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ABSTRACT

An analytic treatment of the free-flight trajectories between two terminal
points in space by using the hodograph method is presented. A geheral case
is assumed in which the range angle and the terminal distances from the field
center are both arbitrary, and all three possible types of the Keplerian tra-
jectories, the elliptic, the parabolic, and the hyperbolic, are considered.

A single representation of the infinitely many such trajectories in a dimen-
sionless hodograph plane is introduced, and a general survey of such trajec-
tory system as seen from the hodograph is made. By using the hodograph geom-
etry the characteristics of the conjugate trajectories are explored; and in
line with this the minimum energy trajectory is briefly reviewed. Besides,
the existence of a least eccentric trajectory for given terminal points is
proved, and its characteristics briefly analyzed. ©Several sets of general
formulas for the principal elements of such terminal-constrained trajectories
are also presented, including some explicit expressions for the terminal path
angles. No particular trajectory problems are discussed; as a general anal-
ysis, it is intended to provide some basis for the analytic treatment of such
problems, especially those of trajectory optimization and selection in free-
flight.
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NOMENCLATURE
semimajor axis, elliptic trajectory; or semitransverse axis, hyper-
bolic trajectory

semiminor axis, elliptic trajectory; or semiconjugate axis, hyperbolic
trajectory

focus-to-center distance, conic orbit

base altitude, the perpendicular distance from the field center to the
chord

gravitational acceleration
angular momentum per unit mass
orbital energy per unit mass
chord length

gravitating mass

L/ry

rg/rl

radial distance

semilatus rectum

semi-perimeter of the base triangle
time

speed

velocity vector

rectangular coordinates
rectangular velocity coordinates

dimensionless velocity coordinates =(b/é>ﬁ,<ﬁ/@)§
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NOMENCIATURE (Continued)
half-angle between the asymptotes, hyperbolic orbit, defined in
Appendix A
inclination of the line of origins, defined in Figure 1b
eccentricity of the trajectory
parameters, defined by Eq. (32)
true anomaly
parameter, defined by Eq. (52)
speed parameter = V/V¥
strength of the gravity field = Mg
Lamberts parameters, elliptic trajectory, defined in Appendix B
Lamberts parameters, hyperbolic trajectory, defined in Appendix B
period of eliiptic motion
auxiliary angle, defined in Figures 5-1,2,3
path angle with respect to local horizon

base angle, the interior angle of the base triangle at the terminal
point

vertex angle, the interior angle of the base triangle at the fleld
center, or the range angle of the normal trajectory

range angle of the complementary trajectory = 2n-V¥

auxiliary angle, defined by Eq. (9) (see also Fig. 3)

Subscripts

1

2

initial terminal

final terminal
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NOMENCLATURE (Concluded)

low trajectory

high trajectory

apocenter

pericenter

elliptic

hypexbolic

upper limit

lower limit

chordel and radial components
transversal and radial components
trajectory of infinite speed

complementary trajectory

* minimum energy trajectory

Superscript

&

escape or parabolic






I. INTRODUCTION

In recent years the problems of orbital transfer have been under exten-
sive study; in the meantime, following the emergence of long-range missiles,
ballistic analysis has extended from artillery trajectories to space trajec-
tories. In essence the free-flight trajectories being dealt with in both
classes of problems are the same, all belong to the so-called Keplerian conics.
In ballistic analysis, usually the elliptic trajectories are the focus of
attention, and most analyses emphasize the symmetrical case, that is, the
two terminal points are assumed to be equi-distant from the center of the
gravity field, leaving the class of parabolic or hyperbolic trajectories, and
the unsymmetrical case either ignored or barely touched. In orbital trans-
fer problems such as those in interplanetary flight, more varieties in the
type of trajectory and terminal conditions are encountered; however, most
studies ‘were in the area of optimization rather than in the characteristics
of the possible transfer trajectories themselves. Furthermore, despite the
fact that the mechanics of Keplerian motion has been well known and amenable
to complete analysis, characteristics of Keplerian trajectories, especially
those under terminal constraints, have not been fully explored; and the ex-
isting trajectory formulas are not all adequate.

In view of this situation a unified treatment of the free-flight trajec-
tories of all three types of the Keplerian conics between two arbitrary ter-
minal points in space is presented so as to provide a basis for further anal-
ysis and selection of particular trajectories in either class of problems, the
ballistic missile flight or the orbital transfer, or any relevant ones in
which such trajectories are involved (such as satellite rendezvous and bal-
listic return). As a basic analysis, whether these terminal points are
situated on given orbits or not is immaterial.

Throughout this paper instead of using the Wheelon's hit equationu as
usually employed, the treatment is made mainly by the hodograph method, which
is not only suitable for such unified treatment, but also helps to bring out
many essential features of such system of co-terminal trajectories by by-
passing many mathematical complexities through the geometrical approach in
the hodograph plane. The results of such analysis also lead to several sets
of general formulas for the elements of such trajectories which might supple-
ment the existing ones. Such hodograph method is based on the author's pre-
vious work contained mainly in Ref. 8, some essential materials of which are
condensed in Appendix A for reference.



IT. HODOGRAPHIC REPRESENTATION AND GENERAL SURVEY OF
THE SYSTEM OF CO-TERMINAL TRAJECTORIES

GENERAL CONSIDERATIONS

In a central force field all free-flight trajectories passing through two
fixed terminal points, Qi and Q2 will lie in the same plane determined by the
three points Qi, Qz, and the field center 0. The triangle 0Q:Qz will be called
the base triangle; the base QiQz, the .chord;and the interior angle at 0, the
vertex angle. The initial velocity vector to achieve such trajectory will
necessarily be coplanar with the base triangle, while either its magnitude or
its direction in the trajectory plane may be arbitrary. Thus in a given force
field the geometry of the base triangle together with the initial speed or the
initial path angle completely determine the trajectory. If the field is New-
tonian, then the trajectory is known as Keplerian, which will be elliptic,
parabolic, or hyperbolic according as the initial speed parameter A; is smaller
than, equal to, or greater than unity, where by definition,

v
N o= g; = . (1)

A typical base triangle and several such Keplerian trajectories are depicted
in Figure 1(a). The geometry of such trajectory system in the physical plane
has been analyzed to some detall by Battin.” The purpose of this section is
to represent such system in the hodograph plane so as to form the basis for
subsequent analysis.

It is to be noted that, with two given terminals, a vehicle starting
from one terminal may reach the other in either direction around the field
center. Thus the system of co-terminal traJjectories may be divided into two
groups: the one with a common range angle equal to the vertex angle ¥ which
is less than n, and the other with a common range angle V¥' = 2x~¥ which is
greater than n. The first group is usually the one of interest in most prac-
tical problems, and will be called the normal group, while the second, its
complement. In fact each member of one group will find its complement in the
other, the two forming a complete Keplerian conic. However, if the trajec-
tory is parabolic or hyperbolic, then its complement, being open between the
terminals, can hardly be regarded as a trajectory in the ordinary sense, and
will be referred to as an unrealistic trajectory for convenience. In the
following the main analysis will be concerned with the trajectory system of
the normal group with ¥ < n. However, as we will see, the informations so
obtained may be easily adapted to its complementary group if needed. The
boundary case of ¥ = n will be treated separately later.
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THE HODOGRAPHIC REPRESENTATION

Based on the principle of hodographic representation* it is clear that
all such Keplerian conics are represented in the dimensionless Qf,/ -plane by
a unit circle, and the images of all the co-terminal trajectories of a common
range angle ¥ are given by;gpe same arc of this circle, subtending a central
angle ¥ between the radii CQ; and CQg which are 90° in advance (in the direc-
tion of motion) to the radius vectors 5@1, 552 in the physical plane re-
spectively (Figure 1(b)); the points Q1 and Q2 on the circle are therefore
the images of the terminal points. To complete the construction of such hodo-
graph one merely needs to locate the origin of the hodograph for each partic-
ular trajectory under consideration.

At first sight it seems there might be a wide scattering of such possi-
ble origins in the hodograph plane corresponding to the infinitely many possi-
ble Keplerian trajectories leading from Qi to Qz through the same range angle
Y. However, a careful analysis shows that the distribution of such origins
is linear. The proof is as follows:

With reference to Figure 2 and the principles given in Ref. 8, the
hodograph origin of the trajectory with an arbitrary initial speed parameter
N1, and the corresponding final speed parameter kg w1ll lie on both the auxil-
iary circles (called speed c1rc1es) with radii kl and kg, tangent internally
to the unit hodograph circle at Q; and Qg respectively and therefore at their
intersection Oror O, the two speed parameters A3 and Az being connected by

2
1-N\ r
=22 = 2R =g (2)
l-Kl I

through the energy integral. Now draw the lines tangent to the hodograph
circle at Q; and Q2 respectively, intersecting at T. Then the three lines
01011, TQ:1 and TQez are the radical axes of the two speed circles and the hodo-
graph circle taken in pairs, therefore, they are concurrent.** That is, the
line O10TT also passes through the point T. Furthermore, from geometry the
line 01011 is perpendicular to the line of centers G;Gz=. But, as shown in
Ref. 8 +the line G1Go is perpendicular to the chordQ;Qz in the physical plane
since the triangles CG1Ge (hodograph plane) and 0Q;Qz (physical plane) are
similar. Consequently O7011 is parallel to the chord Q;Qz. With terminals
Q1 and Q2 given, T is a fixed point, and the chord Q;Qz is in a fixed direc-
tion, thus the line through 01077 is a fixed straight line, irrespective of
the initial speed given by Ai. In other words, the intersection of any pair
of speed circles, and therefore all the possible hodograph origins will lie

*See Appendix A and Ref. 8 Section V and IX-A, pp. 892-894, 900-90k.
**See any standard text on Higher Geometry, e.g. Ref. 2.
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on this same line which will be called the line of origins. This completes
the proof. It evidently applies to either groups.

Based on the foregoing analysis the hodograph images of all co-terminal
trajectories of one group may be represented in the dimensionless hodograph
plane by a unit circular arc together with the straight line which passes
through the intersection of the tangents to the unit circle at Q; and Qg, and
is parallel to the chord QiQz in the physical plane, as shown in Figure 1(b).
Each particular point on this line corresponds to a particular trajectory in
the physical plane, and the selection of an optimum trajectory to suit some
specific purpose is no more than the selection of a certain particular point
on this line. Thus in comparison with the complexity of the trajectory geom-
etry in the physical plane the situation in the hodograph plane is far sim-
pler.

It is worth to note that, the hodograph for the complementary group may
be obtained by turning that for the normal group through 180°. Thus informa-
.tions concerning the former may be obtained directly from the hodograph for
the latter, and a separate construction for the complementary group is often
unnecessary. Besides, as the geometry of the hodograph shows, the angles be-
tween the line of origins and the two tangents TQ; and TQez are equal to the
base angles@; and @ 2 of the base triangle at Qi and Qo respectively, and
the inclination of the line of origins with the centerline CI is given by

1
5 = > (P2- 1) (3)
> * < >
whence © z 0 according as %21 s @o Or T3 z ra.

A GENERAL SURVEY

Based on the foregoing hodographic representation we may now make a gen-
eral survey on the nature of the system of the co-terminal Keplerian trajec-
tories associated with an arbitrary base triangle. We will first consider
the normal group. :

As seen from the hodograph construction, for a given base triangle,
there is an initial speed for which the speed circle will tangent to the line
of origins. This is the minimum speed below which no such terminal-to-terminal
trajectory is possible. The trajectory corresponding tc the minimum speed is
known as the minimum energy trajectory; its hodograph origin is given by the
point of tangency Oy.

When the initial speed exceeds its minimum value, the speed circle will
meet the line of origins in two distinct points such as Or and Op7 in Figure 2,



giving two distinct trajectories corresponding to the same initial speed.
Such trajectories will be referred to as the conjugate trajectories

and the corresponding origins, O1 and Oy, the conjugate origins. As the
hodograph shows, conjugate trajectories have different initial path angles:
the one with the low path angle as that associated with O7 is known as the
low trajectory; and the one with the high path angle as that associated with
Ory, the high trajectory. For brevity the corresponding origins will also be
called low and high accordingly.

With reference to Figure 2, when the initial speed parameter is less

than unity, the origin is within the'hodograph circle, and the trajectory

is elliptic. As the initial speed increases from its minimum value, the con-
Jugate origins O and Oy move toward the points Dy and Dy respectively. At
the points Dy and Dy the speed parameter is 1, both trajectories become para-
bolic. However, it is to be noted that, of this conjugate parabolic pair the
high one with its hodograph origin at Dryr will have its point at infinity
(which has Dy as its hodograph image) interposed between the terminals Qi

and Qz in the assumed direction of motion, indicating that such a trajectory
is physically unrealistic. This is in fact the limiting trajectory which the
high elliptic trajectories approach when the initial speed appraches that of
escape. As the initial speed further increases, the conjugate origins move
from Dy and Dy outward respectively, and the trajectories become hyperbolic.
On the low traJjectory side as the origin moves outward from DI toward infinity,
the eccentricity increases without bound, the trajectory approaches the chord
line, and in the limit it degenerates into the chord QiQz. This is of course
physically impossible since it requires an infinite initial speed. On the
‘ high side, as the origin moves outward from DII toward the point T, the ec-
centricity increases toward CT as its limit, and the two asymptotes of the
trajectory hyperbola approach the radii 0Q; and 0Qz in the physical plane re-
spectively. However, just like the parabolic case, these high hyperbolic
trajectories are unrealistic since their points at infinity are interposed
between the terminal points. In the limit when the origin is at T, the tra-
jectory degenerates into the broken line segment Q20Q; implying again an in-
finite initial speed, and thus the trajectory is not only unrealistic but

also physically impossible. If the origin moves beyond T, the trajectory will
be the far branch of a hyperbola which can be realized in a central repulsion
field,* but not in a gravity field. These various situations are summarized
in Table 1.

Thus in conclusion, for a given base triangle in a Newtonian gravity field
the line of origins in the dimensionless hodograph plane starts from the point
T and extends toward infinity in the direction of the chord line (Q.Qg) in the
physical plane; and the origins of all realistic trajectories.lie in the open
interval from Dy via Dyy to infinity. Furthermore, the conjugate origins are

*See Ref. 8, Section X, pp. 908-909.



Table 1

Location of the Hodograph Origin and the Nature of the

Terminal—Constrained Trajectory Range = V < x)
O Nasectory
Between Ox and DI elliptic low trajectory, realistic
Between Ox and Dyp elliptic high trajectory, realistic
At O« elliptic minimum energy, realistic
At D parabolic low trajectory, realistic
At D17 parabolic high trajectory, unrealistic
D1 to infinity hyperbolic low trajectory, realistic
DII to T hyperbolic high trajectory, unrealistic
At infinity straight line infinite speed, physically im-
(Q1Q2) possible
At T broken line infinite speed, physically im-
(Q20Q1) possible
Beyond T hyperbolic realistic in a central repul-

sion field, but not in a
gravity field

separated by the point Ox with all the low origins situated at the right side
of Ox, and all the high origins, its left side (Figure 2); thus the points in
the intervale OxDy and OxDyy are the mutually conjugate elliptic origins;
while those in the intervals Dy to infinity, and Dy7 to T are the mutually
conjugate hyperbolic origins; and there is one and only one pair of conjugate
parabolic origins, the points D1 and DiT.

All the foregoing findings for a normal group may be easily adapted to
its complement if we note the following:

1. The complement of a high trajectory in one group is a low trajectory
in the other;



2. An elliptic trajectory in one group and its complement in the other
are both realistic; while the complement of a realistic parabolic or hyper-
bolic trajectory of one group is unrealistic in the other.

Thus by interchanging the words "high" and "low," and, when a parabolic or a
hyperbolic trajectory is concerned, interchanging the wards realistic and un-
realistic, a similar table for the complementary group may be constructed from
Table 1. TFor the benefit of later development it is also worth to note the
following additional relations between a trajectory (realistic or unrealistic)
and its complement:

3. All geometrical elements of the two are identical since they are of
the same Keplerian conic;

L. All terminal quantities which involve directions are equal in mag-
nitude but opposite in sign, e.g.

vi +‘v; = 0, gy + ¢; = 0 (L)

In the light of the foregoing analysis we see that in the physical plane
(Figure 3(a)) the elliptic trajectories of the normal group are all confined
in the infinite region (A), while the realistic hyperbolic trajectories of the
same group are all confined in the finite region (B). Similarly, elliptic
trajectories and the realistic hyperbolic trajectories of the complementary
group are all confined in the regions (A') and (B') respectively. The two
conjugate parabolas and the three sides of the base triangle form the bound-
aries of these regions as shown in Figure 3(a). Consequently, the trajec-
tories of both groups associated with a fixed base triangle all lie outside
this triangle; and the boundary of this triangle form the limiting trajec-
tories when the speed increases indefinitely.*

LIMITS OF VARIATION OF THE TRAJECTORY ELEMENTS

It is interesting to note that, of the infinitely many Keplerian trajec-
tories associated with a given base triangle there exist certain limits for
the possible variations of some of the trajectory elements. As generally
known and pointed out earlier, there is a minimum value for the initial ter-
minal speed below which no such trajectory is possible. Consequently there
are corresponding limits for the orbital energy, major axis, and the final
terminal speed respectively. An examination of the hodograph shows that there
exists also a least eccentricity which the trajectory can attain. It is given

*It can be shown that the trajectories will all lie within the base triangle
if the field is a central repulsive one.
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by the perpendicular distance CE in Figure 3(d) since the eccentricity is al-
ways equal to the origin-to-center distance in the hodograph plane (see Appendix
A). Directly from the geometry of the hodograph one finds

€min = CE = CT|sin 8| = sec%lsin%(‘?e-cfl)l (5)

which, after some trigonometric simplifications, reduces to

Emin = = (58')

where m is defined by

N1-2n cos Y+n2

B
1

I
I

Thus a circular trajectory is possible only when r; = rp and the greater the
numerical difference between the terminal distances, the greater will be the
least eccentricity, for a given chord length.

As observed earlier, when the initial speed increases indefinitely the
eccentricity of the realistic trajectories of the normal group increases with-
out bound while that of the complementary group approaches CT as limit. Thus
for such group there is an upper limit for the hyperbolic eccentricity

——

ey, = CT = sec % ' (7

which depends only on the vertex angle of the base triangle, not on the ter-
minal distances. This limiting value itself will approach infinity when V¥
approaches .

Furthermore, the hodograph shows that although the initial speed may in-
crease lndefinitely, the corresponding path angle can only vary within two
definite limits. For the normal group the upper limit is given by the angle
CQ1Dr1 which the initial path angle of the high elliptic trajectory approaches
when the initial speed approaches parabolic. From the hodograph geometry this
angle 1s found to be

11



where,

W = e0S ~ €,:., = COS (9)

The lower limit is the path angle for the straight line trajectory Qi1Qsz which
the hyperbolic trajectory approaches. Obviously it is

($)yg, = Fa-2. (10)

Consequently all possible directions of departure are confined in the angular
region (a1) as shown in Figure 3(b), with an included angle

bgr = (fadyy - (Ba)yy = = - 2 (Pare) (11)

The path angle at the final terminal is likewise limited, and all.the possible
directions of approach are confined in the angular regions (ag) in Figure 3(Db).
Similar regions exist for the complementary group. Consequently, with a
given configuration of the base triangle, there are certain forbidden regions
for the direction of departure as those marked (by) and (ci); and certain for-
bidden regions for the direction of approach as those marked (bz) and (cz2).
These limits of variation and the total included angle of each region are
listed in Table 2. It is to be noted that, as shown in the table, the regions
for possible departure for the normal and the complementary groups have equal
included angles, and it can also be verified from the hodograph that they are
symmetrically oriented with respect to the bisector of the base angle at the
initial terminal; the same is true for the regions of possible approach at

the final terminal. Furthermore, the included angle of the inner forbidden
region of departure (ci) and that of the outer forbidden region of approach
(bz) are equal respectively to the base angles at the corresponding terminals;
while the included angles of the outer forbidden region of departure (bl) and
the inner forbidden region of approach (cz) are supplementary to each other.
In view of Eq. (5) and Table 2, we may say that for a given vertex angle V,
the smaller the difference between the base angles, the larger will be the
outer forbidden region of departure and the smaller will be the inner for-
bidden region of approach. In the symmetrical case, ¥ = 2, ry = rg,

the included angle of the outer forbidden region of departure reaches its max-

imum and that of the inner forbidden reglon of approach reaches its minimum,
both equal to 90°.

12
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Finally we observe that the apsidal axes of the present system of trajec-
tories are also confined in certain regions as tabulated below (see also Fig-

ure 3(c)).

Table 3

Regions for Apsidal Axes (Positive Portions¥)

Trajectories '~ Boundary Axes Included Angle
Elliptic OXpr and OXp71 Aee = 20
Hyperbolic

Normal Group O0Xpr and OX,1 40, = g -w
Complementary Group 0) ¢ and OX e = L P - w
: ' DIT ol h 2

*Defined in Appendix A

Of the four boundary axes, 0Xpy and OXpry are the apsidal axes of the two para-
bolic trajectories, while OXw] and OXwI] are those of the limiting hyperbolic
trajectories of infinite initial speed. Their directions may be obtained di-
rectly from those of the corresponding=@;-axes in the hodograph plane. Evidently,
0X,T is perpendicular to the chord Q:Qz, and OXpII bisects the vertex angle V.

1



III. THE CHORDAL AND RADIAL COMPONENTS OF THE TERMINAL VELOCITIES

The characteristics of the co-terminal trajectories can be best analyzed by
using the chordal and radial components of the terminal velocities. As in-
troduced by Godal in Ref. 5 they axre the components in the chordal and radial
directions respectively as depicted in Figure h(a). A method of finding such
components in the hodograph will be introduced below.

As shown in Figure h(b), if O is the origin of the hodograph, then from the
proof given in Section II, TO is in the chordal direction, while by construc-
tion TQ; and TQz are in the radial directions at Q; and Qz respectively. Thus
in the Xy-plane, that is, if we take the radius of the hodograph circle as
u/h instead of unity, the hodograph gives the terminal velocities

v, = 6@1, -vé = 652 (12)

with their chordal and radial components

—

— — —
Vo1 = OT, Vg1 = TQi
from which we deduce immediately that
Ver = Voo VR = Vmp (1k)

The second relation stems from the fact that the two tangents TQ; and TQo are
equal in length. Thus along the same trajectory the chordal components of
the terminal velocities are identical in magnitude and direction, while the
radial components are equal in magnitude. Hence if we are dealing with their
magnitudes only, the subscripts 1 and 2 are unnecessary and will be dropped
hereafter.

Furthermore, the hodograph geometry shows that

- o v o_ g ¥
Vg CQ tan 5 b tan > (15)

With the angular momentum expressed as

h = Vped 6)
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where d 1s the perpendicular distance from the field center to the chord Q;Qp
(to be called the base altitude for short), Eq. (15) becomes

VoVR = g tan % (17)

Thus the product of the chordal and radial components of either terminal veloc-
ity is constant for all trajectories passing through the given terminal points.

The facts expressed in Egs. (14) and (17) which were first found by Godal5
in his analysis in the physical plane, follow immediately from the present
hodograph construction. These simple relations will be useful in the analyses
that follow.

17



IV. CHARACTERISTICS OF THE CONJUGATE TRAJECTORIES

By definition, conjugate trajectories are those having the same initial
and final terminal points, same initial speed, and of the same group. (This
implies that they have the same range angle.) The proof of the existence of
the line of origins has already revealed the existence of a pair of conjugate
trajectories for a given base triangle and an arbitrary initial speed (>V;),
and lends itself a method of constructing such a conjugate pair in the hodo-
graph plane by simply drawing the speed circle of radius \;2 according to the
given speed and finding its intersections with the line of origins, which are
then the conjugate origins. With the origins thus determined the elements
of each of the conjugate pair may then be found in the usual manner accord-
ing to the correlation tables in Ref. 8, or Appendix A. The general geometry
of such a hodograph is shown in Figure 2; and a typical conjugate pair of
each type of the Keplerian trajectories of a normal group and their hodograph
images are shown in Figures 5-1, 2, and 3.

Based on such hodographic representation we may now proceed to examine
some of the essential features of the conjugate trajectories. With reference
to Figure 2 the geometry of the hodograph gives

TO7-T0rp = TQy-TQz (18)

However, in a dimensionless hodograph we have by definition

hy h
— I — IT
TOr = M_VCI, TOIr = T VeI
(19)
h h
— I — II
TQ1 = — VRI, TQz = — VRII
i b
and furthermore, from the hodograph geometry,
T - Me - tan (20)

Substituting Eqs. (19) and (20) into (18) and making use of Eq. (16) yields

: _ : S T
Ver'Verr = VRr'Vrir = ; ten g (21)
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Thus for fixed terminal points the product of the conjugate chordal components
of the terminal velocity and that of the conjugate radial components are iden-
tical, both equal to the same constant, determined by the geometry of the

base triangle.

Furthermore, combining Eqs. (21) and (17) gives the reciprocal relations,

\4 v

cI RII’ Vet = Verr (22)

That is, by merely interchanging the chordal and radial components of the
velocity at either terminal we may change the trajectory to its conjugate.

Next, since the angular momentum is directly proportional to the terminal

chordal component, it follows immediately from Eqs. (21) and (16) that the
conjugate angular momenta are related by

hy-hrr = pd tan}lgf' (23)

Furthermore, as the latus rectum of the trajectory conic is determined by the
angular momentum according to

2
T = %— (2k)
Eq. (23) leads to
= = 42 2 ¥
r{Uroy d= tan > (25)

The above equations show that in a given gravity field the product of
each pair of the conjugate elements, VC, VR, h, and T, is a constant, depending
on the geometry of the base triangle, but independent of the initial ‘speed, and
hence the choice of trajectory. In the case of the product of latus recta it
is also independent of the field strength p. Furthermore, as these products
involve no other geometrical parameters than ¥ and d, base triangles of dif-
ferent configurations will have the same values of these conjugate products
as long as they have the same vertex angle and the same base altitude.

Fihally as shown in Figures 5 the hodograph gives the conjugate path angles
at the initial terminal Q; for either type of the trajectory,

g1 = £LQ:07, $111 = £CQ107T (26)
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Based on the sign convention for the angular measurement of ¢ and. the geometry
of the hodograph (Figure 5-1) it is seen that, for an elliptic trajectory,

££Q;071 (£CG1G2 - £07G1G2)

N |~

£CQ107171 (£CG1Go +LOIIG1G2)

By the similarity of the traingles CGiGz in the hodograph plane and 0Q;Qs in

the physical plane, the angle CG,Gz may be identified as the base angle @;

and by hodograph construction the angles O1GiGz and O71GiG2 are equal in mag-
nitude, denoted by ¢,. Thus the foregoing relations may be written as

1
g11 = > (#1-01)
(27)
1
$i1T = 5 (#1+01)
from which we deduce immediately
g+ g1y = £ 2 (28-1)
Evidently, similar relation holds at the final terminal Qz, that is
o1 + f211 = # 2 (28-2)

An examination of the hodograph geometry for the hyperbolic case (Figure
5-2) shows that Eq. (27) also holds if we define ®; to be n - LDIGng. Both
definitions for ®; become identical for the parabolic case (Figure 5-3) in
which the points G; and Gz coincide at C; (the center of the hodograph circle),
and the limiting direction of G1Gz is given by the line through C and perpen-
dicular to the line of origins. Consequently Egs. (28) are also valid for the
hyperbolic and parabolic cases. Thus in conclusion, the algebraic sum of the
conjugate path angles at either terminal is equal to the vertex angle of the
base triangle at that terminal. Since for fixed terminal points, 1 and & »
are constants, we may say that the algebraic sum of the conjugate path angles
at either terminal is constant, independent of the initial speed, hence the
choice of trajectory. This conclusion has been previously established in the
author's earlier work! for the symmetric, elliptic case, the present analysis
shows that it carries over to the general case not necessarily symmetric, and
covering all three types of the Keplerian trajectories even though the high
trajectory is not realistic in the hyperbolic or parabolic case.
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In addition to the conjugate relations deduced so far, it is well known
that the conjugate trajectories, being of the same initial speed always have
the same orbital energy, same magnitude of the major-axis, and the same speed

at the final terminal, that is
kI = kI_I, ay = arg, V2I = VZII (29)

Egs. (21) to (23), (25), (28) and (29) constitute the essential relations be-
tween the conjugate trajectories.

With the previous understanding outlined in Section II all conjugate re-
lations in this section developed for a normal group hold for its complement
except proper changes of signs are needed in the formulas involving path angles

according to Eq. (L).
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V. THE PRINCIPAL ELEMENTS OF THE CONJUGATE TRAJECTORIES

In ballistic missile problems or problems of interplanetary flight it is
usually desirable to determine the trajectory elements for an arbitrary initisal
speed V) when the range angle ¥ and the terminal distances r; and rz are per-
scribed, that is when the base triangle is given. The hodograph construction
described in Section III has already provided a simple graphical means for the
determination of such elements. If analytical expressions are sought, we may
easily proceed from the geometry of the hodograph.

A simple way for such derivation is again to start from the chordal and
radial components of the terminal velocity. Iet us first consider the trajec-
tories of the normsl group. As the hodograph shows (Figure L), for a given
initial speed V; these two components are related by

2 2 2

g = Vi + 2V Vp cos 21 (30)

Combining it with the constant product relation (17) yields the pair of solu-
tions

Vo = l[;/& + Ly tan L1 c052 £ ;\/Vl2 - L tan ¥ &ine jZlJ (31-1)
2 d 2 2 d 2 2
Vg = [/V12+ i tan > cos Zl- f —J‘—L tan i sin® %] (31-2)

where the upper sign corresponds to the high trajectory of the conjugate pair
and the lower; sign, the low trajectory. (This double-sign convention will be
followed through in all the later development.)

With the%e‘formulas as vasis, other trajectory elements follow immediately
from the general orbital relations. For convenience se set

2 C;
£ = \/Ql + by tan ¥ cos “
, d 2 2

(32)

X = \/Vl2 - by tan % sin2 igl



and write

Ve = % (¢F) (33)
It then follows that
d

h = Vcd = E (§¢X) (34)
ey = & = S (thy) (35)

- ra Iy

Vg1 a
cos ¢1 = . 2r.Vs (&) (36)

- 2 32 .2

ro= o= (6K (37)

ry 21T

—1l/2 - 1/2
€ = [1-2(1-K12) I‘] = [} - & (l'Klz)(Q;X)é] (28)
J

and so on. By using the trigonomeiric relations among the geometrical elements
of the base triangle, the trajectory elements given by the foregoing formulas
may all be expressed in terms of the three independent elements of the base tri-
angle, ¥, (1, and ri, together with the initial speed. The results are sum-
marized in column 1, Table 4. For convenience, all speeds have been expressed
in the dimensionless form of speed parameters. The transition from the present
set of independent variables to the more usuval combination: V¥, n, rj, and A\

is straightforward though tedious. To avoid long, cumbersome expressions, a re-
dundant variable m defined by Eq. (6) is introduced, and the results are given
in column 2, Table 4.

It is to be noted that, since Egs. (17) and (30) on which the present
derivation is based, are independent of the type of the trajectory, so are
all the formulas shown in Table 4. Finally in line with the observations
in Section II although the formulas here stand for all three types of the
Keplerian trajectory, they may or may not be realistic (see footnote, Table

b).
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Table L4

Formulas for the Principal Elemehts of the Conjugate Trajectories

Qmje Angle =<

_ Qanje Aryle = IJr

II'I '/‘c"m OF ‘P,cp,LlL,and A,

In _4erms of W,m,n,nr,and A,

Inibial Terminal
SFeed Rraneter

Chardal e 5‘[\/1344,,, T eAs F A —fng 4.,,4,.-] * [\/;\‘+ empostiloer F \OF-mince¥ =l 2@ ] oo
Y Y Y o I Y Y v § [V eone¥iiody 2 |7 - migpedioa y | o0
Tansverse Aor|  HV X nFAE F VAo Tk | TR Ry SR Vprs ey =
Rodial | SRVRFF AR & ot AT i R = oy o

Inthal Rith Angle. %

1[0+ cos'(Frhnd sing, — cose]

= cos'{ P N HE 0 Tt D FY it 4,,,@}

— -3
‘,‘z‘[U’S" i=necos | 5t B l+(l’n—*126;5¢’yf 3)]

= cos {J.( Sln‘PHzi_f m-nadl’-l-l ,V_’ :;:VAz

'secfl’_]}

Ahgu/ar' Momaﬂlum A

VEE: Srp [V XL o % ¥V A nThen % |

W‘/%" T"’, sn‘P[‘V A2+ %_lﬂﬂ*@g F V 2% m+r;'anos'l’—l se3 % ]

1 , 2unh,
n+i

Orbrfal Energy  k £ (%)) L (27-) A (X2-1)
Semi-mayo R R S 2o
(OrSe':n»-anverse. Axs) 2)1-2z| zli-a7l 2122

Serilatus Rechum &

n.sifp [+ tanL ek T Y A+ 2AtorectgFn L |

(B sin¥[ Apiznecs® 2y VESES "'—"—f,“’l)sca-‘z‘—’—ﬁ:w%]

2hh.
N+

Eccentric ~/-1 €

{l—:z( =2)sin'e A+ tany eo“m F AP+2 A 4oL aotp—tan i]}i

* .2 2 2 5
{l—zu-‘/\.‘)(,%) siap [+ et o5 0 ¢V7\.‘+27"’},,—“’“’¢aec‘%—'faﬁ%]}

dnA2—3n+1
n+1

Definrions :

hst

1= 2ncosP+n*

Note: 1.

All formulas hold for all three types of the Keplerian trajectories, elliptic, parabolic, and hyperbolic.

2. Of the double sign, the upper one refers to the high trajectory, while the lower one, the lower trajectory.
In the elliptic case, each sign is associated with a realistic trajectory; while in the hyperbolic .or para-
bolic case, only the lower sign is assoclated with a realistic trajectory.

3. Quantities pertaining to the final terminal may be obtained from the corresponding formula for the initial

terminal by replacing the subscript "1" by "2",

4. To obtain formulas for range angle y' =

and n by 1/n (m by m/n).
2rt-y. > x, interchange the upper and lower sign and replace ¢y by -gl.
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Among these principal elements of the conjugate trajectories the initial
path angle ¢1 deserves particular attention since it determines the correct
direction of departure for an arbitrary initial speed. However, formula (36)
may result in some ambiguity in finding the angle ¢1 from its cosine since ¢1
may be either positive or negative. An alternative formula may be obtained
by directly resorting to Egs. (27). Observing the triangles 0Q,Qs (physical
plane) and O G1Gz (hodograph plane) in Figure 5-1 or 5-2 and applying the co-
sine law we find

cos @1 = l-n cos V¥ (59)
m
- + - - 2
cos &; = =2 L (a 2 iig ¥ (1-227) = K%Z tan % sin &1 - cos £, (LO)

Inserting these expressions into Egqs. (26) we obtain

_ _ _ _ _ 1.2
4y = 1 cos 11-ncos ¥ , cos 1 n-1 + (1-n co: V) (1-N12) (41-a)
2 m m7\.1

= % [}Zﬁ + cos_l<gig tan % sin &, - cos ?955] (41-v)

Under the assumption O < ¥ < % we have 0 < ¢&; < 7, and O < ® < n. Consequently
both equations here give a unique value of ¢1 for each of the conjugate pair
without ambiguity. Note here that Eq. (39) is a purely trigonometric relation
of the base triangle, while with the angle ® defined in Figures 5-1, 2, and 3 for
the elliptic, hyperbolic and parabolic cases respectively, Eq. (LO) applies to
all three types of trajectories. Thus, just like Eq. (26) the present expres-
sions (4l-a, b) hold regardless of the type of the trajectory even though it

may not be realistic.

Evidently all formulas of this section may apply to the complementary
group with a change of sign for the path angle and interchange of the upper
and lower signs in the double-sign convention. The dependence of the path
angle and the trajectory eccentricity on the range angle, the distance ratio,
and the initial speed are shown graphically in Figures 1ll1-1 and 2.

Very often the maximum and minimum radial distances on the trajectory are
of interest. One should be aware of the fact that, since the trajectory is
only a part of the Keplerian conic, the two apses may or may not lie on the
trajectory, and consequently the maximum and minimum radial distances may or
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may not be given by the apocenter and pericenter distances as usually cal-
culated from

ry, = a(l+e), rp = all-€] (Le)
In the hodograph plane this is indicated by whether or not the E;-axis (the
line through O and C) will cross the arc Q;Ws, the hodograph image of the
trajectory; and this is in turn determined by the location of the hodograph
origin relative to the two key points H; and Hp, the intersections of the

line of origins with the radii 0Q; and 0Qs (or their extensions) respectively.
An examination of the hodograph will help to clarify the situation and the
criteria obtained are summarized in Table 5. Thus in a normal group it is
possible to have either the apocenter or the pericenter alone, or none of them,
but never both lying on the trajectory. In case the apocenter or the pericenter
does not lie on the trajectory, then the maximum or minimum distances, instead
of - being given by Egs. (42) will be either ry or re itself. It is to be noted
that same criteria of Table 5 may apply to a complementary group if we inter-
change the letters A and P.

Finally, the duration of terminal-to-terminal flight is usually of im-
portance in determining the actual range of a ballistic missile over a rotating
planet, and in many problems of orbital transfer or interplanetary flight.
Various expressions are available for such calculations; however, with fixed
terminal points the most convenient way is to apply Lambert's theorem.T In the
present case one needs to note whether the segment formed by a realistic tra-
jectory and the chord Q;Qz contains both foci, the attracting focus alone, the
vacant focus alone, or none of them (the vacant focus of parabola being con-
sidered at infinity). The results of such application are summarized in Appendix
B and the dependence of the time of flight on the range angle, terminal dis-
tances and the initial speed are shown graphically in Figures 11-3(a),(b) and (c).
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Table 5

Hodographic Criteria for the Occurrence of the Apses on the Trajectory (Vv < n)

(b)n=|

Line of
Origins

(c) n>I

Occurrence of Apsils
on the Trajectory

Iocatlon of the Hodograph Origin

n<31yl

n =21

n > 1

A, not P

Between DII and H,y

Between DII and C

Between Dy and Hp

P, not A

Beyond Ho

Beyond C

Beyond H,

Neither A nor P

Between H; and Ho

Between H; and Hp
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VI. ANALYSIS OF SOME PARTICULAR TRAJECTORIES

The trajectory analysis made so far has been of a general nature, a
brief analysis for some of the particular trajectories is now in order,.

THE MINIMUM ENERGY TRAJECTORY

Since the minimum energy trajectory is fairly well-known,* only a few
suplementary remarks will be sufficient.

In line with the concept of conjugate trajectories a minimum energy tra-
Jjectory may be viewed as the one conjugate to itself. By using this concept
all formulas for the minimum energy trajectory follow immediately from those
for the conjugate trajectories. For example, setting VCI = VCII = VC*’

Var = Vgrr = VR, v (21) we find

1/2
_ _ /2 _ /2 _ (b, ¥
Vex = Vre = (orVorp) = (Vgr¥gry) = Qtan 2) (43)

Thus the minimum energy trajectory is characterized by the fact that the
chordal and radial components of either terminal velocity are identical in
magnitude, both equal to the geometrical mean of any conjugate pair of either
the chordal components or the radial components, with the same { and 4.
Formula (43) is in fact self-evident from the geometry of the hodograph since
in the present case (see Figure 6) the speed circle at Qi is tangent to both
the line of origin and the line TQ; and the two tangents drawn from an ex-
terior point to a circle are necessarily equal. This simple fact enables one
to locate the optimum origin Ox in the hodograph plane for the minimum energy
trajectory by simply laying off TOx = TQ; on the line of origins.

Likewise by using the same concept we deduce

hy = (hIhII)l/2 = <ud tan 11-291/2 (Lh)
T - (mE)? - dtan% (45)

*See for example Ref. 4, T, 8, 9.
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bie = 2 (D) = 2 P (46-1)
for = = (derder) = 7 Po (46-2)

Thus the optimum values of the angular momentum and latus rectum for minimum
energy trajectory are the geometrical means of any conjugate pairs of the
angular momenta and latus recta respectively for the same range angle ¥ and the
base altitude d; while the optimum‘terminal path angle is the arithmetic mean
of any conjugate pair of the terminal path angles for the same base angle at
the terminal point, and is equal to one half of this base angle. The last
statement on the path angle, in fact, amounts to saying: +the optimum direction
of departure for a minimum energy trajectory always bisects a pair of conjugate
directions of departure and the same is true for the resulting direction of
approach. This conclusion has been previously established in Ref. 7 for the
symmetrical case. The present analysis shows that 1t carries over to the un-
symmetrical case Jjust as well. In particular, the optimum direction bisects
the external angle:at the corresponding terminal since the chordal and radial
directions at either terminal are such a conjugate pair; thus the optimum di-
rection and the bisector of the base angle at the same terminal are perpen-
dicular to each other. It is interesting to note here that the direction of
optimum departure is determined by the initial base angle alone. Consequently
this direction will remain fixed if the final terminal moves along the chord
line. This is in analogy with an artillery trajectory over a flat earth.
Imagine a target point is in the same horizontal plane as the initial point,
then @ = 90°, and Eq. (L46-1) gives the optimum direction of departure at 45°
with the local horizon just like the artillery case, although the force field
considered here is central instead of uniform. The only main difference is
that the trajectory here is elliptic instead of parabolic.

The optimum initial speed parameter for the minimum energy trajectory
is given by the hodograph as the radius of the speed circle at Q; which is

tangent to the line of origins, and the geometry of the hodograph (Figure 6)
shows that

hl*z = tan % tan lgl (L7)

which, after some trigonometric simplifications, reduces to the formula given
in Ref. 8,

Ax = 1 - -1;—1 (L7-a)
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where s is the half-perimeter of the base triangle, defined by

0
]
[V [

(ritrats) (18)

The minimum energy and the corresponding semimajor axis are then found to be

ke = B (x-l) = -8 (49)
ra S
and
_r  _ 1
ax 2(1—}\1*2) 5 S (50)

Thus, in a given field, while the angular momentum and the latus rectum of a
minimum energy trajectory are determined by ¥ and d alone the orbital energy
and the major axis depend only on the perimeter of the base triangle.

Following the foregoing formulas all other elements of a minimum energy
trajectory may be easily obtained from the general orbital relations. Of
course all formulas and conclusions in this section hold for a normal group or
its complement as well except for a change of sign in the path angle, since
the minimum energy trajectories of the two groups are of the same Keplerian
ellipse.

In regard to the occurrence of the apses, it is to be noted that, for a
normal group the apocenter of a minimum energy trajectory always lies on the
trajectory while its pericenter does not, since the optimum origin Oy in such
case always lies between the points Hy (or Hz) and Dry (see Table 5)., Thus
for such trajectory the apocenter is actually the trajectory peak while the
point of closest approach on the trajectory is either Q; or Qz according as
r1 <rg, or r1 > ro. A similar statement holds for a complementary group ex-
cept that it is the pericenter which always lies o the trajectory, not the
apocenter, Sometimes the location of such apses on the trajectory is of in-
terest. By considering the similarities of the triangles 0Q;Q2 (physicalA
plane) and CG1Ge (hodograph plane) a little trigonometric manipulation yields

sin
tan =
Vi cos ¥V + k
tan \Vz = _S:]ﬁ_\k_i (51)
cos ¥V + =

K
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where the angles V1 and Vo are identified in Figure 6, and

Gin £i [sin -Z%a (52)
2 2

which is a constant for a given base triangle. The above equations give the
location of the apocenter for a normal minimum energy trajectory or the peri-
center of its complement.

S
I

THE LEAST ECCENTRIC TRAJECTORY AND ITS CONJUGATE

As shown in Section II, there is a least eccentric trajectory for each
fixed configuration of the base triangle. The hodogrgph origin for such tra-
jectory is given by the point E, the foot of the perpendicular drawn from the
center of the hodograph circle to the line of origins, and the least eccentric-
ity is given by Eq. (5) or (5a). The dependence of €yin on n and ¥ is shown
graphically in Figures 11-2-a,b,c,d as the least eccentricity line which forms
the lower envelope for all the eccentricity curves. Obviously with its hodo-
graph origin located at B, a least eccentric trajectory will have its apsidal
axis parallel to the chord line Q;Q2 in the physical plane, and consequently
its minor axis will pass through the middle point of the chord Q:Qe (Figure
7).

It can be shown that the'trajectory conjugate to the least eccentric one
is the one having its hodograph origin located at F, where the line of origins
crosses the line Q;Qz in the hoddgraph plane. This trajectory ellipse will
have the line QiQo as its diameter since the terminal velocities are now point-
ing in the opposite directions. The initial path angle to achieve this par-
ticular trajectory of a normal group is, as seen from the hodograph,

$1IT = - @2l = = - % (53-1I)

s
2

The conjugate path angle, which is the one to achieve the least eccentric tra-
jectory is then, according to Eq. (28-1)

$11 = - g1 = % (@1-22) (53-1)

The initial speed ratio Ay required for both trajectories and the resulting
final speed ratio Ao may be easily found by noting that the speed ratios at
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the orbital points diametrically opposite on an elliptic orbit are connected

by*

24 =1 (54)

N1

which, when combined with the general relation (2), yields

= == N o= = (55)

The semimajor axis and the orbital energy of either trajectory are then given
by

a = % (ri+ra) (56)
S
k i (57)

Thus the terminal speeds, the major axis, and the orbital energy of a least
eccentric trajectory or its conjugate all depend on r; and rp only, and in-
dependent of the vertex angle V.

OTHER TRAJECTORIES

In addition to the few particular trajectories analyzed above there are
some other ones which might be of interest. For example, associated with the
point Hy, the intersection of the line of origins with the radius 0Q; (or its
extension, see Table 5), the trajectory is one of horizontal departure, since
the initial path angle is zero as indicated by the hodograph. Such trajectory
will have its apsidal axis coinciding with the initial terminal radius 0Q; in
the physical plane; and the point Qi will be its pericenter if r; < rp, or
apocenter if r; > rp. ©Similarly, associated with the point Hz, where the line
of origins crosses the radius OQz (or its extension) the trajectory will have
its final path angle equal to zero. Its apsidal axis will coincide with the
final terminal radius 0Qz and the point Qo will be its apocenter if rp > r;
or pericenter if ro < ry. In the latter case, if Qo is considered as the
target point on a spherical surface, the trajectory will be cotangential with
the surface, and is known in ballistics as the grazing trajectory. In reentry

*See Ref. 6, p. 17h.
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problems it represents the limiting trajectory for reentry to be effected.
The principal elements of either the trajectory of horizontal departure or
the grazing trajectory may be easily obtained from the hodograph.

Generally speaking, particular trajectories of interest depend on the
particular problem at hand. Complete analysis of all these trajectories is
impossible, and their treatment will be left to the separate studies of in-
dividual problems.
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VII. THE CASE OF 180 DEGREE RANGE

HODOGRAPHIC REPRESENTATION AND GENERAL SURVEY

So far the analysis has been restricted to the case ¥ # n. In the bound-
ary case of ¥ = n, the chordal and radial components of the terminal velocities
all become parallel, the point T recesses to infinity, and the method of hodo-
graph construction of Section II breaks down. However, the proof for the linear
distribution of hodograph origins still stands. With the terminal points Qi
and Q2 located on the hodograph circle as usual, obviously the line of origins
will be normal to the diameter Q1Q2 as shown in Figure 8b. The distance from
the center of the hodograph circle to the line of origin is still given by CE
according to Eq. (5a) which reduces to

G - gl (58)

in the present case

In the physical plane the base triangle degenerates into the line segment
Q1Q2, which becomes a focal chord; and the normal group and its complement now
have the same range angle V. In fact, associated with a given chord Q;Qs all
distinctions between a normal group and its complement disappear except in the
direction of motion. For convenience, however, the same terminology will be
retained here by referring to the group moving in the counterclockwise direc-
tion as normal, and the other its complement. The hodograph in Figure 8(b) is
drawn for the normal group, and the corresponding hodograph for its complement
may be obtained by rotating Figure &p)through 180° as usual. Following the
general survey of Section IT and with reference to Figure EKbLall realistic
trajectories will have their origins lying in the open interval from Dy7 via
Dy to infinity. Furthermore, the symmetrical nature of the hodograph shows
that the conjugate trajectory conics are now ldentical and symmetrically ori-
entated with respect to the line Q3;Q2; and in fact the conjugate of a trajec-
tory is the reflection of its complement about QiQz. The inner forbidden
region of departure and outer forbidden region of approach both vanish; the
axes of the two limiting hyperbolas both coincide with the normal to the line
Q1Q2 at O, but point in the opposite directions. The various regions and their
included angles are shown in Figure 8a and Table 6. A typical conjugate pair
and the corresponding hodograph are shown in Figure 9-1, 2 for the elliptic and
hyperbolic cases respectively; for the parabolic case, see Figure 8.

59



"3ONVY 008! ‘NOILVLINISIHGIY DIHIVYO
-OQOH S1I ANV S3140103rvyl TVYNINY3IL -0 40 W3LSAS ‘8 34NOI4

(2)

Y90,
4o %o.\Q
31241 ydoibopoH : Usp, 7o)
20 \ m;:_‘_oawo Pig,
jo co_omm —

cmuu_nhou_ 3 \

I2 |92
N Rt

(D)

_ 2 - L S \
VA @V\@m\mmm@\\/w\\
_c+Nc , \$| 2 _ %.? o//Nt/ﬂc//&
h ¥ St )\
\ I pa I pbjogoiod

o /74 idibag &a\__\_\u\\\\
suibuQ jo aun G

Lo



m - ¥ = OTFuy psSpnrour

yoeoaddy JO UCTSay USIPPTAIO]

D = Wﬂq + 29y Te30g

(o0) 2 = T(P) - () = =g = o
yosoxddy JO chHmwm STQLSSOog
c
5 =) 5 - = MEH) - = TE
2 - -
¥ = TIEP) - = T(3)

yoeoJddy JO SUOTZ303IT( SUTATWLT

£

c
™

is

(139 =) (o) = =

m = ST3uy pspnrour

2Jnj3aedsq JO UOCTIaY USIPPTAIOL

™ - xg = Tgy 4+ Ty TBIOL

= TIp) - () = g -

aanyaeds(q JO SUOTZoY .o91qLrsSsog

c
i

- = () - = T

TI(TP) - = TO(TH)

aanqIedyq JO SUOTJFO9IT( SUTLFTWL]

Hﬂ<

N

TeUTWIS], [BULL

TeUTWaS], T813 UL

r =

9 9TABL

A ‘yoeoaddy pue sanjaedsg JO SUOTISY USPPTAIOL PuUB mHQmeom

L3



THE CHARACTERISTICS OF THE CONJUGATE TRAJECTORIES AND THEIR PRINCIPAL EIEMENTS

Although the chordal and radial velocity components are no longer sig-
nificant in dealing with the 180° range trajectories, the previously derived
conjugate relations are preserved. Of course the constant in Eq. (17) or (21)
goes to infinity as ¥ approaches n; however, the constant in Eq. (23) or (25)
does approach a finite limit. To see this we write the trigonometric identity

d .- tan Y. = _2_1'.1_1'2. sin2 }k. (59)
2 1 2
and find
lim d - tan ¥ = 22 (60)
Yoo 2 ritre

Consequently the conjugate relations (23) and (25) reduce to

2prire (61)

hth
I 1 ritre

- R
_ AryTrp”
I'II © (ritre)? (62)

for the present case. In fact, at this point we may go one step further:
since, as pointed out earlier, the conjugate trajectories are now of identical
conics, we have

hy = hyp, T = Tp | (63)
which, when combined with Egs. (61) and (62), give immediately the expressions

for the angular momentum and the semi-latus rectum as shown in Table L.

Noting that ¥ = @2 = O when ¥ = x, the conjugate relations (28) now
become

]
(@]

f11 + d11T or ¢i1 - $111

(6k)

|
(@

il

o1 + for1 or fgor - fer1

k2



which are also evident from the symmetry of the present hodograph. To evaluate
the terminal path angles we note from the hodograph that, in the right triangles
Q101B; and Q10:E (Figures 9-1, 2),

QIEII = 2K£2 cos ¢lII) 5:61 cos ¢lII = E%E
from which by eliminating Q;077 we obtain
cos ¢1II = %: ;%I (65-11)
And in view of Eq. (6L) we may write
(41) = % cos™t % ey (65)

A similar expression stands for the conjugate values of ¢2, Note that the

same results here may be obtained by setting ¥V = x in Bq. (4l-a). This shows
that the formulas (hl-a,b) originally deduced for the case ¥ = 5 holds also

in the limiting case of ¥ = n. Note here the special case of parabolic flight.
The geometry of the hodograph shows that

[gax] + Iga*| = (66)

R

for either group. That is, the terminal velocities in a 180° parabolic flight
are normal to each other. Geometrically this implies that the two tangents at
the ends of a focal chord of a parabola are orthogonal. This is in fact a geo-
metrical property of a parabola.

Returning to the general case it is to be noted that, for a 180° flight,

between fixed terminals, although the initial speed may be arbitrary, its
©-component is not. This can be seen from the hodograph since

_ il . o
)\.el = 5 QlE = e (67)

which shows that Ag1 and consequently Vgi is fixed by the terminal distances

b3
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alone, hence independent of the initial speed. The same is true for the final
speed Vgo.

Formulas for other trajectory elements may be likewise deduced from the
hodograph geometry of Figures 8 and 9 or by using appropriate orbital rela-
tions. . The results are summarized in column 3, Table 4; and the dependence
of some of the principal trajectory elements on the distance ratio and the
initial speed are shown graphically in Figures ll-l,2(d). It is worth noting
from Table 4 that, for ¥ = n, in addition to the ©-components of the terminal
velocities, the angular momentum and latus rectum are also fixed by the ter-
minal distances ri and rz alone, hence they are independent of the initial
speed, or the particular choice of trajectory.

The criteria  given in Table 5 for the occurrence of apses on the trajec-
tory still stand for the present case. However, it is to be noted that, as
the present hodograph shows, the points H; and Ho coincide at E. This in-
dicates that at least one of the two apses will lie on the trajectory, and
both will be on the trajectory when the origin is at E, corresponding to the
minimum energy trajectory.

Finally, for a 180°-flight, the parameters 7, and 1'y in Lambert's
formula all vanish and the resulting simplified expressions for the duration
of flight are given in Appendix B and graphically shown in Figure ir3(d). It
only needs to mention here that, in the elliptic case,

3/2
At + At = & —X = 1 (period of elliptic motion) (68)
Vi (2(1-M5)

as 1t should be since as pointed out earlier, the conjugate path is only the
reflection of the complementary path about the line Q1Qz.

THE MINIMUM ENERGY TRAJECTORY AND THE IEAST ECCENTRIC TRAJECTORY

When ¥ = n the minimum energy trajectory and the least eccentric trajec-
tory coincide, both have the point E as their hodograph origin (see Figure 10).
The trajectory is a half ellipse with its apsidal axis coinciding with QiQpo,
and the trajectory conic is the well-known Hohmann's ellipse. Thus a Hohmann's
ellipse is not only the least energetic, but also the least eccentric, among
all trajectories of common terminals with 180° range. From Egs. (57) and (58)
the orbital energy and the eccentricity of a Hohmann's ellipse are found to be

= - i 6
ky v - x - (69)
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and

€x = J‘J:_n‘l' (70)

Vo= 1+n

Comparing these formulas with the corresponding general formulas (L49) and (5-a)
respectively, we see that, if the terminal distances are fixed, but the range
angle is allowed to vary, the energy of the Hohmann's ellipse is in fact the
greatest among all the minimum energy ones; while its eccentricity is the over-
all minimum in the entire trajectory system. Other elements of the Hohmann's
ellipse can be easily obtained from the hodograph as usual.
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VIII. SUMMARY OF CONCLUSIONS

The main conclusions obtained in the present analysis may be summarized
as follows:

1. Tor a system of all co-terminal trajectories of the same range angle,
the locus of the hodograph origin in the dimensionless X ¥ -plane is a straight
line parallel to the line connecting the terminal points in the physical plane.
This is true regardless of whether the range angle is less than, greater than
or equal to 7.

2. Of the infinitely many co-terminal trajectories associated with a
given base triangle in a given field: :

(a) Only two are parabolic, and all the realistic trajectories, elliptic
and hyperbolic, are confined in the region outside the base triangle and
bounded between the branches of the parabolas extending from each terminal to
infinity, with those of the normal group all above the chord or base (Q1Qz)
of the base triangle and the complementary group in the rest of the region
(see Figure 3(a)).

(b) There exist an upper limit and a lower limit for the initial path
angle in each group beyond which no such trajectory is possible; consequently,
there is a forbidden angular region for the directions of departure at the
initial terminal. A similar situation exists for the directions of approach
at the final terminal. The included angle of each region is determined by
the geometry of the base triangle (see Figure 3 and Table 2).

(c) The positive portions of the elliptic apsidal axes, and those of
the hyperbolic apsidal axes are also confined in certain angular regions
bounded by the apsidal axes of the two parabolic trajectories and the two
axes coinciding with the base altitude and the bisector of the vertex angle
¥ of the base triangle respectively. The included angle of each region is
also determined by the geometry of the base triangle (see Figure 3 and Table 3

(d) Besides the well-known minimum speed, there exists a least elliptic
eccentricity which the trajectory may attain, and an upper limit for the hyper-
bolic eccentricity of the complementary group (see Egs. (5,5a) and (7)). There
is no upper limit for the hyperbolic eccentricity of the normal group.

3. For a pair of conjugate trajectories associated with a given base tri-
angle and an arbitrary initial speed in a given field:

(a) The chordal and radial components of the terminal velocity of one
trajectory aré equal to the radial and chordal components of the terminal
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Velocity of the other respectively (the reciprocal relation).

(b) The product of each conjugate pair. of the following quantities
is a constant:

i. The chordal component of the terminal velocity.

ii. The radial component of the terminal velocity.
iii. The angular momentum.

iv. The latus rectum.

Each constant depends of the vertex angle V¥ and the base altitude 4 alone,
hence independent of the initial speed.

(¢) The sum of the conjugate path angles at either terminal is a con-
stant, equal to one-half of the base angle at that terminal.

L. A minimum energy trajectory is characterized by the following features:

(a) The chordal and radial components of either terminal velocity are
equal.

(b) The direction of motion at either terminal bisects any pair of
conjugate directions at that terminal. This direction depends only on the
base angle at that terminal (see Egs. (L46)).

(¢) The chordal and radial components of the terminal velocity, the
angular momentum, and the latus rectum are the geometrical mean of the con-
jugate pair of the corresponding quantities associated with a base triangle
of the same vertex angle ¥ and base altitude d.

5. A least eccentric trajectory is characterized by the following
features:

(a) The apsidal axis of the trajectory ellipse is parallel to the chord
Q1Qz2.

(b) The terminal speed parameters, the major axis, and the orbital energy
all depend on the terminal distances only, hence independent of the range
angle.

(c) The least eccentricity is proportional to the numerical difference
between the terminal distances and inversely proportional to the length of
the chord (see Eq. (5-a)).

6. In the case of 180° range, the ©-components of the terminal velocities,
the angular momentum and the latus rectum are all fixed by the terminal dis-
tances r; and rz alone, thus they are independent of the initial speed, hence
the choice of trajectory.
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7. (a) In a system of co-terminal trajectories of 180° range the Hohmann's
ellipse has both the minimum orbital energy and the least eccentricity.

(b) In a system of fixed terminal distances but varying range angle,

the Hohmann's ellipse has the greatest minimum energy and the overall least
eccentricity.
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APPE

NDIX A

CORRELATIONS BETWEEN THE PHYSICAL PLANE AND THE HODOGRAPH PLANE FOR THE KEPLERIAN ORBITS*
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0] (xX)
Elliptic Orbit Hyperbolic Orbit Parabolic Orbit
Hodograph Plane
Orbital Element Xy ~Plane %y-Plane
Q= p/n tg =1
Orbital Velocity - —
Total v c% (p/h)g‘g’
-3
Transversal Comp't Vg S (p/n)sq
Radial Comp't 7. 08 (u/n)og
Path Angle é £0Q0 £0Q0
True Anomaly 6 4PCQ £LPCQ
Eccentricity € oc
Angulor Momentum h n/Cq
Orbital Energy k - (/9 0N2(elliptic),
(/2 OT2( hyperbolic)
Speed Parameter A 1/2 5q
Distance Ratios T/r 5Q
2
r/a BQ
b/a ON(elliptic),
0I( hyperbolic)
Directlon Angle of Asymptote 7 £OCT £OCI
(hyperbolic orbit)

Particular Orbital Points

Pericenter
Apocenter
Ends of Latus Rectun

Ends of Minor Axis, Elliptic Orbit
Points at Infinity, Hyperbolie Orbit
Parebolic Orbit

Point at Infinity,

TM,M
N, N
1,1’
0

Note: 1.

2. [BOQ = 90°

*Condensed from Ref. 8, pp. 882-89k.
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Positive directions of © and ¢ are indicated in the figure.
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