC procedure for the case of two plume
sources, we expanded the simulation study by considering all combinations of �̃=0.05 and 0.2;
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Figure 5. Q–Q plots of the estimated posterior distributions of parameters when measurement errors are
correlated in space and time versus those when measurement errors are independent; K =2.

ns =9 and 16; and independent and spatio-temporally correlated measurement errors. For example,
the plume-source/sensor configuration for ns =16 is shown in the upper-right panel of Figure 1.
The estimated posterior means are reported in Table I. For all the settings, the estimated posterior
means estimate the true parameter values quite well, especially for estimating the spatial and
temporal origins (x0, y0) and t0, respectively, of the sources. The robustness of the procedure can
be observed by comparing the entries between the independent-measurement-error setting and the
correlated-measurement-error setting. Note that the procedure performs slightly better for �̃=0.05
than for �̃=0.2, as expected, while the results are similar when the number of sensors changes
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from ns =9 to 16. A more complete simulation study would determine the value of �̃ (expressed
in terms of a signal-to-noise ratio) at which inferences deteriorate.

Next, we consider the situation when there are three sources (i.e. K =3). First assume that the
true PDE plume model is specified by the parameters in the top row of Table II; the measurement
errors {εi, j } are assumed to be normally distributed with mean 0 and standard deviation �̃=0.05,
and the data {zi, j } are observed at 20 equally spaced time points, as before. Consider the case of
25 sensor locations shown in the lower-right panel of Figure 1, for which we obtained data from
a single MCMC run. The estimated posterior means are presented in Table II, and the estimated
posterior distributions for the parameters are summarized in the plots in Figure 6. Some plots
seem to suggest that the procedure gives biased estimates; for example, the true value of t02 is
not in the range of the estimated posterior distribution. However, the true value of t02 is t̃02=0.6;
considering the empirical posterior distribution ranges from 0.6002 to 0.6008 with an estimated
posterior mean of 0.601, the bias is actually quite small.

Similar to the case of two plume sources, we also studied the performance of the procedure under
various settings. Specifically, we considered all combinations of �̃=0.05 and 0.2; ns =16 and 25;
and independent and spatio-temporally correlated measurement errors. The plume-source/sensor
configuration for ns =16 is shown in the lower-left panel of Figure 1, and recall that for ns =25
is shown in the lower-right panel. The estimated posterior means using the MCMC procedure are
presented in Table II. Again, the MCMC procedure worked very well in all the settings.

All the studies up to this point are based on a single MCMC run. One may wonder whether
this approach would consistently perform well when multiple MCMC runs are conducted. In this
part of simulation, we conducted 50 MCMC runs for two examples: one with two sources (K =2)
and one with three sources (K =3). Both examples have the same set up: ns =16, �̃=0.05 and
measurement errors are independent. For each example, we simulated the data zi, j , 1�i�16,
1� j�20, 50 independent times, and for each run we went through the MCMC simulation to
obtain the (estimated) posterior distributions. For each parameter 	�, we computed the (estimated)
posterior mean

∫
	� p(h|z)dh. Consequently, for each example, we obtained 50 posterior means,

one from each of the 50 simulations; these are presented in Figure 7 (K =2) and Figure 8 (K =3).
It can be seen that they are all in a tight range and that they cover the corresponding true values.
In particular, the spatial locations (x0, y0) and the temporal origins t0 of the sources are estimated
very well for all 50 MCMC runs in both figures.

4. DISCUSSION

In this paper, we present a Bayesian statistical approach for identifying the parameters, particularly
the source locations, of a PDE-based plume model from sensor-network data. We showed that
even with a moderate amount of data, the model parameters can be estimated using an MCMC
approach. The approach can also be used for spatial and temporal prediction of plume levels
beyond the sensor range.

In our analysis, we assumed that the true number of sources is known. In practice, the number
may have to be determined from data. In the literature, the deviance information criterion (DIC)
has been used (e.g. [21, 25]):

DIC= D̂ave+ pD,
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ã 2
=3

b̃ 2
=1

c̃ 2
=1

(x̃
02

,
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Figure 6. Estimated posterior distributions of the parameters based on one MCMC run for K =3. The
curves denote kernel-smoothed densities. The true values are indicated by the vertical lines.

where D is the deviance defined as −2 times the log-likelihood, and pD = D̂ave−D
ĥ
is a measure

of the effective number of parameters. The D̂ave is computed as the average of the deviance
functions for all MCMC iterations, and D

ĥ
is the deviance at the parameters’ posterior means.
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Figure 7. Estimated posterior means of the parameters based on 50 MCMC runs for K =2. The crosses
indicate the true source locations and the lines show the true values.
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Figure 8. Estimated posterior means of the parameters based on 50 MCMC runs for K =3. The crosses
indicate the true source locations and the lines show the true values.
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Table III. The D̂ave, Dĥ, pD and DIC values for three models with K =1, 2, 3. Lower
values of DIC indicate a better fit. The true model is K =2 with 14 parameters.

Model D̂ave D
ĥ

pD DIC

K =1 155.0 156.7 1.7 158.3
K =2 −873.2 −857.4 15.8 −841.6
K =3 −875.3 −858.1 17.2 −840.9

Based on the data of the two-source example in Figure 2, the D̂ave, Dĥ, pD and DIC values are
computed for K =1, 2, 3 and are shown in Table III. In this case, the true model has two sources,
and it is clear from Table III that the model with K =2 is preferable than others, since it has the
smallest DIC. Note that the chosen model (K =2) has a pD that is closer to the true number of
parameters.

A number of important extensions would require further research:

(i) Various computational issues should be considered. The MCMC simulations that we
presented for the two-source example took about 90 seconds to implement on a Linux
workstation (Dual Pentium 4 Xeon at 3GHz with 4GB RAM) using Fortran code. The
computational speed could be substantially improved using a more efficient computing
platform. The more interesting question is, how can the computations be performed in
real time? In other words, as new plume-evolution information becomes available, it
is desirable to update the estimation/prediction based on the previous results without
restarting them from scratch. One possible way to achieve this goal is to use sequential
Monte Carlo algorithms as in [26].

(ii) In our simulations, we assumed that the sensors are placed on a grid. This is because our
trial runs revealed that this scheme of sensor placement leads to the most satisfactory
statistical inference on average. An important question is if we have a fixed number
of sensors with limited query capabilities, how should we optimize the design of the
network? Spatial designs of this type are discussed in [27], and spatio-temporal designs
(assuming mobile sensors) are discussed in [28, 29].
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