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NOMENCLATURE

Pulse wave speed through continuum.

a/g

Acceleration of gravity.

Elevation of hydraulic gradeline (piezometric head).
Dimensionless head.

Length of pilping element of latticework.

Friction coefficient.

Distance from axis of symmetry, or distance from origin.
Time.

Average velocity at a section.

Constant 1in variable source strength equation.

Angle in Eg. (10).
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1. INTRCDUCTION

A method for simulating various two~ and three-dimensional
transient fluid-flow cases is presented, based on the premise that the
space may be represented by a latticework of piping elements, each of
which obeys the one-dimensional transient flow equations.

During the middle 1960's techniques have been developed to
handle transient flow through distribution systems comprised of several
hundred pipes<l>*. By use of repeated configurations of piping elements,
these piping systems may be extended to several thousands of pipes and
may represent a plane (two-dimensional) or space (three-dimensional)
continuum. The integrated (algebraic) waterhammer equations apply
over the finite length of these pipes, and by satisfying boundary condi-
tions at their junctions, transient pressure waves may be transmitted
throughout the system. With the omission of certain pipes, interior
boundaries are established and the translation of a pressure pulse
around a body is simulated. Similarly, by a suitable injection of source
strength into *he latticework, with appropriate pipes removed, the trans-
lation of any arbitrarily-shaped body through the fluid may be studied.

There are certain restrictions and limitations in the metnods
which are discussed in connection with the various examples. The alge-
braic waterhammer equations are first presented, followed by examplies

that compare the latticework results to known hydrodynamic cases. Other

examples illustrating the scope of the method are then presented.

* Numbers in parentheses designate references at end of the paper.
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2. ALGEBRAIC WATERHAMMER EQUATIONS

Equations for flow through prismatic and tapering piping
elements are presented, based on the use of finite difference solutions
of the equations of motion and continuity by the method of characteris-
tics(2>o The equations for tapered pipes are used to simulate some
elements of an axially symmetric latticework. The following two

equations are available to describe transmission of a pressure pulse

through a pipe of length [ with pulse wave speed of a, Fig. 1.
C+: Hp, - Hp = - B(Vp, - Vg) - R Vp|Vp] (1)
- Hy = B(VPB - Vp) + R Va vyl (2)

In these equations H 1is the elevation of hydraulic gradeline (piezo-
metric head), and V 1is the average velocity at a section, both being
functions of position and time. B = a/g with g the acceleration due
to gravity; R 1is some suitable friction coefficient which when multi-
plied by the steady state velocity squared yields the head loss from B
to A. The subscript P refers to some time t and the absence of
subscript P on H or V denotes time t - E/a. An arbitrarv flow
direction is assumed, as shown by the arrow, Fig. 1; the C+ equation
then applies to the downstream end at time t relating HPA and VPA
in terms of the previously determined quantities Hp and Vp for the
upstream end at time t - Z/a; and similarly for the C- equation for
the upstream end. The absolute value signs on the resistance terms
permit the equations to hold for flow in either direction. The two

equations completely describe waterhammer transmission in a prismatic

o=
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piping element so long as column separation does not occur and when V
1s small compared with the pulse wave speed a.

Latticeworks may be developed in which some of the piping
elements are tapered. The differential equations must be derived for
these conditions, which results in more complex forms for Egs. (1) and
(2). For a tube starting at zero area for r = O and increasing in
area linearly with distance r, neglecting friction, the total differ-

ential equations, from the characteristics method are:

v, gdd |,V _ 0 (3)
dt a dt r

C+:
dr
EF: (&)
v _gdi 5V . (5)
dt a dt r

C-
dr ,
ar oo . )

In finite difference form, by using a second order procedure

to evaluate the term aV/r, Egs. (3) and (5) become

_ v v
Ch: Vo - Vi + = (Hp - Hp) + L (_E§,+ _%J = 0 (7)
Fop B g VEy B2 N g Y
: V v
1 . P A s
C-v Vp, - Vp -=Hp, ~-Hy) - = (—+ —) =0 (8
pp - Va - 3 (Hpy - Ha) - 3 (TB rA) (8)
In these equations [ = ]rA - rBl, The equations may be used in a similar

manner to Egs. (1) and (2).



3. CONFIRMATION OF LATTICEWORK METHODS

Only a few hydrodynamic solutions of compressible flow cases
are available for comparison with the latticework solutions. In this
section one-dimensional wave transmission through various plping grids
is compared with the classical solutions first, followed by a special
variable source at the origin as given by Lamb(3> for the two-dimensional
and the three-dimensional cases. Then the translation of a sphere,

(L

given by Kirchhoff , 1s compared with the latticework method. Water

is considered as the medium.

One-dimensional Wave Transmission through Frictionless Grids

In Fig. 2 a rectangular grid is shown, with the head H, at
the left end given as a function of time. If each pipe element has
the length [, with wave speed a the time for travel from one junction
to an adjacent junction is At = E/aa If the system 1s at rest with
head zero at time t = O, then the head rises linearly at section O to
4o ft in 5 At, and is subsequently held constant, the head profile at
t = 20 At is given by the light line of Fig. 3. The heavy line repre-
sents head profile for a continuum. It i1s to be noted that a consider-
able time delay occurs in the grid flow. The pulse wave travels through
the grid at an apparent wave speed a' that 1s less tharn the wave
speed for a single piping element or for the continuum. If there were
no transverse elements in the grid this would no longer be true. The
delay is caused by the fact that a wave of magnitude AH arriving at
a junction of Fig. 2 is transmitted on as a wave of magnitude AH]QO

This apparent change in wave speed is analogous to the change in resonant

e
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frequency of a series piping system as compared with an equivalent simple
pipe.

In Fig. 4 an equilateral triangular grid is shown which has
been used for several studies. If the head at the left edge is per-
mitted to increase from O to 50 ft in 4 At, is then held constant at
.50 ft for 10 At, then returns to zero in 4 At, the head profile at
t = 18 At is shown in Fig. 5a and for t = 24 At in Fig. 5b. The heavy
lines represent the head profile for the same conditions for a continuum,
The points indicated by x are for the same conditions except that
flow is from bottom to top of the grid of Fig. 4. This case, however,
has been corrected by displacing each plotted point of Fig. 5 1&% to
the right to compensate for the longer path.

The diamond grid of Fig. 6 would transmit a one-dimensional
wave of pressure from left to right through it at a speed of a,J§7§,
which is caused entirely by the additional length of path. A pulse AH
is transmitted through a Jjunction undiminished, as in the case of trans-
mission through a continuum. If a one-dimensional wave were initiated
along one of the diagonal lines of piping, then the waves would be
retarded at junctions and an apparent smaller wave travel velocity would
result.

A plane pressure wave applied at a side of a three-dimensional
cubical latticework produces the pressure diagram shown in Fig. 7. In
this case the head at the left face of the semi-infinite half space was
made to vary in the same manner as for Fig. 5. The head variation at
t = 18 At is shown by the light line in Fig. 7a, and for t =25 At 1in
Fig. 7b. The heavy lines indicate the head profile for the same condi-

tions for a continuum.
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An axially-symmetric latticework has been developed for several
of the three-dimensional cases. It 1s a rectangular grid of pipes
equally spaced and parallel and normal to the axis of symmetry. The
transverse pipes are tapered, however, from zero area at the axis and
with area varying linearly with distance r from the axis. Each pipe
parallel to the axis 1s of constant cross-sectional area, having the
area of the tapered pipe at the intersection. 1In effect the model is a
wedge shaped half plane grid of pipes which accounts for the three-
dimensional flow by expansion of size of pipes with distance from the
axis. Figure 8 shows the time delay due to propagation of a one-dimen-
sional pressure pulse through the grid; again, the heavy line represents
the pulse for flow through a continuum.

Each of the foregoing examples represent cases of one-dimensional
flow through two and three-dimensional latticeworks. Although time
delays are evident, in each case the amplitude of the resulting wave is
in very close agreement with the actual conditions in the continuum.

The next examples treat cases of two and three-dimensional flows.

Line Source in Two Dimensions

The transient pressures that develop in a two-dimensional
field as a result of a time-varying source can be calculated(3>n The
theory assumes potential flow with very small velocitles. The strength
of the source at the origin is described as a function of time by the

equation

£(t) = Eg*fﬁ;g (9)

where T 1is a constant. The dimensionless pressure head as a function

of time, t, and distance, r, is given by the relationship
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2 sin<}— x -2 T]> cosg/2 n (10)
Y 2

h=1. + 1
hg H_ err3

where 1 1s defined in the equation t

1l

g + 7 tan 1. The gravitational
acceleration i1s denoted by g, and Hg, 1s the steady state pressure
head on the system. Equation (10) is valid if the radius, r, to the
point being considered 1s large compared with the quantity ar.

The same problem can be handled by considering only a wedge-
shaped portion of the infinite space. A numerical solution of the
equations describing the unsteady flow, Eds. (3) to (6), is obtained
after the equations are placed in finite difference form using the
method of characteristics. A semi-infinite contalner of ideal fluid is
considered with Eq. (10) used as the inlet boundary condition. Calcu-
lated pressure heads at other radial distances in the model can be
compared with those given by Eg. (10). By use of a second order pro-
cedure in the numerical solution, the analysis yields the same results
as Eq. (10). The results of these computations and data from Eq. (10)
are shown by the solid line in Fig. 9 at a distance of 32 feet from
the origin. Figure 10 shows the pressure head as a function of distance
at particular instants. For the wedge shaped container the input
boundary condition was located at r = 16 feet.

A latticework of equilateral triangles can be used to model
the two-dimensional space and Eq. (10) serves as the input pressure
head boundary condition. The grid covers a 60° semi-infinite wedge
with two-foot side lengths for the triangles. The input pressure head
was utilized at 9 grid locations located along the chord 16 feet from
the origin. TFigure 9 shows the pressure-time pattern at a distance of

32 feet, and Fig. 10 shows the pressure-distance graph at three different
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instants of time. It can be observed that the peak amplitudes and general
form agree quite well. A delay that increases with time is also clearly

recognized.

Point Source in Three Dimensions

The dimensionless pressure head variation in three dimensional
space resulting from a point source whose strength varies with time

according to the relationship given in Egq. (9) is given by the following

equation(3)
r
- -t
h =1, + —- (a2>22 (11)
g, 2nr [(t - 2) + 71 ]

The effect of this same source in three dimensions can be modeled with
a semi-infinite tapered tube of small divergence angle. A numerical
solution (similar to Egs. (7) and (8)) which describes the flow of an
ideal fluid in the cone yields results that agree with Eg. (11).
Equation (11) is also used as the input boundary condition.

The solld line in Fig. 1la shows the variation of pressure
head given by Eq. (11), at a distance of 10.63 feet from the origin
for the flow case defined by T = 0.002 and H, = 100 feet. Figure
11b displays conditions at 15.28 feet. The same variation of pressure
is obtalned at these points from the tapered tube model by placing the
input boundary condition at r = 2 feet. The solid lines in Fig. 12
show the pressure head variation with distance at three different
instants for the same case,

The light lines in Figs. 11 and 12 show the pressure head

variation obtalned from the application of the source to the axially-
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symmetrical rectangular grid described above. In this case Eq. (11)
was used tc define the input pressure head at a radius of 7 feet. The
grid results plotted in Fig. 12 were taken at random from the lattice-

work, not just along one particular radial line.

Translation of Sphere Through an Infinite Fluid

Kirchhoff(h) has developed the solution for pressure and
velocity in an infinite, compressible fluid due to translation of a
sphere through it. As this is an axially-symmetric flow case, the
latticework of wedge-shaped pipes 1s used. By feeding in appropriate
source flow at each of the nodal points of the grid near the surface of
the sphere, the boundary condition of translation of a sphere 1s simulated.
Figure 13a is a plot of head versus time at grid point (8,9)
for a 20 foot diameter sphere with center of origin accelerating from
rest at 10,000 ft/se02 along the x-axis. Figure 13b compares conditions
at point (12,3). Figure 14 is a plot of head against time at points (8,9)
and (12,3) for a 20 foot diameter sphere with center at origin impulsively
set in motion at 50 ft/seco As in the case of the three-dimensional
point source applied to this latticework, the general form of the grid
results is in close agreement with the hydrodynamic solution. If a time
delay correction factor were applied to the grid results, the agreement
would be very good. Some scatter is observed in the results of the latter
case. This is a result of reflections at the grid intersections when

subjected to a loading that contains very high frequency components.



L, EXAMPLES

In this section several examples of flow cases are given to
illustrate the versatility of the method. There are no known hydro-
dynamic solutions of the same problems for comparison.

In Fig. 15, using a rectangular grid, the two-dimensional
case of flow around a circular cylinder due to a steep-fronted pressure
wave of maximum head 40 is portrayed for a particular time after passage
of the front of the wave.

Figure 16, based on the equilateral triangular grid, shows the
impact of a pressure wave on an arbitrary cylinder. The trapezoidal wave
approaching has a maximum head of 50. Indexing is used in the computer
program so that any body shape may be specified by changing the input
data.

Figure 17 shows the dimensionless pressure head contours at
the front of a circular cylinder as a result of a constant acceleration
from rest to a constant velocity of 4O ft/sec in 4% At. The pressure
distribution shown is at 6 At after the beginning of the motion. A
grid of equilateral triangles with 2 foot sides was used and the cylinder
has a radius of 13.84 feet. Motion of the cylinder was parallel to the
base of the triangles.

Figure 18 illustrates a series of instantaneous head contours
for the case of an explosion at the side of a liquid filled channel
36 feet wide and 28 feet deep with free surface and with a fixed sus-
pended body. When the pressure 1n the triangular grid is reduced to
vapor pressure (indicated by dots), an interior boundary condition is

imposed holding the pressure at no lower value than vapor pressure.

-10-
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Since the velocity in the system is not small with respect to wave

speed, the results may be distorted.



5. SUMMARY AND CONCLUSIONS

A method for simulating two- and three-dimensional flow cases
by use of the one-dimensional waterhammer equations in a latticework
is outlined with some comparisons with hydrodynamic solutions. Since
the methods are numerical, great flexibility in handling boundary condi-
tions is apparent. Translation of arbitrary bodies through fluids, or
impact of pressure waves on bodies may be examined. Free surfaces can
be handled, and effects of friction may be included in the one-dimen-
sional equations.

There is a time delay in a wave front passing through a
latticework, however, as compared with a continuum, and latticeworks
necessarily have directional properties. Also a high frequency wave
(duration of order of magnitude of At for grid spacing) is not simulated
properly. The procedures are more accurate for low Mach numbers,
as no interpolations are utilized in handling the algebraic waterhammer
equations.

Although only single-grid systems were used in the cases
shown, this is not a necessary restriction, the size and nature of the
grid may be changed as desired, subject only to complexity of program-
ming and to available computer storage.

Much more research is needed into the most effective lattice-

works, and in ways to simulate various boundary conditions.
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Figure 1. Prismatic Piping Element.
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Figure 2. Rectangular Latticework of Pipes
with Head at Left End a Function
of t Only.
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Figure 3. Plane Pressure Wave through Rectungular
Latticework.
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Figure 4. Equilateral Triangular Grid.
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Figure 6. Diamond Grid.
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Comparison of Heads Developed Due to
Variable Source Flow at the Origin in
Two-Dimensional Case. Plot of Head
versus Time at Point 32 Feet from
Origin.
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Flgure 11. Comparison of Heads Developed Due to
Point Source in Three-Dimensional
Case. Head versus Time at Two Points.
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Figure 15. Head Contours for Steep-Fronted Pressure
Wave Passing Circular Cylinder in a
Channel (two-dimensional).
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Figure 16.

Two-dimensional Flow of Pressure Pulse Around

an Arbitrarily-Shaped Body.
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Figure 17. Pressure Head Contours for Motion of a Cylinder

(Two-dimensionel).
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Figure 18. Heads Resulting from Two-Dimensional Explosion at
Wall of a Liquid Filled Open Channel. Contours
Given in 1000's of Feet and Time in Seconds.



