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NOMENCLATURE

A semi-transversal axis, constraining hyperbola
B semi-conjugate axis, constraining hyperbola
c center-to-focus distance, constraining hyperbola

C15Co parameters defined by Eqs. ( 38)

d the perpendicular distance from the field center to -the chord of
the base triangle

e eccentricity, constraining hyperbola
h angular momentum per unit mass
I an invariant of the orthogonality quartic (see Eq. (18))
J an invarignt of the orthogonality quartic (see Eq. (18))
1 9 ]
K Godal's compatibility constant =3 tan 3
M,N orthogonal projections of a velocity vector on the local radial and

chordal axes respectively

m,n) nondimensional form of M and N: M/VSl’ N/VSl

n distance ratio = rp/r;y

r radial distance

v velocity

Vg circular speed = /;7;

v dimensionless velocity = V. h/p
X,¥Y displacement coordinates

X¥,Y* critical coordinates, given Dby Egs. (33)
A discriminant of the orthogonality quartic

AV velocity increment
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NOMENCLATURE (Continued)

Av dimensionless velocity increment = AV/Vg;

€ eccentricity

K dimensionless Godal's compatibility constant = K/VSl

vl strength of the gravity field

Vv dimensionless velocity = V/VSI

v value ov v satisfying Eq. (22)

o] distance of the optimum origin from the radical center, (T)
in the hodograph plane

p' distance of the optimum origin from the hodograph image of
the initial terminal point Q

o) included angle of the local radial and chordal axes (Fig. lc)

0] the path angle with reference to the minimum energy direction

¢ the path angle with reference to the local horizontal

® the interior angle of the base triangle at the terminal point

s the vertex angle of the base triangle (Fig. la)

b4 the range angle

w the inclination of the initial velocity vector to the plane
of the base triangle

w a parametric angle, defined by Eq. (B-1), Appendix B

Subscripts

* ortho-point, or orthogonal solution in Chapters 2,5; optimum con-
dition elsewhere

*% absolute minimum solution

0 initial condition



NOMENCLATURE (Concluded)

1 initial terminal, unless otherwise indicated

2 final terminal, unless otherwise indicated

d chord perpendicular

L lower limit

U upper limit

opt optimum

c,R chordal and radial pair of directions

r,® radial and transversal pair of directions

X, € outward directions of the interior and exterior angle bisectors

of the base triangle respectively

p,n in-plane and out-of-plane components
Superscripts
* critical
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ABSTRACT

The problem of minimizing the initial impulse required for the transfer
between two terminal points in space under an arbitrarily prescribed initial
velocity vector is analytically investigated. The chordal and radial compo-
nents of the in-plane velocity are introduced, and a geometrical approach in
the hodograph space is employed. 1In terms of these velocity coordinates
Stark's optimum quartic equation is reformulated and critically examined for
the number and nature of its real solutions. Analytical criteria for the un-
realistic optimum are derived, and the selection of a realistic transfer tra-
Jectory under various conditions of the initial velocity vector is discussed
and summarized in some simple rules. Various regions in the hodograph plane
concerning the nature of the optimum transfer trajectories are established,
and the effects of the initial velocity vector on such a trajectory are analy-
zed. An optimization chart is developed, and the construction of two versions
of the optimum transfer hodograph are introduced. Several limiting cases in-
cluding the vertical transfer, the 180° transfer, and the transfer to infinity
are investigated, and the particular case of departure from a circular orbit
is also reviewed. The analysis 1s basically two-dimensional with a brief pre-
sentation of the three-dimensional effects.

xiii






1. INTRODUCTION

The minimization of the fuel expenditure for the transfer between two ter-
minal points by minimizing the initial impulse for a given initial velocity is
a problem usually encountered in space flight when the primary objective is to
impact a destination planet or to intercept a target in space. Such a problem
has been previously treated by Battiép)and Stark}g)and numerical solutions
for the case of an initial circular orbit have been worked out in the works
of both. In particular, Stark's orthogonality consideration for the velocity
vectors offers a simple approach to, and yields a general quartic equation
for the solution of this problem. However, before such an equation can be
broadly applied, several critical questions remain to be answered, regarding
the existence of multiple real solutions of the quartic as well as the possi-
bility of the arising of an unrealistic optimum trajectory (a trajectory lead-
ing toward the destination terminal point via infinityl). It will be shown
here that, while the optimum solution is usually (though not always) unique
and realistic when the initial velocity is elliptic and only the short trans-
fers (range angle less than 180°) are considered, the situation may become
quite complicated when the initial velocity is hyperbolic, and both short and
long transfers are under consideration. The purpose of the present study is
thus to investigate analytically Stark's quartic as to these vital questions
so as to form a theoretical basis for the selection of a realistic optimum
transfer trajectory under broad conditions of the prescribed initial velocity
vector. Such an investigation will not only facilitate such a selection, but
also reveal clearly the effects of the initial velocity vector on the optimum
transfer trajectory.

Throughout the following analysis a geometrical approach in the hodograph
space will be employed. However, to facilitate the investigation the chordal
and radial pair of wvelocity coordinates will be used instead of the usual
transversal and radial pair used by Stark. It will be seen later that such a
coordinates pair will reduce Stark's quartic to a simpler form, and also enable
the general findings previously found in Ref.@) for a system of two-terminal

trajectories to be readily applied to the present problem.

lcalled "false optimum" in Ref. (6); see also Appendix A.



2. TWO-DIMENSIONAL ANALYSIS OF THE PROBLEM

2.1 FORMULATION OF THE PROBLEM

Consider a space vehicle, initially at the point Q) and having an initial
velocity Vo, to be transferred to a given point Qo by applying an instantaneous
impulse at Q. The optimum transfer trajectory is defined as the one which
requires the minimum impulse, which is equivalent to the minimum velocity in-
erement at the initial terminal Q.

As we know, in an inverse-square central gravity field such transfer tra-
Jectories are Keplerian and all lie in the+plane of the base triangle 0Q; Qp.
Let us assume the initial velocity vector Vo also lies in this plane, then the
problem is two-dimensional Consider an arbitrary transfer trajectory from Q;
to Qo, and let Vl be the departure velocity at Q; along this trajectory (Fig.
la). For convenience we will first restrict the vertex angle to be 0 < ¥ < x

so that the base triangle does not degenerate into a line segment. In such a
case the departure velocity Vl must satisfy Godal's compatibility condition(5)

Ve Vg = % tan g. (1)

where Vo and VR are the components of the terminal velocity V; along the direc-
tion of the chord line Q) Qo and the local radial direction respectively (Fig.
1b). The velocity increment vector is then

2V =V, - ¥

=N Y% (2)

with its magnitude given by

2 2 2
|aV|© = (Vo-Veo)© + (VR=Vgo)~ - 2 (Vo-Veo)(VR -vRo)coscpl (3)
which simplifies to
2 2 2 2 (3a)
|av| = Vet Vg- 2NgVo- 2 MgVt V) - 2Kcos ¢
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where

I 3 ¥
K = d tan 5 (4)
"= Vro = Voo om0y , Ny = Vg, - Vg, cose, (5)

Thus the problem is to minimize |AV| under the constraint Eq. (1). It is to
be noted that the parameters My and Ng here have the physical significance of
being the orthogonal projections of the initial velocity vector Vo on the
le' and Vy-axes respectively, as is obvious from the geometry of the velocity
vectors shown in Fig. 1b and c.

2.2 THE CONSTRAINING HYPERBOLA AND THE ORTHOGONALITY CONDITION

It is evident that the constraint Eq. (1) represents a hyperbola in the
hodograph plane with the chordal and radial directions at Q; as its two asymp-
totic directions. Thus in order to insure that the trajectory will pass through
the terminal point Qp, the tip of the departure velocity vector V; has to be
constrained on this hyperbola, which in a given Newtonian gravity field is solely
determined by the base triangle 0Q;Qp. The problem is now reduced tg finding
the minimum distance from the tip Qp of the initial vekocity vector Vg to the
constraining hyperbola, and this requires the vector AV to be normal to the
hyperbola (Fig. le). This is the approach used by Starﬂ )in which he employed
the velocity coordinates Vg and V.. to obtain an optimum equation by such an or-
thogonality consideration. In present coordinates this condition may be writ-
ten

= -l = (6)
AVg, - ANC* cos @ dve

where

AVC* 3 VC*- VCO
(1)
g™ V&, = Vro

and (dVR/dVC)* is to be evaluated along the constraining hyperbola. The sub-



script * here indicates the point on the constraining hyperbola at which the
normal line passes through the point Qg. Such a point will be referred to as
the ortho-point corresponding to Qp. From Eq. (1) we have, at any point on
the hyperbola,

av V'

R R
v (8)
av, A

By substituting Eq. (7) into Eq. (6) and making use of Eq. (8) the orthogonality
condition becomes

2 2
Vex - NoVex = VRe - Mo VR« (9)

Further eliminating Vg, from Egs. (9) and (1) yields an equation in the single
variable Vg,:

L 3
Vi NV + KM - K -
Cx 0 Cx 0 VC* 0 (10cC)

The corresponding equation in Vp, is

L 3
V -MV + KN V - =
: 0 Ry 0 Ry K? 0 (10R)

Both Eqs. (10C) and (1OR) are of the fourth degree, and in fact they are of
the same form. They will be referred to as the orthogonality quartics, and
their solutions the orthogonality solutions. Either of them can be solved
in closed form by standard method of algebra, or by numerical approximations.
With either of the unknown components Vg, or VRy thus determined, the other
component and the corresponding velocity increment IAVI can then be easily
obtained from Egqs. (1) and (3a), and the principal elements of the transfer
trajectory are then obtained from the usual orbital relations. However, it
is to be noted that the real solution of either Eqs. (10C) or (1OR) is not
unique, since a quartic may give U4, 2 or no real solutions. Furthermore, the
orthogonality condition expressed by such a quartic is neither sufficient nor
necessary for the optimum solution of the problem. It is merely a necessary
condition for an interior extremem, and it may yield maxima, minima, or nei-
ther. And even if it gives a local minimum, it may not be the absolute one;
and even if it is absolute, the resulting trajectory may be unrealistic.

Thus instead of going into numerical solutions the following vital questions
are now posed:



(1) Under what condition will the orthogonality Egs. (10C) or
(10R) have a unique real solution, 2, 4 or no real solutions?

(2) If multiple solutions exist, is there any simple rule for the
selection of an absolute minimum?

(3) Under what condition will the absolute minimum solution yield
an unrealistic optimum? And if so, how to choose a realistic optimum tra-
Jjectory for the problem?

These questions will be critically examined one by one in the sec-
tions that follow. Before proceeding to answering these questions, the
dimensionless velocity parameter defined by

vEVNg, =V/ /g; (11)

will now be introduced and the principal equations developed so far, be
non-dimensionalized as summarized in Table 1.

Besides, formulas for the principal geometrical elements of the con-
straining hyperbola are presented in Table 2. Some essential features of
the constraining hyperbola worthy of noting are as follows:

(1) The conjugate and transversal axes of the hyperbola (VX"VC'
axes) are the bisectors of the interior and exterior angles at the in-
itial terminal Q) of the base triangle respectively. The V¢-axis is
in the direction of the minimum energy trajectory through the initial
terminal according to Ref. (9) and may be called the minimum energy axis.
The pair of directions (x, {) together with the pair of the asymptotic
directions (C,Rl) mentioned earlier and their respective normals to be
introduced later constitute the most important reference directions of
the present problem.

(2) The semi-transversal axis (A) of the constraining hyperbola is
the minimum velocity satisfying the constraint, and therefore, the depar-
ture velocity along the minimum energy transfer trajectory.

(3) Of the two branches of the hyperbola, the one on which Ve >0,
and Vg > 0 is the constraint for the short transfer or the normal tra-
Jectory group,2 and the other one on which Vo <0 and Vg <0 is the con-
straint for the long transfer, or the complementary group.

2For the definitions of these terms, see Appendix A.



TABLE 1

PRINCIPAL FORMULAS IN THE NONDIMENSIONAL
FORM FOR THE TERMINAL-TO-TERMINAL OPTIMUM TRANSFER

Compatibility Condition VaVg =K (1)
v . 2 _ 2,2 2_ 1
elocity Increment |Av| = Votvg -2 ’novC -2 ‘movR +vg 2Kk COS P (3')

The Orthogonality Equation

. 1
in vg s VR, Ve, = Ngove, = VR . - MyVy . (9')
. 4 - '
in vy, Vg, - M ng* +kMovg -k =0 (10'-C)
. I o2 '
in VR VR 4 -movﬁ*+ KVIQVR , = & =0 (10'-R)
The Constant Product k = tan g cse, @y (W)
The Orthogonal Projections m =(vg) - (vg) cos @
of the Initial Velocity Vector © © (5')
n, = (vC)O - (vg ) cos ¢
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(4) Points on the hyperbola which are symmetrical with respect to its
transversal axis correspond to a pair of conjugate trajectories, and will
be called the conjugate points; points symmetrical with respect to the
origin correspond to a pair of complementary trajectories, and will be
called the complementary points. Consequently, points symmetrical with
respect to the conjugate axis correspond to a pair of complementary-
conjugate trajectories. Such a point pair will be called a complementary
conjugate pair.

For the convenience of later development the quadrants of the hodograph
Plane bounded by the symmetrical axes of the constraining hyperbola will be
referred to as positive (+) or negative (-) according as it is on the positive
or the negative side of the Vy-axis; and high (H) or low (L) according as it
is above or below the Vc-axis. The parts of the constraining hyperbola and
all velocity vectors will also be so referred to according to the quadrant
in which they lie. Such subdivisions are depicted in Fig. 2.

ve
(1II) (1)
I+ H+
0 =
L- H-
(III) (Iv)

Fig. 2. Quadrants in the hodograph plane.

2.3 CRITERION OF THE NATURE OF THE REAL SOLUTIONS AND THE BOUNDARY EVOLUTE

In order to examine the nature of the solutions of the orthogonality
quartic, either the Vyp-equation (10C) or the Vyg-equation (1OR) may be used
since they are identical in form and have essentially the same discriminant.
To fix the idea the following discussion will be based on the Vyc-equation.

9



The discriminant for such a quartic is gilven by

A= 13 - 2702 (17)

where

1= % & fngprg - be)
(18)

_ 1 2.2 2
7= 1% o 7o)

By using Burnside's criteria@)together with Descartes' Rule of Signs we arrive
at the conclusions in the first two columns of Table 3, classifying the nature
of the real roots. Since multiple roots of the equation give identical solu-

tions, they will be considered as one solution. From such considerations we

arrive at the further conclusions in column IV, Table 3. The geometrical im-

plication of such conclusions may be seen as follows.

With the expressions (17) and (18) the boundary condition A = O may be

written

LQOmong - lm)3 - 27 no,.g -»%)2 = 0 (19)

>
Now introduce the polar coordinates (v,?) for the velocity vector v and ex-
press the parameters #p, and Mg for the initial velocity vector as

1!

PN Vosin (?i + 05)
c (20)

¢
vosin (El - o)

]

No

where ® is the path angle referring to the minimum energy axis, and is re-
lated to the usual path angle ¢ by

¢
¢ = ¢ - 1 (21)
By substituting these expressions into the boundary Eq. (19) we obtain

10
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-2 b
[V (cos 20 -cosp,) - 8rc]3 - Ske v sinecplsin22 o, =0 (22)

— ->
where V, is the magnitude of the initial vector v,, which satisfies the bound-
ary condition. This equation may be transformed into the following standard
form in the rectangular coordinates (Vx’VQ)

/3 /3 4/3 (23)

) )P o

where the parameters A, B, and C have been given in Table 3. From Eq. (23)
this boundary curve is recognized as one form of the Lamé curve, which in

the present case is the evolute of the constraining hyperbola. Some essential
features of this curve are as follows (see Fig. 3):

(1) It is symmetrical with respect to both vy and v¢ axes. Thus the
boundary Lamé and the constraining hyperbola are co-axial.

(2) It is bounded between the V.- and vz-axes which are normal to the
asymptotic directions of the constraining hyperbola (the radial and chordal

directions) respectively.

(3) It has two portions, one on each side of the vyx-axis and each por-
tion consists of two branches with a cusp (G,G') at its vertex given by the
coordinates

V) =2\/_ ﬁ () =
(% G,G! R ( Oé,G' 0, x (24)

It is well-known that an evolute of a given curve is the envelope of all
normals of this curve, or conversely, the given curve is the involute of its
evolute. Since to find solutions of the orthogonality quartic according to
a pair of given values of M, and N, is equivalent to drawing normals to the
constraining hyperbola from a given point in the hodograph plane, naturally
its evolute should form the boundary separating the regions in which differ-
ent number of such normals can be drawn. Directly from the concept of an
evolute and the geometry of the hyperbola we see that

All points of intersections of the different normals to the con-
straining hyperbola are in the regions beyond the boundary Lamé,
and no two normals to the hyperbola can intersect in the region
between the two portions of the boundary Lamé.

The latter region will be referred to as simple (S), while the former, non-

12
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simple (n). For convenience various portions of these regions, together with
their boundaries, will be referred to as positive (+) or negative (-), and
high (H) or low (L), according to the quadrant in which they are located, just
as for the portions of the constraining hyperbola, (Fig. 3).

With the foregoing understanding the conclusions previously derived from
algebraic considerations may now be stated in geometrical terms as follows:

(A) Within the simple region one and only one normal can be
drawn from a given point to each branch of the hyperbola.

(B) Within the non-simple region four distinct normals can be
drawn from a given point, three to the nearer branch, and
one to the farther branch.

(C) From any point on the boundary three distinct normals can be drawn:
two to the nearer branch, and one to the farther branch except
at the cusp, where only one normal can be drawn to each branch,
both coinciding with the transversal axis.

Moreover, further examination of the geometry of a hyperbola shows that,

(D) The normals at points of the hyperbola in the same gquadrant
always intersect in the adjacent quadrant on the opposite side
of the transversal axis of the hyperbola. (For example, two
normals to the H+ part of the constraining hyperbola can meet
only in the L+ portion of the N-region. This property is
especially useful in the later treatment of the present prob-
lem; an analytical proof is given in Appendix B.)

Finally, it is to be noted that for a given vertex angle ¥ the distance
of either cusp of the boundary Lamé from the origin, (VO)G,G' decreases with
increasing ¢, or n, and it has the limiting value

= 2
(VO)G,G' - 2 sec g' > J2 when ¢ 20 (n =) (25)

Thus multiple real solutions can occur in the half-plane (vQ > 0 or ve < 0)
only when the initial velocity is hyperbolic. Furthermore, owing to the pres-
ence of the asymptotic lines of the boundary Lame, such a case cannot occur
unless the initial velocity vector is directed above the local horizon but
below its conjugate direction, the vy-axis. A necessary and sufficient con-
dition for the occurrence of such multiple solutions in the positive half-
plane (v§ > 0) may be precisely stated as follows:

?1
>V and -—§<<bo <+ = (26)



where V5 is given by Eq. (22). Similar condition exists for the other half-
plane (VC < 0) by symmetry.
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3. DETERMINATION OF THE OPTIMUM SOLUTION

3.1 THE ABSOLUTE MINIMUM SOLUTION

With the number of real and distinet solutions of the orthogonality
quartic determined, the next task is to select the one for absolute minimum,
For the time being let us disregard the question of unrealistic trajectory,
and consider only the geometrical problem of determining the absolute mini-
mum distance.”? Such questions of maxima and minima can usually be settled
by the second derivative test, and the absolute minimum determined by com-
paring the quantity to be minimized at these stationary points. However,
it is simpler here to use a geometrical approach outlined belows

A. From the symmetrical nature of the hyperbola, it is evident that
the minimum distance solution demands the optimum point on the constraining
hyperbola to be in the same quadrant with the tip Qg.of the initial velocity
vector. However, in view of the geometrical property of the hyperbels .given
by item (D) of the previous section, there is one and only one such a point
on the constraining hyperbola in the same quadrant with the given point (see
Figs. ba, b, c) unless Qg is on either of the symmetrical axes of the con-
straining hyperbola. This is true whether the point Qg is in the simple or
non-simple region. Thus when Qg is off the symmetrical axes, the choice is
clear, and the absolute minimum distance solution is unique. Furthermore,
directly from this co-quadrant requirement it can be inferred immediately
that the trajectory corresponding to such a solution always belongs to the

same group (normal or complementary) and the same class (high or low) as the
initial velocity vector.

B. In case Qp lies on either of the symmetrical axes, then it is on
the border of two adjacent quadrants. In such a case the minimum distance re-
quirement is to have the optimum point lie in the half-plane of these two
quadrants; and thus two solutions are possible.

(1) If Q, lies on the vy-8xls, then the optimum point must be on
the same side of the vt-axls with Qy. The geometry in the hodograph plane
shows that Q, is in the simple region and equidistant from both branches of
the hyperbola. Thus there are two and only two normals which can be drawn
from Qy, one to each branch, and they are of equal length. Consequently
both ortho-points may be admitted, and there are two solutions for absolute
minimum distance. The two corresponding trajectories require the same amount
of Av, and their departure velocities also have the same magnitude. Obviously

J5The absolute minimum distance solution will be indicated by the subscript **
whenever 1t is to be distinguished from the orthogonality solution.
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they constitute a complementary-conjugate pair, one belongs to the normal group,
and the other, the complementary group. They will be either both high or both
low according as the initial velocity vector is high or low. This situation

is depicted in Fig. Ld.

(2) 1Irf Qp lies on the vg—axis, then the optimum point must lie on
the same side of the vy -axis. Now Qg may be either in the simple region (S)
or the non-simple region (N).

i. OSuppose Qu is in the S-region, that is, it lies between
two cusps, G and G', of the boundary Lamé. Evidently the two and only two
ortho-points now coincide with the vertices © and ' of the hyperbola, and
there is only one on the same side of the vy-axis with Qo. Thus the absolute
minimum solution is again unique, and the corresponding trajectory is the min-
imum energy one. It will belong to the same group as the initial velocity
vector. This situation is depicted in Fig. le.

ii. Suppose Qg is in the N-region, that is, it lies on the
parts of the vg-axis which are beyond the cusp points of the boundary Lamé in
either direction. Then according to property (C) given in Section 2.3, there
are three normals on the branch of the hyperbola on the same side of the vy -
axis. It is evident from the symmetry of the hyperbola that among the three
ortho-points, which are on the branch nearer to the initial point Q,, one co-
incides with the vertex, while the other two are of a conjugate pair, and
equidistant from Q5. The fourth ortho-point coincides with the other vertex.
This situation is depicted in Fig. 4f. Evidently, the fourth point should be
rejected, and the choice will be between the point Qxo and either of the points
Qx1 and Qyz. It can be shown that it is always the point Qyp which is at a
farther distance. (This can be easily proved by solving the orthogonality
quartic with M, = N,, and comparing the distances since in this particular
case the quartic admits a simple solution.) Consequently, both points Qw1
and Q*5 may be admitted, and there are two solutions giving the same amount
of Av. The two corresponding trajectories are conjugate to each other, re-
quiring the same magnitude of departure velocity, and they are both of the same
group as the initial velocity vector. It is interesting to note here that the
minimum energy trajectory is no longer the optimum transfer trajectory even
though the initial velocity is in that direction; the two optimum directions
are now ineclined equally on either side of the minimum energy direction instead
of lying along it.

iii. Finally when the point Q5 is at either cusp of the bcund-
ary Lamé, then both conjugate points coincide with the nearer vertex, and the
minimum distance solution is again unigue, and the corresponding trajectory
is again a minimum energy trajectory. This is the same as case ii.

In conclusion,
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(1) Whenever the point Q, is not on the conjugate axis of the hyper-
bola nor on the part of its transversal axis beyond the cusps of its evolute,
the absolute minimum distance solution is unique. The corresponding trajectory
will belong to the same group and same class as the initial velocity vector.

(2) Whenever Qo is on the conjugate axis of the constraining hyper-
bola there are two solutions with the same minimum distance. The corresponding
trajectories are a complementary-conjugate pair of the same class as the initial
velocity vector.

(3) Whenever Qu is on the transversal axis of the constraining hyper-
bola beyond the cusp points of the boundary Lamé, there are again two absolute
minimum distance solutions. The corresponding trajectories are a conjugate
palr of the same group as the initial velocity vector.

Based on such geometrical analysis we may now form the following "rules of
thumb"

Rules—Geometric

(1) Always choose the optimum point which is in the same quadrant with
the point Qy whenever no ambiguity arises. (One and only one solution.)

(2) If ambiguity does arise such as when the point Qo lies on either of
the symmetrical axes of the constraining hyperbola, always choose the optimum
point or points in the same half-plane with Qp, and the ones off the minimum
energy axis if they are present.

As shown above the geometrical rule for the selection of the absolute
minimum solution is exceedingly simple. Such a geometrical analysis may in
turn guide the selection of the appropriate root from the real solutions of
the orthogonality quartic for an absolute minimum without calculating the
magnitudes of the corresponding Av's. In view of the symmetry of the con-
straining hyperbola it is sufficient to consider all the possible cases when
Qo 1s in one certain quadrant, say the second, and center our attention on
the variation of |Av| with one variable, say (%, Wwhen Qg is in this quadrant.
The geometry of such cases are illustrated in Fig. 4, and the corresponding
variation of |Av| with vox 8nd the nature of its stationary points as obtalned
from usual algebraic analysis are also graphically shown in Fig. 4 for each
case, and summarized in Table 4 for reference.

It is to be noted that the present restriction of Q5 in quadrant II is
equivalent to saying 7, >wm, and7y, > O in the orthogonality quartic.
Keeping this in mind and without going into algebraic details, an examination
of the geometry of the hodograph plane shows that:
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When Mg # + %o (Qp off the symmetrical axes), the optimum point in the
hodograph plane always corresponds to the highest root ypyx; of the orthogon-
ality quartic (see Fig. ka, b, c).

When M, = 72, (Q, on vy-axis), the co-half-plane requirement from geo-
metrical considerations indicates that the optimum root vy, must agree in
sign with the initial value Veoe Thus, under the present assumption, only
the positive roots need be considered. The hodograph shows that there may be
either one or three such roots corresponding to the one or three ortho-points
on the positive branch of the constraining hyperbola. In the former case the
only positive root is necessarily the optimum one. In the latter case the
geometry of the hodograph shows that the pair of optimum points correspond to
the highest and the lowest roots respectively (see Fig. 4f). Thus both roots
may be chosen. It is to be noted that the prerequisite to have Voxx a8ree
in sign with Veo hold in general whenever 77, = 71,.

When 7n0 = - 770 (QO on vx-axis), the two optimum points in the hodograph
plane, one on each branch, correspond to the two and only two real roots of the
quartic, one positive and one negative (see Fig. 4d). Thus again both roots
may be chosen.

All the foregoing observations were made on the L, portion of the con-
straining hyperbola. The symmetry of the hyperbola with its conjugate axis
shows that the same 1s true for the L. portion if we take the magnitude of
the root algebraically. Thus the same conclusions hold in the low-half-plane
where 71, > Mg. In the high-half-plane, we have 7o < 7ypo. By the symmetri-
cal nature of the hyperbola with its transversal axis, whatever is true for Ve
in the low-half-plane is equally true for vg in the high-half-plane. Or, in
view of the reciprocal relation between vgp and vg (Eq. (1)) we may say that
whatever is true for the largest vp (algebraic) in the low-half-plane is
equally true for the smallest Vi (algebraic) in the high-half-plane. Based
on such observations we may form some algebraic rules of thumb as follows:

Rules—Algebraic

(1) 1If 7ho # + Z%, always choose the root which agrees in sign with the
initial value of ve s and if more than one such root is present, choose the
largest one if 7] 3 7”0 and the smallest one if 77, < 7, (one solution only).

(2) If Mg = Ny, choose both the largest and the smallest roots which
agree in sign with Veo (two solutions).

(3) If 7)70 = -7, only two real roots are present, both may be chosen (two
solutions).

The magnitudes of roots are being considered algebraically. All rules
(1) to (3) hoid for the VR,-€quation (10R) if we interchange the words m,

and 70 4.
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3,2 LINES OF CONSTANT OPTIMUM TRAJECTORY AND LINES OF CONSTANT VELOCITY
INCREMENT

Before we take up the question of unrealistic trajectories, it is essen-
tial to note that when the tip Qo of the initial velocity vector moves along a
straight line normal to the constraining hyperbola, the absolute minimim point
Qx» remains intact, and consequently the corresponding transfer trajectories
are the same as long as Qg remains in the same quadrant. Such a trajectory
will be the optimum trajectory for the present problem unless it is unrealis-
tic. Thus the part of the normal line intercepted by the symmetrical axes of
the constraining hyperbola (e.g., line cd in Fig. 5) may be regarded as a line
of constant optimum trajectory. As soon as the normal line crosses either axis
the absolute minimum point will shift to the other side of the axis and move
along the constraining hyperbola resulting in a different trajectory for each
point on the extended part of this normal line. It is to be noted that along
a line of constant optimum trajectory the velocity-increment required varies
from point to point depending on the position of Qg on this line, the farther
Qo 1s from the constraining hyperbola, the larger the velocity-increment (ab-
solute value) required.

In such a connection we may conceive that, when Q, moves along a curve
running parallel to the constraining hyperbola, the amount of velocity incre-
ment required will remain the same while the optimum transfer trajectory changes
from point to point. Thus such parallel curves may be regarded as lines of con-
stant optimum velocity-increment. As known in geometry, all these parallel
curves have the same normal lines and a common evolute. In the present case
the boundary Lamé is this common evolute, and each of the parallel curves, in-
cluding the constraining hyperbola is its involute. Thus the lines of constant
optimum trajectory and the lines of constant velocity-increment are normal to
each other, forming an orthogonal net in the hodograph plane. Such a net will
be useful in developing  hodograph charts for the present problem, which will
be presented after the question of unrealistic trajectories -has been cleared
up. For the time being it is to be noted that such parallel curves though
quite similar to the original curve (the constraining hyperbola) when they are
close to it, may look radically different from it when they are farther from
the hyperbola, especially when they enter the non-simple region. The mathe=
matic equation for the curves parallel to a hyperbola is in general of the
eighth degree,Q) A few such typical curves are shown in Fig. 6.

3.3 THE CRITICAL CONDITION AND THE UNREALISTIC TRAJECTORIES

From the foregoing consideration of the lines of constant transfer tra-
Jectories it is evident that when the tip Qp of the initial velocity vector
moves along such a line which passes through a critical point (v = /2) on the
constraining hyperbola, the absolute minimum distance solution will call for
a parabolic trajectory. Such lines will be called the critical lines. Figure
T shows the four critical lines, one through each of the four critical points
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Fig. 7. Regions of the hodograph plane and the nature
of the optimum transfer trajectory.
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on the constraining hyperbola, forming a critical circuit a-b-a'-b'-a. These
four critical points are given by the intersections of the hyperbola with the
critical circle centered at the hodograph origin and having the radius /2.
When Q5 moves along such a circuit, the trajectory corresponding to the abso-
lute minimum distance solution will first be a parabola of the high class and
normal group when Qg remains on ab, and as soon as it passes the point b, the
trajectory will shift to its conjugate, and so forth.

As seen from the hodograph geometry, as long as Qg is inside the rhomboid-
shaped region bounded by the four critical lines, the corresponding absolute
minimum point on the constraining hyperbola will remain inside the critical
circle, consequently the transfer trajectory will be elliptic. This region
wlll therefore be called the elliptic region. When Qy is on the boundary of
this rhomboid and beyond, the corresponding absolute minimum distance tra-
Jjectory will first become parabolic and then hyperbolic. Thus the regions
beyond the critical boundaries are hyperbolic regions. As shown in Ref. (9),

a transfer trajectory between two fixed terminal points will be unrealistic
only when it is parabolic or hyperbolic, and of the high class. Consequently
the hyperbolic region on the high side is the region for unrealistic optimum
transfer, and will be called the unrealistic region, while that on the low
side, and the elliptic region in between are regions for realistic optimum
transfer, and will be called the realistic region. Thus the boundary b-a'-b'
separates the region for hyperbolic transfer from that for elliptic transfer,
all realistic; while the boundary b'-a-b separates the elliptic realistic re-
gion from that of unrealistic transfer. Hence the two critical lines on the
high side will hereafter be referred to as the realistic barrier. Beyond the
vertices b and b' of the rhomboid aba'b' the realistic and the unrealistic
regions are further separated by the v€-axis, which itself belongs to the
realistic region. In short, the broken line b'-a-b and the part of Vg-axis
beyond either b or b' form the entire realistic barrier which divides the
whole hodograph plane into two main regions, the realistic region and the un-
realistic region for the optimum transfer. With such a partition established
in the hodograph plane we may say that the absolute minimum distance solutions
obtained in the preceding analysis is actually the optimum solution of the prob-
lem whenever the tip Qg of the initial velocity vector lies in the realistic
region., It ceases to be the optimum only when Q5 is beyond the realistic barrier,
or on the boundary b'-a-b, excluding the two end points b and b'. The various
regions in the hodograph plane are shown in Fig. 7, and further divisions of
the unrealistic region will be presented in the next section.

It is interesting to note that the type of the optimum transfer trajectory,
whether elliptic, parabolic, or hyperbolic does not necessarily agree with that
of the initial velocity. The shaded region beyond the critical lines on the
low side but within the critical circle is the region where the initial velocity
is elliptic, but the optimum solution calls for a hyperbolic transfer. Similarly,
the shaded region beyond the critical circle but within the rhomboid is the re-
gion where a hyperbolic initial velocity calls for an optimum elliptic transfer.
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It is also evident from the hodograph that even an elliptic initisl velocity,
if at sufficiently high path angle, may introduce an unrealistic optimum. The
geometrical criterion for an unrealistic optimum transfer obtained so far will
be analytically formulated as follows:

First, we note that there always exist such critical points, where v =~fé,
on the constreining hyperbola, because the minimum velocity along this hyperbola
is always elliptic according to Eq. (13), Table 2,

= A = Jzitangtan%<\/-2 (27)

Vmin

since ® <m - ¥. The condition to be satisfied by the initial velocity vector
in order that its tip lies on the critical line through a critical point (vé, vﬁ)
is then, according to Eq. (9'),

* * *2
Ty Vg - Mo VR = WJ'Vgg (28)

Proceeding from the oblique coordinates (vg,vR) to the rectangular coordinates
(vx,vg),Eq. (28) may be transformed into

al 2 9L _
*y sin2 —= + v¥y_ _cos® —= = vJV 2
VXVCO ins' 2 £Vxo 5 X't (29)
which finally reduces to the polar form
vo(v;’(e cos ¢ sin® R4S + v¥ sin ¢ cos® A} = y¥ ¥ (30)
2 € > XVt

with
VXo= Vg 8in ¢,

(31)
V§O= Vo cos d)o

The coordinates of the four critical points as given by the intersection of the
critical circle and the constraining hyperbola are found as follows:
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* *
vy vg

1% + Vx* +

2% - Jx* + Jy*
(32)

3% - Jxx - Vi

L* + Jx* - Jy=

where
- ¥ cos 2L cos L
X* = 2 sec 5 €08 5= cos 2(\1/ +9p)

(33)

¥ 91 1
- si in =(V +
Y* 23ec25n23n2(w o)

The four points are numbered according to the quadrant they are in (see Fig. 7).
Let vo be the initial velocity vector satisfying Eq, (30) then by inserting
Egs. (32,33) into Eq. (30) we may express the critical condition along the
boundary a-b-a'-b'-a as summerized below (where the usual subscripts Hy etc.
are used to indicate the quadrant where the tip of Q4 lies):

along a-b
(0< o < é)- (vo);ﬂ (Cy cos @ + Cp 8in @) = 1 (34-1)
along b-a'
(- 12‘-5 o, < 0) (Vo);_ (Cy cos &g - Cp 8in &) =1 (51;_2)
along a'-b'
(n<os-D) (vo)y. (Cy co8 0 + Cp sin 0) =1 (34-3)
along b'-a
(5' < 0 < n) (Vo);- (Cy cos 05 - C 8in &) = -1 (31“"4‘)
sind 91 cos ! coo’?— cos g- ( )
c, m - ) G [ —— 35
2 sin 3{v+o) 2 cos Z(¥+9)
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Recalling that the realistic barrier is along b'-a-b, a criterion for
unrealistic optimum transfer may now be stated as follows:

n .
0<®%=3: Vo2 (vo) gy
(36)
g S <m:  vg 2> (v

Similarly, recalling that the realistic critical boundary is along b-a'-b',
and that realistic hyperbolic transfer exists along the vt -axis beyond b and
b', a criterion for parabolic and hyperbolic optimum transfer is

S~¢o <0 : (Vo)
. *
- .;_2 o > -n: Vo 2 (Vo)L- (57)

oy = 0,7t Vo 2 Vp, b

By setting Vy,= O in Eq. (29) and using formulas (32) and (33) we find
the distance from the origin to either corneér point, b or b!,

Vb,b' = E)? = /2 sec CS(_‘3 sin ‘l{ + ¢l) (58)

It can be shown by comparing Eq. ( 38) with Eq. (24) that,
Vb,b' > VG,G'

That is, the corners of theelliptic region always extend into the non-simple
regions. This should be expected since either point b or b' is an intersec-
tion of two normals to the constraining hyperbola. This situation implies
that two realistic optimum solutions exist in the elliptic region when the
initial velocity is in the minimum energy direction, and has the magnitude

V6,6' < Vo < Vp,p!

As discussed before, the optimum solution in such a case does not give the
minimum energy trajectory, but instead it gives a conjugate pair of two tra-
Jectories. And, within the present range of v, they are both elliptic of
course. The same situation exists when v, > Vb p* except that the optimum
trajectory is now hyperbolic, and the realistic optimum solution is unique
since its conjugate becomes unrealistic.
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Finally, as the hodograph shows, there is a minimum initial speed
(VO)L below which neither a critical nor an unrealistic optimum can occur,
for whatever the path angle may be. This is given by the length of the per-
pendicular drawn from the origin to any of the critical lines, e.g., the line
segment oe in Fig. 7. From the trigonometry of the triangle oab, we find

sec g sin(y+py)

39 P

(v3), = 0e =
L sin’ —= cos l( ) 3 in 1
5 5 Y+@q )+ cos 5 sin 5(\y+q>l)

(39)

For example, if ¥ = 60°, ¢ = 75° (corresponding to the transfer to a target
point at the distance ratio n = 1.366) we have (ﬁ;)L = 1.22. Besides, it is
evident that unrealistic optimum cannot occur when the initial velocity vec-
tor is in the low half-plane (¢, <O0).

3.4 CHOICE OF THE REALISTIC OPTIMUM TRANSFER TRAJECTORY

From the preceding analysis the absolute minimum solution of the ortho-
gonality quartic is the optimum solution of the problem whenever the tip Qg
of the initial velocity vector is in the realistic region. However, whenever
Q0 is outside this region, the absolute minimum solution is an unrealistic
optimum, from the physical point of view, and it remains to select a realistic
optimum trajectory for the problem. Such a selection will depend on whether the
point Qg is in the simple or non-simple region of the hodograph plane.

A. Suppose Qg is in the simple region and off the vx-axis. Then the abso-
lute minimum distance solution is unique, 1In such a case it is evident that
the best choice will be the point on the constraining hyperbola sufficiently
close to the critical point in the same quadrant with the initial point Qo
but still within the elliptic region. Thus, strictly speaking, there is no
definite optimum solution for the problem in this case. The transfer trajec-
tory so chosen will necessarily be highly eccentric, of the same class (high)
and same group as the initial velocity vector. If Qg is on the v -axis, then
the two critical points on the realistic barrier, one on each side of the
Vy-axis may be the reference points, and points close to either critical point
may be chosen.

B. Suppose Qy is in the non-simple region. We recall that in such a re-
gion three normals can be drawn from the point Qo to the nearer branch of the
constraining hyperbola. For definiteness let us assume Q, is the H; portion of
the region N (see Fig. 8). Then the three ortho-points on the constraining
hyperbola will be distributed as follows:
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Branch of the

Constraining ,
Ortho-Point Hyperbola Nature of the Solution
*1 H+ Min., absolute, unrealistic
*2 L+ Max,
*3 L+ Min., local, realistic

Thus, besides the unrealistic minimum there is a second minimum for consider-
ation, which is realistic. Let lAv|5 and |Av|* be the velocity-increments
required at the point 3 and the critical point under consideration (e.g.,
point 1* in Pig. 8) respectively. Then the choise will depend on the magni-
tudes of these two quantities.

(1) If |AV15.§ |[Av|*, then the optimum trajectory is definite
and unique, as given by the point *3.

(2) If |Av|z > |Av|*, then some point close to the critical
point but within the elliptic region should be chosen. This case is the same
as case A.

C. Suppose Qo is on the boundary Lamé, then the points *2 and *3 coincide,
giving neither minimum nor maximum, leaving the unrealistic point *1 to be the
only minimum solution. This case is again the same as case A.

In making the foregoing comparison, the concept of constant velocity-in-
crement introduced in Section 3.2 is helpful. It is to be noted that while
such lines are curves parallel to the constraining hyperbola in the realistic
region, they are concentric circles centered at the reference critical point
in the unrealistic region, since in this latter region the velocity increment
at the critical point is the standard for comparison. The point in the un-
realistic region at which

vl = Jav]*

is then given by the intersection of such a circle with one of the parallel
curves of the same constant ]Avl as 1llustrated in Fig. 9. Of course only
these intersections within the non-simple region are of interest at present.
The locus of. all such points of intersections in the unrealistic region will
be called the line of equi-critical-velocity-increment (E-C-V-I line for
short), and there is one such line on either side of the vx-axis. As shown
in Fig. T these two lines further divide the unrealistic region into the
following subregions: the one (Ug) bounded by each E-C-V-I line and the
Vp=-axis 1s the one in which we have lAV3| < |Av|* and therefore the realis-
tgc optimum solution is definite and unique; and the one (Ug) bounded be-
tween these two lines is the subregion in which either [Avz| > [Av[* or Avs
does not exist, therefore the realistic optimum solution of the problem is
definite. On the boundary |AV5| = IAVI* the realistic optimum solution is
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Fig. 9. Determination of the boundary point, |Av[5 = |av|*
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also definite and unique. The subregion Up falls entirely within the non-
simple region of course. Following the previous analysis we see that in this
subregion the realistic optimum solution is to be found by following the nor-
mal line through the initial point Qg to the constraining hyperbola in the
low half plane. This practically extends the applicability of the normal
lines originated from the low-half plane to the high half-plane until the
E-C-V-I-line. Evidently the same is true for the parallel curves. Further-
more, the geometry of the hodograph shows that, whenever & definite realis-
tic optimum solution exists while the tip @y of the initial velocity vector
is in the unrealistic region the optimum transfer trajectory will always be
hyperbolic of the low class, since the two E-C-V-I lines terminate at the
corners b and b' of the elliptic region.

The foregoing analysis completes the discussion on the selection of the
realistic optimum transfer trajectory for the problem. All the previous con-
clusions on such selections are summarized in Table 5.

3.5 THE MINIMUM VELOCITY-INCREMENT OF THE OPT'IMUM SOLUTION

Following the previous analysis the realistic optimum solution of the
problem is indefinite whenever Q5 is in the region Uj, and is definite every-
where else. The definite optimum solution 1s provided by the orthogonality
Eq. (10'-C or 10'-R), and the corresponding minimum velocity-increment is
given by Eq. (3'), which may be written alternately,

2 2 mot 2
IAV*l = EVC* - 57Z‘OVC-X- - vo + VO - 2 tan ‘g cot (Pl (5, -C)
C*
= - - + - -
2Vpy = 3M Vg, . V= - 2 tan 7 cot @) (3'-R)

by using Egs. (lO'-C,R). The indefinite optimum solution may be written
approximately,

S TV (30)
v, | = vt

*
where V¥ is the critical velocity vector co-quadrant with 30, and lAv l is
given by

-

W = T = ng'eﬁ cos(05-0") + 2 (41)
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where ¢, and ®* are the path angles of ;o end V* respectively, both referring
to the minimum energy direction et the initial terminal.

For a given base triangle the effects of the initial velocity vector 30
on the magnitude of 53* may be eassily seen from the hodograph geometry. Let
us first consider the case when 30 has a constant direction but varying magni-
tude, that is, when Qy moves along a directed straight line through the hodo-
graph origin at an arbitrary angle ¢y such as the £ -lines in Fig. 10a. When
Qo moves from the origin outward, the hodograph shows that lAv*I first incresses
and then decreases. In the realistic region, it will have its least value when
Qo 1s closest to the constraining hyperbola. The point of closest approach,
Qg, Will be at the intersection of the Jl-line and the hyperbola if they do
intersect. This will be the case when the f-line falls in neither of the
inner and outer forbidden regions for the direction of departureh (like ;tl
and OCé in Fig. 10a). In such a case, Avy = O, and the initial velocity is
the correct departure velocity along the given direction for the two terminal
transfer. If the line falls within the inner forbidden region, no such
an intersection is possible; however, Q. may still exist on the¢83-1ine.(see
$t5 in Fig. 10a), but the corresponding Avy will not be zero. If the Gg-line
falls within the outer forbidden region, then it lies partly in an unrealistic
region, and IAV*I will be least when QO is closest to the critical point in the
same quadrant with the strline. The point of closest approach, Qe, will then be
given by the foot of the perpendicular drawn from this critical point to the<ﬁl—
line if the foot lies also in the unrealistic region. A rectangular plotting
of [Av*l Versus v 1s shown in Fig. 10b. To avoid confusion the constant &,
lines have been separated into two groups: ]@Ol =0 to ®*, and l@ol =0 to
n/2, where ®* is the critical angle indicated in Fig. 1Oa.

It is worth noting that, in the elliptic region, due to the symmetry of
the hodograph geometry with respect to the vg-axis, lAv*l remains the same
when ¢, changes to -2, at the same v,. Thus, in this region the lAv*l versus
Vo curves are identical for i@o. However, after v, reaches its value on the
critical boundary a-b-a'-b'-a, such a symmetry no longer exists due to the
presence of the unrealistic region, and lAv*l in the high half-plane is higher
than its conjugate part in the low half-plane. Consequently the IAv*l Vs
Vo curves splits into two branches, one for the +0, and one for the -0, a&s
shown in Fig. 10b. It is also to be noted that, on the positive branch, the
optimum solution is indefinite, and the values used in the plotting are in
fact those of |Av*| which is the lower limit of the indefinite|Av,|. Finally
it should be mentioned that, as the hodograph geometry is symmetrical with
respect to the vy-axis in both the realistic and the unrealistic regions, each
constant &, curve also holds for its supplementary angle of the same sign
(e.g. the curves for o, = 70° and 110° are indentical, and so are those for
-70° and -110°).

hFor terminology see Appendix A and Ref. 9, pp. 10-12.
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Now let us consider the cese when ;o has a constant magnitude but varying
direction, that is, when Q5 moves along a circle centered at O with thc¢ radius
Vo. There are several sub-cases to be distinguished.

a. When v, < (VO)L’ the vy-circle is entirely within thc boundary aba'b'
and the transfers are all elliptic.

(a-1) vy < A First suppose v, < A, then as the hodograph shows (Fig. lla-1),
the vo-circle intersects the constraining hyperbola at no point, and Q, is closest
to the hyperbola when it is at the point D or itscomplementary point D' (not
shown in Fig. 11). Consequently lAv*l is least at &5 = O or * n, and is given
by

Av = A -y

| *lmin © (2)
Thus the best direction for the initial velocity vector is the local minimum
energy direction. The same is true when v, = A except that the Vy-circle now

touches the constraining hyperbola at its vertices y@ and ' - Thus the points
D and D' coincide with 2 and, @ respectively, and Avx = O.

(a-2) v, > A The v,-circle now intersects the constraining hyperbola at
four distinct points, one in each quadrant (two of them are shown in Fig. 1la-2),
where Avx = O. Consequently the best directions for Vv _shifts from the minimum
energy direction to either of the four directions determined by these four points.
They are the correct directions for the 2-terminal transfer at the departure
speed v,. There are one pair of such directions, a conjugate pair, for each
of the trajectory groups, the normal eapd the complementary.

b. When vy 2> (VO)L, a part of the v,-circle is outside the boundary aba'b’
and the transfers are not all elliptic.

(b-1) vy <~fé Four points of intersection of the v_-circle with the con-
straining hyperbolic exist in the elliptic region like in case (a-2). (see Fig.
11 b-1)

(v-2) Yo Z~fé The vo-circle will intersect the constraining hyperbola
in the realistic region at two points only, both in the low half-plane (one
of them is shown in Fig. 11b-2 as QCZ)‘ Thus there are two optimum
directions for the low transfer with zero velocity-increment. In the high
half-plane the vy-circle extneds partly into the unrealistic region, and
|avx| will be least when Qy is closest to either of the critical points 1
and 4%, As the hodograph shows, it is given by the point where the V-
circle intersects the radial line through each of these critical points.
Thus the optimum directions for V, for high transfer are given by Oy = O*
and n-%*. The corresponding minimum |Av*| will be nonzero unless vgq =Je.

Figure 11 also shows the rectangular plottings of lAv*l versus P, for severa
constant velues of v,. Note that the portions of the lAv*l-curve beyond the
critical points in the high and low half-planes are not symmetrical. This
asymmetry is negligible when v, is close to (vg)L (Fig. 1lb-1), but becomes
increasingly obvious as v, Erows (Fig. 11b-2).
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Finally it is interesting to note that |Avy| is a local meximum when Qg is
at the point J or K (&, = £ x/2) in all the previous cases. In the case (a-1) it
is also the absolute maximum since no other local maximum is present. Consequently
the worst direction for.7; in this case is along the vx-axis, which is the bi-
sector of the base angle ®1. This is also true in the case (a-2) even here a
second local meximum for lAv*I exists at D or D', corresponding to the local
minimum energy direction. This second local meximum is also present in case b.
As shown in Fig. 11b-1,2, it grows as v, lncreases, and 1t may eventually be -
comes the absolute maximum. Its location will shift to the high side of the
v;-axis instead of lying on 1t when vg > wy. Thus the minimum energy direction
and 1ts neighbourhood in the high half-plane may become the worst direction for
V; at high initial speed.

3.6 EFFECTS OF THE INITIAL VELOCITY VECTOR ON THE OPTIMUM SOLUTION:
SUMMARY OF FINDINGS

As seen from the preceding analyses the optimum solution for the problem
1s determined by the geometry of the base triangle and the initilal veloclty
vector. Bascd on the previous findings the effects of the initial velocity

vector on the optimum solution for a glven base triesngle may be summarized
as follows:

(1) Corresponding to every initial velocity vector ?o there exists
at least one definite realistic optimum trajgctory for the problem provided by
the orthogonality quartic unless the tip of V, exceeds the realistic barrier
in the hodograph plane. Such a barrier is analytically defined by Egs. (34-1)
and (34L4).

(2) If such a limit is not exceeded, the initial velocity vector
is saild to be iq*the realistic region, then the realistic optimum solution is
unique whenever V, is not directed along the bisector of either the interior
or the exterior base angle at the initial terminal.

If this is the case, then the optimum trajectory will be of the same
group and the same class with the initial velocity vector V . However, the
type of the trajectory, whether elliptic, parabolic, or hyperbolic, does not
necessarily agree with that of V,, but is determined by the particular region
in the hodograph plane in which its tip Q, lies (see Table 5 and Fig. T).

(3) In a realistic region, if Vo is directed along the interior base
angle bisector, then there are two optimum solutions for the problem, corre-
sponding to a complementary-conjugate pair of trajectories of the same class
with the initial velocity vector, and of the same type which is determined by
the region in which the tip Qo lies.
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(4) The minimum energy direction of departure is along the exterior
base angle bisector. If V6 is directed along this direction{;;hen the optimum
solution may be unique or not, depending on the magnitude of V, or the location
of its tip, Qy. Consider Vo in the positive half of the hodograph plane (see
Fig. T):

(a) When Qo moves from the origin up to the cusp G of the
boundary Lamé along the minimum energy direction such that 0 < V4 < Vg
(where Vg is given by Eq. (24)), the optimum solution is unique, the trajec-
tory 1s elliptic, and of minimum energy, and the velocity-increment vector
is to be directed along the minimum energy axis.

(b) When Qy moves between the cusp G and the point b, where
the boundary of the elliptic region meets the minimum energy axis such that
Vg < Vo <Vp (where Wy, is given by Eq. (38)), then there are two optimum solu-
tions for the problem corresponding to a conjugate pair of trajectories of the
same group with the initial velocity vector. They are both elliptic, but no
longer of minimum energy, and the optimum directions for the velocity-increment
vector deviate from the minimum energy direction with equal inclinations on
either side of it even though the initial velocity vector is along that direc-
tion.

(¢) When Qg moves further along the minimum energy direction
such that Vg, > V}, the realistic optimum is again unique. Like case (b) the
optimum AV is no longer in the minimum energy direction, and the trajectory
is no longer the minimum energy one. It is parabolic when V5 = Vy, and hyper-
bolic when Vg5 > Vy.

R Situations similar to the foregoing three cases (a) to (c¢) exist
when Vg is in the other half plane.

(5) Different initial velocity vectors may call for the same optimum
transfer trajectory. This statement is necessarily true when these velocity
vectors all lie on the same normal line in the same quadrant in the realistic
region.

(6) Similarly, different initial velocity vectors may call for the
same amount of velocity increment. This statement is necessarily true when
these velocity vectors all lie in the realistic region and on the curve parallel
to the constraining hyperbola with the same common distance on either side of it.

(7) No unrealistic optimum will arise when the initial velocity is
directed belovw the minimum energy direction regardless of its magnitude, or
when its magnitude is below the lower critical limit (V§); (given by Eqa. 39))
regardless of its direction.
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(8) When the tip Qo of the initial velocity vector exceeds the real-
istic barrier, it is said to be in the unrealistic region. 1In such a region a
definite realistic optimum solution can be found only when Qy is inside or on
the boundary of the strip bounded by the v¢-axis and the line of equi-critical-
velocity-increment (see Fig. 7). 1In such a subregion the realistic optimum
trajectory is hyperbolic of the same group with the initial velocity vector,
but of the low class. Outside this subregion no definite optimum solution
can be found. The possible choice will be an elliptic one, of high eccentri-
city, close to the unrealistic parabolic trajectory given by the critical
point or points nearer to Qo.

(9) For a given direction of the initial velocity, there is a best
magnitude for which the optimum velocity-increment is an overall minimum. This
is given by the point of closest approach on the direction line .to the constrain-
ing hyperbola in the realistic region, or to the critical point co-quadrent with
the direction line in an unreaslistic region. This best magnitude will be the
correct departure speed in the given direction for the 2-terminal transfer if
it fells in neither of the inner and outer forbidden regions for the direction
of departure. The velocity-increment required is thus zero.

(10) For a given magnitude Vo the best direction for the initial
velocity from the initial impulse standpoint is in the local minimum energy
direction only if v, is not greater than A, which is the departure speed along
the minimum energy trajectory. When v, exceed® A, the best directions are those
for a realistic transfer (long or short) with Vo 88 the departure speed. The
corresponding velocity-increment is again zero From the same standpoint, the
worst direction for the initial velocity 1s that along the bisector of the base
angle at the initial terminal, elther inward or outward, when v, is less than
A. At higher initial speed a second worse direction exists in the minimum
energy direction; it and its neighbourhood in the high side may eventually
become the worst when v, grows.
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L. HODOGRAPHIC REPRESENTATION OF THE TWO-DIMENSIONAL OPTIMUM TRANSFER

4.1 THE ORTHOGONAL NET IN THE HODOGRAPH PLANE AND THE OPTIMIZATION CHART

As seen from the previous analysis the normal lines to the constraining
hyperbola and its parallel curves form an orthogonal net in the hodograph plane.
Such a net may be looked upon as the curvilinear coordinates of the initial
velocity vector, and it forms naturally the basis for the development of the
optimization chart for the present problem. A typical example of such a chart
is shown in Fig. 12,5which is constructed for the case of ¥ = 60° and @y = 75°
corresponding to a transfer distance ratio of n = 1.366. As soon as the tip
Qy of the initial velocity vector is located on the chart, the optimum velocity
increment vector and the optimum departure velocity vector can be readily de-
termined by noting the normal line and the parallel curve passing through this
initial point Qy. In case unrealistic optimum arises it can be seen at once
from the chart, and in such a case a realistic optimum solution may also be ob-
tained directly from the chart by noting the subregion (Ul or Up in Figs. 12
and 12A) in which the point Qo is located, and the rules given in Section 3.h,
The type of the optimum transfer trajectory, elliptic, parabolic, or hyperbolic,
will be indicated by the region in which the selected optimum point lies. To
illustrate the use of this chart an example is given below:

Consider a transfer from an initial point to a target point at a distance

of ry = 1.366 ry, an angle of separation 60°, and an initial velocity given by

v, = 0.80 , ¢ = -25°

By locating the initial point Q, according to (vo,wo) in Fig. 12 , we find the
optimum solution approximately as follows:

Velocity increment: magnitude lAve| = 0.672
direction ¢Av* = 54.5°

Departure velocity: magnitude Vie = L.k
direction ¢, =11°

The transfer trajectory is elliptic.

5On‘Lyone half of the hodograph plane is shown owing to symmetry; the normal
lines are arbitrarily numbered for convenience.
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Fig. 12A. The equi-critical-velocity-increment line in the hodograph plane.
(¥ = 60°, 91 = 75°).
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While such a chart yields immediately the optimum solution corresponding
to a specified initial velocity vector, it does not give directly the princi-
pal elements of the transfer trajectory except its type. For such information
the hodograph circle for the transfer trajectory should be constructed, and it
will be presented in the next section. Finally it is t0 be noted that although
such a chart is constructed on the basis of a hyperbolic constraint, it may
well be applied when the departure velocity is constrained not on this hyper-
bola, but on any one of its parallel curves, since all of them have common
normals and the same Lamé as their involute. The only change necessary is to
shift the datum curve, on which Av = 0, from the hyperbola to the new con-
straining curve and to make corresponding adjustment on the constant value of
Av on each of the parallel curves. Graphical techniques on the extensive use
of such optimization charts, however, will not be elaborated here.

4.2 THE CONSTRUCTION OF THE TRANSFER HODOGRAPH

With the optimum departure velocity vector determined analytically or
graphically, the hodograph for the transfer trajectory may be constructed by
using the terminal relations given in Ref. 9,

-

sy
= = N
Vo, Voo 5 Vg Vo (43)

from which we see that once the hodograph image of the initial terminal Qj
is determined, so is that of the final termina Qo. In fact the point Qo in
the hodograph plane is also constrained on a hyperbola defined by

VC VR = =K (L)

which is Godal's compatibility condition applied at thg second terminal. The
negative sign here signifies the fact that the vector VR2 is directed in the
negative direction of the local vertical at Qp. However, the construction of
this second constraint is not necessary since following Eq. (43), the point Qo
may be easily located in the hodograph plane by completing the two velocity
parallelograms with the common side Vp and the other sides of equal length Vg
lying along the directions of ?l and T respectively as shown in Fig. 13.

With the two terminals on the transfer hodograph thus determined, the next
step 1s to locate the .center of the hodograph circle. According to the gen-
eral correlation established in Ref. 7 this center must lie on the local hori-
zontal line at each terminal. Thus by drawing the lines perpendicular to the
local radial directions at Q; and Qp respectively we find their intersection
at C, and by using C as center the hodograph circle can be drawn to pass through
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Fig. 13. Construction of the transfer hodograph in the V-plane.
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the points Q; and Q2.6 This completes the construction, and the circular arc
between the points Ql and Q2 subtending a central angle V represents the trans-
fer trajectory. The principal geometric as well as kinematic elements of the
trajectory can then be determined from the hodograph according to the correla-
tion given in Ref. T.

4.3 THE HODOGRAPH OF OPTIMUM TRANSFER TRAJECTORIES IN THE J-PLANE
So far the analysis has been made exclusively in the ;-plane. Such a

hodograph, though nond1mens1onallzed, is essentially different from the dimen-
sionless hodograph in the U—plane defined by

Tl
<+

r = (45)

where h is the angular momentum per unit orbiting mass and p is the Newtonian
gravitational constant, as introduced ip Ref. 7. To distinguish the two we
will call them the v;hodograph and the V-hodograph respectively according to
their planes. In a y-plane the velocity is nondimensionalized by dividing
through by the circglar speed at a fixed point, which is a constant in the
problem. Thus the v-hodograph is in fact the same as the hodograpg in the
usual V-plane, except for the scale of plotting. However, in the U-plane the
velocity is being divided through by the parameter u/h which varies from one
trajectory to another. Such a nondimensionalization has the advantage of re-
ducing the hodograph of all Keplerian orbits into a. unit circlg. Having made
the analysis and representation of the present problem in the v-plane, it is
appropriate to introduce here the hodggraphic representation of the same op-
timum solution of the problem in the Z-plane.

The locus of the hodograph origins in the z=plane, as shown in Ref. 9,
is a straight line for all two-terminal trajectories of the same group. Ehus,
the two straight lines parallel to the chord of the base triangle in the 7-
glane are comparable to the two branches of the constraining hyperbola in the
v-plane, one for each group (see Fig. 14). Thus while the tip of the departure
velocity vector is constrained on the two branches of the hyperbola in the v-
plane, the orlgln of the transfer hodograph is confined on these two straight
lines in the‘U%plane. Detailed discussion on the lines of origins are found
in Ref. 9.

Consider a normal group. Let O be an arbitrary point on the straight
line locus, and p its distance from the radical center T as shown in Fig. 15.
Then by definition

6

> >
Note here the vector Vo - Vl is in the direction of the bisector of the ver-
tex angle V¥ in the physical plane, see Ref. 5 or T, pp. 897-898.

48



.mmnw.mmnuww pus - w
SU3 U JUTBIFSUOD TBUTWISY-OMY} 3Y3 JO uolasiussaxdsx ofaqswosy “HT *3TL

oco_ann\.w Yyl (9) sup|d-23y] (D)

1

(dnoag Aiojuawseidwo))
ojoqiadAH bBuuibiysuo)

A H\I = .N. A
L v
JUIDIJSUOD D1 S1|DIIUN HHtHHHHE -~

(dnou9 |pwIoN)
suibuQ joaun

(dnou49 |pwioN)

91941 ydoibopoH
« Dj0q4adAH Huiuibiysuo)

(dnoug Aiojuaweidwo) )
su1biiQ jo aunn

49



*(*3suo) = A) QOHmnﬂr ay4 ul Satxo3oaleay asisusay umwiido Jo ydsalopoyg °CT1 814

3upid -/ 3yl (q)

SNI9IHO WNWILHO 40 3NIT aup|d |021sAyd (D)
N
A _O l 0
\I
/“ 0
A
&.O / Q
< \, S3140103rvyl
’ Y3I4SNVHL
WNWILJO
AV )
b/| |
o\l
0 7,
N\
- //J'N X[/ 37080 HAVHOOQOH

AdO103rvdl
434SNVl

50



h
= =V L
P h'C (46)
Comparing this with the definition of v given by Eq. (1l), and noting here,
h = VC d = VC I‘l Sin (pl ()47)

we find the relation

ol = v§ sin ¢
C 1 (18)

Thus corresponding to each optimum value of voy for a given base triangle and
a given initial velocity vector there is a unique value of py, from which the
origin Ox of the optimum transfer hodograph is determined. Such an origin
will be called the ogtimum origin for the present problem, and the locus of
such origins in the V-plane, the locus of optimum origins, or simply the Ox-
locus. A typical example of such a locus for a constant vertex angle V¥ is
shown in Fig. 15b. By substituting Eq. (48) into the orthogonality Eq.

(10C) we find the py-equation

(p2 - tan® }g)E = oy sin @ (oPx -Motan %)2 (49)
where
™o = Vo sin @,
: (50)
Mo = Vo sin (9~ ¢;)

according to Egqs. (20) and (21). For constant ¥ such an equation may be
looked upon as the polar equation of the py-vector with the angle @l as the
polar angle, and the directed tangent line T Ql’ its polar axis. It repre-
sents the Oyx-locus whenever the orthogonality Eq. (10) yields a realistic op-
timum solution. Some essential features of a py-curve are to be noted as
follows:

(1) It is bounded between the two tangent lines at Q; and Q on
the hodograph circle since for a given vertex angle ¥ the angle ¢y can only
vary between 0 and n-V.

(2) For a constant V each value of the angle P corresponds to a
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unique value of the distance ratio n. Thus the radial lines drawn from the
radical center T are also the lines of constant n.

(3) The point Q) lies on the py-curve since the py-equation (49)
is satisfied by @, = O and py = tan ¥/2 there.

(hl The origin of the initial orbit as given by the initial veloc-
ity vector v, in they -plane lies on the p -curve, as its coordinates also
satisfy the py-equation (49). The corresponding values of ¢; and n at this
point give the configuration of the base triangle such that the initial orbit
passes through the final terminal Qo, and thus itself may be regarded as the
optimum transfer trajectory.

(5) The point where the px-curve intersects the hodograph circle is
the critical point, and the portion of the curve beyond it is hyperbolic.

(6) From the critical point beyond, the px-curve will be unrealis-
tic (corresponding to unrealistic optimum trajectories) if it is on the high
side, otherwise it is realistic.

(7) When the py-curve is unrealistic, it ceases to represent the
Ox-locus, and should be modified &ccording to .its corresponding realistic
optimum value of Yoy

(8) The point where the Oy-locus meets the bounding line T Qo
gives the optimum transfer trajectory from Q; to infinity. Such a trans-
fer will be further discussed in Section 5.3,

Finally it is to be noted that the orthogonality principle does not di-
rectly apply in a 3—plane since the initial velocity and the velocity along
the transfer trajectory to be optimized are not+repre§ented by the same scale
there. However, it has the advantage over the v- or V-hodograph in that it
shows the totality of the optimum transfer trajectories for all possible
configurations of the base triangle (given by the variable ¢ or n) under a
given vertex angle ¥ and & Erescribed initial velocity vector (see Fig. 15a).
Furthermore, unlike in the v-p&ane where a hodograph circle is to be drawn for
each transfer trajectory, the v-hodograph enables one to use the same arc of
the unit circle for all transfer trajectories between the fixed terminal
points Q) and Qp, and from which all the principal geometrical as well as the
kinematic elements of the transfer trajectory associated with & particular
optimum origin can be readily determined according to the correlations given
in Ref. T.

All the foregoing features are also true for the py-curve or the Ox-locus
of the complementary group. Such a hodographic represertation can be easily

obtained by turning the corresponding hodograph for the normal group through
180°
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5. ANALYSIS OF SOME LIMITING CASES

So far the analysis has been restricted to O < ¥y < n, and 0 < n <o, An
examination of each of these limiting cases is now in order.

5.1 THE CASE ¢ = O

Physically this case corresponds to a vertical descent if rq > r, and a
vertical ascent if r; < ro. In either case the base triangle 0Q1Qp degenerates
into a line segment with Q; and Q2 on the same side of O. The geometry in the
physical plane and that in the hodograph plane for each case are shown in Fig.
16. The constraining hyperbola also degenerates in each case, and its principal
elements are as follows:

r) > T r) < T

(n <1) (n>1)
o « 0
A 0 Jz(l - 1) (51)

n
i

B 2(= -1

(&-1) 0
e oo 1

(a) Vertical Descent: 17 > 1o (n<1)

The degenerate constraining hyperbola is a straight line parallel to the
line 0Q;Qo in the physical plane. Consequently all normal lines are parallel
to the local horizontal at Q) and Qy, the orthogonal net becomes rectangular,
and the transfer trajectory is a vertical straight line. The entire hodograph
plane is divided into three main regions as usual: the hyperbolic region on
the low side, the unrealistic region on the high side, and the elliptic region
between them. However, it is to be noted that the usual closed elliptic region
is now open since its sides are parallel. Furthermore, as a straight line
trajectory is identical to its conjugate, as well as its complementary-con-
jugate, the optimum solution is unique everywhere in the realistic region even
on the vx-axis which now coincides with the vrj-axis.

The optimum solution of the problem is very simple in this particular case.
As seen from the hodograph (Fig. 16a) Qg is in the realistic region whenever

Vo sin fq <2 (52-1a)
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and the geometry of the hodograph gives readily the solution summarized in
Table 6, column a. As seen from the hodograph the optimum velocity increment
vector in this region 1§ everywhere in the local horizontal direction. It is
simply to nullify the horizontal component of the initial velocity if any—a
fact which is evident from physical considerations. However, whenever

v, 5in B > V2 (52-28)

Qo is in the unrealistic region, the point on the ve1-8xis close to the critical
point 1* but inside the elliptic region has to be chosen as discussed in Section
3.4, No second choice is possible at present since no evolute exists for a
streight line and the hodograph plane is simple everywhere. Consequently, the
optimum velocity increment vector is no longer in the normal direction, and

in addition to nullifying the horizontal component of the initial velocity,

it has a vertical component opposed to that of the initial velocity so as to
keep the resultant velocity below that for escape. The optimum solution in

this case is indefinite, and, as seen from the geometry in the hodograph plane,
it may be written approximately as summarized in Table 6.

(b) Vertical Ascent: rj <1, (n > 1)

This case looks similar to the previous one, but there are some radical
differences: 1) the constraining hyperbola degenerates into two semi-infinite
lines along the radial axis instead of a single line as in case (a); and between
the vertices & and @' of these two branches of the velocity constraint, there
is a gap of length 2A where no normel lines to the constraint line can be drawn,
and consequently the orthogonality principle cannot apply there; 2) trajectories
of the complementary group are out of the question since in such a transfer
all physically realistic trajectories must go in one direction only, that is,
from Q) to Qo not through O. Thus the negative portion of the degenerate con-
straining hyperbola is mesaningless. Consequently the straight line normal to
the positive branch of the constraining line at its vertex ¢ forms a realistic
barrier instead of the usual critical line.T The geometry of the hodograph
plane and various regions are shown in Fig. 16b.

As seen from the hodograph, whenever

v, 5in B, > A (52-1v)

Qy is in the realistic region, the solution is definite and unique, and formulas
are identical to those for case (a) in Table 6. Whenever

vo 5in By < A (52-2b)

7Note here in the region between the horizontal lines through 4 and “*' there
exists no optimum solution, realistic or unrealistic, and in the region to
the left of the horizontal line through ¢O' (not shown in Fig. 16b) the un-
realistic solution consists of elliptic trajectories in addition to the hyper-
bolic ones as encountered in the case of ¥ i 0, owing to the consideration 2).
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Qo is in the unrealistic region, the orthogonality principle no longer applies.
In such a case the vertex -0 should be chosen as the optimum point, giving

opt. =h= o1 - 1) (5k-2b)

which is the minimum departure velocity for such a transfer (see item (2) on
the "Constraining Hyperbola," Section 2.2). Formulas for this optimum solution
are summarized in Table 6, column b.

v

5.2 THE CASE y =

The case is of practical importance. Like the previous one the base tri-
angle degenerates again into a line segment but with the two terminal points
on the opposite sides of 0. The elements of the constraining hyperbola have
the following limiting values according to Table 2:

g — T
2n
A —_—
- J:1+1 (55)
B —_— 00
e — ®

Thus the constraining hyperbola degenerates into two straight lines parallel

to the vyj-axis at the distances + A. Consequently, all normal lines are again
in the horizontal direction everywhere in the hodograph plane, the orthogonal
net is again rectangular, and the plane is divided into the three regions,
elliptic, hyperbolic, and unrealistic, by the two critical lines Just as in

the case ¢ =0, and ry > ro. With the absence of the boundary Lamé the entire
hodograph is again simple, and a definite and unique optimum solution exists
everywhere in the realistic region except on the v,j-axis along which a comple-
mentary-conjugate pair of optimum solutions exist. The geometry in the physical
plane and that in the hodograph plane are shown in Fig. 17.

As seen from the hodograph, Q5 is in the realistic region whenever

v, sin f < H%I (56-1)

—>
and in this region the optimum direction of Av is horizontal everywhere. The
optimum solution can be readily obtained from the geometry of the hodograph,
and is summarized in Table 7, column 1.

Whenever
2
n+l (56-2)

vo sin g, >

o) -
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is in the unrealistic region. Since no non-simple region exists, the only
c201ce for the optimum is then the one close to the nearer critical point, 1*
or 4%, and remains in the elliptic region. The optimum solution is again in-
definite, and may be written approximately as summarized in Table T, column 2.

With vix thus determlned the hodograph for the transfer trajectory can
be constructed in the V- -plane by noting that for a 180° trajectory we have

Vol Vgp = B i1 (59)

Thus once the image point Q; is determined in the hodograph plane, so is the
image point Qo. Since the center of the hodograph circle is necessarily half-
way between Q] and Qg, the hodograph of the transfer trajectory is now completely
determined, as shown in Fig. 18a. It is interesting to note that, in a V- -plane
the center of the hodograph circle for such transfer trajectories is constrained
on & line also parallel to the v,;-axis and at a distance (1-n) A2n(n+l) from

it, which follows directly from Egs. (55) and (59).

In theia-plane the radical center T recedes to infinity, and all constant-
n-lines become parallel. Consequently, p, also tends to infinity and the py -
equation is no longer suitable for the description of the Ox-locus. In such a
case the use of an alternate coordinate system is necessary. A convenient
choice is a rectangular system with its axes coinciding with the directed lines
TQ] and QoQy in the qf-plane (which are in the local horizontal and vertical
directions at Q) respectively). Let p§ be the radius vector from the point
Q) to the optimum origin Ox, then evidently, (see Fig. 18b).

Py == Vg (60)

with their rectangular coordinates related by

(py), ¥ (60a)
(p_;e)e =" Dg*

Temporarily let us consider only the traJectorles of the normal group, that
is we restrict Q)g to be non- negatlyg, -ﬂ/2 < ¢o < ﬂ/2 then directly from
their definitions the components of 7-and V are related by

2
VA =V
e e (61)
Dr = VrvG
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It follows that

But according to Egs.(58-1) and (50) we have for realistic optimum,

Vpx = Vo Sin B = Mo (63)

Substituting Eq. (63) into Eq. (62) gives

.~ =m?2 » (64)

I'x 0 6%

In terms of p,. and pg , this becomes

12___ 2, 6

(p*)r n]o(p*)e (65)

Thus the px-equation is a parasbola tangent to the v 1-axis at Ql and having

the 1~gj-axis as its axis of symmetry (see Fig. 18b§ Note that the line of
optimum origins must pass through the initial point O, determined by the

initial velocity vector 'Do: according to Section 4. 3 Thus the positive branch
of this parabola corresponds to initial velocity vectors at negative path angles
¢ < 0) and will be designated as the low branch, while the negative branch
corresponds to those at positive path angles ¢o > 0) and will be designated

as the high branch. The low branch therefore always gives a realistic optimum,
and its portion beyond the hodograph circle is the hyperbolic portion. The

high branch corresponds to a realistic optimum only up to the critical point,
and beyond that the optimum origin will move closely around the circumference

of the hodograph circle, but remain inside it.

It is to be noted that, when the initial velocity is directed in the local
horizontal direction (¢O = 0), the pk-parabola degenerates into the line Q1Qp,
and all optlmum transfer traJectorles are realistic and elliptic. As is evident
from both the 17- hodograph and the v hodograph, such an optimum transfer trajectory
is always the Hohmann transfer ellipse independent of the magnitude of the
initial velocity vector.

When the path angle of the initial velocity vector exceeds the limit # n/2,
the optimum solution calls for a trajectory of the complementary group. The
corresponding transfer hodograph can be obtained by rotating the present one
for the normal group through 180° as usual.

5.3 THE CASE n » (r2 + )
When rp increases indefinitely while the angle ¥ is fixed, the final ter-

minal point Qo recedes to infinity along a given direction, and the problem
becomes an escape from a given point Q) along a given asymptotic direction
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specified by ¥. The base triangle is now open with
91X -¥s 920 (66)

and the principal elements of the constraining hyperbola have the following
limiting values according to Table 2:

g - s
A - J2 (
67)
B - V2 ten}
e — 8ecC g
Besides, the boundary Lamé has its cusps G and G' given by
VG,G' —-)\/?2 5602 g (68)

The geometry in the physical plane and that in the hodograph plane are shown

in Fig. 19 a,b. The minimum velocity along the constraining hyperbola, as
given by A, is the escape speed; thus all possible transfer trajectories are
hyperbolic, or at least parabolic, a fact which is self evident. In the hodo-
graph plane the critical circle now touches the constraining hyperbola at its
vertices yvand ', and the entire hodograph plane is divided into the realistic
(all hyperbolic) and the unrealistic regions by the vg-axis.

It is to be noted that, although nonsimple regions exist in the hodograph
plane for the present case, no realistic conjugate optimum solutions exist
along the v¢-axis since no elliptic region exists, and the high half-plane
is all unrealistic. Furthermore, a parabolic trajectory should not be admitted
as a solution since it has no definite asymptotic direction as reguired by
the problem. Thus whenever the tip Qy of the initial velocity vector lies
between the points G and G' on the v¢-axis, a point on the constraining hyper-
bola in the realistic region and close to the nearer critical point, Qor #'
is to be chosen as the optimum point. For points on the v{-axis beyond either
G or G', of course hyperbolic realistic optimum solutions always exist. A
simple criterion for realistic optimum transfer is then

1
- % (n+y) < ¢o <3 (n-¥) (-x <0 <0) : any v,

. (69)
g, = % (£ n-y) (¢ = 0,-n) : Vo >yJ2 sec %

Note that the E-C-V-I lines here coincide with the v{-axls, and the subregion
Uo does not exist. Consequently, the optimum solution is indefinite whenever
Qo is jn the unrealistic region, and such a solution is given by Egs. (Lo,k1)
with & = 0. The optimum solution when Q, is in the realistic region
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TRAJECTORY
Q, (at infinity)

(a) Physical Plane

CONSTRAINING \
HYPERBOLA

BOUNDARY LAME

CRITICAL
CIRCLE A3

(b) Hodograph Plane

Fig. 19. Optimization of transfer to infinity (r, + «).
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cannot be readily written from the geometry in the ;-plane as was done in
the previous particular cases. However, it is given by the point where the
line of the optimum origins meets the line TQ in thegj—plane as shown in Fig.
20b, and essentia& information concerning the transfer trajectory can be ob-
tained from the P -hodograph. For example, the eccentricity of the optimum
trajectory is given by OxC, its apsidal axis by the line normal to 55%, and
the residual velocity, the vector O*Qb.

The ;-hodograph can be constructed as usual. In this case the point Qo
in the hodograph plane can be easily located by drawing a sgraight line pass-
ing through Q; and parallel to the bisector of the angle ¥.- The point
where this line meets the v,)-axis gives the point Qo required (see Fig. 20a),
The hodograph circle will of course be tangent to the Vp1-8xis.

5.4 THE CASE n + O (rp +~ O)

In this case the final terminal Qo is approaching the field center O, and
the constraining hyperbola in the hodograph plane is approaching the vrl-axis.
In the limit the situation reduces to that of a vertical descent analyzed in
Section 5.la with ro = 0. The hodograph geometry is the same, the transfer
trajectory is again a vertical line segment, and all formulas of Section 5.la
apply to the present case.

8See footnote 6.
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6. TRANSFER FROM A CIRCULAR ORBIT

Since the transfer from en initial circuler orbit is of frequent occur-
rence in space flight problems, it is worth a brief treatment in the light
of the present analysis. For the time being the two-dimensional case will
be considered, that is, the final terminal will be restricted to the plane
of the initial orbit.

6.1 ANALYSIS

The initial condition for the transfer from a circular orbit to a
coplanar point is as follows (Fig. 2la):

Short transfer Vo =1, ¢o =0 (70a)

Long transfer v.=1, ¢ =n (70V)

As is evident from the optimization chart (Fig. 12), an unrealistic optimum

is possible only for a long transfer. Thus a definite realistic optimum
solution exists for a short transfer, and also for a long transfer before the
realistic barrier is reached. Such a solution is provided by the orthogonality
Eq. (10'-R), which takes the simple form

vRi + Vp, tan % - k2 =0 (71)
under the conditions (70a,b). The upper sign in Eq. (71) pertains to the short
transfer, and the equation has one positive real root (according to Table 3) giv-
ing the optimum solution. Similarly, the lower sign pertains to the long transfer,
and the equation has one negative real root for the optimum solution. Evidently,
these two roots differ in sign only and the two solutions are a complementary pair.
The corresponding Ox-locus in the ?Lplane is given by Eq. (49), which reduces to

2 2 3
(py - tan g) = Py sin5CPl (72)

for the present case. The locus passes the center of the hodograph circle as
shown in Fig. 21b. Whenever an unrealistic optimum arises from Eq. (71l) in
the case of & long transfer, the realistic optimum solution becomes indefinite,
and is given by Egs. (40,41). The corresponding Ox-locus is then to follow
the arc of the hodograph circle but remain inside it as discussed in Section
4.3, item (7). Formulas for the minimum velocity-increment for both the defi-
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nite and indefinite optimums as specialized to the circular case are sum-
marized in Teble 8, and the variation of the minimum velocity-increment under
various configurations of the base triangle is shown in Fig. 22.

In view of the foregoing analysis it is of importence to safeguard the
occurrence of an unrealistic optimum in the case of a long transfer. An
analytical criterion for the occurrence of a critical optimum (including both
the realistic and unrealistic cases) has been derived by Battin (4) in an ap-
proximate form. An exact form of such a criterion can be obtained here by
applying the circular condition (70a) or (70b) to the general critical con-
dition (28), which, after some trigonometric simplifications, reduces to

2
by 2y 1,2 v 2 1
- cos“ ¥ - W(—= Y+ (1 +—=) =0
cos” = - ¢ > (n*) cos 2+ ( n*) (75)

where V¥ is the vertex angle of the base triangle, and is related to the range
angle ¥ by

¥y =

WV for short transfer
{ (76)

2x-y  for long transfer

and n*, the critical distance ratio, is the value of n which satisfies the
critical criterion (75) for a given Y. For a fixed initial terminal Qy,

Eq. (75) defines for the final terminal Qo in the physical plane a boundary

on which the optimum transfer trajectory given by Eq. (10'-R) would be
parabolic. Such a boundary is shown in Fig. 23. It i1s the critical boundary
for a short transfer, but an unrealistic barrier for a long transfer. For
convenience the configuration of the base triangle will be called sub-critical,
critical, or super-critical according as Qo 1s below, on, or above this boundary.
As Fig. 23 shows, along this boundary n* extends to infinity at ¢ = O,n, and

it has a minimum value of approximately 3.845 at ¥ = 71°. Such a boundary line
has also been depicted in Fig. 22. The lAv*l-curve at a constant ¥, as Fig.

22 shows, holds for both the short transfer and the long transfer before it
reaches the critical line, that is, the curve for a range angle ¥ also holds
for the range angle 2n-Vy. However, this breaks down after it crosses the
critical line, and the lAv*l—curve splits into two branches, one for the

short transfer, and one for the long transfer with the latter branch above

the former one. Thus the region enclosed by the critical boundary is the
region of definite hyperbolic optimum for short transfers, but of indefinite
elliptic optimum for long transfers.
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6.2 SOME OBSERVATIONS

Based on the foregoing analysis and the graphs of Figs. 22 and 23, a
number of observations may now be made as summarized below:

(1) There exist definite configurations of the base triangle for which the
optimum trajectory is parabolic, which will be realistic for the short transfer,
but unrealistic for the long transfer. Such critical configurations are de-
fined by Eq. (75).

(2) For a base triangle of sub-critical configuration, the optimum trajectory
is elliptic, and the minimum velocity-increment is the same whether the trans-
fer is short or long. (see Fig. 22)

(3) For a base triangle of critical or super-critical configuration the realis-
tic optimum will be definite, parsbolic or hyperbolic for the short transfer,
and it will be indefinite, elliptic but nearly parabolic for the long transfer.
(see Fig. 22) The minimum velocity-increment is higher in the latter case.

(4) For each vertex angle ¥ between O and n, there is a minimum distance ratio,
n*, below which no critical optimum, realistic or unrealistic, may occur (see
Fig. 23). An overall minimum n* = 3.845 exists, below which no such a critical
optimum may occur for whatever the vertex angle ¥. In the solar system this dis-
tance ratio corresponds to a transfer from the earth orbit to somewhere between
the orbits of Mars and Jupiter.

(5) No critical optimum, realistic or unrealistic, may arise for either a
vertical transfer or an 180° transfer, through any finite distance ratio since
n*>c in both cases.

(6) For a given distance ratio n > n¥*, there are two critical values of
beyond which no critical optimum, realistic or unrealistic, may occur (see
Figs. 22, 23). Thus the two values of ¥ define a range of for the definite
hyperbolic optimums for the short transfers or the indefinite elliptic optimums
for the long transfers, both will be referred to as the critical range for
brevity. Definite parabolic optimum exists at the end points in the case of
the short transfers of course. In the solar system such a critical range exists
in the interplanetary transfer from the earth orbit to that of Jupiter and
beyond. Values of these critical angles together with some numerical data
pertaining to the solar system as obtained from the present analysis are

shown in Table 9. These angles related to Jupiter, Saturn, and Neptune con-
firm the previous results of Battin (4).

(7) At a constant distance ratio n, the closer the range angle to 180° the
smaller the minimum velocity-increment required (see Fig. 22). Thus, from
the viewpoint of fuel economy, transfer close to 180° range is desirsable.
In the limiting case of 180° transfer, the optimum trajectory will be an
Hohmann ellipse.
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(8) At 8 constant renge angle, the closer the values of r) and Ty to each
other, the smaller the minimum velocity-increment required. The overall
minimum IAV*I is zero at 1y = rp for all values of the range angle, since

in this case the initial orbit passes through the final terminal point. (Note
in Fig. 22, the [Av*l-curve for ¢ = O is discontinuous at n = 1 with an
isolated point at n = 1, and IAV*' = 0 in accordance with Egs. (73a-1).)

(9) As the distance ratio n increases indefinitely at a constant range angle,
the minimum velocity-increment increases and approaches a finite limit de-.
pending on the range angle according to Egs. (73a,b-4). Similarly, when n de-
creases indefinitely, the minimum velocity-increment also increases; however,
it approaches the value of unity as its limit regardless of the range angle.
(see Eq. T3a8-3 and Fig. 22)

(10) There exists an overall upper limit for the minimum velocity-increment
for all possible configurations of the base triangle. It is given by

| avy | — V3 or |av, | =V3 Vaq (77)

¥ =0, n->o upper limit
according to Eq. (73b-4). Thus, in principle, any propulsion device capable

of producing a velocity-increment of 29.8v3 = 51.6 Km/sec will be enough for
the transfer from the earth orbit (orbital speed = 29.8 Km/sec) to any terminal
point in the solar system.

All the foregoing observations are made on the assumption of the two-

dimensional transfer from an initial circular orbit. The three-dimensional
effects will be presented in the chapter that follow.
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7. THE THREE-DIMENSIONAL EFFECTS ON THE OPTIMUM TRANSFER

7.1 THE THREE-DIMENSIONAL ANALYSIS

When the initial velocity vector is not coplanar with the base triangle,
the problem is three-dimensional. In such a case the in-plane and out-of-
plane components of the velocities are to be considered. Thus Eq. (1) may
be written.

- > > =
W= T - (T + ) (78)
where
VOp = VO cos &
(79)
VOn = VO sin @

and ® is the inclination angle of the initial velocity VO with the plane of
the base triangle. The geometry of the transfer is shown in Fig. 2k4.

>/ \ 2
Y3 O\ (Voln
ey, y
2w
Vi
14
Transfer Plane 0

Fig. 24 Geometry of the three-dimensional transfer.
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—>n
In view of the fact that the departure velocity V; along the transfer tra-
jectory must be in the plane of the base triangle, Eq. (78) may be written

—> =
AV = AV, - Voo (78a)

o
where AVp is the in-plane velocity-increment, defined by

—> > >

W, o= V- VG (80)

The magnitude of the total velocity-increment is then given by

lAvl2 = lAvpl2 + Von2 (81)

—=>
For a given.initial velocity vector and a given base triangle, V,, is constant.
Thus the optimization of [AV| emountsto the optimization of [AVp|, and the
problem becomes two-dimensional. Consequently we have

2 2 2
lavy |7 = eVl ™ + v, (82)

where lAVp*l is given by the tqg;dimensional optimum sg&gﬁion corresponding

to the initial velocity vector Vop' Thus by replacing V5 by VO cos @ we obtain
AV_y from the previous two-dimensional analysis, and the three-dimensional
solution follows from Egs. (78a and 82). Such a reduction of the three-di-
mensional case to the two-dimensional case has been pointed out by Stark and
some numerical solutions are found in (6). Thus no elaborate analysis is
necessary here. However, in the light of the present analysis a few remarks

on the three-dimensional effects will be given below.

7.2 THE THREE-DIMENSIONAL EFFECTS

First, the effect of tilting the initial velocity vector from the plane
of the base triangle may be investigated by using Eq. (82). Let IAV*IBD and
lAV*IQD be the minimum velocity-increments for the three-dimensional and two-
dimensional problems respectively, both referring to the same base triangle
and the same initial speed and path angle (Vo, ¢o) except ® = O in the latter
case. When w is small, we have Vop =V, IAVp*l = |AV*12D and Eq. (82) may be
written

[ovelsy = Vvl v,,0 (83)

Tl



from which we see that the presence of the out-of-plane component Von is of
importance when the term IAV*|2D is comparatively small. Thus we may sasy that,
the smaller the two-dimensional solution, the more significant the three-di-
mensional effect. In the case of the transfer from an initial circuler orbit,
such is the situation in the neighborhood of n = 1. That is, the closer the
distances r, and r, are to each other, the more gignificant is the effect of
the inclination between the orbital plane and the plane of the base triengle.
As Fig. 25a shows, the maximum deviation of IAV*I D from IAV*IQD occurs at

n =1, and 1s the same regardless of the range angle. It is in fact equal

to the magnitude of the out-of-plane component of the initial velocity. The
same reasoning accounts for the fact that at a constant distance ratio n the
deviation of |AV*|5D from IAV*IQD increases when the range angle tends toward
180° for either the long transfer or the short transfer as shown in Fig. 25a,
since the corresponding two-dimensional velocity-increment tends to decrease
according to Fig. 22.

Second, it is worth to note that in the case of 0° or 180° transfer, the
base triangle defines no plane since it has degenerated into & line segment.
Consequently, the optimum transfer plane is the one defined by the initisl
velocity vector and this line segment, and the case is always two-dimensioneal.
Thus it seems curious that, while the three-dimensional effect tends to become
more significant as | approaches 180°, as shown in the preceeding paragraph,
it can be completely eliminated in the limiting case of ¥ = 180°.

Third, the reduction of V, to V, cos®w by tilting the initial velocity
vector may effect the region in the hodograph plane where the point QO lies,
and thereby effect the type of the optimum transfer trajectory. Thus it is
quite possible that an initial velocity vector, which calls for an hyperbolic
optimum when it lies in the plane of the base triangle, may call for an elliptic
optimum instead when it is tilted up, though at a greater expense of the initial
impulse. In general, the critical boundary and the unrealistic barrier both
will be effected. In the case of the transfer from & circular orbit, an examina-
tion of the geometry of the hodograph shows that the effect of increasing the
inclination angle w tends to increase the critical distance ratio n* for s
fixed ¥ between O and n (see Fig. 25b), and for a fixed n > n* it tends to
shorten the critical range defined by the two criticel angles. However, it
is to be noted that such effects are not present in the case of 0° or 180°
transfer, even though the transfer plane is taken to be different from the
optimum one mentioned in the preceeding paragraph, since the critical distance
ratio n* tends to infinity in both cases.
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APPENDIX A

GLOSSARY OF TERMS FOR TWO-TERMINAL TRAJECTORIEST
(see Fig. A-1)

Base Triangle

The triangle formed by the initial terminal (Q1), the final terminal (Q)
and the center of the gravity field (0).

Normal and Complementary Groups

A two-terminal trajectory is said to be of the normal group or the com-
plementary group according as its range angle is smaller or larger than lBO}
corresponding to the so-called short and long transfers respectively.

High and Low Classes

A two-terminal trajectory is said to be of the high class or the low class
according as its direction is inclined above or below the local minimum energy
direction et the initial terminal.

Conjugate Trajectories

Two trajectories are said to be conjugate to each other if they have the
same initiael and final terminals, the same range angle, and the same speed at
the initial terminal.

Complementary Trajectories

Two trajectories are said to be complementary to each other if they have
the same initial and final terminals, the same initial speed and going in
opposite directions around the field center.

Complementary-Conjugate Trajectories

Two trajectories are seid to be complementary-conjugate to each other if
one is the complementary of the conjugate of the other.

fFor details see Section II, Ref. (9), in which these terms were introduced and
discussed.
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Realistic and Unrealistic Trajectories

A two-terminal trajectory is said to be realistic if every point on the
trajectory is at a finite distance from the field center; otherwise 1t is said
to be unrealistic.

Forbidden Region for the Direction of Departure

For a fixed base triangle the forbidden region for the direction of de-
parture is the angular region for such a direction along which no trajectory
from the initial terminal Q) can reach the final terminal Qp whatever the de-
parture speed. There are two such regions for the Keplerian trajectories,
according to Ref. (9),as follows:

The Outer Forbidden Region: +the angular region included between the two
directions of the conjugate pair of parabolic trajectories from Q) to Qo.

The Inner Forbidden Region: +the angular region included between the two
sides, 0Q; and Q;Qy of the base triangle.

1fSimilar regions exist for the direction of approach,, see Ref. (3), pp. 11-13.
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@ Min. Energy Direction

unrealistic

realistic

Min. Energy Direction

I Normal, low [, IO , ,
o Conjugate pair
(orI,I)
I Normal, high
I, 1'
.| Complementary pair
(orII, I )
I' Complementary, high
I,o Complementary-
] . N t .
I Complementary, low (or I' 1) Conjugate pair
) Outer forbidden region 4 Inner forbidden region
| for departure direction 2 for departure direction

Fig. A-1 The two-terminal trajectories.
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APPENDIX B

THE INTERSECTING PROPERTY OF THE NORMALS OF A HYPERBOIA

Statement of the Property

Two normal lines at two distinct points on a hyperbola in the
same quadrant will always intersect in the adjacent quadrant on the oppo-
site side of the transversal axis of the hyperbola.

An Analytical Proof

Let the equation of the hyperbola be given by the parametric
equations

B tan w

X
(B-1)
A sec w

y

Consider two normal lines at the points Ql_Onl) and Q, sz) on the hy-
perbola, and let their point of intersection be P(xp,yp). For definite-

ness let us assume
o«%<%<g (B-2)

so that Q; and Q2 are distinct and in the same quadrant I. Then we
are required to show that the point P is in the quadrant II (see Figure
B-1.)

Now the equation of the normal line at any point Q(w) on the

hyperbola may be written

Bxsecw+ Ay tanw = C%an o sec » (B-3)

where

@ = A2 4+ B2 (B-4)
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Normals

HYPERBOLA

- X

o)

Fig. B-1 Intersection of two normal lines to a hyperbola.

Thus for the point P we have

= 2 ;
B xpsec Wy + A yp tan w, = C- tan W, sec w,
, (®-5)
B xpsec wy + A Yp tan w, = C” tan w, sec wy
Solving for xp and yp we find
2 cos Wp - COS W
X = o tan w, tan w 2 - 1
D B 1 2 sin w, - sin W
2 1
(B-6)
y = C2 tan wy - tan w;
p A sin wp - sin wp
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from which we conclude under the assumption (B-2), that
x_ <0, y.> O (B-7)

D Y

In other words, P is in the quadrant II.
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